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Abstract
The paper presents and evaluates Nysiad,1 a system that
implements a new technique for transforming a scalable
distributed system or network protocol tolerant only of
crash failures into one that tolerates arbitrary failures,
including such failures as freeloading and malicious at-
tacks. The technique assigns to each host a certain num-
ber of guard hosts, optionally chosen from the available
collection of hosts, and assumes that no more than a con-
figurable number of guards of a host are faulty. Nysiad
then enforces that a host either follows the system’s pro-
tocol and handles all its inputs fairly, or ceases to produce
output messages altogether—a behavior that the system
tolerates. We have applied Nysiad to a link-based routing
protocol and an overlay multicast protocol, and present
measurements of running the resulting protocols on a
simulated network.

1 Introduction

Scalable distributed systems have to tolerate nondeter-
ministic failures from causes such as Heisenbugs and
Mandelbugs [14], aging related or bit errors (e.g., [23]),
selfish behavior (e.g., freeloading), and intrusion. While
all these failures are prevalent and it would seem that
large distributed systems have sufficient redundancy
and diversity to handle such failures, developing soft-
ware that delivers scalable Byzantine fault tolerance has
proved difficult, and few such systems have been built
and deployed. Distributed systems and protocols like
DNS, BGP, OSPF, IS-IS, as well as most P2P commu-
nication systems tolerate only crash failures. Secure ver-
sions of such systems aim to prevent compromise of par-
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1The Nysiads nursed Dionysos and rendered him immortal.

ticipants. While important, this issue is orthogonal to
tolerating Byzantine failures as a host is not faulty until
it is compromised.

We know how to build practical scalable Byzantine-
tolerant data stores (e.g., [1, 2, 27]). Various work has
also focused on Byzantine-tolerant peer-to-peer proto-
cols (e.g., [3, 9, 20, 17, 19]). However, the only known
and general approach to developing a Byzantine version
of a protocol or distributed system is to replace each host
by a Replicated State Machine (RSM) [18, 25]. As repli-
cas of a host can be assigned to existing hosts in the sys-
tem, this does not necessarily require a large investment
of hardware.

This paper presents Nysiad, a technique that uses a
variant of RSM to make distributed systems tolerant of
Byzantine failures in asynchronous environments, and
evaluates the practicality of the approach. Nysiad lever-
ages that most distributed systems already deal with
crash failures and, rather than masking arbitrary failures,
translates arbitrary failures into crash failures. Doing
so avoids having to solve consensus [12] during normal
operation. Nysiad invokes consensus only when a host
needs to communicate with new peers or when one of its
replicas is being replaced.

Instead of treating replicas as symmetric, Nysiad’s
replication scheme is essentially primary-backup with
the host that is being replicated acting as primary. Dif-
ferent from RSM’s original specification [18], Nysiad al-
lows the entire RSM to halt in case the host does not
comply with the protocol. A voting protocol ensures that
the output of the RSM is valid. A credit-based flow con-
trol protocol ensures that the RSM processes all its inputs
(including external input) fairly. As a result of combining
both properties, the worst that the Byzantine host can ac-
complish is to stop processing input, a behavior that the
original system will treat as a crash failure and recover
accordingly.

We believe that the cost of Nysiad, while significant,
is within the range of practicality for mission-critical ap-

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 175



plications. End-to-end message latencies grow by a fac-
tor of 3 compared to message latencies in the original
system. The overhead caused by public key cryptogra-
phy operations are manageable. Most alarmingly, the to-
tal number of messages sent in the translated system per
end-to-end message sent in the original system can grow
significantly depending on factors such as the commu-
nication behavior of the original system. However, the
message overhead does not grow significantly as a func-
tion of the total number of hosts, and grows only linearly
as a function of the number of failures to be tolerated.
Most of the additional traffic is in the form of control
messages that do not carry payload.

The paper

• evaluates for the first time the overheads involved
when applying RSM to scalable distributed sys-
tems;

• shows that RSM does not require solving consen-
sus if the original system is already tolerant of crash
failures;

• presents a novel technique that forces hosts to pro-
cess input fairly in a Byzantine environment, or
leave;

• demonstrates how automatic reconfiguration can be
supported in a Byzantine-tolerant distributed sys-
tem.

Section 2 presents background and related work on
countering Byzantine behavior. Section 3 describes
an execution model and introduces terminology. The
Nysiad design is presented in Section 4. Section 5 pro-
vides notes on the implementation. Section 6 evaluates
the performance of systems generated by Nysiad using
various case studies. Limitations are discussed in Sec-
tion 7. Section 8 concludes.

2 Background

The RSM approach can be applied to systems like
DNS [7]. While overheads are practical, the approach
does not handle reconfiguration in the DNS hierarchy.

The idea of automatically translating crash-tolerant
systems into Byzantine systems can be traced back to
the mid-eighties. Gabriel Bracha presents a translation
mechanism that transforms a protocol tolerant of up to
t crash failures into one that tolerates t Byzantine fail-
ures [6]. Brian Coan also presents a translation [11] that
is similar to Bracha’s. These approaches have two impor-
tant restrictions. One is that input protocols are required
to have a specific style of execution, and in particular
they have to be round-based with each participant await-
ing the receipt of n − t messages before starting a new

round. Second, the approaches have quadratic message
overheads and as a result do not scale well. Note that
these approaches were primarily intended for a certain
class of consensus protocols, while we are pursuing arbi-
trary protocols and distributed systems.

Toueg, Neiger and Bazzi worked on an extension
of Bracha’s and Coan’s approaches for translation of
synchronous systems [4, 5, 24]. Mpoeleng et al. [22]
present a scalable translation that is also intended for
synchronous systems, and transforms Byzantine faults to
so-called signal-on-failure faults. They replace each host
with a pair, and assume only one of the hosts in each pair
may fail. In the Internet, making synchrony assumptions
is dangerous. Byzantine hosts can easily trigger viola-
tions of such assumptions to attack the system.

Closely related to Nysiad is the recent PeerReview
system [15], providing accountability [28] in distributed
systems. PeerReview detects those Byzantine failures
that are observable by a correct host. Like Nysiad, Peer-
Review assumes that each host implements a protocol
using a deterministic state machine. PeerReview main-
tains incoming and outgoing message logs and, periodi-
cally, runs incoming logs through the state machines and
checks output against outgoing logs. PeerReview can
only detect a subclass of Byzantine failures, and only
after the fact. Like reputation management and intru-
sion detection systems, accountability deters intention-
ally faulty behavior, but does not prevent or tolerate it.

Nysiad is based on our prior work described in [16],
in which we developed a theoretical basis for a simi-
lar translation technique, but one that does not scale,
does not handle reconfiguration, and does not prevent a
Byzantine host from considering its input selectively.

3 Model

A system is a collection of hosts that exchange messages
as specified by a protocol. Below we will use the terms
original and translated to refer to the systems before and
after translation, respectively. The original system tol-
erates only crash failures, while the translated system
tolerates Byzantine failures as well. For simplicity we
will assume that each host runs a deterministic state ma-
chine that transitions in response to receiving messages
or expiring timers. (Nysiad may handle nondeterministic
state machines by considering nondeterministic events
as inputs.) As a result of input processing, a state ma-
chine may produce messages, intended to be sent to other
hosts. The system is assumed to be asynchronous, with
no bounds on event processing, message latencies, or
clock drift.

The hosts are configured in an undirected communi-
cation graph (V,E), where V is the set of hosts and E
the set of communication links. A host only communi-
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Figure 1: A communication graph (left) and a possible
guard graph (right) for t = 1. In this particular case, each
host has exactly 3t + 1 guards, and each set of neighbors
exactly 2t + 1 monitors.

cates directly with its adjacent hosts, also called neigh-
bors. The graph may change over time, for example as
hosts join and leave the system. We will initially assume
that the graph is static and known to all hosts. We later
weaken this assumption and address topology changes.

The Nysiad transformation requires that the commu-
nication graph has a guard graph. A t-guard graph of
(V,E) is a directed graph (V ′, E′) with the following
requirements:

1. Each host in V has a (directed) edge to at least 3t+1
hosts in V ′ (including itself) called the guards of the
host.

2. For each two neighboring hosts in V, the two hosts
have edges to at least 2t + 1 common guards in
V ′ (including themselves). We call such guards the
monitors of the two hosts.

We assume that for each host in V at most t of its guards
are Byzantine. We also assume that messages between
correct guards of the same host are eventually delivered
(using an underlying retransmission protocol that recov-
ers from message loss). Note that a monitor of two hosts
is a guard of both hosts, and that neighbors in V are each
other’s guards. Moreover, each host is one of its own
guards.

Within the constraints of these requirements, Nysiad
works with any guard graph. For efficiency it is impor-
tant to create as few guards per host as possible, as all
guards of a host need to be kept synchronized. However,
the requirements on guards and monitors may produce
guard graphs with some of the hosts needing more than
3t + 1 guards.

If V = V ′, no additional hosts are added to the system
and hosts guard one another. Figure 1 presents an exam-
ple communication graph and a possible guard graph for
t = 1 where no additional hosts were added. Some de-
ployments may favor adding additional hosts for the sole
purpose of guarding hosts in the original system.

In the current implementation of Nysiad, the guard
graph is created and maintained by a logically central-
ized, Byzantine-tolerant service called the Olympus, de-
scribed in Section 4.4. The Olympus certifies the guards
of a host, and is involved only when the communication
graph changes as a result of host churn or new communi-
cation patterns in the original system. The Olympus does
not need to be aware of the protocol that the original sys-
tem employs.

4 Design

Nysiad translates the original system by replicating the
deterministic state machine of a host onto its guards.
Nysiad is composed of four subprotocols. The repli-
cation protocol ensures that guards of a host remain
synchronized. The attestation protocol guarantees that
messages delivered to guards are messages produced by
a valid execution of the protocol. The credit protocol
forces a host to either process all its input fairly, or to
ignore all input. Finally, the epoch protocol allows the
guard graph to be bootstrapped and reconfigured in re-
sponse to host churn. The following subsections describe
each of these protocols. The final subsection describes
how Nysiad deals with external I/O.

4.1 Replication
The state machine of a host is replicated onto the guards
of the host, together constituting a Replicated State Ma-
chine (RSM). It is important to keep in mind that we
replicate a host only for ensuring integrity, not for avail-
ability or performance reasons. After all, the original
system can already maintain availability in the face of
unavailable hosts.

Say αi
j is the replica of the state machine of host hi

on guard hj . A host hi broadcasts input events for its
local state machine replica αi

i to its guards. A guard hj

delivers an input event to αi
j when hj receives such a

broadcast message from hi. In order to guarantee that
the guards of hi stay synchronized in the face of Byzan-
tine behavior, the hosts use a reliable ordered broadcast
protocol called OARcast (named for Ordered Authenti-
cated Reliable Broadcast) [16] for communication.

Using OARcast a host can send a message that is in-
tended for all its guards. When a guard host hj delivers
a message m from hi it means that hj received m, be-
lieves it came from hi, and delivers m to αi

j , the replica
of hi’s state machine on guard hj . OARcast guarantees
the following properties:

• Relay. If hj and hk are correct, and hj delivers m
from hi, then hk delivers m from hi (even if hi is
Byzantine);
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Figure 2: Host hi initiates an OARcast execution for t = 1. The time diagram shows all guards of hi, where only hg3

is faulty.

• Ordering. If two hosts hj and hk are correct and
hj and hk both deliver m1 from hi and m2 from
hi, then they do so in the same order (even if hi is
Byzantine);

• Authenticity. If two hosts hi and hj are correct and
hi does not send m, then hj does not deliver m from
hi;

• Persistence. If two hosts hi and hj are correct, and
hi sends a message m, then hj delivers m from hi;

• FIFO. If two hosts hi and hj are correct, and hi

sends a message m1 before m2, then hj delivers
m1 from hi before delivering m2 from hi.

Relay guarantees that all correct guards deliver a mes-
sage if one correct guard does. Ordering guarantees that
all correct guards deliver messages from the same host
in the same order. These two properties together guaran-
tee that the correct replicas of a host stay synchronized,
even if the host is Byzantine. Authenticity guarantees that
Byzantine hosts cannot forge messages of correct hosts.
Persistence rules out a trivial implementation that does
not deliver any messages. FIFO stipulates that correct
guards deliver messages from a correct host in the order
sent.

These properties are not as strong as those for asyn-
chronous consensus [12] and indeed consensus is not
necessary for our use, as only the host whose state is
replicated can issue updates (i.e., there is only one pro-
poser). If that host crashes or stops producing updates
for some other reason, no new host has to be elected to
take over its role, and the entire RSM is allowed to halt as
a result. Indeed, unlike consensus, the OARcast proper-
ties can be realized in an asynchronous environment with
failures, as we shall show next.

The implementation of OARcast used in this paper
is as follows. Say a sending host hi ∈ V wants to
OARcast an input message m to its ni guards in V ′,

where (ni > 3t). Each guard hj maintains a se-
quence number c on behalf of hi. Using private (MAC-
authenticated) FIFO point-to-point connections, hi sends
〈order-reqH(m)〉 to each guard, where H is a cryp-
tographic one-way hash function. On receipt, hj sends
an order certificate 〈order-cert i, c,H(m)〉j back to
hi, where the subscript j means that hj digitally signed
the message such that any host can check its origin.

As at most t of hi’s guards are Byzantine, hi is
guaranteed to receive order-cert messages from at
least ni − t different guards with the correct sequence
number and message hash. We call such a collection
of order-cert messages an order proof for (c,m).
Byzantine orderers cannot generate conflicting order
proofs (same sequence number, different messages) even
if hi itself is Byzantine, as two order proofs have at least
t+1 order-cert messages in common, one of which
is guaranteed to be generated by a correct guard [21].

hi delivers m locally to αi
i and forwards m along with

an order proof to each of its guards. On receipt, a guard
hj checks that the order proof corresponds to m and is
for the next message from hi. If so, hj delivers m to αi

j .
To guarantee the Relay property, hj gossips order

proofs with the other guards. A similar implementation
of OARcast is proved correct in [16]. That paper also
presents an implementation that does not use public key
cryptography, but has higher message overhead.

Figure 2 shows an example of an OARcast execution.
Optimizations are discussed in Section 5. Not counting
the overhead of gossip and without exploiting hardware
multicast, a single OARcast to 3t guards uses at most 9t
messages. Gossip can be largely piggybacked on existing
traffic.

4.2 Attestation
While the replication protocol above guarantees that
guards of a host synchronize on its state, it does not guar-
antee that the host OARcasts valid input events, because
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Figure 3: Normal case attestation when t = 1. Here the state machine of hi sends a message m to the state machine
of hj . The guards of hj are hi, hk, hd, and hj itself, and each run a replica of hj’s state machine. Hosts hi, hj , and
hk monitor hi and hj . hj collects attestations for m and OARcasts the event to its guards. In this case only hd needs
the attestations.

the sending host hi may forge arbitrary input events. We
consider two kinds of input events: message events and
timer events. Checking validity for each is slightly dif-
ferent.

First let us examine message sending. Say in the orig-
inal system host hi ∈ V sends a message m to a host
hj ∈ V . Because hj is a neighbor of hi it is also a guard
of hi, and thus in the translated system αi

j will produce
m as an input event for αj

j . Accordingly hj OARcasts m
to its guards, but the guards, not sure whether to trust hj ,
need a way to verify the validity of m before delivering
m to local replicas. To protect against Byzantine behav-
ior of hj , we require that hj includes a proof of validity
with every OARcast in the form of a collection of t + 1
attestations from guards of hi.

Because the guards of hi implement an RSM, each
(correct) guard hk ∈ V ′ has a replica αi

k of the state of
hi that produces m. Each guard hk of hi (including hi

and hj) sends 〈attest i, j, sij ,H(m)〉k to hj . sij is a
sequence number for messages from i to j, and prevents
replay attacks. hj has to collect t of these attestations in
addition to its own and include them in its OARcast to
convince hj’s guards of the validity of m. Again, correct
guards have to gossip attestations in order to guarantee
that every correct guard receives them in case one does.

There are two important optimizations to this. First,
as hj only needs t + 1 attestations, only the monitors of
hi and hj need to send attestations to guarantee that hj

gets enough attestations. This not only reduces traffic,
but the monitors are neighbors of hj and thus no addi-
tional communication links need be created. Second, hj

does not need the attestations until the last phase of the
OARcast protocol, thus hj can request order certificates
before it has received the attestations. This way ordering
and attestation can happen in parallel rather than sequen-
tially. Both these optimizations are exploited in the im-

plementation (Section 5). Figure 3 shows an example of
the flow of traffic when using attestations.

In case of a timer event at a host h, h needs to col-
lect t additional attestations of its own guards in addition
to its own attestation. This prevents h from producing
timer events at a rate higher than that of the fastest cor-
rect host. While theoretically this may appear useless in
an asynchronous environment, in practice doing so is im-
portant. Consider, for example, a system in which a host
pings its neighbors in order to verify that they are alive.
Without timer attestation, a Byzantine host may force a
failure detection by not waiting long enough for the re-
sponse to those pings. While in an asynchronous sys-
tem one cannot detect failures accurately using a ping-
ing protocol, timer attestation ensures in this case that a
host has to wait a reasonable amount of time. Also, be-
cause hosts only wait for t attestations from more than
2t guards, Byzantine guards cannot delay or block timer
events emitted by correct hosts.

4.3 Credits

While attestation prevents a host from forging invalid in-
put events, a host may still selectively ignore input events
and fail to produce certain output events. For example,
in the pinging example above, a host could respond to
pings, avoiding failure detection, but neglect to process
other events. In a multicast tree application a host could
accept input but neglect to forward output to its children
(freeloading). Such a host could even deny wrongdoing
by claiming that it has not yet received the input events or
that the output events have already been sent but simply
not yet delivered by the network—after all, we assume
that the system is asynchronous.

We present a credit-based approach that forces hosts
either to process input from all sources fairly and pro-
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Figure 4: Credit mechanism with t = 1. hi and hk are neighbors of hj , each sending a message to hj . hj tries to
order the message from hk while ignoring the message from hi. The credit mechanism renders the OARcast illegal.

duce the corresponding output events, or to cease pro-
cessing altogether. The essence of the idea is to require
that a host obtain credits from its guards in order to OAR-
cast new input events, and a guard only complies if it has
received the OARcast from the host for previous input
events. As such, credits are the flip-side of attestations:
while attestations prevent a host from producing bad out-
put, credits force a host to either process all input or pro-
cess none of it. If a host elects to process no input, it
cannot produce output and will eventually be considered
as a crashed host by the original system.

We will exploit that a single OARcast from a host can
order a sequence of pending input events for its state ma-
chine, rather than one input message at a time. The OAR-
cast’s order certificate binds a single sequence number to
the ordered list of input events. We say that the OARcast
orders the events in the list.

A credit is a signed object of the form
〈credit j, c, ~vi,j〉i, where hi has to be a guard of
hj . hi sends such a credit to hj to approve delivery of
the cth OARcast message from hj , provided a certain
ordering condition specified by ~vi,j holds. Including c
prevents replay attacks. The ordering constraint ~vi,j is a
vector that contains an entry for each state machine that
hi and hj both guard. Such an entry contains how many
events (possibly 0) the corresponding state machine
replica on hi has produced for αj

i .
For each neighbor hk of hj , hj has to collect at least

t + 1 credits for OARcast c from monitors of hj and hk.
However, hj can only use a credit for an OARcast if the
OARcast orders all messages specified in the credit’s or-
dering constraint that were not ordered already by OAR-
casts numbered less than c. These two constraints taken
together guarantee that an OARcast contains a credit
from a correct monitor for each of its neighbors, and pre-
vents hj from ignoring input messages that correct mon-
itors observe while ordering other input messages.

For example, consider Figure 4, showing five hosts.
hi and hk are neighbors of hj . hij is a monitor for hosts
hi and hj , while hjk is a monitor for hj and hk. As-
sume t = 1. Consider a situation in which hj has not
yet sent any OARcasts, but αi

i has produced a message
mi for hj on hosts hi and hij , while αk

k has produced
a message mk for hj on hosts hk and hjk. Each guard
of hj sends credit for the first OARcast that reflects the
messages produced locally for hj .

Now assume that hj is Byzantine and trying to ignore
messages from hi but process messages from hk. hj has
to include a credit from either hi or hij . Because hj is
Byzantine and t = 1, both hi and hij have to be correct
and will not collude with hj . If hj tries to order only mk

as shown in the figure, receiving hosts will note that at
least one credit requires that a message from hi has to be
ordered and will therefore ignore the OARcast (and re-
port the message to authorities as proof of wrongdoing).

As with other credit-based flow control mechanisms,
a window w may be used to allow for pipelining of mes-
sages. Initially, each guard of hj sends credits for the
first w OARcasts from hj , specifying an empty ordering
constraint. Then, on receipt of the cth OARcast, a guard
sends a credit for OARcast c+w, using an ordering con-
straint that reflects the current set of produced messages
for hj . If w = 1, the next OARcast cannot be issued
until it has been received by at least t + 1 monitors of
each neighbor and the new credits have been communi-
cated to hj . If w > 1 pipelining becomes possible, but
at the expense of additional freedom for hj . In practice
we found that w = 2 enables good performance while
monitors still have significant control over the order of
messages produced by the hosts they guard.
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4.4 Epochs
So far we have assumed that the communication graph
(V,E) and its t-guard graph (V ′, E′) are static and well-
known to all hosts. This is necessary, because when a
host receives an OARcast it has to check that the order
certificates, the attestations, and the credits were gener-
ated by qualified hosts. In particular, order certificates
and credits have to be generated by a guard of the send-
ing host of an OARcast message, and each attestation of
a message has to be generated by monitors of the source
and destination of the message. Also, the receiving host
of an OARcast has to know how many guards the send-
ing host has in order to check that a message contains a
sufficient number of ordering certificates and credits.

While Nysiad, in theory, could inspect the code of the
state machines, it has no good way of determining which
hosts will be communicating with which other hosts, and
so in reality even the communication graph (V,E) is ini-
tially unknown, let alone its guard graph. Making mat-
ters worse, such a communication graph often evolves
over time.

In order to handle this problem, we introduce a logi-
cally centralized (but Byzantine-replicated [10]) trusted
certification service that we call the Olympus. The Olym-
pus is not involved in normal communication, but only in
charge of tracking the communication graph and updat-
ing the guard graph accordingly. The Olympus produces
signed epoch certificates for hosts, which contain suffi-
cient information for a receiver of an OARcast message
to check its validity. In particular, an epoch certificate for
a host hi describes

• the host identifier (i);

• the set of the identifiers of all hi’s guards;

• the epoch number (described below);

• a hash of the final state of the host in the previous
epoch.

The Olympus does not need to know the protocol that
the original system uses. Initially, the Olympus assigns
3t guards to each host arbitrarily, in addition to the host
itself. Each guard starts in epoch 0 and runs the state
machine starting from a well-defined initial state. Order
certificates and credits have to contain the epoch number
in order to prevent replay attacks of old certificates in
later epochs. Next we describe a general protocol for
changing guards and how this protocol is used to handle
reconfigurations.

Changing-of-the-guards

While the Olympus assigns guards to hosts, the
changing-of-the-guards protocol starts with the guards

themselves. In response to triggers that we will describe
below, each guard of hi sends a state certificate contain-
ing the current epoch number and a secure hash of its
current state to hi. After the guard receives an acknowl-
edgment from hi it is free to clean up its replica, unless
the guard is hi itself. However, in order to avoid replay
attacks the guard needs to remember that this epoch of
hi’s execution has terminated.

When hi has received ni − t such certificates (typi-
cally including its own) that correspond to its own state,
hi sends the collection of state certificates to the Olym-
pus. ni − t certificates together guarantee that there are
at most t correct guards and t Byzantine guards that are
still active, not enough to order additional OARcast mes-
sages. Effectively, the collection certifies that the state
machine of hi has halted in the given state.

In response, the Olympus assigns new guards to hi

and creates a new epoch certificate using an incremented
epoch number and the state hash, and sends the certifi-
cate to hi. On receipt, hi sends its signed state and the
new epoch certificate to its new collection of guards. Re-
cipients check validity of the state using the hash in the
epoch certificate and resume normal operation.

Reconfiguration

One scenario in which the changing-of-the-guards proto-
col is triggered is when guards of hi produce a message
m for another host hj for the first time. Each correct
guard sends a state certificate to hi when it produces the
message. The state has to be such that the message m is
about to be produced, so that when the state machine is
later restarted, possibly on a different guard, m is pro-
duced and processed the normal way. The state certifi-
cate also indicates that a message for hj is being pro-
duced, so that the Olympus may know the reason for the
invocation.

hi collects ni − t state certificates, and sends the col-
lection to the Olympus. The Olympus, now convinced
that hi has produced a message for hj , requests hj to
change its guards as well. hj does this by OARcasting a
special end-epoch message, triggering the changing-
of-the-guards protocol at each guard in the same state.
(Should hj not respond then it is up to the Olympus to
decide when to declare hj faulty, block hj’s guards, and
restart hi.)

Assuming the Olympus has received the state certifi-
cates for both hi and hj , the Olympus can assign new
guards to each in order to satisfy the constraints of the
guard graph. The Olympus then sends new epoch certifi-
cates to both hi and hj , after which each sends its cer-
tificate to its new guards. These guards start in a state
where they first produce m, which can now be processed
normally.
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Figure 5: Example of an execution of the reconfiguration protocol. hi1, hi2, and hi3 are guards of hi. When the
Olympus suspects that hi3 has failed, it requests the current epoch of hi to be concluded and installs a new set of
guards, replacing hi3 with hi3′ .

The Olympus also undertakes reconfiguration when it
determines that a guard of a host has failed. In order to
detect crash failures, the Olympus may periodically ping
all guards to determine responsiveness. (A more scal-
able solution is described in [17]. Note that while a false
positive may introduce overhead, it is not a correctness
issue.) Also, guards send proof of observable Byzantine
behavior to the Olympus. In response to detection of a
failure of a guard of a host other than the host itself, the
Olympus requests the host to OARcast an end-epoch
message to invoke the changing-of-the-guards protocol.
Figure 5 shows an example.

Should a host hi ∈ V be detected as faulty then the
Olympus sends a message to all hi’s guards, request-
ing them to block further OARcasts from hi. Once the
Olympus has received acknowledgments from ni − t
guards, the Olympus knows that hi can no longer pro-
duce input for other hosts successfully.

4.5 External I/O
So far we have assumed that Nysiad translates a system
in its entirety. However, often such a system serves exter-
nal clients that cannot easily be treated in the same way.
We cannot expect to be able to replicate those clients
onto multiple hosts, and it becomes impossible to ver-
ify that the clients send valid data using a general tech-
nique. To wit, a Byzantine-tolerant storage service does
not verify the validity of the data that it stores, nor does a
Byzantine-tolerant multicast service check the data from
the broadcaster. The usual assumption, from the system’s
point of view, is to trust clients.

In Nysiad, we treat external clients as trusted hosts.
Such hosts may crash or leave, but there is no need to
replicate their state machines, nor to attest the data they
generate. However, when a trusted host hi sends a mes-
sage to an untrusted host hj , we do want to make sure
that hj treats the input fairly with respect to other inputs
that it receives. Vice versa, when hj sends a message to
hi, hi has to collect attestations in order to verify the va-
lidity of the message. We also want to prevent hj from
withholding messages for hi.

The methodology we developed so far can be adapted
to achieve these requirements. We assign the pair
(hi, hj) 2t + 1 half-monitors. Each half-monitor runs
a full replica of hj’s state machine, but for hi only keeps
track of the messages that hi sends. Unlike normal mon-
itors, hi itself does not run a half-monitor, but hj does.

When hi wants to send a message to hj , it sends a copy
of the message to each half-monitor using authenticated
FIFO channels. (The half-monitors gossip the receipt of
this message with one another to ensure that either all
or none of the correct half-monitors receive the message
in a situation in which hi crashes during sending.) Like
normal monitors, half-monitors generate attestations for
messages from hi so that hj can convince others of the
validity of that input. More importantly, half-monitors
generate credits for hj forcing hj to treat hi’s messages
fairly with respect to its other inputs.

In a similar manner, half-monitors generate attesta-
tions for messages from hj to hi so that hi can verify
the validity of those messages. Should hj itself fail to
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send messages to hi then the half-monitors can provide
the necessary copy.

5 Implementation Details

In order to evaluate overheads we implemented Nysiad
in Java. In this section we provide details on how we
construct guard graphs and how we combine the various
subprotocols into a single coherent protocol.

Given a communication graph and a parameter t many
different guard graphs are often possible. For efficiency
and fault tolerance it is prudent to minimize the number
of guards per host (see Section 3). We are not aware of an
optimal algorithm for determining such a graph. We de-
vised the following algorithm to create a t-guard graph of
the communication graph. It runs in two phases. In the
first phase the algorithm considers each pair of neigh-
bors (hi, hj). Initially hi and hj are assigned as mon-
itors. The algorithm then determines the hosts that are
1 hop away from the current set of monitors, and adds,
randomly, such hosts to the set of monitors until there
are no such hosts left or until the number of monitors has
reached 2t+1. This step is repeated until the set of moni-
tors has reached the required size. Note that the monitors
are guards to both hi and hj . In the next phase, the algo-
rithm considers all hosts individually. If a host has fewer
than 3t + 1 guards then the closest hosts in terms of hop
distance are added, randomly as before, until the desired
number of guards is reached.

While best understood separately, the OARcast, attes-
tation, and credit protocols combine into a single replica-
tion protocol. Doing so reduces message and CPU over-
heads significantly, while also simplifying implementa-
tion. Consider the cth OARcast from some host hi, and
assume hi has the necessary credits and has produced the
messages required by those credits. At this point hi cre-
ates an order-req, containing a list of hashes of the
messages that it has produced but not yet ordered in pre-
vious OARcasts, and sends the request to each of its ni

guards.
On receipt, each guard signs a single certificate that

contains the credit for OARcast c + w, an order certifi-
cate for OARcast c, and any attestations that it can cre-
ate for messages in OARcast c. This way the signing
and checking costs of all certificate types can be amor-
tized. The guard sends the resulting certificate back to
hi. hi awaits ni − t certificates, which collectively are
guaranteed to contain the necessary order certificates and
attestations for completing the current OARcast, and the
necessary credits for OARcast c + w.

In the third and final round, hi sends these aggregate
certificates to its guards. On receipt, a guard has to check
the signatures on all certificates except its own. The end-
to-end latency consists of three network latencies, plus

the latency of signing (done in parallel by each of the
guards) and checking ni−1 certificates (executed in par-
allel as well). The more messages can be ordered by a
single OARcast, the more these costs can be amortized.

An execution of OARcast requires 3 · (ni − 1) FIFO
messages. Since ni > 3t, the minimum number of FIFO
messages per OARcast is 9t. In order to further reduce
traffic, Nysiad also tries to combine messages for differ-
ent OARcasts—if two FIFO messages are sent at approx-
imately the same time between two different hosts, they
are combined in a manner similar to back-to-back mes-
sages in the TCP protocol.

6 Case Studies

While one cannot test if a system tolerates Byzantine
failures, it is possible to measure the overheads involved.
In this section we report on two case studies: a point-to-
point link-level routing protocol and a peer-to-peer mul-
ticast protocol. We applied Nysiad to each and ran the
result over a simulated network to measure network over-
heads and overheads caused by cryptographic operations.

For the point-to-point routing protocol we selected
Scalable Source Routing (SSR) [13]. SSR is inspired by
the Chord overlay routing protocol [26], but can be de-
ployed on top of the link layer. (SSR is similar to Virtual
Ring Routing [8], which applies the same idea to Pastry.)

The basic idea of SSR is simple. Each host ini-
tially knows its own (location-independent) identifier
and those of the neighbors it is directly connected to. The
SSR protocol organizes the hosts into a Chord-like ring
by having each host discover a source route to its succes-
sor and predecessor. This is done as follows. Initially a
host hi sends a message to its best guess at its succes-
sor. Should this tentative successor host know of a better
successor for hi, or discover one later, then the successor
host sends a source route for the better successor back to
hi. On receipt hi sends a message to its new best guess at
its successor, and so on. This protocol converges into the
desired ring and terminates. Once the ring is established
routing can be done in a Chord-like manner, whereby
a message travels around the ring, but taking shortcuts
whenever possible. In our simulations we measure the
ring-discovery protocol, not the routing itself.

The multicast protocol is even simpler. Here we as-
sume that the hosts are organized in a balanced binary
tree, and that each host forwards messages from its par-
ent to its children (if any). We call this protocol MCAST.
We measured the overhead of sending a message from
the root host to all hosts.

We considered two network graph configurations. In
the first, Tree, the network graph is a balanced binary
tree. In the second, Random, we placed hosts uniformly
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Figure 6: Message overhead factor (a) and public key signing and checking overheads (b) as a function of the number
of hosts for running SSR on a Random graph using k = 3 and various t.

at random on a square metric space, and connected each
host to its k closest peers.

We report on three configurations:

• SSR/Random The SSR protocol on top of a Ran-
dom graph;

• SSR/Tree The SSR protocol on a Tree graph;

• MCAST/Tree The MCAST protocol on a Tree
graph.

For the evaluation we developed a simple discrete time
event network simulator to evaluate message overheads.
The fidelity of the simulation was kept low in order
to scale the simulation experiments to interesting sizes.
While the simulator models network latency, we assume
bandwidth is infinite. The public key signature opera-
tions were replaced by simple hash functions. We focus
our evaluation on the failure-free “normal case” execu-
tions. We vary the number of hosts and t, and in the
case of the Random graph we also vary k, the (minimum)
number of neighbors of each host. In all experiments, the
credits window w was chosen to be 2.

By and large, the increase in latency is close to a fac-
tor of 3 for all experiments, independent of what param-
eters are chosen. (No graphs shown.) This amount of in-
crease was expected as the OARcast protocol consists of
three rounds of communication (see Section 5). This can
be decreased to two rounds by having the guards broad-
cast certificates directly to each other, but this results in a
message overhead that is quadratic in t rather than linear.

When measuring message overhead, we report on the
ratio between the number of FIFO messages sent in the

translated protocol and the number of FIFO messages
sent in the original protocol. We call this the message
overhead factor, and report the minimum, average, and
maximum over 10 executions. We ignore messages sent
on behalf of the gossip protocol that implement the Re-
lay property of OARcast. These messages do not require
additional cryptographic operations and contribute only
a small and constant load on the network.

For measuring CPU overhead, we report only the num-
ber of public key signing and checking operations per
message per guard. Such operations tend to dominate
protocol processing overheads. We found the variance
for these measurements to be low, the minimum and
maximum usually being within 1 operation from the av-
erage number of operations, and so we report only the
averages.

In the first set of experiments, we used the
SSR/Random configuration using a Random graph with
k = 3. In Figure 6(a) we show the message overhead
factor for t = 1, 2, 3. As we described in Section 5, an
OARcast to n guards uses at most 3n messages, and we
see that this explains the trends well. There is an increase
in overhead as we increase the number of hosts due to an
increase in the average number of guards per host and
reduced opportunity for aggregation as traffic becomes
less concentrated due to the larger graph. Small graphs
necessitate more sharing of guards, which reduces over-
head.

Figure 6(b) reports, per guard the average number of
public key sign and check operations per message in the
original system. Due to aggregation, the number of sign
operations message in the original system per guard is
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Figure 7: Message overhead (a) and public key signing and checking overheads (b) as a function of the number of
hosts for the SSR protocol on a Random graph using t = 2 and various k, the minimum number of neighbors per host.

always less than 1 and does not significantly depend on
t, as can be understood from Section 5. However, guards
have to check each other’s signatures and The number of
check operations per message per guard may exceed 3t
because a host may have more than 3t + 1 guards, and,
as stated above larger graphs tend to have more guards.
Nonetheless, these graphs should also reach an asymp-
tote.

Next, for the same SSR/Random configuration, we fix
t = 2 and range k from 3 to 6. We show the message
and public key signature overhead measurements in Fig-
ure 7. Even though t is fixed, an increase in the num-
ber of neighbors per host requires additional monitors,
and thus the average number of guards per host tends to
increase beyond the required 3t + 1, causing additional
message and CPU overhead. It is thus important for over-
head of translation and indeed for fault tolerance to con-
figure the original protocol to use as sparse a graph as
possible. This tends to increase the diameter of the com-
munication graph, and thus a suitable trade-off has to be
designed.

In the final experiments, we compare the three differ-
ent configurations for t = 1. For the Random graph we
chose k = 3. In the case of a Tree graph, the average
number of neighbors per host is approximately 2, internal
hosts having 3 neighbors, leaf hosts having 1 neighbor,
and the root host having 2 neighbors. We report results
in Figure 8.

MCAST suffers most message overhead. This is be-
cause there is no opportunity for message aggregation
in the experiment—each host receives only one message

(from its parent). However, when multiple messages
are streamed, the opportunity for message aggregation is
excellent—any backlog that builds up can be combined
and ordered using a single OARcast operation—and thus
throughput is not limited by this overhead. Even if mes-
sages cannot be aggregated, order certificates, attesta-
tions, and credits still can, and thus signature generation
and checking overheads are still good.

SSR performs significantly better on the Tree graph
than on the Random graph. Because communication op-
portunities are more limited in the Tree graph with fewer
neighbors to choose from, many messages can be aggre-
gated and ordered simultaneously. For such situations
the message overhead can indeed completely disappear.

Finally, note that if hardware multicast were available
the overhead of Nysiad could be significantly reduced
(from 9t point-to-point messages for an OARcast in the
best case to 3t point-to-point messages and 2 multicasts).

7 Discussion

Nysiad can generate a Byzantine-tolerant version of a
system that was designed to tolerate only crash failures.
This comes with significant overheads. When develop-
ing a Byzantine-tolerant file system, such overheads are
easily masked by the overhead of accessing the disk and
large data transfers. When applied to message routing
protocols where there is no disk overhead and payload
sizes are relatively small, overheads cannot be masked
as easily.
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Figure 8: Message overhead factor (a) and public key signing and checking overheads (b) as a function of the number
of hosts for various protocols and graphs using t = 1 and k = 3.

In practice, Nysiad may be used to generate a first
cut at a Byzantine-tolerant protocol or distributed sys-
tem, and then apply application-specific optimizations
that maintain correctness. For example, if it is possible
to distinguish the retransmission of a data packet from
the original transmission, then it may be possible for the
original transmission to be routed unguarded. Doing so
could potentially mask most overhead of Nysiad.

But even if such optimizations are not possible, some
applications may choose robustness over raw speed.
Byzantine fault tolerance can be a part of increasing se-
curity, but it does not solve all security problems. Nysiad
is not intended to defend against intrusion, but to tolerate
intrusions. Defense against intrusion involves authenti-
cation and authorization techniques, as well as intrusion
detection, and these are essential to guarantee that there
is sufficient diversity among guards and no more than a
small fraction are compromised. In the face of a lim-
ited number of successful intrusions Nysiad maintains
integrity and availability of a system, but it does not pro-
vide confidentiality of data. Worse still, the replication
of state complicates confidentiality. Hosts cannot trust
their guards for confidentiality, and confidential data has
to be encrypted in an end-to-end fashion.

Another possibility is to run some of the mechanisms
that Nysiad uses inside secured hosts that are more dif-
ficult to compromise than hosts “in the field.” Such se-
cured hosts may have reduced general functionality and
use their resources to guard a relatively large number of
state machines.

Nysiad makes strong assumptions about how many
hosts can fail using the threshold value t. But what hap-
pens if more than t guards of a host become Byzantine?
Now the host can in fact behave in a Byzantine fashion
and break the system. As a system becomes larger it be-
comes more likely that a host has more than t Byzantine
guards, and thus t should the chosen large enough to han-
dle the maximum system size. If N is the maximum sys-
tem size, then t should be chosen O(log N) in order to
keep the probability that any host in the system has more
than t Byzantine guards sufficiently low. As [17] demon-
strates, a value for t of 2 or 3 is probably sufficient for
most applications. It is also important that, as much as
possible, proofs of observed Byzantine behavior are sent
to the Olympus immediately so that faulty hosts can be
removed quickly [28].

Nysiad exploits diversity and is defenseless against de-
terministic bugs that either cause a host to make an incor-
rect state transition or allow an attacker to compromise
more than t host. The use of configuration wizards, high-
level languages, and bug-finding tools may help avoid
such problems. Similarly, Nysiad is helpless in the face
of link-level Denial-of-Service attacks. These should be
controlled by network-level anti-DoS techniques.

Nysiad in its current form uses the Olympus, a
logically centralized service, to handle configuration
changes. Because the Olympus is not invoked during
normal operation, the load on the Olympus is likely suf-
ficiently low for many practical applications. This archi-
tecture does not deal well with high churn, nor does the
translated protocol handle network partitions well: hosts
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that cannot communicate with the Olympus are excluded
from participating.

Finally, we have evaluated the use of Nysiad for sys-
tems where each host has a relatively small number of
neighbors with which it communicates actively. Figure 7
shows that overhead grows as a function of the number
of neighbors. In systems where hosts have many active
neighbors the overhead of the Nysiad protocols could
be substantial. We are considering a variant of Nysiad
where not all neighbors of a host are guards in order to
contain overhead.

8 Conclusion

Nysiad is a general technique for developing scalable
Byzantine-tolerant systems and protocols in an asyn-
chronous environment that does not require consensus to
be solved. Starting with a system tolerant of crash fail-
ures only, Nysiad assigns a set of guards to each host that
verify the output of the host and constrain the order in
which the host handles its inputs. A logically centralized
service assigns guards to hosts in response to churn in
the communication graph. Simulation results show that
Nysiad may be practical for a large class of distributed
systems.
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