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Abstract 

To scale the cost-effective deployment of demand side energy resources, utilities and other 
parties must access and utilize population consumption data for the comparative 
measurement of load impacts. However, insufficient and dated privacy protections for 
customer data have inhibited the release of data for the development of robust, 
standardized methods needed to create a common playing field for demand flexibility 
markets. Without the data resources needed to develop and execute consistent methods, 
dozens of competing measurement techniques have been adopted, resulting in ambiguity 
and confusion that ultimately discredits demand side solutions to modern grid and climate 
challenges.   
 
New tools are available that are capable of providing mathematically rigorous privacy 
protections while retaining the utility of the underlying data. In this work we use open-source 
Comparison Group sampling methods along with Energy Differential Privacy tools to assess 
the load impacts of a recent demand response event that was administered by OhmConnect 
to address an emergency electricity shortage on California’s grid. These open-source 
resources have been developed in partnership with the National Renewable Energy 
Laboratory and supported by the Department of Energy.  
 
Within Energy Differential Privacy, the choice of the core privacy parameter, ε, is an 
ongoing area of research and development. The question is not simply a technical one, but a 
negotiation between the mathematical, legal, political, and social aspects of data privacy. At 
its heart, the choice of ε represents the balance struck between data privatization and 
accurate information.  In differential privacy, as protection is achieved via the addition of, 
noise to underlying data or analysis results. However, noise also introduces error, which can 
decrease the value of measured resources in the market. 
 
In this work, we erred on the side of caution, picking epsilon values representing a high 
degree of privacy protection (lower epsilon equates to greater privacy protection), setting 
the comparison group at ε=0.843. This resulted in an error bound of 2.6% in the load impact 
measurement. Simulation of privacy threats against energy usage data, and especially 
derivatives like savings or demand flexibility (load shape impact), suggest that differential 
privacy guarantees dramatically reduce privacy risk. With continued stakeholder input and 
consideration of societal value versus customer privacy risk, along with improved privacy 
engineering, we believe significant room exists to further improve precision while 
maintaining robust privacy protections.   
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Research Summary 

To effectively deploy behind-the-meter flexibility to meet the grid challenges posed by 
short-term disaster events, medium-term disruptions such as COVID shutdowns, and 
long-term structural changes including decarbonization and increased renewable generation, 
utilities and other parties must be able to access and make use of population energy 
consumption data. 
 
Historically, however, a lack of smart meters and insufficient privacy protections for 
customer data have inhibited the development of methods needed to produce confident, 
predictable, and transparent telemetry into the impacts of these increasingly essential 
flexibility resources. 
 
To solve this problem, ​Recurve​, supported by DOE and in partnership with the National 
Renewable Energy Laboratory (NREL), Lawrence Berkeley National Laboratory (LBNL) and 
MCE, recently released the ​GRIDmeter​. This open-source methodology identifies comparison 
groups via stratified sampling on key usage parameters to enable a high level of accuracy 
and confidence in behind-the-meter resources. These data-driven approaches represent a 
robust solution to endemic measurement problems that have injected uncertainty into 
markets and inhibited access in both the energy efficiency and demand response markets. 
 
Essential to this innovation is the application of Energy Differential Privacy. This 
mathematically rigorous framework allows privacy-protected energy consumption data to 
inform comparative measurement, while ensuring robust privacy protection at an individual 
customer level. The application of Energy Differential Privacy goes beyond comparison group 
analyses. Recurve outlined several use cases in “​Differential Privacy for Expanding Access to 
Building Energy Data​” that includes customer targeting for enhanced demand-side program 
impacts, the assessment of ​COVID impacts​ to energy consumption, and a host of use cases 
for which population energy data can provide essential information are all made more 
secure, and therefore possible, with the incorporation of differential privacy methods. 
 
This report explains the Energy Differential Privacy framework for 
the protection of individual customer energy consumption data 
privacy while still deriving critical information. When used for a new 
class of demand flexibility analytics, the methods described here can 
enable accurate hourly measurement of event-driven demand response and predictable 
long-term load shaping through energy efficiency and other mechanisms. 
 
We then summarize how Energy Differential Privacy was applied to real data, quantifying 
the impact of OhmConnect’s virtual power plant of participating residential customers. This 
VPP was deployed to mitigate ​last summer’s major grid event​ that resulted in power outages 
across the State of California.  
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Differential Privacy Use-Case  

This work focuses on a real-world example of how differential privacy is unlocking the data 
necessary to facilitate accurate and reliable methods for measuring the impact of demand 
response during a period of extreme grid stress in California.  
 
Recurve is fortunate to have the partnership of OhmConnect, one of the most advanced 
aggregators of peak load reduction for residential customers, to provide an extremely 
relevant test case for the application of Energy Differential Privacy, and MCE, California's 
first community choice aggregator.  

 
Measuring OhmConnect’s VPP 
 

OhmConnect is a Residential Demand Response Virtual Power Plant developer based in 
California with over 150,000 customers nationwide. OhmConnect pays people to save 
energy in response to grid events and is in turn paid by utilities and CAISO for demand 
response and resource adequacy. During periods of peak usage, OhmConnect engages users 
through a combination of gamification, economic rewards, and direct control of grid-edge 
devices to reduce demand during peak events.  
 
On August 14th, 2020, high temperatures 
pushed the California grid into a significant 
event that resulted in statewide blackouts. In 
an emergency bid to enhance supply, the 
California Independent System Operator’s 
(CAISO) real-time marginal pricing skyrocketed 
to over $1000/MWh (compared to a typical 
price of around $35/MWh). However, 
day-ahead prices remained below the price cap 
of $1000/MWh. Behind-the-meter demand 
response resources were also dispatched to 
help reduce demand and stabilize the grid.  
 
However, OhmConnect and other Demand Response providers could not deliver their full 
potential due to the combination of a lack of available data and consistent methods for 
accurate measurement, and complex market rules, arbitrary market caps, and heavily 
discounted value for delivered load reductions. The day ahead LMPs did not reach the price 
cap during the rolling blackouts, and as a result, many Third Party Demand Response 
Providers did not dispatch their resources. Despite these barriers, OhmConnect did dispatch 
when called upon, taking on hundreds of thousands of dollars of liability that the company 
has been unable to recover. 
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M&V for Demand Response 
 

It is clear that under such conditions as encountered on August 14, any amount of energy 
saved or shifted off-peak is valuable. However, gauging the impacts of a demand-side 
intervention requires establishing a robust counterfactual that estimates customer energy 
consumption in the program’s absence. 
 
Current tactics for quantifying the impacts of behind the meter resources such as those used 
to assess Demand Response and Resource Adequacy rely on methods designed before the 
ability to access and process smart meter data became widely available. In addition to the 
technical challenges of applying outdated methods to the granular data sets now available 
through California's investment in smart meters, the lack of an adequate privacy framework 
has restricted access to the very data sets needed to identify appropriate comparison groups 
and thus enable accurate measurement. 
 
Without population datasets to conduct timely measurement, regulators, utilities, and 
implementers have had to rely on outdated methods to determine where, when, and how 
much a given program or intervention has affected energy consumption. 
 
The ​California Load Impact Protocols​ illustrate this problem. With 149 pages of flowcharts 
and narratives describing general methods for a range of use cases to measure demand 
response resources, the Protocols give multiple answers to the same question from different 
agencies and evaluators, even when looking at the same event. 
 
This chart, produced by 
OhmConnect, demonstrates the 
variance of the load impact 
measurements currently used for 
different California applications.  
 
Depending on which calculation 
method is used, very different 
values result – each of which is 
correct within the context of its 
implementation code and 
hundreds of embedded 
engineering choices that are not 
specified in advance. In fact, due 
to a lack of precise specifications for any of these methods, such as multiple applications for 
"same-day adjustments," different engineers can commonly get different answers, even 
using the same beginning scenarios. 
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Lack of a consistent measurement is a significant impediment to companies throughout this 
space. In an article in ​Microgrid Knowledge covering their recently announced Alphabet 
(Google) funded $100M virtual power plant,​ OhmConnect CEO Cisco DeVries commented 
that,  
 

“Depending on which agency we’re dealing with, there are five different ways that they 
count how our energy reduction is measured. And they change those all the time...In order 
to create a long-term investment in flexible load, it’s important to know how to count the 
megawatts. This affects what the consumers are paid as well as the types of devices that 
are controlled.” 

 
All of these approaches are limited by a lack of data and rather simplistic and easily biased 
methods. For example, the 10-in-10 calculations measure the DR baseline by taking an 
average of the customer’s last ten days of usage at the DR event time. This approach fails to 
account for the fact that the event day is usually much hotter than other days by its very 
nature. Lacking access to population data for a comparison group, a “same day adjustment” 
is made to scale the event to that day's energy use. There are multiple methods to calculate 
this adjustment, each producing different results with a range of known biases. In addition, 
the adjustment is often capped, though the caps can vary based on baselining 
methodologies (80-120% or 71-140%). 
 
The problem is compounded by the fact that a customer’s baseline is affected explicitly by 
other DR events. This means that responding to an event on one day can reduce the value of 
future event periods and create a dynamic where long-term and consistent energy efficiency 
or seasonal load shaping to fight the duck curve undermines the value of event-based DR.  
 
Convergence Data Analytics’ ​2018 Load Impact Evaluation for OhmConnect’s DR Resource 
report summed up the need for a comparison group and more advanced methods: 
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These issues are not specific to OhmConnect, affecting market access for a broad set of VPP 
providers. ​Leap​ provides a platform that includes everything from residential smart 
thermostats to commercial EV charging stations, and pumps at municipal water treatment 
facilities. 
 
According to Jason Michaels, Chief Commercial Officer at Leap, “Almost by definition, 
current baseline methods understate performance on the days when the grid has the 
greatest need for demand response, resulting in reduced incentive to support the grid in 
future events. More accurate methods for measurement and verification will help companies 
like Leap bring more flexible demand from local distributed energy resources to help balance 
the grid." 

 
Recurve FLEXmeter Settlement Quality Measurement 
 

In this work, Recurve combines the OpenEEmeter and GRIDmeter methods and code with the 
Energy Differential Privacy methods that have been developed with the partnership of DOE, 
NREL, and MCE. When applied consistently, this approach can overcome current 
measurement barriers and improve confidence in the delivered DR resource. In this way, DR 
resources can be correctly valued and fully deployed to stabilize and decarbonize the grid. To 
demonstrate this approach, Recurve carried out a load impact analysis of a fraction of 
OhmConnect’s participants during the hours of the August 14th demand response event. 
 
Recurve’s measurement methods involve a two-step calculation that is described in greater 
detail below. In short, a meter-level hourly baseline is created for every treated and 
comparison pool customer using the hourly ​CalTRACK​ methods and the The CalTRACK 
calculations yield hourly counterfactuals for each meter based on past consumption. 
 
Next, the GRIDmeter methods and code draw a comparison group sample from the 
comparison pool. At the heart of these methods, multidimensional stratified sampling on key 
usage characteristics is utilized to produce a comparison group that accurately reproduces 
the load shapes across the entire distribution of treatment customers.  
 
Using the CalTRACK model outputs, the difference between the observed hourly 
consumption and the counterfactual is measured for both treatment and comparison group 
customers. Taking the difference (known as the “difference of differences”) between these 
two sets of measurements yields the comparison-group adjusted hourly load impacts.   
 
This calculation can be made transparent and auditable by all parties and is significantly 
more accurate and reliable than any traditional existing demand response methods. 
 

Results from OhmConnect’s VPP Dispatch During the August 14th Event 
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Recurve applied the methods described above to a statistically significant random sample of 
OhmConnect customers in the MCE territory. Given the emergency situation on the California 
grid, most of the customers were called upon to reduce load during the full 3-hour window 
of the event. Often OhmConnect will ask customers to reduce load for shorter windows or 
will stagger the event hours across different populations. 
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Revenue-Grade Demand Flexibility 
 
The figure below shows observed consumption (open circles) and CalTRACK hourly 
counterfactual (dashed curve) results for the treatment group of OhmConnect customers on 
the date of the demand response event (Aug. 14, 2020).  
 

 

TREATMENT GROUP: 
 

-17.5%  
Event Demand Reduction 
 

 
 

 

 

The next figure shows analogous results for the comparison group selected by the 
open-source GRIDmeter. This difference between the curves in the below figure represents 
the exogenous change in the comparable population. For example, perhaps these event hours 
were unusually hot (likely), or customers were hearing on the radio about a flex alert and 
taking action even without OhmConnect. This comparison group enables us to net those 
effects out. 
 
Note the fuzzy line around the comparison group in the figure below. That “fuzz” is the noise 
being introduced via Energy Differential Privacy and is precisely what protects individual 
customer records thus enabling the use of population data. 
 

http://www.caltrack.org/
https://www.lfenergy.org/projects/openeemeter/


 
 

 
 
Data Privacy Context 
 

To make appropriate legal use of non-participant data for comparison groups and other use 
cases, the data must be obscured through privatization techniques that guarantee data for 
any particular customer cannot be revealed by any means. Such privacy restrictions are 
common.  As the use of restricted data is vital for the continued development and 
improvement of the DR industry, it is essential to develop dedicated techniques to fully 
preserve data privacy while allowing for its productive use.  The development and 
application of one such technique, differential privacy, is the principal focus of this report. 
Non-participant data is provided by our research partner MCE (California’s first Community 
Choice Aggregator), while OhmConnect provides participant data; both datasets are 
privatized using differential privacy. 
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COMPARISON GROUP: 
 

-1.8% ​±0.5%  
Event Demand Reduction 
 

 
 

 

 
Settlement-Quality Net Impact to Loadshape 
 
Finally, the next plot shows the final load impact measurement resulting by combining the 
measurements of the first two figures. for treated customers. 
 

 

NET IMPACT: 
 

-19.3%​ ​±0.5%  
Event Demand Reduction 
 

≡1.26​ ​kW  
Event Demand Reduction 

 
With an Energy Differential Privacy protected comparison group, Recurve is providing a 
transparent revenue-grade calculator of the ​net hourly impact to demand​ during this event 
window delivered by OhmConnect’s customers in the MCE service territory. 

http://grid.recurve.com/
http://edp.recurve.com/


 
 

In the 15/100 approach, a common privatization tactic used in the industry, an aggregation 
of buildings must be composed of at least 100 buildings. No building can contribute to more 
than 15% of the total usage; if these conditions are met, the aggregation is considered 
publishable, and the data safe. Unfortunately, this class of anonymization technique, while 
simple to understand, suffers from a number of unintuitive weaknesses, which have been 
gradually revealed by the privacy research community over the last decade. These 
weaknesses are only growing more significant as more data are collected and computational 
power increases. 
 
Differential privacy is an emerging solution to these problems. Differential privacy is a 
rigorous mathematical framework for obscuring data through the addition of “noise,” i.e., 
random numbers, which allows for quantifiable guarantees regarding the data’s safety.  It 
was first developed in 2006 and is now commercially used by Google, Apple, and Uber as 
well as in the public sector by the US Census. 

 

 
 

In practice, privatized data is represented not as a single number but rather as a confidence 
interval within which the true result falls to a certain degree of confidence.  For example, if 
the true result is 1.7, the published report might declare that the true result lies within the 
interval (1.5, 1.8) at 95% confidence. 
 
Sensitive data in this report has been protected through differential privacy. An attacker with 
perfect information can only increase their knowledge about whether an individual’s data 
was even included in the dataset up to a threshold, parameterized by the variable ε 
(epsilon). Smaller ε values result in a stronger privacy guarantee, while larger ε values 
provide a weaker privacy guarantee.  
 
Over the past two years, Recurve has investigated differential privacy methods and 
developed Energy Differential Privacy, an open-source library, ​EEprivacy​, which provides 
convenient implementations of differential privacy functions tailored towards energy data 
privacy use cases. 
 
With Energy Differential Privacy to enable data access with mathematically rigorous privacy 
methods, we are confident that the foundational measurement barriers inhibiting large scale 
deployment of demand response and other behind-the-meter resources can be solved.  
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Privacy Model 

In this section, we describe the data, transformations, and privacy considerations for 
comparison group analysis. What sensitive data are we handling? How is it transformed into 
aggregate statistics? Which statistics will be published and to whom? How do these statistics 
tie back to privacy risk for individuals?  
 
This overall model of the privacy problem will then inform the concrete anonymization 
procedure that follows. 

 
Datasets 
 

We consider one sensitive dataset of residential energy consumption: the Comparison Group 
Pool. The other dataset employed, the Treatment Group Pool, is not sensitive, as participants 
gave their consent for data to be used for Demand Response applications. 
 
To build CalTRACK hourly models and counterfactuals for all meters in the treatment and 
comparison pools, hourly data for the months leading up to and subsequent to the demand 
response event on Aug. 14, 2020 were utilized. The comparison pool includes 62,174 
non-solar electric meters that are randomly sampled from MCE’s residential customer base 
of approximately 500,000, with 4,948 eventually selected as the comparison group. The 
treatment group is composed of 961 non-solar buildings selected from OhmConnect 
customers in MCE service territory. 
 
Besides directly observed energy consumption, the dataset also included “predicted” energy 
consumption, which is weather normalized energy consumption predicted by the ​eemeter​.  
 

 
Dataset structure 

 
All of these data are classified as sensitive. 
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Site  Measure  Hour of Day  Energy 
Consumption (kWh) 

ae871abc82  observed  0  1.0 

ae871abc82  predicted  1  1.1 

ae871abc82  observed  0  1.0 

... 



 
 

 
Outputs 
 

Two population-level outputs are desired: 
 

● Average Load Shape 
● Percent Savings 

 
However, before these outputs can be constructed, a comparison group must be selected 
from the comparison pool. 
 
A simplified version of this procedure is described for privacy analysis.  
 
First, a set of one or more numerical features derived from energy consumption (e.g., total 
energy consumption) is computed for each meter in the treatment group and comparison 
pool during a time that excludes the DR event of interest, producing a treatment dataset and 
comparison dataset.  
 
The treatment dataset is grouped into a set of bins, and the proportion of treatment meters 
in each bin is computed.  Next, those bins are applied to the comparison dataset. A set of 
meters is sampled from the comparison pool so that the proportion of comparison meters in 
each bin is equal to the proportion of treatment meters in each bin. The resulting set of 
sampled meters is called the “comparison group” and should have energy consumption 
patterns similar to those of the treatment group. The procedure is diagrammed below:  
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Schematic of simplified comparison group matching procedure 
 
From there, the desired outputs are computed for each of the two groups and compared to 
one another to quantify energy savings.  
 
Using the GRIDmeter, the stratified sampling is conducted on a multidimensional basis using 
parameters expected to be sensitive to the intervention under investigation. In this case, 
Recurve used three usage-derived features as the basis of stratified sampling: Summer 
MWh usage, the percentage of usage from cooling (determined from the CalTRACK 2.0 Daily 
model run through the OpenEEmeter, and the percentage of customer usage during the 
summer peak period (June - September; 4 - 9 pm).  
 
The automated sampling approach generates candidate comparison groups based on every 
possible stratification binning arrangement. The quality of the match between the treatment 
group and each candidate comparison group is then assessed across the full distribution of 
treatment group customers. This is done by breaking the treatment group into dozens of 
subgroups on the basis of total consumption. The average summer weekly load shape is 
computed for each subgroup. This procedure is also done for each candidate comparison 
group. The sum of squares (sum chi-squared statistic) is then calculated across all treatment 
and candidate comparison subgroup weekly load-shaped profiles. The final comparison 
group is selected as the group that minimizes this chi-squared summation. This process is 
fully automated via the GRIDmeter code. 
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Energy Differential Privacy Approach 
 

The methods described here adopt the global model of differential privacy, adding noise to 
the final statistic value before output. That is, after calculating the statistic exactly, a 
random number is drawn and added to the statistic. 
 
For comparison group statistics, data flows as follows: 
 

● Starting from a pool of meters 
● Select a stratified comparison group sample that best matches the treatment group  
● Compute statistic from the comparison group 
● Add noise to the exact statistic 
● Return the noisy statistic 

 

 
 

Comparison group statistic workflow 
 

This model realizes a differential privacy guarantee for participants in the comparison group, 
as even if an attacker can manipulate the comparison group to guarantee a site’s inclusion, a 
calibrated amount of uncertainty will remain for this site. 
 
 

Procedure 

This section documents the step-by-step anonymization procedure to realize a differential 
privacy guarantee of comparison group statistics. 
 

Choosing Clamping Bounds 
 

For the private queries that follow, clamping bounds must be chosen to bound sensitivity. 
That is, a lower and upper bound for hourly consumption data must be specified upfront. 
The tighter the clamping bounds that are set, the more efficiently the privacy budget will be 
used. However, too tight of clamping bounds will introduce unpredictable error into 
downstream calculations. 
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For this dataset, we use the Sparse Vector Technique (SVT) to choose a clamping bound. The 
background on this approach is documented in ​EEprivacy​: ​Choosing Clamping Bounds with 
the Sparse Vector Technique​.  
 
SVT was run against a series of clamped sum queries. Each query computed the difference 
between two clamped sum queries of total energy consumption with clamping bounds 
differing by 1 kWh. This results in a sensitivity of 1 kWh for the SVT queries. The target 
threshold was an error of less than 0.01 kWh average across 24 hours (or 0.24 kWh total 
across 24 hours). 
 
To choose a privacy parameter for SVT, the distribution of hourly consumption values was 
found with a histogram query at ε=0.1.  
 

 
 
The histogram query was used to generate a synthetic dataset to find the required SVT ε. It 
was found that an ​ε=0.2​ was required for accurate SVT (999/1000 trials agreeing on a 
clamping bound). 
 
An SVT query for a clamping bound returned ​6.0 kWh ​to realize an error below a threshold 
of 1,652 kWh (0.01 kWh hourly). 
 

Comparison Group Average Load Shape (Gaussian Mechanism) 
 

A private load shape was constructed for the comparison group using the vector-valued 
Gaussian Mechanism. 
 
Exact averages were computed for each hour for both predicted and observed consumption 
values, then Gaussian noise was added. Since the exact count of sites is non-private, it does 
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not contribute to the sensitivity. The sensitivity for each element of the private mean vector 
is identical:  
 

Δ = (U-L)/N 
 
where ​U ​is the upper clamping bound (6 kWh), ​L ​is the lower clamping bound (zero), and N is 
the number of sites. 
 
In our privacy model, the differential privacy guarantee is applied across all hours under 
analysis. Therefore, a vector-valued Gaussian Mechanism query was executed for 48 data 
points (24 each of observed and predicted consumption). 
 
The ​EEprivacy ​library’s ​epsilon_for_confidence_interval ​function was employed to choose an 
ε value to result in a 95% confidence interval of ±0.1 kWh. 
 
The 𝜹 parameter was set to 1/N​2​ = 4.08 * 10​-8 

 
The comparison group (N=4948) required ε=4.0. 
 

 

Percent Load Change (Laplace Mechanism) 
 

Percent Load Change is defined as the following: 
 

ercentLoadChange P =  μPredicted

μ −μPredicted Observed = ΣPredicted
ΣPredicted − ΣObserved  

 
Where ​µ​Observed​ ​is the average of observed consumption values, while ​µ​Predicted ​is the average of 
weather-normalized consumption values (computed using the ​EEmeter​), these averages are 
calculated across the event period (6 PM-9 PM). 
 
Two sum queries are issued in total, one for each sum (predicted, observed) for the 
comparison group. The Laplace Mechanism was used for the sum query with a sensitivity of 
18 kWh (6 kWh x 3 hours). 

Recurve Analytics Inc., December 2020 Page: 16 



 
 

 
The required ε was determined stochastically to achieve approximately 1% (one percentage 
point) error in the final percent load change. 
 
For the comparison group ε=1.25 per sum query. 
 
The final results for the three hour event were: 
 

 
 

Implementation Notes 

 

The algorithm design performed above utilized the open-source ​EEprivacy​ library for 
determining confidence bounds and choosing ε values. 
 
Google’s ​differential privacy​ Go library was used to determine the Analytical Gaussian sigma 
values and securely add noise. This secure noise source was employed primarily to mitigate 
the floating-point attack  against differential privacy. 1

 

Total Privacy Impact 

We can tally up total privacy impact by Basic Composition Theorem, adding the ε for each 
output statistic, then accounting for privacy amplification by “Secrecy of the Sample” (since 
the population under study is a sample of a larger population, and it can be expected that 

1 Mironov, I., 2012. On significance of the least significant bits for differential privacy, in: Proceedings 
of the 2012 ACM Conference on Computer and Communications Security - CCS ’12. Presented at the 
the 2012 ACM conference, ACM Press, Raleigh, North Carolina, USA, p. 650. 
https://doi.org/10.1145/2382196.2382264 
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Total Predicted Comparison  23602.2 kWh 

Total Observed Comparison  24023.2 kWh 

Total Predicted Treatment  4439.6 kWh 

Total Observed Treatment  3662.2 kWh 

   

Percent Load Change Comparison  -1.78±0.51% 

Percent Load Change Treatment  17.5% 

Difference of Load Changes  19.3%±0.51% 
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the sample used for analysis will remain secret, then the privacy impact can be reduced by 
the fraction of the total population that this sample represents). 
 
The total privacy impact for this scenario is summarized below: 
 

 
Privacy Impact of OhmConnect Comparison Group Use Case 

 
 
 

Interpreting Epsilon 
 

The large size of the comparison group, as well as the even larger size of the comparison 
pool, resulted in quite small overall ε values for comparison group participants. But what 
does “quite small” mean, exactly? 
 
By way of comparison, Google’s COVID-19 mobility data subjects users to a daily ε=1.76, 
while Facebook’s COVID-19 Movement Range report subjects users to daily ε=2.0. Other 
applications, like LinkedIn and the US Census, set ε values in the range of 4 to 9. 
 
These applications all consider significantly more sensitive datasets than the comparison 
groups use case outlined here. For example, the location data in Google’s mobility report can 
directly lead to privacy harm for individuals. Energy data, on the other hand, does not 
directly lead to privacy harm. To illustrate this point, we simulate an isolation attack against 
the private load shape data. 

2 Differential privacy and the secrecy of the sample, 2009. Oddly Shaped Pegs. URL 
https://adamdsmith.wordpress.com/2009/09/02/sample-secrecy/​ (accessed 10.19.20). 
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  Comparison 
Group ε 

Consumption Histogram  0.1 

SVT for Clamping Bound  0.2 

Comparison Group Load Shape  4.0 

Total Predicted Comparison  1.25 

Total Observed Comparison  1.25 

Total Privacy Impact 
(Pre-amplification) 

6.8 

Amplification factor  2 0.124 

Total Privacy Impact  0.843 

https://adamdsmith.wordpress.com/2009/09/02/sample-secrecy/
https://adamdsmith.wordpress.com/2009/09/02/sample-secrecy/


 
 

 
In an isolation attack, an attacker is assumed to know the energy consumption for all 
buildings in a dataset except one. Using this knowledge, the attacker subtracts out all but a 
single site’s energy consumption, revealing an individual’s data. 
 
The figures below illustrate the best guess that an attacker would have of an individual’s 
energy consumption for a query of ε=0.843 (the overall ε for OhmConnect comparison 
group participants) ​if they had access to every other site’s energy data in the treatment 
group. 
 

 

That is, even being able to isolate a single site, the noise added by the Gaussian Mechanism 
limits an attacker to a confidence interval of around ±1,000 kWh for hourly consumption. A 
house consuming this much energy would have to be literally melting tons of steel in a 
backyard furnace. 
 
Interpreting the ε guarantee is an ongoing area of research with no final answer yet. So far,                                 
it appears that useful analytics tasks are possible at ε with strong privacy guarantees. 

 

Conclusions 

The method described in this document is the first integration of population comparison 
group methods with differential privacy. These results demonstrate that usable outputs are 
possible to achieve with strong privacy guarantees. 
 

● We showed that it is possible to enable population control groups while rigorously 
protecting customer data utilizing differential privacy. 

● It is possible to publicly share data on portfolio load shapes utilizing differential 
privacy methods on treated customer data. 

 

The OhmConnect example described above shows that it is possible to overcome historical 
roadblocks created by outdated privacy rules to use population data to measure demand 
impacts while maintaining the privacy of all individuals at a level comparable to what Google 
uses to protect location data. 
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Energy Differential Privacy and the results of this essential and timely measurement of 
Ohmconnect’s VPP are examples of how we can utilize our investments in smart metering 
infrastructure and data to solve important public and private problems. There are many use 
cases for the population data that can be unlocked using these methods, including learning 
more in our white paper. 

 
Finding the Balance Between Privacy and Accuracy 
 

Finding the right balance point between making data both private and useful, is an ongoing 
area of research. As privacy protection is increased, greater levels of noise are added to 
data. However, noise also introduces error, which can decrease the value of  measured 
resources in the market. 
 
The choice of ε is an ongoing area of R&D in the energy sector. The question is not simply a 
technical one, but a negotiation between the mathematical, legal, political, and social 
aspects of data privacy. 
 
For this exercise, we erred on the side of caution, picking epsilon values representing a high 
degree of privacy protection (lower epsilon equates to greater privacy protection), setting 
the comparison group at ε=0.843. This resulted in a savings of 19.3%±0.5%. 
 
Our initial simulation of privacy threats against energy usage data, and especially derivatives 
like savings or demand flexibility (load shape impact), suggest that differential privacy 
guarantees dramatically reduce privacy risk. With continued stakeholder input and reflective 
of the societal value vs. relative risk to customer privacy, as well as improved privacy 
engineering, we believe there is significant room to improve precision and still maintain very 
appropriate and conservative privacy protections. 
 

Future Work 
 

This work is just the start. Additional privacy engineering could make more efficient use of 
the privacy budget. One area for improvement would be to re-use the Load Shape queries 
for the Percent Savings calculations; the outputs needed to calculate all of these quantities 
could be issued in a single vector-valued GaussianMechanism query. 
 
Another area for future privacy engineering concerns the Laplace Mechanism composition 
bounds. The Laplace Mechanism sum queries do not tightly bound the sensitivity of the 
Percent Load Change statistic.  
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Additional threat modeling could scope down the privacy impact from this worst-case 
scenario. The US Census, for example, finds empirical privacy loss to be a factor 10X less 
than worst-case privacy loss in almost all cases . 3

 
There is also a need for a policy debate about the balance of privacy, societal value, and true 
privacy loss. The data used in this analysis is a derived value called hourly resource curve or 
savings, which is a derived value that contains minimal personal information and a 
seemingly low risk in real terms to privacy.  
 
   

3 Petti, S., Flaxman, A., 2019. Differential privacy in the 2020 US census: what will it do? Quantifying 
the accuracy/privacy tradeoff. Gates Open Res 3, 1722. 
https://doi.org/10.12688/gatesopenres.13089.1 
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Appendix A: Measurement Methods 
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FLEXmeter: Measuring net impact to load-shape of DR events 
 

The methodology relies on three open-source tools developed at Recurve: 
● EEMeter​, an implementation of the ​CalTRACK​ methodology 
● GRIDmeter​, a stratified sampling method for comparison group construction 
● Energy Differential Privacy​, differential privacy techniques for energy data 

 

Set up a comparison group 
● Obtain a population of participant (treated) and non-participant (non-treated) 

customers.  Typically, non-participants will be a large set from the utility customer 
pool of which limited metadata is available, and data privacy restrictions are higher. 

● Extract typical load shapes for each participant and non-participant. 
● Using GRIDmeter, identify a subset of non-participants who have load-shape 

characteristics similar to those of the participating customers.  This is the 
comparison group. 

 

Compute baselines and counterfactuals 
● Using EEMeter, fit the CalTRACK hourly model to each customer in the treatment 

and comparison groups, with the DR event period blacked out, to learn each 
building’s temperature-dependent behavior and occupancy schedule. 

● During the DR event, apply the measured temperature and time-of-week to the 
fitted model and predict the energy use.  This is the meter’s counterfactual energy 
usage during the event. 

 

Compute population-level savings and correct with a comparison group 
● Sum observed and counterfactual energy usage hour-by-hour to create 

population-level observed and counterfactual load shapes for both treatment and 
comparison groups. 

● Compute percentage impact to load-shape hour-by-hour (i.e., percentage savings), 
for both treatment and comparison groups, using observed and counterfactual. 

● Compute net population-adjusted percent impact to load shape hour-by-hour by 
subtracting comparison group percent impact from treatment group percent 
impact. 

 

Privatize 
● Compute an appropriate quantity of random noise to be added to the final percent 

impact numbers using Energy Differential Privacy techniques in EEprivacy. 
● Publish a set of confidence intervals that contain the true results within the desired 

accuracy, e.g., 95%.  The source data is guaranteed to remain private. 
 

https://www.lfenergy.org/projects/openeemeter/
http://www.caltrack.org/
http://grid.recurve.com/
http://edp.recurve.com/
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