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Diffie-Hellman key exchange

> Let S be a set (e.g. Fp or E(F)p)).
» Let G be a group (e.g. Z) that actson S as

GxS — S
(a,x) +— axx



Diffie-Hellman key exchange

> Let S be aset (e.g. I, or E(F})).
» Let G be a group (e.g. Z) that acts on I, as

ZxF, — F,
(a,x) = x?



Diffie-Hellman key exchange

> Let S be aset (e.g. Fpor E(F),)).
» Let G be a group (e.g. Z) that acts on E(F,) as

Zx E(F,) — E(Fp)
(n, P) > nP



Diffie-Hellman key exchange

> Let S be a set (e.g. Fp, or E(F))).
» Let G be a group (e.g. Z) that actson S as

GxS — S
(a,x) +— axx

X
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a bxx
ax(bxx) -

> k = ax(bxx) = bx(axx)



Diffie-Hellman key exchange

> Let S be a set (e.g. Fp, or E(F))).
» Let G be a group (e.g. Z) that actson S as

GxS — S
(a,x) +— axx

X
axx

W N .
? bxx bx(a*x)
ax(bxx) -

> k = ax(bxx) = bx(axx)

» Finding a or b given x, axx, and bxx should be hard!



Quantum-hard Diffie-Hellman

» Classical Diffie-Hellman: S =F, and G = Z with (a, x) — x?
is not hard enough with a quantum computer.

» Elliptic Curve Diffie-Hellman: S = E(F,) and G = Z with
(n, P) — nP is not hard enough with a quantum computer.

» Supersingular Isogeny Diffie-Hellman has a chance of being
quantum secure! What is it?

Definition
Let g be a prime power such that 2,3 fg. We define an elliptic
curve over Fg to be a curve of the form

y? =x3 4 ax + b,

where a and b are elements of ¥, and 433 +27b° £ 0.



Elliptic Curves

Definition
Let g be a prime power such that 2,3 fgq. We define an elliptic
curve over g to be a curve of the form

y2=x3+ax+b,

where a and b are elements of F, and 4a% + 27b% # 0.



Elliptic Curves

Definition
Let g be a prime power such that 2,3 fq. We define an elliptic
curve over Fg to be a curve of the form

y? =x3 4 ax + b,

where a and b are elements of F, and 4a% + 27b% # 0.

Definition
The j-invariant of an elliptic curve E : y?> = x3 + ax + b is given by
433
(E) =1728————.
J(E) 42% 1 27h2

This defines E up to F g-isomorphism.



Elliptic Curves
The j-invariant of an elliptic curve E : y?> = x3 4 ax + b is given by

433

(E) = 1728— 2
J(E) 847 1 27h2

Example

Define
E/F11:y> =x3+x+1.

Then j(E) = 1728%1 = 9. Try the isomorphism (x, y) — (4x,8y):
(8y)? = (4x)3 + 4x + 1.

Divide by 64:
E'/Fq; : y? =x349x +5.

(E') = 1728—4’93 =9
N = e s o7 52 =



Back to Diffie-Hellman

> Let S be a set (e.g. Fp or E(F)p)).
» Let G be a group (e.g. Z) that actson S as

GxS — S
(a,x) +— ax*xx

X
axx

_) b

a bkx
ax(bxx) o b (axx)




Back to Diffie-Hellman

> Let S = {j(E1),...,j(E,)} be the set of j-invariants of elliptic

curves over Fg.

» We need a group G that actson S as

GxS — S
(a,J(E)) = axj(E)

Definition
An isogeny of elliptic curves over [F is a non-zero morphism
E — E’ that preserves the identity. It is given by rational maps.



Understanding isogenies |: the group law on elliptic curves

> For any field k (e.g. Fp or Q), the k-rational points of E form
a group E(k).
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Understanding isogenies |: the group law on elliptic curves

> For any field k (e.g. Fp or Q), the k-rational points of E form
a group E(k).




Understanding isogenies |l: examples

An isogeny of elliptic curves over [F; is a non-zero morphism
E — E’ that preserves the identity. It is given by rational maps.
(A morphism is a map of curves that preserves the group law).

yr=x*-27

\ y=x -15x+22



Understanding isogenies |l: examples

v

The top isogeny is
(x,y) = ((C+4) /X2, (x°y =8y) /x%).

» Define the curves over F17. Then it
is ‘3:1" (and surjective), so for every
F17-point on the green curve there
are 3 [F17-points on the blue curve
which map to it.

» Exercise: which 3 points on the blue
curve map to (3,0)?

» Sanity check: j(E) =0, j(E) =1,
J(E) = 0. Exercise: check that E
and E are isomorphic over 72 but
not over Fq7.



Understanding isogenies IlI: useful facts

» If a (separable) isogeny ¢ has kernel of size £ (so ¢ is £ : 1)
the degree of ¢ is £.

» Write
[]: E — E
P — (P
for the multiplication-by-¢ map on E.

» For every isogeny ¢ : E — E’, of degree n, there exists a dual
isogeny " : E' — E of degree { such that ¢ o p = [{]. That
is, for every P € E(F)),

' (p(P)) = LP.
» For P € E(Fy), if p(P) = oo, then {P = o, so

ker(y) C ker([€]) =: E[].



Understanding isogenies IV: counting the possibilities

Remember: if o : E — E’ is a separable
isogeny and # ker(¢) = ¢, then ker(yp) C E[/].

Theorem

For every subgroup H C E[{], there exists an
elliptic curve E' and a separable isogeny

¢ E — E" with ker(¢) = H.

Theorem
For E/IFq an elliptic curve, if £ is a prime and
£ # p, then

E[] = Z/¢Z x 7).

Exercise: Show that there are ¢ + 1 subgroups of Z/{Z x Z/{Z of
size £.

Warning! Not every degree ¢ isogeny will be defined over Fy. (It
could be over F 2, F3,...)



Back to Diffie-Hellman

» Remember: every size ¢ subgroup of E[¢]| = Z/{Z x Z/VZ
gives a unique (up to isomorphism) elliptic curve E’/F, and a
unique separable degree-¢ isogeny ¢ : E — E’.

> Let P € E[/] be order ¢ (so P # o). Then (P) is a size ¢
subgroup of E[{]. Define Ep and ¢p to be the unique elliptic
curve and degree (-isogeny given by (P).

» Let S = {j(E1),...,j(E,)} be the set of j-invariants of elliptic

curves over [Fg.

> We need a group G that actson S as

GxS — S
(a,J(E)) = axj(E)



Back to Diffie-Hellman

» Remember: every size ¢ subgroup of E[¢]| = Z/{Z x Z/VZ
gives a unique (up to isomorphism) elliptic curve E’/F, and a
unique separable degree-¢ isogeny ¢ : E — E’.

> Let P € E[/] be order ¢ (so P # o). Then (P) is a size ¢
subgroup of E[{]. Define Ep and ¢p to be the unique elliptic
curve and degree (-isogeny given by (P).

> Let S = {j(E1),...,j(E,)} be the set of j-invariants of elliptic

curves over [Fg.
> ZLJVZ X ZJVZ actson S as

(Z)0Z x ZJ0Z) x S — S
(P,J(E)) —  J(Ep).



What about Alice and Bob?
Remember: The subgroup of E[/] generated by an order ¢ point

P € E[/] defines a unique (up to isomorphism) elliptic curve E/Fq
and degree ¢ isogeny ¢ : E — E.

@ E/Fq, Pa,Qa € E[{],
@ Pg, Qs € E[/]

mn € 70T E, ¢(Ps), ¢(Qs) m,n € Z!Z
R = mPa+ nQa — R =mPg + nQp
0:E—E E, ©(Pa), ©(Qa) 0 E—E
%
mp(Pa) + np(Qa) = ¢(R) mp(Pg) + np(Qp) = ¢(R)
E— E—

Exercise: prove that j(£) = j(E). This is the shared private key!



How hard is this?

Remember: The subgroup of E[{] generated by an order ¢ point
P € E[{] defines a unique (up to isomorphism) elliptic curve E/F,
and degree ( isogeny ¢ : E — E.

§ E/Fq, Pa, Qa € E[{],
e Ps. Qg € E[/]
m,n € Z/IZ E, »(Pg). v(QB) m,n € L/UZ
R = mPa+ nQa — R = mPg + nQp
0:E—E E, o(Pa), ©(Qa) p:E—E
—

» It should be hard to find ¢ given E, ©(Pg), »(Qg).

» Remember that there are at most ¢ + 1 possible isogenies of
degree /.

» How do we increase the possibilities?



Composing isogenies

(This slide has been edited following a comment in the lecture).
Remember: The subgroup of E[/] generated by an order ¢ point

P € E[{] defines a unique (up to isomorphism) elliptic curve E and
degree ¢ isogeny ¢ : E — Ep.

mi,...,mpni,...,n € Z/UZ, Pa,Qa € E[¢']
Ry = m1Pa+ n1Qa
Ry * E— ER1
Ry = mapr,(Pa) + n2¢r,(Qa)
R, : ER1 — ERQ...

PA
(E Rl) (ERpR )W ?er(lERraRr)

» There are up to (¢ + 1)" possibilities for 4!



Understanding isogenies V: isogeny graphs

Remember:

» From every elliptic curve E/F, there are £ + 1 possible degree
¢ isogenies, but some of them might only be defined over .,

Fes,..

» For every degree f-isogeny ¢ : E — E’ there exists a unique
degree (-isogeny (called the dual) ¢V : E' — E such that

@ op =1
Definition
An isogeny graph is a graph where a vertex represents the

J-invariant of an elliptic curve over g and an undirected edge
represents a degree ¢ isogeny defined over [F; and its dual.



Understanding isogenies V: isogeny graphs

p =431, g = 4312, ¢ = 2, graph

= q = 1000003, ¢ = 2, graph
S grap contains j(E) = 0:

contains j(E) = —3:



Supersingular curves

v

Remember: for a prime ¢ # p, the (-torsion of E/Fg is
{Pc E(F, q) 1 {P =00} 2 Z/UL x L/VL.

The g-torsion of E is either

(a) E[q] =2Z/qZ - 'E is ordinary’, or

(b) E[g] = {oc} - 'E is supersingular’

Theorem: every supersingular elliptic curve E/E is defined
over F 2

If p?|q then all of the ¢ + 1 degree £ isogenies from a
supersingular elliptic curve E/F, are defined over !

Theorem: the degree ¢ isogeny graph with vertices given by
the supersingular j-invariants over Fq with p?|q is connected,
and away from j = 0 and 1728, regular of degree ¢+ 1. If

p =1 mod 12, the graph is Ramanujan.



Ramanujan graphs

p =109, g =109% ¢ =2

» If [ is a Ramanujan graph, ¥ is a subset of ', and V is a
vertex in [, then a ‘long enough’ random walk from V will
land in ¥ with probability at least |X|/2]|T]|.



Random walking on isogeny graphs

2, graph contains j(E) = 0:

4312, ¢

431, q

p:
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Random walking on isogeny graphs

2, graph contains j(E) = 0:

4312, ¢

431, q

p:




Alice and Bob do SIDH

Remember: The subgroup of E[¢"] generated by an order ¢" point
P € E[¢"] defines a unique (up to isomorphism) elliptic curve E /F
and degree ¢ isogeny ¢ : E — E.

E/IFq supersingular,

& Pa, Qa € E[("],
[ Fo. Qs < 1) &)

%

m, n G‘Z/WZ E (P m,n € Z/lU"Z
R =mPs+ nQa 2 B_)'>SO(QB) R:f.ngs +£QB
p:E—E E, ¢(Pa), 2(Qu) e
<_
mo(Pa) + np(Qa) = ¢(R) me(Pg) + np(Qe) = ¢(R)
- J(E) = J(E) -

E— E—



Recap of terms

> An elliptic curve over Fq with 2,3 [q is given by an equation
yv2=x3+ax+b

with a, b € F, and 4a3 + 27b% # 0.

» There is a group law on elliptic curves where the identity
element is called oco.

» [y is the algebraic closure of F - this contains all the
solutions to every polynomial with coefficients in .

» For n € Z, the n-torsion E[n] of E is given by
E[n] = {P € E(Fq) : nP = oo}
> An elliptic curve over Fq is supersingular if

Elq] = {=0}.



Recap of terms

> An isogeny of elliptic curves is a map that preserves the
geometric structure, the group law (+) and the identity (oc0).

> The degree of a separable isogeny ¢ is the size of the kernel,
that is,

deg() = #{P € E(F,) : ¢(P) = oo}.



Recap

of ideas

We can think of the setup of classical Diffie-Hellman as a
group G (e.g. Z or F}) acting on a set S (e.g. Fp) as

GxS — S
(a,x) — axx:=x".
We extend the classical Diffie-Hellman idea by using the set
S ={j(E): E/F 2, E supersingular elliptic curve},

and the group G acts on S by isogenies of degree ¢".

The supersingular isogeny Diffie-Hellman is ‘hard enough’
because there are many choices for each isogeny, and the
choice is random.

We analyse the randomness of the choice using isogeny graphs



Recap of supersingular isogeny graphs

Recall:
> A vertex of a supersingular isogeny graph is the j-invariant
(isomorphism invariant) of a supersingular elliptic curve.

> An edge of a degree ¢ isogeny graph is a pair of degree ¢
isogenies ¢ : E — E’ and ¢ : E/ — E such that for
P € E(Fq), ¢¥(o(P)) = (P.

» Every vertex in a supersingular isogeny graph has ¢ + 1 edges
from it.

» A random walk on the graph will give a random vertex after
enough steps.

» A path of lenth r represents an isogeny given by the
composition of r degree ¢ isogenies.



Bob takes a random walk

» Bob starts with the public
elliptic curve E

» Bob decides he will walk 4
steps

» Bob publishes
Pg, Qg € E[2%] (because
0=2)

» Bob chooses random
my,m € Z/27 (because
0=2)

» Bob computes a secret point
Ri =mPg+mQgonE




Bob takes a random walk

» Compute the elliptic curve
Er, and degree 2 isogeny

E—>E,l:\>1

corresponding to R;




Bob takes a random walk

» Compute the elliptic curve
Er, and degree 2 isogeny

E—>E,l:\>1

corresponding to R;

» Compute points
Pl = SORl(PB) and
Q1 = vr,(QB) on Eg,.




Bob takes a random walk

» Bob is now standing at
supersingular elliptic curve
Er,

» Choose random
mo, ny € /27 (because
0=2)

» Compute secret point
Ro = maP1 + na@p on ER1




Bob takes a random walk

» Compute the elliptic curve
Er, and degree 2 isogeny

ER1 — ER2

corresponding to R»
» Compute points
P2 = QOR2(P1) and
Q2 = pr,(@1) on Eg,.




Bob takes a random walk

» Bob is now standing at
supersingular elliptic curve
Er,

» Choose random
ms3, n3 € /27 (because
0=2)

» Compute secret point
R3 = m3P> 4 n3 Q2 on Ep,




Bob takes a random walk

» Compute the elliptic curve
Er, and degree 2 isogeny

ER2 — ER3

corresponding to R

» Compute points
P3 = QOR3(P2) and
Q= (PR3(Q2) on ER3'




Bob takes a random walk

» Bob is now standing at
supersingular elliptic curve
Er,

» Choose random
ma, na € 7/27 (because
0=2)

» Compute secret point
Ry = mgP3 + ny Q3 on Epg,




Bob takes a random walk

» Compute the elliptic curve
Er, and degree 2 isogeny

ER3 — ER4

corresponding to Ry

> You have reached you
destination! (Remember
that Bob chose to walk 4
steps).




Bob takes a random walk

» Compute
©B = PR, © PR; O PR, © PR
so that
¢ : E — Ep,.

» Look up Alice's public points
P, and @4 and send her

©B(Pa) and ¢p(Qa).



Alice and Bob do SIDH

Remember: The subgroup of E[¢"] generated by an order ¢" point
P € E[¢"] defines a unique (up to isomorphism) elliptic curve E /F
and degree ¢ isogeny ¢ : E — E.

E/IFq supersingular,

& Pa, Qa € E[("],
[ Fo. Qs < 1) &)

%

m, n G‘Z/WZ E (P m,n € Z/lU"Z
R =mPs+ nQa 2 B_)'>SO(QB) R:f.ngs +£QB
p:E—E E, ¢(Pa), 2(Qu) e
<_
mo(Pa) + np(Qa) = ¢(R) me(Pg) + np(Qe) = ¢(R)
- J(E) = J(E) -

E— E—



Bonus: how random is SIDH?

Remember:

ker(p) = {P € E(Fq) : ¢(P) = oo}

m,n € Z/l"Z = (R)
R =mPg + nQp gZ/fZ
p:E—E.

» A truly random isogeny from a random path in a supersingular
isogeny graph

$PB =PRI OPR O " OPLR,

will have # ker(¢g) = ¢" but maybe not = Z/("Z!
» Exercise: which other situations are there?



Computing random paths in isogeny graphs

Remember: Each size ¢ subgroup of E[¢] defines a unique (up to
isomorphism) degree ¢ isogeny from E.

» Vélu's algorithm: given a size ¢ subgroup H of E[{], computes
the isogeny and the elliptic curve corresponding to H.

» Can compute a random path of length r by choosing a
random size ¢ subgroup at each step and using Vélu r times
to find YRr,, ¥Ry, ---, ¥r,. (Like ‘Bob goes for a walk’).

» More efficient (but maybe less secure): choose a random
subgroup of E[¢"] that is isomorphic to Z/¢"7Z and use Vélu
once to compute ¢pg. (Like ‘Alice and Bob do SIDH").



Computing random paths in isogeny graphs

» Alternative to Vélu's algorithm: use modular polynomials

Definition

The modular polynomial of level £ is a symmetric polynomial
®y(X,Y) € Z[X, Y] of degree £+ 1 in both X and Y such that for
all (non-¢) prime powers q there exists a degree ¢ isogeny E — E’
if and only if ®,(X,Y) € F4[X, Y] satisfies ®,(j(E), j(E’)) = 0.

» Neighbours of j(E) in the (-isogeny graph are the roots of
®.(J(E), ).

» Elkie's has an algorithm to compute the isogeny E — E’ and
its kernel (if they exist) given j(E) and j(E').

» Compute a random path of length r in a degree /¢
supersingular isogeny graph starting at E using ®,(X, Y).



Finding a random curve with modular polynomials
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Finding a random curve with modular polynomials

Edit: walking back is allowed in a random walk, but is not allowed
in the SIDH protocol as this will give a final isogeny with
non-cyclic kernel.
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Finding a random curve with modular polynomials




Finding a random curve with modular polynomials




Attacks on SIDH: Galbraith et. al. 2016

1. Attack in the case that Alice and Bob do not change their
private keys ma, na € Z/aZ and mg,ng € Z/{gZ.
» This attack recovers the full private key in O(r) steps.
» The only known validation methods that prevent this are very
costly.

2. Number theoretic attack in time log(,/q) (currently unfeasible

due to lack of theory).
> Relies on an efficient algorithm to compute 'endomorphism
rings’.

3. Full break if the shared secret is partially leaked. (Edit: if you
are watching the video, there was a comment from the
audience saying that this is too generous, but following further
discussion we concluded that it does in fact give a full break).



Potential attack on SIDH: Petit June 2017

» Constructs variations of SIDH which can be broken by
exploiting ¢a(Pg) and ¢a(Pg).
» Does not (yet) apply to the current version of SIDH.



Where are we now with SIDH?

> Detailed cryptoanalysis needed to assess security

» Assuming the system is chosen to be secure against known
attacks, best classical algorithm to find shared secret (based
on finding an isogeny between 2 curves) is O(p'/*) for elliptic
curves over [ »

» Best quantum attack is O(p'/)
» Galbraith has an attack exploiting reused secret key pairs (m
and n)

» Christophe Petit studies how to exploit the additional points
©(Pa), ¢(Pg) - but his methods do not (yet) give an attack
on SIDH



SIDH vs. Lattice based crypto

Name Primitive | Time (ms) | PK size (bytes)
Frodo LWE 2.600 11,300
NewHope R-LWE 0.310 1,792
NTRU NTRU 2.429 1,024
SIDH Supersingular 900 564
Isogeny

These are non-optimised timings!
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