
Accelerate and secure
your SDLC
with DevSecOps

Introduction

DevSecOps at every phase
of the SDLC

The exploration phase 07

11

14

15

17

The coding phase

The testing phase

The building phase

The deploy and runtime phase

What’s next

03

05

19
WRITTEN BY:

02

Colin Fallwell
Field CTO, Observability

Sumo Logic

Chas Clawson

Field CTO, Security

Sumo Logic

A phase-by-
phase guide

→

Driving the adoption of DevSecOps is the need for teams to

maintain innovation at speed and establish a competitive

differentiation that maintains and accelerates market share.

In the past security was often pushed to the end of the software

development life cycle (SDLC). As hacks have become more

prevalent, more costly, and more difficult to detect, security has

become of top-line importance to teams.

In short, when your team has to go from requirements to production

in a day — and do it safely and securely — DevSecOps is the path

that gets you there.

03

DevSecOps
is a term
that’s grown
in usage and
popularity.

INTRODUCTION:

ACCELERATE AND SECURE YOUR SLDC WITH DEVSECOPS

Shared dashboards extend visibility across teams.

https://www.ibm.com/reports/data-breach

ACCELERATE AND SECURE YOUR SLDC WITH DEVSECOPS
04

of dev teams can
be considered
“elite”

Elite teams, as defined by the DORA (DevOps Research and
Assessment) metrics, deploy software multiple times per
day, have a lead time for change and a restore of service in
under an hour, and keep their change failure rate under 15%.

Source: Accelerate State of DeVOps 2021

Elite teams embracing DevSecOps
don’t conduct security code reviews
as an afterthought.

They have a security-first, security-always approach and

integrate and prioritize security and observability at every step

of the SDLC. They embrace DevSecOps practices everywhere

from developer laptops to pushing code into production — and

everything in between.

In this guide, we’ll take a look at tactical steps you can take at

each phase of the SDLC to help transform your team into an elite

DevSecOps performer. Elite team performance

DEPLOYMENT FREQUENCY

LEAD TIME FOR CHANGES

TIME TO RESTORE SERVICE

CHANGE FAILURE RATE

On demand

Less than one day

Less than hour

0-15%

15%

http://Accelerate State of DevOps
https://stackoverflow.blog/2022/10/12/how-observability-driven-development-creates-elite-performers/

THREE CONSIDERATIONS:

ACCELERATE AND SECURE YOUR SLDC WITH DEVSECOPS
05

DevSecOps
at every phase
of the SDLC
DevSecOps can be viewed not only
from a maturity perspective but from
a discrete capabilities perspective.

That is, your team can add individual tools and practices one

at a time. Further, teams adopting DevSecOps may need to think

beyond the typical metrics used by development, security and

operations teams. GSA, the Government Services Administration

shares a range of high-value and supporting metrics and

capabilities to consider as teams collaborate across disciplines,

including deployment frequency and MTTR as well as frequency

of vulnerability patching and privilege auditing.

SOFTWARE
DEVELOPMENT

SOFTWARE
DEPLOYMENT

SERVICE
OPERATION

Reliability

Deployment
frequency

Time to restore

Performance metrics

* Key metrics

Source: “Is it ODD to shift left? Becoming elite DevSecOps performers”

Colin Falwell, 2022

Change fail

Lead time→

→

→

https://tech.gsa.gov/guides/dev_sec_ops_guide/

ACCELERATE AND SECURE YOUR SLDC WITH DEVSECOPS
06

Now let’s step through the five phases
of the SDLC and look at specific
and valuable actions you can take to
embrace DevSecOps.

DevSecOps has changed considerably
with the advent of highly-capable
open-source projects.

Tools like Falco, kube-hunter, Prometheus, et al have become

mainstays in practice as enablers of innovation speed. Today,

enterprise security teams are adopting more open-source

security solutions as they integrate with and compliment the

growth in environments running open-source, such as Kubernetes.

Observability is foundational
to enabling DevSecOps.

Building an observable system that provides telemetry to everyone

involved — SecOps, DevOps, IT, finance, business intelligence (BI)

and data science teams, and more — is critical.

Observability in DevSecOps is not just metrics and traces and logs

for dev teams. It’s embracing observability-driven development.

This means dev teams are highly capable and mature in observing

the internal processes that ultimately enable them to test code

directly in production. They are measuring not just deployed

services, but also CI/CD pipelines, telemetry pipelines, control

planes for automation, processes that govern software delivery,

the standards these processes employ and more. Having securi-

ty processes as part of the DevOps pipeline reduces friction and

increases adoption best practices.

https://github.com/falcosecurity/falco
https://github.com/aquasecurity/kube-hunter
https://stackoverflow.blog/2022/10/12/how-observability-driven-development-creates-elite-performers/

ACCELERATE AND SECURE YOUR SLDC WITH DEVSECOPS

The
exploration
phase

07

Two distinct DevSecOps aspects you can

bring to the planning phase are creating a

standardized specification and defining

security inputs and outputs.

Creating a spec during the planning phase

ensures that the needs of development,

security and operations are all being

considered. The spec should not only

establish functional “what should the software

do” requirements, but it should also define

operational, performance and security

requirements. These specifications should

be defined for each supported language, and

all pipelines for that language type should be

standardized to the spec.

1

ACCELERATE AND SECURE YOUR SLDC WITH DEVSECOPS
08

Operational and performance
impacts:

Defining the upper and lower bounds for
critical metrics

Golden Signals or any other metrics used to observe a system

should have upper and lower specification limits that define

a performance corridor that conveys normal operation. The

metrics defined should answer common operational questions

like “How does our environment behave during peak

utilization?” “Can we identify the point when we need to

scale?” and “Do I have the telemetry to detect anomalous

behavior or malicious use of services?” Answering these

questions in the spec makes it clear when you’re no longer

meeting the agreement between all stakeholders and when

security threats might unfold.

This is the basis for reliability management during the

later phases of the SDLC. Your metrics should become the

‘canaries in the coal-mine’, signaling with confidence when

action is warranted. It is also critically important to

accomplish this with the least number of metrics possible.

Logging format and verbosity

A standardized logging format across the enterprise reduces

churn. Define the metadata to include in the log message.

Invest time gathering input from stakeholders. Logged

attributes directly impact the quality of dimensional analysis

in the automated machine learning (AutoML) that identifies

root cause when canaries fall off their perches.

Open-source tooling decisions

Open-source software has become a foundation of

observability. Tools like Prometheus, Grafana, and Jaeger

create a common platform to share information

across multiple teams. Commercial solutions are exclusive

and proprietary, limiting what development teams can do

and ensuring vendor lock-in. In a culture of continuous

improvement owning the code and libraries to build

observability is a necessity.

https://www.sumologic.com/brief/guide-to-reliability-management/

ACCELERATE AND SECURE YOUR SLDC WITH DEVSECOPS
09

From a pure security perspective,
a spec means defining security inputs
and outputs.

For example, to support supply chain security policies, the

development team may need to create a plan around developing

a software bill of materials (SBOM) generation practice or need

to expose the right metadata to support a downstream security

information and event management (SIEM) software tool.

Recommendations from security tools should be actionable

and incorporated into the specification.

Infrastructure security
is also imperative.

Making these decisions in a repeatable, measurable way during the

exploration and planning phase allows you to integrate additional

tooling like kube-hunter for vulnerability discovery or kube-bench

for compliance. Making these decisions in this exploration phase

allows you to integrate them into the overall deployment strategy

and increase the speed at which you find security problems.

As part of creating your spec, you may also consider starting

your threat model. Threat models are planning documents that

consider and plan for various likely attack scenarios, the data

that could be exposed by the attacks, and possible solutions.

The threat model will evolve throughout your SDLC, but now is

a great time to start.

https://www.cisa.gov/sbom
https://www.sumologic.com/glossary/siem/
https://github.com/aquasecurity/kube-hunter
https://github.com/aquasecurity/kube-bench

ACCELERATE AND SECURE YOUR SLDC WITH DEVSECOPS

Log
data

→

10

Log data is critical for monitoring, troubleshooting and

investigating reliability and security issues to get down to the root

cause of “why” that issue occurred. Log data is often the most

detailed information available about a company’s systems, so it

makes sense to put that data to work, pulling log files across the

organization into a single analytics platform for end-to-end visibility

and faster troubleshooting.

Log data is often the most detailed information
about a company’s systems.

ACCELERATE AND SECURE YOUR SLDC WITH DEVSECOPS

The
coding
phase

11

DevSecOps in the coding phase means

building security into the code itself. In the

exploration phase, you defined the development

spec. In the coding phase, you’ll implement that

spec in your code. Two ways you might do this

are observability and security policies and

vulnerability prevention.

We live in a complex, multi-architecture,

multi-microservice world that requires full

observability across stacks and environments.

In the context of DevSecOps, observability

refers to making all phases of the SDLC visible

to prevent security issues before they make

it to production.

2

An easy-to-implement observability solution that

considers logs, metrics, and traces is key. This is

especially critical in a microservice architecture and

across all of your application footprints. Practically,

this means leveraging a tool like Sumo Logic

Distribution for OpenTelemetry Collector.

Sumo Logic Distribution for OpenTelemetry Collector

https://www.sumologic.com/blog/how-to-improve-your-microservices-architecture-security/
https://github.com/SumoLogic/sumologic-otel-collector
https://github.com/SumoLogic/sumologic-otel-collector

ACCELERATE AND SECURE YOUR SLDC WITH DEVSECOPS

Static application security testing (SAST)
Tooling in this category often scans your code, helping

you to catch common issues like SQL injection, buffer

overflows, and other well-known vulnerability catego-

ries. While not perfect, the outputs from SAST tooling

provide data points that inform the overall health of

the code base.

Author verification
Validating that commits in your code come from a

verifiable source is another recommended security

practice. In some cases, creating commits that are

GNU Privacy Guard (GPG)-signed ensures that the

author is verified. This also creates a bar for merging

code into the mainline: no code merges unless its

author is verified through a GPG signature. (GPG isn’t

the only option but it has some notable benefits over

other options, such as key revocation.)

12

In the coding lifecycle, you should
also implement software supply chain
security policies and vulnerability
prevention (among other practices).

There are many approaches and
tools to making code secure — some
language-specific, some industry-
specific and you’ll need to research
to find the ones appropriate for
your project.

Common tool examples:

https://gnupg.org/

ACCELERATE AND SECURE YOUR SLDC WITH DEVSECOPS

Reliability
management

→

13

The coding phase is the root where you’ll implement capabilities

that support your reliability management framework.

For example, you’ll need to consider how you’ll measure your

service level indicators (SLIs) against your service level objectives

(SLOs) and how your error budget informs how you prioritize work.

Exceeding your error budget will trigger more work to bring it back

in compliance with your service level agreements (SLAs).

Solve customer-impacting issues faster with visibility
to all your application data including logs, metrics and
traces across the entire development lifecycle.

ACCELERATE AND SECURE YOUR SLDC WITH DEVSECOPS

The
building
phase

14

The building phase should focus on

reproducible and verifiable builds. Code that is

committed or checked into the repository should

create a deployable artifact that is certified

reliable and secure.

Many tools and practices can help with the above

goal, as CI/CD is a practice unto itself.

3
Ensure that your process for creating

container images is reliably reproducible and verifiable.

Pulling forward the concept from the coding phase,

only allow GPG-signed commits, thereby performing

builds for commits from verified authors.

Automate your pipeline to collect metrics

and artifacts, keeping the feedback loop short and

consistent. For example, capturing and measuring build

time will inform the overall time it takes to release a fix

to production.

Generate and archive an SBOM for every build,

providing insight into the supply chain. Use this

alongside software composition analysis (SCA) tools

like OWASP Dependency-Check to find vulnerable

software in your dependencies.

Real-world examples of CI/CD
practices you can implement:

https://www.sumologic.com/solutions/developer-tools/
https://www.cisa.gov/sbom
https://owasp.org/www-project-dependency-check/

ACCELERATE AND SECURE YOUR SLDC WITH DEVSECOPS

The
testing
phase

15

You’ve integrated DevSecOps practices

and tools earlier into your SDLC. You’ve secured

your code, tightened up your build process, and

maxed observability. The next step is to test.

One of the keys to DevSecOps in testing is

automation. Running automated tests whenever

possible creates a predictable and consistent

testing practice. Run automated tests throughout

the testing (and other) phases of the SDLC.

4

ACCELERATE AND SECURE YOUR SLDC WITH DEVSECOPS

Testing
tools

16

End-to-end Testing

Work in automated penetration testing that can then trigger

additional code iterations to fix vulnerabilities. Validating deeper

operational aspects like log emission and metric exposure can

also happen at this phase.

Dynamic application security testing (DAST)

“Black box” tests that have no knowledge of the inner workings

of the application and approach the application as a hacker

would, simulating real-world attacks.

Acceptance Testing

Validate that the correct observability and security signals have

been captured. This phase will usually take place in a staging or

pre-production environment and is the time for activities that are

difficult to do manually, such as custom penetration testing and op-

erational or performance testing trigger additional code iterations

to fix vulnerabilities. Validating deeper operational aspects like log

emission and metric exposure can also happen at this phase.

Unit Tests

Verify that critical code paths have coverage and are

hardened against vulnerabilities discovered through SAST

tooling and code linters.

In addition to functional Dev/QA and non-functional

performance testing, the following tests are important

during this phase:

→

https://en.wikipedia.org/wiki/Lint_(software)#:~:text=Lint%2C%20or%20a%20linter%2C%20is,examined%20C%20language%20source%20code.

ACCELERATE AND SECURE YOUR SLDC WITH DEVSECOPS

The deploy
and runtime
phase

17

Once your application is live, you can’t just forget

about it. The operational/runtime phase is where

you rely on instrumentation to identify any

issues you missed. Humans can’t write perfect

code, and you’ll never be aware of every possible

problem. It’s imperative to have tools that

continuously scan and monitor for possible exploits

or performance problems.

5

By this point, your DevSecOps planning,

implementation, and testing metrics and artifacts

will coalesce into a single pane of glass accessible

to the development, issues and operations teams.

This solution should provide ubiquitous data

collection, easy analysis, alerting, and visualization.

This culmination of your DevSecOps practices

allows your security and operations teams to be

not just reactive but proactive.

DevSecOps delivers better quality
and more secure software

DEV OPSSEC

ACCELERATE AND SECURE YOUR SLDC WITH DEVSECOPS
18

For example, you might use the
Kubernetes integration with Sumo
Logic, which can detect anomalous
container activity, such as a
misbehaving container reading a
sensitive file on the filesystem.

This activity triggers a security alert rule that notifies your

security team, who might trace the deployment back to a git

commit with a configuration not captured by the test suite or

QA team. The security team can then notify the development

team to get a fix and gauge whether a deployment rollback is

necessary. The team can decide whether to wait for the fix to

deploy, basing their judgment on the captured build time and

deployment time metrics.

This is one of many potential scenarios where development,

security, and operations can have shared insight throughout

the SDLC and work together to improve their security posture

and operational efficiency using a single pane of glass.

Pulling forward the idea of reliability management, this

phase will inform what the next cycle of the SDLC looks like.

Burning through your error budget here will indicate that

the next development cycle requires a focus on bug fixing

and stability whereas a surplus of error budget could mean

there’s more room for innovation. Ultimately, the goal of the

reliability management framework is to balance the speed

of innovation with serving your customers.

The Kubernetes integration with Sumo Logic

ACCELERATE AND SECURE YOUR SLDC WITH DEVSECOPS

Sumo Logic is an all-in-one
observability and security platform
that coalesces metrics, logging, and
tracing into a single pane of glass.

It’s designed to work with all of the tools you already use and

provides additional utility such as the Sumo Logic OpenTelemetry

Distribution to collect your data in a non-proprietary manner and

deliver real-time insights.

Visit Sumo Logic to learn more about how our SaaS analytics

platform helps global industry leaders deliver reliable and secure

digital experiences.

We’ve looked at the phases, tooling, and processes that

embody the spirit of DevSecOps and how they can enable an

SDLC that results in quick and secure innovation. DevSecOps

comes down to integrating security and observability culture,

processes and capabilities throughout your SDLC. By shifting

security and observability concerns to your entire team — and at

every step—your application will be more robust, cost-effective

and secure.

19

CONCLUSION

What’s next?

https://www.sumologic.com/

About Sumo Logic
Sumo Logic, Inc. (NASDAQ: SUMO) empowers the people who power

modern, digital business. Through its SaaS analytics platform, Sumo Logic

enables customers to deliver reliable and secure cloud-native applications.

The Sumo Logic Continuous Intelligence Platform™ helps practitioners and

developers ensure application reliability, secure and protect against modern

security threats, and gain insights into their cloud infrastructures. Customers

around the world rely on Sumo Logic to get powerful real-time analytics and

insights across observability and security solutions for their cloud-native

applications. For more information, visit: SUMOLOGIC.COM

©️ Copyright 2023 Sumo Logic, Inc. Sumo Logic is a trademark or registered trademark of Sumo Logic in the United States and in

foreign countries. All other company and product names may be trademarks or registered trademarks of their respective owners.

