

Secure Coding Standard Controls

Template

Choose Classification

DATE: Click here to add date

VERSION: Click here to add text

REF: Click here to add text

This is a guidance box. Remove all guidance boxes

after filling out the template. Items highlighted in

turquoise should be edited appropriately. After all

edits have been made, all highlights should be

cleared.

Insert organization logo by clicking

on the outlined image.

Replace <organization name> with the

name of the organization for the entire

document. To do so, perform the following

• Press “Ctrl” + “H” keys

simultaneously

• Enter “<organization name>” in

the Find text box

• Enter your organization’s full

name in the “Replace” text box

• Click “More”, and make sure

“Match case” is ticked

• Click “Replace All”

• Close the dialog box.

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

1

Disclaimer

This template has been developed by the National Cybersecurity

Authority (NCA) as an illustrative example that can be used by organizations as

a reference and guide. This template must be customized and aligned with the

<organization name>’s business and relevant legislative and regulatory

requirements. This template must be approved by the head of the organization

(Authorizing official) or his/her delegate. The NCA is not responsible for any use

of this template as is, and it affirms that this template is solely an illustrative

example.

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

2

Document Approval

Signature Date Name Job Title Role

<Insert

signature>

Click here to add
date

<Insert individual’s full
personnel name>

<Insert job title> Choose Role

Version Control

Version Details Updated By Date Version

<Insert description of the

version>

<Insert individual’s full
personnel name>

Click here to add
date

<Insert version
number>

Review Table

Upcoming Review Date Last Review Date Periodical Review Rate

Click here to add date Click here to add date <Once a year>

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

3

Table of Contents
Purpose .. 4

Scope ... 4

Standard Controls .. 4

Roles and Responsibilities ... 35

Update and Review .. 36

Compliance .. 36

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

4

Purpose

This standard aims to define the detailed cybersecurity requirements

related to coding protection for <organization name> in order to minimize cyber

risks resulting from internal and external threats at <organization name>.

The requirements in this standard are aligned with the cybersecurity

requirements issued by the National Cybersecurity Authority (NCA) including

but not limited to (ECC-1:2018) and (CSCC-1:2019), in addition to other related

cybersecurity legal and regulatory requirements.

Scope

This standard covers all software and application coding activities,

projects and practices and information and technology assets at <organization

name> and applies to all personnel (employees and contractors) at

<organization name>.

Standards

1 Secure Code Development

Objective

To provide cybersecurity requirements to ensure the protection

of software and application development activities and

cybersecurity controls to secure developed software .

Risk

Implication

Insecure code development practices could create security

vulnerabilities that could be exploited to jeopardize the

confidentiality, integrity and availability of <organization

name>’s data and business operation .

Requirements

1-1
A Secure Software Development Life Cycle (SSDLC) process

Must be developed and implemented.

1-2
A DevSecOps methodology and process must be developed

and adopted.

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

5

1-3

Cybersecurity requirements must be provided in the initial

phases of software development and incorporated in the SSDLC

process .

1-4

Cybersecurity testing must be conducted in the testing phases

of software development and incorporated in the SSDLC

process .

1-5

Automatic security testing must be developed and conducted in

the testing phases of the SSDLC to detect malicious code

injection, malware infection and known cybersecurity attacks.

1-6

Different techniques of cybersecurity testing must be used

against all the development phases of the application (e.g.

fuzzing, black box tests).

1-7
A secure environment must be designed and configured for

development, testing and quality assurance purposes.

1-8 The secure coding guidelines under Table (A) must be

implemented .

1-9 Memory-safe language must be used and the application must

be tested against memory attacks.

1-10

Mitigations to the Open Web Application Security Project

(OWASP) API Top 10 Application Security Risks must be

implemented for critical systems and applications .

1-11
Mechanisms to restrict modification of production source code

or production data must be implemented .

1-12
Third party vendors must be required to adhere to <organization

name>’s cybersecurity policies and standard controls .

1-13
Only up-to-date, trusted and licensed sources of software

development tools, libraries and components must be used .

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

6

1-14

Web application security controls must be implemented as per

<organization name>’s Web Application Security Policy and

Standard .

1-15

Standardized and extensively reviewed encryption algorithms

must be used only as per relevant standard controls and

procedures.

1-16

All versions of all software acquired from outside <organization

name> must be verified to be still supported by the developer

and appropriately hardened based on the developer's security

recommendations .

1-17

Conduct training on writing secure code appropriate to the

programming language and development environment being

used for all software development personnel .

1-18

Ensure that all personnel involved in the SDLC of <organization

name> are prepared to perform their SDLC-related roles and

responsibilities throughout the SDLC.

1-19

<organization name> must secure and harden development

endpoints (e.g., endpoints for software designers, developers,

testers, etc.) by performing security development-related tasks

using a risk-based approach.

1-20

<organization name> must limit access to development

environment and enable event logs to ensure only authorized

changes to code.

2 Source Code Repository

Objective
To provide cybersecurity controls to ensure the protection of

source code, libraries, and source code repository .

Risk

Implication

If the source code repository and libraries are not properly and

sufficiently protected, <organization name>’s source code could

be exposed, tampered or accessed without authorization .

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

7

Requirements

2-1
A secure source code repository that has authentication, version

control, and logging enabled must be used.

2-2

Deny access to source code and source code repository for

anyone except application developers and owners when

needed.

2-3
A unified version control numbering scheme must be used to

reflect when updated versions of the software are installed .

2-4 Outdated versions of source code must be archived periodically.

2-5
Source code for applications under development must be

segregated from source code for applications in production .

2-6
The source code of end of life applications must be archived to

ensure that it can still be retrieved if needed.

2-7

A copy of the source code for all applications developed by third

parties specifically for <organization name> must be acquired

and stored in a secure source code repository.

2-8

Container and Docker security hardening standard controls and

security best practices guidelines must be developed and

implemented.

2-9

Secret management mechanisms must be deployed to manage

secrets, keys and certifications and prevent storing secrets in

containers .

2-10
Container images must be used from trusted or approved

sources .

2-11

A private container registry must be used to ensure only verified

and safe container images are downloaded to <organization

name>'s system, and that every image is scanned for common

known vulnerabilities.

2-12 Containers must not be run with super user accounts .

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

8

3 Secure Code Review and Testing

Objective

To provide assurance on the implemented secure coding

cybersecurity controls and detect weaknesses, vulnerabilities

and issues in software.

Risk

Implication

If the source code and code development activities are not

regularly tested and reviewed for security vulnerabilities,

misconfigurations and weaknesses, <organization name> could

be exposed to severe security risks .

Requirements

3-1
A secure code review process must be conducted regularly for

internally developed web applications .

3-2

Static and dynamic analysis tools must be applied to verify that

secure coding practices are being adhered to for internally

developed software .

3-3

Conduct a secure code review process regularly for all

applications developed by third parties specifically for

<organization name>.

3-4

Security controls of new internally developed applications must

be reviewed and approved prior to application deployment into

the production n environment .

3-5

Existing internally developed applications must be re-evaluated

and re-approved after a significant change is made to the

application, or after a predetermined period.

3-6

Risk assessments for all applications under development, or

which are purchased, must be conducted to determine the

controls required to mitigate application risks to acceptable limits

prior to deployment into production environment (refer to

<organization name>’s Risk Management Policy).

3-7 Cybersecurity compliance testing must be conducted for

software against <organization name>’s cybersecurity policies

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

9

and standard controls prior to deployment into production

environment .

3-8

OWASP Application Security Verification Standard must be

employed as a guide to define security requirements and

generate test cases to review critical systems and applications .

3-9

Configurations review of software, including secure

configuration hardening and patching, must be conducted prior

to deployment into production environment.

3-10

Cybersecurity testing; including vulnerability assessment,

penetrating testing and secure code review; must be conducted

prior to deployment into production environment .

3-11

Cybersecurity testing, including vulnerability assessment and

penetrating testing, must be conducted after deployment into

production environment .

3-12

All developed application security issues discovered during the

secure code review must be remediated prior to implementation

into production environment .

3-13
Developed applications must be tested to ensure that

Segregation of duties controls are appropriately implemented .

3-14

Test accounts and test data that are used in non-production

environments must be removed before the application is moved

into production .

3-15

Test and development environment must be logically separated

from production and other environments using network

restrictions by configuring Access-Control Lists (ACLs) and

security policies on firewalls .

3-16

Source code peer-review must be conducted by a developer

who did not write any of the code prior to its deployment into

<organization name>’s production environment .

3-17
Only approved and licensed source code and software security

assessment tools must be used.

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

10

3-18

Security testing for developed applications must be performed

in all testing phases of SDLC including non-functional testing,

Unit Testing (UT), System Integration Testing (SIT), and User

Acceptance Testing (UAT) .

3-19
A process and registry must be developed and maintained to

manage software bugs, vulnerabilities and security issues .

3-20
Testing must be embedded as part of the Continuous

Improvement/Continuous Development (CI/CD) pipeline .

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

11

Table A – Secure Coding Guidelines

A1 OWASP:A1:2021 Access Control – Broken Access Control

A1-1
It must be verified that users can only access secured functions

or services for which they possess specific authorization .

A1-2
It must be verified that users can only access secured URLs for

which they possess specific authorization.

A1-3
It must be verified that users can only access secured data files

for which they possess specific authorization .

A1-4 It must verify that access controls are not bypassed.

A1-5

It must be verified that direct object references are protected in

a way that ensures only authorized objects are accessible to

each user .

A1-6
It must be verified that directory browsing is disabled unless

required .

A1-7

It must be verified that users can only access protected data for

which they possess specific authorization (for example, by

implementing controls to protect against direct object reference

tampering and prevent unauthorized access to data).

A1-8 It must be verified that access controls fail securely .

A1-9

It must be verified that the same access control rules implied by

the presentation layer are enforced on the server side for that

user role, and that controls and parameters cannot be re-

enabled or re-added by users with higher privileges.

A1-10

It must be verified that all user and data attributes and policy

information used by access controls cannot be manipulated by

end users unless specifically authorized .

A1-11
It must be verified that all access controls are enforced on the

server side .

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

12

A1-12
It must be verified that all access control decisions can be

logged and all failed decisions are logged.

A1-13

It must be verified that the application or framework generates

strong random anti-CSRF tokens unique to the user as part of

all high value transactions or accessing protected data, and that

the application verifies the presence of such tokens with the

proper value for the current user when processing these

requests .

A1-14

Aggregate access control protection – It must be verified that

the system can protect against aggregate or continuous access

of secured functions, resources, or data, possibly by the use of

a resource governor, for example, to limit the number of

registrations per hour or to prevent the entire database from

being scraped by an individual user .

A1-15

It must be verified that a centralized mechanism (including

libraries that call external authorization services) is in place to

control access to each type of protected resource .

A1-16

It must be verified that there is segregation between code

sections where privileges are elevated from other application

code .

A1-17

Appropriate access controls must be implemented for protected

data stored on the server. This includes cached data,

temporary files and data accessible only by specific system

users .

A1-18

It must be verified that service accounts or accounts supporting

connections to or from external systems have the least privilege

possible .

A1-19

It must be verified that account auditing is implemented and that

unused accounts are disabled (for example, after more than 30

days from the expiration of an account’s password, inactive

account).

A1-20 If long authenticated sessions are allowed, a user’s

authorization must be periodically re-validated to ensure that

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

13

their privileges have not changed. In case their privileges have

changed, the user must be logged out and forced to re-

authenticate (e.g., SMS, tokens, etc.)

A1-21

It must be verified that the application supports disabling of

accounts and terminating sessions when authorization ceases

(for example, upon changes to role, employment status,

business process, etc.).

A2 OWASP:A2:2021 Cryptography – Cryptographic Failures

A2-1

It must be verified that all cryptographic functions used to

protect secrets from the application user are implemented on

the server side .

A2-2 It must be verified that all cryptographic modules fail securely.

A2-3

It must be verified that any master secret(s) is protected from

unauthorized access (A master secret is an application

credential stored as plaintext on disk that is used to protect

access to security configuration information).

A2-4

It must be verified that all random numbers, random file names,

random GUIDs, and random strings are generated using the

cryptographic module’s approved random number generator

when these random values are intended to be unguessable by

an attacker .

A2-5

It must be verified that cryptographic modules used by the

application have been validated as per relevant policies and

procedures.

A2-6

It must be verified that cryptographic modules operate in their

approved mode in accordance with relevant policies and

procedures.

A2-7

It must be verified that there is an explicit policy for how

cryptographic keys are managed (for example, generated,

distributed, revoked, or expired), and that this policy is properly

enforced .

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

14

A2-8

It must be verified that non-repudiation through cryptography

(digital signing) is present for sensitive transactions (e.g.,

financial or e-commerce transactions and record, etc.) .

A2-9

It must be verified that all cryptographic keys are adequately

protected. If a key has been compromised, it must no longer be

trusted and must be replaced or revoked .

A2-10

It must be verified that Personally Identifiable Information (PII)

and protected information and data are stored encrypted at

rest .

A2-11

It must be verified that all forms containing protected

information have disabled client-side caching, including

autocomplete features.

A2-12

It must be verified that all protected data is sent to the server in

the HTTP message body (i.e., URL parameters must never be

used to send protected data) .

A2-13

It must be verified that all cached or temporary copies of

protected data stored on the server are protected from

unauthorized access, and that those temporary working files

are purged a soon as they are no longer required .

A2-14

Client-side caching or temporary copies of pages containing

protected data must be disabled. Additionally, it must be

verified that such copies are protected from unauthorized

access or purged/invalidated after an authorized user accesses

the protected data). (Cache-Control: no-store, may be used in

conjunction with HTTP header control "Pragma: no-cache ,"

which is less effective, but is HTTP/1.0 backward compatible).

A2-15

It must be verified that the list of protected data processed by

the application is identified, and that there is an explicit policy

for how access to this data must be controlled, and when this

data must be encrypted (both at rest and in transit). Additionally,

it must be verified that such policy is properly enforced .

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

15

A2-16

It must be verified that there is a method to remove each type

of protected data from the application at the end of its required

retention period .

A2-17

It must be verified that the application minimizes the number of

parameters sent to untrusted systems, such as hidden fields,

Ajax variables, cookies and header values.

A2-18

It must be verified that the application has the ability to detect

and alert on abnormal numbers of requests for information, or

on the processing of high value transactions for a user's role,

such as screen scraping, automated use of web service

extraction, or data loss prevention. For example, the average

user must not be able to access more than 5 records per hour

or 30 records per day.

A2-19

It must be verified that credentials used by the application on

the server side; such as database connection, password and

encryption secret keys; are not hard coded. Any credentials

must be stored in a separate configuration file on a trusted

system and must be encrypted .

A2-20

It must be verified that autocomplete features are disabled on

forms expected to contain protected information, including

authentication .

A3 OWASP:A3:2021 Input validation – Injection

A3-1

It must be verified that the runtime environment is not

susceptible to buffer overflows , and that security controls

prevent buffer overflows .

A3-2

It must be verified that the runtime environment is not

susceptible to SQL Injection, and that security controls prevent

SQL Injection .

A3-3

Access control methods for (SQL) must be used such as

(LIMIT) to reduce the risk and the damage of the mass

disclosure of information and records.

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

16

A3-4

It must be verified that the runtime environment is not

susceptible to Cross Site Scripting (XSS), and that security

controls prevent XSS.

A3-5

It must be verified that the runtime environment is not

susceptible to LDAP Injection, and that security controls

prevent LDAP Injection .

A3-6

It must be verified that the runtime environment is not

susceptible to OS Command Injection, and that security

controls prevent OS Command Injection .

A3-7 Data type, range and length must be verified (if possible).

A3-8

If any potentially hazardous characters must be allowed as

input, additional controls; such as output encoding, secure task

specific APIs, and accounting for the utilization of that data

throughout the application; must be implemented. Examples of

common hazardous characters include: (+ &) (% ' " > < : \\ ' \").

A3-9
It must be verified that all input validation is carried out by a

centralized input validation routine for the application .

A3-10
It must be verified that all input validation failures result in input

rejection or input sanitization .

A3-11
It must be verified that all input validation or encoding routines

are performed and enforced on the server side .

A3-12

It must be verified that all untrusted data that is output to HTML

(including HTML elements, HTML attributes, JavaScript data

values, CSS blocks, and URL attributes) is properly discarded

for the applicable context .

A3-13
It must be verified that a character set, such as UTF-8, is

specified for all sources of input .

A3-14
It must be verified that all input data is cannibalized for all

downstream decoders or interpreters prior to validation .

A3-15 If the application framework allows automatic mass parameter

assignment (also called automatic variable binding) from the

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

17

inbound request to a model, it must be verified that security

sensitive fields such as “account Balance”, “role” or “password”

are protected from malicious automatic binding .

A3-16

It must be verified that the application has defenses against

HTTP parameter pollution attacks, particularly if the application

framework makes no distinction about the source of request

parameters (GET, POST, cookies, headers, environment, etc.)

A3-17
It must be verified that a single input validation controls are

used by the application for each type of data that is accepted .

A3-18 It must be verified that all input validation failures are logged .

A3-19

It must be verified that for each type of output

encoding/escaping performed by the application, there is a

single security control for that type of output for the intended

destination .

A4 OWASP:A4:2021 Insecure Design

A4-1

Application processes and all high value business logic flows

must be verified in a trusted environment, such as on a

protected and monitored server .

A4-2

It must be verified that the application does not allow spoofed

high value transactions, such as allowing Attacker User A to

process a transaction as Victim User B, by tampering with or

replaying session, transaction state, transaction or user IDs .

A4-3

It must be verified that the application does not allow high value

business logic parameters to be tampered with, which include,

but are not limited to, price, interest, discounts, PII, balances,

stock IDs, etc .

A4-4

It must be verified that the application has defensive measures;

such as verifiable and protected transaction logs, audit trails or

system logs, and, in the highest value systems, real time

monitoring of user activities and transactions for anomalies; to

protect against repudiation attacks.

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

18

A4-5

It must be verified that the application protects against

information disclosure attacks, such as direct object reference,

tampering, session brute force or other attacks .

A4-6

It must be verified that the application has sufficient detection

and governor controls to protect against brute force (such as

the continuous use of a particular function) or denial of service

attacks .

A4-7

It must be verified that the application has sufficient access

controls to prevent elevation of privilege attacks. Such controls

must include preventing anonymous users from accessing

secured data or secured functions, and preventing users from

accessing each other’s details or using privileged functions.

A4-8

It must be verified that the application processes business logic

flows in sequential steps only, with all steps being processed

directly. Additionally, the application must be verified not to

process out of order, skip steps, process steps from another

user, or process transactions submitted quickly.

A4-9

It must be verified that the application has additional

authorization (such as step up or adaptive authentication) for

lower value systems, and/or segregation of duties for high value

applications, to enforce anti-fraud controls as per the risk of

application and past fraud.

A4-10

It must be verified that the application has business limits and

enforces them in a trusted location (e.g., on a protected server)

on a per user or per day basis, with configurable alerting and

automated reactions to automated or unusual attack.

A4-11
Secure development lifecycle it must be established and used
by AppSec professionals .

A4-12
Library of secure design patterns it must be established and
used.

A4-13
Threat modeling it must be used for critical authentication,
access control, business logic, and key flows.

A4-14
Security language and controls it must be integrated into user
use cases.

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

19

A4-15
Security check it must be integrated at each tier of the
application (from frontend to backend).

A4-16

Unit tests it must be written and tested to validate all critical

flows are resistant against the threat model. It must compile

use-cases and misuse-cases for each tier of the application.

A4-17
Depending on the exposure and protection needs tier layers
must be segregated in the system and in the network layers,.

A4-18
Tenants must be segregated robustly by design throughout all
tiers.

A4-19
The consumption of resource it must be limited by user or
service.

A5
OWASP:A5:2021 Communication Security – Security

Misconfiguration

A5-1

It must be verified that a path can be built from a trusted CA to

each Transport Layer Security (TLS) server certificate, and that

each server certificate is valid.

A5-2

It must be verified that the latest version of TLS is used for all

connections (including both external and backend connections)

that are authenticated or involve protected data or functions.

A5-3
It must be verified that backend TLS connection failures are

logged

A5-4
It must be verified that all connections to external systems that

involve protected information or functions are authenticated

A5-5

It must be verified that all connections to external systems that

involve protected information or functions use an account that

has been set up to have the minimum privileges necessary for

the application to function properly

A5-6
It must be verified that failed TLS connections do not fall back

to an insecure connection

A5-7

It must be verified that certificate paths are built and verified for

all client certificates using configured trust anchors and

revocation information

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

20

A5-8

It must be verified that there is a single standard TLS

implementation that is used by the application and configured

to operate in an approved mode of operation

A5-9
It must be verified that specific character encodings are defined

for all connections (e.g., UTF-8).

A5-10
Configuration must be verified and reviewed predictably in

accordance with the most updated security configuration.

A5-11

It must be verified that the application accepts only a defined

set of HTTP request methods, such as GET and POST, and

that unused methods are explicitly blocked

A5-12
It must be verified that every HTTP response contains a content

type header specifying a safe character set (e.g., UTF-8)

A5-13

It must be verified that HTTP headers and/or other mechanisms

for older browsers have been included to protect against click

jacking attacks.

A5-14
It must be verified that HTTP headers in both requests and

responses contain only printable ASCII characters

A5-15
The use of less complex data formats, such as JSON, must be

verified, and serialization of protected data must be avoided

A5-16

All XML processors and libraries in use by the application or on

the underlying operating system must be patched or upgraded.

Additionally, dependency checkers must be used, and SOAP

must be updated to SOAP 1.2 or higher

A5-17

XML external organization and DTD processing must be

disabled in all XML parsers in the application, as per OWASP

Cheat Sheet "XXE Prevention "

A5-18

Positive server-side input validation (whitelisting), filtering, or

sanitization must be implemented to prevent hostile data within

XML documents, headers, or nodes

A5-19
It must be verified that XML or XSL file upload functionality

validates incoming XML using XSD validation or similar

A5-20
SAST and DAST tools must be used to help detect XXE in

source code, although manual code review is the best

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

21

alternative in large and complex applications with many

integrations

A5-21

If the implementation of these controls is not possible, the use

of virtual patching, API security gateways, or Web Application

Firewalls (WAFs) must be considered to detect, monitor, and

block XXE attacks

A5-22
It must be verified that parameterized queries are used to

prevent SQL Injection

A5-23
It must be verified that strong and secure credentials are used

for database access

A5-24
It must be verified that the application accessing the database

uses the lowest possible level of privileges required.

A5-25

It must be verified that connection strings are not hard coded

within the application, especially database authentication

credentials

A5-26
It must be verified that the connection to the database is closed

as soon as possible

A5-27

It must be verified that all unnecessary and unused database

functionalities, including default vendor content, have been

turned off or disabled. Only the minimum set of features and

options required for the application to function must be

installed. For example, unnecessary stored procedures or

services and utility packages, must be disabled

A5-28

It must be verified that any default or unnecessary accounts

with access to databases that are not required to support

business requirements are disabled

A5-29

It must be verified that the application connects to the database

with different credentials for every trust distinction and

accountability (for example, user, read-only user, guest,

administrators).

A5-30
It must be verified that remote logons and null sessions are

disabled if not needed

A5-31

For applications that rely on a database, standard hardening

configuration templates must be used, and all systems that are

part of critical business processes must be tested

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

22

A6
OWASP:A6:2021 Malicious Code and Vulnerabilities –

Vulnerable and Outdated Components

A6-1

It must be verified that no malicious code is in any code that

was either developed or modified in order to create the

application .

A6-2

It must be ensured that the integrity of interpreted code,

libraries, executables, and configuration files is verified using

checksums or hashes.

A6-3
It must be verified that all code implementing or using

authentication controls is not affected by any malicious code .

A6-4
It must be verified that all code implementing or using session

management controls is not affected by any malicious code .

A6-5
It must be verified that all code implementing or using access
controls is not affected by any malicious code .

A6-6
It must be verified that all input validation controls are not

affected by any malicious code .

A6-7
It must be verified that all code implementing or using output

validation controls is not affected by any malicious code .

A6-8
It must be verified that all code supporting or using a

cryptographic module is not affected by any malicious code .

A6-9

It must be verified that all code implementing or using error

handling and logging controls is not affected by any malicious

code .

A6-10
It must be verified all malicious activity is adequately

sandboxed .

A6-11
Components must be updated with the latest patches as soon

as a user knows about published vulnerabilities .

A6-12
Unused dependencies, unnecessary features, components,

files, and documentation must be removed.

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

23

A6-13

Versions of both client-side and server-side components, (e.g.,

frameworks and libraries), and their dependencies must be

continuously inventoried using tools such as versions,

Dependency Check, retire.js, etc. Additionally, sources such as

CVE and NVD, must be continuously monitored for

vulnerabilities in the components, and software composition

analysis tools must be used to automate the process.

Subscription to email alerts for security vulnerabilities related to

the used components must be ensured as well .

A6-14

Components must be obtained from official sources and over

secure links only. Signed packages must be preferred to reduce

the chance of including a modified, malicious component .

A6-15

Libraries and components that are unmaintained or do not

create security patches for older versions must be monitored. If

patching is not possible, deploying a virtual patch to monitor,

detect, or protect against the discovered issue must be

considered .

A6-16
It must be verified that URL redirects and forwards do not

include invalidated data .

A6-17

It must be verified that filenames and path data obtained from

untrusted sources are cannibalized to eliminate path traversal

attacks .

A6-18

It must be verified that files obtained from untrusted sources are

scanned by antivirus scanners to prevent the upload of known

malicious content .

A6-19

It must be verified that parameters obtained from untrusted

sources are not used in manipulating filenames, pathnames or

any file system object without first being cannibalized and input

validated to prevent local file inclusion attacks .

A6-20
It must be verified that parameters obtained from untrusted

sources are cannibalized, input validated, and output encoded

to prevent remote file inclusion attacks , particularly where input

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

24

could be executed, such as header, source, or template

inclusion .

A6-21

It must be verified that sharing remote IFRAMEs and HTML 5

resources across domains does not allow the inclusion of

arbitrary remote content .

A6-22
It must be verified that files obtained from untrusted sources are

stored outside the webroot .

A6-23

It must be verified that web or application server is configured

by default to deny access to remote resources or systems

outside the web or application server .

A6-24
It must be verified the application code does not execute

uploaded data obtained from untrusted sources .

A6-25

It must be verified that Flash, Silverlight or other Rich Internet
Application (RIA) cross-domain resource sharing configuration
is set to prevent unauthenticated or unauthorized remote
access .

A6-26

It must be verified that file types allowed for upload are limited

to business purpose and needs only (e.g., PDF and office

documents).

A6-27

It must be verified that file type validation is performed not only

by checking file headers but also by checking file extension

names .

A6-28
It must be verified that execution privileges are turned off on file

upload directories .

A6-29
It must be verified that application files and resources are read-

only by default .

A6-30

It must be verified that all unnecessary shares and

administrative shares are removed, and that access to required

shares is either restricted or requires authentication .

A6-31
Authentication must be required before allowing a file to be

uploaded .

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

25

A6-32

Size of files that can be uploaded must be limited to the size

that is needed for business purposes only (for example,

maximum 1 MB), and a note must be added on the web page

for the accepted file sizes .

A7
OWASP:A7:2021 Authentication Identification and

Authentication Failures)

A7-1

It must be verified that all pages and resources require

authentication except those specifically intended to be public

(Principle of Complete Mediation) .

A7-2

It must be verified that all password fields do not show users'

passwords when entered, and that password fields (or the

forms that contain them) have autocomplete disabled .

A7-3
It must be verified that all authentication controls fail securely

to ensure that attackers cannot log in .

A7-4

It must be verified that credentials and all other ID organization

information handled by the application do not traverse

unencrypted or through weakly encrypted links .

A7-5

It must be verified that forgot password and other recovery

paths do not send the existing or new passwords in clear text

to the user .

A7-6

It must be verified that performing username enumeration is not

possible via login, password reset , or forgot account

functionalities .

A7-7

It must be verified that there are no default passwords in use

for the application framework or any components used by the

application (such as “admin/password”) .

A7-8

It must be verified that a resource governor is in place to protect

against vertical brute forcing (i.e., when a single account is

tested against all possible passwords) and horizontal brute

forcing (i.e., when all accounts are tested with the same

password, such as “Password1”). A correct credential entry

must incur no delay. For example, brute force source IP

address lockout must be configured to 60 minutes and account

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

26

lockout to 15 minutes. Both these governor mechanisms must

be active simultaneously to protect against diagonal and

distributed attacks .

A7-9
It must be verified that all authentication controls are enforced

on the server side .

A7-10

It must be verified that password entry fields allow or encourage

the use of passphrases, and do not prevent the entry of long

passphrases or highly complex passwords, and provide a

sufficient minimum strength to protect against the use of

commonly chosen passwords .

A7-11

It must be verified that all account management functions (such

as registration, update profile, forgot username, forgot

password, disabled/lost token, help desk or IVR) that might

regain access to the account are at least as resistant to attacks

as the primary authentication mechanism .

A7-12

It must be verified that users can safely change their credentials

using a mechanism that is at least as resistant to attacks as the

primary authentication mechanism (e.g., SMS, tokens, mobile

application, etc.). Password changes must require the existing

password to be entered prior to entering a new password,

followed by re-authentication of the user .

A7-13

It must be verified that authentication credentials expire after an

administratively configurable period of time. The password

expiry duration must be shorter based on the criticality of the

application, thus ensuring a quicker password change .

A7-14
It must be verified that all authentication decisions are logged,

including linear back offs and soft-locks .

A7-15

It must be verified that account passwords are salted using a

salt that is unique to each account (e.g., internal user ID,

account creation, etc.) and hashed before storing .

A7-16

It must be verified that all authentication credentials for

accessing external services for the application are encrypted

and stored in a protected location (not in source code) .

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

27

A7-17

It must be verified that forgot password and other recovery

paths send a time-limited activation token or use multi-factor

authentication (e.g., SMS, tokens, mobile application, etc.)

instead of a password.

A7-18

It must be verified that “forget password” functionality does not

lock or otherwise disable the account until after the user has

successfully changed their password .

A7-19

It must be verified that there are no shared knowledge

questions/answers (Also called "secret" questions and

answers).

A7-20
It must be verified that the system can be configured to disallow

the use of a configurable number of previous passwords .

A7-21

It must be verified that all authentication controls (including

libraries that call external authentication services) have a

centralized implementation .

A7-22

It must be verified that re-authentication, step up or adaptive

authentication, SMS or other two-factor application, or

transaction signing is required before any application-specific

sensitive operations are permitted as per the risk profile of the

application .

A7-23
It must be verified that a functionality to invalidate or disable

user credentials in the event of a compromise is in place .

A7-24
It must be verified that password encryption is implemented in

accordance with relevant standard controls and procedures.

A7-25

If <organization name>’s application manages a credential

store, it must ensure that only cryptographically strong one-way

salted hashes of passwords are stored and that the table/file

that stores the passwords and keys is write-able only by the

application. (If possible, MD5 algorithm must not be used).

A7-26

Authentication logic must be segregated from the resource

being requested, and redirection to and from the centralized

authentication control must be used .

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

28

A7-27

Authentication failure responses must not indicate which part of

the authentication data is incorrect. For example, instead of

"Invalid username" or "Invalid password," "Invalid username

and/or password" must be used for both. Error responses must

be truly identical in both display and source code .

A7-28
It must be verified the strength of the password and check if it

matches the most weak commonly used passwords.

A7-29

Password complexity and length requirements established by a

policy or regulation approved by <organization name> must be

enforced. Authentication credentials must be sufficient to

withstand attacks that are typical of the threats in the deployed

environment .

Additionally, it must be verified that passwords contain :

• At least 1 upper case character (A-Z)

• At least 1 lower case character (a-z)

• At least 1 digit (9-0)

• At least 1 special character (e.g., '&%$#"! “)(*,+ -

/:; [@?>=<\”~}|{`_^])

It must be verified that passwords do not contain :

• More than 2 identical digits or characters in a row (e.g.,

111, aa, etc.)

• Sequential digits or characters (e.g., 123, 789, and abc)

• The same username

• Dictionary words (e.g., password, p@ssw0rd, secret123,

etc.)

A7-30

Accounts must be disabled after an established number of

invalid login attempts (e.g., five attempts for non-critical

applications and three attempts for critical applications).

Accounts must be disabled for a period of time sufficient to

discourage brute force guessing of credentials, but not so long

as to allow for a denial-of-service attack to be performed. (For

example, disabled for 30 minutes).

A7-31
The last use (successful or unsuccessful) of a user account

must be reported to the user at their next successful login .

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

29

A7-32
It must be verified that the framework’s default session

management control implementation is used by the application .

A7-33
It must be verified that sessions are invalidated when the user

logs out .

A7-34
It must be verified that sessions timeout after a specified period

of inactivity.

A7-35
It must be verified that all pages that require authentication to

access them have logout links .

A7-36

It must be verified that the session ID is never disclosed other

than in cookie headers, particularly in URLs, error messages,

or logs. This includes verifying that the application does not

support URL rewriting of session cookies .

A7-37
It must be verified that the session ID is changed or cleared on

logout .

A7-38

It must be verified that authenticated session tokens using

cookies are protected by the use of "Http Only" (cookies must

not be displayed to the user).

A7-39

It must be verified that authenticated session tokens using

cookies are protected with the "Secure" attribute and strict

transport security headers (such as Strict-Transport-Security:

max-age=60000; include Subdomains) is present .

A7-40
It must be verified that the session ID is changed on login to

prevent session fixation .

A7-41
It must be verified that the session ID is changed on re-

authentication .

A7-42

It must be verified that authenticated session tokens are

sufficiently long and random to withstand attacks that are

typical threats in the deployment environment .

A7-43 It must be verified that authenticated session tokens using

cookies have their path set to an appropriately restrictive value

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

30

for that site. The domain cookie attribute restriction must not be

set except for a business requirement, such as a single sign on .

A7-44
It must be verified that the application does not permit duplicate

concurrent user sessions, originating from different machines .

A7-45

It must be verified that sessions timeout after an

administratively configurable maximum time period regardless

of the performed activity (i.e., an absolute timeout) .

A7-46

A new session identifier must be generated if the connection

security is changed from HTTP to HTTPS, as can occur during

authentication. Within an application, it is recommended to

consistently utilize HTTPS rather than switching between HTTP

to HTTPS .

A8
OWASP:A8:2021 Insecure Deserialization – Software and

Data Integrity Failures

A8-1

Integrity checks, such as digital signatures, must be

implemented on any serialized objects to prevent hostile object

creation or data tampering .

A8-2

Strict type constraints during deserialization must be enforced

before object creation as the code typically expects a definable

set of classes. Bypasses to this technique have been

demonstrated; therefore, reliance solely on this technique is not

advisable .

A8-3
Code that reserializes must be isolated and run in low privilege

environments whenever possible .

A8-4

Deserialization exceptions and failures; such as the cases in

which the incoming type is not the expected type, or the

deserialization throws exceptions; must be logged.

A8-5
Incoming and outgoing network connectivity from containers or

servers that deserialize must be restricted or monitored.

A8-6
Deserialization must be monitored, and an alert must be issued

if a user deserializes constantly.

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

31

A9
OWASP:A9:2021 Error Handling and Logging – Security

logging and monitoring failures

A9-1

For in-house developed software, explicit error checking must

be performed and documented for all input, including size, data

type, and acceptable ranges or formats .

A9-2

It must be verified that the application does not output error

messages or stack traces containing protected data that could

assist an attacker, including a session ID and personal

information .

A9-3
It must be verified that error handling is performed on trusted

devices.

A9-4
It must be verified that all logging controls are implemented on

the server .

A9-5
It must be verified that error handling logic in security controls

denies access by default .

A9-6

It must be verified that security logging controls provide the

ability to log both success and failure events that are identified

as security-relevant .

A9-7

It must be verified that each log event includes a time stamp

from a reliable source, severity level of the event, an indication

that the event is a security relevant event (if mixed with other

logs), the ID organization of the user that caused the event (if

there is a user associated with the event), the source IP

address of the request associated with the event, whether the

event succeeded or failed, and a description of the event .

A9-8
It must be verified that all logs are protected from unauthorized

access and modification .

A9-9

It must be verified that the application does not log application-

specific protected data that could assist an attacker, including

user’s session IDs and personal or protected information .

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

32

A9-10

It must be verified that a log analysis tool is available which

allows an analyst to search for log events based on a

combination of search criteria across all fields in the log record

format supported by this system .

A9-11
It must be verified that all events that include untrusted data will

not execute as code in the intended log viewing software.

A9-12
It must be verified that there is a single logging implementation

that is used by the application.

A9-13
It must be verified that logs have a standard regular procedure

for backing up or archiving.

A9-14 “Try catch” must be implemented where applicable.

A9-15

It must be verified that all the below logs are enabled :

• Log of all input validation failures

• Log of all authentication attempts, especially failures

• Log of all access control failures

• Log of all apparent tampering events, including

unexpected changes to data status.

• Log of attempts to connect with invalid or expired session

tokens

• Log of all system exceptions

• Log of all administrative functions, including changes to

the security configuration settings

• Log of all backend TLS connection failures

• Log of cryptographic module failures

A10 OWASP:A10:2021 SSRF)Server-Side Request Forgery)

A10-1
Remote resource access functionality must be segmented in

separate networks to reduce the impact of SSRF attack.

A10-2

<organization name> must enforce “deny by default” firewall

policies or network access control rules to block all but essential

intranet traffic.

A10-3 All client-supplied input data must be sanitized and validated

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

33

A10-4
It must enforce the URL schema, by specifying port, and

destination against the whitelisting list.

A10-5
<organization name> must prohibit sending raw responses to

client

A10-6 <organization name> must disable HTTP redirections

A10-7

<organization name> must ensure that personnel are aware of

the URL consistency to avoid attacks such as DNS rebinding

and “time of check, time of use” (TOCTOU) race conditions.

A10-8

It must not have other security relevant services installed on

front systems (e.g. Open ID). Control local traffic on these

systems (e.g. localhost)

A10-9
It must use network encryption (e.g. VPNs) on independent

systems.

A11 Mobile Verification

A11-1 It must be verified that the client validates SSL certificates.

A11-2
It must be verified that Unique Device ID (UDID) values are not

used as security controls .

A11-3

It must be verified that the mobile application does not store

protected data on shared resources on a device (for example,

on SD card or shared folders).

A11-4
It must be verified that protected data is not stored on SQLite

database on the device .

A11-5
It must be verified that secret keys or passwords are not hard

coded in the executable .

A11-6
It must be verified that the mobile application prevents the

leakage of protected data via iOS auto snapshot feature .

A11-7
It must be verified that the application cannot be run on a

jailbroken or rooted device .

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

34

A11-8
It must be verified that the session timeout is of a reasonable

value .

A11-9

Requested permissions, as well as the resources authorized to

be accessed (i.e., AndroidManifest.xml, iOS Entitlements),

must be verified.

A11-10 It must be verified that crash logs do not contain protected data .

A11-11
It must be verified that the application binary has been

obfuscated .

A11-12
It must be verified that all test data has been removed from the

application container (.ipa .apk .bar).

A11-13
It must be verified that the application does not log protected

data to the system log or file system .

A11-14

It must be verified that the application does not enable

autocomplete for sensitive text input fields, such as password,

personal information or credit card fields .

A11-15
It must be verified that the mobile application implements

certificate pinning to prevent the proxying of application traffic .

A11-16

It must be verified that no misconfigurations are present in the

configuration files (Debugging flags set, world readable/writable

permissions).

A11-17
It must be verified that all third party libraries in use are up to

date, and contain no known vulnerabilities.

A11-18
It must be verified that web data, such as HTTPS traffic, is not

cached .

A11-19

It must be verified that the query string is not used for protected

data. Instead, a POST request via SSL must be used with a

CSRF token .

A11-20
It must be verified that, if applicable, any personal account

numbers are truncated prior to storing them on a device .

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

35

A11-21
It must be verified that the application makes use of Address

Space Layout Randomization (ASLR).

A11-22

It must be verified that data logged via the keyboard (iOS) does

not contain credentials, financial information or other protected

data .

A11-23

For Android applications, it must be verified that the application

does not create files with permissions of

MODE_WORLD_READABLE or

MODE_WORLD_WRITABLE.

A11-24

It must be verified that protected data is stored in a

cryptographically secure manner (even when stored on iOS

keychain) .

A11-25
It must be verified that anti-debugging and reverse engineering

mechanisms are implemented in the application .

A11-26
It must be verified that the application does not export sensitive

activities, intents, content providers, etc. on Android .

A11-27

It must be verified that mutable structures have been used for

sensitive strings such as account numbers and are overwritten

when not used, (to mitigate damage from memory analysis

attacks).

A11-28

It must be verified that any exposed intents, content providers

and broadcast receivers perform full data validation on input

(Android) .

Roles and Responsibilities
1- standard Owner: <head of the cybersecurity function>

2- standard Review and Update: <cybersecurity function>

3- standard Implementation and Execution: <information technology

function>

4- standard Compliance Measurement: <cybersecurity function>

Secure Coding Standard Controls Template

Choose Classification

 <1.0>Version

36

Update and Review
<cybersecurity function> must review the standard at least once a year

or in case any changes happen to the infrastructure, policy, or the regulatory

procedures in <organization name> or the relevant regulatory requirements.

Compliance
1- The <head of the cybersecurity function> will ensure compliance of

<organization name> with this standard on a regular basis.

2- All personnel at <organization name> must comply with this standard.

3- Any violation of this standard may be subject to disciplinary action

according to <organization name>’s procedures.

