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Monochromatic sums and products in N

By Joel Moreira

Abstract

An old question in Ramsey theory asks whether any finite coloring of the

natural numbers admits a monochromatic pair {x+y, xy}. We answer this

question affirmatively in a strong sense by exhibiting a large new class of

nonlinear patterns that can be found in a single cell of any finite partition

of N. Our proof involves a correspondence principle that transfers the

problem into the language of topological dynamics. As a corollary of our

main theorem we obtain partition regularity for new types of equations,

such as x2 − y2 = z and x2 + 2y2 − 3z2 = w.

1. Introduction

In this paper we show that for any finite coloring (i.e., partition) of N =

{1, 2, . . . }, there exist x, y ∈ N such that the set {x, x+y, xy} is monochromatic.

In fact, we exhibit a rather large class of configurations with this property.

1.1. Historical background and motivation. A central topic in Ramsey the-

ory is to understand which patterns can be found in one color of any finite

coloring of the natural numbers. We start with a definition:

Definition 1.1. Let k, s ∈ N, and let f1, . . . , fk : Ns → Z. We say that

{f1, . . . , fk} is a Ramsey family if for any finite coloring N = C1 ∪ · · · ∪ Cr,
there exist x ∈ Ns and i ∈ {1, . . . , r} such that

¶
f1(x), . . . , fk(x)

©
⊂ Ci.

In this language, Schur’s theorem [31] states that the family {x, y, x+ y}1
is Ramsey and van der Waerden’s theorem [35] states that for any k ∈ N, the

family {x, x + y, . . . , x + (k − 1)y} is Ramsey. On the other hand, it is not

hard to show that the families {x, x+1} and {x, y, 3x−y} are not Ramsey. In

1933, Rado obtained a fundamental theorem describing necessary and sufficient

conditions for a family of linear functions to be Ramsey [29]. Inspired by Rado’s

result, we are led naturally to the following, by now classical, problem.

c© 2017 Department of Mathematics, Princeton University.
1In a slight abuse of notation, we represent by {x, y, x + y} the family comprised of the

three functions (x, y) 7→ x, (x, y) 7→ y and (x, y) 7→ x + y.
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Problem 1.2. Describe necessary and sufficient conditions on the polyno-

mials f1, . . . , fk ∈ Z[x1, . . . , xs] that guarantee that the family {f1, . . . , fk} is

Ramsey.

It follows from Schur’s theorem that the family {x, y, xy} is Ramsey. (Sim-

ply compose any given coloring χ : N → {1, . . . , r} with the map n 7→ 2n to

create a new coloring and apply Schur’s theorem.) Using the same idea, van

der Waerden’s theorem implies that for each k ∈ N, the family {x, xy, . . . , xyk}
is Ramsey, and Rado’s theorem implies that many more families of the form

{f1, . . . , fk}, where each fi is a monomial, are Ramsey.

Configurations that combine both addition and multiplication, however,

tend to be significantly harder to deal with: only in 1977 did Furstenberg and

Sárközy prove, independently, that the family {x, x + y2} is monochromatic

(cf. [21, Th. 1.2] and [30]), obtaining the first example of a nonlinear Ramsey

family that does not consist only of monomials. Bergelson improved this result

by showing that in fact the family {x, y, x+ y2} is Ramsey [7].

The next major advance towards Problem 1.2 was Bergelson and Leib-

man’s polynomial extension of van der Waerden’s theorem [4]; see Theorem 4.1

below. In particular, they showed that for any polynomials p1, . . . , pk ∈ Z[x]

without a constant term, the family {x, x + p1(y), . . . , x + pk(y)} is Ramsey.

The polynomial van der Waerden theorem has now been extended in several

directions (see, for instance, [10], [12], [6]), each revealing new examples of

polynomial Ramsey families.

In the last decade, many interesting polynomial Ramsey families were

found [2], [3], [9], [18], [28], however a complete solution to Problem 1.2 is still

very far from reach. In particular, the following simple question has remained

unanswered for many years:

Question 1.3 (see, for instance, [26, Question 3], [8, Question 11]). Is the

family {x, y, x+ y, xy} Ramsey?

This question was studied at least as early as 1979 by N. Hindman and

R. Graham (see [25, §4] and [22, pp. 68-69]), but even the family {x + y, xy}
remained recalcitrant until now. An affirmative answer to the analogue of

Question 1.3 in finite fields was recently obtained by Green and Sanders [23],

generalizing previous work by Shkredov [32] and Cilleruelo [16]; see also [34]

and [24] for related results.

Bergelson and the author studied the analogue of Question 1.3 for infinite

fields in [13], [14]. We showed, in particular, that the family {x, x + y, xy} is

Ramsey in any infinite field and that for any finite coloring of Q, there exist

(many) x ∈ Q and y ∈ N such that {x+y, xy} is monochromatic. The methods

of [13] and [14], however, cannot be directly used to establish that the family
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{x+y, xy} is Ramsey in N, the main problem being that the semigroup of affine

transformations of N (which naturally appears in the dynamical approach to

the problem) is not amenable.

1.2. Main results. The main result of this paper is the following:

Theorem 1.4. Let s ∈ N and, for each i = 1, . . . , s, let Fi be a finite

set of functions Ni → Z such that for all f ∈ Fi and any x1, . . . , xi−1 ∈ N,

the function x 7→ f(x1, . . . , xi−1, x) is polynomial with 0 constant term. Then

for any finite coloring of N, there exist a color C ⊂ N and (infinitely many)

(s+ 1)-tuples x0, . . . , xs ∈ N such that

{x0 · · ·xs} ∪
{
x0 · · ·xj + f(xj+1, . . . , xi) : 0 ≤ j < i ≤ s, f ∈ Fi−j

}
⊂ C.

In particular, taking s = 1 and F1 = {x 7→ 0, x 7→ x} consisting only of

the zero function and the identity function, we deduce

Corollary 1.5. For any finite coloring of N, there exist (infinitely many)

x, y ∈ N such that {x, xy, x+ y} is monochromatic.

As an illustration, setting s = 5 in Theorem 1.4 and letting each Fi con-

sist only of the function fi : (x1, . . . , xi) 7→ x1 · · ·xi, we obtain the following

(aesthetically pleasing) Ramsey family:

Example 1.6. The following family is Ramsey:

x

xy, x+ y

xyz, x+ yz, xy + z

xyzt, x+ yzt, xy + zt, xyz + t

xyztw, x+ yztw, xy + ztw, xyz + tw xyzt+ w


.

Theorem 1.4 can also be used to obtain new partition regular equations:

Corollary 1.7. Let k ∈ N and c1, . . . , ck ∈ Z \ {0} be such that c1 +

· · · + ck = 0. Then for any finite coloring of N, there exist pairwise distinct

a0, . . . , ak ∈ N, all of the same color, such that

c1a
2
1 + · · ·+ cka

2
k = a0.

In particular, setting k = 2 and c1 = 1, c2 = −1, we deduce

Corollary 1.8. For any finite coloring of N, there exists a solution a, b, c

of the equation a2 − b2 = c with all a, b and c of the same color.

Note that the similar equation a2 − b = c is not partition regular (cf. [17,

Th. 3]). Corollary 1.7 is proved in Section 6.

Our proof of Theorem 1.4 proceeds by first transferring the problem to

the language of topological dynamics using a correspondence principle (Theo-

rem 3.2) and then solving the dynamical problem using ideas developed in [13]
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together with a “complexity reduction” method inspired by [4]. The correspon-

dence principle is of independent interest because it allows one to formulate in

dynamical terms the question of whether general polynomial families are Ram-

sey; we postpone the precise statement to Section 3 because it uses notation

and terminology from Section 2.1.

The proof of Theorem 1.4 can be made elementary; to illustrate this, we

present in Section 5 a short and purely combinatorial proof of Corollary 1.5,

which is independent from the rest of the paper. This combinatorial version of

the proof is shorter but less transparent, avoiding the correspondence principle

but consequentially obscuring the theorem’s dynamical underpinnings.

The paper is organized as follows: In Section 2 we introduce some notation

and establish some conventions to be used in the paper. In Section 3 we state

and prove the correspondence principle, thereby reducing Theorem 1.4 to a

statement in topological dynamics, Theorem 3.1, which is proved in Section 4.

In Section 5 we present a more direct and combinatorial rendering of our

dynamical proof of Corollary 1.5. In Section 6 we explore some combinatorial

corollaries of our main result. Finally, Section 7 is devoted to an extension of

our results to a general class of rings.

Acknowledgements. The author thanks Marc Carnovale, Daniel Glass-

cock, Andreas Koutsogiannis and Pedro Vieira for helpful comments on an

earlier version of the paper. Thanks are also due to Donald Robertson and

Florian Richter for insightful discussions that planted the seed for some of the

main ideas in this paper. Special thanks go to Vitaly Bergelson for all of the

above and for his constant support and encouragement.

2. Definitions, notation and conventions

2.1. The affine semigroup. We denote by A−N the semigroup consisting of

all the maps x 7→ ax + b from Z to itself, where a ∈ N and b ∈ Z, and with

composition of functions as the semigroup operation. For a given u ∈ Z, the

map x 7→ x + u is denoted by Au and, if u > 0, the map x 7→ ux is denoted

by Mu. The distributivity law can be written as

(1) ∀u ∈ N, v ∈ Z, MuAv = AuvMu.

Given an action (Tg)g∈A−
N

of A−N on a set X (meaning that for each g ∈ A−N ,

there is a map Tg : X → X and for any g, h ∈ A−N , we have the composition

law Tg ◦ Th = Tgh) and u ∈ Z, we will frequently denote, abusing notation

slightly, the map TAu simply by Au and, if u > 0, the map TMu by Mu.

Given a semigroup G, a G-topological system is a pair (X, (Tg)g∈G) where

X is a compact Hausdorff space (not necessarily metrizable) and (Tg)g∈G is an

action by continuous functions Tg : X → X. A system (X, (Tg)g∈G) is minimal
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if X contains no proper nonempty closed invariant subsets. A point x ∈ X is

a minimal point if its orbit closure Y := {Tgx : g ∈ G} is a minimal subsystem

of X (i.e., if (Y, (Tg|Y )g∈G) is a minimal system).

Observe that any A−N -topological system (X, (Tg)g∈A−
N

) naturally induces

a (Z,+)-topological system (X, (Su)u∈Z), by letting Su := TAu . A point x ∈ X
is called additively minimal if it is a minimal point for the system (X, (Su)u∈Z).

2.2. Piecewise syndetic sets. Given sets E,H ⊂ N and a number n ∈ N,

we use the following notation:

• nE := {nm : m ∈ E};
• n+ E := {n+m : m ∈ E};
• E − n := {m− n : m ∈ E,m > n} = {x ∈ N : x+ n ∈ E};
• E +H := {m+ n : m ∈ E,n ∈ H};
• E −H := {m− n : m ∈ E,n ∈ H,m > n} =

⋃
n∈H E − n.

A subset S ⊂ N is called syndetic if it has bounded gaps. More precisely,

S is syndetic if there exists a finite set F ⊂ N such that N = S − F . A set

T ⊂ N is called thick if it contains arbitrarily long intervals or, equivalently,

if it has nonempty intersection with every syndetic set. A set E ⊂ N is called

piecewise syndetic if it is the intersection of a syndetic set and a thick set.

If E is a piecewise syndetic set and E ⊂ H, then H is also a piecewise

syndetic set. Observe that for any piecewise syndetic set E ⊂ N and any n ∈ N,

the sets nE, n+ E and E − n are all piecewise syndetic. Furthermore, if any

of nE, n+E or E−n are piecewise syndetic, then so is E. Therefore we have

Proposition 2.1. Let E ⊂ N and g ∈ A−N . The set E is piecewise

syndetic if and only if its image g(E) also is.

We will also make use of the following well-known property of piecewise

syndetic sets:

Proposition 2.2 (see, for instance, [19, Th. 1.24]). Let E ⊂ N be a

piecewise syndetic set. Then for any finite partition of E = E1 ∪ · · · ∪Er, one

of the pieces Et is piecewise syndetic.

3. An affine topological correspondence principle

In this section we reduce Theorem 1.4 to the following statement in topo-

logical dynamics:

Theorem 3.1. Let (X, (Tg)g∈A−
N

) be an A−N -topological system with a

dense set of additively minimal points, and assume that each map Tg : X → X

is open and injective. Let s ∈ N and, for each i = 1, . . . , s, let Fi be a finite

set of functions Ni → Z such that for all f ∈ Fi and any x1, . . . , xi−1 ∈ N,

the function x 7→ f(x1, . . . , xi−1, x) is polynomial with 0 constant term. Then
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for any open cover U of X , there exists an open set U ∈ U in that cover and

infinitely many s-tuples x1, . . . , xs ∈ N such that

U ∩
⋂

0≤j<i≤s

⋂
f∈Fi−j

Mxj+1···xsAf(xj+1,...,xi)U 6= ∅.

The proof of Theorem 3.1 is presented in Section 4.

3.1. Reducing Theorem 1.4 to Theorem 3.1. The elegant idea of using

topological dynamics to find Ramsey families on N was developed by Fursten-

berg and Weiss in [20]. They considered each coloring χ : N → {1, . . . , r}
as a point in the symbolic system ({1, . . . , r}N, T ) (where T is the left shift)

and observed that it is possible to reformulate van der Waerden’s theorem

(among many others) as a multiple recurrence result on minimal subsystems

of ({1, . . . , r}N, T ). By proving the resulting multiple recurrence theorem ([20,

Th. 1.5]), they obtained a new proof of van der Waerden’s theorem (and indeed

of its multidimensional version, due originally to Tibor Grünwald). This corre-

spondence is now a standard technique; for instance, it was used by Bergelson

and Leibman in their proof of the polynomial van der Waerden’s theorem [4,

Cor. 1.11] (see Theorem 4.2).

Unfortunately, the same procedure does not allow one to deduce Theo-

rem 1.4 from Theorem 3.1. This is essentially because the configurations in

Theorem 1.4 are not invariant under shifts (additive or multiplicative): if P is

a set of the form {xy, x+y} and c ∈ N, then in general neither P+c nor Pc is of

the same form. By contrast, observe that arithmetic progressions are invariant

under both addition and multiplication, in the sense that for any arithmetic

progression P and any c ∈ N, both P + c and Pc are arithmetic progressions

of the same length.

Nevertheless we obtained the following correspondence principle:

Theorem 3.2. There exists an A−N -topological system (X, (Tg)g∈A−
N

) with

a dense set of additively minimal points, such that each map Tg : X → X

is open and injective, and with the property that for any finite coloring N =

C1 ∪ · · · ∪ Cr, there exists an open cover X = U1 ∪ · · · ∪ Ur such that for any

g1, . . . , gk ∈ A−N and t ∈ {1, . . . , r},

(2)
k⋂
`=1

Tg`(Ut) 6= ∅ =⇒ N ∩
k⋂
`=1

g`(Ct) 6= ∅.

Remark 3.3. It follows from the proof of Theorem 3.2 that the system

(X, (Tg)g∈A−
N

) also has the property that for any piecewise syndetic set Ct ⊂ N,

there exists a nonempty open set Ut ⊂ X such that (2) holds for any g1, . . . , gk
∈ A−N .
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Remark 3.4. It follows from the proof of Theorem 3.2 that the intersection

N∩⋂kj=1 gj(Ct) (both in the theorem and in Remark 3.3) is not only nonempty

but is in fact piecewise syndetic.

We can now derive Theorem 1.4 from its topological counterpart Theo-

rem 3.1 and the correspondence principle Theorem 3.2.

Proof of Theorem 1.4. Let s ∈ N and, for each i = 1, . . . , s, let Fi be a

finite set of functions Ni → Z such that for all f ∈ Fi and any x1, . . . , xi−1 ∈ N,

the function x 7→ f(x1, . . . , xi−1, x) is polynomial with 0 constant term. Let

N = C1 ∪ · · · ∪ Cr be a finite coloring of N. We need to show that there

exists a color Ct and (infinitely many) s + 1-tuples x0, . . . , xs ∈ N such that

x0 · · ·xs ∈ Ct and, for every 0 ≤ j < i ≤ s and f ∈ Fi−j , we have x1 · · ·xj +

f(xj+1, . . . , xi) ∈ Ct.
We append to Fs the zero function f : Ns → {0} if necessary. Invoking

Theorem 3.2 and then Theorem 3.1, we find a color Ct and (infinitely many)

s-tuples x1, . . . , xs ∈ N such that the intersection

(3) N ∩ Ct ∩
⋂

0≤j<i≤s

⋂
f∈Fi−j

Mxj+1···xsA−f(xj+1,...,xi)Ct

is nonempty. Take x in the intersection (3), and observe that x ∈ x1 · · ·xsCt
(letting j = 0, i = s and f ≡ 0). Therefore x0 := x/(x1 · · ·xs) ∈ Ct (and, in

particular, is an integer).

Finally, for 0 ≤ j < i ≤ s and f ∈ Fi−j , we have

x ∈ xj+1 · · ·xs
Ä
Ct − f(xj+1, . . . , xi)

ä
,

so

x0 · · ·xj + f(xj+1, . . . , xi) = x/(xj+1 · · ·xs) + f(xj+1, . . . , xi) ∈ Ct. �

3.2. Proof of the correspondence principle. The remainder of this section

is dedicated to the proof of Theorem 3.2. The construction of X is quite

explicit as a subset of the Stone-Čech compactification of N, realized as the

space of ultrafilters on N. In this setting, the action of A−N on X is natural.

The idea of using the Stone-Čech compactification to prove the correspondence

principle was inspired by its implicit use in [1] (in the setting of measurable

dynamics). We start by summarizing some facts about ultrafilters that we will

use, referring the reader to [8, §3] for a short and friendly introduction on the

subject and to [27] for a complete treatment. We will only make use of the

facts and definitions about ultrafilters in this section.

An ultrafilter on N is a nonempty family p of subsets of N that is closed

under intersections and supersets, and that satisfies the property E ∈ p ⇐⇒
(N \E) /∈ p. For each x ∈ N, the family px = {E ⊂ N : x ∈ E} is an ultrafilter;
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ultrafilters of this form are called principle. The existence of nonprinciple

ultrafilters requires (at least some weak form of) the axiom of choice.

Denote by βN the set of all ultrafilters over N. The sets of the form

E := {p ∈ βN : E ∈ p} with E ⊂ N form a base for a topology on βN. With

this topology βN becomes a compact Hausdorff space (cf. [27, Th. 2.18]) and

can be identified with the Stone-Čech compactification of N (cf. [27, Th. 3.27]),

where N is embedded densely inside βN by identifying each x ∈ N with the

corresponding principal ultrafilter px.

There is a natural action (Tg)g∈A−
N

of A−N on the set βN\N of nonprinciple

ultrafilters, described as follows. For g ∈ A−N , the map Tg : βN \ N → βN \ N
takes p ∈ βN \ N to

(4) Tg(p) :=
¶
E ⊂ N : g−1(E) ∈ p

©
=
¶
E ⊂ N : {x ∈ N : g(x) ∈ E} ∈ p

©
.

Remark 3.5. An equivalent way to define Tg is to start with a map Tg :

βN→ βZ, defined on principal ultrafilters via the formula Tg(px) = pg(x) and

then extend it to βN using the universal property of the Stone-Čech compacti-

fication. One can then check that for a nonprinciple ultrafilter p ∈ βN \N, the

image Tg(p) is in fact in βN \ N and corresponds to the ultrafilter described

in (4). We will not make use of this fact.

Lemma 3.6. For each g ∈ A−N , the map Tg : βN\N→ βN\N is continuous,

open and injective. Moreover, for g, h ∈ A−N , one has Tg ◦ Th = Tgh.

Proof. One can easily check (using only the definitions) that Tg(p) is in-

deed a nonprinciple ultrafilter and that Tg ◦ Th = Tgh. To show that Tg is

continuous, take an open set E ⊂ βN for E ⊂ N infinite; we need to show that

T−1g (E) is open. We have

p ∈ T−1g (E) ⇐⇒ E ∈ Tg(p) ⇐⇒ g−1(E) ∈ p.

Therefore T−1g (E) = g−1(E) is open and Tg is continuous.

To show that Tg is injective, let p 6= q be in βN \ N and let E ∈ p \ q.
Since g : N→ Z is injective, we have that g−1(g(E)∩N) is a subset of E; since

E /∈ q, it follows that also g−1(g(E) ∩ N) /∈ q and hence g(E) ∩ N /∈ Tg(q).

On the other hand, g(E) ∩ N is a co-finite subset of g(E), which implies that

g−1(g(E) ∩ N) is a co-finite subset of E. Since p is nonprincipal, it cannot

contain finite sets, therefore g−1(g(E) ∩ N) ∈ p and hence g(E) ∩ N ∈ Tg(p).
This shows that Tg(p) 6= Tg(q), proving injectivity.

Finally we show that Tg is open. Let E ⊂ N be infinite; we will show

that Tg(E \ N) = g(E) ∩ N \ N, which will imply that Tg : βN \ N → βN \ N
is indeed open. As in the proof of injectivity, if p ∈ E is nonprincipal, then

g(E) ∩ N ∈ Tg(p), proving one of the inclusions. Conversely, if p ∈ βN \ N is
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such that g(E)∩N ∈ Tg(p), then g−1(g(E)∩N) ∈ p and hence E ∈ p, proving

the other inclusion and finishing the proof. �

Lemma 3.6 implies that (Tg)g∈A−
N

is an action on βN \ N and thereforeÄ
βN \N, (Tg)g∈A−

N

ä
is an A−N -topological dynamical system. We are now ready

to prove Theorem 3.2.

Proof of Theorem 3.2. Let Y ⊂ βN\N be the set of all additively minimal

points in
Ä
βN\N, (Tg)g∈A−

N

ä
, and let X := Y be its closure. It is usual to denote

Y = K(βN,+). We will show that for each g ∈ A−N , Tg maps X into X.

It follows from [27, Cor. 4.41] that an ultrafilter p ∈ βN is in X =

K(βN,+) if and only if every member E ∈ p is piecewise syndetic. Take

p ∈ X and g ∈ A−N ; we claim that Tg(p) ∈ X. Using the definition, it suffices

to show that if g−1(E) is piecewise syndetic, then so is E. It follows from

Proposition 2.1 that if g−1(E) is piecewise syndetic, then so is g(g−1(E)), and

since g(g−1(E)) ⊂ E we conclude that E is also piecewise syndetic. This shows

that each g ∈ A−N induces a natural continuous map Tg : X → X. Moreover, a

similar argument shows that if p ∈ βN\N and g ∈ A−N are such that Tg(p) ∈ X,

then p ∈ X; therefore Tp : X → X is also open.

So far we constructed a compact Hausdorff space X together with an ac-

tion (Tg)g∈A−
N

of A−N on X by continuous injective open maps with a dense

set of additively minimal points. To finish the proof, consider a coloring

N = C1 ∪ · · · ∪ Cr and let Ut := {p ∈ X : Ct ∈ p} = Ct ∩ X for each

t ∈ {1, . . . , r}. Then each Ut is a (possibly empty) open subset of X and each

p ∈ X belongs to some Ut. Now let g1, . . . , gk ∈ A−N and t ∈ {1, . . . , r} be

such that
⋂k
`=1 Tg`(Ut) 6= ∅. Then, since the maps Tg` : X → X are open, it

follows that
⋂k
`=1 Tg`(Ut) is a nonempty open subset of X. Take any p in this

intersection; we claim that g`(Ct) ∩ N ∈ p for any ` ∈ {1, . . . , k}.
Indeed, for each ` ∈ {1, . . . , k}, there exists p` ∈ Ut ⊂ Ct such that p =

Tg`(p`). Since g−1` (g`(Ct)∩N) is a co-finite subset of Ct and p` is nonprincipal,

it follows that g−1` (g`(Ct)∩N) ∈ p` and hence indeed g`(Ct)∩N ∈ p, as desired.

Finally, it follows that the finite intersection N ∩ ⋂k`=1 g`(Ct) is also in p and

hence is nonempty. �

4. Proof of Theorem 3.1

4.1. A version of the polynomial van der Waerden theorem. We will make

use of the polynomial van der Waerden theorem of Bergelson and Leibman:

Theorem 4.1 (cf. [4, Cor. 1.11]). Let F ⊂ Z[x] be a finite set of polyno-

mials such that p(0) = 0 for all p ∈ F . Then for any finite coloring of N, there

exist x, y ∈ N such that the set {x+ p(y) : p ∈ F} is monochromatic.
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As mentioned in the previous section, the proof of Theorem 4.1 in [4] is de-

rived from a topological statement. While this topological statement (namely,

[4, Th. C]) is only proved for metrizable spaces, it is remarked in [4, Prop. 1.10]

that the result holds in the nonmetrizable setting, either by running a similar

proof or by applying the combinatorial version of polynomial van der Waerden

directly. We use the second approach to derive the following corollary, which

is a dynamical version of Theorem 4.1 in the form we will use.

Corollary 4.2. Let (X, (Tg)g∈A−
N

) be an A−N -topological dynamical sys-

tem, and assume that X contains a dense set of additively minimal points.

Let F ⊂ Q[x] be a finite set such that p(0) = 0 for all p ∈ F . Then for any

nonempty open set U ⊂ X , there exists n ∈ N such that p(n) ∈ Z for each

p ∈ F and ⋂
p∈F

Ap(n)U 6= ∅.

Proof. Let y ∈ U be an additively minimal point. Let Y = {Any : n ∈ Z}
be its additive orbit closure. Since

Ä
Y, (An)n∈Z

ä
is a minimal topological sys-

tem, the union
⋃
nAnU covers Y , and by compactness there exists r ∈ N for

which the finite union
⋃r
n=1AnU covers Y . We define a coloring χ : N →

{1, . . . , r} of N by letting χ(n) be such that Any ∈ Aχ(n)U .

Let m ∈ N be a common multiple of the denominators of the coefficients

of every p ∈ F . For each polynomial p ∈ F , let p̃ : n 7→ −p(mn) and observe

that p̃ ∈ Z[x] and p̃(0) = 0. We invoke Theorem 4.1 with F̃ = {p̃ : p ∈ F}
to find some t ∈ {1, . . . , r} and x, z ∈ N such that χ

Ä
x + p̃(z)

ä
= t for every

p ∈ F . In other words, Ax−p(mz)y ∈ AtU for all p ∈ F and hence, letting

n = mz, we deduce that Ax−ty ∈ Ap(n)U for every p ∈ F . We conclude that

Ax−ty ∈
⋂
p∈F

Ap(n)U,

proving the intersection to be nonempty. �

4.2. Outline of the proof. There are two main ingredients in the proof of

Theorem 3.1. One is a “complexity reduction” technique similar to the one

used by Bergelson and Leibman in [4] to prove the polynomial van der Waer-

den theorem (and also used in [15, Lemma 8.5]). The other main ingredient is

a fact about the algebraic behavior of the expression g : n 7→ MnAf(n) ∈ A−N
discovered (and explored) in [13], namely, that the “multiplicative derivative”

n 7→ g(nm)g(n)−1 becomes a purely additive expression whenever f is a poly-

nomial.

Before we delve into the full details of the proof of Theorem 3.1 in the

next subsection, we explain the main steps of the proof in the special case when

s = 1 and F1 is a singleton consisting only of the map x 7→ −x. In other words,
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we will show that for any finite cover of a nice A−N -topological system X, there

is a set U in the cover and some y ∈ N such that U ∩MyA−yU 6= ∅. (After

applying the correspondence principle, this special case corresponds essentially

to Corollary 1.5.)

The idea is to construct a sequence (Bn) of nonempty open sets of X,

each contained inside some member Un of the open cover, such that

(5) ∀ n < m, ∃ y = y(n,m) ∈ N, MyA−yBn ⊃ Bm.

Assuming we construct such sequence, since the open cover is finite, we can

find n < m for which both Bn and Bm are contained inside the same member U

of the open cover; it then follows from (5) that U ∩MyA−yU 6= ∅, finishing

the proof.

The construction of the sequence (Bn) is natural and is illustrated by

Figure 1: starting with an arbitrary nonempty open set B0, we find some y1
such that B0 ∩ A−y1B0 6= ∅ (such y1 exists since B0 contains some additively

minimal points), and then we “push” that intersection by My1 to create B1 :=

My1(B0 ∩A−y1B0). In particular, (5) holds for n = 0,m = 1 with y = y1.

For the next step, we start similarly: assume y2 ∈ N is such that B1 ∩
A−y2B1 6= ∅. As long as we take B2 ⊂My2(B1∩A−y2B1), we will indeed have

B2 ⊂ My2A−y2B1 (and hence (5) holds for n = 1 and m = 2). Next we need

to force B2 to satisfy (5) for n = 0 and m = 2. Since we know how to control

the “multiplicative derivative” of the expression MyA−y, we seek to obtain (5)

with y(0, 2) = y1y2; in other words, we want B2 ⊂ My1y2A−y1y2B0. Putting

both conditions together, we are left to find y2 ∈ N so that

My2(B1 ∩A−y2B1) ∩My1y2A−y1y2B0 6= ∅.

Applying M−1y2 it suffices to make B1 ∩ A−y2B1 ∩My1A−y1y2B0 6= ∅. Using

the distributivity law (1), we have that My1A−y1y2 = A−y21y2
My1 , and since

My1B0 ⊃M1, we see that it is sufficient to find y2 ∈ N such that

B1 ∩A−y2B1 ∩A−y21y2B1 6= ∅.

The existence of such a y2 is a consequence of Theorem 4.2, so setting

B2 := My2(B1 ∩ A−y2B1 ∩ A−y21y2B1) we have successfully constructed B2

and y2 satisfying (5) whenever n ≤ 2.

Proceeding in this fashion we can construct the sequence Bn, each time

invoking Theorem 4.2 to choose yn ∈ N so that

Bn := Myn(Bn−1 ∩A−ynBn−1 ∩A−y2n−1yn
Bn−1 ∩ · · · ∩A−y21 ···y2n−1yn

Bn−1)

is nonempty. One can see, using the distributivity law (1), that (5) indeed holds

with y(n,m) = yn+1 · · · ym. For instance, to see why My2y3y4A−y2y3y4B1 ⊃ B4,
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Figure 1. Construction of the sequence (Bn)

observe that

My2y3y4A−y2y3y4B1 = My4A−y22y23y4
My3My2B1 ⊂My4A−y22y23y4

B3 ⊂ B4.

4.3. Proof of Theorem 3.1. Let (X, (Tg)g∈A−
N

) be an A−N -topological sys-

tem with a dense set of additively minimal points, and assume that each map

Tg : X → X is open and injective. Let s ∈ N and, for each i = 1, . . . , s,

let Fi be a finite set of functions Ni → Z such that for all f ∈ Fi and any

x1, . . . , xi−1 ∈ N, the function x 7→ f(x1, . . . , xi−1, x) is polynomial with 0 con-

stant term. Let U be an open cover of X. We need to find U ∈ U and infinitely

many s-tuples x1, . . . , xs ∈ N such that

(6) U ∩
⋂

0≤j<i≤s

⋂
f∈Fi−j

Mxj+1···xsAf(xj+1,...,xi)U 6= ∅.

Since X is compact, we can find a finite subcover U1, . . . , Ur of U with each

Ut 6= ∅.
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We will construct, inductively, four sequences:

• (tn)n≥0 in {1, . . . , r};
• (yn)n≥1 in N increasing;

• (Bn)n≥0 of nonempty open subsets of X;

• (Dn)n≥1 of nonempty open subsets of X,

such that Bn ⊂ Utn . (The set Dn corresponds to the smaller circle inside

Bn−1 in Figure 1.) It will be convenient to denote by y(m,n) ∈ N the product

y(m,n) := ym+1ym+2 · · · yn for any 0 ≤ m ≤ n, with the convention that the

(empty) product y(n, n) equals 1.

Initiate t0 = 1 and B0 = U1. Using Theorem 4.2 we find y1 ∈ N such that

D1 := B0 ∩
⋂
f∈F1

Af(y1)B0 6= ∅.

Since U1, . . . , Ur forms an open cover of X and Mn : X → X is an open map,

we can find t1 ∈ {1, . . . , r} such that B1 := My1D1∩Ut1 is open and nonempty.

Next we invoke Theorem 4.2 again to find y2 ∈ N such that

D2 := B1 ∩

Ñ ⋂
f∈F1

Af(y2)B1 ∩Ay1f(y1y2)B1

é
∩

Ñ ⋂
f∈F2

Ay1f(y1,y2)B1

é
6= ∅.

We then choose t2 ∈ {1, . . . , r} such that B2 := My2D2 ∩ Ut2 6= ∅. The third

step of the iteration becomes a little more complicated. Using Theorem 4.2

one more time we find y3 ∈ N such that

D3 := B2 ∩

Ñ ⋂
f∈F1

Af(y3)B2 ∩Ay2f(y2y3)B2 ∩Ay1y2f(y1y2y3)

é
∩

Ñ ⋂
f∈F2

Ay2f(y2,y3)B2 ∩Ay1y2f(y1y2,y3)B2 ∩Ay1y2f(y1,y2y3)B2

é
∩

Ñ ⋂
f∈F3

Ay1y2f(y1,y2,y3)B2

é
6= ∅.

We then choose t3 ∈ {1, . . . , r} such that B3 := My3D3 ∩ Ut3 6= ∅.

In general, for n ≥ 2, assume that (tm)n−1m=0, (ym)n−1m=1, (Bm)n−1m=0 and

(Dm)n−1m=1 have been constructed. For each i ∈ {1, . . . , s} and each f ∈ Fi,

we define the collection Gn(f) of all functions g : Z→ Z of the form

g : z 7→ y(m1, n− 1)f
Ä
y(m1,m2), y(m2,m3), . . . , y(mi, n− 1) · z

ä
for any choice 0 ≤ m1 < m2 < · · · < mi < n. If i > n, then we set Gn(f) to be

empty. Observe that each g ∈ Gn(f) is a polynomial with rational coefficients

satisfying g(0) = 0.
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Invoking Theorem 4.2, we can find yn ∈ N satisfying

(7) Dn := Bn−1 ∩
s⋂
i=1

⋂
f∈Fi

⋂
g∈Gn(f)

Ag(yn)Bn−1 6= ∅.

Let tn ∈ {1, . . . , r} be such that the intersection Bn := MynDn ∩ Utn 6= ∅.

(Observe that Bn is open because Myn is an open map.) This finishes the

construction of yn, tn, Dn, Bn. It is immediate from the construction that

Bn ⊂ Utn for every n ≥ 0. Moreover, Bn ⊂MynDn ⊂MynBn−1. Iterating this

observation we obtain

(8) ∀m ≤ n, Bn ⊂My(m,n)Bm.

Since the sequence (tn)n≥0 takes only finitely many values, there exists

t ∈ {1, . . . , r} and infinitely many tuples of natural numbers n0 < · · · < ns
such that tni = t. For each i ∈ {1, . . . , s}, let xi = y(ni−1, ni). We claim that

(6) is satisfied with U = Ut and with this choice of xi. We will show that the

intersection in (6) is nonempty by proving that it contains Bns . Since Bnj ⊂ Ut
for every j ∈ {0, . . . , s}, it suffices to show that

(9) ∀ 0 ≤ j < i ≤ s, ∀ f ∈ Fi−j , Bns ⊂Mxj+1···xsAf(xj+1,...,xi)Bnj .

Now fix 0 ≤ j < i ≤ s and f ∈ Fi−j . Observe that there exists some g ∈ Gni(f)

such that f(xj+1, . . . , xi) = g(yni)/y(nj , ni − 1). Using (8), we conclude

Bns ⊂My(ni,ns)Bni ⊂My(ni,ns)Myni
Dni

using (7)⊂My(ni−1,ns)

(
Ag(yni )

Bni−1
)

using (8)⊂My(ni−1,ns)Ag(yni )
My(nj ,ni−1)Bnj

using (1) =My(ni−1,ns)My(nj ,ni−1)Ag(yni )/y(nj ,ni−1)Bnj

=Mxj+1···xsAf(xj+1,...,xi)Bnj .

This proves (9) and finishes the proof of Theorem 3.1.

5. An elementary proof that the family {x, x+ y, xy} is Ramsey

In this section we present an elementary rendering of the above proof of

Theorem 1.4. To keep things shorter and more elegant, we prove only Corol-

lary 1.5; the proof in this section can be adapted to obtain the full strength

of Theorem 1.4. We remark that, while this proof is short and essentially self

contained, it is, in essence, a combinatorial rephrasing of the dynamical proof.

We will use the following version of van der Waerden’s theorem; this ver-

sion is a particular case of [11, Th. 4.5].
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Theorem 5.1. Let E ⊂ N be piecewise syndetic, and let F ⊂ N be finite.

Then there exist infinitely many n ∈ N such that the intersection

E ∩
⋂
m∈F

(E −mn)

is piecewise syndetic.

Proof of Corollary 1.5. Let r ∈ N and let N = C1∪· · ·∪Cr be an arbitrary

coloring (or partition) of N. We need to find t ∈ {1, . . . , r} and (infinitely

many) x, y ∈ N satisfying

(10)
¶
x, x+ y, xy

©
⊂ Ct.

We will construct inductively four sequences:

• an increasing sequence (yi)i≥1 of natural numbers;

• two sequences (Bi)i≥0 and (Di)i≥1 of piecewise syndetic subsets of N;

• a sequence (ti)i≥0 of colors in {1, . . . , r}
such that Bi ⊂ Cti for every i ≥ 0.

Initiate by choosing t0 ∈ {1, . . . , r} such that Ct0 is piecewise syndetic,

and let B0 := Ct0 . Assume now that i ≥ 1 and that we have already defined

(tj)
i−1
j=0, (yj)

i−1
j=1, (Bj)

i−1
j=0 and (Dj)

i−1
j=1. We apply Theorem 5.1 to find yi ∈ N,

yi > yi−1 such that

(11) Di := Bi−1 ∩
i⋂

j=1

(
Bi−1 − y2j · · · y2i−1yi

)
is piecewise syndetic (with the convention that for i = j, the (empty) product

y2j · · · y2i−1 equals 1). Observe that yiDi is also piecewise syndetic, and therefore

Proposition 2.2 provides some ti ∈ {1, . . . , r} such that Bi := yiDi ∩ Cti is

piecewise syndetic. This finishes the construction of the sequences.

Note that Bi ⊂ yiDi ⊂ yiBi−1; iterating this fact we obtain

(12) ∀ 0 ≤ j < i, Bi ⊂ yj+1yj+2 · · · yiBj .

Since the sequence (ti) takes only finitely many values, there exist (infinitely

many) j < i such that ti = tj . Let x̃ ∈ Bi, let y := yj+1 · · · yi, and let x := x̃/y.

We claim that {x, x+y, xy} ⊂ Cti , which will complete the proof. Indeed xy =

x̃ ∈ Bi ⊂ Cti and from (12) we have xy ∈ Bi ⊂ yBj so x ∈ Bj ⊂ Ctj = Cti .

Finally we have

y(x+ y) = x̃+ y2 ∈ Bi + y2 ⊂ yiDi + y2

using (11) ⊂ yi
Ä
Bi−1 − y2j+1 · · · y2i−1yi

ä
+ y2

using (12) ⊂ yi
Ä
yj+1 · · · yi−1Bj − y2j+1 · · · y2i−1yi

ä
+ y2

= yBj − y2 + y2 ⊂ yBj ,

which implies that x+ y ∈ Bj ⊂ Ctj = Cti . �



1084 JOEL MOREIRA

Remark 5.2. As an alternative approach, one could replace piecewise syn-

detic sets with sets having positive upper density and replace van der Waer-

den’s theorem with (a suitable form of) Szemerédi’s theorem in arithmetic

progressions [33].

6. Ramsey theoretic applications

In this section we derive some corollaries of our main result, Theorem 1.4,

by specifying values of s and sets of functions Fi of interest. For convenience,

we recall the formulation of Theorem 1.4.

Theorem 1.4. Let s ∈ N and, for each i = 1, . . . , s, let Fi be a finite

set of functions Ni → Z such that for all f ∈ Fi and any x1, . . . , xi−1 ∈ N,

the function x 7→ f(x1, . . . , xi−1, x) is polynomial with 0 constant term. Then

for any finite coloring of N, there exist a color C ⊂ N and (infinitely many)

(s+ 1)-tuples x0, . . . , xs ∈ N such that

{x0 · · ·xs} ∪
{
x0 · · ·xj + f(xj+1, . . . , xi) : 0 ≤ j < i ≤ s, f ∈ Fi−j

}
⊂ C.

By specifying s = 1 we obtain the following result:

Corollary 6.1. Let k ∈ N and let f1, . . . , fk ∈ Z[x] satisfy f`(0) = 0 for

each `. Then for any finite coloring of N, there exist x, y ∈ N such that the set

{xy, x+ f1(y), . . . , x+ fk(y)}

is monochromatic.

Observe that by putting f1(y) = 0, the monochromatic configuration in

the previous corollary contains x.

In a different direction, letting s be arbitrary but requiring each Fi to

consist of only the zero function and the function fi(x1, . . . , xi) = x1 · · ·xi, we

deduce

Corollary 6.2. For any s ∈ N and any finite coloring of N, there exist

x0, . . . , xs ∈ N such that the set
j∏
`=0

x` : 0 ≤ j ≤ s

 ∪


j∏
`=0

x` +
i∏

`=j+1

x` : 0 ≤ j < i ≤ s


is monochromatic.

Observe that we do not require that each function f ∈ Fi in Theorem 1.4

be a polynomial in all its variables (but only in the last variable). In particular,

we obtain the following examples:

Example 6.3. The following are Ramsey families:

(1) {x, x+ y, xy, xyz, x+ z, x+ zy};
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(2) {x, xy, xyz, x+ f(y)z} for any function f : N→ Z;

(3) {x, xy, xyz, xyzt, x+zy, x+tz, x+f(y)tg(z)} for any functions f, g : N→ N.

Finally, we prove Corollary 1.7 from the introduction.

Corollary 1.7. Let k ∈ N and c1, . . . , ck ∈ Z \ {0} be such that c1 +

· · · + ck = 0. Then for any finite coloring of N, there exist pairwise distinct

a0, . . . , ak ∈ N, all of the same color, such that

(13) c1a
2
1 + · · ·+ cka

2
k = a0.

Proof. Consider the quadratic polynomials

p(t) =
k∑
`=1

c`(1 + `t)2, q(t) =
k−1∑
`=1

c`(1 + `t)2 + ck(1 + 2kt)2.

Both have rational coefficients and a root at t = 0. On the other hand, the

derivatives

p′(t) = 2
k∑
`=1

`c`(1 + `t), q′(t) = 2
k−1∑
`=1

`c`(1 + `t) + 4kck(1 + 2kt)

cannot both vanish at t = 0. Therefore at least one of these polynomials

must have a second root at some t ∈ Q \ {0}. Assume p has a second root.

(An analogous argument works in the alternative case.) Letting d be the

denominator of t and u` = d(1+`t) for each ` = 1, . . . , k, we now have pairwise

distinct u1, . . . , uk ∈ Z such that c1u
2
1 + · · · + cku

2
k = 0. We can also assume

that c1u1 + · · ·+ ckuk 6= 0 by changing some nonzero u` into −u` if necessary.

Let b = 2(c1u1 + · · ·+ ckuk). Let χ : N→ {1, . . . , r} be an arbitrary finite

coloring of N, and define a new coloring χ̃ of N in r + b− 1 colors by

χ̃(n) :=

χ
(n
b

)
if n is divisible by b,

r + (n mod b) otherwise,

where n mod b ∈ {0, 1, . . . , b − 1} is the remainder of the division of n by b.

Next apply Corollary 6.1 to find x, y ∈ N such that the set {x, xy, x + y, x +

u1y, . . . , x+ uky} is monochromatic with respect to χ̃.

Observe that, in view of the construction of the coloring χ̃, all the numbers

x, xy, x+y share the same congruence class modulo b, which implies that both

x and y are divisible by b. We deduce that the set
¶
xy
b ,

x+u1y
b , . . . , x+ukyb

©
consists of integers and is monochromatic with respect to χ. Letting a0 = xy

b

and a` = x+u`y
b for ` = 1, . . . , k, we have the desired relation (13). �

7. Extensions to LID

In this paper so far we have restricted our attention to configurations

inside N, but it makes sense to consider analogous questions in a more general
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setup. It turns out that our arguments apply without much additional effort

to a natural class of rings studied in [14], namely the class of LID’s:

Definition 7.1. An integral domain R is called a large ideal domain (LID)

if every nontrivial ideal of R has finite index in R.

Examples of LID’s include all fields, the ring Z (and more generally the

ring of integers of any number field), and the ring F[x] of polynomials over a

finite field. Observe that N, not being a ring, is not strictly speaking an LID.

In fact, one can define LID semirings (a class that would include N) but we

will not pursue this possibility here.

Given an LID R, we denote by AR its affine semigroup, defined by AR :=

{x 7→ ax+ b : a, b ∈ R, a 6= 0}. The semigroup AR is a group if and only if R

is a field.

The following version of the affine topological correspondence principle for

LID can be proved in the same way as Theorem 3.2.

Theorem 7.2. Let R be an LID, and let AR denote the semigroup of

all affine transformations of R. Then there exists an AR-topological system

(X, (Tg)g∈AR
) with a dense set of additively minimal points, such that each

map Tg : X → X is open and injective, and with the property that for any

finite coloring R = C1 ∪ · · · ∪Cr, there exists an open cover X = U1 ∪ · · · ∪Ur
such that for any g1, . . . , gk ∈ AR and t ∈ {1, . . . , r},

(14)
k⋂
`=1

Tg`(Ut) 6= ∅ =⇒
k⋂
`=1

g`(Ct) 6= ∅.

The only nontrivial step in generalizing Theorem 3.2 to this setting is the

following extension of Proposition 2.1, which crucially relies on the the fact

that R is an LID:

Definition 7.3. Let (R,+) be an abelian group.

• A set S ⊂ R is called syndetic if there exists a finite set F ⊂ R such that

R = S − F .

• A set T ⊂ R is called thick if for any finite set F ⊂ R, there exists x ∈ R
such that x+ F ⊂ T .

• A set B ⊂ R is called piecewise syndetic if B = S ∩ T for a syndetic set

S ⊂ R and a thick set T ⊂ R.

Lemma 7.4. Let R be an LID, and let B ⊂ (R,+) be piecewise syndetic.

Then for any a ∈ R \ {0}, the dilation aB is also piecewise syndetic.

Proof. Let S and T be such that B = S ∩ T and S is syndetic and T is

thick. Let T ′ = aT ∪ (R \ aR), and let S′ = aS. Then clearly aB = T ′ ∩ S′.
We now claim that T ′ is thick and S′ is syndetic, which will finish the proof.
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Let F ⊂ R be a finite set such that S−F = R. Then S′−aF = aR. Since

R is an LID, the ideal aR has finite index in R. Let F̃ be a (finite) set of co-set

representatives. Then aR − F̃ = R and hence S′ − (aF + F̃ ) = R. Taking

F ′ := aF + F̃ we deduce that S′ − F ′ = R and S′ is syndetic, as desired.

Next we show that T ′ is thick. Let F ⊂ R be an arbitrary finite set; we

will find x ∈ R such that x+F ⊂ T ′. Split F = F1∪F2, where F1 = F ∩aR and

F2 = F \ F1. If F is disjoint from aR, then it is already contained in T ′. Let

F ′ = F1/a and let x′ ∈ R be such that x′ + F ′ ⊂ T . Then, taking x = ax′ we

have x+F = a(x′+F ′)∪ax′+F2. Since x′+F ′ ⊂ T , the first term a(x′+F ′)

is inside aT ⊂ T ′. Since F2 is disjoint from aR, also ax′ + F2 is disjoint from

aR and hence contained in T ′. Therefore x+ F ⊂ T ′, as desired. �

Observe that Lemma 7.4 does not hold in general rings, not even in every

principal ideal domain. An example is provided by the PID Q[x] of all poly-

nomials with rational coefficients: while Q[x] is itself a piecewise syndetic set,

the ideal xQ[x] has infinite index as an additive subgroup and hence cannot

be piecewise syndetic.

One can then obtain a dynamical recurrence result analogous to Theo-

rem 3.1 which, together with Theorem 7.2, implies the following combinatorial

corollary:

Theorem 7.5. Let R be an LID, let s ∈ N and, for each i = 1, . . . , s,

let Fi be a finite set of functions Ri → R such that for all f ∈ Fi and any

x1, . . . , xi−1 ∈ R, the function x 7→ f(x1, . . . , xi−1, x) is polynomial with 0

constant term. Then for any finite coloring of R, there exists a color C ⊂ R

and (infinitely many) (s+ 1)-tuples x0, . . . , xs ∈ R such that

{x0 · · ·xs} ∪
{
x0 · · ·xj + f(xj+1, . . . , xi) : 0 ≤ j < i ≤ s, f ∈ Fi−j

}
⊂ C.

The only new ingredient needed to run the proof of Theorem 3.1 in the

LID setting is a suitable version of the polynomial van der Waerden theorem;

such a version follows from [5, Prop. 7.5].
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[30] A. Sárkőzy, On difference sets of sequences of integers. I, Acta Math. Acad. Sci.

Hungar. 31 (1978), 125–149. MR 0466059. Zbl 0387.10033. https://doi.org/10.

1007/BF01896079.
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