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Abstract
Background  Prostate cancer is one of the most common malignant tumors in middle-aged and elderly men and 
carries significant prognostic implications, and recent studies suggest that dual-energy computed tomography 
(DECT) utilizing new virtual monoenergetic images can enhance cancer detection rates. This study aimed to assess 
the impact of virtual monoenergetic images reconstructed from DECT arterial phase scans on the image quality of 
prostate lesions and their diagnostic performance for prostate cancer.

Methods  We conducted a retrospective analysis of 83 patients with prostate cancer or prostatic hyperplasia who 
underwent DECT scans at Meizhou People’s Hospital between July 2019 and December 2023. The variables analyzed 
included age, tumor diameter and serum prostate-specific antigen (PSA) levels, among others. We also compared CT 
values, signal-to-noise ratio (SNR), subjective image quality ratings, and contrast-to-noise ratio (CNR) between virtual 
monoenergetic images (40–100 keV) and conventional linear blending images. Receiver operating characteristic 
(ROC) curve analyses were performed to evaluate the diagnostic efficacy of virtual monoenergetic images (40 keV 
and 50 keV) compared to conventional images.

Results  Virtual monoenergetic images at 40 keV showed significantly higher CT values (168.19 ± 57.14) compared 
to conventional linear blending images (66.66 ± 15.5) for prostate cancer (P < 0.001). The 50 keV images also 
demonstrated elevated CT values (121.73 ± 39.21) compared to conventional images (P < 0.001). CNR values for the 
40 keV (3.81 ± 2.13) and 50 keV (2.95 ± 1.50) groups were significantly higher than the conventional blending group 
(P < 0.001). Subjective evaluations indicated markedly better image quality scores for 40 keV (median score of 5) 
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Study highlights

1.	 Dual-energy computed tomography (DECT) with 
virtual monoenergetic images significantly improves 
the image quality of prostate lesions.

2.	 Virtual monoenergetic images at 40 keV and 50 keV 
provide higher diagnostic accuracy for prostate 
cancer than conventional CT images.

3.	 The study shows superior contrast-to-noise ratio 
(CNR) values in low-energy virtual monoenergetic 
images compared to conventional images.

4.	 Subjective evaluations indicate that radiologists 
find low-energy virtual monoenergetic images more 
useful for prostate cancer diagnosis.

5.	 DECT with virtual monoenergetic imaging could 
reduce the need for invasive diagnostic procedures in 
prostate cancer detection.

Introduction
Prostate cancer (PCa) ranks among the most prevalent 
cancers in middle-aged and elderly men and is the fifth 
leading cause of cancer-related deaths in males [1]. Its 
incidence has been increasing annually due to extended 
life expectancy, making accurate diagnosis and grading 
essential for timely treatment planning and prognos-
tic assessment [2]. Despite being a primary diagnostic 
tool, prostate biopsy’s invasive nature can lead to com-
plications such as hematuria and infection [3]. Various 
imaging modalities are employed in PCa diagnosis, with 
each modality having inherent limitations [4]. Magnetic 
resonance imaging (MRI), while highly sensitive, is ham-
pered by its high cost, lengthy procedure times, patient 
discomfort, and others [5]. Ultrasound, characterized by 
low spatial resolution and susceptibility to intestinal gas 
interference, relies heavily on operator experience, lacks 
specificity, and is inadequate for tumor staging [6, 7]. 
Similarly, computed tomography (CT) imaging may not 
accurately distinguish between tumor tissue, normal tis-
sue, and prostatic hyperplasia tissue, particularly in terms 
of contrast [8]. Thus, there is an urgent clinical need to 
develop less invasive yet highly effective diagnostic meth-
ods for PCa.

In this context, advancements in medical imaging 
techniques, such as the ConvUNeXt model for efficient 
medical image segmentation, highlight the ongoing 
efforts to enhance diagnostic accuracy while minimizing 
computational resources and parameters [9]. Ansari et 
al. (2022) introduced Res-PAC-UNet, a lightweight neu-
ral network for liver CT segmentation, achieving a Dice 
coefficient of 0.950 ± 0.019 with low computational bur-
den, improving cancer imaging workflows [10]. Similarly, 
Jafari et al. (2020) proposed DRU-net, combining ResNet 
and DenseNet advantages for efficient medical image 
segmentation, achieving high accuracy with reduced 
parameters [11]. Ansari et al. (2023) developed Dense-
PSP-UNet for real-time liver ultrasound segmentation, 
ensuring high Dice coefficient and real-time perfor-
mance, important for immediate diagnostic applications 
[12].

Further, Xie et al. (2021) introduced CoTr, a frame-
work that bridges CNN and Transformer for 3D medi-
cal image segmentation, addressing the limitations 
of CNNs in modeling long-range dependencies. This 
hybrid approach significantly improved segmentation 
performance for multi-organ tasks, which is pertinent 
to enhancing PCa imaging [13]. Ansari et al. (2021) 
reviewed the clinical utility of liver segmentation meth-
ods in surgical and radiological interventions for HCC, 
emphasizing the importance of accurate segmentation 
in optimizing diagnosis and treatment outcomes. This 
underscores the relevance of precise imaging techniques 
in clinical decision-making [14]. Akhtar et al. (2021) 
assessed the impact of CAD systems in hepatic resec-
tion, finding that automatic CAD adoption correlated 
with quicker tumor relapse compared to non-adoption. 
This highlights the potential pitfalls and considerations 
in adopting automated imaging systems for cancer diag-
nosis [15]. Moreover, Rai et al. (2023) systematically 
reviewed fusion imaging’s efficacy for immediate post-
ablation assessment of malignant liver neoplasms. They 
found that fusion imaging could accurately determine 
short-term post-ablation outcomes, indicating its poten-
tial for immediate diagnostic assessments [16].

Despite these advancements, the current literature 
lacks comprehensive studies focusing on the application 
and effectiveness of these advanced imaging techniques 

and 50 keV (median score of 5) images compared to conventional images (P < 0.05). ROC curve analysis revealed 
superior diagnostic accuracy for 40 keV (AUC: 0.910) and 50 keV (AUC: 0.910) images based on CT values compared to 
conventional images (AUC: 0.849).

Conclusions  Virtual monoenergetic images reconstructed at 40 keV and 50 keV from DECT arterial phase scans 
substantially enhance the image quality of prostate lesions and improve diagnostic efficacy for prostate cancer.
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in PCa diagnosis, underscoring the need for further 
research to validate and potentially integrate them into 
clinical practice for PCa. Another modality, namely dual-
energy CT (DECT), has been shown to enhance tissue 
characterization by utilizing differential X-ray attenua-
tion at different energy levels, thereby improving tumor 
detection rates and diagnostic accuracy [17]. Recently, 
the development of virtual monoenergetic image recon-
struction has emerged as a critical advancement in 
DECT, particularly in tumor imaging [18]. Numer-
ous studies have demonstrated that DECT significantly 
enhances soft tissue resolution and lesion conspicuity 
compared to conventional CT. For instance, combining 
low-energy virtual monoenergetic images with iodine 
mapping has notably improved the detection of pancre-
atic ductal adenocarcinoma [19]. However, there remains 
a gap in literature regarding the application and effec-
tiveness of DECT with virtual monoenergetic images for 
diagnosing PCa.

Herein, we designed this present study to assess the 
effect of virtual monoenergetic images reconstructed 
using DECT during the arterial phase on prostate lesion 
image quality and diagnostic performance. By compar-
ing these images at different energy levels (40–100 keV) 
to conventional linear blending images and analyzing 
their diagnostic efficacy, we aimed to enhance PCa detec-
tion and diagnosis, which could potentially reduce the 
need for invasive procedures and lead to better patient 
outcomes.

Materials and methods
Study population and ethical approval
This study received approval from the Ethics Commit-
tee of Meizhou People’s Hospital, and informed consent 
was obtained from all patients or their guardians. The 
research adhered to the ethical standards outlined by 
the Committee on the Use of Human Subjects and the 
Declaration of Helsinki (1975). A retrospective analy-
sis was conducted on 83 patients diagnosed with PCa 
or prostatic hyperplasia who underwent DECT scans 
at Meizhou People’s Hospital between July 2019 and 
December 2023. The study inclusion criteria included 
patients diagnosed with PCa confirmed by pathological 
results, those clinically diagnosed with prostatic hyper-
plasia based on symptoms and confirmed by ultrasound 
and MRI showing no suspected cancerous lesions, and 
individuals who underwent contrast-enhanced DECT 
scans. Exclusion criteria involved cases with incomplete 
clinical or DECT data (n = 51), poor DECT image qual-
ity (n = 8) [20], and tumors measuring less than 1.0 cm in 
minimal length (n = 2) due to the resolution limitations of 
DECT, which can impact the accuracy and reliability of 
imaging results. The patient selection process is shown in 
Fig. 1.

Prostate-specific antigen detection
All patients fasted for 8–12 h before providing a fasting 
venous blood sample (5 mL) the next morning. Blood 
samples were centrifuged at 4000 r/min at 4 °C for 10 min 
within 2 h of collection, and the supernatant was stored 
at -20 °C or immediately analyzed. Total PSA (TPSA) and 
serum-free PSA (FPSA) concentrations were measured 
using electrochemiluminescence immunoassay.

Data collection
General information on PCa patients, including age, 
body mass index (BMI), Gleason scores, and T staging, 
was collected through case investigation and follow-up 
forms. The reasons for patient visits (e.g., dysuria, hema-
turia) were also recorded. Data integrity and authentic-
ity were verified by a second researcher after initial data 
collection.

DECT scanning protocol
All patients were scanned using a third-generation 
dual-source Force CT scanner (Somatom Force; Sie-
mens Healthcare, Forchheim, Germany). The scan range 
extended from the lower abdominal aorta to the pelvic 
floor. Scan parameters included: tube voltages of 100 kV 
and 150 snkV, automatic tube current modulation (Care 
Dose 4D, Siemens Healthcare), rotation speed of 0.5 s/r, 
pitch of 0.9–1.1, slice thickness of 5 mm with a 0.6 mm 
interval, and reconstructed image thickness of 1.0  mm. 
Iopamidol (370  mg/ml) was administered via a high-
pressure syringe into the median cubital vein at a rate of 
3.5 mL/s, with dosage based on body weight (1.5 ml/kg). 
The arterial phase scan began 5 s after reaching 100 HU 
in the lower abdominal aorta, followed by a venous phase 
scan starting 26 s later [21].

Image analysis and evaluation
Following scanning, the conventional linear blending 
images of the arterial phase (fusion coefficient: 0.5) and 
original data from the arterial phase (100  kV and 150 
snkV) were transferred to the Siemens syngo.via cli-
ent workstation. The Mono-plus subroutine within the 
dual-energy program was employed to reconstruct data 
at 10 keV intervals ranging from 40 to 100 keV, yielding 
seven groups of monoenergetic reconstructed images 
(40, 50, 60, 70, 80, 90, and 100 keV). The analytical flow of 
this study is shown in Fig. 1.

Objective evaluation of the image quality
Two radiologists conducted independent and double-
blind measurements, averaging their findings. Mea-
surements included CT values of PCa foci, prostatic 
hyperplasia tissues, and muscles at the same layer, as 
well as the standard deviation (SD) of subcutaneous fat 
in the buttocks, defining image noise. Subsequently, 
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signal-to-noise ratio (SNR) and contrast-to-noise ratio 
(CNR) were calculated using the following formulas: 
SNR = (CT value of cancer focus / SD) and (CT value 
of hyperplastic tissue / SD), CNR = [(CT value of cancer 
focus - CT value of muscle at the same layer) / SD] and 
[(CT value of hyperplastic tissue - CT value of muscle at 
the same layer) / SD].

Subjective evaluation of the image quality
Two radiologists independently and double-blindly 
evaluated each dataset’s image quality. In cases of dis-
cordance, consensus was reached through consultation. 
Image quality was scored on a 5-point scale [22], where 
5 points indicated excellent, 4 points good, 3 points 
medium with acceptable lesion identification upon care-
ful observation, 2 points poor contrast hindering lesion 

identification, and 1 point indicated insufficient diagnos-
tic information with unidentified lesions.

Statistical analysis
The SPSS v26.0 software was used for statistical analysis. 
Normally distributed measurement data are presented 
as mean ± standard deviation (SD). Overall compari-
sons were conducted using one-way analysis of variance 
(ANOVA) and pairwise comparisons using indepen-
dent sample t-tests. Non-normally distributed data are 
expressed as median (interquartile range, IQR), com-
pared overall using the Kruskal-Wallis H test, and pair-
wise using the Mann-Whitney U test. The diagnostic 
efficacy of spectral CT quantitative parameters for PCa 
was assessed using ROC curve analysis, with significance 
set at P < 0.05.

Fig. 1  Flowchart illustrating the patient screening process for inclusion and analytic flow in the study

 



Page 5 of 10Fan et al. BMC Medical Imaging          (2024) 24:212 

Results
Baseline data
Table 1 presents the general characteristics of all patients, 
comparing those diagnosed with prostatic hyperplasia 
(n = 46) and PCa (n = 37). Among the 37 cases of patho-
logically confirmed PCa,36 (97.3%) were classified as 
clinically significant PCa (csPCA) based on a Gleason 
score ≥ 7 or evidence of extraprostatic extension. The 
remaining 1 case (2.7%) was categorized as non-csPCA, 
characterized by lower Gleason scores without extrapros-
tatic involvement. There were no significant differences 
in age and BMI between the two groups. However, sub-
stantial differences were noted in both free prostate-spe-
cific antigen (FPSA) and total prostate-specific antigen 
(TPSA) levels. Median FPSA levels were 1.30 (0.61–2.28) 
ng/ml for the prostatic hyperplasia group and 20.60 
(3.93–30.00) ng/ml for the PCa group (p < 0.001). Median 
TPSA levels were 5.36 (2.29–10.13) ng/ml and 99.98 
(28.48–386.70) ng/ml, respectively (p < 0.001). These bio-
markers could be promising for distinguishing between 
prostatic hyperplasia and PCa, reflecting disease severity 
and potentially guiding treatment decisions.

Objective evaluation of image quality
Compared with the conventional linear blending group, 
the average CT attenuation values of the arterial phase in 
the 40–60  keV energy range were significantly elevated 
(P < 0.05), while they decreased at 100  keV. However, 
there were no significant differences between the 60 keV, 
70 keV, and 80 keV groups compared to the conventional 
linear blending group (P > 0.05) (Table 2).

Additionally, the CT values of prostatic hyperplasia in 
the arterial phase were significantly lower than those of 
PCa across various monoenergetic reconstruction energy 
levels (40–100  keV) and conventional linear blending 
groups (P < 0.001). Furthermore, CT values of both pros-
tatic hyperplasia and PCa tissues exhibited a decreas-
ing trend with increasing energy levels (40  keV, 50  keV, 
60 keV, 70 keV, 80 keV, 90 keV, 100 keV) (Table 2).

Moreover, SNR and CNR values were analyzed for each 
group (Table  3). Significant differences were observed 
in SNR and CNR values between patients with pros-
tatic hyperplasia and those with PCa across different 
single-energy reconstruction keV levels (40–100  keV) 
and conventional linear blending images (P < 0.001). 
Specifically, SNR values at each energy level did not dif-
fer significantly from those of the conventional linear 
blending group (P > 0.05) (Table  3). Compared with the 
conventional linear blending group, CNR values in the 
40–70 keV groups for patients with prostatic hyperplasia 
or PCa were markedly increased (P < 0.05), while those in 
the 100 keV groups were significantly decreased (P < 0.05) 
(Table  3). Overall, these results underscore the optimal 
energy range for effective prostate imaging using DECT.

Subjective evaluation of imaging quality
Table  4 presents the results of subjective image quality 
evaluations. In summary, compared with the conven-
tional linear blending group, subjective scores for the 

Table 1  General information of patients
Eigenvalues Prostatic 

hyperpla-
sia (n = 46)

Prostate can-
cer (n = 37)

T/χ2 P

Age (year) 75.46 ± 9.85 76.189 ± 8.72 0.354 0.724
BMI (kg/m2) 23.22 ± 4.16 23.08 ± 3.12 -0.160 0.873
FPSA (ng/ml) 1.30 

(0.61–2.28)
20.60 
(3.93–30.00)

-5.370 < 0.001

TPSA (ng/ml) 5.36 
(2.29–10.13)

99.98 
(28.48–386.70)

-5.570 < 0.001

Reasons for the 
visit, n (%)

4.506 0.105

Dysuria 36 (78.26%) 27 (72.97%)
Hematuria 2 (4.35%) 7 (18.9%)
Others 8 (17.39%) 3 (8.11%)
Gleason Score, 
n (%)

- - -

6 - 1(2.7%)
7 - 2(5.4%)
8 - 14(37.84%)
9 - 13(35.14%)
10 - 7(18.92%)
T staging, n (%) - -
T1 - 0 (0.0%)
T2 - 2 (5.4%)
T3 - 9 (24.3%)
T4 - 26 (70.3%)
Note: Data were expressed as mean ± SD or median (interquartile range, IQR). 
BMI, body mass index; FPSA, free prostate-specific antigen; TPSA, total prostate-
specific antigen

Table 2  Comparison of objective evaluation parameters 
between monoenergetic reconstruction and conventional linear 
blending images (CT value)
Groups Prostatic 

hyperplasia 
(n = 46)

Prostate cancer 
(n = 37)

t P

40 keV 93.93 ± 24.16* 168.19 ± 57.14* 7.981 < 0.001
50 keV 73.21 ± 14.92* 121.73 ± 39.21* 7.734 < 0.001
60 keV 60.08 ± 10.78* 93.91 ± 25.9* 8.047 < 0.001
70 keV 53.10 ± 7.60 76.73 ± 18.61 7.847 < 0.001
80 keV 48.98 ± 5.77 65.32 ± 13.88 7.251 < 0.001
90 keV 45.77 ± 5.07 56.76 ± 11.02* 6.022 < 0.001
100 keV 43.74 ± 4.33* 52.99 ± 8.58* 6.383 0.001
Conventional 
linear blending

50.70 ± 6.65 66.66 ± 15.5 6.297 < 0.001

Note: Data were expressed as mean ± standard deviation (SD). *P < 0.05 indicates 
a significant difference when compared to the Conventional linear blending 
group
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40  keV and 50  keV groups were significantly higher for 
both prostatic hyperplasia and PCa (P < 0.05), whereas 
scores for the 90  keV and 100  keV groups were signifi-
cantly lower (P < 0.05). Additionally, subjective scores 
decreased progressively with increasing energy lev-
els (40 keV, 50 keV, 60 keV, 70 keV, 80 keV, 90 keV, and 
100 keV). The higher subjective scores for the 40 keV and 
50 keV groups suggest improved image quality and lesion 
visibility in both prostatic hyperplasia and PCa, indicat-
ing potential clinical utility for enhancing diagnostic con-
fidence and accuracy in DECT imaging.

Diagnostic efficacy of DECT for PCa
Building upon the preceding results, both the 40 keV and 
50  keV groups demonstrated significantly increased CT 
values and CNR values compared to conventional lin-
ear blending images (Fig.  2). Therefore, we conducted 
ROC curve analysis to compare the diagnostic efficacy of 
40 keV, 50 keV, and conventional linear blending images 
for PCa.

The results (Fig. 3; Table 5) revealed notable differences 
in the predictive performance of 40 keV, 50 keV, and con-
ventional linear blending images based on their CT and 
CNR values, reflected in the respective areas under the 
receiver operating characteristic curve (AUC). Specifi-
cally, the AUC values for 40 keV, 50 keV, and conventional 
linear blending images in CT values were 0.910, 0.910, 
and 0.849, respectively. Correspondingly, the AUC val-
ues in CNR values were 0.865, 0.863, and 0.821, respec-
tively. Importantly, both the 40  keV and 50  keV groups 
exhibited higher AUC values in CT than the conventional 
linear blending group, with CT values demonstrating 
superior diagnostic efficacy compared to CNR values. 
Thus, DECT at 40  keV and 50  keV could enhance PCa 
diagnostic accuracy with higher CT and CNR values and 
superior AUC in ROC analysis compared to conventional 
imaging, suggesting improved patient management.

Discussion
This study investigated the impact of virtual monoener-
getic images reconstructed by DECT during the arterial 
phase on the image quality of prostate lesions and diag-
nostic performance for PCa, revealing significant advan-
tages associated with low-energy virtual monoenergetic 
images, specifically at 40  keV and 50  keV, in subjective 
and objective evaluations and diagnostic efficiency. Over-
all, our findings support the enhanced detection capa-
bilities of DECT, particularly in identifying csPCA and 
more advanced stages of PCa. Among the prostate cancer 
cases detected, 36 (97.3%) were classified as csPCA based 
on a Gleason score ≥ 7 and/or evidence of extraprostatic 
extension. Additionally, T stages varied, with the major-
ity being T4 stages, indicating that the cancer had grown 
outside the prostate gland. These findings highlight the 

Table 3  Comparison of the signal-to-noise ratio (SNR) and 
contrast-to-noise ratio (CNR) values in various monoenergetic 
reconstruction keV levels (40–100 keV) and conventional linear 
blending images
Groups Prostatic 

hyperpla-
sia (n = 46)

Prostate 
cancer (n = 37)

t P

SNR 40 keV 3.74 ± 1.31 6.17 ± 2.10 6.429 < 0.001
50 keV 3.80 ± 1.20 6.08 ± 2.02 6.369 < 0.001
60 keV 4.01 ± 1.15 6.18 ± 1.88 6.487 < 0.001
70 keV 4.29 ± 1.23 5.96 ± 1.88 4.874 < 0.001
80 keV 4.39 ± 1.14 5.46 ± 1.69 3.457 0.001
90 keV 4.07 ± 1.11 5.08 ± 1.41 3.632 < 0.001
100 keV 3.91 ± 1.03 5.36 ± 1.57 3.190 0.002
Conven-
tional linear 
blending

4.14 ± 1.13 5.36 ± 1.57 4.104 < 0.001

CNR 40 keV 1.39 
(0.47–2.13)*

3.81 
(2.19–5.61)*

-5.689 < 0.001

50 keV 0.87 
(-0.29-1.50)*

2.95 
(1.83–4.72)*

-5.662 < 0.001

60 keV 0.44 
(-0.12-1.16)*

2.25 
(1.46–3.74)*

-6.065 < 0.001

70 keV 0.23 
(-0.36-0.81)

1.86 
(1.03–3.23)*

-6.147 < 0.001

80 keV 0.02 
(-0.49-0.49)

1.04 
(0.33–2.25)

-5.199 0.001

90 keV -0.11 
(0.54 − 0.25)

0.56 
(-0.14-1.31)*

-4.127 < 0.001

100 keV -0.19 
(-0.68-0.27)*

0.38 
(-0.15-0.95)*

-4.352 0.002

Conven-
tional linear 
blending

0.07 
(-0.41-0.43)

0.96 
(0.46–1.74)

-5.030 < 0.001

Note: Data were expressed as mean ± standard deviation (SD) or median 
(interquartile range, IQR). *P < 0.05 indicates a significant difference when 
compared to the Conventional linear blending group in CNR.

Table 4  Comparison of subjective scores of the image quality in 
various monoenergetic reconstruction keV levels (40–100 keV) 
and conventional linear blending images
Groups Prostatic 

hyperplasia 
(n = 46)

Prostate 
cancer 
(n = 37)

z P

40 keV 5(4–5)* 5(4–5)* -0.604 0.546
50 keV 5(4–5)* 5(4–5)* -1.141 0.254
60 keV 4(3–5) 4(3–5) -0.888 0.375
70 keV 4(3–4) 4(3–4) -0.622 0.534
80 keV 3(2–4) 3(2–4) -0.690 0.490
90 keV 3(2–3)* 3(2–3)* -0.341 0.733
100 keV 2(1.5–2.5)* 2(1–3)* 0.475 0.635
Conventional 
linear blending

4(2.5-4) 3(3–4) -0.562 0.574

Note: Data were expressed as median (interquartile range, IQR). *P < 0.05 vs. 
Conventional linear blending
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enhanced detection capabilities of DECT for csPCA and 
more advanced prostate cancers.

Our results indicate that the average CT attenuation 
values of prostate hyperplasia and PCa tumors in recon-
structed images at 40–60  keV were significantly higher 
compared to those in the conventional linear blending 
group, suggesting enhanced contrast for these conditions 
at low-energy level and aligning with prior research that 
demonstrated low-energy virtual monoenergetic images 
can enhance tumor visualization and reduce the need for 
additional diagnostic scans [23]. This enhancement could 
be attributed to the predominance of the photoelectric 
effect in low-energy virtual monoenergetic images, which 
closely approximates the K-absorption edge of iodine, 

thereby increasing tissue contrast and improving soft 
tissue resolution [24]. Virtual monoenergetic images at 
40 keV during the arterial phase demonstrate high clini-
cal utility. They improve the detection sensitivity of PCa 
lesions compared to conventional CT scanning, poten-
tially identifying invisible or challenging-to-detect can-
cers as well as the assessment of bone metastasis, lymph 
node involvement, and other organ conditions in a single 
examination session [25]. Thus, DECT holds promise as 
a novel imaging modality for PCa assessment and could 
serve as a complementary tool in cases where MRI is 
contraindicated [26, 27].

Furthermore, the CNR values of the 40–60 keV groups 
between patients with prostate hyperplasia or PCa were 

Fig. 3  Receiver operating characteristic (ROC) curve for the prediction of prostate cancer using 40 keV, 50 keV, and conventional linear blending images. 
Subplots (A) and (B) display ROC curves based on computed tomography (CT) values and contrast-to-noise ratio (CNR) values, respectively

 

Fig. 2  Comparison of CT values and CNR at 40 keV, 50 keV, and conventional linear blending images in patients with prostate cancer and prostate hyper-
plasia (Window Width: 300 / Window Level: 40). (A-C) The CT values of prostate cancer at 40 keV (A), 50 keV (B), and conventional linear blending image 
(C) were 246.8 HU, 175 HU, and 84.6 HU, respectively; CNRs were 6.75, 5.90, and 2.55, respectively. (D-F) The CT values of prostate hyperplasia at 40 keV (D), 
50 keV (E), and conventional linear blending image (F) were 101.5 HU, 81.9 HU, and 54.5 HU; CNRs were 1.12, 0.75, and 0.11, respectively
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significantly higher than those of the conventional lin-
ear blending group, while the SNR values at each energy 
level were not significant compared to the conventional 
linear blending group. Higher SNR indicates clearer 
details and better overall image quality when the signal 
is much stronger than the noise [28], and a higher CNR 
signifies greater contrast and more distinct delineation 
between the target and surrounding tissues [29], essen-
tial for accurate diagnosis [30]. Our findings suggest that 
the observed enhanced image quality improved PCa 
detection rates, consistent with research by Geng et al., 
who demonstrated that DECT could enhance the identi-
fication and objective evaluation of laryngeal squamous 
cell carcinoma using low-energy virtual monoenergetic 
images [31].

In terms of subjective evaluation, our study found 
that the subjective scores of the 40  keV and 50  keV 
groups were significantly higher than those of the con-
ventional linear blending group, suggesting that radi-
ologists could more easily identify and evaluate prostate 
tumors on these low-energy images. This finding aligns 
with the findings of Wang et al., who highlighted that 
DECT enhances radiologists’ ability to detect breast can-
cer, thereby enhancing the clinical utility of DECT [24]. 
Regarding diagnostic efficacy for PCa, virtual monoen-
ergetic images at 40  keV and 50  keV exhibited higher 
AUC values in CT values (0.91) compared to CNR val-
ues (0.86), and both were superior to conventional linear 
blending images. This suggests that in our study, virtual 
monoenergetic images at 40  keV and 50  keV may offer 
the best diagnostic performance for PCa. These results 
are consistent with research by Luo et al., who demon-
strated that low-energy virtual monoenergetic images 
under DECT provide superior accuracy in characterizing 

tumors [32]. The application of virtual monoenergetic 
images at 40 keV and 50 keV could potentially aid clinical 
decision-making in future research and clinical practice.

In recent years, machine learning (ML) and deep 
learning (DL) have shown significant potential across 
biomedical fields, including medical imaging and drug 
discovery. These technologies can notably enhance 
DECT by optimizing image reconstruction, improving 
contrast differentiation, and reducing noise, particularly 
in the critical 40–60  keV energy range. For instance, 
ML models have advanced drug permeability studies in 
maternal-fetal medicine [33] and optimized drug deliv-
ery systems through blood-brain barrier re-routing [34]. 
DL techniques, such as age and gender estimation from 
electrocardiogram signals [35], illustrate their efficacy 
in processing complex biomedical data. Integrating ML 
and DL into DECT imaging could refine virtual monoen-
ergetic parameters, enhancing lesion detectability and 
diagnostic confidence. Furthermore, leveraging DL’s 
abilities in managing extensive datasets could potentially 
improve DECT’s diagnostic precision by enabling more 
robust analysis and interpretation of imaging data [36]. 
These approaches could lead to enhanced clinical deci-
sion-making and patient outcomes in disease diagnosis. 
Moreover, our findings align with existing literature that 
highlights the potential of DL in enhancing DECT imag-
ing. For instance, Cong et al. demonstrated that DL can 
generate high-quality VM images from single-spectrum 
CT images with high accuracy and low relative error [37], 
suggesting similar benefits in reducing system complex-
ity and radiation dose compared to conventional DECT, 
which also corroborated with other related research 
studies [38, 39]. Additionally, Greffier et al. and Seo et 
al. emphasized the superior image quality and diagnostic 
performance of DL-enhanced DECT images in various 
clinical contexts [40, 41]. Herein, we demonstrated that 
VM images at 40  keV and 50  keV significantly improve 
CT attenuation values, CNR and diagnostic accuracy for 
PCa, corroborating the efficacy of DL-enhanced DECT 
imaging in clinical diagnostics and highlighting the 
potential of integrating DL techniques into DECT imag-
ing to optimize cancer detection and characterization, 
ultimately improving clinical outcomes and reducing the 
need for invasive diagnostic procedures.

This study had several limitations to acknowledge. 
Firstly, as a single-center study with a relatively small 
sample size, the generalizability of our findings may be 
limited. Secondly, ongoing advancements in DECT scan-
ning parameters and reconstruction algorithms neces-
sitate further validation of our conclusions in future 
research. Thirdly, the absence of MRI data limits compre-
hensive comparative analysis of diagnostic performance. 
Additionally, our study predominantly included patients 
with advanced PCa and elevated PSA levels, limiting 

Table 5  Analysis results of receiver operating characteristic 
curve
Variables 40 keV 50 keV Conven-

tional 
linear 
blending

CT values AUC (95% CI) 0.910(0.839–
0.982)

0.910 
(0.835–0.984)

0.849 
(0.761–0.936)

P value < 0.001 < 0.001 < 0.001
Cut-off value 132.40 90.25 58.85
Sensitivity, % 72.97 86.49 78.38
Specificity, % 100% 86.96 82.61

CNR values AUC (95% CI) 0.865(0.788–
0.941)

0.863(0.784–
0.941)

0.821(0.732–
0.911)

P value < 0.001 < 0.001 < 0.001
Cut-off value 2.92 1.58 0.52
Sensitivity, % 62.16 81.08 75.68
Specificity, % 95.65 78.26 78.26

Note: AUC, areas under the receiver operating characteristic curve; CI, 
confidence interval; CT, computed tomography; CNR, contrast-to-noise ratio
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representation of earlier-stage cases, and the exclusion of 
lesions < 1 cm restricts DECT’s applicability in detecting 
smaller, early-stage PCa.

Conclusion
In conclusion, DECT shows substantial potential to 
enhance the diagnostic capabilities for PCa through 
the reconstruction of virtual monoenergetic images at 
low-energy levels (40  keV and 50  keV) during the arte-
rial phase. This innovative technology not only enhances 
image quality but also improves diagnostic accuracy, 
thereby playing a crucial role in enhancing early detec-
tion and facilitating tailored treatment planning for PCa. 
Future research will aim to further validate and expand 
upon our findings, aiming to optimize the clinical appli-
cation of DECT technologies and deliver more pre-
cise diagnoses and personalized treatment strategies to 
patients.
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