Rocket Hardware for Future Artemis Flights Moved to Barge for Delivery to NASA’s Kennedy Space Center

NASA is making strides with the Artemis campaign as key components for the SLS (Space Launch System) rocket continue to make their way to NASA’s Kennedy Space Center in Florida. Teams with NASA and Boeing loaded the core stage boat-tail for Artemis III and the core stage engine section for Artemis IV onto the agency’s Pegasus barge at Michoud Assembly Facility in New Orleans on Aug. 28.

A circular yellow core stage of the SLS rocket is being loaded onto the Pegasus Barge.
The core stage engine section of the SLS (Space Launch System) rocket for Artemis IV is loaded onto the agency’s Pegasus barge at Michoud Assembly Facility in New Orleans on Aug. 28. The core stage hardware will be moved NASA’s to Kennedy’s Space Systems Processing Facility for outfitting. Photo Credit: NASA/Justin Robert

The core stage hardware joins the launch vehicle stage adapter for Artemis II, which was moved onto the barge at NASA’s Marshall Space Flight Center in Huntsville, Alabama, on Aug. 21. Pegasus will ferry the multi-mission rocket hardware more than 900 miles to the Space Coast of Florida. Teams with the NASA’s Exploration Ground Systems Program will prepare the launch vehicle stage adapter for Artemis II stacking operations inside the Vehicle Assembly Building, while the core stage hardware will be moved to Kennedy’s Space Systems Processing Facility for outfitting. Beginning with Artemis III, core stages will undergo final assembly at Kennedy.

The launch vehicle stage adapter is essential for connecting the rocket’s core stage to the upper stage. It also shields sensitive avionics and electrical components in the rocket’s interim cryogenic propulsion stage from the intense vibrations and noise of launch.

The boat-tail and engine section are crucial for the rocket’s functionality. The boat-tail extends from the engine section, fitting snugly to protect the rocket’s engines during launch. The engine section itself houses more than 500 sensors, 18 miles of cables, and key systems for fuel management and engine control, all packed into the bottom of the towering 212-foot core stage.

NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

For more on NASA SLS, visit: https://www.nasa.gov/sls

NASA Kennedy Team Completes Artemis Emergency Egress System Demonstration 

Teams at NASA's Kennedy Space Center in Florida are seen entering the Artemis emergency egress baskets on the mobile launcher 1 at Launch Pad 39B as part of a practice demonstration to learn the emergency escape or egress procedures ahead of the Artemis II launch.
Teams at NASA’s Kennedy Space Center in Florida practice the Artemis mission emergency escape or egress procedures during a series of integrated system verification and validation tests at Launch Pad 39B on Sunday, Aug. 11, 2024. Members of the closeout crew, pad rescue team and the Exploration Ground Systems Program practiced the process of getting inside and out of the emergency egress baskets. While the crew and other personnel will ride the emergency egress baskets to the terminus area in a real emergency, no one rode the baskets for this test. Instead, teams tested the baskets during separate occasions by using water tanks filled to different levels to replicate simulate the weight of passengers. Photo credit: NASA/Kim Shiflett

Teams with NASA’s Exploration Ground Systems (EGS) Program at the agency’s Kennedy Space Center completed an emergency egress system demonstration throughout the course of several days at Launch Complex 39B ahead of the Artemis II test flight that will carry four astronauts around the Moon.

The EGS team practiced emergency procedures during day and nighttime launch scenarios with the closeout crew, the team responsible for helping the astronauts get inside the Orion spacecraft, and the Pad Rescue team, which would aid personnel away from the launch pad in an emergency.

Training included exiting the white room in the crew access arm of the mobile launcher, the area where the crew enters and exits Orion, while the fire suppression system was fully activated. The team then evacuated to the terminus area, the location at the perimeter of the launch pad where the emergency egress baskets come to a stop. For this test, personnel did not ride down the baskets, but did have the opportunity to practice getting inside the baskets when on the mobile launcher and exiting them at the terminus area. Once there, armored emergency response vehicles drove the team away to one of the designated safe site locations at Kennedy.

NASA

“Our latest integrated ground systems test is about demonstrating the capability of the entire emergency egress response,” said Charlie Blackwell-Thompson, Artemis launch director. “From the time an emergency condition is declared until we have the crews, both flight and ground, safely accounted for outside the hazardous area.”

During a real emergency, personnel will use the emergency egress baskets, which are suspended on a track cable that connects the mobile launcher to the perimeter of the pad. From there, they will travel down the 1,335-foot-long cables where the emergency response vehicles will drive them away to safety. Prior to this test and throughout the course of several months, teams conducted several basket release demonstrations to validate the system.

During this test campaign the Artemis launch team also conducted an emergency egress demonstration simulation to practice how team members would respond to an emergency taking place at the pad during launch countdown.

EGS team members will have another opportunity to practice the emergency egress procedures with the Artemis II crew during a test closer to launch when the rocket is at the launch pad.

NASA’s Rocket On Roll: Core Stage Arrives at Vehicle Assembly Building

After completing its journey from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus barge, teams with Exploration Ground Systems (EGS) transport the agency’s powerful SLS (Space Launch System) core stage to NASA’s Kennedy Space Center’s Vehicle Assembly Building in Florida on Tuesday, July 23, 2024. Once inside, SLS will be prepared for integration atop the mobile launcher ahead of the Artemis II launch.
After completing its journey from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus barge, teams with Exploration Ground Systems (EGS) transport the agency’s powerful SLS (Space Launch System) core stage to NASA’s Kennedy Space Center’s Vehicle Assembly Building in Florida on Tuesday, July 23, 2024. Photo credit: NASA/Isaac Watson

NASA’s SLS (Space Launch System) rocket core stage for the Artemis II mission is inside the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida.

Tugboats and towing vessels moved the barge and core stage 900-miles to the Florida spaceport from NASA’s Michoud Assembly Facility in New Orleans, where it was manufactured and assembled.

Team members with NASA’s Exploration Ground Systems Program safely transferred the 212-foot-tall core stage from the agency’s Pegasus barge, which arrived at NASA Kennedy’s Complex 39 turn basin wharf on July 23, onto the self-propelled module transporter, which is used to move large elements of hardware. It was then rolled to the Vehicle Assembly Building transfer aisle where teams will process it until it is ready for rocket stacking operations.

In the coming months, teams will integrate the rocket core stage atop the mobile launcher with the additional Artemis II flight hardware, including the twin solid rocket boosters, launch vehicle stage adapter, and the Orion spacecraft.

The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.

NASA’s Artemis Rocket Core Stage Journeys to Florida

Image shows NASA's Pegasus barge carrying the core stage for the Artemis II launch
NASA’s Pegasus barge, carrying the agency’s massive SLS (Space Launch System) core stage, arrives at NASA’s Kennedy Space Center Complex 39 turn basin wharf in Florida on Tuesday, July 23, 2024, after journeying from the agency’s Michoud Assembly Facility in New Orleans. The core stage is the next piece of Artemis hardware to arrive at the spaceport and will be offloaded and moved to NASA Kennedy’s Vehicle Assembly Building, where it will be prepared for integration ahead of the Artemis II launch. Photo credit: NASA/Kim Shiflett

NASA’s powerful SLS (Space Launch System) rocket core stage for the Artemis II mission arrived on Tuesday, July 23, at the agency’s Kennedy Space Center in Florida. The core stage will help power SLS when it launches four astronauts around the Moon for the first crewed flight of SLS and the Orion spacecraft during the Artemis II test flight.

The core stage, aboard NASA’s Pegasus barge, traveled from the agency’s Michoud Assembly Facility in New Orleans and spent seven days coasting through the Gulf of Mexico and then the Atlantic Ocean before arriving at NASA Kennedy’s Complex 39 turn basin wharf.

The 212-foot-tall SLS core stage, its propellant tanks, avionics, flight computer systems, and four RS-25 engines, were manufactured and assembled at NASA Michoud. Now, teams with NASA Kennedy’s Exploration Ground Systems Program will prepare the rocket stage for integration ahead of launch.

The only rocket that can send the Orion spacecraft, astronauts, and supplies to the Moon on a single launch is the Space Launch System. Its core stage provides more than two million pounds of thrust and the whole rocket provides 8.8 million pounds of thrust to launch Artemis II to the Moon.

Up next, the core stage will roll to NASA Kennedy’s Vehicle Assembly Building, where teams will process it until it is ready for rocket stacking operations.

Follow the livestream of the core stage offload online expected to begin at 9 a.m. Wednesday.

NASA Kennedy Teams Complete Water Flow Tests for Artemis II Mission  

NASA’s Exploration Ground Systems conducts a water flow test with the mobile launcher at Kennedy Space Center’s Launch Complex 39B in Florida on Oct. 24, 2023. It is the third in a series of tests to verify the overpressure protection and sound suppression system is ready for launch of the Artemis II mission. During liftoff, 400,000 gallons of water will rush onto the pad to help protect NASA’s SLS (Space Launch System) rocket, Orion spacecraft, mobile launcher, and launch pad from any over pressurization and extreme sound produced during ignition and liftoff. Photo Credit: NASA/Kim Shiflett

Teams with NASA’s Exploration Ground Systems Program successfully completed tests of the ignition overpressure protection and sound suppression and launch cooling systems at Launch Pad 39B at the agency’s Kennedy Space Center in Florida. These systems will protect the mobile launcher umbilicals and other crucial ground systems during liftoff of the Artemis II mission. 

When SLS’s (Space Launch System) solid rocket boosters ignite, the RS-25 engines start up, and the rocket comes to life, there will be a thundering amount of noise, heat, and energy produced at liftoff. To ensure the crew, SLS, the Orion spacecraft and the surrounding ground infrastructure are protected during launch, teams practiced releasing approximately 400,000 gallons of water from large overhead holding tanks onto the mobile launcher and the pad’s flame deflector. The water will provide protection from the extreme heat generated by SLS’s exhaust and help suppress the sound produced at liftoff. 

Recent upgrades to the mobile launcher were designed to enhance the performance of these systems and assure better launch imagery. Some of the upgrades include:  

  • New water balancing plates on the mobile launcher and pad piping to allow higher water flow rates  
  • Redesigned rainbird water nozzles to allow increased water flow rates and improved mobile launcher deck water coverage 
  • New hydrogen burn-off ignitor and camera water barriers for protection from the increased mobile launcher deck water flow  
  • Raised camera housings and additional splash shields around the lenses to maximize amount of video obtained during launch 
  • Adding additional levels on the mobile launcher to protect the emergency egress baskets and pilot line hoist motors  

The water flows were conducted as part of a series of integrated ground systems tests intended to confirm that various systems on the mobile launcher and at Launch Pad 39B work as intended, both individually and with each other. 

The Artemis II mission builds on the success of the uncrewed Artemis I mission and will demonstrate a broad range of capabilities needed for missions to the Moon and beyond. The Artemis II test flight will be NASA’s first mission with crew aboard the SLS rocket and Orion spacecraft and confirm the spacecraft systems operate as designed with crew aboard in the environment of deep space.  

NASA’s Artemis II Orion Spacecraft Prepares for Vacuum Testing

The Artemis II Orion spacecraft is pictured surrounded by the metal walls of the altitude chamber
Technicians used a 30-ton crane to lift NASA’s Orion spacecraft on Friday, June 28, 2024, from the Final Assembly and System Testing (FAST) cell to the altitude chamber inside the Neil A. Armstrong Operations and Checkout building at NASA’s Kennedy Space Center in Florida. The spacecraft, which will be used for the Artemis II mission to orbit the Moon, underwent leak checks and end-to-end performance verification of the vehicle’s subsystems.

NASA’s Orion spacecraft for the Artemis II mission was lifted out of the Final Assembly and System Testing cell on June 28 inside the Neil A. Armstrong Operations and Checkout building at NASA’s Kennedy Space Center in Florida. The integrated spacecraft has been undergoing final rounds of testing and assembly, including end-to-end performance verification of its subsystems and checking for leaks in its propulsion systems.

A 30-ton crane returned Orion into the recently renovated altitude chamber where it underwent electromagnetic testing. The spacecraft now will undergo a series of vacuum chamber qualification testing. The tests will subject the spacecraft to a near-vacuum environment by removing air, thus creating a space where the pressure is extremely low. This results in no atmosphere, similar to the one the spacecraft will experience during future lunar missions.

Testing will span approximately a week, with technicians collecting data from the spacecraft’s chamber, cabin, and the environmental control and life support system to test spacesuit functionality. The data recorded during these tests will be used to qualify the spacecraft to safely fly the Artemis II astronauts through the harsh environment of space.

NASA Kennedy Teams Test Upgraded Environmental Control System for Artemis II 

Credits: NASA

Teams with NASA’s Exploration Ground Systems (EGS) Program successfully tested the upgraded environmental control system on mobile launcher 1 while it’s at Launch Pad 39B at the agency’s Kennedy Space Center in Florida in preparation for Artemis II. This system provides air supply, thermal control, and pressurization to SLS (Space Launch System) and the Orion spacecraft during cryogenic propellant loading. 

During propellant loading, the environmental control system purges specific compartments within Orion and SLS using gaseous nitrogen to maintain the proper environmental conditions. This is critical, as the rocket and spacecraft must be in a safe and stable configuration and temperature when dealing with hazardous gasses. The severtal-week test, which started April 17, was conducted in two parts. Teams first started flowing air through the system and then followed by flowing gaseous nitrogen.   

This marks the next set of tests complete for EGS teams as part of the integrated system verification and validation testing in preparation for Artemis II, the first crewed Artemis mission that will send four astronauts around the Moon and back next year. 

The testing puts the team and ground infrastructures to work and ensures each are functioning properly and allows the team to update and refine procedures ahead of launch. Part of this series includes testing the launch pad’s environmental control system, the emergency egress system, the ignition overpressure protection and sound suppression system, among others. 

NASA Kennedy Teams Test High-Speed Cameras for Artemis II Mission 

Credits: NASA

Teams with NASA’s Exploration Ground Systems Program have completed the next series of integrated ground systems testing at the agency’s Kennedy Space Center in Florida. On Jan. 25, the high-speed film and high-speed digital cameras on the mobile launcher and Launch Pad 39B were successfully tested at the spaceport ahead of the Artemis II mission.  

Following Artemis I, teams updated the 68 high-speed cameras, which start during the final 12 seconds of the countdown to provide views of the rocket and surrounding ground structures during launch. The imagery also is used in detailed post-launch analysis.   

The updates on the cameras include:   

  • Software and procedures to ensure proper field of view of the rocket and spacecraft.  
  • High-speed digital camera firmware and digital recorder software to improve visual video quality.  
  • Optical control system software to ensure accurate setup. 
  • Upgraded faceplate purge hardware – a small tool near the camera lens that releases small amounts of gaseous nitrogen to remove any water that falls on the lenses.    

During a water flow test to check the sound suppression system at the pad, teams tested these cameras by setting them up in a launch countdown configuration. The test verifies the cameras’ field of view and the upgraded faceplate purge hardware all function properly. In September 2023, teams at Kennedy and at NASA’s Marshall Space Flight Center in Huntsville, Alabama also tested the cameras during a hot fire test of the upgraded solid rocket booster design for the SLS (Space Launch System) rocket for future Artemis missions.   

Personnel at Kennedy next will test the dynamic range of the cameras during a nighttime commercial rocket launch from a nearby launch site. Following each operation, teams will analyze the footage to ensure each camera performed as expected. 

All Engines Added to NASA’s Artemis II Moon Rocket Core Stage

Engineers and technicians from NASA, Aerojet Rocketdyne, and Boeing at NASA’s Michoud Assembly Facility in New Orleans have installed all four RS-25 engines to the core stage for NASA’s Space Launch System rocket that will help power the first crewed Artemis mission to the Moon. The yellow core stage is seen in a horizontal position in the final assembly area at Michoud. The engines are arranged at the bottom of the rocket stage in a square pattern, like legs on a table.
Engineers and technicians from NASA, Aerojet Rocketdyne, and Boeing at NASA’s Michoud Assembly Facility in New Orleans have installed all four RS-25 engines to the core stage for NASA’s Space Launch System rocket that will help power the first crewed Artemis mission to the Moon. The yellow core stage is seen in a horizontal position in the final assembly area at Michoud. The engines are arranged at the bottom of the rocket stage in a square pattern, like legs on a table. Photo Credit: NASA/Eric Bordelon

Teams at NASA’s Michoud Assembly Facility in New Orleans have structurally joined all four RS-25 engines onto the core stage for NASA’s Artemis II Moon rocket. The flight test is the agency’s first crewed mission under Artemis.

Technicians added the first engine to NASA’s SLS (Space Launch System) rocket core stage Sept. 11. Teams installed the second engine onto the stage Sept. 15 with the third and fourth engines Sept. 19 and Sept. 20. Technicians with NASA, Aerojet Rocketdyne, an L3Harris Technologies company and the RS-25 engines lead contractor, along with Boeing, the core stage lead contractor, now will focus efforts on the complex task of fully securing the engines to the stage and integrating the propulsion and electrical systems within the structure.

The SLS core stage, at 212 feet, is the backbone of the Moon rocket. Its two huge propellant tanks provide more than 733,000 gallons of super-chilled liquid propellant to the four RS-25 engines, while the stage’s flight computers, avionics, and electrical systems act as the “brains” of the rocket. During Artemis II, the RS-25 engines will together provide more than 2 million pounds of thrust for eight minutes of flight, helping to send the Artemis II crew beyond low-Earth orbit to venture around the Moon.

NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

For more on NASA SLS visit:

https://www.nasa.gov/sls

Artemis II Astronauts Successfully Conduct Launch Day Demonstration   

Artemis II astronauts, from left, NASA astronaut Victor Glover (left), CSA (Canadian Space Agency) astronaut Jeremy Hansen, NASA astronauts Christina Koch and Reid Wiseman stand on the crew access arm of the mobile launcher at Launch Pad 39B as part of an integrated ground systems test at Kennedy Space Center in Florida on Wednesday, Sept. 20. The test ensures the ground systems team is ready to support the crew timeline on launch day. Photo Credit: NASA/Frank Michaux

The Artemis II crew and teams with NASA’s Exploration Ground Systems Program successfully completed the first in a series of integrated ground system tests at the agency’s Kennedy Space Center in Florida in preparation for their mission around the Moon.  

On Wednesday, NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, along with CSA (Canadian Space Agency) astronaut Jeremy Hansen, practiced the procedures they will undergo on launch day to prepare for their ride to space. 

The crew awoke at their crew quarters inside Kennedy’s Neil Armstrong Operations and Checkouts building before putting on test versions of the Orion crew survival system spacesuits they will wear on launch day. They then departed in NASA’s new Artemis crew transportation fleet to take them to Launch Pad 39B, traversing the nine-mile journey to the pad. Wiseman and Glover headed over in the first electric vehicle as Koch and Hansen followed them in the second.  

Upon arrival at the pad, the crew headed onto the mobile launcher and proceeded up the tower to the white room inside the crew access arm. From this area, the astronauts will have access to enter and exit the Orion spacecraft – only for this test, there was no Orion or SLS (Space Launch System) rocket. 

“When we walked out that crew access arm, I just had images of all those Apollo launches and shuttle launches that I saw as a kid and it was unreal,” Glover said. “I actually had to stop and just stay in the moment to really let it all sink in.” 

Successful completion of this test ensures both the crew and the ground systems teams at Kennedy are prepared and understand the timeline of their events for launch day.  

Credits: NASA