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Diffie-Hellman key exchange

I Let S be a set (e.g. Fp or E (Fp)).

I Let G be a group (e.g. Z) that acts on S as

G × S −→ S
(a, x) 7→ a ∗ x
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I Let S be a set (e.g. Fp or E (Fp)).
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G × S −→ S
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a
a∗(b∗x)

x

a∗x
−→
b∗x
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b
b∗(a∗x)

I k = a∗(b∗x) = b∗(a∗x)

I Finding a or b given x , a∗x , and b∗x should be hard!
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Quantum-hard Diffie-Hellman

I Classical Diffie-Hellman: S = Fp and G = Z with (a, x) 7→ xa

is not hard enough with a quantum computer.

I Elliptic Curve Diffie-Hellman: S = E (Fp) and G = Z with
(n,P) 7→ nP is not hard enough with a quantum computer.

I Supersingular Isogeny Diffie-Hellman has a chance of being
quantum secure! What is it?

Definition
Let q be a prime power such that 2, 3 6 |q. We define an elliptic
curve over Fq to be a curve of the form

y2 = x3 + ax + b,

where a and b are elements of Fq and 4a3 + 27b2 6= 0.
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Elliptic Curves

Definition
Let q be a prime power such that 2, 3 6 |q. We define an elliptic
curve over Fq to be a curve of the form

y2 = x3 + ax + b,

where a and b are elements of Fq and 4a3 + 27b2 6= 0.

Definition
The j -invariant of an elliptic curve E : y2 = x3 + ax + b is given by

j(E ) = 1728
4a3

4a3 + 27b2
.

This defines E up to Fq-isomorphism.



Elliptic Curves

The j -invariant of an elliptic curve E : y2 = x3 + ax + b is given by

j(E ) = 1728
4a3

4a3 + 27b2
.

Example

Define
E/F11 : y2 = x3 + x + 1.

Then j(E ) = 1728 4
31 ≡ 9. Try the isomorphism (x , y) 7→ (4x , 8y):

(8y)2 = (4x)3 + 4x + 1.

Divide by 64:
E ′/F11 : y2 = x3 + 9x + 5.

j(E ′) = 1728
4 · 93

4 · 93 + 27 · 52
≡ 9.



Back to Diffie-Hellman

I Let S be a set (e.g. Fp or E (Fp)).

I Let G be a group (e.g. Z) that acts on S as

G × S −→ S
(a, x) 7→ a ∗ x

a
a∗(b∗x)

x

a∗x
−→
b∗x
←−

b
b∗(a∗x)



Back to Diffie-Hellman

I Let S = {j(E1), . . . , j(En)} be the set of j-invariants of elliptic
curves over Fq.

I We need a group G that acts on S as

G × S −→ S
(a, j(E )) 7→ a ∗ j(E )

Definition
An isogeny of elliptic curves over Fq is a non-zero morphism
E → E ′ that preserves the identity. It is given by rational maps.



Understanding isogenies I: the group law on elliptic curves

I For any field k (e.g. Fp or Q), the k-rational points of E form
a group E (k).
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Understanding isogenies II: examples

An isogeny of elliptic curves over Fq is a non-zero morphism
E → E ′ that preserves the identity. It is given by rational maps.
(A morphism is a map of curves that preserves the group law).

y2 = x3 + 1	



y2 = x3 − 15x + 22 	



y2 = x3 − 27	



3:1

2:1



Understanding isogenies II: examples

I The top isogeny is

(x , y) 7→ ((x3+4)/x2, (x3y−8y)/x3).

I Define the curves over F17. Then it
is ‘3:1’ (and surjective), so for every
F17-point on the green curve there
are 3 F17-points on the blue curve
which map to it.

I Exercise: which 3 points on the blue
curve map to (3,0)?

I Sanity check: j(E ) = 0, j(E ) = 1,
j(E ) = 0. Exercise: check that E
and E are isomorphic over F172 but
not over F17.

y2 = x3 + 1	



y2 = x3 − 15x + 22 	



y2 = x3 − 27	



3:1

2:1



Understanding isogenies III: useful facts

I If a (separable) isogeny ϕ has kernel of size ` (so ϕ is ` : 1)
the degree of ϕ is `.

I Write
[`] : E −→ E

P 7→ `P

for the multiplication-by-` map on E .

I For every isogeny ϕ : E → E ′, of degree n, there exists a dual
isogeny ϕ∨ : E ′ → E of degree ` such that ϕ∨ ◦ ϕ = [`]. That
is, for every P ∈ E (Fp),

ϕ∨(ϕ(P)) = `P.

I For P ∈ E (Fq), if ϕ(P) =∞, then `P =∞, so

ker(ϕ) ⊆ ker([`]) =: E [`].



Understanding isogenies IV: counting the possibilities

Remember: if ϕ : E → E ′ is a separable
isogeny and # ker(ϕ) = `, then ker(ϕ) ⊆ E [`].

Theorem
For every subgroup H ⊂ E [`], there exists an
elliptic curve E ′ and a separable isogeny
ϕ : E → E ′ with ker(ϕ) = H.

Theorem
For E/Fq an elliptic curve, if ` is a prime and
` 6= p, then

E [`] ∼= Z/`Z× Z/`Z.

Exercise: Show that there are `+ 1 subgroups of Z/`Z× Z/`Z of
size `.
Warning! Not every degree ` isogeny will be defined over Fq. (It
could be over Fq2 , Fq3 ,. . .)



Back to Diffie-Hellman

I Remember: every size ` subgroup of E [`] ∼= Z/`Z× Z/`Z
gives a unique (up to isomorphism) elliptic curve E ′/Fq and a
unique separable degree-` isogeny ϕ : E → E ′.

I Let P ∈ E [`] be order ` (so P 6=∞). Then 〈P〉 is a size `
subgroup of E [`]. Define EP and ϕP to be the unique elliptic
curve and degree `-isogeny given by 〈P〉.

I Let S = {j(E1), . . . , j(En)} be the set of j-invariants of elliptic
curves over Fq.

I We need a group G that acts on S as

G × S −→ S
(a, j(E )) 7→ a ∗ j(E )
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unique separable degree-` isogeny ϕ : E → E ′.

I Let P ∈ E [`] be order ` (so P 6=∞). Then 〈P〉 is a size `
subgroup of E [`]. Define EP and ϕP to be the unique elliptic
curve and degree `-isogeny given by 〈P〉.

I Let S = {j(E1), . . . , j(En)} be the set of j-invariants of elliptic
curves over Fq.

I Z/`Z× Z/`Z acts on S as

(Z/`Z× Z/`Z)× S −→ S
(P, j(E )) 7→ j(EP).



What about Alice and Bob?

Remember: The subgroup of E [`] generated by an order ` point
P ∈ E [`] defines a unique (up to isomorphism) elliptic curve E/Fq

and degree ` isogeny ϕ : E → E .

m, n ∈ Z/`Z
R = mPA + nQA

ϕ : E → E

E/Fq, PA,QA ∈ E [`],
PB ,QB ∈ E [`]

E , ϕ(PB), ϕ(QB)
−→

E , ϕ(PA), ϕ(QA)
←−

m, n ∈ Z/`Z
R = mPB + nQB

ϕ : E → E

mϕ(PA) + nϕ(QA) = ϕ(R)

=: R

ϕ : E → E

mϕ(PB) + nϕ(QB) = ϕ(R)

=: R

ϕ : E → E

Exercise: prove that j(E ) = j(E ). This is the shared private key!



How hard is this?

Remember: The subgroup of E [`] generated by an order ` point
P ∈ E [`] defines a unique (up to isomorphism) elliptic curve E/Fq

and degree ` isogeny ϕ : E → E .

m, n ∈ Z/`Z
R = mPA + nQA

ϕ : E → E

E/Fq, PA,QA ∈ E [`],
PB ,QB ∈ E [`]

E , ϕ(PB), ϕ(QB)
−→

E , ϕ(PA), ϕ(QA)
←−

m, n ∈ Z/`Z
R = mPB + nQB

ϕ : E → E

I It should be hard to find ϕ given E , ϕ(PB), ϕ(QB).

I Remember that there are at most `+ 1 possible isogenies of
degree `.

I How do we increase the possibilities?



Composing isogenies

(This slide has been edited following a comment in the lecture).
Remember: The subgroup of E [`] generated by an order ` point
P ∈ E [`] defines a unique (up to isomorphism) elliptic curve E and
degree ` isogeny ϕ : E → EP .

m1, . . . ,mr , n1, . . . , nr ∈ Z/`Z, PA,QA ∈ E [`r ]
R1 = m1PA + n1QA

ϕR1 : E → ER1

R2 = m2ϕR1(PA) + n2ϕR1(QA)
ϕR2 : ER1 → ER2 ...

(E ,R1)

ϕA

))

ϕR1

// (ER1 ,R2)ϕR2

// · · · ϕRr−1

// (ERr ,Rr )

I There are up to (`+ 1)r possibilities for ϕA!



Understanding isogenies V: isogeny graphs

Remember:

I From every elliptic curve E/Fq there are `+ 1 possible degree
` isogenies, but some of them might only be defined over Fq2 ,
Fq3 ,...

I For every degree `-isogeny ϕ : E → E ′ there exists a unique
degree `-isogeny (called the dual) ϕ∨ : E ′ → E such that
ϕ∨ ◦ ϕ = [`].

Definition
An isogeny graph is a graph where a vertex represents the
j-invariant of an elliptic curve over Fq and an undirected edge
represents a degree ` isogeny defined over Fq and its dual.



Understanding isogenies V: isogeny graphs

p = q = 1000003, ` = 2, graph
contains j(E ) = −3:

1

p = 431, q = 4312, ` = 2, graph
contains j(E ) = 0:

6/19/2017 isog_431.png (2083×1928)

https://yx7.cc/tmp/isog_431.png 1/1



Supersingular curves

I Remember: for a prime ` 6= p, the `-torsion of E/Fq is

{P ∈ E (Fq) : `P =∞} ∼= Z/`Z× Z/`Z.

I The q-torsion of E is either

(a) E [q] ∼= Z/qZ - ‘E is ordinary’, or
(b) E [q] = {∞} - ‘E is supersingular’

I Theorem: every supersingular elliptic curve E/Fq is defined
over Fp2 .

I If p2|q then all of the `+ 1 degree ` isogenies from a
supersingular elliptic curve E/Fq are defined over Fq!

I Theorem: the degree ` isogeny graph with vertices given by
the supersingular j-invariants over Fq with p2|q is connected,
and away from j = 0 and 1728, regular of degree `+ 1. If
p ≡ 1 mod 12, the graph is Ramanujan.



Ramanujan graphs

p = 109, q = 1092, ` = 2

I If Γ is a Ramanujan graph, Σ is a subset of Γ, and V is a
vertex in Γ, then a ‘long enough’ random walk from V will
land in Σ with probability at least |Σ|/2|Γ|.



Random walking on isogeny graphs
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Alice and Bob do SIDH

Remember: The subgroup of E [`r ] generated by an order `r point
P ∈ E [`r ] defines a unique (up to isomorphism) elliptic curve E/Fq

and degree `r isogeny ϕ : E → E .

m, n ∈ Z/`rZ
R = mPA + nQA

ϕ : E → E

E/Fq supersingular,
PA,QA ∈ E [`r ],
PB ,QB ∈ E [`r ]

E , ϕ(PB), ϕ(QB)
−→

E , ϕ(PA), ϕ(QA)
←−

m, n ∈ Z/`rZ
R = mPB + nQB

ϕ : E → E

mϕ(PA) + nϕ(QA) = ϕ(R)

=: R

ϕ : E → E
j(E ) = j(E )

mϕ(PB) + nϕ(QB) = ϕ(R)

=: R

ϕ : E → E



Recap of terms

I An elliptic curve over Fq with 2, 3 6 |q is given by an equation

y2 = x3 + ax + b

with a, b ∈ Fq and 4a3 + 27b2 6= 0.

I There is a group law on elliptic curves where the identity
element is called ∞.

I Fq is the algebraic closure of Fq - this contains all the
solutions to every polynomial with coefficients in Fq.

I For n ∈ Z, the n-torsion E [n] of E is given by

E [n] = {P ∈ E (Fq) : nP =∞}.

I An elliptic curve over Fq is supersingular if

E [q] ∼= {∞}.



Recap of terms

I An isogeny of elliptic curves is a map that preserves the
geometric structure, the group law (+) and the identity (∞).

I The degree of a separable isogeny ϕ is the size of the kernel,
that is,

deg(ϕ) = #{P ∈ E (Fp) : ϕ(P) =∞}.



Recap of ideas

I We can think of the setup of classical Diffie-Hellman as a
group G (e.g. Z or F∗p) acting on a set S (e.g. Fp) as

G × S −→ S
(a, x) 7→ a ∗ x := xa.

I We extend the classical Diffie-Hellman idea by using the set

S = {j(E ) : E/Fp2 , E supersingular elliptic curve},

and the group G acts on S by isogenies of degree `r .

I The supersingular isogeny Diffie-Hellman is ‘hard enough’
because there are many choices for each isogeny, and the
choice is random.

I We analyse the randomness of the choice using isogeny graphs



Recap of supersingular isogeny graphs

Recall:

I A vertex of a supersingular isogeny graph is the j-invariant
(isomorphism invariant) of a supersingular elliptic curve.

I An edge of a degree ` isogeny graph is a pair of degree `
isogenies ϕ : E → E ′ and ϕ∨ : E ′ → E such that for
P ∈ E (Fq), ϕ∨(ϕ(P)) = `P.

I Every vertex in a supersingular isogeny graph has `+ 1 edges
from it.

I A random walk on the graph will give a random vertex after
enough steps.

I A path of lenth r represents an isogeny given by the
composition of r degree ` isogenies.



Bob takes a random walk

1

I Bob starts with the public
elliptic curve E

I Bob decides he will walk 4
steps

I Bob publishes
PB ,QB ∈ E [24] (because
` = 2)

I Bob chooses random
m1, n1 ∈ Z/2Z (because
` = 2)

I Bob computes a secret point
R1 = m1PB + n1QB on E



Bob takes a random walk

1

I Compute the elliptic curve
ER1 and degree 2 isogeny

E → ER1

corresponding to R1

I Compute points
P1 = ϕR1(PB) and
Q1 = ϕR1(QB) on ER1 .



Bob takes a random walk

1

I Compute the elliptic curve
ER1 and degree 2 isogeny

E → ER1

corresponding to R1

I Compute points
P1 = ϕR1(PB) and
Q1 = ϕR1(QB) on ER1 .



Bob takes a random walk

1

I Bob is now standing at
supersingular elliptic curve
ER1

I Choose random
m2, n2 ∈ Z/2Z (because
` = 2)

I Compute secret point
R2 = m2P1 + n2Q1 on ER1



Bob takes a random walk

1

I Compute the elliptic curve
ER2 and degree 2 isogeny

ER1 → ER2

corresponding to R2

I Compute points
P2 = ϕR2(P1) and
Q2 = ϕR2(Q1) on ER2 .



Bob takes a random walk

1

I Bob is now standing at
supersingular elliptic curve
ER2

I Choose random
m3, n3 ∈ Z/2Z (because
` = 2)

I Compute secret point
R3 = m3P2 + n3Q2 on ER2



Bob takes a random walk

1

I Compute the elliptic curve
ER3 and degree 2 isogeny

ER2 → ER3

corresponding to R3

I Compute points
P3 = ϕR3(P2) and
Q3 = ϕR3(Q2) on ER3 .



Bob takes a random walk

1

I Bob is now standing at
supersingular elliptic curve
ER3

I Choose random
m4, n4 ∈ Z/2Z (because
` = 2)

I Compute secret point
R4 = m4P3 + n4Q3 on ER3



Bob takes a random walk

1

I Compute the elliptic curve
ER4 and degree 2 isogeny

ER3 → ER4

corresponding to R4

I You have reached you
destination! (Remember
that Bob chose to walk 4
steps).



Bob takes a random walk

1

I Compute

ϕB := ϕR4 ◦ ϕR3 ◦ ϕR2 ◦ ϕR1

so that

ϕB : E −→ ER4 .

I Look up Alice’s public points
PA and QA and send her

ϕB(PA) and ϕB(QA).



Alice and Bob do SIDH

Remember: The subgroup of E [`r ] generated by an order `r point
P ∈ E [`r ] defines a unique (up to isomorphism) elliptic curve E/Fq

and degree `r isogeny ϕ : E → E .

m, n ∈ Z/`rZ
R = mPA + nQA

ϕ : E → E

E/Fq supersingular,
PA,QA ∈ E [`r ],
PB ,QB ∈ E [`r ]

E , ϕ(PB), ϕ(QB)
−→

E , ϕ(PA), ϕ(QA)
←−

m, n ∈ Z/`rZ
R = mPB + nQB

ϕ : E → E

mϕ(PA) + nϕ(QA) = ϕ(R)

=: R

ϕ : E → E
j(E ) = j(E )

mϕ(PB) + nϕ(QB) = ϕ(R)

=: R

ϕ : E → E



Bonus: how random is SIDH?

m, n ∈ Z/`rZ

R = mPB + nQB

ϕ : E → E .

Remember:

ker(ϕ) = {P ∈ E (Fq) : ϕ(P) =∞}
= 〈R〉
∼= Z/`rZ.

I A truly random isogeny from a random path in a supersingular
isogeny graph

ϕB = ϕR1 ◦ ϕR2 ◦ · · · ◦ ϕRr

will have # ker(ϕB) = `r but maybe not ∼= Z/`rZ!

I Exercise: which other situations are there?



Computing random paths in isogeny graphs

Remember: Each size ` subgroup of E [`] defines a unique (up to
isomorphism) degree ` isogeny from E .

I Vélu’s algorithm: given a size ` subgroup H of E [`], computes
the isogeny and the elliptic curve corresponding to H.

I Can compute a random path of length r by choosing a
random size ` subgroup at each step and using Vélu r times
to find ϕR1 , ϕR2 , . . ., ϕRr . (Like ‘Bob goes for a walk’).

I More efficient (but maybe less secure): choose a random
subgroup of E [`r ] that is isomorphic to Z/`rZ and use Vélu
once to compute ϕB . (Like ‘Alice and Bob do SIDH’).



Computing random paths in isogeny graphs

I Alternative to Vélu’s algorithm: use modular polynomials

Definition
The modular polynomial of level ` is a symmetric polynomial
Φ`(X ,Y ) ∈ Z[X ,Y ] of degree `+ 1 in both X and Y such that for
all (non-`) prime powers q there exists a degree ` isogeny E → E ′

if and only if Φ`(X ,Y ) ∈ Fq[X ,Y ] satisfies Φ`(j(E ), j(E ′)) = 0.

I Neighbours of j(E ) in the `-isogeny graph are the roots of
Φ`(j(E ),Y ).

I Elkie’s has an algorithm to compute the isogeny E → E ′ and
its kernel (if they exist) given j(E ) and j(E ′).

I Compute a random path of length r in a degree `
supersingular isogeny graph starting at E using Φ`(X ,Y ).



Finding a random curve with modular polynomials
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Finding a random curve with modular polynomials

1

Edit: walking back is allowed in a random walk, but is not allowed
in the SIDH protocol as this will give a final isogeny with
non-cyclic kernel.
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Finding a random curve with modular polynomials

1



Attacks on SIDH: Galbraith et. al. 2016

1. Attack in the case that Alice and Bob do not change their
private keys mA, nA ∈ Z/`AZ and mB , nB ∈ Z/`BZ.

I This attack recovers the full private key in O(r) steps.
I The only known validation methods that prevent this are very

costly.

2. Number theoretic attack in time log(
√

q) (currently unfeasible
due to lack of theory).

I Relies on an efficient algorithm to compute ’endomorphism
rings’.

3. Full break if the shared secret is partially leaked. (Edit: if you
are watching the video, there was a comment from the
audience saying that this is too generous, but following further
discussion we concluded that it does in fact give a full break).



Potential attack on SIDH: Petit June 2017

I Constructs variations of SIDH which can be broken by
exploiting φA(PB) and φA(PB).

I Does not (yet) apply to the current version of SIDH.



Where are we now with SIDH?

I Detailed cryptoanalysis needed to assess security

I Assuming the system is chosen to be secure against known
attacks, best classical algorithm to find shared secret (based
on finding an isogeny between 2 curves) is O(p1/4) for elliptic
curves over Fp2

I Best quantum attack is O(p1/6)

I Galbraith has an attack exploiting reused secret key pairs (m
and n)

I Christophe Petit studies how to exploit the additional points
ϕ(PA), ϕ(PB) - but his methods do not (yet) give an attack
on SIDH

I · · ·



SIDH vs. Lattice based crypto

Name Primitive Time (ms) PK size (bytes)
Frodo LWE 2.600 11,300

NewHope R-LWE 0.310 1,792

NTRU NTRU 2.429 1,024

SIDH Supersingular 900 564
Isogeny

These are non-optimised timings!
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