
The Unicode® Standard
Version 9.0 – Core Specification

To learn about the latest version of the Unicode Standard, see http://www.unicode.org/versions/latest/.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc., in the United States and
other countries.

The authors and publisher have taken care in the preparation of this specification, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of the
use of the information or programs contained herein.

The Unicode Character Database and other files are provided as-is by Unicode, Inc. No claims are
made as to fitness for any particular purpose. No warranties of any kind are expressed or implied. The
recipient agrees to determine applicability of information provided.

© 2016 Unicode, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction. For information regarding permissions, inquire
at http://www.unicode.org/reporting.html. For information about the Unicode terms of use, please
see http://www.unicode.org/copyright.html.

The Unicode Standard / the Unicode Consortium; edited by the Unicode Consortium. — Version 9.0.
 Includes bibliographical references and index.
 ISBN 978-1-936213-13-9 (http://www.unicode.org/versions/Unicode9.0.0/)
 1. Unicode (Computer character set) I. Unicode Consortium.
 QA268.U545 2016

ISBN 978-1-936213-13-9
Published in Mountain View, CA
July 2016

9

Chapter 2

General Structure 2

This chapter describes the fundamental principles governing the design of the Unicode
Standard and presents an informal overview of its main features. The chapter starts by
placing the Unicode Standard in an architectural context by discussing the nature of text
representation and text processing and its bearing on character encoding decisions. Next,
the Unicode Design Principles are introduced—ten basic principles that convey the essence
of the standard. The Unicode Design Principles serve as a tutorial framework for under-
standing the Unicode Standard.

The chapter then moves on to the Unicode character encoding model, introducing the con-
cepts of character, code point, and encoding forms, and diagramming the relationships
between them. This provides an explanation of the encoding forms UTF-8, UTF-16, and
UTF-32 and some general guidelines regarding the circumstances under which one form
would be preferable to another.

The sections on Unicode allocation then describe the overall structure of the Unicode
codespace, showing a summary of the code charts and the locations of blocks of characters
associated with different scripts or sets of symbols.

Next, the chapter discusses the issue of writing direction and introduces several special
types of characters important for understanding the Unicode Standard. In particular, the
use of combining characters, the byte order mark, and other special characters is explored
in some detail.

The section on equivalent sequences and normalization describes the issue of multiple
equivalent representations of Unicode text and explains how text can be transformed to use
a unique and preferred representation for each character sequence.

Finally, there is an informal statement of the conformance requirements for the Unicode
Standard. This informal statement, with a number of easy-to-understand examples, gives a
general sense of what conformance to the Unicode Standard means. The rigorous, formal
definition of conformance is given in the subsequent Chapter 3, Conformance.

General Structure 10 2.1 Architectural Context
2.1 Architectural Context
A character code standard such as the Unicode Standard enables the implementation of
useful processes operating on textual data. The interesting end products are not the charac-
ter codes but rather the text processes, because these directly serve the needs of a system’s
users. Character codes are like nuts and bolts—minor, but essential and ubiquitous com-
ponents used in many different ways in the construction of computer software systems. No
single design of a character set can be optimal for all uses, so the architecture of the Uni-
code Standard strikes a balance among several competing requirements.

Basic Text Processes

Most computer systems provide low-level functionality for a small number of basic text
processes from which more sophisticated text-processing capabilities are built. The follow-
ing text processes are supported by most computer systems to some degree:

• Rendering characters visible (including ligatures, contextual forms, and so on)

• Breaking lines while rendering (including hyphenation)

• Modifying appearance, such as point size, kerning, underlining, slant, and
weight (light, demi, bold, and so on)

• Determining units such as “word” and “sentence”

• Interacting with users in processes such as selecting and highlighting text

• Accepting keyboard input and editing stored text through insertion and deletion

• Comparing text in operations such as in searching or determining the sort
order of two strings

• Analyzing text content in operations such as spell-checking, hyphenation, and
parsing morphology (that is, determining word roots, stems, and affixes)

• Treating text as bulk data for operations such as compressing and decompress-
ing, truncating, transmitting, and receiving

Text Elements, Characters, and Text Processes

One of the more profound challenges in designing a character encoding stems from the fact
that there is no universal set of fundamental units of text. Instead, the division of text into
text elements necessarily varies by language and text process.

For example, in traditional German orthography, the letter combination “ck” is a text ele-
ment for the process of hyphenation (where it appears as “k-k”), but not for the process of
sorting. In Spanish, the combination “ll” may be a text element for the traditional process
of sorting (where it is sorted between “l” and “m”), but not for the process of rendering. In
English, the letters “A” and “a” are usually distinct text elements for the process of render-
ing, but generally not distinct for the process of searching text. The text elements in a given

General Structure 11 2.1 Architectural Context
language depend upon the specific text process; a text element for spell-checking may have
different boundaries from a text element for sorting purposes. For example, in the phrase
“the quick brown fox,” the sequence “fox” is a text element for the purpose of spell-check-
ing.

In contrast, a character encoding standard provides a single set of fundamental units of
encoding, to which it uniquely assigns numerical code points. These units, called assigned
characters, are the smallest interpretable units of stored text. Text elements are then repre-
sented by a sequence of one or more characters.

Figure 2-1 illustrates the relationship between several different types of text elements and
the characters used to represent those text elements.

The design of the character encoding must provide precisely the set of characters that
allows programmers to design applications capable of implementing a variety of text pro-
cesses in the desired languages. Therefore, the text elements encountered in most text pro-
cesses are represented as sequences of character codes. See Unicode Standard Annex #29,
“Unicode Text Segmentation,” for detailed information on how to segment character
strings into common types of text elements. Certain text elements correspond to what
users perceive as single characters. These are called grapheme clusters.

Text Processes and Encoding

In the case of English text using an encoding scheme such as ASCII, the relationships
between the encoding and the basic text processes built on it are seemingly straightforward:
characters are generally rendered visible one by one in distinct rectangles from left to right

Figure 2-1. Text Elements and Characters

Text Elements Characters

Ç

ch

cat

C ¸

Ç

c h

c a t

(Slovak)

Composite:

Collation Unit:

Syllable:

Word:

@

@

General Structure 12 2.1 Architectural Context
in linear order. Thus one character code inside the computer corresponds to one logical
character in a process such as simple English rendering.

When designing an international and multilingual text encoding such as the Unicode Stan-
dard, the relationship between the encoding and implementation of basic text processes
must be considered explicitly, for several reasons:

• Many assumptions about character rendering that hold true for the English
alphabet fail for other writing systems. Characters in these other writing sys-
tems are not necessarily rendered visible one by one in rectangles from left to
right. In many cases, character positioning is quite complex and does not pro-
ceed in a linear fashion. See Section 9.2, Arabic, and Section 12.1, Devanagari,
for detailed examples of this situation.

• It is not always obvious that one set of text characters is an optimal encoding
for a given language. For example, two approaches exist for the encoding of
accented characters commonly used in French or Swedish: ISO/IEC 8859
defines letters such as “ä” and “ö” as individual characters, whereas ISO 5426
represents them by composition with diacritics instead. In the Swedish lan-
guage, both are considered distinct letters of the alphabet, following the letter
“z”. In French, the diaeresis on a vowel merely marks it as being pronounced in
isolation. In practice, both approaches can be used to implement either lan-
guage.

• No encoding can support all basic text processes equally well. As a result, some
trade-offs are necessary. For example, following common practice, Unicode
defines separate codes for uppercase and lowercase letters. This choice causes
some text processes, such as rendering, to be carried out more easily, but other
processes, such as comparison, to become more difficult. A different encoding
design for English, such as case-shift control codes, would have the opposite
effect. In designing a new encoding scheme for complex scripts, such trade-offs
must be evaluated and decisions made explicitly.

For these reasons, design of the Unicode Standard is not specific to the design of particular
basic text-processing algorithms. Instead, it provides an encoding that can be used with a
wide variety of algorithms. In particular, sorting and string comparison algorithms cannot
assume that the assignment of Unicode character code numbers provides an alphabetical
ordering for lexicographic string comparison. Culturally expected sorting orders require
arbitrarily complex sorting algorithms. The expected sort sequence for the same characters
differs across languages; thus, in general, no single acceptable lexicographic ordering exists.
See Unicode Technical Standard #10, “Unicode Collation Algorithm,” for the standard
default mechanism for comparing Unicode strings.

Text processes supporting many languages are often more complex than they are for Eng-
lish. The character encoding design of the Unicode Standard strives to minimize this addi-
tional complexity, enabling modern computer systems to interchange, render, and
manipulate text in a user’s own script and language—and possibly in other languages as
well.

General Structure 13 2.1 Architectural Context
Character Identity. Whenever Unicode makes statements about the default layout behav-
ior of characters, it is done to ensure that users and implementers face no ambiguities as to
which characters or character sequences to use for a given purpose. For bidirectional writ-
ing systems, this includes the specification of the sequence in which characters are to be
encoded so as to correspond to a specific reading order when displayed. See Section 2.10,
Writing Direction.

The actual layout in an implementation may differ in detail. A mathematical layout system,
for example, will have many additional, domain-specific rules for layout, but a well-
designed system leaves no ambiguities as to which character codes are to be used for a given
aspect of the mathematical expression being encoded.

The purpose of defining Unicode default layout behavior is not to enforce a single and spe-
cific aesthetic layout for each script, but rather to encourage uniformity in encoding. In
that way implementers of layout systems can rely on the fact that users would have chosen
a particular character sequence for a given purpose, and users can rely on the fact that
implementers will create a layout for a particular character sequence that matches the
intent of the user to within the capabilities or technical limitations of the implementation.

In other words, two users who are familiar with the standard and who are presented with
the same text ideally will choose the same sequence of character codes to encode the text. In
actual practice there are many limitations, so this goal cannot always be realized.

General Structure 14 2.2 Unicode Design Principles
2.2 Unicode Design Principles
The design of the Unicode Standard reflects the 10 fundamental principles stated in
Table 2-1. Not all of these principles can be satisfied simultaneously. The design strikes a
balance between maintaining consistency for the sake of simplicity and efficiency and
maintaining compatibility for interchange with existing standards.

Universality

The Unicode Standard encodes a single, very large set of characters, encompassing all the
characters needed for worldwide use. This single repertoire is intended to be universal in
coverage, containing all the characters for textual representation in all modern writing sys-
tems, in most historic writing systems, and for symbols used in plain text.

The Unicode Standard is designed to meet the needs of diverse user communities within
each language, serving business, educational, liturgical and scientific users, and covering
the needs of both modern and historical texts.

Despite its aim of universality, the Unicode Standard considers the following to be outside
its scope: writing systems for which insufficient information is available to enable reliable
encoding of characters, writing systems that have not become standardized through use,
and writing systems that are nontextual in nature.

Because the universal repertoire is known and well defined in the standard, it is possible to
specify a rich set of character semantics. By relying on those character semantics, imple-
mentations can provide detailed support for complex operations on text in a portable way.
See “Semantics” later in this section.

Table 2-1. The 10 Unicode Design Principles

Principle Statement

Universality The Unicode Standard provides a single, universal repertoire.

Efficiency Unicode text is simple to parse and process.

Characters, not glyphs The Unicode Standard encodes characters, not glyphs.

Semantics Characters have well-defined semantics.

Plain text Unicode characters represent plain text.

Logical order The default for memory representation is logical order.

Unification The Unicode Standard unifies duplicate characters within scripts
across languages.

Dynamic composition Accented forms can be dynamically composed.

Stability Characters, once assigned, cannot be reassigned and key properties are
immutable.

Convertibility Accurate convertibility is guaranteed between the Unicode Standard
and other widely accepted standards.

General Structure 15 2.2 Unicode Design Principles
Efficiency

The Unicode Standard is designed to make efficient implementation possible. There are no
escape characters or shift states in the Unicode character encoding model. Each character
code has the same status as any other character code; all codes are equally accessible.

All Unicode encoding forms are self-synchronizing and non-overlapping. This makes ran-
domly accessing and searching inside streams of characters efficient.

By convention, characters of a script are grouped together as far as is practical. Not only is
this practice convenient for looking up characters in the code charts, but it makes imple-
mentations more compact and compression methods more efficient. The common punc-
tuation characters are shared.

Format characters are given specific and unambiguous functions in the Unicode Standard.
This design simplifies the support of subsets. To keep implementations simple and effi-
cient, stateful controls and format characters are avoided wherever possible.

Characters, Not Glyphs

The Unicode Standard draws a distinction between characters and glyphs. Characters are
the abstract representations of the smallest components of written language that have
semantic value. They represent primarily, but not exclusively, the letters, punctuation, and
other signs that constitute natural language text and technical notation. The letters used in
natural language text are grouped into scripts—sets of letters that are used together in writ-
ing languages. Letters in different scripts, even when they correspond either semantically or
graphically, are represented in Unicode by distinct characters. This is true even in those
instances where they correspond in semantics, pronunciation, or appearance.

Characters are represented by code points that reside only in a memory representation, as
strings in memory, on disk, or in data transmission. The Unicode Standard deals only with
character codes.

Glyphs represent the shapes that characters can have when they are rendered or displayed.
In contrast to characters, glyphs appear on the screen or paper as particular representations
of one or more characters. A repertoire of glyphs makes up a font. Glyph shape and meth-
ods of identifying and selecting glyphs are the responsibility of individual font vendors and
of appropriate standards and are not part of the Unicode Standard.

Various relationships may exist between character and glyph: a single glyph may corre-
spond to a single character or to a number of characters, or multiple glyphs may result
from a single character. The distinction between characters and glyphs is illustrated in
Figure 2-2.

Even the letter “a” has a wide variety of glyphs that can represent it. A lowercase Cyrillic “Ò”
also has a variety of glyphs; the second glyph for U+043F cyrillic small letter pe shown
in Figure 2-2 is customary for italic in Russia, while the third is customary for italic in Ser-
bia. Arabic letters are displayed with different glyphs, depending on their position in a

General Structure 16 2.2 Unicode Design Principles
word; the glyphs in Figure 2-2 show independent, final, initial, and medial forms. Sequences
such as “fi” may be displayed with two independent glyphs or with a ligature glyph.

What the user thinks of as a single character—which may or may not be represented by a
single glyph—may be represented in the Unicode Standard as multiple code points. See
Table 2-2 for additional examples.

For certain scripts, such as Arabic and the various Indic scripts, the number of glyphs
needed to display a given script may be significantly larger than the number of characters
encoding the basic units of that script. The number of glyphs may also depend on the
orthographic style supported by the font. For example, an Arabic font intended to support
the Nastaliq style of Arabic script may possess many thousands of glyphs. However, the
character encoding employs the same few dozen letters regardless of the font style used to
depict the character data in context.

A font and its associated rendering process define an arbitrary mapping from Unicode
characters to glyphs. Some of the glyphs in a font may be independent forms for individual

Figure 2-2. Characters Versus Glyphs

Table 2-2. User-Perceived Characters with Multiple Code Points

Glyphs Unicode Characters

U+0041 latin capital letter a

U+0066 latin small letter f
 + U+0069 latin small letter i

U+0061 latin small letter a

U+0647 arabic letter heh
U+043F cyrillic small letter pe

0063 0068

0074 02B0

0078 0323

019B 0313

00E1 0328

0069 0307 0301

30C8 309A

Native American
 languages

Lithuanian

Ainu (in kana transcription)

Slovak, traditional Spanish

Character Code Points Linguistic Usage

General Structure 17 2.2 Unicode Design Principles
characters; others may be rendering forms that do not directly correspond to any single
character.

Text rendering requires that characters in memory be mapped to glyphs. The final appear-
ance of rendered text may depend on context (neighboring characters in the memory rep-
resentation), variations in typographic design of the fonts used, and formatting
information (point size, superscript, subscript, and so on). The results on screen or paper
can differ considerably from the prototypical shape of a letter or character, as shown in
Figure 2-3.

For the Latin script, this relationship between character code sequence and glyph is rela-
tively simple and well known; for several other scripts, it is documented in this standard.
However, in all cases, fine typography requires a more elaborate set of rules than given here.
The Unicode Standard documents the default relationship between character sequences

Figure 2-3. Unicode Character Code to Rendered Glyphs

Text Character Sequence

Text
Rendering

Process

Font
(Glyph Source)

0000 1001 0010 1010
0000 1001 0100 0010
0000 1001 0011 0000
0000 1001 0100 1101
0000 1001 0010 0100
0000 1001 0011 1111

General Structure 18 2.2 Unicode Design Principles
and glyphic appearance for the purpose of ensuring that the same text content can be
stored with the same, and therefore interchangeable, sequence of character codes.

Semantics

Characters have well-defined semantics. These semantics are defined by explicitly assigned
character properties, rather than implied through the character name or the position of a
character in the code tables (see Section 3.5, Properties). The Unicode Character Database
provides machine-readable character property tables for use in implementations of pars-
ing, sorting, and other algorithms requiring semantic knowledge about the code points.
These properties are supplemented by the description of script and character behavior in
this standard. See also Unicode Technical Report #23, “The Unicode Character Property
Model.”

The Unicode Standard identifies more than 100 different character properties, including
numeric, casing, combination, and directionality properties (see Chapter 4, Character
Properties). Additional properties may be defined as needed from time to time. Where
characters are used in different ways in different languages, the relevant properties are nor-
mally defined outside the Unicode Standard. For example, Unicode Technical Standard
#10, “Unicode Collation Algorithm,” defines a set of default collation weights that can be
used with a standard algorithm. Tailorings for each language are provided in the Unicode
Common Locale Data Repository (CLDR); see Section B.6, Other Unicode Online Resources.

The Unicode Standard, by supplying a universal repertoire associated with well-defined
character semantics, does not require the code set independent model of internationaliza-
tion and text handling. That model abstracts away string handling as manipulation of byte
streams of unknown semantics to protect implementations from the details of hundreds of
different character encodings and selectively late-binds locale-specific character properties
to characters. Of course, it is always possible for code set independent implementations to
retain their model and to treat Unicode characters as just another character set in that con-
text. It is not at all unusual for Unix implementations to simply add UTF-8 as another char-
acter set, parallel to all the other character sets they support. By contrast, the Unicode
approach—because it is associated with a universal repertoire—assumes that characters
and their properties are inherently and inextricably associated. If an internationalized
application can be structured to work directly in terms of Unicode characters, all levels of
the implementation can reliably and efficiently access character storage and be assured of
the universal applicability of character property semantics.

Plain Text

Plain text is a pure sequence of character codes; plain Unicode-encoded text is therefore a
sequence of Unicode character codes. In contrast, styled text, also known as rich text, is any
text representation consisting of plain text plus added information such as a language iden-
tifier, font size, color, hypertext links, and so on. For example, the text of this specification,
a multi-font text as formatted by a book editing system, is rich text.

General Structure 19 2.2 Unicode Design Principles
The simplicity of plain text gives it a natural role as a major structural element of rich text.
SGML, RTF, HTML, XML, and TEX are examples of rich text fully represented as plain text
streams, interspersing plain text data with sequences of characters that represent the addi-
tional data structures. They use special conventions embedded within the plain text file,
such as “<p>”, to distinguish the markup or tags from the “real” content. Many popular
word processing packages rely on a buffer of plain text to represent the content and imple-
ment links to a parallel store of formatting data.

The relative functional roles of both plain text and rich text are well established:

• Plain text is the underlying content stream to which formatting can be applied.

• Rich text carries complex formatting information as well as text context.

• Plain text is public, standardized, and universally readable.

• Rich text representation may be implementation-specific or proprietary.

Although some rich text formats have been standardized or made public, the majority of
rich text designs are vehicles for particular implementations and are not necessarily read-
able by other implementations. Given that rich text equals plain text plus added informa-
tion, the extra information in rich text can always be stripped away to reveal the “pure” text
underneath. This operation is often employed, for example, in word processing systems
that use both their own private rich text format and plain text file format as a universal, if
limited, means of exchange. Thus, by default, plain text represents the basic, interchange-
able content of text.

Plain text represents character content only, not its appearance. It can be displayed in a var-
ity of ways and requires a rendering process to make it visible with a particular appearance.
If the same plain text sequence is given to disparate rendering processes, there is no expec-
tation that rendered text in each instance should have the same appearance. Instead, the
disparate rendering processes are simply required to make the text legible according to the
intended reading. This legibility criterion constrains the range of possible appearances. The
relationship between appearance and content of plain text may be summarized as follows:

Plain text must contain enough information to permit the text to be rendered legibly,
and nothing more.

The Unicode Standard encodes plain text. The distinction between plain text and other
forms of data in the same data stream is the function of a higher-level protocol and is not
specified by the Unicode Standard itself.

Logical Order

The order in which Unicode text is stored in the memory representation is called logical
order. This order roughly corresponds to the order in which text is typed in via the key-
board; it also roughly corresponds to phonetic order. For decimal numbers, the logical
order consistently corresponds to the most significant digit first, which is the order
expected by number-parsing software.

General Structure 20 2.2 Unicode Design Principles
When displayed, this logical order often corresponds to a simple linear progression of char-
acters in one direction, such as from left to right, right to left, or top to bottom. In other
circumstances, text is displayed or printed in an order that differs from a single linear pro-
gression. Some of the clearest examples are situations where a right-to-left script (such as
Arabic or Hebrew) is mixed with a left-to-right script (such as Latin or Greek). For exam-
ple, when the text in Figure 2-4 is ordered for display the glyph that represents the first
character of the English text appears at the left. The logical start character of the Hebrew
text, however, is represented by the Hebrew glyph closest to the right margin. The succeed-
ing Hebrew glyphs are laid out to the left.

In logical order, numbers are encoded with most significant digit first, but are displayed in
different writing directions. As shown in Figure 2-5 these writing directions do not always
correspond to the writing direction of the surrounding text. The first example shows N’Ko,
a right-to-left script with digits that also render right to left. Examples 2 and 3 show
Hebrew and Arabic, in which the numbers are rendered left to right, resulting in bidirec-
tional layout. In left-to-right scripts, such as Latin and Hiragana and Katakana (for Japa-
nese), numbers follow the predominant left-to-right direction of the script, as shown in
Examples 4 and 5. When Japanese is laid out vertically, numbers are either laid out verti-
cally or may be rotated clockwise 90 degrees to follow the layout direction of the lines, as
shown in Example 6.

The Unicode Standard precisely defines the conversion of Unicode text from logical order
to the order of readable (displayed) text so as to ensure consistent legibility. Properties of
directionality inherent in characters generally determine the correct display order of text.
The Unicode Bidirectional Algorithm specifies how these properties are used to resolve
directional interactions when characters of right-to-left and left-to-right directionality are

Figure 2-4. Bidirectional Ordering

Figure 2-5. Writing Direction and Numbers

Please see page 1123.

1123ページをみてください。

.1123 נא ראה עמוד

General Structure 21 2.2 Unicode Design Principles
mixed. (See Unicode Standard Annex #9, “Unicode Bidirectional Algorithm.”) However,
when characters of different directionality are mixed, inherent directionality alone is occa-
sionally insufficient to render plain text legibly. The Unicode Standard therefore includes
characters to explicitly specify changes in direction when necessary. The Bidirectional
Algorithm uses these directional layout control characters together with the inherent direc-
tional properties of characters to exert exact control over the display ordering for legible
interchange. By requiring the use of this algorithm, the Unicode Standard ensures that
plain text used for simple items like file names or labels can always be correctly ordered for
display.

Besides mixing runs of differing overall text direction, there are many other cases where the
logical order does not correspond to a linear progression of characters. Combining charac-
ters (such as accents) are stored following the base character to which they apply, but are
positioned relative to that base character and thus do not follow a simple linear progression
in the final rendered text. For example, the Latin letter “Ï” is stored as “x” followed by com-
bining “Î”; the accent appears below, not to the right of the base. This position with
respect to the base holds even where the overall text progression is from top to bottom—for
example, with “Ï” appearing upright within a vertical Japanese line. Characters may also
combine into ligatures or conjuncts or otherwise change positions of their components
radically, as shown in Figure 2-3 and Figure 2-19.

There is one particular exception to the usual practice of logical order paralleling phonetic
order. With the Thai, Lao, Tai Viet, and New Tai Lue scripts, users traditionally type in
visual order rather than phonetic order, resulting in some vowel letters being stored ahead
of consonants, even though they are pronounced after them.

Unification

The Unicode Standard avoids duplicate encoding of characters by unifying them within
scripts across language. Common letters are given one code each, regardless of language, as
are common Chinese/Japanese/Korean (CJK) ideographs. (See Section 18.1, Han.)

Punctuation marks, symbols, and diacritics are handled in a similar manner as letters. If
they can be clearly identified with a particular script, they are encoded once for that script
and are unified across any languages that may use that script. See, for example, U+1362
ethiopic full stop, U+060F arabic sign misra, and U+0592 hebrew accent segol.
However, some punctuation or diacritical marks may be shared in common across a num-
ber of scripts—the obvious example being Western-style punctuation characters, which are
often recently added to the writing systems of scripts other than Latin. In such cases, char-
acters are encoded only once and are intended for use with multiple scripts. Common sym-
bols are also encoded only once and are not associated with any script in particular.

It is quite normal for many characters to have different usages, such as comma “,” for either
thousands-separator (English) or decimal-separator (French). The Unicode Standard
avoids duplication of characters due to specific usage in different languages; rather, it
duplicates characters only to support compatibility with base standards. Avoidance of
duplicate encoding of characters is important to avoid visual ambiguity.

General Structure 22 2.2 Unicode Design Principles
There are a few notable instances in the standard where visual ambiguity between different
characters is tolerated, however. For example, in most fonts there is little or no distinction
visible between Latin “o”, Cyrillic “o”, and Greek “o” (omicron). These are not unified
because they are characters from three different scripts, and many legacy character encod-
ings distinguish between them. As another example, there are three characters whose glyph
is the same uppercase barred D shape, but they correspond to three distinct lowercase
forms. Unifying these uppercase characters would have resulted in unnecessary complica-
tions for case mapping.

The Unicode Standard does not attempt to encode features such as language, font, size,
positioning, glyphs, and so forth. For example, it does not preserve language as a part of
character encoding: just as French i grec, German ypsilon, and English wye are all repre-
sented by the same character code, U+0059 “Y”, so too are Chinese zi, Japanese ji, and
Korean ja all represented as the same character code, U+5B57 %.

In determining whether to unify variant CJK ideograph forms across standards, the Uni-
code Standard follows the principles described in Section 18.1, Han. Where these principles
determine that two forms constitute a trivial difference, the Unicode Standard assigns a
single code. Just as for the Latin and other scripts, typeface distinctions or local preferences
in glyph shapes alone are not sufficient grounds for disunification of a character. Figure 2-6
illustrates the well-known example of the CJK ideograph for “bone,” which shows signifi-
cant shape differences from typeface to typeface, with some forms preferred in China and
some in Japan. All of these forms are considered to be the same character, encoded at
U+9AA8 in the Unicode Standard.

Many characters in the Unicode Standard could have been unified with existing visually
similar Unicode characters or could have been omitted in favor of some other Unicode
mechanism for maintaining the kinds of text distinctions for which they were intended.
However, considerations of interoperability with other standards and systems often require
that such compatibility characters be included in the Unicode Standard. See Section 2.3,
Compatibility Characters. In particular, whenever font style, size, positioning or precise
glyph shape carry a specific meaning and are used in distinction to the ordinary charac-
ter—for example, in phonetic or mathematical notation—the characters are not unified.

Dynamic Composition

The Unicode Standard allows for the dynamic composition of accented forms and Hangul
syllables. Combining characters used to create composite forms are productive. Because the
process of character composition is open-ended, new forms with modifying marks may be
created from a combination of base characters followed by combining characters. For

Figure 2-6. Typeface Variation for the Bone Character

E F

General Structure 23 2.2 Unicode Design Principles
example, the diaeresis “¨” may be combined with all vowels and a number of consonants in
languages using the Latin script and several other scripts, as shown in Figure 2-7.

Equivalent Sequences. Some text elements can be encoded either as static precomposed
forms or by dynamic composition. Common precomposed forms such as U+00DC “Ü”
latin capital letter u with diaeresis are included for compatibility with current stan-
dards. For static precomposed forms, the standard provides a mapping to an equivalent
dynamically composed sequence of characters. (See also Section 3.7, Decomposition.) Thus
different sequences of Unicode characters are considered equivalent. A precomposed char-
acter may be represented as an equivalent composed character sequence (see Section 2.12,
Equivalent Sequences).

Stability

Certain aspects of the Unicode Standard must be absolutely stable between versions, so that
implementers and users can be guaranteed that text data, once encoded, retains the same
meaning. Most importantly, this means that once Unicode characters are assigned, their
code point assignments cannot be changed, nor can characters be removed.

Characters are retained in the standard, so that previously conforming data stay confor-
mant in future versions of the standard. Sometimes characters are deprecated—that is,
their use in new documents is strongly discouraged. While implementations should con-
tinue to recognize such characters when they are encountered, spell-checkers or editors
could warn users of their presence and suggest replacements. For more about deprecated
characters, see D13 in Section 3.4, Characters and Encoding.

Unicode character names are also never changed, so that they can be used as identifiers that
are valid across versions. See Section 4.8, Name.

Similar stability guarantees exist for certain important properties. For example, the decom-
positions are kept stable, so that it is possible to normalize a Unicode text once and have it
remain normalized in all future versions.

The most current versions of the character encoding stability policies for the Unicode Stan-
dard are maintained online at:

http://www.unicode.org/policies/stability_policy.html

Convertibility

Character identity is preserved for interchange with a number of different base standards,
including national, international, and vendor standards. Where variant forms (or even the

Figure 2-7. Dynamic Composition

A ¨
0041 0308

$ → Ä+

http://www.unicode.org/policies/stability_policy.html

General Structure 24 2.2 Unicode Design Principles
same form) are given separate codes within one base standard, they are also kept separate
within the Unicode Standard. This choice guarantees the existence of a mapping between
the Unicode Standard and base standards.

Accurate convertibility is guaranteed between the Unicode Standard and other standards in
wide usage as of May 1993. Characters have also been added to allow convertibility to sev-
eral important East Asian character sets created after that date—for example, GB 18030. In
general, a single code point in another standard will correspond to a single code point in
the Unicode Standard. Sometimes, however, a single code point in another standard corre-
sponds to a sequence of code points in the Unicode Standard, or vice versa. Conversion
between Unicode text and text in other character codes must, in general, be done by explicit
table-mapping processes. (See also Section 5.1, Data Structures for Character Conversion.)

General Structure 25 2.3 Compatibility Characters
2.3 Compatibility Characters
Conceptually, compatibility characters are characters that would not have been encoded in
the Unicode Standard except for compatibility and round-trip convertibility with other
standards. Such standards include international, national, and vendor character encoding
standards. For the most part, these are widely used standards that pre-dated Unicode, but
because continued interoperability with new standards and data sources is one of the pri-
mary design goals of the Unicode Standard, additional compatibility characters are added
as the situation warrants.

Compatibility characters can be contrasted with ordinary (or non-compatibility) characters
in the standard—ones that are generally consistent with the Unicode text model and which
would have been accepted for encoding to represent various scripts and sets of symbols,
regardless of whether those characters also existed in other character encoding standards.

For example, in the Unicode model of Arabic text the logical representation of text uses
basic Arabic letters. Rather than being directly represented in the encoded characters, the
cursive presentation of Arabic text for display is determined in context by a rendering sys-
tem. (See Section 9.2, Arabic.) However, some earlier character encodings for Arabic were
intended for use with rendering systems that required separate characters for initial,
medial, final, and isolated presentation forms of Arabic letters. To allow one-to-one map-
ping to these character sets, the Unicode Standard includes Arabic presentation forms as
compatibility characters.

The purpose for the inclusion of compatibility characters like these is not to implement or
emulate alternative text models, nor to encourage the use of plain text distinctions in char-
acters which would otherwise be better represented by higher-level protocols or other mech-
anisms. Rather, the main function of compatibility characters is to simplify interoperability
of Unicode-based systems with other data sources, and to ensure convertibility of data.

Interoperability does not require that all external characters can be mapped to single Uni-
code characters; encoding a compatibility character is not necessary when a character in
another standard can be represented as a sequence of existing Unicode characters. For
example the Shift-JIS encoding 0x839E for JIS X 0213 katakana letter ainu to can simply be
mapped to the Unicode character sequence <U+30C8, U+309A>. However, in cases where
no appropriate mapping is available, the requirement for interoperability and convertibil-
ity may be met by encoding a compatibility character for one-to-one mapping to another
standard.

Usage. The fact that a particular character is considered a compatibility character does not
mean that that character is deprecated in the standard. The use of most compatibility char-
acters in general text interchange is unproblematic. Some, however, such as the Arabic
positional forms or other compatibility characters which assume information about partic-
ular layout conventions, such as presentation forms for vertical text, can lead to problems
when used in general interchange. Caution is advised for their use. See also the discussion
of compatibility characters in the W3C specification, “Unicode and Markup Languages.”

General Structure 26 2.3 Compatibility Characters
Allocation. The Compatibility and Specials Area contains a large number of compatibility
characters, but the Unicode Standard also contains many compatibility characters that do
not appear in that area. These include examples such as U+2163 “IV” roman numeral

four, U+2007 figure space, U+00B2 “2” superscript two, U+2502 box drawings

light vertical, and U+32D0 circled katakana a.

There is no formal listing of all compatibility characters in the Unicode Standard. This fol-
lows from the nature of the definition of compatibility characters. It is a judgement call as
to whether any particular character would have been accepted for encoding if it had not
been required for interoperability with a particular standard. Different participants in
character encoding often disagree about the appropriateness of encoding particular charac-
ters, and sometimes there are multiple justifications for encoding a given character.

Compatibility Variants

Compatibility variants are a subset of compatibility characters, and have the further charac-
teristic that they represent variants of existing, ordinary, Unicode characters.

For example, compatibility variants might represent various presentation or styled forms
of basic letters: superscript or subscript forms, variant glyph shapes, or vertical presenta-
tion forms. They also include halfwidth or fullwidth characters from East Asian character
encoding standards, Arabic contextual form glyphs from preexisting Arabic code pages,
Arabic ligatures and ligatures from other scripts, and so on. Compatibility variants also
include CJK compatibility ideographs, many of which are minor glyph variants of an
encoded unified CJK ideograph.

In contrast to compatibility variants there are the numerous compatibility characters, such
as U+2502 box drawings light vertical, U+263A white smiling face, or U+2701
upper blade scissors, which are not variants of ordinary Unicode characters. However, it
is not always possible to determine unequivocally whether a compatibility character is a
variant or not.

Compatibility Decomposable Characters

The term compatibility is further applied to Unicode characters in a different, strictly
defined sense. The concept of a compatibility decomposable character is formally defined as
any Unicode character whose compatibility decomposition is not identical to its canonical
decomposition. (See Definition D66 in Section 3.7, Decomposition, and the discussion in
Section 2.2, Unicode Design Principles.)

The list of compatibility decomposable characters is precisely defined by property values in
the Unicode Character Database, and by the rules of Unicode Normalization. (See
Section 3.11, Normalization Forms.) Because of their use in Unicode Normalization, com-
patibility decompositions are stable and cannot be changed once a character has been
encoded; the list of compatibility decomposable characters for any version of the Unicode
Standard is thus also stable.

General Structure 27 2.3 Compatibility Characters
Compatibility decomposable characters have also been referred to in earlier versions of the
Unicode Standard as compatibility composite characters or compatibility composites for
short, but the full term, compatibility decomposable character is preferred.

Compatibility Character Versus Compatibility Decomposable Character. In informal
discussions of the Unicode Standard, compatibility decomposable characters have also
often been referred to simply as “compatibility characters.” This is understandable, in part
because the two sets of characters largely overlap, but the concepts are actually distinct.
There are compatibility characters which are not compatibility decomposable characters,
and there are compatibility decomposable characters which are not compatibility charac-
ters.

For example, the deprecated alternate format characters such as U+206C inhibit arabic

form shaping are considered compatibility characters, but they have no decomposition
mapping, and thus by definition cannot be compatibility decomposable characters. Like-
wise for such other compatibility characters as U+2502 box drawings light vertical or
U+263A white smiling face.

There are also instances of compatibility variants which clearly are variants of other Uni-
code characters, but which have no decomposition mapping. For example, U+2EAF cjk

radical silk is a compatibility variant of U+2F77 kangxi radical silk, as well as being a
compatibility variant of U+7CF9 cjk unified ideograph-7cf9, but has no compatibility
decomposition. The numerous compatibility variants like this in the CJK Radicals Supple-
ment block were encoded for compatibility with encodings that distinguished and sepa-
rately encoded various forms of CJK radicals as symbols.

A different case is illustrated by the CJK compatibility ideographs, such as U+FA0C cjk

compatibility ideograph-fa0c. Those compatibility characters have a decomposition
mapping, but for historical reasons it is always a canonical decomposition, so they are
canonical decomposable characters, but not compatibility decomposable characters.

By way of contrast, some compatibility decomposable characters, such as modifier letters
used in phonetic orthographies, for example, U+02B0 modifier letter small h, are not
considered to be compatibility characters. They would have been accepted for encoding in
the standard on their own merits, regardless of their need for mapping to IPA. A large
number of compatibility decomposable characters like this are actually distinct symbols
used in specialized notations, whether phonetic or mathematical. In such cases, their com-
patibility mappings express their historical derivation from styled forms of standard letters.

Other compatibility decomposable characters are widely used characters serving essential
functions. U+00A0 no-break space is one example. In these and similar cases, such as
fixed-width space characters, the compatibility decompositions define possible fallback
representations.

The Unicode Character Database supplies identification and mapping information only for
compatibility decomposable characters, while compatibility variants are not formally iden-
tified or documented. Because the two sets substantially overlap, many specifications are
written in terms of compatibility decomposable characters first; if necessary, such specifi-

General Structure 28 2.3 Compatibility Characters
cations may be extended to handle other, non-decomposable compatibility variants as
required. (See also the discussion in Section 5.19, Mapping Compatibility Variants.)

General Structure 29 2.4 Code Points and Characters
2.4 Code Points and Characters
On a computer, abstract characters are encoded internally as numbers. To create a complete
character encoding, it is necessary to define the list of all characters to be encoded and to
establish systematic rules for how the numbers represent the characters.

The range of integers used to code the abstract characters is called the codespace. A particu-
lar integer in this set is called a code point. When an abstract character is mapped or
assigned to a particular code point in the codespace, it is then referred to as an encoded char-
acter.

In the Unicode Standard, the codespace consists of the integers from 0 to 10FFFF16, com-
prising 1,114,112 code points available for assigning the repertoire of abstract characters.

There are constraints on how the codespace is organized, and particular areas of the
codespace have been set aside for encoding of certain kinds of abstract characters or for
other uses in the standard. For more on the allocation of the Unicode codespace, see
Section 2.8, Unicode Allocation.

Figure 2-8 illustrates the relationship between abstract characters and code points, which
together constitute encoded characters. Note that some abstract characters may be associ-
ated with multiple, separately encoded characters (that is, be encoded “twice”). In other
instances, an abstract character may be represented by a sequence of two (or more) other
encoded characters. The solid arrows connect encoded characters with the abstract charac-
ters that they represent and encode.

When referring to code points in the Unicode Standard, the usual practice is to refer to
them by their numeric value expressed in hexadecimal, with a “U+” prefix. (See
Appendix A, Notational Conventions.) Encoded characters can also be referred to by their

Figure 2-8. Abstract and Encoded Characters

Abstract Encoded

00C5

212B

0041 030A

General Structure 30 2.4 Code Points and Characters
code points only. To prevent ambiguity, the official Unicode name of the character is often
added; this clearly identifies the abstract character that is encoded. For example:

U+0061 latin small letter a

U+10330 gothic letter ahsa

U+201DF cjk unified ideograph-201df

Such citations refer only to the encoded character per se, associating the code point (as an
integral value) with the abstract character that is encoded.

Types of Code Points

There are many ways to categorize code points. Table 2-3 illustrates some of the categoriza-
tions and basic terminology used in the Unicode Standard. The seven basic types of code
points are formally defined in Section 3.4, Characters and Encoding. (See Definition D10a,
Code Point Type.)

Not all assigned code points represent abstract characters; only Graphic, Format, Control
and Private-use do. Surrogates and Noncharacters are assigned code points but are not
assigned to abstract characters. Reserved code points are assignable: any may be assigned in

Table 2-3. Types of Code Points

Basic Type Brief Description
General
Category

Character
Status

Code Point
Status

Graphic
Letter, mark, number,
punctuation, symbol, and
spaces

L, M, N, P, S, Zs

Assigned to abstract
character

Designated
(assigned) code
point

Format

Invisible but affects neigh-
boring characters;
includes line/paragraph
separators

Cf, Zl, Zp

Control
Usage defined by protocols
or standards outside the
Unicode Standard

Cc

Private-use
Usage defined by private
agreement outside the
Unicode Standard

Co

Surrogate
Permanently reserved for
UTF-16; restricted inter-
change

Cs
Cannot be assigned
to abstract
character

Noncharacter
Permanently reserved for
internal usage; restricted
interchange

Cn
Not assigned to
abstract
character

Reserved
Reserved for future assign-
ment; restricted inter-
change

Undesignated
(unassigned)
code point

General Structure 31 2.4 Code Points and Characters
a future version of the standard. The General Category provides a finer breakdown of
Graphic characters and also distinguishes between the other basic types (except between
Noncharacter and Reserved). Other properties defined in the Unicode Character Database
provide for different categorizations of Unicode code points.

Control Codes. Sixty-five code points (U+0000..U+001F and U+007F..U+009F) are
defined specifically as control codes, for compatibility with the C0 and C1 control codes of
the ISO/IEC 2022 framework. A few of these control codes are given specific interpreta-
tions by the Unicode Standard. (See Section 23.1, Control Codes.)

Noncharacters. Sixty-six code points are not used to encode characters. Noncharacters
consist of U+FDD0..U+FDEF and any code point ending in the value FFFE16 or FFFF16—
that is, U+FFFE, U+FFFF, U+1FFFE, U+1FFFF, ... U+10FFFE, U+10FFFF. (See
Section 23.7, Noncharacters.)

Private Use. Three ranges of code points have been set aside for private use. Characters in
these areas will never be defined by the Unicode Standard. These code points can be freely
used for characters of any purpose, but successful interchange requires an agreement
between sender and receiver on their interpretation. (See Section 23.5, Private-Use Charac-
ters.)

Surrogates. Some 2,048 code points have been allocated as surrogate code points, which
are used in the UTF-16 encoding form. (See Section 23.6, Surrogates Area.)

Restricted Interchange. Code points that are not assigned to abstract characters are subject
to restrictions in interchange.

• Surrogate code points cannot be conformantly interchanged using Unicode
encoding forms. They do not correspond to Unicode scalar values and thus do
not have well-formed representations in any Unicode encoding form. (See
Section 3.8, Surrogates.)

• Noncharacter code points are reserved for internal use, such as for sentinel val-
ues. They have well-formed representations in Unicode encoding forms and
survive conversions between encoding forms. This allows sentinel values to be
preserved internally across Unicode encoding forms, even though they are not
designed to be used in open interchange.

• All implementations need to preserve reserved code points because they may
originate in implementations that use a future version of the Unicode Standard.
For example, suppose that one person is using a Unicode 7.0 system and a sec-
ond person is using a Unicode 6.0 system. The first person sends the second
person a document containing some code points newly assigned in Unicode
7.0; these code points were unassigned in Unicode 6.0. The second person may
edit the document, not changing the reserved codes, and send it on. In that case
the second person is interchanging what are, as far as the second person knows,
reserved code points.

General Structure 32 2.4 Code Points and Characters
Code Point Semantics. The semantics of most code points are established by this standard;
the exceptions are Controls, Private-use, and Noncharacters. Control codes generally have
semantics determined by other standards or protocols (such as ISO/IEC 6429), but there
are a small number of control codes for which the Unicode Standard specifies particular
semantics. See Table 23-1 in Section 23.1, Control Codes, for the exact list of those control
codes. The semantics of private-use characters are outside the scope of the Unicode Stan-
dard; their use is determined by private agreement, as, for example, between vendors. Non-
characters have semantics in internal use only.

General Structure 33 2.5 Encoding Forms
2.5 Encoding Forms
Computers handle numbers not simply as abstract mathematical objects, but as combina-
tions of fixed-size units like bytes and 32-bit words. A character encoding model must take
this fact into account when determining how to associate numbers with the characters.

Actual implementations in computer systems represent integers in specific code units of
particular size—usually 8-bit (= byte), 16-bit, or 32-bit. In the Unicode character encoding
model, precisely defined encoding forms specify how each integer (code point) for a Uni-
code character is to be expressed as a sequence of one or more code units. The Unicode
Standard provides three distinct encoding forms for Unicode characters, using 8-bit, 16-
bit, and 32-bit units. These are named UTF-8, UTF-16, and UTF-32, respectively. The
“UTF” is a carryover from earlier terminology meaning Unicode (or UCS) Transformation
Format. Each of these three encoding forms is an equally legitimate mechanism for repre-
senting Unicode characters; each has advantages in different environments.

All three encoding forms can be used to represent the full range of encoded characters in
the Unicode Standard; they are thus fully interoperable for implementations that may
choose different encoding forms for various reasons. Each of the three Unicode encoding
forms can be efficiently transformed into either of the other two without any loss of data.

Non-overlap. Each of the Unicode encoding forms is designed with the principle of non-
overlap in mind. Figure 2-9 presents an example of an encoding where overlap is permitted.
In this encoding (Windows code page 932), characters are formed from either one or two
code bytes. Whether a sequence is one or two bytes in length depends on the first byte, so
that the values for lead bytes (of a two-byte sequence) and single bytes are disjoint. How-
ever, single-byte values and trail-byte values can overlap. That means that when someone
searches for the character “D”, for example, he or she might find it either (mistakenly) as
the trail byte of a two-byte sequence or as a single, independent byte. To find out which
alternative is correct, a program must look backward through text.

The situation is made more complex by the fact that lead and trail bytes can also overlap, as
shown in the second part of Figure 2-9. This means that the backward scan has to repeat
until it hits the start of the text or hits a sequence that could not exist as a pair as shown in

Figure 2-9. Overlap in Legacy Mixed-Width Encodings

84

44

44

84 84

84 84

D

0442

0414

0044

Trail and Single

Lead and Trail

General Structure 34 2.5 Encoding Forms
Figure 2-10. This is not only inefficient, but also extremely error-prone: corruption of one
byte can cause entire lines of text to be corrupted.

The Unicode encoding forms avoid this problem, because none of the ranges of values for
the lead, trail, or single code units in any of those encoding forms overlap.

Non-overlap makes all of the Unicode encoding forms well behaved for searching and com-
parison. When searching for a particular character, there will never be a mismatch against
some code unit sequence that represents just part of another character. The fact that all
Unicode encoding forms observe this principle of non-overlap distinguishes them from
many legacy East Asian multibyte character encodings, for which overlap of code unit
sequences may be a significant problem for implementations.

Another aspect of non-overlap in the Unicode encoding forms is that all Unicode charac-
ters have determinate boundaries when expressed in any of the encoding forms. That is, the
edges of code unit sequences representing a character are easily determined by local exam-
ination of code units; there is never any need to scan back indefinitely in Unicode text to
correctly determine a character boundary. This property of the encoding forms has some-
times been referred to as self-synchronization. This property has another very important
implication: corruption of a single code unit corrupts only a single character; none of the
surrounding characters are affected.

For example, when randomly accessing a string, a program can find the boundary of a
character with limited backup. In UTF-16, if a pointer points to a leading surrogate, a sin-
gle backup is required. In UTF-8, if a pointer points to a byte starting with 10xxxxxx (in
binary), one to three backups are required to find the beginning of the character.

Conformance. The Unicode Consortium fully endorses the use of any of the three Unicode
encoding forms as a conformant way of implementing the Unicode Standard. It is impor-
tant not to fall into the trap of trying to distinguish “UTF-8 versus Unicode,” for example.
UTF-8, UTF-16, and UTF-32 are all equally valid and conformant ways of implementing
the encoded characters of the Unicode Standard.

Examples. Figure 2-11 shows the three Unicode encoding forms, including how they are
related to Unicode code points.

In Figure 2-11, the UTF-32 line shows that each example character can be expressed with
one 32-bit code unit. Those code units have the same values as the code point for the char-
acter. For UTF-16, most characters can be expressed with one 16-bit code unit, whose value

Figure 2-10. Boundaries and Interpretation

84 84 84 84 84 84 44?? ...

D
0414 00440442

General Structure 35 2.5 Encoding Forms
is the same as the code point for the character, but characters with high code point values
require a pair of 16-bit surrogate code units instead. In UTF-8, a character may be
expressed with one, two, three, or four bytes, and the relationship between those byte val-
ues and the code point value is more complex.

UTF-8, UTF-16, and UTF-32 are further described in the subsections that follow. See each
subsection for a general overview of how each encoding form is structured and the general
benefits or drawbacks of each encoding form for particular purposes. For the detailed for-
mal definition of the encoding forms and conformance requirements, see Section 3.9, Uni-
code Encoding Forms.

UTF-32

UTF-32 is the simplest Unicode encoding form. Each Unicode code point is represented
directly by a single 32-bit code unit. Because of this, UTF-32 has a one-to-one relationship
between encoded character and code unit; it is a fixed-width character encoding form. This
makes UTF-32 an ideal form for APIs that pass single character values.

As for all of the Unicode encoding forms, UTF-32 is restricted to representation of code
points in the range 0..10FFFF16—that is, the Unicode codespace. This guarantees interop-
erability with the UTF-16 and UTF-8 encoding forms.

Fixed Width. The value of each UTF-32 code unit corresponds exactly to the Unicode code
point value. This situation differs significantly from that for UTF-16 and especially UTF-8,
where the code unit values often change unrecognizably from the code point value. For
example, U+10000 is represented as <00010000> in UTF-32 and as <F0 90 80 80> in UTF-
8. For UTF-32, it is trivial to determine a Unicode character from its UTF-32 code unit rep-
resentation. In contrast, UTF-16 and UTF-8 representations often require doing a code
unit conversion before the character can be identified in the Unicode code charts.

Preferred Usage. UTF-32 may be a preferred encoding form where memory or disk storage
space for characters is not a particular concern, but where fixed-width, single code unit
access to characters is desired. UTF-32 is also a preferred encoding form for processing
characters on most Unix platforms.

Figure 2-11. Unicode Encoding Forms

UTF-32

UTF-16

UTF-8

00000041 000003A9 00008A9E 00010384
A Ω

0041 03A9 8A9E D800 DF84
A Ω

41 CE A9 E8 AA 9E F0 90 8E 84
A Ω

General Structure 36 2.5 Encoding Forms
UTF-16

In the UTF-16 encoding form, code points in the range U+0000..U+FFFF are represented
as a single 16-bit code unit; code points in the supplementary planes, in the range
U+10000..U+10FFFF, are represented as pairs of 16-bit code units. These pairs of special
code units are known as surrogate pairs. The values of the code units used for surrogate
pairs are completely disjunct from the code units used for the single code unit representa-
tions, thus maintaining non-overlap for all code point representations in UTF-16. For the
formal definition of surrogates, see Section 3.8, Surrogates.

Optimized for BMP. UTF-16 optimizes the representation of characters in the Basic Multi-
lingual Plane (BMP)—that is, the range U+0000..U+FFFF. For that range, which contains
the vast majority of common-use characters for all modern scripts of the world, each char-
acter requires only one 16-bit code unit, thus requiring just half the memory or storage of
the UTF-32 encoding form. For the BMP, UTF-16 can effectively be treated as if it were a
fixed-width encoding form.

Supplementary Characters and Surrogates. For supplementary characters, UTF-16
requires two 16-bit code units. The distinction between characters represented with one
versus two 16-bit code units means that formally UTF-16 is a variable-width encoding
form. That fact can create implementation difficulties if it is not carefully taken into
account; UTF-16 is somewhat more complicated to handle than UTF-32.

Preferred Usage. UTF-16 may be a preferred encoding form in many environments that
need to balance efficient access to characters with economical use of storage. It is reason-
ably compact, and all the common, heavily used characters fit into a single 16-bit code unit.

Origin. UTF-16 is the historical descendant of the earliest form of Unicode, which was
originally designed to use a fixed-width, 16-bit encoding form exclusively. The surrogates
were added to provide an encoding form for the supplementary characters at code points
past U+FFFF. The design of the surrogates made them a simple and efficient extension
mechanism that works well with older Unicode implementations and that avoids many of
the problems of other variable-width character encodings. See Section 5.4, Handling Surro-
gate Pairs in UTF-16, for more information about surrogates and their processing.

Collation. For the purpose of sorting text, binary order for data represented in the UTF-16
encoding form is not the same as code point order. This means that a slightly different
comparison implementation is needed for code point order. For more information, see
Section 5.17, Binary Order.

UTF-8

To meet the requirements of byte-oriented, ASCII-based systems, a third encoding form is
specified by the Unicode Standard: UTF-8. This variable-width encoding form preserves
ASCII transparency by making use of 8-bit code units.

Byte-Oriented. Much existing software and practice in information technology have long
depended on character data being represented as a sequence of bytes. Furthermore, many

General Structure 37 2.5 Encoding Forms
of the protocols depend not only on ASCII values being invariant, but must make use of or
avoid special byte values that may have associated control functions. The easiest way to
adapt Unicode implementations to such a situation is to make use of an encoding form that
is already defined in terms of 8-bit code units and that represents all Unicode characters
while not disturbing or reusing any ASCII or C0 control code value. That is the function of
UTF-8.

Variable Width. UTF-8 is a variable-width encoding form, using 8-bit code units, in which
the high bits of each code unit indicate the part of the code unit sequence to which each
byte belongs. A range of 8-bit code unit values is reserved for the first, or leading, element
of a UTF-8 code unit sequences, and a completely disjunct range of 8-bit code unit values is
reserved for the subsequent, or trailing, elements of such sequences; this convention pre-
serves non-overlap for UTF-8. Table 3-6 on page 125 shows how the bits in a Unicode code
point are distributed among the bytes in the UTF-8 encoding form. See Section 3.9, Unicode
Encoding Forms, for the full, formal definition of UTF-8.

ASCII Transparency. The UTF-8 encoding form maintains transparency for all of the
ASCII code points (0x00..0x7F). That means Unicode code points U+0000..U+007F are
converted to single bytes 0x00..0x7F in UTF-8 and are thus indistinguishable from ASCII
itself. Furthermore, the values 0x00..0x7F do not appear in any byte for the representation
of any other Unicode code point, so that there can be no ambiguity. Beyond the ASCII
range of Unicode, many of the non-ideographic scripts are represented by two bytes per
code point in UTF-8; all non-surrogate code points between U+0800 and U+FFFF are rep-
resented by three bytes; and supplementary code points above U+FFFF require four bytes.

Preferred Usage. UTF-8 is typically the preferred encoding form for HTML and similar
protocols, particularly for the Internet. The ASCII transparency helps migration. UTF-8
also has the advantage that it is already inherently byte-serialized, as for most existing 8-bit
character sets; strings of UTF-8 work easily with C or other programming languages, and
many existing APIs that work for typical Asian multibyte character sets adapt to UTF-8 as
well with little or no change required.

Self-synchronizing. In environments where 8-bit character processing is required for one
reason or another, UTF-8 has the following attractive features as compared to other multi-
byte encodings:

• The first byte of a UTF-8 code unit sequence indicates the number of bytes to
follow in a multibyte sequence. This allows for very efficient forward parsing.

• It is efficient to find the start of a character when beginning from an arbitrary
location in a byte stream of UTF-8. Programs need to search at most four bytes
backward, and usually much less. It is a simple task to recognize an initial byte,
because initial bytes are constrained to a fixed range of values.

• As with the other encoding forms, there is no overlap of byte values.

General Structure 38 2.5 Encoding Forms
Comparison of the Advantages of UTF-32, UTF-16, and UTF-8

On the face of it, UTF-32 would seem to be the obvious choice of Unicode encoding forms
for an internal processing code because it is a fixed-width encoding form. It can be confor-
mantly bound to the C and C++ wchar_t, which means that such programming languages
may offer built-in support and ready-made string APIs that programmers can take advan-
tage of. However, UTF-16 has many countervailing advantages that may lead implementers
to choose it instead as an internal processing code.

While all three encoding forms need at most 4 bytes (or 32 bits) of data for each character,
in practice UTF-32 in almost all cases for real data sets occupies twice the storage that UTF-
16 requires. Therefore, a common strategy is to have internal string storage use UTF-16 or
UTF-8 but to use UTF-32 when manipulating individual characters.

UTF-32 Versus UTF-16. On average, more than 99% of all UTF-16 data is expressed using
single code units. This includes nearly all of the typical characters that software needs to
handle with special operations on text—for example, format control characters. As a con-
sequence, most text scanning operations do not need to unpack UTF-16 surrogate pairs at
all, but rather can safely treat them as an opaque part of a character string.

For many operations, UTF-16 is as easy to handle as UTF-32, and the performance of UTF-
16 as a processing code tends to be quite good. UTF-16 is the internal processing code of
choice for a majority of implementations supporting Unicode. Other than for Unix plat-
forms, UTF-16 provides the right mix of compact size with the ability to handle the occa-
sional character outside the BMP.

UTF-32 has somewhat of an advantage when it comes to simplicity of software coding
design and maintenance. Because the character handling is fixed width, UTF-32 processing
does not require maintaining branches in the software to test and process the double code
unit elements required for supplementary characters by UTF-16. Conversely, 32-bit indices
into large tables are not particularly memory efficient. To avoid the large memory penalties
of such indices, Unicode tables are often handled as multistage tables (see “Multistage
Tables” in Section 5.1, Data Structures for Character Conversion). In such cases, the 32-bit
code point values are sliced into smaller ranges to permit segmented access to the tables.
This is true even in typical UTF-32 implementations.

The performance of UTF-32 as a processing code may actually be worse than the perfor-
mance of UTF-16 for the same data, because the additional memory overhead means that
cache limits will be exceeded more often and memory paging will occur more frequently.
For systems with processor designs that impose penalties for 16-bit aligned access but have
very large memories, this effect may be less noticeable.

Characters Versus Code Points. In any event, Unicode code points do not necessarily
match user expectations for “characters.” For example, the following are not represented by
a single code point: a combining character sequence such as <g, acute>; a conjoining jamo
sequence for Korean; or the Devanagari conjunct “ksha.” Because some Unicode text pro-
cessing must be aware of and handle such sequences of characters as text elements, the
fixed-width encoding form advantage of UTF-32 is somewhat offset by the inherently vari-

General Structure 39 2.5 Encoding Forms
able-width nature of processing text elements. See Unicode Technical Standard #18, “Uni-
code Regular Expressions,” for an example where commonly implemented processes deal
with inherently variable-width text elements owing to user expectations of the identity of a
“character.”

UTF-8. UTF-8 is reasonably compact in terms of the number of bytes used. It is really only
at a significant size disadvantage when used for East Asian implementations such as Chi-
nese, Japanese, and Korean, which use Han ideographs or Hangul syllables requiring three-
byte code unit sequences in UTF-8. UTF-8 is also significantly less efficient in terms of pro-
cessing than the other encoding forms.

Binary Sorting. A binary sort of UTF-8 strings gives the same ordering as a binary sort of
Unicode code points. This is obviously the same order as for a binary sort of UTF-32
strings.

All three encoding forms give the same results for binary string comparisons or string sort-
ing when dealing only with BMP characters (in the range U+0000..U+FFFF). However,
when dealing with supplementary characters (in the range U+10000..U+10FFFF), UTF-16
binary order does not match Unicode code point order. This can lead to complications
when trying to interoperate with binary sorted lists—for example, between UTF-16 sys-
tems and UTF-8 or UTF-32 systems. However, for data that is sorted according to the con-
ventions of a specific language or locale rather than using binary order, data will be ordered
the same, regardless of the encoding form.

General Structure 40 2.6 Encoding Schemes
2.6 Encoding Schemes
The discussion of Unicode encoding forms in the previous section was concerned with the
machine representation of Unicode code units. Each code unit is represented in a computer
simply as a numeric data type; just as for other numeric types, the exact way the bits are
laid out internally is irrelevant to most processing. However, interchange of textual data,
particularly between computers of different architectural types, requires consideration of
the exact ordering of the bits and bytes involved in numeric representation. Integral data,
including character data, is serialized for open interchange into well-defined sequences of
bytes. This process of byte serialization allows all applications to correctly interpret
exchanged data and to accurately reconstruct numeric values (and thereby character val-
ues) from it. In the Unicode Standard, the specifications of the distinct types of byte serial-
izations to be used with Unicode data are known as Unicode encoding schemes.

Byte Order. Modern computer architectures differ in ordering in terms of whether the most
significant byte or the least significant byte of a large numeric data type comes first in inter-
nal representation. These sequences are known as “big-endian” and “little-endian” orders,
respectively. For the Unicode 16- and 32-bit encoding forms (UTF-16 and UTF-32), the
specification of a byte serialization must take into account the big-endian or little-endian
architecture of the system on which the data is represented, so that when the data is byte
serialized for interchange it will be well defined.

A character encoding scheme consists of a specified character encoding form plus a specifi-
cation of how the code units are serialized into bytes. The Unicode Standard also specifies
the use of an initial byte order mark (BOM) to explicitly differentiate big-endian or little-
endian data in some of the Unicode encoding schemes. (See the “Byte Order Mark” subsec-
tion in Section 23.8, Specials.)

When a higher-level protocol supplies mechanisms for handling the endianness of integral
data types, it is not necessary to use Unicode encoding schemes or the byte order mark. In
those cases Unicode text is simply a sequence of integral data types.

For UTF-8, the encoding scheme consists merely of the UTF-8 code units (= bytes) in
sequence. Hence, there is no issue of big- versus little-endian byte order for data repre-
sented in UTF-8. However, for 16-bit and 32-bit encoding forms, byte serialization must
break up the code units into two or four bytes, respectively, and the order of those bytes
must be clearly defined. Because of this, and because of the rules for the use of the byte
order mark, the three encoding forms of the Unicode Standard result in a total of seven
Unicode encoding schemes, as shown in Table 2-4.

The endian order entry for UTF-8 in Table 2-4 is marked N/A because UTF-8 code units
are 8 bits in size, and the usual machine issues of endian order for larger code units do not
apply. The serialized order of the bytes must not depart from the order defined by the UTF-
8 encoding form. Use of a BOM is neither required nor recommended for UTF-8, but may
be encountered in contexts where UTF-8 data is converted from other encoding forms that
use a BOM or where the BOM is used as a UTF-8 signature. See the “Byte Order Mark”
subsection in Section 23.8, Specials, for more information.

General Structure 41 2.6 Encoding Schemes
Encoding Scheme Versus Encoding Form. Note that some of the Unicode encoding
schemes have the same labels as the three Unicode encoding forms. This could cause con-
fusion, so it is important to keep the context clear when using these terms: character encod-
ing forms refer to integral data units in memory or in APIs, and byte order is irrelevant;
character encoding schemes refer to byte-serialized data, as for streaming I/O or in file stor-
age, and byte order must be specified or determinable.

The Internet Assigned Numbers Authority (IANA) maintains a registry of charset names
used on the Internet. Those charset names are very close in meaning to the Unicode char-
acter encoding model’s concept of character encoding schemes, and all of the Unicode
character encoding schemes are, in fact, registered as charsets. While the two concepts are
quite close and the names used are identical, some important differences may arise in terms
of the requirements for each, particularly when it comes to handling of the byte order
mark. Exercise due caution when equating the two.

Examples. Figure 2-12 illustrates the Unicode character encoding schemes, showing how
each is derived from one of the encoding forms by serialization of bytes.

Table 2-4. The Seven Unicode Encoding Schemes

Encoding Scheme Endian Order BOM Allowed?

UTF-8 N/A yes

UTF-16
UTF-16BE
UTF-16LE

Big-endian or little-endian
Big-endian
Little-endian

yes
no
no

UTF-32
UTF-32BE
UTF-32LE

Big-endian or little-endian
Big-endian
Little-endian

yes
no
no

Figure 2-12. Unicode Encoding Schemes

00 00 00 41 00 00 03 A9 00 00 8A 9E 00 01 03 84
A Ω

41 00 00 00 A9 03 00 00 9E 8A 00 00 84 03 01 00
A Ω

41 CE A9 E8 AA 9E F0 90 8E 84
A Ω

UTF-32BE

UTF-16BE

UTF-8

UTF-32LE

UTF-16LE

8A 9E03 A900 41
A Ω

9E 8AA9 0341 00

D8 00 DF 84

A Ω
00 D8 84 DF

General Structure 42 2.6 Encoding Schemes
In Figure 2-12, the code units used to express each example character have been serialized
into sequences of bytes. This figure should be compared with Figure 2-11, which shows the
same characters before serialization into sequences of bytes. The “BE” lines show serializa-
tion in big-endian order, whereas the “LE” lines show the bytes reversed into little-endian
order. For UTF-8, the code unit is just an 8-bit byte, so that there is no distinction between
big-endian and little-endian order. UTF-32 and UTF-16 encoding schemes using the byte
order mark are not shown in Figure 2-12, to keep the basic picture regarding serialization of
bytes clearer.

For the detailed formal definition of the Unicode encoding schemes and conformance
requirements, see Section 3.10, Unicode Encoding Schemes. For further general discussion
about character encoding forms and character encoding schemes, both for the Unicode
Standard and as applied to other character encoding standards, see Unicode Technical
Report #17, “Unicode Character Encoding Model.” For information about charsets and
character conversion, see Unicode Technical Standard #22, “Character Mapping Markup
Language (CharMapML).”

General Structure 43 2.7 Unicode Strings
2.7 Unicode Strings
A Unicode string data type is simply an ordered sequence of code units. Thus a Unicode 8-
bit string is an ordered sequence of 8-bit code units, a Unicode 16-bit string is an ordered
sequence of 16-bit code units, and a Unicode 32-bit string is an ordered sequence of 32-bit
code units.

Depending on the programming environment, a Unicode string may or may not be
required to be in the corresponding Unicode encoding form. For example, strings in Java,
C#, or ECMAScript are Unicode 16-bit strings, but are not necessarily well-formed UTF-16
sequences. In normal processing, it can be far more efficient to allow such strings to con-
tain code unit sequences that are not well-formed UTF-16—that is, isolated surrogates.
Because strings are such a fundamental component of every program, checking for isolated
surrogates in every operation that modifies strings can create significant overhead, espe-
cially because supplementary characters are extremely rare as a percentage of overall text in
programs worldwide.

It is straightforward to design basic string manipulation libraries that handle isolated sur-
rogates in a consistent and straightforward manner. They cannot ever be interpreted as
abstract characters, but they can be internally handled the same way as noncharacters
where they occur. Typically they occur only ephemerally, such as in dealing with keyboard
events. While an ideal protocol would allow keyboard events to contain complete strings,
many allow only a single UTF-16 code unit per event. As a sequence of events is transmitted
to the application, a string that is being built up by the application in response to those
events may contain isolated surrogates at any particular point in time.

Whenever such strings are specified to be in a particular Unicode encoding form—even
one with the same code unit size—the string must not violate the requirements of that
encoding form. For example, isolated surrogates in a Unicode 16-bit string are not allowed
when that string is specified to be well-formed UTF-16. (See Section 3.9, Unicode Encoding
Forms.) A number of techniques are available for dealing with an isolated surrogate, such as
omitting it, converting it into U+FFFD replacement character to produce well-formed
UTF-16, or simply halting the processing of the string with an error. For more information
on this topic, see Unicode Technical Standard #22, “Character Mapping Markup Language
(CharMapML).”

General Structure 44 2.8 Unicode Allocation
2.8 Unicode Allocation
For convenience, the encoded characters of the Unicode Standard are grouped by linguistic
and functional categories, such as script or writing system. For practical reasons, there are
occasional departures from this general principle, as when punctuation associated with the
ASCII standard is kept together with other ASCII characters in the range U+0020..U+007E
rather than being grouped with other sets of general punctuation characters. By and large,
however, the code charts are arranged so that related characters can be found near each
other in the charts.

Grouping encoded characters by script or other functional categories offers the additional
benefit of supporting various space-saving techniques in actual implementations, as for
building tables or fonts.

For more information on writing systems, see Section 6.1, Writing Systems.

Planes

The Unicode codespace consists of the single range of numeric values from 0 to 10FFFF16,
but in practice it has proven convenient to think of the codespace as divided up into planes
of characters—each plane consisting of 64K code points. Because of these numeric conven-
tions, the Basic Multilingual Plane is occasionally referred to as Plane 0. The last four hexa-
decimal digits in each code point indicate a character’s position inside a plane. The
remaining digits indicate the plane. For example, U+23456 cjk unified ideograph-23456

is found at location 345616 in Plane 2.

Basic Multilingual Plane. The Basic Multilingual Plane (BMP, or Plane 0) contains the
common-use characters for all the modern scripts of the world as well as many historical
and rare characters. By far the majority of all Unicode characters for almost all textual data
can be found in the BMP.

Supplementary Multilingual Plane. The Supplementary Multilingual Plane (SMP, or
Plane 1) is dedicated to the encoding of characters for scripts or symbols which either could
not be fit into the BMP or see very infrequent usage. This includes many historic scripts, a
number of lesser-used contemporary scripts, special-purpose invented scripts, notational
systems or large pictographic symbol sets, and occasionally historic extensions of scripts
whose core sets are encoded on the BMP.

Examples include Gothic (historic), Shavian (special-purpose invented), Musical Symbols
(notational system), Domino Tiles (pictographic), and Ancient Greek Numbers (historic
extension for Greek). A number of scripts, whether of historic and contemporary use, do
not yet have their characters encoded in the Unicode Standard. The majority of scripts cur-
rently identified for encoding will eventually be allocated in the SMP. As a result, some
areas of the SMP will experience common, frequent usage.

Supplementary Ideographic Plane. The Supplementary Ideographic Plane (SIP, or Plane
2) is intended as an additional allocation area for those CJK characters that could not be fit
in the blocks set aside for more common CJK characters in the BMP. While there are a

General Structure 45 2.8 Unicode Allocation
small number of common-use CJK characters in the SIP (for example, for Cantonese
usage), the vast majority of Plane 2 characters are extremely rare or of historical interest
only.

Supplementary Special-purpose Plane. The Supplementary Special-purpose Plane (SSP,
or Plane 14) is the spillover allocation area for format control characters that do not fit into
the small allocation areas for format control characters in the BMP.

Private Use Planes. The two Private Use Planes (Planes 15 and 16) are allocated, in their
entirety, for private use. Those two planes contain a total of 131,068 characters to supple-
ment the 6,400 private-use characters located in the BMP.

Allocation Areas and Character Blocks

Allocation Areas. The Unicode Standard does not have any normatively defined concept of
areas or zones for the BMP (or other planes), but it is often handy to refer to the allocation
areas of the BMP by the general types of the characters they include. These areas are merely
a rough organizational device and do not restrict the types of characters that may end up
being allocated in them. The description and ranges of areas may change from version to
version of the standard as more new scripts, symbols, and other characters are encoded in
previously reserved ranges.

Blocks. The various allocation areas are, in turn, divided up into character blocks, which are
normatively defined, and which are used to structure the actual code charts. For a complete
listing of the normative character blocks in the Unicode Standard, see Blocks.txt in the Uni-
code Character Database.

The normative status of character blocks should not, however, be taken as indicating that
they define significant sets of characters. For the most part, the character blocks serve only
as ranges to divide up the code charts and do not necessarily imply anything else about the
types of characters found in the block. Block identity cannot be taken as a reliable guide to
the source, use, or properties of characters, for example, and it cannot be reliably used
alone to process characters. In particular:

• Blocks are simply ranges, and many contain reserved code points.

• Characters used in a single writing system may be found in several different
blocks. For example, characters used for letters for Latin-based writing systems
are found in at least 14 different blocks: Basic Latin, Latin-1 Supplement, Latin
Extended-A, Latin Extended-B, Latin Extended-C, Latin Extended-D, Latin
Extended-E, IPA Extensions, Phonetic Extensions, Phonetic Extensions Supple-
ment, Latin Extended Additional, Spacing Modifier Letters, Combining Dia-
critical Marks, and Combining Diacritical Marks Supplement.

• Characters in a block may be used with different writing systems. For example,
the danda character is encoded in the Devanagari block but is used with
numerous other scripts; Arabic combining marks in the Arabic block are used
with the Syriac script; and so on.

General Structure 46 2.8 Unicode Allocation
• Block definitions are not at all exclusive. For instance, many mathematical
operator characters are not encoded in the Mathematical Operators block—
and are not even in any block containing “Mathematical” in its name; many
currency symbols are not found in the Currency Symbols block, and so on.

For reliable specification of the properties of characters, one should instead turn to the
detailed, character-by-character property assignments available in the Unicode Character
Database. See also Chapter 4, Character Properties. For further discussion of the relation-
ship between Unicode character blocks and significant property assignments and sets of
characters, see Unicode Standard Annex #24, “Unicode Script Property,” and Unicode
Technical Standard #18, “Unicode Regular Expressions.”

Allocation Order. The allocation order of various scripts and other groups of characters
reflects the historical evolution of the Unicode Standard. While there is a certain geo-
graphic sense to the ordering of the allocation areas for the scripts, this is only a very loose
correlation. The empty spaces will be filled with future script encodings on a space-avail-
able basis. The relevant character encoding committees follow an organized roadmap to
help them decide where to encode new scripts within the available space. Until the charac-
ters for a script are actually standardized, however, there are no absolute guarantees where
future allocations will occur. In general, implementations should not make assumptions
about where future scripts may be encoded based on the identity of neighboring blocks of
characters already encoded.

Assignment of Code Points

Code points in the Unicode Standard are assigned using the following guidelines:

• Where there is a single accepted standard for a script, the Unicode Standard
generally follows it for the relative order of characters within that script.

• The first 256 codes follow precisely the arrangement of ISO/IEC 8859-1 (Latin
1), of which 7-bit ASCII (ISO/IEC 646 IRV) accounts for the first 128 code
positions.

• Characters with common characteristics are located together contiguously. For
example, the primary Arabic character block was modeled after ISO/IEC
8859-6. The Arabic script characters used in Persian, Urdu, and other lan-
guages, but not included in ISO/IEC 8859-6, are allocated after the primary
Arabic character block. Right-to-left scripts are grouped together.

• In most cases, scripts with fewer than 128 characters are allocated so as not to
cross 128-code-point boundaries (that is, they fit in ranges nn00..nn7F or
nn80..nnFF). For supplementary characters, an additional constraint not to
cross 1,024-code-point boundaries is applied (that is, scripts fit in ranges
nn000..nn3FF, nn400..nn7FF, nn800..nnBFF, or nnC00..nnFFF). Such con-
straints enable better optimizations for tasks such as building tables for access
to character properties.

General Structure 47 2.8 Unicode Allocation
• Codes that represent letters, punctuation, symbols, and diacritics that are gen-
erally shared by multiple languages or scripts are grouped together in several
locations.

• The Unicode Standard does not correlate character code allocation with lan-
guage-dependent collation or case. For more information on collation order,
see Unicode Technical Standard #10, “Unicode Collation Algorithm.”

• Unified CJK ideographs are laid out in multiple blocks, each of which is
arranged according to the Han ideograph arrangement defined in Section 18.1,
Han. This ordering is roughly based on a radical-stroke count order.

General Structure 48 2.9 Details of Allocation
2.9 Details of Allocation
This section provides a more detailed summary of the way characters are allocated in the
Unicode Standard. Figure 2-13 gives an overall picture of the allocation areas of the Uni-
code Standard, with an emphasis on the identities of the planes. The following subsections
discuss the allocation details for specific planes.

Figure 2-13. Unicode Allocation

For allocations on Plane 0 (BMP) and
Plane 1 (SMP), see the detail figures

CJK Unified Ideographs Extensions

CJK Compatibility Ideographs Supplement

Tags and Ideographic Variation Selectors

Supplementary Private Use Area-A

Supplementary Private Use Area-B

Graphic

Format or Control

Private Use

Reserved

Detail on other figures

General Structure 49 2.9 Details of Allocation
Plane 0 (BMP)

Figure 2-14 shows the Basic Multilingual Plane (BMP) in an expanded format to illustrate
the allocation substructure of that plane in more detail. This section describes each alloca-
tion area, in the order of their location on the BMP.

Figure 2-14. Allocation on the BMP

2E00-2E7F Supplemental Punctuation Area

0000-00FF ASCII & Latin-1 Compatibility Area
0100-058F General Scripts Area
0590-08FF General Scripts Area (RTL)

2C00-2DFF General Scripts Area

0900-1FFF General Scripts Area

2000-2BFF Punctuation and Symbols Area

2E80-33FF CJK Miscellaneous Area

3400-9FFF CJKV Unified Ideographs Area
 (not to scale)

A000-ABFF General Scripts Area (Asia & Africa)

AC00-D7FF Hangul Syllables Area

D800-DFFF Surrogate Codes

E000-F8FF Private Use Area

F900-FFFF Compatibility and Specials Area

0000

0900

2000

3400

A000

AC00

D800
E000

F900

2C00

(FFFF)

General Structure 50 2.9 Details of Allocation
ASCII and Latin-1 Compatibility Area. For compatibility with the ASCII and ISO 8859-1,
Latin-1 standards, this area contains the same repertoire and ordering as Latin-1. Accord-
ingly, it contains the basic Latin alphabet, European digits, and then the same collection of
miscellaneous punctuation, symbols, and additional Latin letters as are found in Latin-1.

General Scripts Area. The General Scripts Area contains a large number of modern-use
scripts of the world, including Latin, Greek, Cyrillic, Arabic, and so on. Most of the charac-
ters encoded in this area are graphic characters. A subrange of the General Scripts Area is
set aside for right-to-left scripts, including Hebrew, Arabic, Thaana, and N’Ko.

Punctuation and Symbols Area. This area is devoted mostly to all kinds of symbols,
including many characters for use in mathematical notation. It also contains general punc-
tuation, as well as most of the important format control characters.

Supplementary General Scripts Area. This area contains scripts or extensions to scripts
that did not fit in the General Scripts Area itself. It contains the Glagolitic, Coptic, and Tifi-
nagh scripts, plus extensions for the Latin, Cyrillic, Georgian, and Ethiopic scripts.

CJK Miscellaneous Area. The CJK Miscellaneous Area contains some East Asian scripts, such
as Hiragana and Katakana for Japanese, punctuation typically used with East Asian scripts,
lists of CJK radical symbols, and a large number of East Asian compatibility characters.

CJKV Ideographs Area. This area contains almost all the unified Han ideographs in the
BMP. It is subdivided into a block for the Unified Repertoire and Ordering (the initial block
of 20,902 unified Han ideographs plus 38 later additions) and another block containing
Extension A (an additional 6,582 unified Han ideographs).

General Scripts Area (Asia and Africa). This area contains numerous blocks for additional
scripts of Asia and Africa, such as Yi, Cham, Vai, and Bamum. It also contains more spill-
over blocks with additional characters for the Latin, Devanagari, Myanmar, and Hangul
scripts.

Hangul Area. This area consists of one large block containing 11,172 precomposed Hangul
syllables, and one small block with additional, historic Hangul jamo extensions.

Surrogates Area. The Surrogates Area contains only surrogate code points and no encoded
characters. See Section 23.6, Surrogates Area, for more details.

Private Use Area. The Private Use Area in the BMP contains 6,400 private-use characters.

Compatibility and Specials Area. This area contains many compatibility variants of char-
acters from widely used corporate and national standards that have other representations
in the Unicode Standard. For example, it contains Arabic presentation forms, whereas the
basic characters for the Arabic script are located in the General Scripts Area. The Compat-
ibility and Specials Area also contains twelve CJK unified ideographs, a few important for-
mat control characters, the basic variation selectors, and other special characters. See
Section 23.8, Specials, for more details.

General Structure 51 2.9 Details of Allocation
Plane 1 (SMP)

Figure 2-15 shows Plane 1, the Supplementary Multilingual Plane (SMP), in expanded for-
mat to illustrate the allocation substructure of that plane in more detail.

General Scripts Areas. These areas contain a large number of historic scripts, as well as a
few regional scripts which have some current use. The first of these areas also contains a
small number of symbols and numbers associated with ancient scripts.

General Scripts Areas (RTL). There are two subranges in the SMP which are set aside for
historic right-to-left scripts, such as Phoenician, Kharoshthi, and Avestan. The second of
these also defaults to Bidi_Class=R and is reserved for the encoding of other historic right-
to-left scripts or symbols.

Cuneiform and Hieroglyphic Area. This area contains three large, ancient scripts: Sumero-
Akkadian Cuneiform, Egyptian Hieroglyphs, and Anatolian Hieroglyphs. Other large
hieroglyphic and pictographic scripts will be allocated in this area in the future.

Figure 2-15. Allocation on Plane 1

1 0000
1 0800

1 D000

1 E800

1 BC00

1 7000
1 6000

1 2000
1 1000

(1 FFFF)

General Scripts Area
General Scripts Area (RTL)
General Scripts Area

Cuneiform & Hieroglyphic Area

General Scripts Area

Ideographic Scripts Area

General Scripts Area

Symbols Area

General Scripts Area (RTL)
Symbols Area1 F000

General Structure 52 2.9 Details of Allocation
Ideographic Scripts Area. This area is set aside for large, historic siniform (but non-Han)
logosyllabic scripts such as Tangut, Jurchen, Khitan, and Naxi. As of Unicode 9.0, this area
contains a large set of Tangut ideographs and components, as well as two archaic kana
characters.

Symbols Areas. The first of these SMP Symbols Areas contains sets of symbols for nota-
tional systems, such as musical symbols, shorthands, and mathematical alphanumeric
symbols. The second contains various game symbols, and large sets of miscellaneous sym-
bols and pictographs, mostly used in compatibility mapping of East Asian character sets.
Notable among these are emoji and emoticons.

Plane 2 (SIP)

Plane 2, the Supplementary Ideographic Plane (SIP), consists primarily of one big area,
starting from the first code point in the plane, that is dedicated to encoding additional uni-
fied CJK characters. A much smaller area, toward the end of the plane, is dedicated to addi-
tional CJK compatibility ideographic characters—which are basically just duplicated
character encodings required for round-trip conversion to various existing legacy East
Asian character sets. The CJK compatibility ideographic characters in Plane 2 are currently
all dedicated to round-trip conversion for the CNS standard and are intended to supple-
ment the CJK compatibility ideographic characters in the BMP, a smaller number of char-
acters dedicated to round-trip conversion for various Korean, Chinese, and Japanese
standards.

Other Planes

The first 4,096 code positions on Plane 14 form an area set aside for special characters that
have the Default_Ignorable_Code_Point property. A small number of tag characters, plus
some supplementary variation selection characters, have been allocated there. All remain-
ing code positions on Plane 14 are reserved for future allocation of other special-purpose
characters.

Plane 15 and Plane 16 are allocated, in their entirety, for private use. Those two planes con-
tain a total of 131,068 characters, to supplement the 6,400 private-use characters located in
the BMP.

All other planes are reserved; there are no characters assigned in them. The last two code
positions of all planes are permanently set aside as noncharacters. (See Section 2.13, Special
Characters).

General Structure 53 2.10 Writing Direction
2.10 Writing Direction
Individual writing systems have different conventions for arranging characters into lines on
a page or screen. Such conventions are referred to as a script’s directionality. For example, in
the Latin script, characters are arranged horizontally from left to right to form lines, and
lines are arranged from top to bottom, as shown in the first example of Figure 2-16.

Bidirectional. In most Semitic scripts such as Hebrew and Arabic, characters are arranged
from right to left into lines, although digits run the other way, making the scripts inherently
bidirectional, as shown in the second example in Figure 2-16. In addition, left-to-right and
right-to-left scripts are frequently used together. In all such cases, arranging characters into
lines becomes more complex. The Unicode Standard defines an algorithm to determine the
layout of a line, based on the inherent directionality of each character, and supplemented
by a small set of directional controls. See Unicode Standard Annex #9, “Unicode Bidirec-
tional Algorithm,” for more information.

Vertical. East Asian scripts are frequently written in vertical lines in which characters are
arranged from top to bottom. Lines are arranged from right to left, as shown in the third
example in Figure 2-16. Such scripts may also be written horizontally, from left to right.
Most East Asian characters have the same shape and orientation when displayed horizon-
tally or vertically, but many punctuation characters change their shape when displayed ver-
tically. In a vertical context, letters and words from other scripts are generally rotated
through 90-degree angles so that they, too, read from top to bottom. Unicode Technical
Report #50, “Unicode Vertical Text Layout,” defines a character property which is useful in
determining the correct orientation of characters when laid out vertically in text.

In contrast to the bidirectional case, the choice to lay out text either vertically or horizon-
tally is treated as a formatting style. Therefore, the Unicode Standard does not provide
directionality controls to specify that choice.

Mongolian is usually written from top to bottom, with lines arranged from left to right, as
shown in the fourth example. When Mongolian is written horizontally, the characters are
rotated.

Boustrophedon. Early Greek used a system called boustrophedon (literally, “ox-turning”).
In boustrophedon writing, characters are arranged into horizontal lines, but the individual
lines alternate between right to left and left to right, the way an ox goes back and forth

Figure 2-16. Writing Directions

General Structure 54 2.10 Writing Direction
when plowing a field, as shown in the fifth example. The letter images are mirrored in
accordance with the direction of each individual line.

Other Historical Directionalities. Other script directionalities are found in historical writ-
ing systems. For example, some ancient Numidian texts are written from bottom to top,
and Egyptian hieroglyphics can be written with varying directions for individual lines.

The historical directionalities are of interest almost exclusively to scholars intent on repro-
ducing the exact visual content of ancient texts. The Unicode Standard does not provide
direct support for them. Fixed texts can, however, be written in boustrophedon or in other
directional conventions by using hard line breaks and directionality overrides or the equiv-
alent markup.

General Structure 55 2.11 Combining Characters
2.11 Combining Characters
Combining Characters. Characters intended to be positioned relative to an associated base
character are depicted in the character code charts above, below, or through a dotted circle.
When rendered, the glyphs that depict these characters are intended to be positioned rela-
tive to the glyph depicting the preceding base character in some combination. The Unicode
Standard distinguishes two types of combining characters: spacing and nonspacing. Non-
spacing combining characters do not occupy a spacing position by themselves. Neverthe-
less, the combination of a base character and a nonspacing character may have a different
advance width than the base character by itself. For example, an “î” may be slightly wider
than a plain “i”. The spacing or nonspacing properties of a combining character are defined
in the Unicode Character Database.

All combining characters can be applied to any base character and can, in principle, be used
with any script. As with other characters, the allocation of a combining character to one
block or another identifies only its primary usage; it is not intended to define or limit the
range of characters to which it may be applied. In the Unicode Standard, all sequences of
character codes are permitted.

This does not create an obligation on implementations to support all possible combina-
tions equally well. Thus, while application of an Arabic annotation mark to a Han charac-
ter or a Devanagari consonant is permitted, it is unlikely to be supported well in rendering
or to make much sense.

Diacritics. Diacritics are the principal class of nonspacing combining characters used with
the Latin, Greek, and Cyrillic scripts and their relatives. In the Unicode Standard, the term
“diacritic” is defined very broadly to include accents as well as other nonspacing marks.

Symbol Diacritics. Some diacritical marks are applied primarily to symbols. These com-
bining marks are allocated in the Combining Diacritical Marks for Symbols block, to dis-
tinguish them from diacritical marks applied primarily to letters.

Enclosing Combining Marks. Figure 2-17 shows examples of combining enclosing marks
for symbols. The combination of an enclosing mark with a base character has the appear-
ance of a symbol. As discussed in “Properties” later in this section, it is best to limit the use
of combining enclosing marks to characters that represent symbols. This limitation mini-
mizes the potential for surprises resulting from mismatched character properties.

A few symbol characters are intended primarily for use with enclosing combining marks.
For example, U+2621 caution sign is a winding road symbol that can be used in combi-
nation with U+20E4 combining enclosing upward pointing triangle or U+20DF
combining enclosing diamond. However, the enclosing combining marks can also be
used in combination with arbitrary symbols, as illustrated by applying U+20E0 combin-

ing enclosing circle backslash to U+2615 hot beverage to create a “no drinks
allowed” symbol. Furthermore, no formal restriction prevents enclosing combining marks
from being used with non-symbols, as illustrated by applying U+20DD combining

enclosing circle to U+062D arabic letter hah to represent a circled hah.

General Structure 56 2.11 Combining Characters
Script-Specific Combining Characters. Some scripts, such as Hebrew, Arabic, and the
scripts of India and Southeast Asia, have both spacing and nonspacing combining charac-
ters specific to those scripts. Many of these combining characters encode vowel letters. As
such, they are not generally referred to as diacritics, but may have script-specific terminol-
ogy such as harakat (Arabic) or matra (Devanagari). See Section 7.9, Combining Marks.

Sequence of Base Characters and Diacritics

In the Unicode Standard, all combining characters are to be used in sequence following the
base characters to which they apply. The sequence of Unicode characters <U+0061 “a”
latin small letter a, U+0308 “!”combining diaeresis, U+0075 “u” latin small let-

ter u> unambiguously represents “äu” and not “aü”, as shown in Figure 2-18.

Ordering. The ordering convention used by the Unicode Standard—placing combining
marks after the base character to which they apply—is consistent with the logical order of
combining characters in Semitic and Indic scripts, the great majority of which (logically or
phonetically) follow the base characters with which they are associated. This convention
also conforms to the way modern font technology handles the rendering of nonspacing
graphical forms (glyphs), so that mapping from character memory representation order to
font rendering order is simplified. It is different from the convention used in the biblio-
graphic standard ISO 5426.

Indic Vowel Signs. Some Indic vowel signs are rendered to the left of a consonant letter or
consonant cluster, even though their logical order in the Unicode encoding follows the con-
sonant letter. In the charts, these vowels are depicted to the left of dotted circles (see
Figure 2-19). The coding of these vowels in pronunciation order and not in visual order is
consistent with the ISCII standard.

Figure 2-17. Combining Enclosing Marks for Symbols

Figure 2-18. Sequence of Base Characters and Diacritics

 +
2615 20E0

+

+

062D

2621

20DD

20DF

� �

 � �

� �→

→

→

a + ¨ + u
 0061 0308 0075

äu (not aü)$ →

General Structure 57 2.11 Combining Characters
Properties. A sequence of a base character plus one or more combining characters gener-
ally has the same properties as the base character. For example, “A” followed by “ˆ” has the
same properties as “Â”. For this reason, most Unicode algorithms ensure that such
sequences behave the same way as the corresponding base character. However, when the
combining character is an enclosing combining mark—in other words, when its
General_Category value is Me—the resulting sequence has the appearance of a symbol. In
Figure 2-20, enclosing the exclamation mark with U+20E4 combining enclosing upward

pointing triangle produces a sequence that looks like U+26A0 warning sign.

Because the properties of U+0021 exclamation mark are that of a punctuation character,
they are different from those of U+26A0 warning sign. For example, the two will behave
differently for line breaking. To avoid unexpected results, it is best to limit the use of com-
bining enclosing marks to characters that encode symbols. For that reason, the warning
sign is separately encoded as a miscellaneous symbol in the Unicode Standard and does not
have a decomposition.

Multiple Combining Characters

In some instances, more than one diacritical mark is applied to a single base character (see
Figure 2-21). The Unicode Standard does not restrict the number of combining characters
that may follow a base character. The following discussion summarizes the default treat-
ment of multiple combining characters. (For further discussion, see Section 3.6, Combina-
tion.)

Figure 2-19. Reordered Indic Vowel Signs

Figure 2-20. Properties and Combining Character Sequences

Figure 2-21. Stacking Sequences

” + Á Á”
092B 093F

→$

0021 20E4 26A0

→+ ≠$

Characters Glyphs

a
˙

¨ ˜
ˆ
ä̃

ˆ˙0061 0308 0303 0323 032D

0E02 0E36 0E49
+

+ + + +

+

$ $ $ $

$ $

→

→

General Structure 58 2.11 Combining Characters
If the combining characters can interact typographically—for example, U+0304 combin-

ing macron and U+0308 combining diaeresis—then the order of graphic display is
determined by the order of coded characters (see Table 2-5). By default, the diacritics or
other combining characters are positioned from the base character’s glyph outward. Com-
bining characters placed above a base character will be stacked vertically, starting with the
first encountered in the logical store and continuing for as many marks above as are
required by the character codes following the base character. For combining characters
placed below a base character, the situation is reversed, with the combining characters
starting from the base character and stacking downward.

When combining characters do not interact typographically, the relative ordering of con-
tiguous combining marks cannot result in any visual distinction and thus is insignificant.

Another example of multiple combining characters above the base character can be found
in Thai, where a consonant letter can have above it one of the vowels U+0E34 through
U+0E37 and, above that, one of four tone marks U+0E48 through U+0E4B. The order of
character codes that produces this graphic display is base consonant character + vowel char-
acter + tone mark character, as shown in Figure 2-21.

Many combining characters have specific typographical traditions that provide detailed
rules for the expected rendering. These rules override the default stacking behavior. For
example, certain combinations of combining marks are sometimes positioned horizontally
rather than stacking or by ligature with an adjacent nonspacing mark (see Table 2-6). When
positioned horizontally, the order of codes is reflected by positioning in the predominant
direction of the script with which the codes are used. For example, in a left-to-right script,

Table 2-5. Interaction of Combining Characters

Glyph Equivalent Sequences

a latin small letter a with tilde
latin small letter a + combining tilde

b latin small letter a with dot above
latin small letter a + combining dot above

c
latin small letter a with tilde + combining dot below
latin small letter a + combining tilde + combining dot below
latin small letter a with dot below + combining tilde
latin small letter a + combining dot below + combining tilde

d
latin small letter a with dot below + combining dot above
latin small letter a + combining dot below + combining dot above
latin small letter a with dot above + combining dot below
latin small letter a + combining dot above + combining dot below

e
latin small letter a with circumflex and acute
latin small letter a with circumflex + combining acute
latin small letter a + combining circumflex + combining acute

f latin small letter a acute + combining circumflex
latin small letter a + combining acute + combining circumflext

General Structure 59 2.11 Combining Characters
horizontal accents would be coded from left to right. In Table 2-6, the top example is cor-
rect and the bottom example is incorrect.

Such override behavior is associated with specific scripts or alphabets. For example, when
used with the Greek script, the “breathing marks” U+0313 combining comma above

(psili) and U+0314 combining reversed comma above (dasia) require that, when used
together with a following acute or grave accent, they be rendered side-by-side rather than
the accent marks being stacked above the breathing marks. The order of codes here is base
character code + breathing mark code + accent mark code. This example demonstrates the
script-dependent or writing-system-dependent nature of rendering combining diacritical
marks.

For additional examples of script-specific departure from default stacking of sequences of
combining marks, see the discussion about the positioning of multiple points and marks in
Section 9.1, Hebrew, the discussion of nondefault placement of Arabic vowel marks accom-
panying Figure 9-5 in Section 9.2, Arabic, or the discussion of horizontal combination of
titlo letters in Old Church Slavonic found in the subsection “Cyrillic Extended-A:
U+2DE0–U+2DFF” in Section 7.4, Cyrillic.

For other types of nondefault stacking behavior, see the discussion about the positioning of
combining parentheses in the subsection “Combining Diacritical Marks Extended:
U+1AB0–U+1AFF” in Section 7.9, Combining Marks.

The Unicode Standard specifies default stacking behavior to offer guidance about which
character codes are to be used in which order to represent the text, so that texts containing
multiple combining marks can be interchanged reliably. The Unicode Standard does not
aim to regulate or restrict typographical tradition.

Ligated Multiple Base Characters

When the glyphs representing two base characters merge to form a ligature, the combining
characters must be rendered correctly in relation to the ligated glyph (see Figure 2-22).
Internally, the software must distinguish between the nonspacing marks that apply to posi-
tions relative to the first part of the ligature glyph and those that apply to the second part.
(For a discussion of general methods of positioning nonspacing marks, see Section 5.12,
Strategies for Handling Nonspacing Marks.)

For more information, see “Application of Combining Marks” in Section 3.6, Combination.

Table 2-6. Nondefault Stacking

g
greek small letter alpha
+ combining comma above (psili)
+ combining acute accent (oxia)

This is correct

h
greek small letter alpha
+ combining acute accent (oxia)
+ combining comma above (psili)

This is incorrect

General Structure 60 2.11 Combining Characters
Ligated base characters with multiple combining marks do not commonly occur in most
scripts. However, in some scripts, such as Arabic, this situation occurs quite often when
vowel marks are used. It arises because of the large number of ligatures in Arabic, where
each element of a ligature is a consonant, which in turn can have a vowel mark attached to
it. Ligatures can even occur with three or more characters merging; vowel marks may be
attached to each part.

Exhibiting Nonspacing Marks in Isolation

Nonspacing combining marks used by the Unicode Standard may be exhibited in apparent
isolation by applying them to U+00A0 no-break space. This convention might be
employed, for example, when talking about the combining mark itself as a mark, rather
than using it in its normal way in text (that is, applied as an accent to a base letter or in
other combinations).

Prior to Version 4.1 of the Unicode Standard, the standard recommended the use of
U+0020 space for display of isolated combining marks. This practice is no longer recom-
mended because of potential conflicts with the handling of sequences of U+0020 space

characters in such contexts as XML. For additional ways of displaying some diacritical
marks, see “Spacing Clones of Diacritical Marks” in Section 7.9, Combining Marks.

“Characters” and Grapheme Clusters

End users have various concepts about what constitutes a letter or “character” in the writ-
ing system for their language or languages. The precise scope of these end-user “characters”
depends on the particular written language and the orthography it uses. In addition to the
many instances of accented letters, they may extend to digraphs such as Slovak “ch”, tri-
graphs or longer combinations, and sequences using spacing letter modifiers, such as “kw”.
Such concepts are often important for processes such as collation, for the definition of
characters in regular expressions, and for counting “character” positions within text. In
instances such as these, what the user thinks of as a character may affect how the collation
or regular expression will be defined or how the “characters” will be counted. Words and
other higher-level text elements generally do not split within elements that a user thinks of
as a character, even when the Unicode representation of them may consist of a sequence of
encoded characters.

The variety of these end-user-perceived characters is quite great—particularly for digraphs,
ligatures, or syllabic units. Furthermore, it depends on the particular language and writing
system that may be involved. Despite this variety, however, the core concept “characters
that should be kept together” can be defined for the Unicode Standard in a language-inde-

Figure 2-22. Ligated Multiple Base Characters

0066

f $ $ →+ ˜ i+ + . fĩ.
0303 0069 0323

General Structure 61 2.11 Combining Characters
pendent way. This core concept is known as a grapheme cluster, and it consists of any com-
bining character sequence that contains only nonspacing combining marks or any sequence
of characters that constitutes a Hangul syllable (possibly followed by one or more nonspac-
ing marks). An implementation operating on such a cluster would almost never want to
break between its elements for rendering, editing, or other such text processes; the graph-
eme cluster is treated as a single unit. Unicode Standard Annex #29, “Unicode Text Seg-
mentation,” provides a complete formal definition of a grapheme cluster and discusses its
application in the context of editing and other text processes. Implementations also may
tailor the definition of a grapheme cluster, so that under limited circumstances, particular
to one written language or another, the grapheme cluster may more closely pertain to what
end users think of as “characters” for that language.

General Structure 62 2.12 Equivalent Sequences
2.12 Equivalent Sequences
In cases involving two or more sequences considered to be equivalent, the Unicode Stan-
dard does not prescribe one particular sequence as being the correct one; instead, each
sequence is merely equivalent to the others. Figure 2-23 illustrates the two major forms of
equivalent sequences formally defined by the Unicode Standard. In the first example, the
sequences are canonically equivalent. Both sequences should display and be interpreted the
same way. The second and third examples illustrate different compatibility sequences.
Compatible-equivalent sequences may have format differences in display and may be inter-
preted differently in some contexts.

If an application or user attempts to distinguish between canonically equivalent sequences,
as shown in the first example in Figure 2-23, there is no guarantee that other applications
would recognize the same distinctions. To prevent the introduction of interoperability
problems between applications, such distinctions must be avoided wherever possible. Mak-
ing distinctions between compatibly equivalent sequences is less problematical. However,
in restricted contexts, such as the use of identifiers, avoiding compatibly equivalent
sequences reduces possible security issues. See Unicode Technical Report #36, “Unicode
Security Considerations.”

Normalization

Where a unique representation is required, a normalized form of Unicode text can be used
to eliminate unwanted distinctions. The Unicode Standard defines four normalization
forms: Normalization Form D (NFD), Normalization Form KD (NFKD), Normalization
Form C (NFC), and Normalization Form KC (NFKC). Roughly speaking, NFD and NFKD
decompose characters where possible, while NFC and NFKC compose characters where
possible. For more information, see Unicode Standard Annex #15, “Unicode Normaliza-
tion Forms,” and Section 3.11, Normalization Forms.

A key part of normalization is to provide a unique canonical order for visually nondistinct
sequences of combining characters. Figure 2-24 shows the effect of canonical ordering for
multiple combining marks applied to the same base character.

Figure 2-23. Equivalent Sequences

¨B + Ä B + A +

LJ + A L + J + A

2 + ¼ 2 + 1 + ⁄ + 4≈

≡

≈

 0031 2044 00340032 00BC 0032

01C7 0041 004C 004A 0041

 0042 00C4 0042 0041 0308
%

General Structure 63 2.12 Equivalent Sequences
In the first row of Figure 2-24, the two sequences are visually nondistinct and, therefore,
equivalent. The sequence on the right has been put into canonical order by reordering in
ascending order of the Canonical_Combining_Class (ccc) values. The ccc values are shown
below each character. The second row of Figure 2-24 shows an example where combining
marks interact typographically—the two sequences have different stacking order, and the
order of combining marks is significant. Because the two combining marks have been given
the same combining class, their ordering is retained under canonical reordering. Thus the
two sequences in the second row are not equivalent.

Decompositions

Precomposed characters are formally known as decomposables, because they have decom-
positions to one or more other characters. There are two types of decompositions:

• Canonical. The character and its decomposition should be treated as essentially
equivalent.

• Compatibility. The decomposition may remove some information (typically
formatting information) that is important to preserve in particular contexts.

Types of Decomposables. Conceptually, a decomposition implies reducing a character to
an equivalent sequence of constituent parts, such as mapping an accented character to a
base character followed by a combining accent. The vast majority of nontrivial decomposi-
tions are indeed a mapping from a character code to a character sequence. However, in a
small number of exceptional cases, there is a mapping from one character to another char-
acter, such as the mapping from ohm to capital omega. Finally, there are the “trivial”
decompositions, which are simply a mapping of a character to itself. They are really an
indication that a character cannot be decomposed, but are defined so that all characters
formally have a decomposition. The definition of decomposable is written to encompass
only the nontrivial types of decompositions; therefore these characters are considered non-
decomposable.

Figure 2-24. Canonical Ordering

A + ˛ + ´

A + ´ + ¨

0041

A + ´ + ˛

A + ¨ + ´

0301 0328

0041 0301 0308

0301

03010308

0328

non-interacting

interacting

ccc=0

ccc=230ccc=230

ccc=230 ccc=230 ccc=230 ccc=230

ccc=202 ccc=202ccc=0 ccc=0

ccc=0

0041

0041

$ $

$ $

$ $

$ $

≡

≠

General Structure 64 2.12 Equivalent Sequences
In summary, three types of characters are distinguished based on their decomposition
behavior:

• Canonical decomposable. A character that is not identical to its canonical
decomposition.

• Compatibility decomposable. A character whose compatibility decomposition is
not identical to its canonical decomposition.

• Nondecomposable. A character that is identical to both its canonical decomposi-
tion and its compatibility decomposition. In other words, the character has
trivial decompositions (decompositions to itself). Loosely speaking, these char-
acters are said to have “no decomposition,” even though, for completeness, the
algorithm that defines decomposition maps such characters to themselves.

Because of the way decompositions are defined, a character cannot have a nontrivial
canonical decomposition while having a trivial compatibility decomposition. Characters
with a trivial compatibility decomposition are therefore always nondecomposables.

Examples. Figure 2-25 illustrates these three types. Compatibility decompositions that are
redundant because they are identical to the canonical decompositions are not shown.

The figure illustrates two important points:

• Decompositions may be to single characters or to sequences of characters.
Decompositions to a single character, also known as singleton decompositions,
are seen for the ohm sign and the halfwidth katakana ka in Figure 2-25. Because
of examples like these, decomposable characters in Unicode do not always con-
sist of obvious, separate parts; one can know their status only by examining the
data tables for the standard.

Figure 2-25. Types of Decomposables

2126 03A9 FF76 30AB

0041

Nondecomposables

Canonical decomposables Compatibility decomposables

Á
00C1

A
0041

03D203D3

03D2

03A5

03D3

006B3384

0301

0301

0301

0301

}

→

→

→

→

→

→

a
0061

ø
00F8

Đ
0110 0681

General Structure 65 2.12 Equivalent Sequences
• A very small number of characters are both canonical and compatibility
decomposable. The example shown in Figure 2-25 is for the Greek hooked upsi-
lon symbol with an acute accent. It has a canonical decomposition to one
sequence and a compatibility decomposition to a different sequence.

For more precise definitions of these terms, see Chapter 3, Conformance.

Non-decomposition of Certain Diacritics

Most characters that one thinks of as being a letter “plus accent” have formal decomposi-
tions in the Unicode Standard. For example, see the canonical decomposable U+00C1
latin capital letter a with acute shown in Figure 2-25. There are, however, exceptions
involving certain types of diacritics and other marks.

Overlaid and Attached Diacritics. Based on the pattern for accented letters, implementers
often also expect to encounter formal decompositions for characters which use various
overlaid diacritics such as slashes and bars to form new Latin (or Cyrillic) letters. For exam-
ple, one might expect a decomposition for U+00D8 latin capital letter o with stroke

involving U+0338 combining long solidus overlay. However, such decompositions
involving overlaid diacritics are not formally defined in the Unicode Standard.

For historical and implementation reasons, there are no decompositions for characters
with overlaid diacritics such as slashes and bars, nor for most diacritic hooks, swashes, tails,
and other similar modifications to the graphic form of a base character. In such cases, the
generic identification of the overlaid element is not specific enough to identify which part
of the base glyph is to be overlaid. The characters involved include prototypical overlaid
diacritic letters as U+0268 latin small letter i with stroke, but also characters with
hooks and descenders, such as U+0188 latin small letter c with hook, U+049B cyril-

lic small letter ka with descender, and U+0499 cyrillic small letter ze with

descender.

There are three exceptional attached diacritics which are regularly decomposed, namely
U+0327 combining cedilla, U+0328 combining ogonek, and U+031B combining

horn (which is used in Vietnamese letters).

Other Diacritics. There are other characters for which the name and glyph appear to imply
the presence of a decomposable diacritic, but which have no decomposition defined in the
Unicode Standard. A prominent example is the Pashto letter U+0681 arabic letter hah

with hamza above. In these cases, as for the overlaid diacritics, the composed character
and the sequence of base letter plus combining diacritic are not equivalent, although their
renderings would be very similar. See the text on “Combining Hamza Above” in
Section 9.2, Arabic for further complications related to this and similar characters.

Character Names and Decomposition. One cannot determine the decomposition status of
a Latin letter from its Unicode name, despite the existence of phrases such as “...with

acute” or “...with stroke”. The normative decomposition mappings listed in the Unicode
Character Database are the only formal definition of decomposition status.

General Structure 66 2.12 Equivalent Sequences
Simulated Decomposition in Processing. Because the Unicode characters with overlaid
diacritics or similar modifications to their base form shapes have no formal decomposi-
tions, some kinds of text processing that would ordinarily use Normalization Form D
(NFD) internally to separate base letters from accents may end up simulating decomposi-
tions instead. Effectively, this processing treats overlaid diacritics as if they were represented
by a separately encoded combining mark. For example, a common operation in searching
or matching is to sort (or match) while ignoring accents and diacritics on letters. This is
easy to do with characters that formally decompose; the text is decomposed, and then the
combining marks for the accents are ignored. However, for letters with overlaid diacritics,
the effect of ignoring the diacritic has to be simulated instead with data tables that go
beyond simple use of Unicode decomposition mappings.

Security Issue. The lack of formal decompositions for characters with overlaid diacritics
means that there are increased opportunities for spoofing involving such characters. The
display of a base letter plus a combining overlaid mark such as U+0335 combining short

stroke overlay may look the same as the encoded base letter with bar diacritic, but the
two sequences are not canonically equivalent and would not be folded together by Unicode
normalization.

Implementations of writing systems which make use of letters with overlaid diacritics typi-
cally do not mix atomic representation (use of a precomposed letter with overlaid diacritic)
with sequential representation (use of a sequence of base letter plus combining mark for
the overlaid diacritic). Mixing these conventions is avoided precisely because the atomic
representation and the sequential representation are not canonically equivalent. In most
cases the atomic representation is the preferred choice, because of its convenience and
more reliable display.

Security protocols for identifiers may disallow either the sequential representation or the
atomic representation of a letter with an overlaid diacritic to try to minimize spoofing
opportunities. However, when this is done, it is incumbent on the protocol designers first
to verify whether the atomic or the sequential representation is in actual use. Disallowing
the preferred convention, while instead forcing use of the unpreferred one for a particular
writing system can have the unintended consequence of increasing confusion about use—
and may thereby reduce the usability of the protocol for its intended purpose.

For more information and data for handling these confusable sequences involving overlaid
diacritics, see Unicode Technical Report #36, “Unicode Security Considerations.”

General Structure 67 2.13 Special Characters
2.13 Special Characters
The Unicode Standard includes a small number of important characters with special
behavior; some of them are introduced in this section. It is important that implementa-
tions treat these characters properly. For a list of these and similar characters, see
Section 4.12, Characters with Unusual Properties; for more information about such charac-
ters, see Section 23.1, Control Codes; Section 23.2, Layout Controls; Section 23.7, Noncharac-
ters; and Section 23.8, Specials.

Special Noncharacter Code Points

The Unicode Standard contains a number of code points that are intentionally not used to
represent assigned characters. These code points are known as noncharacters. They are per-
manently reserved for internal use and are not used for open interchange of Unicode text.
For more information on noncharacters, see Section 23.7, Noncharacters.

Byte Order Mark (BOM)

The UTF-16 and UTF-32 encoding forms of Unicode plain text are sensitive to the byte
ordering that is used when serializing text into a sequence of bytes, such as when writing
data to a file or transferring data across a network. Some processors place the least signifi-
cant byte in the initial position; others place the most significant byte in the initial position.
Ideally, all implementations of the Unicode Standard would follow only one set of byte
order rules, but this scheme would force one class of processors to swap the byte order on
reading and writing plain text files, even when the file never leaves the system on which it
was created.

To have an efficient way to indicate which byte order is used in a text, the Unicode Standard
contains two code points, U+FEFF zero width no-break space (byte order mark) and
U+FFFE (a noncharacter), which are the byte-ordered mirror images of each other. When
a BOM is received with the opposite byte order, it will be recognized as a noncharacter and
can therefore be used to detect the intended byte order of the text. The BOM is not a con-
trol character that selects the byte order of the text; rather, its function is to allow recipients
to determine which byte ordering is used in a file.

Unicode Signature. An initial BOM may also serve as an implicit marker to identify a file as
containing Unicode text. For UTF-16, the sequence FE16 FF16 (or its byte-reversed coun-
terpart, FF16 FE16) is exceedingly rare at the outset of text files that use other character
encodings. The corresponding UTF-8 BOM sequence, EF16 BB16 BF16, is also exceedingly
rare. In either case, it is therefore unlikely to be confused with real text data. The same is
true for both single-byte and multibyte encodings.

Data streams (or files) that begin with the U+FEFF byte order mark are likely to contain
Unicode characters. It is recommended that applications sending or receiving untyped data
streams of coded characters use this signature. If other signaling methods are used, signa-
tures should not be employed.

General Structure 68 2.13 Special Characters
Conformance to the Unicode Standard does not require the use of the BOM as such a sig-
nature. See Section 23.8, Specials, for more information on the byte order mark and its use
as an encoding signature.

Layout and Format Control Characters

The Unicode Standard defines several characters that are used to control joining behavior,
bidirectional ordering control, and alternative formats for display. Their specific use in lay-
out and formatting is described in Section 23.2, Layout Controls.

The Replacement Character

U+FFFD replacement character is the general substitute character in the Unicode
Standard. It can be substituted for any “unknown” character in another encoding that can-
not be mapped in terms of known Unicode characters (see Section 5.3, Unknown and Miss-
ing Characters, and Section 23.8, Specials).

Control Codes

In addition to the special characters defined in the Unicode Standard for a number of pur-
poses, the standard incorporates the legacy control codes for compatibility with the ISO/
IEC 2022 framework, ASCII, and the various protocols that make use of control codes.
Rather than simply being defined as byte values, however, the legacy control codes are
assigned to Unicode code points: U+0000..U+001F, U+007F..U+009F. Those code points
for control codes must be represented consistently with the various Unicode encoding
forms when they are used with other Unicode characters. For more information on control
codes, see Section 23.1, Control Codes.

General Structure 69 2.14 Conforming to the Unicode Standard
2.14 Conforming to the Unicode Standard
Conformance requirements are a set of unambiguous criteria to which a conformant
implementation of a standard must adhere, so that it can interoperate with other confor-
mant implementations. The universal scope of the Unicode Standard complicates the task
of rigorously defining such conformance requirements for all aspects of the standard. Mak-
ing conformance requirements overly confining runs the risk of unnecessarily restricting
the breadth of text operations that can be implemented with the Unicode Standard or of
limiting them to a one-size-fits-all lowest common denominator. In many cases, therefore,
the conformance requirements deliberately cover only minimal requirements, falling far
short of providing a complete description of the behavior of an implementation. Neverthe-
less, there are many core aspects of the standard for which a precise and exhaustive defini-
tion of conformant behavior is possible.

This section gives examples of both conformant and nonconformant implementation
behavior, illustrating key aspects of the formal statement of conformance requirements
found in Chapter 3, Conformance.

Characteristics of Conformant Implementations

An implementation that conforms to the Unicode Standard has the following characteris-
tics:

It treats characters according to the specified Unicode encoding form.

• The byte sequence <20 20> is interpreted as U+2020 ‘†’ dagger in the UTF-16
encoding form.

• The same byte sequence <20 20> is interpreted as the sequence of two spaces,
<U+0020, U+0020>, in the UTF-8 encoding form.

It interprets characters according to the identities, properties, and rules defined for them in
this standard.

• U+2423 is ‘’ open box, not ‘’ hiragana small i (which is the meaning of the
bytes 242316 in JIS).

• U+00F4 ‘ô’ is equivalent to U+006F ‘o’ followed by U+0302 ‘u’, but not equiva-
lent to U+0302 followed by U+006F.

• U+05D0 ‘’ followed by U+05D1 ‘’ looks like ‘’, not ‘’ when displayed.

When an implementation supports the display of Arabic, Hebrew, or other right-to-left
characters and displays those characters, they must be ordered according to the Bidirec-
tional Algorithm described in Unicode Standard Annex #9, “Unicode Bidirectional Algo-
rithm.”

When an implementation supports Arabic, Devanagari, or other scripts with complex
shaping for their characters and displays those characters, at a minimum the characters are

General Structure 70 2.14 Conforming to the Unicode Standard
shaped according to the relevant block descriptions. (More sophisticated shaping can be
used if available.)

Unacceptable Behavior

It is unacceptable for a conforming implementation:

To use unassigned codes.

• U+2073 is unassigned and not usable for ‘3’ (superscript 3) or any other charac-
ter.

To corrupt unsupported characters.

• U+03A1 “P” greek capital letter rho should not be changed to U+00A1
(first byte dropped), U+0050 (mapped to Latin letter P), U+A103 (bytes
reversed), or anything other than U+03A1.

To remove or alter uninterpreted code points in text that purports to be unmodified.

• U+2029 is paragraph separator and should not be dropped by applications
that do not support it.

Acceptable Behavior

It is acceptable for a conforming implementation:

To support only a subset of the Unicode characters.

• An application might not provide mathematical symbols or the Thai script, for
example.

To transform data knowingly.

• Uppercase conversion: ‘a’ transformed to ‘A’

• Romaji to kana: ‘kyo’ transformed to

• Decomposition: U+247D ‘(10)’ decomposed to <U+0028, U+0031, U+0030,
U+0029>

To build higher-level protocols on the character set.

• Examples are defining a file format for compression of characters or for use
with rich text.

To define private-use characters.

• Examples of characters that might be defined for private use include additional
ideographic characters (gaiji) or existing corporate logo characters.

To not support the Bidirectional Algorithm or character shaping in implementations that do
not support complex scripts, such as Arabic and Devanagari.

General Structure 71 2.14 Conforming to the Unicode Standard
To not support the Bidirectional Algorithm or character shaping in implementations that do
not display characters, as, for example, on servers or in programs that simply parse or trans-
code text, such as an XML parser.

Code conversion between other character encodings and the Unicode Standard will be con-
sidered conformant if the conversion is accurate in both directions.

Supported Subsets

The Unicode Standard does not require that an application be capable of interpreting and
rendering all Unicode characters so as to be conformant. Many systems will have fonts for
only some scripts, but not for others; sorting and other text-processing rules may be imple-
mented for only a limited set of languages. As a result, an implementation is able to inter-
pret a subset of characters.

The Unicode Standard provides no formalized method for identifying an implemented
subset. Furthermore, such a subset is typically different for different aspects of an imple-
mentation. For example, an application may be able to read, write, and store any Unicode
character and to sort one subset according to the rules of one or more languages (and the
rest arbitrarily), but have access to fonts for only a single script. The same implementation
may be able to render additional scripts as soon as additional fonts are installed in its envi-
ronment. Therefore, the subset of interpretable characters is typically not a static concept.

General Structure 72 2.14 Conforming to the Unicode Standard

	2 General Structure
	2.1 Architectural Context
	Basic Text Processes
	Text Elements, Characters, and Text Processes
	Figure 2-1. Text Elements and Characters

	Text Processes and Encoding
	Character Identity

	2.2 Unicode Design Principles
	Table 2-1. The 10 Unicode Design Principles
	Universality
	Efficiency
	Characters, Not Glyphs
	Figure 2-2. Characters Versus Glyphs
	Table 2-2. User-Perceived Characters with Multiple Code Points
	Figure 2-3. Unicode Character Code to Rendered Glyphs

	Semantics
	Plain Text
	Logical Order
	Figure 2-4. Bidirectional Ordering
	Figure 2-5. Writing Direction and Numbers

	Unification
	Figure 2-6. Typeface Variation for the Bone Character

	Dynamic Composition
	Figure 2-7. Dynamic Composition
	Equivalent Sequences

	Stability
	Convertibility

	2.3 Compatibility Characters
	Usage
	Allocation
	Compatibility Variants
	Compatibility Decomposable Characters
	Compatibility Character Versus Compatibility Decomposable Character

	2.4 Code Points and Characters
	Figure 2-8. Abstract and Encoded Characters
	Types of Code Points
	Table 2-3. Types of Code Points
	Control Codes
	Noncharacters
	Private Use
	Surrogates
	Restricted Interchange
	Code Point Semantics

	2.5 Encoding Forms
	Non-overlap
	Figure 2-9. Overlap in Legacy Mixed-Width Encodings
	Figure 2-10. Boundaries and Interpretation
	Conformance
	Examples
	Figure 2-11. Unicode Encoding Forms
	UTF-32
	Fixed Width
	Preferred Usage

	UTF-16
	Optimized for BMP
	Supplementary Characters and Surrogates
	Preferred Usage
	Origin
	Collation

	UTF-8
	Byte-Oriented
	Variable Width
	ASCII Transparency
	Preferred Usage
	Self-synchronizing

	Comparison of the Advantages of UTF-32, UTF-16, and UTF-8
	UTF-32 Versus UTF-16
	Characters Versus Code Points
	UTF-8
	Binary Sorting

	2.6 Encoding Schemes
	Byte Order
	Table 2-4. The Seven Unicode Encoding Schemes
	Encoding Scheme Versus Encoding Form
	Examples
	Figure 2-12. Unicode Encoding Schemes

	2.7 Unicode Strings
	2.8 Unicode Allocation
	Planes
	Basic Multilingual Plane
	Supplementary Multilingual Plane
	Supplementary Ideographic Plane
	Supplementary Special-purpose Plane
	Private Use Planes

	Allocation Areas and Character Blocks
	Allocation Areas
	Blocks
	Allocation Order

	Assignment of Code Points

	2.9 Details of Allocation
	Figure 2-13. Unicode Allocation
	Plane 0 (BMP)
	Figure 2-14. Allocation on the BMP
	ASCII and Latin-1 Compatibility Area
	General Scripts Area
	Punctuation and Symbols Area
	Supplementary General Scripts Area
	CJK Miscellaneous Area
	CJKV Ideographs Area
	General Scripts Area (Asia and Africa)
	Hangul Area
	Surrogates Area
	Private Use Area
	Compatibility and Specials Area

	Plane 1 (SMP)
	Figure 2-15. Allocation on Plane 1
	General Scripts Areas
	General Scripts Areas (RTL)
	Cuneiform and Hieroglyphic Area
	Ideographic Scripts Area
	Symbols Areas

	Plane 2 (SIP)
	Other Planes

	2.10 Writing Direction
	Figure 2-16. Writing Directions
	Bidirectional
	Vertical
	Boustrophedon
	Other Historical Directionalities

	2.11 Combining Characters
	Combining Characters
	Diacritics
	Symbol Diacritics
	Enclosing Combining Marks
	Figure 2-17. Combining Enclosing Marks for Symbols
	Script-Specific Combining Characters
	Sequence of Base Characters and Diacritics
	Figure 2-18. Sequence of Base Characters and Diacritics
	Ordering
	Indic Vowel Signs
	Figure 2-19. Reordered Indic Vowel Signs
	Properties
	Figure 2-20. Properties and Combining Character Sequences

	Multiple Combining Characters
	Figure 2-21. Stacking Sequences
	Table 2-5. Interaction of Combining Characters
	Table 2-6. Nondefault Stacking

	Ligated Multiple Base Characters
	Figure 2-22. Ligated Multiple Base Characters

	Exhibiting Nonspacing Marks in Isolation
	“Characters” and Grapheme Clusters

	2.12 Equivalent Sequences
	Figure 2-23. Equivalent Sequences
	Normalization
	Figure 2-24. Canonical Ordering

	Decompositions
	Types of Decomposables
	Examples
	Figure 2-25. Types of Decomposables

	Non-decomposition of Certain Diacritics
	Overlaid and Attached Diacritics
	Other Diacritics
	Character Names and Decomposition
	Simulated Decomposition in Processing
	Security Issue

	2.13 Special Characters
	Special Noncharacter Code Points
	Byte Order Mark (BOM)
	Unicode Signature

	Layout and Format Control Characters
	The Replacement Character
	Control Codes

	2.14 Conforming to the Unicode Standard
	Characteristics of Conformant Implementations
	Unacceptable Behavior
	Acceptable Behavior
	Supported Subsets

