APPENDIX A

UNIVERSITY OF CALIFORNIA, BERKELEY NOTICE OF PREPARATION 2020 LONG RANGE DEVELOPMENT PLAN

.....

SANTA BARBARA • SANTA CRUZ

CAPITAL PROJECTS
PHYSICAL AND ENVIRONMENTAL PLANNING
300 A & E BUILDING, # 1382
BERKELEY, CALIFORNIA 94720-1382

August 29, 2003

State of California Office of Planning and Research 1400 Tenth Street Sacramento, CA 95814

NOTICE OF PREPARATION ENVIRONMENTAL IMPACT REPORT

Project Title: UC Berkeley 2020 Long Range Development Plan and

Chang-Lin Tien Center for East Asian Studies

Project Location: University of California, Berkeley

County: Alameda County, California

Project Description: The University of California, Berkeley (UC Berkeley) proposes to prepare and adopt the 2020 Long Range Development Plan ("LRDP"), a guide to future land use and physical development for the UC Berkeley campus through academic year 2020-21. Also proposed is the Chang-Lin Tien Center for East Asian Studies, the first individual project planned under the 2020 LRDP. More information on both the 2020 LRDP and the Tien Center may be found in the attached Project Description.

Environmental Review and Comment: The University of California will be the Lead Agency and will prepare an Environmental Impact Report (EIR) to evaluate the potential environmental effects of implementing the 2020 LRDP. The EIR will provide a program level environmental review of campus development through 2020-21, and to support consideration of specific future projects as they occur. The EIR will also provide a project level analysis of the Tien Center project.

An Initial Study has been prepared in accordance with the California Environmental Quality Act (CEQA), the CEQA Guidelines, and the University of California Guidelines for the Implementation of CEQA, to identify the environmental issues to be addressed in the 2020 LRDP and Tien Center EIR. The 2020 LRDP and Tien Center EIR will consider potential environmental effects in the following resource areas: aesthetics, air quality, biological resources, cultural resources, geology, seismicity and soils, hazardous materials, hydrology and water quality, land use, noise, population and housing, public services, recreation, transportation and traffic, and utilities and service systems. The Initial Study has determined

that the 2020 LRDP would not have potential impacts on mineral resources or agricultural resources, and therefore those resource areas will not be analyzed in the 2020 LRDP EIR.

Copies of the Initial Study are available for review during normal operating hours at the offices of Capital Projects' Physical and Environmental Planning offices, 100 A&E Building on the UC Berkeley campus and at 1936 University Avenue, Suite 300, in downtown Berkeley; at the main branch of the Berkeley Public Library, 2090 Kittredge Avenue; and online at http://www.cp.berkeley.edu.

We appreciate your prompt acknowledgement and review of this Initial Study. Due to the time limits mandated by state law, the document's 30-day review period will extend from August 29, 2003 to September 29, 2003. Comments must be received before 5:00 pm on September 29, 2003. They may be e-mailed to 2020LRDP@cp.berkeley.edu or mailed to:

Jennifer Lawrence
Principal Planner
Environmental & Long Range Planning
Capital Projects
1936 University Ave
Berkeley, CA 94720

Please include a subject line indicating Scoping Comment: 2020 LRDP and Tien Center EIR.

A public scoping meeting for the 2020 LRDP and Tien Center EIR will be held on Monday, September 22, 2003 from 5 pm to 9 pm at the Clark Kerr Campus Krutch Theater, 2601 Warring Street, Berkeley. Interested individuals may offer written or oral comments on the proposed scope of the environmental analysis, which will become part of the administrative record for the EIR.

If you have any questions about the environmental review, please contact Jennifer Lawrence, Principal Planner, Physical and Environmental Planning, at (510) 642-7720.

Sincerely,

Thomas E. Lollini

Assistant Vice Chancellor

Physical and Environmental Planning

Capital Projects

Enclosures: 15 copies of the UC Berkeley 2020 LRDP and Tien Center Initial Study

cc: Notice of Preparation and Initial Study sent to addressees on attached list

Addressee List:

Local Jurisdictions

Paul Fassinger Research Director ABAG PO Box 2050 Oakland CA 94604

Mr. Weldon Rucker City Manager City of Berkeley 2180 Milvia Street Berkeley, California 94704 (3 copies)

Members of the Berkeley City Council c/o Sherry M. Kelly, City Clerk 2180 Milvia Street Berkeley CA 97404 (9 copies)

City Manager City of Oakland 1 Frank Ogawa Plaza, 3rd Floor Oakland, California 94612

City Manager City of Albany 1000 San Pablo Avenue Albany, California 94706

Mr. Scott Hanin City Manager City of El Cerrito 10890 San Pablo Avenue El Cerrito, California 94530

City Manager City of Emeryville 1333 Park Avenue Emeryville CA 94608-3517

Laura Chen Chief Facilities Planner Lawrence Berkeley National Laboratory One Cyclotron Road MS 90K Berkeley CA 94720

Susan Muranishi County Administrator Alameda County 1221 Oak Street, Room 555 Oakland 94612 County Administrator Contra Costa County County Administration Building 651 Pine Street, 11th Floor Martinez, CA 94553

County Clerk's Office City Hall, Suite 168 1 Dr. Carlton B. Goodlett Place San Francisco, CA 94102-4678

Office of the Clerk Board of Supervisors Santa Clara County 70 West Hedding Street 10th Floor, East Wing San Jose, CA 95110

County Administrator San Joaquin County 222 E. Weber Ave. #707 Stockton, CA 95202

Michele Lawrence Superintendent Berkeley Unified School District 2134 Martin Luther King Jr Way Berkeley CA 94704-1180

Transportation Agencies

Steve Heminger Executive Director Metropolitan Transit Commission 101 8th Street Oakland CA 94607

Jean Hart, Deputy Director Alameda County Congestion Management Agency 1333 Broadway Suite 220 Oakland CA 94612

Timothy C. Sable
District Branch Chief
Department of Transportation
111 Grand Avenue
PO Box 23660
Oakland CA 94623-0660

Peter Hillier Assistant City Manager for Transportation 1900 Addison St., 3rd Floor Berkeley, CA 94704 Rick Fernandez General Manager AC Transit 1600 Franklin Street Oakland, CA 94612-2800

General Manager BART 800 Madison Street, LMA-5 Oakland, CA 94607

Water Agencies

Mr. Dennis Diemer General Manager East Bay Municipal Utility District 375 11th Street Oakland, California 94607-4240

Mr. William R. Kirkpatrick Manager of Water Distribution Planning East Bay Municipal Utility District 375 11th Street Oakland, California 94607-4240

State Water Resources Control Board Division of Water Quality PO Box 100 Sacramento CA 95801

Mr. Keith Lichten, Water Resource Control Engineer San Francisco Regional Water Quality Control Board 1515 Clay St. Suite 1400 Oakland, California 94612

Parks & Recreation Agencies

Mr. Brian Wiese Interagency Planning East Bay Regional Park District 2950 Peralta Oaks Court Oakland, California 94605-0381

Historic & Archaeological Resource Agencies

State of California Native American Heritage Commission 915 Capitol Mall, Room 364 Sacramento CA 95814

Mr. Dwight Dutschke Office of Historic Preservation PO Box 942896 Sacramento, CA 94296-0001

Resource Planning & Protection Agencies

Mr. Dan Buford Chief, Coast Bay Delta Branch United States Fish & Wildlife Service Sacramento Fish & Wildlife Office 2800 Cottage Way, Suite W-2605 Sacramento, CA 95825

Ms. Sherry Christensen, Warden Alameda Field Office California Dept of Fish & Game PO Box 4314 Hayward, California 94540

California Public Utilities Commission 505 Van Ness Ave. San Francisco, CA 94102-3298

Air Quality Agencies

Henry D. Hilken Senior Environmental Planner Bay Area Air Quality Management District 939 Ellis Street San Francisco, California 94109

California Air Resources Board 1001 "I" Street Sacrament CA 95814

Environmental Safety, Materials & Waste Handling Agencies

Barbara J. Cook, Chief Northern California – Coastal Cleanup Operations Branch Department of Toxic Substances Control 700 Heinz Avenue, Suite 200 Berkeley CA 94710

California Integrated Waste Management Board 1001 "I" Street PO Box 4025 Sacrament CA 95812-4025

California Department of Health Services P.O. Box 942732 Sacramento, CA 94234-7320

Public Repositories (via hand delivery)

Environmental Design Library Reference Desk 210 Wurster Hall UC Berkeley Campus

Moffitt Library Reference Desk UC Berkeley Campus

Berkeley Public Library Reference Desk – Main Branch 2090 Kittredge Street Berkeley CA 94704

Oakland Public Library Reference Desk – Rockridge Branch 5366 College Avenue Oakland CA 94618

Albany Public Library Reference Desk 1247 Marin Avenue Albany CA 94706

Student Organizations (via hand delivery)

Graduate Student Assembly Anthony Hall Berkeley CA 94720

Anu Joshi External Affairs VP ASUC 220 Eshleman Hall Berkeley CA 94720-4500

Residence Hall Assembly 2401 Bowditch Street #2272 Berkeley CA 94720-2272

PROJECT DESCRIPTION

2020 LONG RANGE DEVELOPMENT PLAN AND CHANG-LIN TIEN CENTER FOR EAST ASIAN STUDIES UNIVERSITY OF CALIFORNIA, BERKELEY

BACKGROUND

Our mission at UC Berkeley is to deliver programs of instruction, research and public service of exceptional quality to the state of California. Over the years, our performance in support of this mission has not only equaled but often outpaced the nation's elite private universities, despite their longer histories and far larger private endowments. The excellence of UC Berkeley is a testament to the vision and public spirit of the people of California, who have sustained us for over a century as a premier research university, while also ensuring a UC Berkeley education remains within reach of every deserving student.

LONG RANGE DEVELOPMENT PLAN

Each University of California campus is required to maintain a Long Range Development Plan (LRDP), a document that defines the general framework for land use and physical development within a specific timeframe. State law (Public Resources Code 21080.09) also requires an Environmental Impact Report (EIR) to be prepared for any new or updated LRDP, pursuant to the California Environmental Quality Act (CEQA).

UC Berkeley's current LRDP was approved in 1990, and was subsequently amended to increase the maximum amount of academic and support program space in 2002. However, the world and the role of UC Berkeley within it have changed significantly since 1990. A renewed vision is necessary to address the challenges UC Berkeley faces in the 21st century, and maintain our historic standard of academic excellence. These challenges include:

- to pursue exciting new fields of inquiry and discovery, and achieve excellence in every field we pursue,
- to maintain the unique breadth and variety of our academic programs, and a strong and vital intellectual community,
- to provide every student with an outstanding education, in which critical inquiry, analysis and discovery are integral to the coursework,
- to strengthen our ability to recruit and retain exceptional individuals, and ensure the campus reflects the full social and cultural spectrum of Californians,
- to provide the space, technology, and infrastructure required to meet the demands of leading edge instruction and research,
- to preserve our extraordinary legacy of landscape and architecture, and become a model of wise and sustainable growth,
- to preserve the character and livability of the city around us, and enhance the economic and cultural synergy of city and university,
- to ensure each capital investment represents the optimal use of public resources, and
- to serve the people of California, and uphold our standard as the best public research university in the world.

To enable UC Berkeley to maintain and build upon this standard, our current UC Berkeley LRDP is being updated, to guide the capital investment required to meet the academic goals of the campus and University through academic year 2020-2021.

The 2020 LRDP will describe both the scope and nature of development proposed within this timeframe, as well as land use principles and policies to guide the location, scale and design of individual capital projects.

The EIR will provide a comprehensive program-level analysis of the 2020 LRDP, and its potential impacts on the environment, in accordance with Section 15168 of the CEQA Guidelines. In accordance with section 15161 of the CEQA Guidelines, the EIR will also include a project-specific analysis of the proposed Chang-Lin Tien Center for East Asian Studies (Tien Center), the initial project to be built under the 2020 LRDP.

The Draft EIR will be presented to the public and relevant governmental agencies for review and comment, and those comments will then be taken into consideration in preparing the Final EIR. The 2020 LRDP and the Final EIR must be approved by the Regents of the University of California before the 2020 LRDP program and Tien Center project may be implemented.

The 2020 LRDP will not commit the University to any specific project. Change is inevitable, and the University must retain the ability to adjust its development priorities in response. However, the scope of the program to be described in the 2020 LRDP represents a maximum amount of net new growth in the UC Berkeley space inventory through 2020-2021, which the University could substantially exceed only by amending the LRDP. Subsequent capital projects at UC Berkeley will be reviewed for consistency with the LRDP, its EIR, and compliance with CEQA.

FIGURE 1. REGIONAL LOCATION

We expect to complete and submit the 2020 LRDP and Final EIR to the Regents for their consideration in Fall 2004. With this Notice of Preparation, UC Berkeley commences the CEQA process, and we invite interested agencies and members of the public to comment on the scope of the environmental analysis and evaluations of alternatives.

Because the campus is already severely constrained in terms of facilities, however, one or more urgent projects may have to commence CEQA review in advance of Regents' approval of the 2020 LRDP. Any such projects will be consistent with the 2020 LRDP, and their relationship to the 2020 LRDP program will be clearly described in their individual project-level CEQA analyses.

PROJECT CONTEXT

UC Berkeley is located approximately ten miles east of San Francisco, as shown in figure 1. Interstate 80, Highway 13, Highway 24, and Interstate 580 provide regional vehicular access to the campus. Regional transit access is provided by Bay Area Rapid Transit District (BART) and Alameda-Contra Costa Transit (AC Transit).

While the UC Berkeley campus today is a complex of several sites both in and outside the City of Berkeley, over half of the campus' built space is located on the historic 180 acre Campus Park, as described below. The city surrounds the Campus Park on the north, west and south with a dense mix of residential, institutional and commercial uses: the blocks adjacent to the Campus Park include several major University owned properties.

To the east, University owned land extends into the east bay hills from the Campus Park to Grizzly Peak Boulevard, which corresponds roughly with the Alameda-Contra Costa county line. The total area of the Campus Park and the adjacent Hill Campus to the east is roughly 1200 acres: over 95% of this area is located within Alameda County, with the easternmost portion in Contra Costa County.

200 of these acres are managed by the Lawrence Berkeley National Laboratory under federal jurisdiction, and are outside the scope of the UC Berkeley 2020 LRDP: LBNL is preparing its own LRDP for the land it manages. Other UC Berkeley operated properties include the 50-acre Clark Kerr Campus southeast of the Campus Park, as well as several other properties both in and outside the City of Berkeley, as described below. UC Berkeley will coordinate with LBNL to present the combined environmental effects of both LRDPs.

PROJECT SCOPE

The purpose of the 2020 LRDP is to guide future land use and capital investment through academic year 2020-21. While the campus functions as a single academic enterprise, the areas that comprise it differ significantly in terms of physical capacity and environmental sensitivity. To allow more meaningful analyses, the 2020 LRDP will be organized in terms of the Land Use Zones listed below and depicted in figure 2:

- Campus Park
- Adjacent Blocks North
- Adjacent Blocks West
- Adjacent Blocks South

- Southside
- Hill Campus
- Other Berkeley Sites
- Housing Zone

As described below, the campus' objectives through 2020 include a significant program of new University housing. These objectives include location criteria which define the Housing Zone in the 2020 LRDP: new lower division student housing must be within a one mile radius of the center of campus, while other new undergraduate and graduate student housing must be within this one mile radius or within a block of a transit line providing trips to campus in under 20 minutes.

As in the current LRDP, the scope of the 2020 LRDP will exclude University Village Albany and Richmond Field Station. It also excludes remote field stations as well as other campus properties lying entirely outside the City of Berkeley: these sites are sufficiently distant and different from the Campus Park and its environs to merit separate environmental review.

FIGURE 2. LAND USE ZONES

PROJECT DESCRIPTION

The 'project' under consideration in this EIR includes:

- The UC Berkeley 2020 LRDP (program-level analysis with detail to support subsequent project approvals) and
- The Chang-Lin Tien Center for East Asian Studies (project-level analysis)

The timeframe of the 2020 LRDP will extend through academic year 2020-2021, although the actual pace and sequence of individual capital projects will depend on a number of factors that can not be entirely predicted at this time, including the availability of state and other capital resources, future directions of research and instruction, shifts in demand among academic disciplines, and the emergence of new problems of societal importance.

While the 2020 LRDP is still in preparation, UC Berkeley has established some general parameters for the capital program, as described below. These parameters will serve as the basis for the environmental analyses conducted for the EIR.

Similarly, while the Tien Center is presently at a preliminary stage of architectural design, program parameters have been established for the project which, together with the general design guidelines to be prescribed in the 2020 LRDP, will serve as the basis for the environmental analysis. As the first project to be built under the new 2020 LRDP, the Tien Center will serve as a useful example of how the principles articulated in the LRDP would be realized in the design of an actual project.

DRIVERS FOR GROWTH

Under the Master Plan for Higher Education, the University of California is charged to admit from among the top 12.5% of California high school graduates, as well as the top 4% of the graduates of each high school. Due to the projected growth in the number of these students, the University as a whole is projected to increase enrollment by over 63,000 during the period 1998-2010 to meet this mandate. As part of this strategy, UC Berkeley has been requested to evaluate its ability to accommodate an increase of 4,000 students over the base year 1998. This represents an increase in enrollment of roughly 13%: a significant challenge for any campus, but particularly for a mature, urban campus with almost no vacant land.

UC Berkeley has also experienced steady growth in research, and we expect this trend to continue. Over the last decade of the 20th century, external research funding increased in real terms by an average of roughly 3.6% per year: over 90% of this funding comes from federal, state and nonprofit organizations. While our limits on space require us to be very selective in pursuing new projects, a strong and vital research program is fundamental to our mission of public service, and must be supported by adequate capital investment.

The research and scholarship pursued by our faculty, postdoctoral students, researchers and students has led to improved agricultural and industrial productivity, to advances in human and environmental health, and to new insights into personal and social behavior. External research funds also represent a significant source of income to the regional economy, and a significant generator of new jobs both at the University and in the private sector.

But research is also integral to, and inseparable from, the quality of a UC Berkeley education. As a research university, UC Berkeley provides its students with a unique experience, one in which critical inquiry, analysis, and discovery are integral to the coursework. Our students are expected to play an active role in research, under the guidance of faculty who are themselves engaged in creating, not merely imparting knowledge. UC Berkeley must continue to pursue promising new avenues of inquiry and discovery in order to provide this experience and, in particular, to enable us to significantly expand the scope of research-based education at the undergraduate level.

STRATEGIC ACADEMIC PLAN

As the initial step toward a new capital investment strategy, UC Berkeley began work in fall 2000 on a Strategic Academic Plan. The Plan, developed by a committee of faculty, students, and academic and administrative staff, and refined through a series of campus forums, is now complete and viewable at

http://www.berkeley.edu/news/media/releases/2003/05/sap/plan.pdf

The Plan describes the challenges UC Berkeley must address to maintain our standard of excellence, and recommends ten key principles to guide our future practices and initiatives. While those principles cover the entire scope of the academic enterprise, several are directly relevant to the capital investment program to be defined in the 2020 LRDP. For example:

- the need to limit future enrollment growth at UC Berkeley, and focus more capital resources on renewing our aging campus to meet the demands of modern education and research,
- the need to concentrate future academic growth on the Campus Park and its adjacent blocks, to encourage the synergy among disciplines that leads to new insight and discovery, and
- the need to invest in more University housing near campus, to ensure our students have full access to the campus' academic resources and intellectual life.

POPULATION

By 2020, we estimate our campus headcount (the number of people enrolled or employed at the University) during the regular academic year may increase by up to 12% over what it is today, as shown in table 1: the result of growth in both enrollment and sponsored research.

TABLE 1. ESTIMATED MAXIMUM CAMPUS HEADCOUNT

	Actual I	Headcount	Net Addl H	leadcount	Est Total F	Headcount
	:	2001-2002	20	20 LRDP		2020
Students						
Regular Terms*		31,800		1,650		33,450
Summer	11,400		5,700		17,100	
Faculty**		1,758		220		1,980
Academic Staff Postdocs & Visit	ing Scholars**	3,041		1,840		4,870
Nonacademic Staff**		8,136		810		8,950
Other Visitors & Vendors		1,200		800		2,000
Estimated Regular Terms Hea	dcount	45,935		5,320		51,250
Estimated On-Campus Headcour	nt***	44,834				

^{*} Average fall-spring headcount.

^{**} Excludes student workers to avoid double counting.

^{***} Excludes off campus programs and other exclusions per April 2002 Population Report to City of Berkeley

PROGRAM SPACE

By 2020, we estimate the space demands of campus academic and support programs may grow by up to 18% over current and approved space, as shown in table 2. Our academic programs require more space not only to educate a larger student body, but also to support new methods of inquiry and discovery. The complex problems we are exploring at UC Berkeley today require a combination of focused, individual work and work in interactive teams, often comprised of several academic disciplines. The campus must provide adequate space for both, with the high performance technology and infrastructure modern research and instruction demand.

However, our estimates of future space demand are not due entirely to future program growth: some new space is required just to compensate for the shortages we have today. The most recent survey of space at UC Berkeley, in 2001-2002, revealed a space deficit of roughly 450,000 GSF in academic programs alone.

UC Berkeley also has roughly 450,000 GSF of leased space in various locations in and outside Berkeley, and some of this space is deficient in terms of life safety, functionality, or both. Our estimate of future space demand also includes a contingency for the strategic replacement of some of this leased space with new University-owned space.

We expect a substantial portion of the future space demand in academic and support programs to consist of research laboratory space, along with some expansion of our animal research facilities. Research labs at UC Berkeley are a very broad category of space and include a wide variety of types, from biology and chemistry to physics and engineering. In fact, many future research labs will house multidisciplinary teams drawn from several fields. Since we can not predict the exact combination of future lab types, our environmental analyses for the 2020 LRDP will be based on one or more lab prototypes which provide a maximum estimate of potential environmental impacts.

We also expect the demand for student services to grow, not only to serve more students, but also to improve the range and quality of those services. And, while UC Berkeley is fortunate to have one of the world's great university libraries, we must continue to augment and expand its resources to maintain their relevance to future research and scholarship.

TABLE 2. ESTIMATED MAXIMUM SPACE DEMAND

Actual + CEQA Approved	d UC Berkeley Space	Net Additional Space	Estimated Total Space
	2001-2002	2020 LRDP	2020
Academic & Support (GSF)*	12,100,000	2,200,000	14,300,000
Housing (bed spaces)	8,200	2,600	10,800 **
Parking (spaces)	7,600	2,300	9,900

- 2001-2002 A&S space includes all buildings except those primarily housing or parking.
- * Future estimates of A&S space do not include new housing or new parking.
- ** 2020 estimate includes up to 200 family-suitable units for faculty, staff, or visiting scholars.
- ** Does not include 800-1000 beds proposed at University Village Albany: outside 2020 LRDP scope.

HOUSING & PARKING

By 2020, our objective is to increase the amount of University housing within the 2020 LRDP scope by up to 32% over current and approved beds, as shown in table 2. The shortage of good and reasonably priced housing near campus presents a formidable challenge to the pursuit of a UC Berkeley education, and future campus growth will further increase demand. More and better housing near campus is required to provide our students with the access to campus resources, and the community of peers and mentors, they require to excel. Up to 200 of the proposed new bed spaces may be designed as units suitable for faculty or staff.

By 2020, our objective is to increase the amount of campus parking by up to 30% over current and approved spaces, as shown in table 2. While UC Berkeley has an exemplary record of promoting alternatives to the private auto, the demand for parking today is greater than the supply, and future campus growth will further increase demand. More parking near campus is required to ensure full access to its programs, resources and intellectual life.

Because the state provides no funds for University housing or parking, the entire cost of construction, operation, and maintenance must be supported by housing and parking revenues. Our objectives to improve the supply of housing and parking must therefore be balanced by the need to keep prices at reasonable levels, and avoid building surplus capacity. Our 2020 targets may be adjusted in the future to reflect changes in demand and market conditions, but UC Berkeley may not substantially exceed the proposed number of net new housing bed spaces or parking spaces without amending the 2020 LRDP.

LAND USE ZONES

With the exception of the Tien Center, the 2020 LRDP will not identify specific individual projects. Rather, it will establish 'capacity envelopes' in each Land Use Zone for program space, housing and parking. Preliminary values for these envelopes are shown in table 3.

In order to provide the campus some flexibility in siting new projects to meet future needs, the sum of the capacity envelopes for each type of space is greater than total estimated demand. However, the cumulative net new space constructed by UC Berkeley, excluding projects already reviewed under CEQA, may not substantially exceed the NTE (not to exceed) figures in table 3 without an amendment to the 2020 LRDP. Should net new space substantially exceed a capacity envelope in any zone, subsequent environmental review would examine whether new environmental impacts not examined in the 2020 LRDP EIR would occur.

A fundamental principle of the Strategic Academic Plan is that the academic enterprise at UC Berkeley should be concentrated on and around the Campus Park, in order to support the dynamic, interactive culture a modern research university demands. 90-100% of future space demand in academic and support programs is planned to be accommodated on the Campus Park or its Adjacent Blocks, primarily the blocks adjacent to the west.

New parking is planned be located at the Campus Park perimeter or on the blocks adjacent to the west and south. In order to both maximize student access to campus and minimize student auto trips, all new student housing is planned to be located within a 'Housing Zone', defined as within a mile of the center of campus, or within a block of a transit line providing trips to campus in under 20 minutes, as shown in table 3.

TARIF 3	ESTIMATED MAXIMUM NEW SPACE BY ZONE
TADLE J.	ESTIMATED MAXIMUMINEW STACE DI ZUNE

1	Max Net Addl Academic & Support	Max Net Addl Housing	Max Net Addl Parking
	GSF	Bed Spaces	Spaces
Campus Park	1,000,000		600
Adjacent Blocks			
North	50,000		
West	800,000		1,300
South	400,000		600
Southside	50,000		
Hill Campus	100,000	100 *	
Other Berkeley	50,000		
Housing Zone		2,600 **	*
Total Net Addl Space	NTE 2,200,000	2,600	2,300

^{*} Represents up to 100 family-suitable units for faculty and/or staff

Note: In order to allow the university some flexibility in siting individual projects, the sum of the allocations for individual land use zones is greater than the maximum 'not to exceed' (NTE) totals for all zones combined. However, the university may not substantially exceed the NTE totals without amending the 2020 LRDP.

CONSTRUCTION PROGRAM

While project-specific environmental documents tend to view construction impacts as temporary, the program envisioned for the 2020 LRDP would entail a sequence of numerous and potentially overlapping construction projects. The 2020 LRDP EIR will assume that a number of construction projects may be underway at any one time in the Campus Park, Adjacent Blocks, Southside and Hill Campus.

DESIGN FRAMEWORK

While we are proud of, and committed to, our service to the people of California, we also recognize the campus does not exist apart from the city around it. The city is as much a part of the UC Berkeley experience as the campus itself, and each new University project should respect and enhance the city's unique character and livability. In particular, the blocks west of campus hold great potential for University initiatives that strengthen the synergy of city and campus, and support the cultural and economic vitality of downtown Berkeley.

We also recognize the campus represents an extraordinary legacy of landscape and architecture. We are committed to ensuring the capital program described in the 2020 LRDP preserves and enhances this legacy. Toward this goal, UC Berkeley recently completed the New Century Plan, an advisory document used by the campus to guide future capital investment decisions. The New Century Plan may be viewed at http://www.cp.berkeley.edu

At its heart, UC Berkeley remains a 'campus park', and its magnificent landscape and variety of open spaces is what gives this park its unique and memorable identity. The campus also contains many historic buildings of great distinction, and their elegance and civic presence serve as models for future University projects. University buildings tend to last far longer than their initial contents, and should have the quality, durability and flexibility to serve UC Berkeley and the people of California for generations.

^{**} Includes up to 100 family-suitable units for faculty and/or staff

The 2020 LRDP will include general design principles and guidelines for each Land Use Zone, as well as procedures for project review, to ensure these goals are as fully realized in the location and design of each future project as possible. The New Century Plan prescribes design and program guidelines for the Campus Park, and we propose to incorporate them into the 2020 LRDP. Design principles and guidelines in the 2020 LRDP for sites outside the Campus Park and Hill Campus will be informed by the policies of the relevant municipal general plans.

CHANG-LIN TIEN CENTER FOR EAST ASIAN STUDIES

The Tien Center, the first project planned under the 2020 LRDP, is a two-phase project, to be built at the base of Observatory Hill facing the Central Glades, as shown in figure 3. The Tien Center will consolidate the various programs of the East Asian Library, the Institute of East Asian Studies, and the Department of East Asian Languages and Cultures.

PROGRAM

The roughly 67,000 GSF phase 1 building will house the East Asian Library, presently located in spaces in California and Durant Halls and 2223 Fulton. Construction of phase 1 is planned to begin once the 2020 LRDP EIR is certified by the Regents and the project is approved. The roughly 36,500 GSF phase 2 building will house the Institute of East Asian Studies and the Department of East Asian Languages and Cultures, presently located in Durant and Dwinelle Halls and 2223 Fulton. Program space in phase 2 will include academic and admini-strative offices, as well as departmental and general campus classrooms. The schedule for phase 2 is not yet determined.

28 permanent staff will be housed in the East Asian Library, an increase of 5 over the 23 current permanent staff. The Library will also have 18 student workers, a number roughly equal to the current average of EAL student workers. Staff counts for phase 2 are not yet determined, but will fall within the 2020 headcount estimates for the 2020 LRDP.

Reoccupation of the space vacated by current activities is not itself expected to result in any significant increase in campus staff. The 2223 Fulton building is planned to be demolished due to seismic deficiencies as soon as it is entirely vacated. The released space in Durant, California and Dwinelle Halls is expected to be utilized to relieve overcrowding in other academic and administrative units, given the aforementioned deficit in campus academic space.

The phase 1 building will displace 31 existing surface parking spaces: these spaces will be replaced through the program of new parking construction described in the 2020 LRDP.

DESIGN

The Tien Center is envisioned as a composition of two rectangular buildings. Phase 1 will be located at the south base of Observatory Hill on the site of the existing parking lot, facing Memorial Glade and Doe Library, and aligned with the central axis of the Glade.

Phase 2 will be sited at the west base of Observatory Hill adjacent to Haviland Hall, oriented 90° to phase 1. Each building will be roughly 75' in height above the existing ground plane.

FIGURE 3. TIEN CENTER LOCATION

The Tien Center will occupy one of the most visible sites on the UC Berkeley campus, and will also be located within the campus' historic ensemble of neoclassical buildings. The project design is based on the guidelines for the classical core articulated in the New Century Plan, which include the following design criteria:

- The project shall preserve the view of Doe Library from the North Gate entrance.
- The project shall be composed of elements orthogonal in plan, and sited to respect the formal axial relationships of the classical core buildings and the central glades.
- The project shall have a hip or gable roof, with a pitch similar to existing classical core buildings.
- The project shall be fenestrated with individual punched windows that respect the structural grid.
- The project shall utilize the following materials palette:

Roofs: unglazed red clay tile

Walls: light grey granite or architectural

concrete with sand finish

Windows: clear or lightly tinted glass

Metalwork: copper or bronze

ENVIRONMENTAL IMPACT REPORT

The 2020 LRDP EIR will be a new program EIR, and will replace the 1990 LRDP EIR upon its certification by the Regents of the University of California. EIR analyses of potential impacts resulting from implementation of the 2020 LRDP or construction of the Tien Center shall include the following topical areas:

- Aesthetics
- Air Quality
- Biological Resources
- Cultural Resources
- Geology, Seismicity and Soils
- Hazardous Materials
- Hydrology and Water Quality

- Land Use
- Noise
- Population and Housing
- Public Services
- Transportation and Traffic
- Utilities and Service Systems

The EIR will also consider the cumulative impacts of the 2020 LRDP and the Tien Center in combination with the impacts of other known past, present and reasonably foreseeable future plans and projects, such as the recently updated City of Berkeley General Plan, the proposed Southside Plan (approved for CEQA review by the City of Berkeley Planning Commission in July, 2003) and Lawrence Berkeley National Laboratory proposals, including the proposed scope of their LRDP as published in a Notice of Preparation in 2000, and any future updates to that scope.

ALTERNATIVES

The EIR will also include an analysis of alternatives to the project, including the 'no project' alternative. While the final list of alternatives will be developed in conjunction with the environmental analyses, our preliminary list of potential alternatives includes:

- **No Project** (required under CEQA). No further development by UC Berkeley beyond that which already has CEQA approval under a previous EIR.
- **Reduced Enrollment Growth.** Growth in student enrollment limited to a smaller number of new students, with corresponding decreases in parking and housing demand.
- **Limited Research Growth.** Growth in student enrollment as estimated but with future growth in sponsored research limited to a rate below that assumed for the 2020 LRDP.
- Some Research Growth Offsite. Growth in enrollment and research as estimated, but with some percentage of future research growth accommodated at Richmond Field Station or other sites outside the campus environs.
- Increased Research Growth in Hill Campus. Growth in enrollment and research as estimated, but with a greater percentage of future research growth accommodated in the Hill Campus than assumed in the 2020 LRDP.
- Reduced or No New University Housing. Same growth in enrollment and research, but with primary or sole reliance on non-university housing to accommodate the housing demand generated by new students, faculty and staff.
- Reduced or No New University Parking. Same growth in enrollment and research, but with primary or sole reliance on non-university parking to accommodate the parking demand generated by new students, faculty and staff.
- Clark Kerr Campus Development. Development of a portion of the housing proposed in the 2020 LRDP on the Clark Kerr Campus rather than on other sites. This alternative would require changes to the existing University agreements with the City and with nearby property owners.

INITIAL STUDY

2020 LONG RANGE DEVELOPMENT PLAN AND CHANG-LIN TIEN CENTER FOR EAST ASIAN STUDIES UNIVERSITY OF CALIFORNIA, BERKELEY

PURPOSE

Section 21080.09(b) of the Public Resources Code requires that approval of a campus LRDP be supported by an EIR. UC Berkeley will prepare an EIR for the 2020 UC Berkeley Long Range Development Plan in compliance with this requirement. As identified in Section 15063(c) of the CEQA Guidelines, the purpose of this Initial Study is to: (1) inform responsible agencies and the public of the nature of the proposed project and its location, (2) identify impacts that will clearly not result or will clearly be less than significant and therefore will not be discussed in the EIR, and (3) provide a general description of the topics intended to be addressed in the EIR.

The environmental factors checked below could be potentially affected by implementation of the 2020 LRDP and/or by cumulative impacts resulting from implementation of the 2020 LRDP in conjunction with other expected developments. These factors will be evaluated in the 2020 LRDP EIR.

DETERMINATION

On the basis of the initial evaluation that follows, UC Berkeley finds that:

	The proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.
	Although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.
X	The proposed project MAY have a significant effect on the environment. An ENVIRONMENTAL IMPACT REPORT will be prepared.
	The proposed project MAY have a "potentially significant impact" or "potentially significant impact unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable standards and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.
	Although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

as E. Lollini

Assistant Vice Chancellor

INITIAL STUDY

EVALUATION OF ENVIRONMENTAL IMPACTS

All answers take account of the whole action involved, including beneficial, direct, indirect, construction-related, operational, and cumulative impacts. A list of references used in the preparation of this Initial Study is included at the end of this document.

CEQA does not require an Initial Study where an EIR is certain to be prepared (CEQA Guidelines 15063(a)). Instead, the following study is intended to assist the preparation of the pending EIR by focusing on effects determined to be significant, identifying the effects determined not to be significant, and explaining the reasons for determining that potentially significant effects would not be significant.

Appendix G of the CEQA Guidelines provides only a suggested format to use when preparing an Initial Study. UC Berkeley has adopted a slightly different format with respect to the response column headings (refer to the definitions provided below), while still addressing the Appendix G checklist questions that are relevant to each environmental issue.

DEFINITIONS OF COLUMN HEADINGS

This Initial Study serves to identify the potential environmental impacts that will be addressed in the EIR for the proposed project.

Impact to be Analyzed applies to those environmental issues, which may or may not be significant, that will be addressed in the Environmental Impact Report. As appropriate, the analysis will include a program level analysis for the entire 2020 LRDP, intended to be of sufficient detail to support specific projects which implement the 2020 LRDP as they arise, a specific project-level analysis for the Tien Center, and a cumulative-level analysis for potential effects of LRDP implementation combined with known and reasonably foreseeable future growth in the surrounding area.

No Additional Analysis Required applies to topics where the proposed LRDP implementation, including the Tien Center, clearly would have no significant effect on the particular environmental issue, and no additional analysis, beyond that provided in this Initial Study, is warranted or required.

L = LRDP Analysis	Impact to be	No Additional
T = Tien Center Analysis	Analyzed in	Analysis
L+T = LRDP and Tien Center Analysis	ÉIR	Required

1. AESTHETICS

Would the 2020 LRDP allow for development that would:

a) Have a substantial adverse effect on a scenic vista?

L+T

The Campus Park, its surrounds, and the Hill Campus of UC Berkeley are visible from many Bay Area viewpoints. Vistas also occur on campus. The 2020 LRDP EIR will inventory current scenic vistas from publicly accessible viewpoints on and off campus. The 2020 LRDP EIR will assess whether development under the 2020 LRDP program or implementation of the Tien Center project could adversely impact identified scenic vistas.

b) Substantially damage scenic resources, including, but not limited to, trees, rock outcrops, and historic buildings within a state scenic highway?

L+T

Regional access to the campus is provided by Interstate Highways 80 and 580, and State Routes 24 and 13. None is designated or presently eligible as scenic routes (California Department of Transportation, Office of State Landscape Architecture, list of California Scenic Routes). Therefore, development under the 2020 LRDP and implementation of the Tien Center project would not affect scenic resources within a state scenic highway. No impact would occur and additional analysis is not required.

c) Create a new source of substantial light or glare which would adversely affect day- or night-time views in the area?

L+T

To accommodate the wide range of University activities in a dense campus setting, the UC Berkeley 2020 LRDP may change land uses, intensify the use of or expand use hours for existing facilities, and result in new development that could adversely affect day- or night-time views. The potential for intrusive or otherwise adverse light and glare impacts would be examined in the 2020 LRDP EIR. The project-specific analysis of the Tien Center would examine potential adverse light or glare impacts of the project on its Campus Park site and vicinity.

d) Substantially degrade the existing visual character or quality of the site and its surroundings?

L+T

The Campus Park, its surrounds, and the Hill Campus of UC Berkeley vary widely in visual character and development intensity. The potential for development under the 2020 LRDP to substantially degrade the visual character and quality of its sites and surrounds will be examined in the 2020 LRDP EIR. Project-specific impacts of the Tien Center on its Campus Park site and vicinity will also be examined.

2. AIR QUALITY

Would the 2020 LRDP allow for development that would:

a) Conflict with or obstruct implementation of the applicable air quality plan?

The Campus Park, its surrounds, and the Hill Campus of UC Berkeley are located in the San Francisco Bay Area, currently a non-attainment zone for ozone and airborne particulate matter. Construction and development activities under the 2020 LRDP would result in short- and long-term emissions of criteria air pollutants from mobile and stationary sources. These emissions would contribute to the current non-attainment status of the Bay Area for ozone and airborne particulate matter. The 2020 LRDP EIR will analyze whether implementation of the 2020 LRDP would

L = LRDP Analysis	Impact to be	No Additional
T = Tien Center Analysis	Analyzed in	Analysis
L+T = LRDP and Tien Center Analysis	EIR	Required

conflict with or obstruct implementation of applicable air quality plans. The 2020 LRDP EIR will also analyze project-specific impacts associated with the proposed Tien Center.

b) Violate any air quality standard or contribute substantially to an L existing or projected air quality violation?

The 2020 LRDP EIR will examine the potential for vehicle and stationary source emissions under the 2020 LRDP to violate state and federal air quality standards or contribute to existing air quality violations. The potential for mobile source, construction and operational emissions associated with the 2020 LRDP to influence air quality would be examined. The Tien Center would house office, classroom and library space, and would not be a significant point source for air emissions.

c) Expose sensitive receptors to substantial air pollutant L T concentrations?

Independently and in contrast to some types of manufacturing or production uses, University operations are not typically significant emission sources. The 2020 LRDP EIR will evaluate whether construction and development activities under the 2020 LRDP would expose sensitive receptors, including nearby schools, to substantial pollutant concentrations. The Tien Center would house office, classroom and library space, and would not be a significant point source for air pollutants.

d) Result in a cumulatively considerable net increase of any criteria L+T pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?

The 2020 LRDP EIR will examine the potential impacts of vehicle and stationary source emissions from construction and development activities under the 2020 LRDP and from other reasonably foreseeable projects in the region. The 2020 LRDP EIR will examine the cumulative projection of total emissions through 2020 to determine whether increases in non-attainment criteria pollutants would be cumulatively considerable. The project-specific analysis of the Tien Center will rely on the program-level analysis to address this issue.

e) Expose people to substantial levels of toxic air contaminants

(TACs), such that the exposure could cause an incremental human cancer risk greater than 10 in one million or exceed a hazard index of one for the maximally exposed individual?

Development under the 2020 LRDP could add research facilities or expand existing campus uses that are potential sources of toxic air contaminants (TACs). In the 2020 LRDP EIR, factors from the *Central Campus Human Health Risk Assessment* (June 2000), augmented to include emissions from emergency generators, would be used to develop estimates for emissions from development under the 2020 LRDP. If the 2020 LRDP would result in an excess cancer risk greater than 10 in one million or exceed a hazard index of one, a significant impact would be assumed to result and be addressed in the EIR. Calculated cancer risks assume a continuous exposure time of 70 years, which provides a conservative analysis because most exposures are of much shorter duration. The hazard index assumes a one-hour exposure to maximum hourly emissions from all Campus Park sources, which provides a conservative analysis because maximum hourly emissions from all sources are not expected to simultaneously occur within one hour. The Tien Center would house office, classroom and library space, and would not be a source for toxic air contaminant emissions; thus, the EIR would not further examine project-specific contributions of the Tien Center to TAC emissions.

T

L = LRDP Analysis	Impact to be	No Additional
T = Tien Center Analysis	Analyzed in	Analysis
L+T = LRDP and Tien Center Analysis	ĖIR	Required

f) Cause objectionable odors affecting a substantial number of people?

Existing campus facilities are not commonly sources of odors. However, the 2020 LRDP EIR will analyze the potential for objectionable odors resulting from construction and development activities under the 2020 LRDP. The 2020 LRDP would be a general land use plan intended to guide the pattern of development and would not articulate specific development projects, with the exception of the Tien Center. The Tien Center would house office, classroom and library space, and would not be a source for odiferous emissions; thus, the EIR would not further examine project-specific odor impacts of the Tien Center.

3. BIOLOGICAL RESOURCES

Would the 2020 LRDP allow for development that would:

a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game (CDFG) or US Fish and Wildlife Service (USFWS)?

L+T

L

Vegetation on the Campus Park and its surrounds is primarily ornamental landscaping, including trees, shrubs, lawns, and groundcover. Strawberry Creek forms an important natural corridor across most of the Campus Park and, although altered, supports remnants of natural vegetation as well as planted native vegetation. No significant natural communities exist on the Campus Park or in its surrounds, though the Wickson, Grinnell, and Goodspeed Natural Areas all contain remnant and volunteer native vegetation, planted native vegetation, and ornamental landscaping. (The designation "natural areas" is based on the general physiognomic appearance of these areas in relation to adjacent landscapes, rather than on their integrity as native plant communities.) The Campus Park and its surrounds are also characterized by a high level of human activity. As a result, sensitive natural communities and/or sensitive species are not likely to be present. Nevertheless, the biological resources analysis in the EIR will evaluate the potential for such species to occur. Additionally, the EIR will address potential effects upon roosting, nesting, and foraging opportunities for protected species such as migratory birds, as well as wildlife that are commonly associated with highly developed areas.

The Hill Campus comprises approximately 1000 acres of developed and undeveloped lands to the east of the Campus Park. Important biological features in the Hill Campus include the south fork of Strawberry Creek and its tributaries, the designated ecological study areas, areas supporting natural vegetation, and to a lesser degree stands of eucalyptus and conifer plantings. In the Hill Campus, sensitive natural communities most likely include: native perennial grasslands, riparian scrub and woodland, sage scrub, and freshwater seeps. Portions of the Hill Campus property have been included in the US Fish and Wildlife Service Critical Habitat Area for the Alameda whipsnake (Masticophis lateralis euryanthus). The Berkeley hills are also within the historic range of the federally threatened California red legged frog (Rana aurora draytonii) although the California Natural Diversity Database records show no occurrences within the Hill Campus. The CNDDB would be a further resource for information in the 2020 LRDP EIR.

The 2020 LRDP EIR would examine the potential for development under the LRDP to adversely affect candidate, sensitive or special status species on the Campus Park, its surrounds, and the Hill Campus. The EIR would include project-specific analysis of potential adverse species effects that might be caused by the proposed Tien Center.

L = LRDP Analysis T = Tien Center Analysis L+T = LRDP and Tien Center Analysis	Impact to be Analyzed in EIR	No Additional Analysis Required
b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, or regulations or by the CDFG or USFWS?	L	T

As described above, remnant and altered riparian habitats occur in the vicinity of Strawberry Creek on the Campus Park, and some natural communities occur in the Hill Campus. The 2020 LRDP EIR will evaluate the potential for the 2020 LRDP to adversely affect riparian habitat or other sensitive natural habitat. The proposed Tien Center would not be located in or adjacent to a riparian habitat or other sensitive natural community and this will not be analyzed further in the EIR.

c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act through direct removal, filling, hydrological interruption or other means?

The Campus Park, its surrounds, and the Hill Campus include no known federally delineated jurisdictional wetlands, although fresh water seeps and springs in the Hill Campus may merit protection. The campus coordinates with state and federal agencies when a project impacts Strawberry Creek, other open drainage channels, and other wetlands such as freshwater seeps and springs. The 2020 LRDP EIR will evaluate the potential for development under the 2020 LRDP to adversely affect wetland areas. The project-specific analysis of the Tien Center would not address this issue because the Tien Center site is not located near federally protected wetlands.

d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?

L+T

As described above, the landscape of the Campus Park and its surrounds is of limited native habitat value due to extensive human activity and alteration. The Campus Park is located in an urbanized area. It does not provide a geographic link between two natural areas and, therefore, it does not serve as a primary wildlife movement corridor. However, campus vegetation may provide nesting, roosting, and foraging opportunities for migratory birds. The natural qualities of the Hill Campus are of higher potential habitat value than the Campus Park. The 2020 LRDP EIR will evaluate potential effects of the 2020 LRDP and the potential project effects of the Tien Center on the movement of native or migratory species, their corridors, and native wildlife nursery sites.

e) Conflict with any local policies or ordinances protecting biological L+T resources?

The 2020 LRDP EIR will evaluate the consistency of the 2020 LRDP with federal and state plans, policies, laws and regulations, such as the Migratory Bird Treaty Act, that are relevant to potentially occurring biological resources. Areas of the Hill Campus are designated Ecological Study Areas, preserved in a primarily natural state for instruction and field study. The 2020 LRDP would describe and plan further for the ESA lands. Local ordinances would not apply to campus projects, because the University is a state agency exempted from local controls in accordance with the state constitution. The project-specific analysis of the Tien Center will rely on the program-level analysis to address this issue.

L = LRDP Analysis T = Tien Center Analysis	Impact to be Analyzed in	No Additional Analysis
L+T = LRDP and Tien Center Analysis	EIR	Required

f) Conflict with any adopted Habitat Conservation Plan, Natural Communities Conservation Plan or other approved local, regional or state habitat conservation plan?

L+T

L+T

The Campus Park, its surrounds, and the Hill Campus are not located within any area designated for an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved conservation plan. No additional analysis is required. See also response to 3.a), above.

4. CULTURAL RESOURCES

--Historical Resources

Would the 2020 LRDP allow for development that would:

a) Cause a substantial adverse change in the significance of a historical resource as defined in CCR Section 15064.5?

The 2020 LRDP will include policies and programs to protect historic resources. However, development under the 2020 LRDP could potentially include adverse changes to these resources. The 2020 LRDP EIR will include a detailed assessment of potential program-level impacts on identified historical resources caused by implementation of the 2020 LRDP. The site for the proposed Tien Center project is a parking lot and portion of Observatory Hill on the Campus Park proximate to Haviland Hall, an historic resource on the National Register of Historic Places. The 2020 LRDP EIR will include a project-specific analysis of impacts of the proposed Tien Center project on historic resources.

CULTURAL RESOURCES

--Archaeological and Paleontological Resources

Would the 2020 LRDP allow for development that would:

b) Directly or indirectly destroy a unique paleontological resource, or L+T site, or unique geologic feature?

The campus does not contain unique paleontological resources or unique geologic features. During the course of development at UC Berkeley, extensive excavation for buildings and infrastructure have not revealed the presence of unique paleontological or geologic resources. No impact would occur, and no additional analysis is required.

c) Cause a substantial adverse change in the significance of an L+T archaeological resource pursuant to CCR Section 15064.5?

Potential for discovery of archaeological resources during excavations for projects developed under the 2020 LRDP will be examined in the 2020 LRDP EIR. Development under the 2020 LRDP may occur near unknown archaeological resources or historical watercourses, and could disturb prehistoric cultural resources and/or previously unknown human burial sites of Native American groups. The potential for the 2020 LRDP to result in damage to archaeological resources will be examined in the 2020 LRDP EIR. Potential project-specific impacts of the Tien Center will also be examined. Because development could potentially affect currently unknown archaeological resources, the campus will consult with the Native American Heritage Commission, as well as appropriate literature, and the EIR will analyze the potential for additional development on the campus to result in damage to archaeological resources known and unknown. The 2020 LRDP EIR will include a project-specific analysis of impacts of the proposed Tien Center project on historic resources.

L = LRDP AnalysisImpact to beNo AdditionalT = Tien Center AnalysisAnalyzed inAnalysisL+T = LRDP and Tien Center AnalysisEIRRequired

d) Disturb any human remains, including those interred outside of formal cemeteries?

L+T

The 2020 LRDP EIR will evaluate the potential for the 2020 LRDP to result in disturbance to human remains. The EIR will include a project-specific analysis of potential for the Tien Center to impact human remains.

GEOLOGY, SEISMICITY AND SOILS

Would the 2020 LRDP allow for development that would:

a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:

Rupture of a known earthquake fault?

L T

LRDP-related increases in staff, faculty, and students would create additional exposure to earthquake risk from the Hayward Fault, extending just east of the Campus Park, and other active faults in the vicinity. Seismic safety policies of the Regents, compliance with building code, and continuation of the extensive seismic safety improvement program would be incorporated into development proposed under the 2020 LRDP. The EIR will evaluate seismic hazard maps to further analyze potential impacts from earthquake faults. The Tien Center site is not on an earthquake fault.

Strong seismic ground shaking?

L+T

LRDP-related increases in staff, faculty, students and developed area would create additional exposure to earthquake risk from the Hayward Fault, which extends east of the Campus Park, and other active faults in the vicinity. Much of the Campus Park, its surrounds, and the Hill Campus would be subject to "violent" or "very violent" shaking intensity in a magnitude 7.3 earthquake on the Hayward Fault (Figure IV.1-1, *City of Berkeley General Plan DEIR*, 2001). Seismic safety policies of the Regents, compliance with building code, and an extensive seismic safety improvement program would be incorporated into development proposed under the 2020 LRDP. The EIR will analyze susceptibility to groundshaking based on soil characteristics and proximity to earthquake faults, and include project-specific analysis of such risks for the Tien Center.

Seismic -related ground failure, including liquefaction?

L+T

The Campus Park, its surrounds, and the Hill Campus are not located in a liquefaction zone (Figure IV.1-1, *City of Berkeley General Plan DEIR*, 2001). However, site-specific geologic investigations of campus development sites have found variable soil composition and variable density of naturally occurring alluvial materials. Uncontrolled fills and high water-table levels have required correction of compaction and drainage conditions to provide acceptable foundation support. These and other potential ground failure risks that could pose hazards to people or property due to development under the 2020 LRDP will be further analyzed in the 2020 LRDP EIR. Project-specific analysis of soil properties for the Tien Center will also be included in the 2020 LRDP EIR.

Landslides?

L

T

Landslide conditions occur in the Hill Campus. The 2020 LRDP EIR will examine the potential for development under the 2020 LRDP to pose hazards to people or property due to landslide conditions. The EIR would not further analyze this issue for the Tien Center, which would be sited on the Campus Park and not subject to significant landslide risk.

L = LRDP Analysis	Impact to be	No Additional
T = Tien Center Analysis	Analyzed in	Analysis
L+T = LRDP and Tien Center Analysis	ĖIR	Required

b) Result in substantial soil erosion or the loss of topsoil?

L+T

Although site drainage systems can influence and reduce erosion, erosion is likely to occur during construction under the 2020 LRDP. Soil erosion can cause numerous types of environmental impacts, which could impact the water quality of Strawberry Creek and San Francisco Bay. Soils can contain nitrogen and phosphorus, which when carried into water bodies can trigger algal blooms. Extensive blooms of algae can reduce water clarity, deplete oxygen concentrations, and create unpleasant odors. Excessive deposition of sediments in stream channels can blanket fauna and clog streambeds, degrading aquatic habitat. Increased turbidity due to suspended sediments may also reduce photosynthesis that produces food supply and aquatic habitat. Finally, sediment from onsite erosion could accumulate in the downstream drainage facilities, which could interfere with flow, aggravating downstream flooding conditions. The 2020 LRDP EIR will examine the potential loss of topsoil and potential for substantial soil erosion under the 2020 LRDP development program. Project-specific analysis of soil erosion or topsoil impacts of the proposed Tien Center project will be included in the EIR.

c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in onor off-site landslides, lateral spreading, subsidence, liquefaction or collapse?

L+T

As described above, the potential for development under the 2020 LRDP to occur on lands that expose people or properties to risk due to landslide, liquefaction, or other soils-related condition will be examined in the 2020 LRDP EIR; the analysis will include project-specific review for the Tien Center.

d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code, creating substantial risks to life or property?

L+T

As described above, the potential for development under the 2020 LRDP to occur on lands that expose people or properties to risk due to landslide, liquefaction, or other soils-related condition such as expansive soils, will be examined in the 2020 LRDP EIR; the analysis will include project-specific review for the Tien Center.

6. HAZARDOUS MATERIALS

Would the 2020 LRDP allow for development that would:

a) Create a significant hazard to the public or the environment through the routine transport, use, production, or disposal of hazardous materials? L

T

Implementation of the 2020 LRDP could result in the development of additional research laboratories and other research facilities, including animal care and research facilities, that would use, store, and require the transportation of hazardous materials and disposal of hazardous waste. Also, solvents, adhesives, cements, paints, cleaning agents, degreasers, and fuels in construction and other vehicles are among the types of existing hazardous materials used on campus that could increase if the 2020 LRDP is implemented.

The 2020 LRDP EIR will characterize hazardous materials use, transport and disposal on campus, will identify projected increases in these activities that could occur under the 2020 LRDP, and will evaluate potential impacts associated with these increased activities. The Tien Center would house office, classroom and library space, and would not significantly expand hazardous materials use on the campus.

L = LRDP Analysis	Impact to be	No Additional
T = Tien Center Analysis	Analyzed in	Analysis
L+T = LRDP and Tien Center Analysis	EIR	Required
b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?	L	Т

The 2020 LRDP EIR will characterize hazardous materials use in research, operations, maintenance, and construction, along with their transport, handling and disposal; the EIR will similarly characterize hazardous waste handling on the campus. It will identify projected increases in these activities that could occur under the 2020 LRDP, and will evaluate associated potential impacts, including potential risks from upset or accident conditions. The Tien Center would house office, classroom and library space, and would not release hazardous materials in the event of upset or accident conditions.

c) Emit hazardous emissions or handle hazardous or acutely

hazardous materials, substances, or waste within one-quarter mile of
an existing or proposed school?

Campus activities under the 2020 LRDP could potentially emit hazardous emissions or handle hazardous materials, substances or waste within one-quarter mile of an existing or proposed school. The 2020 LRDP EIR will characterize hazardous materials transport, use and disposal on campus as well as increases projected in these activities under the 2020 LRDP. The 2020 LRDP EIR will also evaluate the potential impacts of such increased activity, including potential exposure of and effects on children. The Tien Center would house office, classroom and library space, and would not handle or emit hazardous materials within one-quarter mile of an existing or proposed school.

d) Be located on a hazardous materials site as listed on the "Cortese L List" (compiled pursuant to Government Code Section 65962.5) and that, as a result, creates a significant hazard to the public or the environment?

The Campus Park, its surrounds, and the Hill Campus currently have one hazardous materials site that is listed on the Department of Toxic Substances Control's Cortese List compiled pursuant to Government Code 665962.5: the UC Garage site located at 1952 Oxford Street, formerly the location of gasoline and oil dispensing operations dating to the 1920s. The site contaminants include: gasoline, diesel, dichloroethane, benzene, toluene, ethylbenzene and xylenes. The campus has completed an extensive underground storage tank removal and soil clean up program since the time of the 1990 LRDP and does not expect to perform further clean up activities on campus properties in Berkeley. The 2020 LRDP EIR will examine whether residual contaminants create a significant hazard to the public or the environment through implementation of the 2020 LRDP. (Soil clean up activities at campus properties in Richmond are underway, but reviewed under separate CEQA documentation and outside the scope of the 2020 LRDP.)

7. HYDROLOGY AND WATER QUALITY

Would the 2020 LRDP allow for development that would:

a) Violate any water quality standards or waste discharge L+T requirements?

Development under the 2020 LRDP could result in an increase of impermeable surface area, which could produce additional volume and pollutant loading of urban runoff. The Regional Water Quality Control Board has expressed water quality concerns for Strawberry Creek and its receiving waters (the San Francisco Bay) based on releases of sediment, bacteria, nutrients, metals and hydrocarbons. Additionally, increased water usage that could result from implementation of the 2020 LRDP could cause increases in wastewater discharges that could exceed waste discharge

L = LRDP Analysis	Impact to be	No Additional
T = Tien Center Analysis	Analyzed in	Analysis
L+T = LRDP and Tien Center Analysis	EIR	Required

requirements for water quality or quantity. The 2020 LRDP EIR will evaluate impacts to water quality from runoff and characterize current waste discharge volumes of the campus and wastewater treatment capacity at EBMUD's wastewater treatment plant, and evaluate whether the implementation of the 2020 LRDP would result in a violation of applicable standards or waste discharge requirements. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

b) Substantially deplete groundwater supplies or quality, or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?

L+T

Groundwater supplies in Berkeley, on the Campus Park, its surrounds, and the Hill Campus, are not a local water supply source, and do not serve local or planned land uses (*City of Berkeley Draft General Plan EIR*, February 2001, p. 220). The 2020 LRDP EIR will only analyze this issue to the extent that the campus water supplier, EBMUD, may draw upon groundwater supplies and be impacted by potential additional demand under the 2020 LRDP. The EIR will describe anticipated water consumption and general system capacity to determine potential impacts on groundwater supplies. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

c) Substantially alter existing drainage patterns of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in substantial erosion, siltation or flooding on- or off- site?

L+T

Minor stream alterations are occasionally undertaken on the Berkeley campus to improve safety of people or property, or restore natural stream conditions. No substantial alterations have occurred since the 1990 LRDP, and none is anticipated under the 2020 LRDP. Development under the 2020 LRDP could increase impervious surfaces and could alter drainage patterns of building sites, which could result in increased runoff. The 2020 LRDP EIR will characterize campus-wide drainage patterns and will evaluate the potential for flooding as a result of increased runoff under the 2020 LRDP program. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

d) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?

L+T

Development under the 2020 LRDP could increase impervious surfaces, which could increase the volume of surface water runoff and increase levels of urban contaminants in stormwater. The 2020 LRDP EIR will evaluate if the existing/planned drainage system could accommodate increased runoff generated as a result of development under the 2020 LRDP. The 2020 LRDP EIR will also evaluate potential impacts associated with stormwater pollution under the 2020 LRDP. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

e) Otherwise substantially degrade water quality?

L+T

See responses to other hydrology and water quality topical questions, above.

L = LRDP Analysis	Impact to be	No Additional
T = Tien Center Analysis	Analyzed in	Analysis
L+T = LRDP and Tien Center Analysis	EIR	Required
f) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?		L+T

Strawberry Creek poses a flood hazard for portions of the Campus Park. The Campus Park would not be an identified housing area under the 2020 LRDP. Except for small areas located within the 100- and 500- year flood zones the majority of Berkeley is defined by the Federal Emergency Management Agency as being subject to minimal flooding. Housing proposed under the 2020 LRDP would not be constructed within a 100- or 500- year flood zone. Therefore, no impact would occur and no additional analysis is required.

g) Place within a 100-year flood hazard area structures which would L+T impede or redirect flood flows?

The 2020 LRDP EIR will evaluate the potential for development under the LRDP to occur within 100-year flood hazard zones and address the potential for construction in these zones to impede or redirect flood flows. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

h) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?

The Campus Park, its surrounds, and the Hill Campus are outside the inundation hazard area for Berryman Reservoir. The 2020 LRDP and the Tien Center would therefore not expose people or structures to inundation as a result of dam or levee failure.

i) Be subject to inundations by seiches, tsunamis, or mudflows?

The Campus Park, its surrounds, and the Hill Campus are sufficiently inland and at a sufficiently high elevation that tsunamis are not an anticipated risk. No large, open bodies of water that would represent a substantial seiche risk are located on or around campus properties. Possible mudflows in the Hill Campus area would not be of a scale to risk inundation.

8. LAND USE

Would the 2020 LRDP allow for development that would:

a) Physically divide an established community?

The City of Berkeley has developed around and in conjunction with the campus, and their social and physical histories are interrelated. Today, Berkeley's city and campus communities are profoundly interwoven. The 2020 LRDP would not include any development that would physically divide an established community.

L = LRDP Analysis T = Tien Center Analysis L+T = LRDP and Tien Center Analysis	Impact to be Analyzed in EIR	No Additional Analysis Required	
b) Conflict with any applicable land use plan, policy or regulation of	L+T		

The University of California is constitutionally exempt from local land use plans and regulations. However, the City of Berkeley General Plan, and the general plans for other cities within the scope of the 2020 LRDP, will inform the land use policies in the 2020 LRDP for properties outside the Campus Park and Hill Campus, as will the Southside Plan, once adopted by the City of Berkeley. The land use analysis in the 2020 LRDP EIR will then focus upon potential conflicts between existing on- and off-campus uses and new campus uses that could be developed under the 2020 LRDP. The proposed Tien Center will be analyzed for consistency with the land use policies in the 2020 LRDP.

c) Conflict with any applicable habitat conservation plan or natural Community conservation plan?

The Campus Park, its surrounds, and the Hill Campus are not located within any area designated for an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved conservation plan. No additional analysis is required. See also discussion above under Biological Resources, Item 3.a) addressing critical habitat area.

9. NOISE

Would the 2020 LRDP allow for development that would:

a) Expose people to or generate noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies, without mitigation?

an agency with jurisdiction over the project adopted for the purpose

of avoiding or mitigating an environmental effect?

L+T

Increases in traffic, mechanical equipment associated with new structures, and increases in campus population could result in potential long-term increases in noise levels. Additionally, operation of construction equipment could result in substantial short-term noise increases. The 2020 LRDP EIR will model the magnitude of these noise increases, and will evaluate whether the increased noise levels associated with implementation of the 2020 LRDP would exceed applicable standards or ordinances. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

b) Result in a substantial permanent increase in ambient noise levels L+T in the project vicinity, without appropriate mitigation?

The 2020 LRDP EIR will model the magnitude of potential permanent noise increases under the 2020 LRDP, and will evaluate whether the increased permanent noise levels would exceed applicable standards or ordinances. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

L = LRDP Analysis	Impact to be	No Additional
T = Tien Center Analysis	Analyzed in	Analysis
L+T = LRDP and Tien Center Analysis	ĖIR	Required

c) Result in a substantial temporary or periodic increase in ambient noise levels in the project vicinity, without appropriate mitigation?

Operation of construction or other equipment could result in substantial temporary or short-term noise increases. The 2020 LRDP EIR will use current noise modeling methods to predict the magnitude of these temporary noise increases, and will evaluate whether the increased temporary noise levels associated with implementation of the 2020 LRDP would exceed applicable standards or ordinances without appropriate mitigation. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

d) Expose people to or generate excessive ground-borne vibration or L+ ground-borne noise levels, without mitigation?

Construction activities, particularly if pile driving is required, could result in generation of excessive groundborne vibration or groundborne noise levels. The EIR will evaluate the potential impacts of these construction activities. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

10. POPULATION AND HOUSING

Would the 2020 LRDP allow for development that would:

a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?

The proposed 2020 LRDP would accommodate an increase in enrollment during the proposed planning horizon. Related increases in the number of staff and faculty would occur, as outlined in the project description (above). The EIR will estimate the combined demand for University housing and other housing within the City of Berkeley and adjacent areas. The EIR will evaluate the potential for this demand to exceed the projected housing supply, and determine whether such growth could result in the demand for additional housing, goods and services, that could induce additional population growth. The Tien Center would house existing campus staff and library services and could only house small increases in staff. The Tien Center proposal would not support and is not associated with an increase in enrollment. Project-specific impacts of the Tien Center on population and housing would therefore not be analyzed further in the 2020 LRDP EIR.

b) Displace substantial numbers of existing housing or people, necessitating the construction of replacement housing elsewhere?

Implementation of the 2020 LRDP is not anticipated to require the displacement of people or housing. Further, the 2020 LRDP would propose additional housing that is not anticipated to require displacement of existing housing facilities. Therefore, no further analysis is required. If future projects are proposed that would require the displacement of existing housing, the effects of such proposed displacement would be evaluated as required by CEQA on a project-specific basis.

L = LRDP Analysis	Impact to be	No Additional
T = Tien Center Analysis	Analyzed in	Analysis
L+T = LRDP and Tien Center Analysis	EIR	Required

11. PUBLIC SERVICES

--Police Protection

Would the 2020 LRDP allow for development that would:

a) Result in the need for new or physically altered police facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, service times, or other performance objectives for police protection?

L+T

Police protection services for the Berkeley campus are provided by the University of California Police Department and the City of Berkeley Police Department. The 2020 LRDP EIR will evaluate whether implementation of the 2020 LRDP would increase the demand for police protection and compare the potential increase in demand to existing and planned equipment and staff levels. The EIR will evaluate the potential impacts of new, expanded, or altered facilities, if they are required to meet an increase in demand. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

PUBLIC SERVICES

--Fire and Emergency Protection

Would the 2020 LRDP allow for development that would:

b) Result in the need for new or physically altered fire or emergency medical services facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, service times or other performance objectives for fire and emergency protection?

L+T

The 2020 LRDP EIR will evaluate whether implementation of the 2020 LRDP would increase demand for fire protection services and compare the potential increase in demand with existing and planned equipment and staff levels. The EIR will also evaluate the potential impacts of new, expanded, or altered facilities, if they are required to meet an increase in demand. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

c) Expose people or structures to a significant risk of loss, injury or death involving wildland fires?

Т

There is an annual seasonal fire risk in the East Bay hills due to their mix of scrub and conifer and eucalyptus stands. The risk becomes particularly pronounced during the periodic one- or two- day shifts from the normal northwesterly winds to 'Diablo' winds blowing in from the warm, dry regions to the east. Twentieth century Diablo wind fires have burned over ten times the acreage of normal wind condition fires, and include the firestorms of 1923 and 1991. The generally steep terrain and poor roads in the Oakland and Berkeley hills present enormous obstacles to fire response, and some areas such as Claremont Canyon, served by only a single road, may be indefensible in Diablo wind conditions. To reduce risks from and to campus lands, the campus conducts an annual fuel management program on campus properties. The program is designed and guided by the UC Fire Mitigation Committee, which is chaired by a campus forestry professor and staffed by a fire ecology consultant who co-chairs all committee meetings. The campus is also one of eight member agencies in the Hills Emergency Forum (HEF), a consortium of jurisdictions mutually concerned with fire and disaster risks in the East Bay area. The Campus coordinates its fire fuel management activities with all HEF members, which include the Cities of Oakland, Berkeley, and El Cerrito, the East Bay Regional Park District, the East Bay Municipal Utility District, the Lawrence Berkeley National Laboratory, and the California Department of Forestry and Fire Protection.

Development under the 2020 LRDP could potentially expose people or structures to risk of loss, injury or death due to wildland fires by bringing additional population to the area. The 2020 LRDP EIR will assess the effects of growth under the 2020 LRDP against the campus' ability to protect life and property threatened by wildland fire. At its urban Campus Park site the risk of wildland fires to the proposed Tien Center would be minimal, and this impact would not be studied further in project-specific analysis for the Tien Center.

d) Impair implementation of or physically interfere with an adopted L+7 emergency response plan or emergency evacuation plan?

The campus Office of Emergency Preparedness (OEP) (http://public-safety.berkeley.edu/oepweb/) has prepared a Multi Hazard/Disaster Response handbook and regularly conducts trainings and updates rosters to maintain readiness in the event of an emergency. Development under the 2020 LRDP could potentially exceed the campus' emergency response capabilities, which could impair implementation of the disaster response plan. New development projects under the 2020 LRDP may have the potential to physically interfere with the campus response. The 2020 LRDP EIR will characterize the campus' emergency response plans and capabilities, and will assess the effects of growth under the 2020 LRDP on the campus' ability to manage emergencies. The 2020 LRDP EIR will also address the potential for the Tien Center to impair implementation of, or interfere with, emergency response efforts.

e) Result in inadequate emergency access?

L+T

The proposed 2020 LRDP would result in land use changes and cause roadway changes that could affect or hinder emergency access. The 2020 LRDP EIR will evaluate potential impacts to emergency access resulting from the 2020 LRDP, and will evaluate project-specific emergency access for the proposed Tien Center.

PUBLIC SERVICES

--Schools

Would the 2020 LRDP allow for development that would:

f) Result in the need for new or physically altered school facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, service times or other performance objectives for schools?

L T

Increased student enrollment, combined with associated increases in faculty and staff, may increase the number of school-age children that could enroll in local schools. The 2020 LRDP EIR will evaluate potential effects of increased enrollment on the capacity of local schools, as well as the potential environmental impacts of new, expanded or altered faculties, if any are required to meet an increase in demand. The Tien Center would house existing campus staff and library services and could only house small incremental increases in staff. The Tien Center proposal would not support and is not associated with an increase in enrollment. Project-specific impacts of the Tien Center on schools would therefore not be analyzed further in the 2020 LRDP EIR.

L = LRDP Analysis	Impact to be	No Additional
T = Tien Center Analysis	Analyzed in	Analysis
L+T = LRDP and Tien Center Analysis	ĖIR	Required

PUBLIC SERVICES

-- Parks and Recreation

Would the 2020 LRDP allow for development that would:

g) Result in the need for new or physically altered parks and recreational facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, service times or other performance objectives?

L

Campus recreational facilities, including gymnasiums, pools, sport fields, ball courts, and fitness centers, are primarily used by UC students, faculty and staff. The campus population also uses community facilities. Increased student enrollment, combined with the associated increase in faculty and staff, may increase demand for existing or planned neighborhood, community and regional parks. The 2020 LRDP EIR will evaluate the potential impacts of new, expanded and/or altered facilities, if they are needed to meet an increase in demand. The Tien Center would house existing campus staff and library services and could only house small increases in staff. The Tien Center proposal would not support and is not associated with an increase in enrollment. Project-specific impacts of the Tien Center on parks and recreation would therefore not be analyzed further in the 2020 LRDP EIR.

h) Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

L T

The 2020 LRDP EIR will evaluate whether the increase in campus population would exceed the capacity of existing neighborhood, community, and regional parks or other regional facilities, contributing to their substantial physical deterioration. The Tien Center would house existing campus staff and library services and could only house small incremental increases in staff. The Tien Center proposal would not support and is not associated with an increase in enrollment. Project-specific impacts of the Tien Center on parks and recreation would therefore not be analyzed further in the 2020 LRDP EIR.

i) Include recreational facilities or require the construction or expansion of recreational facilities that might have an adverse physical effect on the environment?

L C

The 2020 LRDP would be a general land use plan intended to guide the pattern of campus development and would not articulate specific projects or structures other than those proposed as part of the Tien Center proposal. However, additional recreational uses may be developed as part of the implementation of the 2020 LRDP; therefore, the EIR will evaluate the potential effects of recreational uses within the context of the effects of general campus development. The Tien Center would house existing campus staff and library services and could only house small incremental increases in staff. The Tien Center proposal would not support and is not associated with an increase in enrollment. Project-specific impacts of the Tien Center on parks and recreation would therefore not be analyzed further in the 2020 LRDP EIR.

L = LRDP Analysis	Impact to be	No Additional
T = Tien Center Analysis	Analyzed in	Analysis
L+T = LRDP and Tien Center Analysis	ĖIR	Required

12. TRANSPORTATION AND TRAFFIC

Would the 2020 LRDP allow for development that would:

a) Cause an increase in traffic, which is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume to capacity ratio on roads, or congestion at intersections)?

L T

Implementation of the proposed 2020 LRDP would increase the amount of campus building space, on-campus population, and the number of parking spaces on campus, which could result in increased vehicular traffic on local streets and the adjacent regional highway system. The EIR will analyze the impact of additional LRDP-related and cumulative traffic on the local street networks, including intersection capacity, and the regional highway network, including the impact on the capacity of Congestion Management Program designated roadways and freeway ramps and adjacent segments. The campus anticipates applying criteria that mirror criteria used in the City of Berkeley General Plan Draft EIR to measure this impact. The Tien Center would house existing campus staff and library services and could only house small incremental increases in staff. The Tien Center proposal would not support and is not associated with an increase in enrollment. Project-specific impacts of the Tien Center on traffic, circulation and parking would therefore not be analyzed further in the 2020 LRDP EIR.

b) Exceed, either individually or cumulatively, a level of service standard established by the county congestion management agency for designated roads or highways?

L

The EIR will analyze the impact of additional 2020 LRDP-related and cumulative traffic on the local street networks, including intersection capacity, the regional highway network, and including roads and highways designated by the Alameda County Congestion Management Agency. The Tien Center would house existing campus staff and library services and could only house small incremental increases in staff. The Tien Center proposal would not support and is not associated with an increase in enrollment. Project-specific impacts of the Tien Center on traffic, circulation and parking would therefore not be analyzed further in the 2020 LRDP EIR.

c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?

L+T

Development associated with the 2020 LRDP or the Tien Center is not anticipated to affect or contribute air traffic to existing patterns. No additional analysis is required.

d) Substantially increase hazards due to a design feature (e.g. sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)? Create unsafe conditions for pedestrians or bicyclists?

L+T

The 2020 LRDP is a general land use plan intended to guide the pattern of campus development and does not articulate specific projects or structures other than the Tien Center. The EIR will evaluate the potential for future changes to the campus circulation system or development of incompatible uses to increase hazards to traffic, pedestrians or bicyclists. The 2020 LRDP EIR would include project-specific safety analysis of circulation considerations for the proposed Tien Center.

L = LRDP Analysis	Impact to be	No Additional
T = Tien Center Analysis	Analyzed in	Analysis
L+T = LRDP and Tien Center Analysis	ĖIR	Required

e) Result in inadequate parking capacity?

L+T

The LRDP 2020 EIR will evaluate the adequacy of existing and proposed campus parking, based upon existing and projected parking demand. The EIR will also include an analysis of the campus transportation demand management (TDM) program, including new TDM measures that may be considered under the 2020 LRDP to address trip and/or parking demand reduction strategies. The Tien Center would house existing campus staff and library services and could only house small incremental increases in staff. The Tien Center proposal would not support and is not associated with an increase in enrollment. However, the site for initial phase construction of the Tien Center is located on an existing surface parking lot on the Campus Park; the project-specific analysis of the Tien Center parking impacts will rely on the program-level evaluation of the 2020 LRDP to address this issue.

f) Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)?

L+T

The proposed 2020 LRDP will describe alternative transportation modes and include policies to promote and expand their use; the 2020 LRDP EIR will analyze whether the implementation of the 2020 LRDP would conflict with applicable LRDP policies supporting alternative transportation. The 2020 LRDP EIR will also address the project-specific impacts of the proposed Tien Center.

13. UTILITIES AND SERVICE SYSTEMS

--Water

Would the 2020 LRDP allow for development that would:

a) Exceed the capacity of existing and planned water entitlements and resources?

L+T

Implementation of the proposed 2020 LRDP would increase the amount of campus building space and the campus daytime and residential population, which could result in an increase in water usage. The 2020 LRDP EIR will evaluate whether possible water demand increases would exceed available or planned entitlements or capacity; the environmental impacts of new, expanded, or altered facilities, if any are required to meet the increased demand, would also be evaluated in the EIR. Using methodologies derived from California State Senate Bills 221 and 610, the 2020 LRDP EIR will address water supply assessments. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

b) Require or result in the construction of new or expansion of existing water facilities, the construction of which could cause significant adverse effects?

L+I

The 2020 LRDP EIR will evaluate whether projected water demand increases associated with increased population would exceed available or planned entitlements or capacity; the environmental impacts of new, expanded, or altered facilities, if any are required to meet this increased demand, would also be evaluated in the EIR. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

L = LRDP Analysis	Impact to be	No Additional
T = Tien Center Analysis	Analyzed in	Analysis
L+T = LRDP and Tien Center Analysis	ĖIR	Required

UTILITIES AND SERVICE SYSTEMS

--Wastewater

Would the 2020 LRDP allow for development that would:

c) Result in a determination by the wastewater treatment provider which serves or may serve the project that it does not have adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?

L+T

The East Bay Municipal Utility District operates a wastewater treatment plant that serves the Berkeley area. The 2020 LRDP EIR will characterize the capacity of the EBMUD plant and analyze the impact of projected increases due to development under the 2020 LRDP. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

d) Require or result in the construction of new or expansion of existing wastewater treatment facilities, the construction of which could cause significant adverse effects?

L+T

Growth under the 2020 LRDP could increase the quantity of wastewater discharged to wastewater treatment facilities. The 2020 LRDP EIR will evaluate the increased demand on wastewater treatment and conveyance facilities under the 2020 LRDP, and evaluate potential impacts associated with any new or expanded facilities, if any would be required to meet this demand. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

e) Exceed wastewater treatment requirements of the Regional Water Quality Control Board?

T+1

The 2020 LRDP EIR would examine the potential for growth under the 2020 LRDP to exceed wastewater treatment requirements of the Regional Water Quality Control Board. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

UTILITIES AND SERVICE SYSTEMS

--Stormwater

Would the 2020 LRDP allow for development that would:

f) Require or result in the construction of new or expansion of existing stormwater drainage facilities, the construction of which could cause significant adverse effects?

L+T

Development under the 2020 LRDP could increase impervious surfaces, which could increase the volume of stormwater drainage. The 2020 LRDP EIR will characterize campus-wide drainage, will evaluate the increased demand for stormwater drainage facilities under the 2020 LRDP, and will evaluate potential impacts associated with any new or altered drainage facilities, if any would be required to meet this demand. The 2020 LRDP EIR will also address the project-specific stormwater drainage improvements needed to serve the proposed Tien Center.

L = LRDP Analysis	Impact to be	No Additional
T = Tien Center Analysis	Analyzed in	Analysis
L+T = LRDP and Tien Center Analysis	ĖIR	Required

UTILITIES AND SERVICE SYSTEMS

-- Solid Waste

Would the 2020 LRDP allow for development that would:

g) Violate any applicable federal, state, and local statutes and L+T regulations related to solid waste?

The EIR will evaluate the impact of implementation of the 2020 LRDP on campus compliance with applicable statutes and regulations related to solid waste. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

h) Exceed the permitted capacity of a landfill that serves the project's L+T solid waste disposal needs?

Implementation of the proposed 2020 LRDP could result in an increase in campus solid waste generation, including debris from construction activities. The 2020 LRDP EIR will evaluate whether existing landfill capacity is sufficient to accommodate growth under the 2020 LRDP. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

UTILITIES AND SERVICE SYSTEMS

--Energy

Would the 2020 LRDP allow for development that would:

i) Require or result in the construction of new or expansion of existing energy production and/or transmission facilities, the construction of which could cause significant adverse effects?

L+T

Implementation of the 2020 LRDP could result in the consumption of additional energy, including electricity, natural gas and other fossil fuels. The EIR will quantify the potential net increase in campus-related energy usage and determine whether implementation of the LRDP would require new or expanded energy production and/or transmission facilities which may cause adverse effects. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

j) Would the project encourage the wasteful or inefficient use of L+T energy?

Implementation of the 2020 LRDP could result in the consumption of additional energy, including electricity, natural gas and other fossil fuels. The 2020 LRDP would be responsive to Regents' policy on sustainability (http://www.ucop.edu/regents/regmeet/june03/102june.pdf). The EIR will quantify the potential net increase in campus-related energy usage and examine whether implementation of the LRDP would encourage wasteful or inefficient energy use. The project-specific analysis of the Tien Center will rely on the program-level evaluation of the 2020 LRDP to address this issue.

L = LRDP Analysis	Impact to be	No Additional
T = Tien Center Analysis	Analyzed in	Analysis
L+T = LRDP and Tien Center Analysis	ÉIR	Required

UTILITIES AND SERVICE SYSTEMS

-- Steam and Chilled Water

Would the 2020 LRDP allow for development that would:

k) Require or result in the construction of new or expansion of existing steam and/or chilled water facilities, the construction of which could cause significant adverse effects?

L+T

The 2020 LRDP EIR will characterize existing steam and chilled water services, will evaluate the potential increased demand for these services under the 2020 LRDP, and will evaluate potential impacts associated with any new or altered facilities required to meet this demand. The 2020 LRDP EIR will also address the project-specific steam and chilled-water improvements that may be needed to serve the proposed Tien Center.

14. MANDATORY FINDINGS OF SIGNIFICANCE

a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

L+T

As indicated above, implementation of the 2020 LRDP has the potential to result in significant impacts that could degrade the quality of the environment. Because the campus and its surrounds are densely developed, the potential for the 2020 LRDP to substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal is considered low. The 2020 LRDP EIR will evaluate the 2020 LRDP and the Tien Center for their potential to result in significant impacts that could degrade the quality of the environment, reduce habitat for a fish or wildlife species, cause a fish or wildlife population to drop below self sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal, or eliminate important examples of the major periods of California history or prehistory.

b) Does the project have impacts that are individually limited but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other projects, and the effects of probable future projects)?

L+T

The 2020 LRDP EIR will evaluate whether impacts associated with growth under the 2020 LRDP (including the proposed Tien Center), in combination with past, current, and reasonably foreseeable future projects, have the potential to be cumulatively considerable.

L = LRDP Analysis	Impact to be	No Additional
T = Tien Center Analysis	Analyzed in	Analysis
L+T = LRDP and Tien Center Analysis	EIR	Required

c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly? L+T

As discussed in the checklist sections above, the proposed 2020 LRDP and Tien Center have the potential to result in significant impacts. The 2020 LRDP EIR will evaluate if these impacts have the potential to result in substantial adverse effects on human beings, either directly or indirectly.

REFERENCES

City of Berkeley, Draft Environmental Impact Report, Draft General Plan, February 2001 SCH#2000102107

City of Berkeley, Final Environmental Impact Report, Draft General Plan, June 2001 SCH#2000102107

Lawrence Berkeley National Laboratory, Notice of Preparation for the Proposed Lawrence Berkeley National Laboratory Long Range Development Plan, October 2000

University of California, Berkeley Draft Environmental Impact Report, Long Range Development Plan, January 1990 SCH#88011208

University of California, Berkeley Northeast Quadrant Science and Safety Projects and Long Range Development Plan Amendment EIR, June 2001, SCH#2001022038

University of California, Berkeley, New Century Plan, 2002, http://www.cp.berkeley.edu

APPENDIX B

GEOLOGY, SOILS AND SEISMICITY

.....

TABLE OF CONTENTS

B.1	B.1.1 Topography	B.1-1
	B.1.2 Bedrock	B.1-1
	B.1.3 Sediments	B.1-1
	B.1.4 Soils	B.1-2
	B.1.5 Seismicity	B.1-2
	B.1.6 References	B.1-5
B.2	University Policy on Seismic Safety	

APPENDIX B.I GEOLOGY, SOILS & SEISMICITY BACKGROUND

This appendix contains supplementary information about local geology, soils and faults within the 2020 LRDP area. Much of this information was previously published in the UC Berkeley 1990 Long Range Development Plan EIR. Information has been updated where new information was available.

B.I.I TOPOGRAPHY

UC Berkeley is located on the western slopes of the Berkeley Hills. Ground elevations in the 2020 LRDP area range from about 160 feet above mean sea level (+160 feet msl) in the west to about +1,200 feet msl at the Lawrence Hall of Science, and about +1,600 feet msl at Grizzly Peak Blvd. Elevations at the west end of the Campus Park are about +200 feet msl. Slopes in the Campus Park and adjacent areas are shallow, ranging from less than two percent west of Shattuck Avenue to about five percent west of Gayley Road. East of Gayley Road, slopes rise from about ten percent at the Greek Theatre to more than 50 percent in some areas at the heads of Strawberry and Claremont Creeks.¹

The Campus Park and Hill Campus can be defined by two distinct landforms: most of the Campus Park is on an alluvial plain, and the Hill Campus (plus a portion of Southside east of the Hayward fault) is in the Berkeley Hills.

B.I.2 BEDROCK

The UC Berkeley campus is divided by the Hayward fault. Bedrock of the Cretaceous Franciscan assemblage has been mapped on the west side of the Hayward fault. This assemblage consists of sandstones, shales, and blue schists. On the east side of the Hayward fault, the bedrock consists of micaceous claystones, shale, sandstones and siltstones ranging in age from late Cretaceous to Tertiary.² Most of the underlying geologic material in the LRDP Housing Zone is Temescal formation.³

B.I.3 SEDIMENTS

West of the Hayward fault and overlying the bedrock is the Quaternary Temescal formation, consisting of alluvial fan deposits that originate from the Berkeley Hills. Composition of this material varies greatly, but is predominantly clayey gravel containing rocks of the Franciscan assemblage and of igneous origin. The Franciscan rocks are greywacke, shale, chert, conglomerate, schist and limestone. Foundation conditions of the Temescal formation typically are excellent to fair, with good to fair earthquake stability.⁴

East of the fault, colluvium and small alluvial fan deposits dominate the surficial geologic materials in the Berkeley Hills. Colluvium is the debris that moves downslope as soil creep, soil flows, small landslides, and slope wash. Within the developed part of the Campus Park, much of the natural surficial geologic materials have been covered by artificial fill.⁵

B.I.4 Soils

West of the Hayward fault, most of the native soil has been covered, graded, or otherwise modified by campus development. Native soils still existing, although not necessarily exposed, include the Xerorthent, Millsholm, Los Osos, and Tierra associations.⁶ A January 2000 geotechnical investigation of the Campus Park and its immediate area concluded that older alluvium overlies the Franciscan rocks across most of the Campus Park. The alluvium typically comprises very stiff sandy clay.⁷ Over most of the Campus Park, the depth to rock is less than 50 feet.⁸

East of the Hayward fault, three different soils dominate the Hill Campus. Maymen loam covers about one-third of the steep upland slopes. It is a shallow acidic soil (10 to 20 inches deep over shale) in which runoff is rapid to very rapid and the risk of erosion is high to very high. The Maymen-Los Gatos complex covers about one-quarter of the steep upland slopes. These loamy soils are shallow to moderately deep (10 to 40 inches over shale and sandstone) and some are highly acidic. Runoff and erosion hazards are identified with the Maymen loam.⁹

The Xerorthent-Millsholm complex covers about one-fifth of steep upland slopes. Soil depths vary from shallow to moderately deep. They are moderately acidic to slightly alkaline loams, clays and silty clay loams, developed on sandstone, siltstone or alluvium, and have runoff and erosion characteristics identical with the Maymen loam. ¹⁰ Xerorthent-Millsholm and Maymen soils have a low shrinkswell potential. ¹¹

Most of the LRDP Housing Zone consists of Tierra-Urban land soils. These soils consist of moderately well drained loams. ¹² Tierra and Azule soils cover a large portion of the LRDP Housing Zone. Tierra soils have low to high shrink-swell potential, while Azule has a moderate to high shrink-swell potential. ¹³

B.I.5 SEISMICITY

BACKGROUND

The strength of an earthquake is generally expressed in two ways: *magnitude* and *intensity*. Magnitude, which is expressed in whole numbers and decimals (e.g. 7.1), is a measure that depends on the seismic energy radiated by the earthquake as recorded on seismographs. The original magnitude scale is the Richter scale.¹⁴ Earthquakes with magnitude of about 2.0 or less on the Richter scale are usually called micro-earthquakes and are not commonly felt by people. Events with magnitudes of about 4 and up are felt by most people. The Richter Scale has no upper limit and is not used to express damage.¹⁵

The most commonly used magnitude scale today is the Moment Magnitude (Mw) scale, which is related to the physical size of fault rupture and the movement across a fault. Mw is based on the seismic moment at the source, or hypocenter, of the earthquake. ¹⁶ The Moment Magnitude scale is a way of rating the seismic moment of an earthquake with a simple, logarithmic numerical scale similar to the original Richter magnitude scale. Because it does not "saturate" the way local

magnitude does, it is used for large earthquakes – those that would have a local magnitude of about 6 or larger.¹⁷

The force of an earthquake at a particular place is measured on the Modified Mercalli Intensity Scale, which is a subjective ranking of earthquakes' effects on persons and structures. It is expressed in Roman numerals from I to XII. Lower numbers on the scale indicate less severe shaking. Table B.1-1 summarizes the Modified Mercalli Intensity Scale in relation to the Richter Scale.

TABLE B.1-1 MODIFIED MERCALLI AND RICHTER SCALES¹⁸

	Modified	
Richter	Mercalli	Expected Modified Mercalli
Magnitude	Category	Maximum Intensity at Epicenter
2	I-II	Usually detected only by instruments
3	III	Felt indoors
4	IV-V	Felt by most people
4	1 V - V	Slight damage
		Felt by all
5	VI-VII	Many frightened and run outdoors
		Damage minor to moderate
	3711 37111	Everybody runs outdoors
6	VII-VIII	Damage moderate to major
7	IX-X	Major damage
8+	X-XII	Total and major damages

ACTIVE FAULTS

Active faults in the LRDP area are discussed in Chapter 4.5.

INACTIVE FAULTS

There are several inactive faults in the LRDP area. The Wildcat fault in the Hill Campus is a minor fault that cuts late Cenozoic strata, striking sub-parallel to the Hayward fault past the Botanical Garden and through the Field Station for Behavioral Research.¹⁹ There have been no studies indicating Holocene activity on the Wildcat fault.²⁰ The California Division of Mines and Geology (CDMG) does not designate Wildcat Fault as an Alquist-Priolo Earthquake Fault Zone.

The Strawberry Canyon fault is a buried, east-west trending linear feature in the Cretaceous bedrock. It is cut off by the Hayward and the Wildcat faults.²¹ It is unknown whether Holcene Activity studies have been done on the Strawberry Canyon Fault but, as it appears to be older than both the Wildcat and Hayward faults, it is not considered to be active.²²

From a probabilistic standpoint,²³ the slip rates of the Wildcat and Strawberry Canyon fault would be so low as to not impact seismic hazard at all even if both were active. The only potential seismic hazards they would pose is ground rupture along the surface trace. In other words, only structures built directly on these faults would be potentially endangered. This is because of the large extent of seismic activity from other faults in the region. Even if one uses a deterministic model,²⁴ the ground motions at any site along the Wildcat or Strawberry Canyon faults will be dominated by ground motions from characteristic earthquakes on the Hayward fault, because of its proximity and its characteristic earthquake magnitude, which would be much larger than that of the other faults discussed here.²⁵

The Lawrence Hall fault complex refers to a web of closely spaced, short, intersecting linear features northwest of the Lawrence Hall of Science. The area has been studied since the 1960s and 1970s, when the complex was originally postulated. Past investigation indicates the complex is a sheared contact zone between the Orinda and Moraga formations and is not a set of faults.²⁶

Other short, discontinuous faults mapped in the Hill Campus during the 1970s are identified as sheared contact zones in the ancient bedrock. These faults are not active and pose no threat of surface rupture to the area.

EARTHQUAKE PROBABILITY

As stated in Chapter 4.5, the San Andreas fault, the Hayward-Rodgers Creek fault, and the Calaveras fault pose the greatest threat because they have high quake odds and run through the Bay Area's urban core.27 The Hayward fault and the Calaveras fault are each capable of generating a maximum credible earthquake (MCE)²⁸ of M7.5 on the Richter scale,²⁹ and of producing maximum earthquakes ranging from Mw 6.9 to 7.5 and Mw 6.8 respectively. 30 The northern section of the San Andreas fault could generate an MCE of M8.3³¹ and earthquakes of up to Mw 8.0.32 The Rogers Creek fault, located about 20 miles northwest of the Campus Park, also has the potential to generate seismic activity in the City of Berkeley.³³ It is considered capable of producing a maximum magnitude earthquake of Mw 7.0.34 Earthquakes of these magnitudes are sufficient to create ground accelerations in bedrock and unconsolidated deposits, and severe enough to cause major damage to structures, foundations and underground utility lines.³⁵ Other faults that are sources for earthquakes that may result in strong ground shaking in the Bay Area include the Concord-Green Valley, Northern Calaveras, West Napa, and Clayton-Marsh Creek-Greenville faults.

The Hayward fault is of particular concern at UC Berkeley because it crosses the campus and because of the density of urban development along it and the major infrastructure lines that cross it. The seismicity on the Hayward fault has been relatively low in the past 45 years, with only four earthquakes of M4.0 or greater; however, the fault has an extensively documented history of higher activity. At least ten earthquakes of M6.0 or greater have occurred within 20 miles of this fault since 1836. In 1868, an earthquake estimated at about M7 ruptured about 30 miles of the Hayward fault with a maximum reported offset of about three feet.³⁶

B.I.6 REFERENCES

- ¹ U.S. Geological Survey (USGS), Oakland East Quadrangle, California, 7.5 Minute Series (topographic), 1997, scale 1:24,000; USGS, Oakland West Quadrangle, California, 7.5 Minute Series (topographic), 1993, scale 1:24,000; USGS, Briones Valley Quadrangle, California, 7.5 Minute Series (topographic), 1995, scale 1:24,000.
- ² California Geological Survey, GIS Data for the Geologic Map of California, DMG CD 2000-007, 2000.
- ³ Jennings, C. W. and J. L. Burnett, "Geologic Map of California, San Francisco Sheet", in *Geologic Atlas of California*, O.P. Jenkins (ed.), California Division of Mines and Geology, Sacramento, 1961; Radbruch, D. H., *Areal and Engineering Geology of the Oakland East Quadrangle*, California, USGS, Geologic Quadrangle Map GQ-769, 1969, scale 1:24,000.
- ⁴ Radbruch, D. H., *Areal and Engineering Geology of the Oakland West Quadrangle*, California, USGS, Miscellaneous Geologic Investigations Map I-239, 1957, scale 1:24,000.
- Nielsen, T.H., Preliminary Photointerpretation Map of Landslide and Other Surficial Deposits in the Briones Valley 7.5 Minute Quadrangle, Contra Costa and Alameda Counties, California, USGS, Open File Report 75-277-08, 1975, scale 1:24,000.
- ⁶ U.S. Department of Agriculture (USDA), Natural Resources Conservation Service, Soil Survey of Alameda County, Western Part, March 1981.
- ⁷ Geomatrix Consultants, Appendix One: Geologic Hazards Investigation Central Campus, University of California at Berkeley, January 2000, page 13, prepared as part of Economic Benefits of a Disaster Resistant University by Dr. Mary Comerio, Institute of Urban and Regional Development, UC Berkeley, April 2000.
- ⁸ Geomatrix Consultants, Appendix One: Geologic Hazards Investigation Central Campus, University of California at Berkeley, January 2000, page 23, prepared as part of Economic Benefits of a Disaster Resistant University by Dr. Mary Comerio, Institute of Urban and Regional Development, UC Berkeley, April 2000.
- ⁹U.S. Department of Agriculture (USDA), Natural Resources Conservation Service, Soil Survey of Alameda County, Western Part, 1981, page 18-19. Map Sheets No. 1,2,7.
- ¹⁰ U.S. Department of Agriculture (USDA), Natural Resources Conservation Service, Soil Survey of Alameda County, Western Part, 1981, page 29.
- ¹¹ U.S. Department of Agriculture (USDA), Natural Resources Conservation Service, Soil Survey of Alameda County, Western Part, 1981, page 99.
- ¹² U.S. Department of Agriculture (USDA), Natural Resources Conservation Service, General Soils Map of Alameda County, Western Part, 1981, General Soil Map, page 5.
- ¹³ U.S. Department of Agriculture (USDA), Natural Resources Conservation Service, Soil Survey of Alameda County, Western Part, 1981, pages 98.
- ¹⁴ California Geological Survey, How Earthquakes and Their Effects are Measured, Note 32, Revised April 2002, http://www.conservation.ca.gov/cgs/information/publications/cgs notes/note 32/note 32.
 pdf, retrieved February 19, 2004.
- ¹⁵ California Geological Survey, How Earthquakes and Their Effects are Measured, Note 32, Revised April 2002.
- ¹⁶ The seismic moment of an earthquake is determined by the strength or resistance of rocks to faulting multiplied by the area of the fault that ruptures and by the average displacement that occurs across the fault during the earthquake. (Source: California Geological Survey, How Earthquakes and Their Effects are Measured, Note 32, Revised April 2002.)
- ¹⁷ Southern California Earthquake Data Center, *Investigating Earthquakes through Regional Seismicity*, page 19, http://www.data.scec.org/Module/sec3pg19.html, retrieved on February 18, 2004.

- ¹⁸ Association of Bay Area Governments (ABAG), "Modified Mercalli Intensity Scale", http://www.abag.ca.gov/bayarea/eqmaps/doc/mmi.html, retrieved on April 2, 2004.
- ¹⁹ California Department of Conservation, Mines and Geology, GIS Data for the Geologic Map of California, DMG CD 2000-007, 2000; Wakabayashi, John, California Registered Geologist No. 5890. Personal communication with DC&E, November 22, 2003.
- Wakabayashi, John, California Registered Geologist No. 5890. Personal communication with DC&E, November 20, 2003.
- ²¹ California Department of Conservation, Mines and Geology, GIS Data for the Geologic Map of California, DMG CD 2000-007, 2000.
- ²² Wakabayashi, John, California Registered Geologist No. 5890. Personal communication with DC&E, November 22, 2003.
- ²³ A probabilistic model assumes that the hazard is dominated by the highest slip rate faults closest to the site of interest and those of such faults that produce the biggest earthquakes.
- ²⁴ A deterministic model assumes that all considered faults will rupture in characteristic earthquakes during the design lifetime, regardless of probability.
- ²⁵ Wakabayashi, John, California Registered Geologist No. 5890. Personal communication with DC&E, November 20, 2003.
- ²⁶ Converse Consultants, Hill Area Dewatering and Stabilization Studies, University of California Department of Facilities Management, October 31, 1984, pages 4-11 and 4-12.
- ²⁷ U.S. Geological Survey (USGS), Fact Sheet 039-03, "Is a Powerful Quake Likely to Strike in the Next 30 Years?", 2003, http://geopubs.wr.usgs.gov/fact-sheet/fs039-03/fs039-03.pdf, retrieved April 4, 2004.
- The maximum credible earthquake is defined as the earthquake which produces the greatest levels of ground motion at the site as a result of the largest magnitude earthquake that could reasonably occur along the recognized faults or within a particular seismic source. (Source: http://www.usace.army.mil/publications/eng-pamphlets/ep1110-2-12/c-4.pdf, retrieved on February 18, 2004).
- ²⁹ UC Berkeley, *Long Range Development Plan Draft Environmental Impact Report*, January 1990, page 4.7-2.
- ³⁰ Geomatrix Consultants, Appendix One: Geologic Hazards Investigation Central Campus, University of California at Berkeley, January 2000, pages 7-8, prepared as part of Economic Benefits of a Disaster Resistant University by Dr. Mary Comerio, Institute of Urban and Regional Development, UC Berkeley, April 2000.
- ³¹ UC Berkeley, Long Range Development Plan Draft Environmental Impact Report, January 1990, page 4.7-2.
- ³² Geomatrix Consultants, Appendix One: Geologic Hazards Investigation Central Campus, University of California at Berkeley, January 2000, page 8, prepared as part of Economic Benefits of a Disaster Resistant University by Dr. Mary Comerio, Institute of Urban and Regional Development, UC Berkeley, April 2000.
- 33 City of Berkeley Draft General Plan EIR, February 2001, page 197.
- ³⁴ Geomatrix Consultants, Appendix One: Geologic Hazards Investigation Central Campus, University of California at Berkeley, January 2000, page 7, prepared as part of Economic Benefits of a Disaster Resistant University by Dr. Mary Comerio, Institute of Urban and Regional Development, UC Berkeley, April 2000.
- ³⁵ UC Berkeley, Long Range Development Plan Draft Environmental Impact Report, January 1990, page 4.7-2.
- ³⁶ UC Berkeley, *Long Range Development Plan Draft Environmental Impact Report*, January 1990, page 4.7-11.

APPENDIX B.2 UNIVERSITY POLICY ON SEISMIC SAFETY

Original Issue/Approval Date: January 20, 1975 Latest Revision: January 17, 1995 [Editor's Revision: April 20, 2000]

B.2.1 POLICY

It is University policy – to the maximum extent feasible by present earthquake engineering practice – to acquire, build, maintain, and rehabilitate buildings and other facilities which provide an acceptable level of earthquake safety, as defined in this policy, for students, employees, and the public who occupy those buildings and other facilities at all locations where University operations and activities occur. It is also University policy to repair University buildings and other facilities damaged in an earthquake as set forth below in the section entitled Repair of Buildings and Other Facilities Damaged by Earthquakes. Feasibility is to be determined by weighing the practicability and cost of protective measures against the gravity and probability of injury resulting from a seismic occurrence.

Responsibility. The President is responsible for overall administration of this policy and shall provide for (1) interpretation or clarification of the policy as may be required; (2) development of seismic safety criteria, standards, and guidelines supplementary to the policy; (3) evaluation of seismic safety programs and review of specific proposals for the abatement of seismic hazards; and (4) determination of University-wide priorities among seismic safety projects and other projects proposed for inclusion in the Capital Improvement Program.

The President shall assign specific duties and authority to individuals within the Office of the President who may engage professional consultants or other specialists to advise and assist them in matters involving seismic safety.

The Chancellors, Senior Vice President-Business and Finance, Vice President-Agriculture and Natural Resources, Director-Lawrence Berkeley Laboratory, Director-Lawrence Livermore Laboratory, and Director-Los Alamos Scientific Laboratory are the officials responsible for taking all reasonable steps to assure protection of persons under their respective jurisdictions against the effects of earthquakes which could result in the loss of life or injury to persons. Each responsible official shall assign specific duties and authority to individuals under his or her jurisdiction for the purpose of discharging this responsibility.

Program for Abatement of Seismic Hazards. Each responsible official shall develop a program for abatement of seismic hazards in existing buildings and other facilities within their respective jurisdictions and shall establish priorities for seismic safety projects in accordance with this policy. Each responsible official shall coordinate proposed seismic correctional work with (1) proposed fire protection work (see University policy on fire protection, issued September 22, 1971) [Editor's Note: In place of the aforementioned policy on fire protection, the University currently follows, as policy, fire protection regulations of CCR, Title 24, Part 9.], (2) other proposed work involving environmental health and safety considerations, and (3) reasonable and prudent rehabilitation for functional and programmatic improvements.

The program for abatement of seismic hazards shall include identification and temporary and permanent correction of potential earthquake falling, sliding, or rupturing hazards such as, but not limited to, interior and exterior building elements, utilities, equipment, fixtures, furnishings, and other contents which could be dislodged, fall, overturn, slide, or rupture during seismic disturbances. Temporary measures to reduce the risks of injury pending permanent corrective action shall be considered and implemented if feasible.

The Consulting Structural Engineer. Each responsible official shall secure the services of one or more consulting structural engineers experienced in field investigations and analyses of damage in earthquakes. The consulting structural engineer shall be required to examine existing buildings and other facilities as directed by the responsible official and to submit to the responsible official reports on the adequacy of the resistance of such campus buildings and other facilities to seismic forces based on (1) conformance to the current seismic provisions of California Code of Regulations (CCR), Title 24, California Building Standards Code, or local seismic requirements (e.g., city or county building regulations), whichever requirements are more stringent; and (2) the consulting structural engineer's professional evaluation of their anticipated seismic performance, expressed in terms of Good, Fair, Poor, or Very Poor, as defined in Appendix A, with respect to degree of risk of injury to persons but not necessarily in conformance with the above specific seismic provisions. For buildings and other facilities which are reported as Poor or Very Poor by the consulting structural engineer, the responsible official shall immediately consider alternatives to undiminished continued use and occupancy of the buildings and other facilities, including total or partial evacuation, temporary emergency measures, reductions in use, reconstruction, or combinations of these alternatives, and shall then take appropriate action.

The consulting structural engineer shall be required to include in all reports recommendations regarding priorities for abatement of seismic hazards and estimates of costs for correcting seismic deficiencies in accordance with this policy.

• Standards for Seismic Rehabilitation Projects. When evaluation by the consulting structural engineer of existing buildings or other facilities discloses conditions which do not afford an acceptable level of safety, proposed correctional work shall be incorporated in the program developed by the responsible official for abatement of seismic hazards and integrated in the University's proposed Capital Improvement Program. Seismic rehabilitation projects shall provide, as a minimum, an acceptable level of earthquake safety based on the sole consideration of the protection of life and prevention of personal injury, insofar as predictable, at a level of safety equivalent to that which would be established by compliance with the current seismic provisions of CCR, Title 24, California Building Standards Code, or local seismic requirements, whichever requirements are more stringent, disregarding, insofar as possible, potential building damage not jeopardizing life, which would be expected from one earthquake of the intensity of at least IX on the Modified Mercalli Intensity Scale (modified by Charles F. Richter in

1958, as shown in Appendix B), except that an intensity of VIII can be utilized for buildings on the Davis and San Diego Merced campuses. The intent of seismic rehabilitation shall be to reconstruct buildings and other structures so that they would have a Good seismic performance rating, as defined in Appendix A. based on the present state of the practice of earthquake engineering.

When funds for seismic rehabilitation are limited, the program developed by the responsible official may include a phased rehabilitation program for selected buildings. The first phase would have the goal of reducing the greatest life safety hazards of the structure such as reducing the potential of partial building collapse and/or reducing falling hazards at building entrances and along adjacent walkways. Later phases, to be performed when funds are available, would complete the seismic rehabilitation program of the structure. The consulting structural engineer shall assist the responsible official in establishing the scope of work in each phase of a phased rehabilitation program.

Preliminary plans for all seismic rehabilitation projects shall be reviewed by the consulting structural engineer, who shall verify the scope of the rehabilitation work and shall prepare any recommendations regarding any special criteria which should be considered in the project design. Upon completion of plans and specifications, the consulting structural engineer shall review the plans and structural calculations for completeness, general accuracy, appropriateness of details, and for compliance with any special criteria. The design structural engineer shall incorporate comments into the plans prior to bidding.

- Repair of Buildings and Other Facilities Damaged by Earthquakes. In addition to the requirements established elsewhere in the Policy pertaining to the construction, maintenance and rehabilitation of University buildings and facilities, the following standards shall apply to repair of University buildings and facilities which are damaged by earthquakes.
 - 1. Subject to the provisions of paragraph 2, below, when the lateral load resisting capacity for the building or facility as a whole is reduced by less than 10 percent, repairs shall be in conformity with the requirements of codes currently applicable to University construction. Related work required by currently applicable codes shall also be performed in areas affected by the repairs.
 - 2. When (i) the lateral load resisting capacity for the building or facility as a whole is reduced by 10 percent or more, or (ii) in the case of hospitals, skilled nursing facilities, intermediate-care facilities and essential service buildings as defined in Table 23-K of the 1991 California Code of Regulations, Title 24, California Building Standards Code, Part 2, California Building Code, the lateral load resisting capacity of the entire building or facility is reduced by 5 percent or more, or (iii) when the lateral load resisting capacity is reduced by less than 10 percent, but the estimated cost of repairs required to bring damaged elements into substantial compliance with the seismic performance objectives of current codes exceeds 10 percent of the replacement cost of the entire building or

facility, the entire building or facility shall be made to substantially comply with the seismic performance objectives of the codes currently applicable to University construction. Related work required by currently applicable codes shall also be performed in areas affected by the repairs. For purposes of this Policy, "replacement cost" is defined as construction cost of a like number of assignable square feet designed to house a like program on the same site and built in compliance with codes currently applicable to University construction.

- 3. When calculating the percentage reduction in total lateral load resisting capacity of any building or facility the construction of which was first completed prior to January 1, 1941, damage to all building or facility elements which served as lateral resisting elements shall be included, even if such elements were not originally designed or intended as lateral resisting elements, unless the building or facility possesses sufficient seismic resistance to substantially comply with the performance objectives of the codes currently applicable to University construction without these elements.
- New Buildings and Other Facilities; Hospitals. The design and construction of new buildings and other facilities on University premises shall, as a minimum, comply with the current seismic provisions of CCR, Title 24, California Building Standards Code, or local seismic requirements, whichever requirements are more stringent. In addition, provisions shall be made for adequate anchorage for seismic resistance of nonstructural building elements-including, but not limited to, glass, fixtures, furnishings, and other contents, equipment, material storage facilities, and utilities (gas, high-temperature water, steam, fire protection water, etc.) with respect to potential hazards to persons in the event of seismic disturbances.

New University buildings shall not be constructed on the trace of an active geological fault.

Preliminary plans for new major capital improvement projects, except preengineered buildings, wood-framed buildings of less than 3,000 square feet, and buildings not intended for human occupancy other than hospitals proposed for construction shall be examined by the consulting structural engineer, who shall prepare recommendations regarding any special criteria that, in that engineer's opinion, should be recognized in providing adequate resistance to seismic forces to minimize the risk of injury to persons and damage to property. Upon completion of the final plans, the consulting structural engineer shall review the plans and structural calculations for completeness, general accuracy, structural details, and for compliance with any special criteria previously established. Should seismic design standards be revised during the period between completion of final plans and the date of advertisement for bids, the consulting structural engineer shall review again the plans and structural calculations before advertising for bids. The design structural engineer shall incorporate all comments into the plans prior to bidding. Prior to the release of funds for structures other than hospital or for seismic rehabilitation projects, a letter or report from the campus consulting structural engineer shall be submitted, stating that the construction plans are in general conformance with the University policy on seismic safety.

The design and construction of new facilities or alterations for hospitals, skilled nursing facilities, and intermediate-care facilities as defined in Section 15001 of the California Health and Safety Code, on University premises or under University operation shall comply with CCR, Title 24, California Building Standards Code.

B.2.2 BACKGROUND

This policy was set forth in Vice President McCorkle's letter to the Chancellors et al., of January 20, 1975. It was reported and accepted by The Regents' Committee on Grounds and Buildings on January 16, 1975. The policy was revised by President Gardner in his letter to the Chancellors et al., of May 17, 1988 and it was revised by President Peltason in his letter to the Chancellors et al., of January 17, 1995.

B.2.3 GUIDELINES

The Senior Vice President Business and Finance is responsible for coordination of seismic safety programs and may issue appropriate administrative guidelines as necessary.

B.2.4 APPENDIX A

MEANING OF GOOD, FAIR, POOR, OR VERY POOR SEISMIC PERFORMANCE RATINGS

"Good" seismic performance rating would apply to buildings and other structures whose performance during a major seismic disturbance "is anticipated to result in some structural and/or nonstructural damage and/or falling hazards" that would not significantly jeopardize life. Buildings and other structures with a "Good" rating would have a level of seismic resistance such that funds need not be spent to improve their seismic resistance to gain greater life safety, and would represent an acceptable level of earthquake safety.

"Fair" seismic performance rating would apply to buildings and other structures whose performance during a major seismic disturbance is anticipated to result in structural and nonstructural damage and/or falling hazards that would represent low life hazards. Buildings and other structures with a "Fair" seismic performance rating would be given a low priority for expenditures to improve their seismic resistance and/or to reduce falling hazards so that the building could be reclassified "Good."

"Poor" seismic performance rating would apply to buildings and other structures whose performance during a major seismic disturbance is anticipated to result in significant structural and nonstructural damage and/or falling hazards that would represent appreciable life hazards. Such buildings or structures either would be given a high priority for expenditures to improve their seismic resistance and/or to reduce falling hazards so that the building could be reclassified as "Good," or would be considered for other abatement programs, such as reduction of occupancy.

"Very Poor" seismic performance rating would apply to buildings and other structures whose performance during a major seismic disturbance is anticipated to result in extensive structural and nonstructural damage, potential structural collapse, and/or falling hazards that would represent high life hazards. Such buildings or structures either would be given the highest priority for expenditures to improve their seismic resistance and/or to reduce falling hazards so that the building could be reclassified "Good," or would be considered for other abatement programs such as reduction of occupancy.

"Major seismic disturbance" is defined for the purposes of these seismic performance ratings as an earthquake at the site which would be given a Modified Mercalli Intensity Scale (modified by Charles F. Richter in 1958) rating of at least IX based on the description of the structural effects, except that an intensity of VIII can be utilized for buildings of the Davis and San Diego Merced campuses. It is assumed that the intensity of the ground shaking is not appreciably greater in areas rated MM X, MM XI, and MM XII than in areas rated MM IX. The damage descriptions in MM X, MM XI, and MM XII relate more to the geologic features and non-building structures.

"Falling Hazards" are defined for the purposes of these seismic performance ratings as potential falling or sliding hazards such as interior and exterior building elements including parapets, ornamentation, chimneys, walls, and partitions, but excluding equipment, fixtures, ceilings, furniture, furnishings, and other contents. The falling hazards in the excluded list above should not be used in the determination of the seismic performance rating of a building or structure but should be abated.

B.2.5 APPENDIX B

MODIFIED MERCALLI INTENSITY SCALE

- I Not felt. Marginal and long-period effects of large earthquakes.
- II Felt by persons at rest, on upper floors, or favorably placed.
- III Felt indoors. Hanging objects swing. Vibration like passing of light trucks. Duration estimated. May not be recognized as an earthquake.

- IV Hanging objects swing. Vibration like passing of heavy trucks, or sensation of a jolt like a heavy ball striking the walls. Standing motor cars rock. Windows, dishes, doors rattle. Glasses clink. Crockery clashes. In the upper range of [intensity] IV, wooden walls and frames creak.
- V Felt outdoors; direction estimated. Sleepers wakened. Liquids disturbed, some spilled. Small, unstable objects displaced or upset. Doors swing, close, open. Shutters, pictures move. Pendulum clocks stop, start, change rate.
- VI Felt by all. Many frightened and run outdoors. Persons walk unsteadily. Windows, dishes, glassware broken. Knickknacks, books, etc. off shelves. Pictures off walls, Furniture moved or overturned. Weak plaster and masonry D cracked. Small bells ring (church, school). Trees, bushes shaken (visibly, or heard to rustle).
- VII Difficult to stand. Noticed by drivers of motor cars. Hanging objects quiver. Furniture broken. Damage to masonry D, including cracks. Weak chimneys broken at roof line. Fall of plaster, loose bricks, stones, tiles, cornices (also unbraced parapets and architectural ornaments). Some cracks in masonry C. Waves on ponds; water turbid with mud. Small slides and caving in along sand or gravel banks. Large bells ring. Concrete irrigation ditches damaged.
- VIII Steering of motor cars affected. Damage to masonry C; partial collapse. Some to masonry B; none to masonry A. Fall of stucco and some masonry walls. Twisting, fall of chimneys, factory stacks, monuments, towers, elevated tanks. Frame houses moved on foundations if not bolted down; loose panel walls thrown out. Decayed piling broken off. Branches broken from trees. Changes in flow or temperature of springs and wells. Cracks in wet ground and on steep slopes.
- IX General panic. Masonry D destroyed; masonry C heavily damaged, sometimes with complete collapse; masonry B seriously damaged. (General damage to foundations.) Frame structures, if not bolted, shifted off foundations. Frames racked. Serious damage to reservoirs. Underground pipes broken. Conspicuous cracks in ground. In alluviated areas, sand and mud ejected, earthquake fountains, sand craters.
- X Most masonry and frame structures destroyed with their foundations. Some well-built wooden structures and bridges destroyed. Serious damage to dams, dikes, embankments. Large landslides. Water thrown on banks of canals, rivers, lakes, etc. Sand and mud shifted horizontally on beaches and flat land. Rails bent slightly.
- XI Rails bent greatly. Underground pipelines completely out of service.
- XII Damage nearly total. Large rock masses displaced. Lines of sight and level distorted. Objects thrown into the air.

UNIVERSITY OF CALIFORNIA, BERKELEY 2020 LRDP DRAFT EIR APPENDIX B.2: UNIVERSITY POLICY ON SEISMIC SAFETY

The version of the scale given above was published by Richter (1), and is a slight abridgment of the original scale. Richter also included the description of the types of construction included here. The original scale was published in 1931 by H.O. Wood and Frank Neumann (2).

B.2.6 DEFINITION OF MASONRY A, B, C, D

Masonry A. Good workmanship, mortar, and design; reinforced, especially laterally, and bound together by using steel, concrete, etc.; designed to resist lateral forces.

Masonry B. Good workmanship and mortar; reinforced, but not designed in detail to resist lateral forces.

Masonry C. Ordinary workmanship and mortar; no extreme weaknesses like failing to tie in at the corners, but neither reinforced nor designed against horizontal forces.

Masonry D. Weak materials, such as adobe; poor mortar; low standards of workmanship; weak horizontally.

B.2.7 BIBLIOGRAPHY

Richter, C.F., "Elementary Seismology" W.H. Freeman and Co. Inc., 1958, pp. 136-138.

Wood, H.O., and Neumann, "Modified Mercalli Intensity Scale of 1931," Bull. Seism. Soc. Am., 1931, 21:277-283.

Source: The University Policy on Seismic Safety can be downloaded at http://www.ucop.edu/facil/fmc/facilman/volume1/rpsafety.html.

APPENDIX C

AIR QUALITY

.....

TABLE OF CONTENTS

C.1	Current Status of Bay Area Air Quality	C.1-1
C.2	Technical Information And Calculations: Criteria Air	
	Pollutant Analyses	C.2-1
C.3	Technical Information And Calculations: Toxic Air	
	Contaminant Health Risk Assessment	C.3-1
C.4	References	C.4-1

APPENDIX C AIR QUALITY

This appendix includes supplemental information regarding the regulatory framework for air quality in the Bay Area (Subappendix C.1), technical information and supporting calculations for the "criteria" air pollutant analyses presented in Section 4.2 (Subappendix C.2), and technical information and supporting calculations for the health risk assessment for the current campus and future LRDP scenarios presented in Section 4.2 (Subappendix C.3).

C.I CURRENT STATUS OF BAY AREA AIR QUALITY

This subappendix describes the current regulatory status of "criteria" air pollutants in the Bay Area. Historically, air quality laws and regulations have divided air pollutants into two broad categories: "criteria pollutants" and "toxic air contaminants." Federal and State air quality standards have been established for six ambient air pollutants, which are "criteria pollutants," so named because the U.S. Environmental Protection Agency (EPA) periodically publishes criteria documents to help establish these standards. These criteria pollutants have been regulated for more than three decades.

The criteria air pollutants for which federal and State ambient standards have been established include ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), particulate matter less than 10 microns in aerodynamic diameter (PM10), and lead. In the analyses presented in Section 4.2, O3 is evaluated by assessing emissions of O3 precursors: reactive organic gases (ROG) and NO2. Other pollutants, such as lead, also have federal and State ambient air quality standards, but they are not discussed in this document because emissions of these pollutants related to implementation of the 2020 LRDP Update are expected to be minimal. In the case of lead, this is primarily due to the phase out of lead in gasoline. Recently, particulate matter less than 2.5 microns in aerodynamic diameter (PM2.5) has been added to the list of criteria pollutants, which is further discussed later in this subappendix. National and State ambient air quality standards are listed in Table 4.2-2 of Section 4.2.

"Toxic air contaminants" (TACs) are airborne pollutants that have no air quality standards but are known to have adverse human health effects. They have been regulated under federal and State statutes for more than two decades, primarily by control technology requirements on stationary sources, mobile source control requirements, and mitigation established by human health risk assessment. The supporting information for the health risk assessment analyses presented in Section 4.2 for TACs associated with the 2020 LRDP Update can be found in Subappendix C.3.

In terms of criteria pollutants, the EPA has classified the Bay Area as a moderate nonattainment area for ozone, and a "maintenance" attainment area for carbon monoxide until at least 2008 (40 CFR 81.305). The California Air Resources Board (CARB) has given the area State-level nonattainment status for O₃ and PM₁₀.

The federally-required State Implementation Plan (SIP) for attainment of the federal ozone standard in the Bay Area was last revised in 1999 to respond to exceedances of the federal ozone standard during the mid to late 1990s. A 2001 ozone attainment plan was adopted by the Bay Area Air Quality Management District (BAAQMD) on October 26, 2001, and approved by the CARB on November 1, 2001. Along with the BAAQMD, the Metropolitan Transportation Commission (MTC) and the Association of Bay Area Governments (ABAG) also contribute to the ozone attainment plan. On November 30, 2001, the CARB submitted the 2001 ozone attainment plan to the EPA for approval as a revision to the California SIP. The 2001 ozone attainment plan includes a provision to provide a revised ozone attainment strategy to the EPA in 2004.

The Clean Air Plan (CAP) is a State-level requirement of the California Clean Air Act that specifies additional measures of emission control to achieve the more stringent State ambient air quality standards for ozone. The SIP required by the federal Clean Air Act is partially based on control measures from the CAP. The BAAQMD's 2000 CAP, which was adopted December 20, 2000, is the most recent version of the CAP for ozone. The 2003 CAP is currently under development. The State PM10 standards are also exceeded in the region. However, no State plan is required to meet State PM10 standards.

The CAP is updated and reevaluated every three years. Updating the CAP allows the most up-to-date population, travel activity, and energy use fore-casts from the MTC and ABAG to be incorporated. The 2000 CAP is based on ABAG *Projections '98*.

Important components of the CAP for attaining the ozone standards are transportation control measures (TCMs) that may be implemented by local jurisdictions. The cities and counties of the Bay Area are responsible for implementing many of the TCMs identified in the CAP. Some TCMs relevant to the campus planning process are as follows:

- TCM 1: Support Voluntary Employer-Based Trip Reduction Programs
- TCM 9: Improve Bicycle Access and Facilities
- TCM 15: Local Clean Air Plans, Policies, and Programs
- TCM 17: Conduct Demonstration Projects
- TCM 19: Promote Pedestrian Travel
- TCM 20: Promote Traffic Calming Measures

In July 1997, the EPA adopted a number of changes to national ambient air quality standards for O₃ and particulate matter.² The new O₃ and PM_{2.5} standards are shown in Table 4.2-2 in Section 4.2. These new standards are discussed separately because, from a regulatory standpoint, they have a different status than previously adopted standards. None of the new standards are fully effective at this time because the data and information needed to develop control programs will require several years to collect. The EPA has not yet designated any areas of the country as attainment or nonattainment for the new O₃ and PM_{2.5} standards. Planning requirements and control programs will be phased in with a full set of supporting regulations scheduled for completion by 2008.

For O₃, the EPA adopted a new 8-hour standard that will eventually replace the existing 1-hour standard.³ The new O₃ standard was adopted after the EPA found that the previous national 1-hour standard of 0.12 parts per million (ppm) did not adequately protect the public from adverse health effects. Of particular concern is evidence that exposure to O₃ levels below 0.12 ppm is associated with increased hospital admissions for people with respiratory ailments, including asthma, and with reductions in lung function in children and adults who are active outdoors.⁴ Evidence also exists that long-term exposure can cause repeated inflammation of the lungs, impairment of lung defense mechanisms, and irreversible damage in lung structure, leading to premature aging of the lungs and chronic respiratory illnesses.⁵

For particulate matter, the EPA adopted a 24-hour standard and an annual average standard for the fine fraction of particulate matter, PM2.5.6 The EPA retained the existing PM10 standards, but slightly changed the form of the PM10 24-hour standard.7 The EPA's review of its particulate matter standard showed that "coarse" respirable particles, which are between 2.5 to 10 micrometers in size, can be inhaled and aggravate health problems such as asthma. Therefore, the EPA chose to retain PM10 standards. The EPA also reviewed studies providing epidemiological evidence that exposure to particulate matter at levels below the existing PM10 standards were associated with increased hospital admissions and premature mortality.8 The EPA found that finer particles, which are less than 2.5 micrometers in diameter, can penetrate more deeply into lungs and are more likely than coarser particles to contribute to more severe health effects.9 Therefore, the EPA established new standards for PM2.5.

Soon after the promulgation of the new air quality standards, the EPA's authority to establish these new standards was challenged legally. On May 14, 1999, the federal D.C. Circuit Court of Appeals remanded both the new O3 and PM2.5 standards back to the EPA for failing to articulate adequately its authority to set the standards (American Trucking Associations v. U.S. EPA, 175 F.3d 1027, D.C. Cir. 1999). On January 27, 2000, the EPA petitioned the U.S. Supreme Court (Browner v. American Trucking Associations, No. 99-1257, Sup. Ct. 2000). On February 27, 2001, the U.S. Supreme Court held that the EPA had authority to issue the new standards (Whitman v. American Trucking Associations, No. 99-1257 and No. 99-1426, Sup. Ct. 2001) and remanded the case back to the D.C. Circuit and the EPA for proceedings consistent with their opinion. On March 26, 2002, the D.C. Circuit, on remand from the Supreme Court, rejected all remaining challenges (American Trucking Associations, Inc., et al. v. USEPA, No. 97-1441, D.C. Circuit 2001). The CARB is now in the process of monitoring these pollutants to evaluate the attainment status of the State's air basins with respect to the federal standards. The EPA, on remand from the Supreme Court, is developing a new eight-hour ozone standard implementation policy that is projected to be finalized in the near future.

C.2 TECHNICAL INFORMATION AND CALCULATIONS: CRITERIA AIR POLLUTANT ANALYSES

The pages that follow in this subappendix contain the URBEMIS modeling files for current campus and future LRDP area sources.

In addition, a spreadsheet is included that shows the calculation of criteria pollutant emissions from current campus and future LRDP emergency generator engines.

LRDP Academic and Support Bldgs.txt

Page: 1

URBEMIS 2002 For Windows 7.4.2

File Name:

C:\CAV\UCBerkeley LRDP\Academic and Support.urb
UC Berkeley Academic and Support Buildings

Project Name:

Project Location: San Francisco Bay Area
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Pounds/Day - Summer)

AREA SOURCE EMISSION ESTIMATES

ROG PM10 NOX CO SO2 TOTALS (lbs/day,unmitigated) 21.27 9.09 1.63 0.00 0.04

Page: 2

URBEMIS 2002 For Windows 7.4.2

File Name:

C:\CAV\UCBerkeley LRDP\Academic and Support.urb

Project Name:

UC Berkeley Academic and Support Buildings

Project Location:

Project Location: San Francisco Bay Area
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Summer)

AREA SOURCE EMISSION ESTIMATES	(Summer	Pounds per	Day, Unmit	igated)	
Source	ROG	NOX	CO	SO2	PM10
Natural Gas	1.54	21.27	8.51	_	0.04
Wood Stoves - No summer emissi					
Fireplaces - No summer emission	ons				
Landscaping	0.08	0.01	0.58	0.00	0.00
Consumer Prdcts	0.00	-	_	_	_
TOTALS(lbs/day,unmitigated)	1.63	21.27	9.09	0.00	0.04

LRDP Housing.txt

Page: 1

URBEMIS 2002 For Windows 7.4.2

File Name:

Project Name:

C:\CAV\UCBerkeley LRDP\Housing.urb
UC Berkeley Housing Area Source Emissions

Project Location: San Francisco Bay Area
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Pounds/Day - Summer)

AREA SOURCE EMISSION ESTIMATES

CO ROG NOx S02 PM10 TOTALS (lbs/day,unmitigated) 5.08 69.39 10.56 0.00 0.02

Page: 2

URBEMIS 2002 For Windows 7.4.2

File Name:

C:\CAV\UCBerkeley LRDP\Housing.urb

Project Name:

UC Berkeley Housing Area Source Emissions

Project Location:

Project Location: San Francisco Bay Área
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Summer)

AREA SOURCE EMISSION ESTIMATES	(Summer	Pounds per	Day, Unmit	igated)	
Source	ROG	NÖX	CO	SO2	PM10
Natural Gas	0.82	10.56	4.49	-	0.02
Wood Stoves - No summer emiss	ions				
Fireplaces - No summer emission	ons				
Landscaping	0.08	0.01	0.58	0.00	0.00
Consumer Prdcts	68.49	_	_	_	_
TOTALS(lbs/day,unmitigated)	69.39	10.56	5.08	0.00	0.02

URBEMIS 2002 For Windows 7.4.2

File Name:

 $X:\x_env_aq1\PROJECTS\UCBerkly\Lrdp-DCE\Impacts\Construction_1yr.urb$ Project Name: UC Berkeley Construction Emissions

Project Location:

San Francisco Bay Area On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

> SUMMARY REPORT (Pounds/Day - Summer)

CONSTRUCTION EMISSION ESTIMATES

PM10 PM10					PMT0
*** 2005 *** EXHAUST DUST	ROG	NOX	CO	so2	TOTAL
TOTALS (lbs/day,unmitigated) 50.67 115.05	138.58	1,103.55	991.94	0.01	165.72
TOTALS (lbs/day, mitigated) 0.58 10.27	15.84	570.05	124.06	0.01	10.85
					PM10
PM10 PM10					
*** 2006 * **	ROG	NOX	CO	S02	TOTAL
EXHAUST DUST					
TOTALS (lbs/day,unmitigated)	1,672.60	1,069.71	1,042.56	0.21	48.84
48.13 0.71 TOTALS (lbs/day, mitigated)	1,549.11	552.78	143.01	0.21	1.28

Page: 2

URBEMIS 2002 For Windows 7.4.2

File Name:

X:\x_env_aq1\PROJECTS\UCBerkly\Lrdp-DCE\Impacts\Construction_1yr.urb Project Name: UC Berkeley Construction Emissions

Project Location:

San Francisco Bay Area

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Summer)

Construction Start Month and Year: June, 2005

Construction Duration: 12

Total Land Use Area to be Developed: 45.9 acres Maximum Acreage Disturbed Per Day: 11.5 acres Single Family Units: 0 Multi-Family Units: 0

Retail/Office/Institutional/Industrial Square Footage: 1000000

CONSTRUCTION EMISSION ESTIMATES MITIGATED (1bs/day)

PM10 PM10 PM10

Source ROG CO S02 NOX TOTAL

Page 1

EXHAUST DUST	Construction	for Criter	ia Emission	s.txt	
*** 2005*** Phase 1 - Demolition Emi	ssions				0.00
Fugitive Dust 0.00	-	-	-	-	0.00
Off-Road Diesel 0.00 0.00	0.00	0.00	0.00	-	0.00
On-Road Diesel 0.00 0.00	0.00	0.00	0.00	0.00	0.00
Worker Trips 0.00 0.00	0.00	0.00	0.00	0.00	0.00
Maximum lbs/day 0.00 0.00	0.00	0.00	0.00	0.00	0.00
Phase 2 - Site Grading E Fugitive Dust	missions -	_		-	10.22
- 10.22 Off-Road Diesel	8.61	372.02	59.00		0.37
0.37 0.00 On-Road Diesel	0.00	0.00	0.00	0.00	0.00
0.00 0.00 Worker Trips	1.04	1.28	22.93	0.01	0.09
0.04 0.05 Maximum lbs/day	9.65	373.30	81.93	0.01	10.68
0.41 10.27	3.03	373.30	01.55	0.01	10.00
Phase 3 - Building Const Bldg Const Off-Road Dies	ruction el 13.64	568.75	96.39	_ ^	0.56
0.56 0.00 Bldg Const Worker Trips	2.20	1.30	27.67	0.00	0.37
0.0Ž 0.35 Arch Coatings Off-Gas	0.00	_	, -	<u></u>	-
- Arch Coatings Worker Tri	ps 0.00	0.00	0.00	0.00	0.00
0.00 0.00 Asphalt Off-Gas	0.00	-		-	-
Asphalt Off-Road Diesel	0.00	0.00	0.00	-	0.00
Asphalt On-Road Diesel	0.00	0.00	0.00	0.00	0.00
0.00 0.00 Asphalt Worker Trips	0.00	0.00	0.00	0.00	0.00
0.00 0.00 Maximum lbs/day 0.58 0.35	15.84	570.05	124.06	0.00	0.93
Max lbs/day all phases 0.58 10.27	15.84	570.05	124.06	0.01	10.85
*** 2006***					
Phase 1 - Demolition Emi Fugitive Dust	-		-	-	0.00
- 0.00 Off-Road Diesel	0.00	0.00	0.00	-	0.00
0.00 0.00 On-Road Diesel	0.00	0.00	0.00	0.00	0.00
0.00 0.00 Worker Trips	0.00	0.00	0.00	0.00	0.00
0.00 0.00 Maximum lbs/day	0.00	0.00	0.00	0.00	0.00
0.00 0.00	_			- v - •	

Max Construction for Criteria Emissions.txt Phase 2 - Site Grading Emissions Fugitive Dust 0.00 0.00 Off-Road Diesel 0.00 0.00 0.00 0.00 0.00 0.00 On-Road Diesel 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Worker Trips 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Maximum lbs/dav 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Phase 3 - Building Construction Bldg Const Off-Road Diesel 13.64 544.96 99.58 0.53 $0.5\bar{3}$ 0.00 Bldg Const Worker Trips 2.07 1.24 26.26 0.00 0.37 0.020.35 Arch Coatings Off-Gas 1,528.93 Arch Coatings Worker Trips 1.86 0.86 21.57 0.00 0.37 0.02 0.35 Asphalt Off-Gas 2.74 Asphalt Off-Road Diesel 0.00 0.00 0.00 0.00 0.00 0.00 Asphalt On-Road Diesel 0.08 6.12 0.30 0.21 0.01 0.00 0.01Asphalt Worker Trips 0.00 0.00 0.00 0.00 0.00 0.00 0.00Maximum İbs/day 1,549.11 552.78 143.01 0.21 1.28 0.71

1,549.11

552.78

143.01

0.21

1.28

Page: 3

0.57

Construction-Related Mitigation Measures

Max lbs/day all phases

0.71

Phase 2: Soil Disturbance: Apply soil stabilizers to inactive areas Percent Reduction(ROG 0.0% NOX 0.0% CO 0.0% SO2 0.0% PM10 30.0%)
Phase 2: Soil Disturbance: Replace ground cover in disturbed areas quickly Percent Reduction(ROG 0.0% NOX 0.0% CO 0.0% SO2 0.0% PM10 15.0%) Phase 2: Soil Disturbance: Water exposed surfaces - 3x daily
Percent Reduction(ROG 0.0% NOX 0.0% CO 0.0% SO2 0.0% PM10 50.0%) Phase 2: Off-Road Diesel Exhaust: Use aqueous diesel fuel Percent Reduction(ROG 0.0% NOx 14.0% CO 0.0% SO2 0.0% PM10 63.0%) Phase 2: Off-Road Diesel Exhaust: Use diesel particulate filter Percent Reduction(ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 80.0%) Percent Reduction(ROG 0.0% NOX 0.0% CO 0.0% SO2 0.0% PM10 80.0%)

Phase 2: Off-Road Diesel Exhaust: Use cooled exhaust gas recirculation(EGR)

Percent Reduction(ROG 90.0% NOX 40.0% CO 90.0% SO2 0.0% PM10 85.0%)

Phase 2: On-Road Diesel Exhaust: Use aqueous diesel fuel

Percent Reduction(ROG 0.0% NOX 14.0% CO 0.0% SO2 0.0% PM10 63.0%)

Phase 2: On-Road Diesel Exhaust: Use diesel particulate filter

Percent Reduction(ROG 0.0% NOX 0.0% CO 0.0% SO2 0.0% PM10 80.0%)

Phase 2: On-Road Diesel Exhaust: Use diesel particulate filter Phase 2: On-Road Diesel Exhaust: Use cooled exhaust gas recirculation(EGR) Percent Reduction(ROG 90.0% NOx 40.0% CO 90.0% SO2 0.0% PM10 85.0%) Page 3

```
Max Construction for Criteria Emissions.txt
 Phase 2: Stockpiles: Cover all stock piles with tarps
    Percent Reduction(ROG 0.0% NOx_0.0% CO 0.0% SO2 0.0% PM10 9.5%)
 Phase 2: Unpaved Roads: Water all haul roads 3x daily
    Percent Reduction(ROG 0.0% NOX 0.0% CO 0.0% SO2 0.0% PM10 45.0%)
 Phase 2: Unpaved Roads: Reduce speed on unpaved roads to < 15 mph Percent Reduction(ROG 0.0% NOX 0.0% CO 0.0% SO2 0.0% PM10 40.0%)
 Phase 2: Worker Trips: Use shuttle to retail establishments @lunch Percent Reduction(ROG 1.0% NOX 1.3% CO 1.3% SO2 1.3% PM10 1.3%)
 Phase 3: Off-Road Diesel Exhaust: Use aqueous diesel fuel
Percent Reduction(ROG 0.0% NOx 14.0% CO 0.0% SO2 0.0% PM10 63.0%)
 Phase 3: Off-Road Diesel Exhaust: Use diesel particulate filter
    Percent Reduction(ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 80.0%)
 Phase 3: Off-Road Diesel Exhaust: Use cooled exhaust gas recirculation(EGR) Percent Reduction(ROG 90.0% NOX 40.0% CO 90.0% SO2 0.0% PM10 85.0%)
 Phase 3: Off-Road Diesel Exhaust: Use aqueous diesel fuel
    Percent Reduction(ROG 0.0% NOx 14.0% CO 0.0% SO2 0.0% PM10 63.0%)
 Phase 3: Off-Road Diesel Exhaust: Use diesel particulate filter
    Percent Reduction(ROG_0.0% NOX 0.0% CO 0.0% SO2 0.0% PM10 80.0%)
 Phase 3: Off-Road Diesel Exhaust: Use cooled exhaust gas recirculation(EGR)
Percent Reduction(ROG 90.0% NOX 40.0% CO 90.0% SO2 0.0% PM10 85.0%)
Phase 3: On-Road Diesel Exhaust: Use aqueous diesel fuel
Percent Reduction(ROG 0.0% NOX 14.0% CO 0.0% SO2 0.0% PM10 63.0%)
 Phase 3: On-Road Diesel Exhaust: Use diesel particulate filter
   Percent Reduction(ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 80.0%)
 Phase 3: On-Road Diesel Exhaust: Use cooled exhaust gas recirculation(EGR) Percent Reduction(ROG 90.0% NOx 40.0% CO 90.0% SO2 0.0% PM10 85.0%)
 Phase 3: Worker Trips: Use shuttle to retail establishments @lunch
   Percent Reduction (ROG 1.0% NOx 1.3% CO 1.3% SO2 1.3% PM10 1.3%)
 Phase 3: Worker Trips: Use shuttle to retail establishments @lunch
   Percent Reduction(ROG 1.0% NOx 1.3% CO 1.3% SO2 1.3% PM10 1.3%)
 Phase 3: Worker Trips: Use shuttle to retail establishments @lunch
   Percent Reduction(ROG 1.0% NOx 1.3% CO 1.3% SO2 1.3% PM10 1.3%)
Phase 1 - Demolition Assumptions: Phase Turned OFF
Phase 2 - Site Grading Assumptions
Start Month/Year for Phase 2: Jun '05
Phase 2 Duration: 1.3 months
On-Road Truck Travel (VMT): 0
Off-Road Equipment
  No.
            Type
                                                       Horsepower
                                                                         Load Factor
                                                                                             Hours/Day
     20
            Rubber Tired Dozers
                                                           352
                                                                           0.590
                                                                                                8.0
     20
                                                            79
            Tractor/Loaders/Backhoes
                                                                           0.465
                                                                                                 8.0
Phase 3 - Building Construction Assumptions
Start Month/Year for Phase 3: Jul '05' Phase 3 Duration: 10.7 months
  Start Month/Year for SubPhase Building: Jul '05
  SubPhase Building Duration: 10.7 months
  Off-Road Equipment
  No.
            Type
                                                       Horsepower
                                                                         Load Factor
                                                                                             Hours/Day
     23
            Concrete/Industrial saws
                                                            84
                                                                           0.730
                                                                                                8.0
     45
            Other Equipment
                                                           190
                                                                           0.620
                                                                                                 8.0
            Rough Terrain Forklifts
                                                                           0.475
                                                                                                8.0
  Start Month/Year for SubPhase Architectural Coatings: Apr '06
  SubPhase Architectural Coatings Duration: 1.1 months
  Start Month/Year for SubPhase Asphalt: May '06
  SubPhase Asphalt Duration: 0.5 months
  Acres to be Paved: 11.5
```

Max Construction for Criteria Emissions.txt

Off-Road Equipment No. Type

Horsepower Load Factor

Hours/Day

	UC Berkeley Emergency Generator Emission Rates and Stack Parameters														
Engine Make	Engine Model	Rated bhp	Engine Year	Engine Instal. Date	Fuel	Stack Ht. abv. grade (m)*	Stack diam. (m)	Exh. temp. (K)	Part. emissions factors g/hp/hr D-2 Test Cycle	Exit Velocity (m/s)	Load Factor	Annual Testing Hours	Annualized Emission Rate (g/s)	Cancer Risk Rate (for modeling file)	Chronic Exposure (for modeling file)
Caterpillar	3456	764	2000	Aug-02	diesel	4.6	0.13	800	0.1	146.0	25%	26	1.575E-05	4.724E-03	3.149E-06
•															1.575E-06
•									0.1						4.823E-07
									1						4.947E-05
				-					1						4.147E-05
									1						3.318E-05
				-					1						3.318E-05
															1.106E-05
									0.4						5.524E-06
									1						1.587E-05
•									1						1.381E-05
•									1						1.381E-05
•									1						1.381E-05
									1						1.381E-05
				•					1						1.381E-05
									1						1.381E-05
									0.4						6.596E-06
									1						9.687E-06 6.967E-06
								-	1						6.925E-06
									0.4						
									0.4						2.770E-06
									1						8.533E-06
									1						6.925E-06
•															2.737E-06
									0.4						2.210E-06
				-					1						2.762E-06
									1						2.762E-06
															1.713E-06
•															4.823E-07 4.823E-07
•															4.623E-07 1.245E-05
Cummins	Q3X13-G9	755	2001	Jui-UZ	ulesei			769	0.4	135.1	25%	20	0.223E-U3	1.007 ⊑-02	1.243E-03
NI/Λ	NI/Δ	750	Future	Future	diacal			760.26	0.15	76 14	25%	26	2 310F 05	6 056E-03	4.638E-06
															4.638E-06
															1.855E-06
															1.855E-06
															4.638E-06
															1.855E-06
															1.855E-06
															1.855E-06
															1.855E-06
															3.926E-06
		Caterpillar Caterpillar Caterpillar Cummins Cummins Detroit Diesel Cummins TYA28G2 Detroit Diesel Allis Chalmers Detroit Diesel Caterpillar V-8 Caterpillar V-8 Caterpillar V-8 Caterpillar V-8 Detroit Diesel Color Desel	Caterpillar 3456 764 Caterpillar 3456 764 Caterpillar 1004-40TW 117 Cummins QST30-G2 1200 Detroit Diesel 5147541 1006 Cummins VTA28G2/37116828 805 Cummins YTA28G2 805 Detroit Diesel 500R0ZD71 671 Allis Chalmers 3119-0955 335 Detroit Diesel CID 300 385 Caterpillar V-8 3208 335 Detroit Diesel 80637405 335 Detroit Diesel 80637405 335 Detroit Diesel 80637405 335 John Deere 65PG 6005-A 169 Allis-Chalmers<	Caterpillar 3456 764 2000 Caterpillar 3456 764 2001 Caterpillar 1004-40TW 117 2001 Cummins QST30-G2 1200 1998 Detroit Diesel 5147541 1006 1992 Cummins VTA28G2/37116828 805 1987 Cummins YTA28G2 805 1986 Detroit Diesel 500R0ZD71 671 1996 Allis Chalmers 3119-0955 335 1999 Detroit Diesel CID 300 385 1995 Caterpillar V-8 3208 335 1993 Caterpillar V-8 3208 335 1993 Caterpillar V-8 3208 335 1995 Caterpillar V-8 3208 335 1995 Caterpillar V-8 3208 335 1995 Detroit Diesel 80637405 335 1995 Detroit Diesel 80637405 335 1995 Detroit Diesel	Caterpillar 3456 764 2000 Aug-02 Caterpillar 3456 764 2001 Jul-02 Caterpillar 1004-40TW 117 2001 Oct-02 Cummins QST30-G2 1200 1998 Jun-99 Detroit Diesel 5147541 1006 1992 May-92 Cummins VTA28G2/37116828 805 1986 Aug-86 Cummins YTA28G2 805 1986 Aug-86 Detroit Diesel 500R0ZD71 671 1996 Jun-96 Allis Chalmers 3119-0955 335 1999 Oct-99 Detroit Diesel CID 300 385 1995 Jun-95 Caterpillar V-8 3208 335 1993 Nov-93 Caterpillar V-8 3208 335 1995 Jun-95 Caterpillar V-8 3208 335 1995 Jun-95 Caterpillar V-8 3208 335 1995 Jun-95 Detroit Diesel 80637405	Caterpillar 3456 764 2000 Aug-02 diesel Caterpillar 3456 764 2001 Jul-02 diesel Caterpillar 1004-40TW 117 2001 Oct-02 diesel Cummins QST30-G2 1200 1998 Jun-99 diesel Detroit Diesel 5147541 1006 1992 May-92 diesel Cummins VTA28G2/37116828 805 1986 Aug-86 diesel Cummins YTA28G2 805 1986 Aug-86 diesel Detroit Diesel 500R0ZD71 671 1996 Jun-96 diesel Detroit Diesel CID 300 385 1995 Jun-95 diesel Caterpillar V-8 3208 335 1995 Jun-95 diesel Caterpillar V-8 3208 335 1995 Jun-95 diesel Caterpillar V-8 3208 335 1995 Jun-95 diesel Detroit Diesel 80637405	Caterpillar	Caterpillar 3456 764 2000 Aug-02 diesel 4.6 0.13	Caterpillar	Caterpillar	Caterpillar 3456 764 2000 Aug-02 diesel 4.6 0.13 800 0.1 146.0 Caterpillar 3456 764 2001 Jul-02 diesel 4.6 0.13 800 0.05 152.0 Caterpillar 3456 764 2001 Jul-02 diesel 4.6 0.13 800 0.05 152.0 Caterpillar 1004-40TW 117 2001 0.0t-02 diesel 3.0 0.08 817 0.1 58.5 Caterpillar 1004-40TW 117 2001 0.0t-02 diesel 4.6 0.23 811 1 70.1 Detroit Diesel 51475t1 1006 1992 May-92 diesel 4.6 0.23 811 1 70.1 Detroit Diesel 51475t1 1006 1992 May-92 diesel 3.0.5 0.20 811 1 70.1 Detroit Diesel 51475t1 1006 1992 May-92 diesel 0.0 0.18 811 1 70.1 Detroit Diesel 51475t1 1006 1992 May-92 diesel 0.0 0.18 811 1 70.1 Detroit Diesel 51475t1 1006 1992 May-92 diesel 0.0 0.18 811 1 70.1 Detroit Diesel 51475t1 1006 1992 May-92 diesel 0.0 0.18 811 1 70.1 Detroit Diesel 0.00002D71 671 1996 Jun-96 diesel 3.0 0.15 811 0.4 70.1 Alis Chalmers 3119-0955 335 1999 Oct-99 diesel 4.6 0.10 811 0.4 70.1 Detroit Diesel 0.10 300 385 1995 Jun-96 diesel 3.0 0.10 811 1 0.4 70.1 Caterpillar V-8 3208 335 1993 Nov-93 diesel 3.0 0.10 811 1 1 70.1 Caterpillar V-8 3208 335 1993 Nov-93 diesel 3.0 0.10 811 1 1 70.1 Caterpillar V-8 3208 335 1995 Jun-96 diesel 3.0 0.10 811 1 1 70.1 Caterpillar V-8 3208 335 1995 Jun-96 diesel 3.0 0.10 811 1 1 70.1 Caterpillar V-8 3208 335 1995 Jun-96 diesel 3.0 0.10 811 1 1 70.1 Detroit Diesel 80637405 335 1995 May-93 diesel 3.0 0.10 811 1 1 70.1 Detroit Diesel 80637405 335 1995 May-95 diesel 4.6 0.10 811 1 70.1 Detroit Diesel 80637405 335 1995 May-95 diesel 4.6 0.10 811 1 70.1 Olovo Penta TADIO30GE 400 1999 Oct-99 diesel 4.6 0.13 811 0.4 70.1 Alis Chalmers DES 200 235 1971 Jun-71 diesel 4.6 0.08 811 1 70.1 Olovo Penta TADIO30GE 400 1999 Oct-99 diesel 3.0 0.08 811 1 70.1 Olovo Penta TADIO30GE 400 1999 Oct-99 diesel 3.0 0.08 811 1 70.1 Olovo Penta GERSTFOOM 168 1997 May-93 diesel 3.0 0.08 811 1 70.1 Olovo Penta GERSTFOOM 168 1997 May-93 diesel 3.0 0.08 811 1 70.1 Olovo Penta GERSTFOOM 168 1998 Dec-98 diesel 3.0 0.08 811 1 70.1 Olovo Penta GERSTFOOM 168 1998 Dec-98 diesel 3.0 0.08 811 1 1 70.1 Cummins GERSTS-GC 134 1998 Dec-98 diesel 3.0 0.08	Caterpillar	Caterpillar 3456 764 2000 Aug-02 diesel 4.6 0.13 800 0.1 146,0 25% 26 Caterpillar 3456 764 2001 Jul-02 diesel 4.6 0.13 800 0.15 152,0 25% 26 Caterpillar 1004-0170 117 2001 0.0-102 diesel 3.0 0.08 817 0.1 58.5 25% 26 Caterpillar 3456 764 2001 1996 Jun-99 diesel 3.0 0.08 817 0.1 58.5 25% 26 Cummins 0.5730-G2 1002 1998 Jun-99 diesel 4.6 0.23 811 1 70.1 25% 26 Cummins 717.2802.37116828 805 1987 Jan-88 diesel 7.6 0.18 811 1 70.1 25% 26 Cummins 717.2802.37116828 805 1987 Jan-88 diesel 7.6 0.18 811 1 70.1 25% 26 Cummins 717.2802.37116828 805 1986 Aug-86 diesel 7.6 0.18 811 1 70.1 25% 26 Cummins 717.2802.37116828 805 1986 Aug-86 diesel 7.6 0.18 811 1 70.1 25% 26 Cummins 3119-0955 335 1999 O.0-99 diesel 3.0 0.15 811 0.4 70.1 25% 26 Caterpillar V-8 3208 335 1993 Nov-93 diesel 3.0 0.10 811 1 70.1 25% 26 Caterpillar V-8 3208 335 1993 Nov-93 diesel 3.0 0.10 811 1 70.1 25% 26 Caterpillar V-8 3208 335 1995 Jun-95 diesel 3.0 0.10 811 1 70.1 25% 26 Caterpillar V-8 3208 335 1995 Jun-95 diesel 3.0 0.10 811 1 70.1 25% 26 Caterpillar V-8 3208 335 1995 Jun-95 diesel 3.0 0.10 811 1 70.1 25% 26 Caterpillar V-8 3208 335 1995 Jun-95 diesel 3.0 0.10 811 1 70.1 25% 26 Caterpillar V-8 3208 335 1995 Jun-95 diesel 3.0 0.10 811 1 70.1 25% 26 Caterpillar V-8 3208 335 1995 May-95 diesel 3.0 0.10 811 1 70.1 25% 26 Caterpillar V-8 3208 335 1995 May-95 diesel 3.0 0.10 811 1 70.1 25% 26 Caterpillar V-8 3208 335 1995 May-95 diesel 3.0 0.10 811 1 70.1 25% 26 Caterpillar V-8 3208 335 1995 May-95 diesel 3.0 0.10 811 1 70	Caterpillar 3456 764 2000 Aug-022 diseal 4.6 0.13 800 0.1 146.0 25% 26 1.575-60 Caterpillar 3456 764 2001 Jul-02 diseal 4.6 0.13 800 0.1 146.0 25% 26 25% 26 7.8745-05 Caterpillar 3456 764 2001 Jul-02 diseal 4.6 0.13 800 0.5 152.0 25% 26 24 1275-05 Caterpillar 1004-40TW 117 2001 0t-02 diseal 3.0 0.08 811 0.7 0.1 55.5 25% 26 2.4172-06 Curmins OLST30-G2 1200 1998 Jun-99 diseal 4.6 0.23 811 1 70.1 25% 26 2.4778-04 Curmins V1A28623711828 805 1987 Jan-88 diseal 0.0 0.18 811 1 70.1 25% 26 2.4778-04 Curmins V1A28623711828 805 1987 Jan-88 diseal 0.0 0.18 811 1 70.1 25% 26 1.8598-04 Curmins V1A28623711828 805 1987 Jan-88 diseal 0.0 0.18 811 1 70.1 25% 26 1.8598-04 Curmins V1A28623711828 805 1987 Jan-88 diseal 0.0 1.68 811 1 1 70.1 25% 26 1.8598-04 Curmins V1A2862371828 805 1987 Jan-88 diseal 0.0 1.68 811 1 1 70.1 25% 26 1.8598-04 Curmins V1A2862371828 805 1987 Jan-88 diseal 0.0 1.68 811 1 1 70.1 25% 28 1.8598-04 Curmins V1A2862371828 805 1987 Jan-88 diseal 0.0 1.68 811 1 1 70.1 25% 28 1.8598-04 Curmins V1A2862371828 805 1989 Jun-86 diseal 3.0 0.16 811 1 0.4 70.1 25% 28 1.8598-04 Caterpillar V-8 3208 335 1993 Nov-93 diseal 0.0 1.0 811 1 1 70.1 25% 28 6 9056-05 Caterpillar V-8 3208 335 1993 Nov-93 diseal 0.0 1.0 811 1 1 70.1 25% 26 6 9056-05 Caterpillar V-8 3208 335 1995 Jun-95 diseal 0.0 1.0 811 1 1 70.1 25% 26 6 9056-05 Caterpillar V-8 3208 335 1995 Jun-95 diseal 0.0 1.0 811 1 1 70.1 25% 26 6 9056-05 Caterpillar V-8 3208 335 1995 Jun-95 diseal 0.0 1.0 811 1 1 70.1 25% 26 6 9056-05 Caterpillar V-8 3208 335 1995 Jun-95 diseal 0.0 0.10 811 1 1 70.1 25% 26 6 9056-05 Caterpillar V-8 3208 335 1995 Jun-95 diseal 0.0 0.10 811 1 1 70.1 25% 26 6 9056-05 Caterpillar V-8 3208 335 1995 Jun-95 diseal 0.0 0.10 811 1 1 70.1 25% 26 6 9056-05 Caterpillar V-8 3208 305 1995 Jun-96 diseal 0.0 0.10 811 1 1 70.1 25% 26 6 9056-05 Caterpillar V-8 3208 305 1995 Jun-96 diseal 0.0 0.0 8 811 1 1 70.1 25% 26 6 9056-05 Caterpillar V-8 3208 305 1995 Jun-96 diseal 0.0 0.0 8 811 1 1 70.1 25% 26 6 9056-05 Caterpillar V-8 3208 305 1995 Jun-96 diseal 0.0 0.	Caterpliar A466 764 2000 Aug-02 diesel 4.6 0.13 800 0.1 1.60 2.5% 2.6 1.576E-05 A724E-05 2.6 2.472E-06 2.260E-05 2.260E-05

¹ The HP value represents 300 HP of additional power for the LRDP. The existing Tang Center generator operates at 335 HP. ² Not included in the modeling analysis.

C.3 TECHNICAL INFORMATION AND CALCULATIONS: TOXIC AIR CONTAMINANT HEALTH RISK ASSESSMENT

A baseline health risk assessment (HRA) for current campus operations was prepared on June 28, 2000. 10 A protocol for this HRA was transmitted to the Bay Area Air Quality Management District (BAAQMD) on August 24, 1999, which was included as Appendix A in the June 28, 2000 HRA, along with the BAAQMD's September 7, 1999 approval. Since the June 28, 2000 HRA was conducted, there have been some changes in modeled sources, emission factors, and toxicity factors. Therefore, the June 28, 2000 HRA has been updated, as summarized below, in the current campus HRA. A discussion of a future LRDP HRA then follows, which presents projected health risks associated with the 2020 LRDP (current baseline plus LRDP development).

CURRENT CAMPUS (BASELINE) HEALTH RISK ASSESSMENT

BACKGROUND AIR TOXICS CONCENTRATIONS

The BAAQMD has updated background air toxics concentration estimates since publication of the June 28, 2000 HRA. As of March 2004, the most currently available data are from the 2001 reporting year. The BAAQMD reports a calculated lifetime cancer risk from measured concentrations of TACs in 2001 to be about 173 in one million averaged over all Bay Area locations. 11 Using the same calculation methods with the ambient TAC data reported from the Davie Stadium monitoring station¹² (about 4 miles south of UC Berkeley), an average annual cancer risk of 163 in one million is estimated at that location. This calculation is presented at the end of this subappendix. Because diesel particulate matter (DPM) can not be directly monitored in the ambient air, the BAAQMD uses CARB estimates of the population-weighted average ambient DPM concentration for the Bay Area to estimate an average cancer risk from DPM exposure at about 440 in one million (which adds to the estimated risks from the other TACs). These calculated average cancer risk values from ambient air exposure in the Bay Area can be compared against the lifetime probability of being diagnosed with cancer in the United States from all causes, which is about 40 percent, or 400,000 in one million.¹³ Thus the risk of being diagnosed with cancer from ambient TACs in the Bay Area is quite small when compared against the overall background cancer risk.

BASELINE HRA EMISSION SOURCES

More details on the emissions calculations are presented in Section 3.0 of the June 28, 2000 Central Campus Human Health Risk Assessment. A descriptive summary follows.

The emission sources included in the original June 28, 2000 HRA were:

- Campus-wide laboratories
- Cogeneration plant (combustion turbines and duct burners)
- Three central plant boilers
- Lithographic and envelope printing operations
- Campus-wide painting and solvent cleaning operations
- Hazardous Materials Facility

Upon further assessment, the following emission sources were <u>excluded</u> as having an insignificant impact:

- Natural-gas-fired boilers less than 10 MMBtu/hr¹⁴
- Mechanical Engineering Engine Laboratory (infrequent testing of engines)
- Sandblasting operation

The recent revision to the baseline HRA added existing emergency generators. The emission estimation methodologies for each of the emission sources listed above and the emergency generators are summarized next.

CAMPUS LABORATORIES. Laboratory chemicals were selected for inclusion in the HRA based on a "snapshot" of the UC Berkeley (UCB) chemical inventory on May 10, 1999, and comparison against the BAAQMD TAC list, as well as an examination of past laboratory fume hood studies. A further analysis of candidate chemicals was then conducted against annual chemical usage records for 1998 from the following campus databases:

- Chemical Inventory Safety and Information System (CISIS)
- College of Chemistry Purchase Order Tracking System (POTS)

These databases track chemical purchases per building on the UCB campus. Upon consideration of the annual purchase amounts and emissions potential versus intrinsic toxicity, 31 chemicals were ultimately selected for the June 28, 2000 HRA. The baseline HRA modeled laboratory emissions on a per building basis, ¹⁵ which were estimated by applying evaporative loss factors to the annual chemical usages per building. The evaporative loss factors were derived from previous work performed at Stanford University, ¹⁶ which is described further in the June 28, 2000 HRA. Since the wet laboratory square footage per building was also available, emission factors in terms of grams per second per wet laboratory square foot (g/s per ft²) were calculated for use in subsequent HRAs. These emission factors were calculated across three different laboratory types:

- Lab Type I: Chemistry and Chemical Engineering
- Lab Type II: General Biological Sciences
- Lab Type III: Physical Sciences/Other (Engineering, Geology, Physics, etc.)

Table C.3-1 summarizes the calculated emission factors per Lab Type.¹⁷ Annualized emissions were based on the annual chemical usage. The data collection effort did not provide enough information to directly calculate potential short-term hourly emissions. The ratios between peak hourly and annual average emissions reported in other studies were examined, and an average ratio of 5.18 was calculated, as described further in the June 28, 2000 HRA. Thus, maximum hourly emissions were assessed at 5.18 times the annual average emission estimates for the purposes of the baseline HRA. Note that if the calculated annual emissions were assumed to be emitted 8 hours per day, 5 days per week for 52 weeks, each operating hour would have 4.2 times the annual average emission rate if all hours were assumed to emit the same amount.

In a later HRA performed for the UC Davis campus, emissions of two radioisotopes were included as potential emissions from experiments involving radioactive tracers – tritium (H-3) and iodine 125 (I-125). ¹⁸ The June 28, 2000 HRA for UCB did not include any laboratory emissions of radioisotopes. Radioisotopes are not tracked in the UCB CISIS or POTS databases, but rather by the UCB Office of Environment, Health & Safety (EHS) under UCB's Department of Health Services (DHS) Broadscope license. The types of experimental procedures involving radioisotopes are similar between UCB and UC Davis; therefore, the laboratory emission factors for H-3 and I-125 used in the 2003 UC Davis HRA have now been included in the updated baseline HRA for UCB. These emission factors are included in Table C.3-1.

COGENERATION PLANT AND CENTRAL PLANT BOILERS. Actual fuel use data (natural gas and fuel oil) from 1998 were obtained from UCB and applied to EPA emission factors contained in AP-42.¹⁹ Specifically, Section 1.3, Table 1.3-9 (September 1998), Section 1.4, Tables 1.4-3 and 1.4-4 (July 1998), and Section 3.1, Table 3.1-3 (April 2000) of AP-42 were used. Emissions calculated from annual fuel use were divided by 8760 hours to estimate annual average emissions. Maximum hourly emissions were based on the rated capacities of each unit.

LITHOGRAPHIC/ENVELOPE PRINTING OPERATIONS. UCB staff provided 1998 annual throughput data for fountain solutions, clean-up solvents, and other chemical products used in these operations, as well as the chemical composition of these materials from Material Data Safety Sheets (MSDSs). It was assumed that 100 percent of the calculated volatile chemicals evaporate. Annual average emissions were estimated by dividing the annual evaporation totals by 8760 hours. Maximum hourly emissions were assessed by dividing the annual totals by 40 hours per week, 52 weeks per year.

PAINTING/SOLVENT CLEANING. UCB staff provided 1998 annual throughput data for the usage of paints and solvent cleaners, as well as the chemical composition of these materials from MSDSs. It was assumed that 100 percent of the calculated volatile chemicals evaporate. Annual average emissions were estimated by dividing the annual evaporation totals by 8760 hours. Maximum hourly emissions were assessed by dividing the annual totals by 40 hours per week, 52 weeks per year.

HAZARDOUS MATERIALS FACILITY (HMF). A previous 1994 study on the UCB HMF was consulted and the following surrogate chemicals from that study were used to characterize potential health risks: carbon tetrachloride, chloroform, formaldehyde, and methylene chloride.²⁰ An EPA equation for the volatilization of liquids as a result of airflow over a exposed liquid surface was used, which is described in the June 28, 2000 HRA. The HMF has a carbon filter at its vent that captures at least 95 percent of the emissions.

TABLE C.3-I

LABORATORY EMISSION FACTORS (GRAMS PER SECOND PER SQUARE FOOT OF WET LABORATORY FLOOR SPACE) FROM UC BERKELEY BASELINE HRA^a

SPACE) FROM OC BERK	ELET DASELIN	IE I IIVA"				
	Annual	Annual	Annual	Max Hourly	Max Hourly	Max Hourly
	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions
	(g/s per ft²)	(g/s per ft²)	(g/s per ft²)	(g/s per ft²)	(g/s per ft²)	(g/s per ft²)
Chemical	Lab Type I		Lab Type III	Lab Type I	Lab Type II	Lab Type III
Acetonitrile	1.265E-08	5.359E-09	4.673E-10	6.553E-08	2.776E-08	2.420E-09
Benzene	2.250E-09	1.051E-10	7.319E-11	1.165E-08	5.443E-10	3.791E-10
Bromine and	2.142E-10	8.506E-12	3.629E-11	1.110E-09	4.406E-11	1.880E-10
compounds						
t-Butyl alcohol	1.089E-10	4.575E-08	1.218E-10	5.640E-10	2.370E-07	6.307E-10
Carbon tetrachloride	2.005E-10	6.178E-10	4.811E-10	1.039E-09	3.200E-09	2.492E-09
Chloroform	2.730E-08	8.272E-09	9.796E-10	1.414E-07	4.285E-08	5.074E-09
Dimethylformamide	5.496E-10	3.110E-10	3.315E-12	2.847E-09	1.611E-09	1.717E-11
Dioxane, 1,4-	2.614E-09	1.966E-10	2.276E-11	1.354E-08	1.018E-09	1.179E-10
Epichlorohydrin	2.460E-11	3.217E-13	0.000E+00	1.274E-10	1.666E-12	0.000E+00
Ethanol	9.952E-08	7.687E-07	3.011E-08	5.155E-07	3.982E-06	1.560E-07
Ethyl acetate	6.504E-08	7.945E-10	2.041E-11	3.369E-07	4.115E-09	1.057E-10
Ethyl Ether	3.555E-08	3.174E-10	3.159E-10	1.841E-07	1.644E-09	1.636E-09
Formaldehyde	9.349E-11	7.771E-09	9.832E-10	4.843E-10	4.025E-08	5.093E-09
Glutaldehyde	3.999E-11	2.441E-10	9.405E-11	2.072E-10	1.264E-09	4.872E-10
n-Hexane	1.751E-10	4.214E-10	8.073E-10	9.068E-10	2.183E-09	4.182E-09
Hydrazine	1.185E-11	6.773E-12	5.874E-13	6.136E-11	3.509E-11	3.043E-12
Hydrochloric acid	9.452E-10	1.998E-08	8.539E-09	4.896E-09	1.035E-07	4.423E-08
Hydrofluoric acid	3.195E-12	1.508E-10	1.790E-09	1.655E-11	7.814E-10	9.270E-09
Isopropanol	3.679E-09	2.523E-08	1.751E-08	1.906E-08	1.307E-07	9.071E-08
Methyl alcohol	1.155E-07	8.950E-08	4.387E-08	5.982E-07	4.636E-07	2.272E-07
Methyl bromide	2.911E-10	6.261E-08	0.000E+00	1.508E-09	3.243E-07	0.000E+00
Methylene chloride	1.074E-07	1.237E-09	2.839E-10	5.564E-07	6.410E-09	1.471E-09
Phosgene	7.735E-11		0.000E+00	4.007E-10	0.000E+00	0.000E+00
Pyridine Pyridine	4.676E-10	1.395E-10	5.244E-11	2.422E-09	7.224E-10	2.716E-10
Tetrachloroethylene	9.834E-11	5.741E-12	4.900E-11	5.094E-10	2.974E-11	2.538E-10
Tetrahydrofuran	1.720E-08	1.220E-10	5.176E-13	8.908E-08	6.322E-10	2.681E-12
Toulene	7.734E-09	7.746E-10	4.114E-10	4.006E-08	4.013E-09	2.131E-09
1,1,1-Trichloro-	2.118E-11	2.374E-11	1.374E-09	1.097E-10	1.230E-10	7.117E-09
ethane	2.110E-11	2.3/4E-11	1.3/4E-U7	1.09/ E-10	1.230E-10	/.11/E-U9
Trichloroethylene	0.000E+00	6.249E-11	3.906E-10	0.000E+00	3.237E-10	2.023E-09
Triethylamine	6.538E-10	1.315E-10	0.000E+00	3.387E-09	6.814E-10	0.000E+00
Xylenes	2.696E-10	1.543E-09	8.420E-10	1.397E-09	7.994E-09	4.362E-09
Hydrogen-3	0.000E+00	3.100E-14	0.000E+00	0.000E+00	8.600E-14	0.000E+00
(Tritium)		3.14411			3.0 .3.	
Iodine-125	0.000E+00	1.240E-14	0.000E+00	0.000F.+00	3.500E-14	0.000E+00
³ E				d iodina 125 w	hish sheein	and from the Air

^a Exceptions are emission factors for the two radioisotopes, hydrogen-3 and iodine-125, which were obtained from the Air Toxics Health Risk Assessment for the University of California Davis 2003 Long Range Development Plan (URS, April 2003).

EXISTING EMERGENCY GENERATORS. During the development of the June 28, 2000 HRA, diesel-fired emergency generators were exempt from air permitting requirements, and thus, were not included the June 28, 2000 HRA. Since publication of the June 28, 2000 HRA, diesel-fired emergency generators have became a larger statewide issue. The California Air Resources Board (CARB) issued permitting guidance for stationary diesel-fueled engines in October 2000. Since then, health risk evaluations for emergency diesel engines have become commonplace. Health risk toxicity factors for diesel emissions are based on the diesel particulate matter (DPM) in the exhaust. Thus, in the updated baseline HRA runs summarized below, existing emergency generators have now been included.

For existing generators, data on the make, model/engine year, and capacity of 21 on-campus diesel-fired emergency generators and nine off-campus diesel-fired emergency generators operated by UCB were provided by UCB EH&S. The off-campus generators are associated with student residence halls and three off-campus academic buildings. For recently permitted newer generators, the permitted DPM emission rates were used in the analysis, which ranged from 0.05-0.15 grams per brake horsepower per hour (g/bhp-hr), with one exception at 0.4 g/bhp-hr. For older engines, specific emissions information was not available. However, for six of these engines (all 1996-1999 model years), a CARB emission standard of 0.4 g/bhp-hr was in effect, thus this value was used. For all other existing engines, an emission factor of 1 g/bhp-hr from the EPA AP-42 Compilation of Air Pollutant Emission Factors was used.

Total emissions per year from the routine testing and maintenance of existing emergency generators were calculated assuming an average of 30 minutes per week (or 26 hours per year) per generator at a load factor of 25 percent. Since DPM health risks are long-term (cancer risk and chronic non-cancer health effects), annualized emission rates in grams per second were calculated by dividing the total annual DPM emissions per generator by the number of seconds in one year.

SUMMARY OF BASELINE HRA MODELING METHODOLOGY

Section 4.0 of the June 28, 2000 HRA should be consulted for more modeling details. A summary description follows.

DISPERSION MODELING. Atmospheric dispersion modeling was performed with ISCST3. In the recent updated runs with the existing diesel-fired emergency generators, the most current version if ISCST3 was used (Version 02035). Eighty-five point sources were used to represent rooftop vents and stacks for laboratory emissions. This is two less than in the June 28, 2000 HRA because stacks for Calvin and Donner labs were removed since they are included in the Lawrence Berkeley National Laboratories (LBNL) LRDP HRA. To represent horizontal laboratory vent releases from Morgan Hall and (the former) Stanley Hall, two volume sources were used. In addition, eight point sources were used to represent the cogeneration turbine, three Central Plant boilers, three UCB Printing Services stacks, and one HMF building vent. Finally, four volume sources were placed in four different campus locations to represent campus-wide painting and solvent cleaning operations. To account for potential pollutant plume "downwash" from

the effect of campus structures, campus building dimensions and heights were input with building and stack locations in Universal Transverse Mercator (UTM) coordinates into the EPA Building Profile Input Program (BPIP). BPIP creates an input file for ISCST3 to perform the downwash calculations.

METEOROLOGICAL DATA. The closest location of available meteorological data to UCB is the meteorological station at Lawrence Berkeley National Laboratories (LBNL). UCB operates a meteorological station near the corner of Oxford and Bancroft Way, but meteorological data are not yet available from this station for dispersion modeling. The June 28, 2000 HRA presented a comparison of raw data collected at both stations over a selected 23-day period. The data collected include temperature, wind speed, wind direction, and standard deviation of the wind direction ("sigma theta"). The data showed comparable temperatures and wind directions, but wind speeds and sigma thetas were generally greater for the LBNL site than the UCB site over this limited timeframe. However, given its proximity and very similar wind direction patterns, the LBNL data were considered representative of UCB. A one-year data set from LBNL for the 1997 meteorological year was used in the baseline HRA.

RECEPTORS. Receptors were placed at 50-meter increments along the Central Campus boundary. Additional receptors were placed at 100-meter increments to a distance of one kilometer (km) and at 500-meter increments to a distance of approximately 5 km from the Central Campus boundary. Sensitive receptors, such as schools, hospitals and daycare centers were also identified. Appendix C of the June 28, 2000 HRA contains a report produced by Environmental Data Resources, Inc. (EDR), on July 30, 1999, identifying the sensitive receptors used in the June 28, 2000 UCB HRA. An updated review of current sensitive receptors has since been conducted in coordination with LBNL. A table of the current sensitive receptors included in this updated baseline HRA (and in the future 2020 LRDP HRA) appears at the end of this subappendix.

ASSESSMENT OF HEALTH RISKS. The approach in the June 28, 2000 HRA involved the following dispersion model inputs to estimate cancer risk and non-cancer hazard indices (non-cancer risk) from the inhalation pathway:

- Cancer Risk: Stack Emission = Σ [(Emission of chemical i) × (URF for chemical i)]
- Non-Cancer Risk: Stack Emission = Σ [(Emission of chemical i) \div (REL for chemical i)]

That is, the emission inputs are the sums of emissions for each chemical either multiplied by its unit risk factor (URF) or divided by its reference exposure level (REL). For the cancer risk and chronic hazard index calculations, the annual average emission rates of each chemical *i* were used in these summations, and for the acute hazard index calculations, maximum hourly emission rates were used. In this approach, the model inputs are in terms of cancer risk and hazard index, not emission rates, yielding a direct model calculation of cancer risk and hazard index via the inhalation pathway at each receptor point. This analysis was used to identify the maximum points of impact.

The URLs and RELs used were the most currently available toxicity factors published by OEHHA²⁴. For chemicals without OEHHA, CAPCOA²⁶ factors were used. For chemicals without OEHHA or CAPCOA factors, toxicity factors derived from EPA literature or occupational exposure standards were used, as described in Section 6.0 of the June 28, 2000 HRA. These toxicity factors have been updated since the publication of the June 28, 2000 HRA. A table of the toxicity factors used in the updated baseline and future LRDP HRAs is included at the end of this subappendix. As discussed above, the June 28, 2000 HRA for UCB did not include any laboratory emissions of radioisotopes, thus in the current updated baseline HRA, emission factors for tritium (H-3) and iodine 125 (I-125) used in a recent HRA performed for the UC Davis campus²⁷ have been included. The cancer URFs used for these radioisotopes in the 2003 UC Davis HRA, derived from EPA 1993 Health Effects Assessment Summary Tables (HEAST), are included in the toxicity factor table found at the end of this subappendix.

Subsequent calculations were performed in the June 28, 2000 HRA to assess exposures to toxic air contaminants through the following non-inhalation exposure pathways: dermal absorption, incidental soil ingestion, mother's milk, and consumption of locally-grown produce (i.e., home gardens). Since the combustion sources (cogeneration turbine and campus boilers) are the only particulate sources, ²⁸ ISCST3 was re-run with only those sources and the location of maximum deposition determined. The point of maximum deposition was not collocated with the maximum inhalation health risk location, but non-inhalation health risks calculated at this location were added to the maximum inhalation health risk calculations in a conservative assessment. Non-inhalation health risks were estimated by spreadsheets programmed with the non-inhalation pathway algorithms..²⁹ This analysis showed the contribution of the non-inhalation pathways to be an insignificant addition to overall health risks. Therefore, in the updated baseline HRA and future LRDP HRA results presented below, only the inhalation pathway calculations are used to assess health risks.

SUMMARY OF BASELINE HRA RESULTS

FINDINGS OF JUNE 28, 2000 HRA. The maximum lifetime cancer risk from existing stationary campus sources (excluding diesel-fired emergency generators) calculated at a residential maximally exposed individual (MEI) exposure location was estimated to be **1.30 in one million** in the Strawberry Canyon area. This location is situated in higher terrain than the campus and in the prevailing downwind direction from the campus. Therefore, sources with elevated release points, such as the cogeneration plant and campus laboratories, dominated the calculated maximum cancer risk. Also, this location is close to the College of Chemistry laboratories, which increases the contribution from laboratory emissions relative to off-campus locations farther away. The residential MEI calculation assumed continuous exposure over a 70-year period and an average adult body weight of 70 kilograms (154 pounds).

Non-cancer health risk from TACs was also assessed by the "hazard index", which is the sum of the ratios of each chemical's actual exposures to acceptable exposures. Hazard indices are calculated for both long-term (chronic) and short-term (acute) health effects. Hazard indices less than 1.0 indicate an acceptable non-cancer health risk. The highest calculated hazard indices for existing campus operations were calculated to be 0.074 for chronic exposures and 0.62 for acute exposures.

The maximum cancer risk calculated for any sensitive receptor was 0.22 in one million for an employee at the on-campus day care center at Girton Hall, near Gayley Road. An incremental cancer risk of 0.17 in one million was calculated for a child at the Girton Hall on-campus day care center, assuming an average child's body weight of 15 kilograms (33 pounds) and inhalation rate of 10 cubic meters of air per day, which is approximately half that of an adult's inhalation rate.

FINDINGS OF THE 2003 BASELINE HRA RE-RUN. To support the 2003 UCB LRDP, the baseline HRA was re-run with the same inputs used in the 2000 HRA, but in addition, the 30 existing diesel-fired emergency generators described above (on- and off-campus) were added, as well as the other adjustments discussed in the previous sections of this subappendix. This caused a shift in the cancer risk MEI location from the Strawberry Canyon area to the north campus boundary along Hearst Avenue and an increase in the cancer risk values.

The maximum lifetime cancer risk from existing stationary campus sources calculated at a residential MEI exposure location was estimated to be **4.3** in one million along Spruce Street, north of Hearst Street. The residential MEI calculation assumed continuous exposure over a 70-year period and an average adult body weight of 70 kilograms (154 pounds). Diesel-fired emergency generators dominate the MEI cancer risk. Emergency generators are 89 percent of the MEI cancer risk, laboratories are 10 percent, and all other sources including cogeneration plant/central boilers comprise the remaining 1 percent. The maximum cancer risk considering diesel generators in Strawberry Canyon is now predicted to be about 3.0 in one million, with 55 percent coming from the diesel generators, 37 percent from the cogeneration plant/central boilers, and 8 percent for the laboratories.

The highest calculated hazard indices for existing operations in the 2003 HRA rerun with diesel generators were 0.075 for chronic exposures and 0.15 for acute exposures. The maximum cancer risk calculated for any sensitive receptor was 0.61 in one million for an employee at the on-campus day care center at Girton Hall, near Gayley Road. An incremental cancer risk of 0.47 in one million was calculated for a child at the Girton Hall on-campus day care center, assuming an average child's body weight of 15 kilograms (33 pounds), an inhalation rate of 10 cubic meters of air per day (which is approximately half that of an adult's inhalation rate), and an exposure of 10 hours per day, 240 days per year for 12 years. Child exposure results for all other schools and day care centers in the surrounding area were lower. The calculation of adjustment factors to a 70-year

risk calculation for these types of receptors is shown at the end of this subappendix.

Dispersion modeling input and output files, and tables showing the emission calculations for the 2003 Baseline HRA are presented at the end of this subappendix.

FUTURE 2020 LRDP HRA

The following description provides a summary of the methods used to estimate future 2020 UCB LDRP health risks.

FUTURE 2020 LRDP HRA EMISSION SOURCES

Same source types as the baseline HRA:

- Campus-wide laboratories
- Cogeneration plant (combustion turbines and duct burners)
- Three central plant boilers
- Lithographic and envelope printing operations
- Campus-wide painting and solvent cleaning operations
- Hazardous Materials Facility
- Diesel-fired emergency generators

CAMPUS LABORATORIES. Existing laboratory emissions were modeled as they were in the 2003 re-run of the baseline UCB HRA. That is, by the chemicals estimated on a building-per-building basis. As shown in Table C.3-2 below, the total wet laboratory square footage in the existing campus was estimated at 454,952 square feet (after deletion of Calvin and Donner labs from the UCB HRA, as described above). To maintain flexibility in the analysis of future laboratory space under the LRDP, the future laboratory emissions were estimated using the maximum emission factor per chemical across all Lab Types. In this way, future laboratory space was not designated as Lab Type I, II, or III, as the maximum emission factor per chemical was used for all new laboratory space. It is recognized that future laboratory space may occur outside the Campus Park under the LRDP. For the purposes of defining maximum potential health risk, modeling all future laboratory emissions as originating from the Campus Park should maintain a conservative analysis.

A December 8, 2003 memo from Kerry O'Banion, Principal Planner with UCB Facility Services, projected a net assignable square footage (ASF) of 383,620 square feet of new laboratory space under the 2020 LRDP, and an estimate of 50% of this space being wet laboratory space, or 191,810 square feet. This was assumed to be all wet laboratory space. This square footage is based on estimated increases in Laboratory Categories D and F, which includes Engineering, Computer Science, Chemistry, Biology, Physics Environmental Science, and Psychology. It does not include laboratory space associated with the Northeast Quadrant Science and Safety (NEQSS) Projects, which was already approved under the 1990 LRDP but not yet operational thus not included in the June 28, 2000 HRA. The NEQSS Projects include a reduction in laboratory space with the demolition of old

Stanley Hall, and the inclusion of new laboratory space with the new Stanley Hall and Davis Hall North addition.

The placement of new laboratory emission release points was correlated with the locations of existing laboratory locations. This was accomplished by first splitting the campus into eight "campus zones", as shown in the figure below.

The existing laboratory space was then broken down according to the section of the campus in which each building is located. Note that the southwest corner of the campus has not been identified as a "zone", as there are no existing wet laboratories within this area. Table C.3-2 summarizes existing laboratory space by zone. This breakdown was used to calculate the percent of existing laboratory space in each zone. To allocate the assumed new laboratory space per campus "zone", the percentages per zone based on the existing laboratory space were applied to the sum of the 2020 LRDP wet laboratory space (191,810 ft²) and the NEQSS wet laboratory space (147,035 ft²). The NEQSS wet laboratory space included 44,685 ft² for Davis Hall and 102,350 ft² for Stanley Hall, as described in the NEQSS EIR.³⁰ Wet laboratory space per zone attributable to the 2020 LDRP was then calculated by subtracting the Davis Hall and Stanley Hall laboratory space estimates from the new laboratory space estimates for Campus Zones C and D, since these new laboratory spaces were approved under the 1990 LRDP. The total cumulative wet laboratory space modeled for the 2020 LDRP was then the sum of the existing, NEQSS, and 2020 LRDP wet laboratory space estimates, or 793,797 ft².

Existing UC Berkeley Laborators Space recomposed (Proposed) Example (Proposed) Lab Type (Proposed) Lab Size (ft²) (ft²) (Campus Zone) Campus Zone (Proposed) Barker III 20,461 (Proposed) A Hilgard III 16,748 (Proposed) A A A Koshland III 49,455 (Proposed) A A Morgan III 12,119 (Proposed) A Mulford III (Proposed) A A NWAF III (Proposed) A A NWAF III (Proposed) A A Lab Space Total for Section A (Proposed) III (Proposed) A B Lab Space Total for Section B (Proposed) III (Proposed) Percent of total 6.75% B Cory (Proposed) III (Proposed) Proposed for Section 6 B B Lab Space Total for Section B (Proposed) III (Proposed) Proposed for Section 6 C C Etchevery (Proposed) III (Proposed) Proposed for Section 6 C C C Etchevery (Proposed) III (Propose	TABLE C-3-2			
Building Lab Type Lab Size (ft) Campus Zone Barker II 20,461 A Hilgard II 16,748 A Koshland II 49,455 A Morgan II 12,119 A Mulford II 5,461 A NWAF II 1,147 A NWAF III 1,213 A Warren II 7,063 A LSA II 37,766 A² Lab Space Total for Section A 151,433 Percent of total 33.28% VLSB II 24,351 B Wellman II 6,356 B Lab Space Total for Section B 30,707 Percent of total 6.75% Cory III 19,039 C Le Conte III 11,639 C Etcheverry III 9,193 C Hesse III 18,811 C O'Brien III		ORY SPACE P	ER CAMPUS "ZO	NE"
Barker II 20,461 A Hilgard II 16,748 A Koshland II 49,455 A Morgan II 12,119 A Mulford II 5,461 A NWAF II 1,147 A NWAF III 1,213 A Warren II 7,063 A LSA II 37,766 A² Lab Space Total for Section A 151,433 Percent of total 33.28% VLSB II 24,351 B Wellman II 6,356 B Lab Space Total for Section B 30,707 Percent of total 6.75% Cory III 9,970 C Le Conte III 17,039 C Davis (existing) III 11,615 C Etcheverry III 9,193 C Hesse III 1,2648 C O'Brien III 8,811				
Koshland II 49,455 A Morgan II 12,119 A Mulford II 5,461 A NWAF II 1,147 A NWAF III 1,213 A Warren II 7,063 A LSA II 37,766 A² Lab Space Total for Section A 151,433 Percent of total 33.28% VLSB II 24,351 B Wellman II 6,356 B Lab Space Total for Section B 30,707 Percent of total 6.75% Cory III 9,970 C Le Conte III 17,039 C Davis (existing) III 11,615 C Etcheverry III 9,193 C Hesse III 12,648 C McCone III 7,828 C O'Brien III 8,811 C Giauque I 7,372				•
Koshland II 49,455 A Morgan II 12,119 A Mulford II 5,461 A NWAF II 1,147 A NWAF III 1,213 A Warren II 7,063 A LSA II 37,766 A² Lab Space Total for Section A 151,433 Percent of total 33.28% VLSB II 24,351 B Wellman II 6,356 B Lab Space Total for Section B 30,707 Percent of total 6.75% Cory III 9,970 C Le Conte III 17,039 C Davis (existing) III 11,615 C Etcheverry III 9,193 C Hesse III 12,648 C McCone III 7,828 C O'Brien III 8,811 C Giauque I 7,372	Hilgard	II	16,748	A
Morgan		II	*	A
Mulford II 5,461 A NWAF II 1,147 A NWAF III 1,213 A Warren II 7,063 A LSA II 37,766 A³ Lab Space Total for Section A 151,433 Percent of total 33.28% VLSB II 24,351 B Wellman II 6,356 B Lab Space Total for Section B 30,707 Percent of total 6.75% Cory III 9,970 C Le Conte IIII 17,039 C Le Conte III 17,039 C Etcheverry III 9,193 C Hesse III 12,648 C McCone III 7,828 C O'Brien III 8,811 C Lab Space Total for Section C 77,104 Percent of total 16.95% Giauque I 7,372 D Gillman I <	Morgan	II	*	A
NWAF	-	II	· · · · · · · · · · · · · · · · · · ·	A
NWAF III 1,213 A Warren II 7,063 A LSA II 37,766 A³ Lab Space Total for Section A 151,433 Percent of total 33.28% VLSB II 24,351 B Wellman II 6,356 B Lab Space Total for Section B 30,707 Percent of total 6.75% Cory III 9,970 C Le Conte III 17,039 C Davis (existing) III 11,615 C Etcheverry III 9,193 C Hesse III 12,648 C McCone III 7,828 C O'Brien III 8,811 C Clab Space Total for Section C 77,104 Percent of total 16.95% Giauque I 7,372 D Gillman I 6,797 D Hildebrand I 24,348 D Lewis I <td>NWAF</td> <td>II</td> <td>•</td> <td>A</td>	NWAF	II	•	A
Warren II 7,063 A LSA II 37,766 A³ Lab Space Total for Section A 151,433 Percent of total 33,28% VLSB II 24,351 B Wellman II 6,356 B Lab Space Total for Section B 30,707 Percent of total 6.75% Cory III 9,970 C Le Conte III 17,039 C Davis (existing) III 11,615 C Etcheverry III 9,193 C Hesse III 12,648 C McCone III 7,828 C O'Brien III 8,811 C Clab Space Total for Section C 77,104 Percent of total 16.95% Giauque I 7,372 D Gillman I 6,797 D Hildebrand I 24,348 D Latimer I 14,342 D Stanley (former)	NWAF	III	1,213	A
Lab Space Total for Section A	Warren	II	*	A
VLSB II 24,351 B Wellman II 6,356 B Lab Space Total for Section B 30,707 Percent of total 6.75% Cory III 9,970 C Le Conte III 17,039 C Davis (existing) III 11,615 C Etcheverry III 9,193 C Hesse III 12,648 C McCone III 7,828 C O'Brien III 8,811 C Lab Space Total for Section C 77,104 Percent of total 16.95% Giauque I 7,372 D Gillman I 6,797 D Hildebrand I 24,348 D Latimer I 24,348 D Lewis I 14,342 D Stanley (former) I 917 D Stanley (former) II 14,733 D Tan I	LSA	II	*	Aª
Wellman II 6,356 B Lab Space Total for Section B 30,707 Percent of total 6.75% Cory III 9,970 C Le Conte III 17,039 C Davis (existing) III 11,615 C Etcheverry III 9,193 C Hesse III 12,648 C McCone III 7,828 C O'Brien III 8,811 C Lab Space Total for Section C 77,104 Percent of total 16.95% Giauque I 7,372 D Gillman I 6,797 D Hildebrand I 24,348 D Latimer I 54,524 D Lewis I 14,342 D Stanley (former) I 917 D Stanley (former) II 14,733 D Tan I 23,518 D Lab Space Total for Section D	Lab Space Total for Section A		151,433	Percent of total 33.28%
Lab Space Total for Section B 30,707 Percent of total 6.75% Cory III 9,970 C Le Conte III 17,039 C Davis (existing) III 11,615 C Etcheverry III 9,193 C Hesse III 12,648 C McCone III 7,828 C O'Brien III 8,811 C Lab Space Total for Section C 77,104 Percent of total 16.95% Giauque I 7,372 D Gillman I 6,797 D Hildebrand I 24,348 D Latimer I 54,524 D Lewis I 14,342 D Stanley (former) I 917 D Stanley (former) II 14,733 D Tan I 23,518 D Lab Space Total for Section D 146,551 Percent of total 32.21% VLSB	VLSB	II	24,351	В
Cory III 9,970 C Le Conte III 17,039 C Davis (existing) III 11,615 C Etcheverry III 9,193 C Hesse III 12,648 C McCone III 7,828 C O'Brien III 8,811 C Lab Space Total for Section C 77,104 Percent of total 16.95% Giauque I 7,372 D Gillman I 6,797 D Hildebrand I 24,348 D Latimer I 54,524 D Lewis I 14,342 D Stanley (former) I 917 D Stanley (former) II 14,733 D Tan I 23,518 D Lab Space Total for Section D 146,551 Percent of total 32.21% VLSB 24,351 E Lab Space Total for Section F 19,275	Wellman	II	6,356	В
Le Conte III 17,039 C Davis (existing) III 11,615 C Etcheverry III 9,193 C Hesse III 12,648 C McCone III 7,828 C O'Brien III 8,811 C Lab Space Total for Section C 77,104 Percent of total 16.95% Giauque I 7,372 D Gillman I 6,797 D Hildebrand I 24,348 D Latimer I 54,524 D Lewis I 14,342 D Stanley (former) I 917 D Stanley (former) II 14,733 D Tan I 23,518 D Lab Space Total for Section D 146,551 Percent of total 32.21% VLSB 24,351 E Lab Space Total for Section E 24,351 Percent of total 5.35% Birge III	Lab Space Total for Section B		30,707	Percent of total 6.75%
Davis (existing) III 11,615 C Etcheverry III 9,193 C Hesse III 12,648 C McCone III 7,828 C O'Brien III 8,811 C Lab Space Total for Section C 77,104 Percent of total 16.95% Giauque I 7,372 D Gillman I 6,797 D Hildebrand I 24,348 D Latimer I 54,524 D Lewis I 14,342 D Stanley (former) I 917 D Stanley (former) II 14,733 D Tan I 23,518 D Lab Space Total for Section D 146,551 Percent of total 32.21% VLSB 24,351 E Lab Space Total for Section E 24,351 Percent of total 5.35% Birge III 19,275 Percent of total 4.24% Minor	Cory	III	9,970	С
Etcheverry III 9,193 C Hesse III 12,648 C McCone III 7,828 C O'Brien III 8,811 C Lab Space Total for Section C 77,104 Percent of total 16.95% Giauque I 7,372 D Gillman I 6,797 D Hildebrand I 24,348 D Latimer I 54,524 D Lewis I 14,342 D Stanley (former) I 917 D Stanley (former) II 14,733 D Tan I 23,518 D Lab Space Total for Section D 146,551 Percent of total 32.21% VLSB 24,351 E Lab Space Total for Section E 24,351 Percent of total 5.35% Birge III 19,275 F Lab Space Total for Section F 19,275 Percent of total 4.24% Minor Add.	Le Conte	III	17,039	С
Hesse	Davis (existing)	III	11,615	С
McCone III 7,828 C O'Brien III 8,811 C Lab Space Total for Section C 77,104 Percent of total 16.95% Giauque I 7,372 D Gillman I 6,797 D Hildebrand I 24,348 D Latimer I 54,524 D Lewis I 14,342 D Stanley (former) I 917 D Stanley (former) II 14,733 D Tan I 23,518 D Lab Space Total for Section D 146,551 Percent of total 32.21% VLSB 24,351 E Lab Space Total for Section E 24,351 Percent of total 5.35% Birge III 19,275 F Lab Space Total for Section F 19,275 Percent of total 4.24% Minor III 4,710 G Minor Add. III 821 G	Etcheverry	III	9,193	С
O'Brien III 8,811 C Lab Space Total for Section C 77,104 Percent of total 16.95% Giauque I 7,372 D Gillman I 6,797 D Hildebrand I 24,348 D Latimer I 54,524 D Lewis I 14,342 D Stanley (former) I 917 D Stanley (former) II 14,733 D Tan I 23,518 D Lab Space Total for Section D 146,551 Percent of total 32.21% VLSB 24,351 E Lab Space Total for Section E 24,351 Percent of total 5.35% Birge III 19,275 F Lab Space Total for Section F 19,275 Percent of total 4.24% Minor III 4,710 G Minor Add. III 821 G	Hesse	III	12,648	С
Lab Space Total for Section C 77,104 Percent of total 16.95% Giauque I 7,372 D Gillman I 6,797 D Hildebrand I 24,348 D Latimer I 54,524 D Lewis I 14,342 D Stanley (former) I 917 D Stanley (former) II 14,733 D Tan I 23,518 D Lab Space Total for Section D 146,551 Percent of total 32.21% VLSB 24,351 E Lab Space Total for Section E 24,351 Percent of total 5.35% Birge III 19,275 F Lab Space Total for Section F 19,275 Percent of total 4.24% Minor III 4,710 G Minor Add. III 821 G		III	7,828	С
Giauque I 7,372 D Gillman I 6,797 D Hildebrand I 24,348 D Latimer I 54,524 D Lewis I 14,342 D Stanley (former) I 917 D Stanley (former) II 14,733 D Tan I 23,518 D Lab Space Total for Section D 146,551 Percent of total 32.21% VLSB 24,351 E Lab Space Total for Section E 24,351 Percent of total 5.35% Birge III 19,275 F Lab Space Total for Section F 19,275 Percent of total 4.24% Minor III 4,710 G Minor Add. III 821 G	O'Brien	III	8,811	С
Gillman I 6,797 D Hildebrand I 24,348 D Latimer I 54,524 D Lewis I 14,342 D Stanley (former) I 917 D Stanley (former) II 14,733 D Tan I 23,518 D Lab Space Total for Section D 146,551 Percent of total 32.21% VLSB 24,351 E Lab Space Total for Section E 24,351 Percent of total 5.35% Birge III 19,275 F Lab Space Total for Section F 19,275 Percent of total 4.24% Minor III 4,710 G Minor Add. III 821 G	Lab Space Total for Section C		77,104	Percent of total 16.95%
Hildebrand I 24,348 D Latimer I 54,524 D Lewis I 14,342 D Stanley (former) I 917 D Stanley (former) II 14,733 D Tan I 23,518 D Lab Space Total for Section D 146,551 Percent of total 32.21% VLSB 24,351 E Lab Space Total for Section E 24,351 Percent of total 5.35% Birge III 19,275 F Lab Space Total for Section F 19,275 Percent of total 4.24% Minor III 4,710 G Minor Add. III 821 G	Giauque	I	7,372	D
Latimer I 54,524 D Lewis I 14,342 D Stanley (former) I 917 D Stanley (former) II 14,733 D Tan I 23,518 D Lab Space Total for Section D 146,551 Percent of total 32.21% VLSB 24,351 E Lab Space Total for Section E 24,351 Percent of total 5.35% Birge III 19,275 F Lab Space Total for Section F 19,275 Percent of total 4.24% Minor III 4,710 G Minor Add. III 821 G	Gillman	I	6,797	D
Lewis I 14,342 D Stanley (former) I 917 D Stanley (former) II 14,733 D Tan I 23,518 D Lab Space Total for Section D 146,551 Percent of total 32.21% VLSB 24,351 E Lab Space Total for Section E 24,351 Percent of total 5.35% Birge III 19,275 F Lab Space Total for Section F 19,275 Percent of total 4.24% Minor III 4,710 G Minor Add. III 821 G	Hildebrand	I	24,348	D
Stanley (former) I 917 D Stanley (former) II 14,733 D Tan I 23,518 D Lab Space Total for Section D 146,551 Percent of total 32.21% VLSB 24,351 E Lab Space Total for Section E 24,351 Percent of total 5.35% Birge III 19,275 F Lab Space Total for Section F 19,275 Percent of total 4.24% Minor III 4,710 G Minor Add. III 821 G	Latimer	I	54,524	D
Stanley (former) II 14,733 D Tan I 23,518 D Lab Space Total for Section D 146,551 Percent of total 32.21% VLSB 24,351 E Lab Space Total for Section E 24,351 Percent of total 5.35% Birge III 19,275 F Lab Space Total for Section F 19,275 Percent of total 4.24% Minor III 4,710 G Minor Add. III 821 G	Lewis	I	14,342	D
Tan I 23,518 D Lab Space Total for Section D 146,551 Percent of total 32.21% VLSB 24,351 E Lab Space Total for Section E 24,351 Percent of total 5.35% Birge III 19,275 F Lab Space Total for Section F 19,275 Percent of total 4.24% Minor III 4,710 G Minor Add. III 821 G	Stanley (former)	I	917	D
Lab Space Total for Section D146,551Percent of total 32.21%VLSB24,351ELab Space Total for Section E24,351Percent of total 5.35%BirgeIII19,275FLab Space Total for Section F19,275Percent of total 4.24%MinorIII4,710GMinor Add.III821G	Stanley (former)	II	14,733	D
VLSB 24,351 E Lab Space Total for Section E 24,351 Percent of total 5.35% Birge III 19,275 F Lab Space Total for Section F 19,275 Percent of total 4.24% Minor III 4,710 G Minor Add. III 821 G	Tan	I	23,518	D
Lab Space Total for Section E24,351Percent of total 5.35%BirgeIII19,275FLab Space Total for Section F19,275Percent of total 4.24%MinorIII4,710GMinor Add.III821G	Lab Space Total for Section D		146,551	Percent of total 32.21%
BirgeIII19,275FLab Space Total for Section F19,275Percent of total 4.24%MinorIII4,710GMinor Add.III821G	VLSB		24,351	E
Lab Space Total for Section F19,275Percent of total 4.24%MinorIII4,710GMinor Add.III821G	Lab Space Total for Section E		24,351	Percent of total 5.35%
Minor III 4,710 G Minor Add. III 821 G	Birge	III	19,275	F
Minor Add. III 821 G	Lab Space Total for Section F		19,275	Percent of total 4.24%
	Minor	III	4,710	G
Lab Space Total for Section G 5,531 Percent of total 1.22%	Minor Add.	III	821	G
	Lab Space Total for Section G		5,531	Percent of total 1.22%

^a This building is actually half in the southwestern section. For purposes of this analysis, the entire building is assumed in the northwestern section (ID = A).

454,952

Total Square Feet

100.00%

TABLE C.3-3							
CUMULATIVE LABORATORY SQUARE FOOTAGE FOR FUTURE LRDP HRA							
			Wet Lab Space	Total Assumed			
	Existing Wet	Assumed Wet Lab	Increase (ASF)	Cumulative Wet Lab			
Campus	Lab Space	Space (ASF) under	under NEQSS	Space (ASF) in 2020			
Zone	(ASF)	2020 LRDP	EIR	LDRP HRA			
A	151,433	112,802	0	264,233			
В	30,707	22,872	0	53,579			
С	77,104	12,749	44,685	134,538			
D	146,551	6,792	102,350	255,693			
Е	24,351	18,128	0	42,479			
F	19,275	14,367	0	33,642			
G	5,531	4,134	0	9,665			
	454 952	191 810	147 035	793 797			

Table C.3-3 summarizes the estimated total laboratory space for each campus zone used in the future 2020 LRDP HRA modeling. Please note that because total laboratory space estimates were used with calculated rounded percentages to assess laboratory space per campus zone, there are rounding errors causing the individual campus zone values not to sum exactly to the totals. These rounding errors are fractions of one percent.

COGENERATION PLANT AND CENTRAL PLANT BOILERS. Future campus steam demand is estimated to be accommodated by the current cogeneration turbine and central plant boiler capacity. Therefore, maximum hourly emissions were assessed as in the baseline HRA by assuming the turbine and boilers all operate at capacity in a given hour, which is an overestimate of actual expected operations. These maximum fuel uses were multiplied by the same AP-42 emission factors described for the baseline HRA for the acute hazard index calculations. To assess average annual fuel use for the cancer risk and chronic hazard index calculations, the following assumptions were made.

The actual annual fuel use modeled in the June 28, 2000 HRA (which was also used in the 2003 HRA re-run) was 75.6 percent of the cogeneration turbine/duct burner heat input capacity and about 9.7 percent of the annual heat input capacity of the three central plant boilers. According to UCB Physical Plant staff (Paul Black, July 31, 2003), the current campus peak steam demand is about 240,000 pounds per hour (pph). The cogeneration turbine's heat recovery steam generator (HRSG) has a steam capacity of approximately 170,000 pounds per hour (pph), of which approximately 30,000 pph is needed for turbine NOx control and other auxiliary equipment; the capacity of the three steam boilers is approximately 240,000 pph (Paul Black, UCB Physical Plant staff, July 31, 2003). Although this implies that the current peak campus steam demand is about 63 percent of the current system capacity, for the purposes of the future LRDP HRA, the turbine, duct burners, and three boilers were each modeled at maximum capacity for short-term emissions.

To represent potential long-term emissions under the 2020 LRDP, UCB Physical Planning staff provided an estimate of an additional 8,181,000 pounds per year (lb/yr) of steam demand under the 2020 LRDP representing a 9 percent increase over the current annual campus steam use (Billi Romain, UCB Physical and Environmental Planning, November 24, 2003). Under typical operating conditions, the cogeneration turbine operates near capacity most of the time, but the duct burners are used sporadically (40 percent to 60 percent of the time at varying levels). This is the reason for potential additional HRSG capacity on an annual basis; however, it is difficult to predict the actual increased duct burner use to meet additional steam demand. The only other current sources of campus steam are the existing central plant boilers.

It is very likely that over the course of development under the 2020 LRDP, one or more of the three currently operating central plant boilers will be replaced with more efficient boilers. However, for the purposes of this 2020 LRDP, it is assumed that the estimated annual increase of 8,181,000 lb/yr in campus steam demand (or an hourly average of 934 pph) will be met by increased operation of one of the existing central boilers. Based on information from UCB, Boiler #2 has the highest heat input capacity (0.137 MMBtu/hr) and the lowest steam production potential (80,000 pph), thus it was selected as the boiler for this analysis (i.e., less efficient). An increase of approximately 1,000 pph on an annual basis represents a 1.25 percent increase in annual Boiler #2 firing. This increases the overall use of the three central plant boilers from 9.7 percent to 10.2 percent. Therefore, annual average emissions under the 2020 LRDP assume the current use of 75.6 percent of capacity for the turbine/duct burners, and an increase in Boiler #2 emissions of 1.25 percent on an annual basis.

LITHOGRAPHIC/ENVELOPE PRINTING OPERATIONS. These operations were assumed to be at the same rate per building square footage as in the 2003 baseline HRA. The current academic and support building space of the UCB campus is 11,600,000 gross square feet (GSF), and the growth under the 2020 LRDP is projected at 2,200,000 GSF, or approximately 19 percent (round up to 20 percent). Therefore, for the purposes of the LRDP HRA, the emissions for lithographic/envelope printing operations in the 2003 baseline HRA were increased by 20 percent.

PAINTING/SOLVENT CLEANING. These operations were assumed to be at the same rate per building square footage as in the 2003 baseline HRA. The current academic and support building space of the UCB campus is 11,600,000 gross square feet (GSF), and the growth under the 2020 LRDP is projected at 2,200,000 GSF, or approximately 19 percent (round up to 20 percent). Therefore, for the purposes of the LRDP HRA, the emissions for painting/solvent cleaning operations in the 2003 baseline HRA were increased by 20 percent.

HAZARDOUS MATERIALS FACILITY (HMF). These operations were assumed to be at the same rate per laboratory square footage as in the 2003 baseline HRA. The estimated laboratory square footage in the 2003 baseline HRA was 454,952 square feet, and the total estimated laboratory square footage in the future 2020 LRDP HRA was estimated at 793,797 square feet, an increase of 75 percent. Therefore, for the purposes of the LRDP HRA, the emissions from the HMF in the 2003 baseline HRA were increased by 75 percent.

EMERGENCY GENERATORS. The 30 existing diesel-fired emergency generators modeled in the 2003 baseline HRA were modeled in the future 2020 LRDP HRA at the same locations and emissions levels. The total capacity of these 30 existing emergency generators is about 12,000 brake horsepower (bhp). New emergency generators were placed at 10 estimated locations under the 2020 LRDP. Emergency generators associated with research use were assumed to be sized at 750 bhp, and emergency generators associated with increased student housing and other general building emergency power and lighting use were assumed to be sized at 300 bhp. The total new capacity of the ten assumed emergency generators was calculated to be 4,350 bhp, or about a 36 percent increase.

For the purposes of the future 2020 LRDP HRA, the modeled new emergency generators were placed in reasonable locations relative to projected new growth. All new emergency generators were assumed to meet the currently proposed CARB DPM emission standard of 0.15 g/bhp-hr for emergency standby engines.³² Total emissions per year from the routine testing and maintenance of the future emergency generators were calculated assuming an average of 30 minutes per week (or 26 hours per year) per generator at a load factor of 25 percent. Since DPM health risks are long-term (cancer risk and chronic non-cancer health effects), annualized emission rates in grams per second were calculated by dividing the total annual DPM emissions per generator by the number of seconds in one year.

SUMMARY OF FUTURE 2020 LRDP HRA MODELING METHODOLOGY

The modeling methodology, meteorological data and receptors used in the baseline HRA (described above) were identical in the future 2020 LRDP HRA. The differences between the 2003 baseline HRA and the 2020 LRDP HRA are the emission input differences described above for the central plant boilers, the assumed new laboratory emissions, and assumed future emergency generators. Seven new point sources were added to represent the increased laboratory emissions (one hypothetical stack per campus zone depicted in Table 2 and described above), emission points for Stanley Hall and Davis Hall were revised to be consistent with the new buildings under NEQSS, and 10 new point sources to represent future emergency generators.

SUMMARY OF FUTURE 2020 LRDP HRA RESULTS

FINDINGS OF THE 2020 LRDP HRA. The maximum lifetime cancer risk from stationary campus sources from 2020 emission sources (existing, NEQSS, and 2020 LRDP) at a residential MEI exposure location was estimated to be 5.4 in one million along Hearst Avenue, east of Arch Street. The residential MEI calculation assumed continuous exposure over a 70-year period and an average adult body weight of 70 kilograms (154 pounds). Because the new diesel-fired generators were assumed to meet current clean engine standards, the assumed increase in laboratory emissions relative to the baseline HRA resulted in a greater contribution from laboratories than in the 2003 baseline HRA (29 percent in the 2020 LRDP HRA versus 10 percent in the 2003 baseline HRA). Diesel-fired emergency generators were still the majority of the MEI cancer risk, at 69 percent. All other sources (including the cogeneration/central plant) contributed less than 1 percent each.

The highest calculated hazard indices for the 2020 LRDP HRA were 0.13 for chronic exposures and 0.29 for acute exposures. The maximum cancer risk calculated for any sensitive receptor was 0.75 in one million for an employee at the on-campus day care center at Girton Hall, near Gayley Road. An incremental cancer risk of 0.58 in one million was calculated for a child at the Girton Hall on-campus day care center, assuming an average child's body weight of 15 kilograms (33 pounds) and inhalation rate of 10 cubic meters of air per day (which is approximately half that of an adult's inhalation rate), and an exposure of 10 hours per day, 240 days per year for 12 years. Child exposure results for all other schools and day care centers in the surrounding area were lower. The calculation of adjustment factors to a 70-year risk calculation for these types of receptors is shown at the end of this subappendix.

Dispersion modeling input and output files, and tables showing the emission calculations for the 2020 LRDP HRA are presented at the end of this subappendix.

Average Ambient Concentrations of Toxic Air Contaminants Measured in Oakland, Oak Road (Davie Stadium) in 2001

COMPOUND	CONCEN	TRATION	UNIT RISK	CANCER RISK (Chances in
	(ppb)	$(\mu g/m^3)$	$(\mu g/m^3)^{-1}$	one million)
Gaseous TACs*				
Acetaldehyde	0.70	1.27	2.70E-06	3.4
1,3-Butadiene	0.14	0.31	1.70E-04	52.7
Benzene	0.45	1.46	2.90E-05	42.4
Carbon Tetrachloride	0.10	0.64	4.20E-05	26.9
Formaldehyde	2.04	2.51	6.00E-06	15.1
Perchloroethylene	0.05	0.34	5.90E-06	2.0
Methylene Chloride***	0.32	1.15	1.00E-06	1.2
MTBE	0.45	1.65	2.60E-07	0.4
Chloroform	0.01	0.05	5.30E-06	0.3
Trichloroethylene	0.02	0.10	2.00E-06	0.2
				CANCER RISK
COMPOUND		NTRATION	UNIT RISK	(Chances in
	(ng/m ³)	$(\mu g/m^3)$	$(\mu g/m^3)^{-1}$	one million)
Particulate TACs*				
Chromium (Hexavalent)	0.11	1.11E-04	1.50E-01	16.7
Polycyclic Aromatic Hydrocarbons**	0.52	5.22E-04	1.10E-03	0.6
Nickel	3.46	3.46E-03	2.60E-04	0.9
Lead	7.28	7.28E-03	1.20E-05	0.1
Total Risk for All TACs				163

^{*} All values are from BAAQMD monitoring equipment (BAAQMD 2003), except those in italics which come from the average of the five ARB monitoring sites (San Francisco, San Jose, Fremont, San Pablo, and Concord). ARB values are from 2000, except for the Concord and San Pablo sites at which sampling was suspended in 2000. The concentrations used from these two sites are the means of daily samples collected during the period March 1, 1999 through February 29, 2000. In calculating average concentrations, samples less than the limits of detection (LOD) were assumed to equal one half the LOD. Risks are calculated for the carcinogenic TACs for which routine sampling was performed by the BAAQMD and ARB, except for ethylene dibromide, ethylene dichloride, and vinyl chloride, which were excluded because none of these compounds were detected in any of the air samples taken in the Bay Area.

^{**} The PAH concentration represents the sum of the following species collected as PM10: benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h) anthracene, and indeno(1,2,3-cd)pyrene.

^{***} For methylene chloride, measurements at Davie Stadium were all non-detect with an LOD of 0.50 ppb. The average methylene chloride reported as a Bay Area average from other monitoring stations was 0.32 ppb in 2001, therefore this value is used rather than 1/2 LOD of 0.25 ppb.

	UTM Coordinates		
	(Meters)		Receptor Description
	X	y	
5.00	0.621.0	4105070 1	ADVANTA CE DI UCCIHI D DEVEL ODMENT CENTED
	0631.8	4195979.1	ADVANTAGE PLUS CHILD DEVELOPMENT CENTER
	2243.3	4194420.9	ALBANY HIGH SCHOOL
	4315.1	4190755.4	Alta Bates Med Cntr: D/P Snf
	6137.3	4190103.5	Alta Bates Med. Cntr.: Herrick
	3584.3	4187272.7	ANNA YATES ELEMENTARY SCHOOL
	4160.4	4192207.6	ARTS MAGNET (BERKELEY) ELEM
	4976.7	4189900.9	ASHBY CARE CENTER
	4272.9	4191222.3	BERKELEY HIGH SCHOOL
	5506.6	4193655.4	BERKELEY HILLS NURSERY SCHOOL
	4228.3	4192049.3	BERKELEY MONTESSORI SCHOOL
	5202.3	4192629.0	BERKELEY MONTESSORI SCHOOL
	4982.4	4189910.6	BERKELEY PINES SKILLED NURSING FACILITY
	3995.7	4189168.5	BERKELEY YMCA - HARMON STREET HEAD START PROGRAM
	3752.5	4189957.0	BERKELEY YMCA - MCGEE CENTER HEADSTART
	2625.1	4190858.5	BERKELEY YMCA HEAD START - BANCROFT WAY #1
	2781.3	4190899.4	BERKELEY YMCA HEAD START - BANCROFT WAY #2
563	3176.8	4189856.4	BERKELEY YMCA HEAD START - SAN PABLO PARK
562	2664.9	4191391.4	BERKELEY YMCA HEAD START-PARENT & CHILD CNT.
564	4065.6	4187698.4	BLOSSOM DAY SCHOOL
56	1017.0	4197223.2	BRIGHT STAR MONTESSORI SCHOOL
563	5787.7	4185459.7	BROADWAY CHILDREN'S SCHOOL
562	2902.8	4185149.9	BUNCHE CENTER FOR REDIRECTION
563	5212.1	4187427.6	CARTER MIDDLE SCHOOL
56	1270.8	4196434.9	CASA CERRITO NEIGHBORHOOD CENTER
56	1082.1	4197015.6	CASTRO ELEMENTARY SCHOOL
563	3194.4	4192167.8	CEDAR CREEK MONTESSORI DAY CARE INCORPORATED #1
564	4487.4	4192391.3	CEDAR STREET CHILDCARE CENTER
563	5870.7	4186942.3	CENTRAL LUTHERAN PRE-SCHOOL
56	1868.5	4192360.3	CENTRO VIDA BILINGUAL CHILDCARE CENTER
560	6688.0	4189282.9	CHABOT ELEMENTARY SCHOOL
562	2954.6	4191109.9	CHAPARRAL HOUSE
563	3142.1	4192535.6	CHILD EDUCATION CENTER
564	4474.4	4187853.5	CHILDREN'S HOSPITAL – OAKLAND
563	5801.4	4185099.9	CIRCLE CHILDREN'S CENTER
560	6308.6	4186223.4	CIRCLE PRESCHOOL
562	2425.7	4194213.4	CITY OF ALBANY "FRIENDSHIP CLUB"
	1371.4	4195413.4	CITY OF EL CERRITO COMM SVCS: FAIRMONT SCH-A CCC
	0960.2	4196990.1	CITY OF EL CERRITO COMM SVCS:CASTRO SCHOOL-AGE CCC
	2140.4	4194897.2	CITY OF EL CERRITO COMM SVCS:HARDING PARK SCH-A CC
	5433.4	4189971.1	CLAREMONT CONVALESCENT HOSPITAL
560	6108.9	4189697.2	CLAREMONT DAY NURSERIES INC
	5882.4	4188869.0	CLAREMONT DAY NURSERIES INC
	2706.9	4194719.4	CLAREMONT DAY NURSERIES, INC
	5888.6	4188770.4	CLAREMONT MIDDLE SCHOOL
	2180.6	4195139.7	CLUBHOUSE ENRICHMENT CENTER (THE)
	4735.8	4192658.0	CONGREGATION BETH EL
	2112.1	4193651.6	CORNELL ELEMENTARY SCHOOL

UTM Coordinates				
(Meters)		Receptor Description		
X	y			
564427 1	4194158.3	CD A CIVIONE DRIMA BY SCHOOL		
564437.1		CRAGIVIONT PRIMARY SCHOOL		
559497.6	4196504.9	CRESCENT PARK CHILDREN'S CENTER		
567662.4	4184990.0	CROCKER HIGHLAND CHILD CARE		
568170.0	4184957.9	CROCKER HIGHLANDS ELEMENTARY		
563659.7	4193678.8	DANDELION NURSERY SCHOOL, INC		
564872.5	4184634.0	DENTAL BEN PROVIDERS OF CA INC		
564577.6	4185622.6	DOWLING CONVALESCENT HOSPITAL		
566503.0	4187222.2	DUCK'S NEST PIEDMONT		
562633.0	4189669.4	EAST BAY FRENCH AMERICAN SCHOOL/ECOLE BILINGUE		
		EAST BAY FRENCH-AMERICAN SCH		
564808.1	4186810.1	EAST BAY SURGERY CENTER, L.P.		
564238.7	4190426.3	EAST CAMPUS, BERKELEY HIGH		
561481.7	4196356.6	EL CERRITO SCHOOL-AGE CENTER		
562126.3	4195410.7	EL CERRITO SENIOR HIGH SCHOOL		
565961.7	4190495.6	EMERSON ELEMENTARY SCHOOL		
563359.0	4187647.6	EMERY HIGH SCHOOL		
563035.5	4187751.1	EMERYVILLE CHILD DEVELOPMENT CENTER		
564298.1	4189214.8	EPHESIAN CHILDREN'S CENTER		
561579.2	4194896.1	EYE CTR OF N CA SURGICENTER		
561245.1	4195523.9	FAIRMONT ELEMENTARY SCHOOL		
566199.7	4187855.9	FAR WEST SENIOR HIGH ALTERN ED		
565070.2	4191077.6	FIRST PRESB. CHURCH OF BERKELEY/CORNERSTONE C.C.		
564021.7	4185776.5	FOSTER MIDDLE SCHOOL		
571646.4	4192662.7	FOUNTAINHEAD MONTESSORI SCHOOL ORINDA CAMPUS		
563898.6	4185015.4	FOUR C'S CHILD DEVELOPMENT CENTER		
565882.8	4185227.6	GAN AVRAHAM NURSERY SCHOOL		
563302.6	4192786.5	GAY AUSTIN SCHOOL (THE)		
565700.1	4191711.3	Girton Hall On campus Daycare Center		
563691.0	4187865.4	GRACE CHILDREN'S ACADEMY		
567374.9	4184957.8	GRAND LAKE MONTESSORI		
565207.4	4189685.6	GRIFFIN NURSERY SCHOOL		
564270.2	4195182.5	GRIZZLY PEAK EARLY CHILDHOOD CENTER		
564226.4	4193190.4	GROWING LIGHT MONTESSORI SCHOOL		
564581.7	4190093.3	GUARDIAN-ELMWOOD		
563281.8	4190073.7	HARMONY PRESCHOOL		
567535.9	4186554.1	HAVENS ELEMENTARY SCHOOL		
567639.1	4188168.9	HILLCREST ELEMENTARY SCHOOL		
564937.4	4185837.5	HILLHAVEN CONVALESCENT HOSPITAL		
567736.1	4188041.2	HOLY NAMES HIGH SCHOOL		
565595.2	4185634.3	HOME DAY NURSERY		
563988.9	4185642.8	HOMEPLACE FAMILY CENTER – PRESCHOOL		
563985.0	4186049.5	HONEY BEAR CHILD CARE CENTER		
563893.1	4186275.3	HOOVER ELEMENTARY SCHOOL		
563644.5	4193029.3	HOPKINS STREET CHILDCARE CENTER		
562958.7	4192432.5	JEFFERSON PRIMARY SCHOOL		
567693.0 565399.3	4189595.6 4186394.0	KAISER ELEMENTARY SCHOOL KAISER FOUNDATION HOSPITAL		

UTM Coordinates		
(Meters)		Receptor Description
X	y	
560217.0	4196662.7	KATHMANDU CHILD CARE CENTER
560217.9 559059.6	4197593.7	KENNEDY HIGH SCHOOL
		KEYSTONE MONTESSORI SCHOOL
561603.7	4196643.3	
562011.4	4193709.7	KIDS CLUB YMCA - CORNELL
565233.7	4192604.9	KIDS CLUB YMCA – HILLSIDE
561883.2	4193619.7	KIDS' CLUB YMCA- ALBANY
565936.9	4190529.1	KIDS'CLUB YMCA - EMERSON SCHOOL
563659.3	4192666.1	KING JUNIOR HIGH SCHOOL
564635.9	4190499.8	KYAKAMEENA SKILLED NURSING FACILITY
563498.5	4184860.3	LAFAYETTE ELEMENTARY SCHOOL
566192.8	4184609.1	LAKE MERRITT CHILD CARE
566935.0	4185044.7	LAKESHORE CHILDREN'S CENTER
566278.9	4184925.9	LAKEVIEW ELEMENTARY SCHOOL
566638.9	4185059.2	LAKEVIEW PRESCHOOL
564966.7	4190044.6	LECONTE PRIMARY SCHOOL
567724.7	4186407.3	LINDA BEACH COOPERATIVE PLAY SCHOOL
565227.9	4186485.2	LITTLE FOLKS DAY CARE
564158.2	4186964.0	LONGFELLOW ELEMENTARY SCHOOL
563417.7	4190190.1	LONGFELLOW INTERMEDIATE
563289.9	4184722.3	LOWELL MIDDLE SCHOOL
562136.6	4194531.6	MACGREGOR HIGH (CONTINUATION)
561396.9	4197776.7	MADERA ELEMENTARY SCHOOL
563987.5	4189468.9	MALCOLM X INTERMEDIATE
562657.0	4193515.3	MARIN ELEMENTARY SCHOOL
564669.1	4185721.9	MCCLURE CONVALESCENT HOSPITAL
563647.9	4185670.9	MCCLYMONDS SENIOR HIGH SCHOOL
563862.9	4191261.3	MCGEE'S FARM PRESCHOOL
566494.3	4185707.2	MISS WEIR'S PLAYSCHOOL
565118.2	4189666.7	MODEL SCHOOL COMPREHENSIVE HUMANISTIC LEARNING CTR
569462.6	4187613.5	MONTCLAIR COMMUNITY PLAY CENTER
569368.3	4187228.9	MONTCLAIR ELEMENTARY SCHOOL
569766.9	4186388.4	MONTCLAIR VILLAGE CHILDREN'S CENTER
566015.7	4185572.5	MONTESSORI CASA DEI BAMBINI
566289.0	4188338.5	MONTESSORI CHILDREN'S HOUSE OF ROCKRIDGE
560678.7	4195800.4	MONTESSORI COMMUNITY SCHOOL
564591.6	4192414.8	MONTESSORI FAMILY PRE-SCHOOL
564945.6	4192065.4	MONTESSORI FAMILY SCHOOL
564412.5	4189368.0	MORNING GLORY PRESCHOOL
566443.5	4190046.0	MUIR (JOHN) ELEMENTARY SCHOOL
567269.6	4189942.7	MULBERRY SCHOOL (THE)
563485.8	4192904.7	MUSTARD SEED PRESCHOOL
565768.2	4188769.0	MY OWN MONTESSORI SCHOOL
563226.6	4196284.5	NEIGHBORHOOD PRE-SCHOOL
564556.9	4185014.6	NEW DAY PRESCHOOL & LEARNING CTR., METROPOLITAN
564068.1	4192320.9	NEW SCHOOL OF BERKELEY, THE
562268.3	4190918.2	NIA HOUSE LEARNING CENTER
562043.3	4195329.8	NOMURA PRESCHOOL-CLAYTON AVENUE SITE

UTM Coordinates				
(Meters)		Receptor Description		
X	y			
560342.4	4195812.1	NOMURA SCHOOL (THE)		
563216.5	4188753.6	O.U.S.D GOLDEN GATE CHILD DEVELOPMENT CENTER		
563059.3	4188659.5	O.U.S.D GOLDEN GATE CHIED DEVELOTMENT CENTER O.U.S.D GOLDEN GATE SCHOOL CDC		
564123.0	4186292.6	O.U.S.D GOLDEN GATE SCHOOL CDC O.U.S.D HARRIET TUBMAN CHILD DEVELOPMENT CTR.		
564021.3	4187002.3	O.U.S.D HARRIET TOBMAN CHILD DEVELOPMENT CTR. O.U.S.D LONGFELLOW CHILD DEVELOPMENT CENTER		
563911.3	4184506.9	O.U.S.D LONGFELLOW CHILD DEVELORMENT CENTER O.U.S.D MARTIN LUTHER KING, JR. CHILD DEV. CTR.		
566266.0	4186777.9	O.U.S.D PIEDMONT AVE. CHILD DEVELOPMENT CTR.		
561879.7	4184529.7	O.U.S.D PRESCOTT CHILD DEVELOPMENT CENTER		
563961.8	4187953.9	O.U.S.D FRESCOTT CHILD DEVELOPMENT CENTER O.U.S.D SANTA FE CHILD DEVELOPMENT CENTER		
564992.1	4188961.9	O.U.S.D WASHINGTON CHILD DEVELOPMENT CENTER		
562983.1	4184739.9	O.U.S.D WASHINGTON CHILD DEVELOPMENT CENTER OAK CENTER CHRISTIAN ACADEMY		
564697.2	4188181.3	OAKLAND HEAD START - FANNIE WALL		
565849.9	4187477.9	OAKLAND TECHNICAL SENIOR HIGH		
571335.5	4193099.6	ORINDA PRE-SCHOOL (THE)		
571732.1	4192766.4	ORINDA REHABILITATION & CONVALESCENT HOSPITAL		
564399.7	4193464.8	OXFORD PRIMARY SCHOOL		
563878.7	4184766.0	P,C.D.C.I LITTLE LEARNERS CHILD DEVELOPMENT CTR		
564848.9	4185382.7	P.C.D.C,IFIRST PRESBYTERIAN CHILD DEV. CTR.		
563275.0	4188025.9	P.C.D.C.ISCHOOL-AGE CHILD DEVELOPMENT CENTER		
565797.5	4187618.0	PACIFIC COAST MONTESSORI PROGRAM		
562891.7	4187885.5	PACIFIC RIM INTERNATIONAL SCHOOL		
561277.1	4197207.2	PETER PAN PARENT NURSERY		
560721.4	4197112.5	PICCOLI		
567642.6	4186311.9	PIEDMONT AVENUE ELEMENTARY PIEDMONT CONTINUATION HIGH		
565944.6	4186636.6	PIEDMONT GARDENS HEALTH FACILITY		
567577.1	4186240.6	PIEDMONT MIDDLE SCHOOL		
567469.8	4185843.3	PIEDMONT SCHOOLMATES – WILDWOOD		
		PIEDMONT SCHOOLMATES –BEACH		
566428.3	4186331.8	PIEDMONT SCHOOLMATES HAVENS		
561654.2	4196569.6	PORTOLA JUNIOR HIGH SCHOOL		
566472.2	4184903.8	PRANA INSTITUTE		
561947.1	4184637.6	PRESCOTT ELEMENTARY SCHOOL		
564073.7	4189074.8	PROGRESSIVE CHRISTIAN DAY CARE CENTER		
565681.2	4186926.5	PUMPKIN PATCH PLAYSCHOOL		
564746.8	4184977.9	QUALMED PLANS FOR HEALTH		
566495.1	4188479.6	RAINBOW SCHOOL, THE		
563069.8	4192391.5	RICHARDS FAMILY PRESCHOOL & DEVELOPMENT CENTER		
562487.5	4192171.4	ROSE STREET COMMUNITY CHILD CARE CENTER		
563658.5	4188958.2	ROSEMARIE'S MOTIVATION PRESCHOOL NURSERY, #3		
564468.4	4187103.9	SACRED HEART SCHOOL		
564068.9	4193116.0	SCHOOL OF THE MADELEINE		
561265.8	4194963.0	SHIELDS NURSING CENTER		
563130.5	4196735.5	SKYTOWN PARENT COOPERATIVE PRESCHOOL		
570616.4	4195655.4	SLEEPY HOLLOW ELEMENTARY		
569253.2	4187380.6	SMILES DAY SCHOOL		
565547.6	4186287.4	SNOW WHITE PRESCHOOL		

U	TM Coordinates			
(Meters)		Receptor Description		
X	y			
5.62.62	25.6	CHICGERY THE		
56363		SNUGGERY, THE		
56543		ST AUGUSTINE SCHOOL		
56317		ST COLUMBA SCHOOL		
56251		ST JEROME SCHOOL		
56353		ST JOSEPH SCHOOL		
56308		ST MARY S COLLEGE HIGH SCHOOL		
56523		ST PAUL S EPISCOPAL SCHOOL		
56776		ST THERESA SCHOOL		
56578		ST. JOHN'S INFANT CARE PROGRAM		
56599		ST. LEO'S PRE-KINDERGARTEN		
55958		STEGE ELEMENTARY SCHOOL		
56417		STEP ONE SCHOOL		
56304		STEPPING STONES GROWTH CENTER		
56477		STREET ACADEMY SENIOR HIGH (AL		
56372		SUPPORTING FUTURE GROWTH #1		
56392		SUPPORTING FUTURE GROWTH #2		
56481	16.9 4185541.9	TEMPLE SINAI PRESCHOOL		
56423	31.2 4188816.5	THERAPEUTIC NURSERY SCHOOL		
56948	86.0 4187742.7	THORNHILL ELEMENTARY SCHOOL		
56336	67.2 4194008.9	THOUSAND OAKS BAPTIST CHURCH PRE-SCHOOL		
30330	37.2 4194008.9	THOUSAND OAKS PRIMARY SCHOOL		
56933	38.5 4187472.3	TODDLER FAMILY		
56532	28.3 4191032.4	U.C.B ANNA HEAD I		
		U.C.B SMYTH III AFTER SCHOOL PROGRAM		
56609		U.C.BCLARK KERR CAMPUS CHILDREN'S CENTER		
56478		UCB HAROLD E. JONES STUDY CNT. INST. OF HUMAN DEV.		
56980		VILLAGE PRESCHOOL		
56197		VIST NRS ASSN AND HSP OF N CA		
56480		WASHINGTON ELEMENTARY SCHOOL		
56566		WAYNE ROUNSEVILLE MEMORIAL CONVALESCENT HOSPITAL		
56515	54.8 4185177.9	WESTLAKE JUNIOR HIGH SCHOOL		
56544	42.4 4190333.6	WILLARD JUNIOR HIGH SCHOOL		
56966	65.3 4187831.8	WOODS EDGE SCHOOL		
56485	59.8 4191226.0	WOOLLY MAMMOTH CHILD CARE		
56068	88.5 4198324.8	YELLOW BRICK ROAD SCHOOL		
56529	94.0 4189135.3	YMCA - Y KIDS - EMERALD CITY, PERALTA SITE		
56620	08.9 4186965.4	YMCA OF THE EAST BAY - Y-KIDS PIEDMONT SITE		
56483	39.9 4191259.7	Arrowsmith Academy-College Preparatory School		
56388	81.5 4193775.5	Baby Academy		
56567	78.4 4189832.8	Benvenue Children's House		
56356		Brown House Preschool		
56420		BUSD-Kings Childrens Center		
56403		BUSD-Vera Casey Parent-Child E		
56452		Cedar Spruce Preschool		
56429		Children's Community Center		
56500		Church Div School		
56492		Community School of the East Bay		

UTM Coordinates (Meters)		Receptor Description		
X	y			
564079.9	4192117.5	East Bay Science and Arts Middle		
564556.5	4190078.0	Elmwood Nursing Rehabilitation Hospital		
565698.5	4190594.9	Elmwood School Kindergarten		
563528.3	4191154.6	Gan Shalom Preschool		
563632.5	4192748.8	Garfield Junior High School		
564598.3	4189986.6	I Can Before & After School		
566063.3	4190799.7	K-2 UC Berkeley Afterschool Program Bldg 15		
564933.2	4191275.2	Maybeck High School		
564729.7	4192662.2	Midrasha Berkeley		
565729.0	4190469.2	Monteverde School		
563822.1	4193189.9	New House Day School		
563985.8	4189792.8	North Berkeley Senior Center		
566729.0	4190469.2	Our School		
565085.2	4190282.7	Sheffield Preschool Program		
563849.5	4193192.5	Sprouts Pre-School		
565584.9	4190497.7	The Academy Elem. School		
564040.9	4192285.0	The New School of Berkeley		
564040.9	4192285.0	The New School of Berkeley-School		
564294.5	4192948.9	Toddler Family		
563972.9	4190801.1	Walden Center School		
563882.6	4191099.5	Berkwood Hedge Elementary School		
566166.6	4190836.2	California School for Blind and Deaf		
564479.1	4194120.8	Cragmont School		
565508.4	4193697.4	Hillside Primary School		
565144.6	4192620.5	Hillside School		
565130.2	4190916.1	McKinley School	McKinley School	
564249.9	4192208.0	Whiffler School		
563634.2	4192669.1	Martin Luther King Jr. Middle		

FACTORS TO ADJUST 70-YEAR CANCER RISK VALUES

To Employee Exposures:

Assume the following from the California Air Pollution Control Officers Association (CAPCOA) *Air Toxics "Hot Spots" Program Revised 1992 Risk Assessment Guidelines* (December 1993). This leads to a slightly more conservative factor than the more recent Office of Environmental Health Hazard Assessment (OEHHA) *Air Toxics Hot Spots Program Risk Assessment Guidelines* (Part IV, 2000):

Employee works 8 hours per day, 240 days per year, for 46 years.

$$\frac{8 \text{ hr/day}}{24 \text{ hr/day}}$$
 x $\frac{240 \text{ days/year}}{365 \text{ days/year}}$ x $\frac{46 \text{ years}}{70 \text{ years}}$ = **0.144**

To Child Exposures at Daycare/Schools:

Assume child at daycare/school location for 10 hours per day, 240 days per year for 12 years. Assume child body weight is 15 kg (33 pounds) versus adult body weight of 70 kg (154 pounds). Assume child breathing rate is 10 cubic meters per day versus an adult rate of 20 cubic meters per day.

$$\frac{10m^3/day}{20m^3/day}$$
 x $\frac{70 \text{ kg}}{15 \text{ kg}}$ x $\frac{(10 \text{ x } 240) \text{ hr/year}}{8760 \text{ hr/year}}$ x $\frac{12 \text{ years}}{70 \text{ years}}$ = **0.110**

Toxicity Factors Used in the Existing Campus and LRDP Health Risk Assessments¹

	Cancer	Chronic	Acute					
CHEMICAL	URF	Inhalation REL	Inhalation REL					
	$(1/[ug/m^3])$	(ug/m^3)	(ug/m^3)					
Laboratory Chemicals								
Acetonitrile		25.5 ³	6700 5					
Benzene	2.9E-05	60	1300					
Bromine and compounds		1.7 5	66 5					
t-Butyl alcohol		714 5	30000 5					
Carbon tetrachloride	4.2E-05	40	1900					
Chloroform	5.3E-06	300	150					
Dimethylformamide		80	3000 5					
1,4-Dioxane	7.7E-06	3000	3000					
Epichlorohydrin	2.3E-05	3	1300					
Ethanol		4480 5	188000 5					
Ethyl acetate		1350 ³	140000 5					
Ethyl ether		300 ³	120000 5					
Formaldehyde	6.0E-06	3	94					
Glutaraldehyde		0.08	20 5					
n-Hexane		7000	17600 5					
Hydrazine	4.9E-03	0.2	1.3					
Hydrochloric acid		9	2100					
Hydrofluoric acid		5.9 ⁵	240					
Hydrogen-3 (Tritium)	$4.0E-02^{-2}$							
Iodine-125 (I-125)	$2.7E+00^{-2}$							
Isopropanol		7000	3200					
Methyl alcohol		4000	28000					
Methyl bromide		5	3900					
Methylene chloride	1.0E-06	400	14000					
Phosgene		1 5	4					
Pyridine		1.5	1500 ⁵					
Tetrachloroethylene	5.9E-06	35	20000					
Tetrahydrofuran		129 ³	59000 ⁵					
Toluene		300	37000					
1,1,1-Trichloroethane		1000	68000					
Trichloroethylene	2.0E-06	600	26900 ⁵					
Triethylamine		200	2800					
Xylenes		700	22000					

Toxicity Factors Used in the Existing Campus and LRDP Health Risk Assessments¹

	Cancer	Chronic	Acute							
CHEMICAL	URF	Inhalation REL	Inhalation REL							
	$(1/[ug/m^3])$ (ug/m^3)		(ug/m^3)							
A	Additional Combustion Chemicals									
Acetaldehyde	2.7E-06	9	4500 5							
Acrolein		0.06	0.19							
1,3-Butadiene	1.7E-04	20	221 5							
p-Dichlorobenzene	1.1E-05	800	6000							
Diesel particulate matter	3.0E-04	5								
Ethylbenzene		2000	43400 5							
Naphthalene		9	5000 5							
PAHs (BaP equivalents)	1.1E-03	0.48 5,6	20 5,6							
PAHs (pyrene equivalents)		45 5,6	5000 5,6							
Propylene oxide	3.7E-06	30	3100							
Arsenic	3.3E-03	0.03	0.19							
Beryllium	2.4E-03	0.007	0.2							
Cadmium	4.2E-03	0.02	0.5							
Chromium	$1.2E-02^{-1}$	1.02	0.1 ⁷							
Cobalt		0.05	2 5							
Copper		2.4	100							
Lead	1.2E-05	1.5	5 5							
Manganese		0.2	20 5							
Mercury		0.09	1.8							
Nickel	2.6E-04	0.05	6							
Selenium		20	20 5							
Vanadium		0.12 5	30							
Zinc		35 ⁴	500 ⁵							

Notes:

¹ Unless otherwise noted, basis of cancer URFs is OEHHA (2002), chronic RELs is OEHHA (2003), and acute RELs is OEHHA (1999), as summarized at http://www.arb.ca.gov/toxics/healthval/contable.pdf

 $^{^{2}\,}$ Taken from 2003 UC Davis LRDP EIR.

Developed from inhalation reference dose from U.S. EPA PRG (EPA 2002) and "child only" exposure factors (breathing rate = 10 m³/day, body weight = 15 kg).

⁴ Taken from 1993 CAPCOA Air Toxics "Hot Spots" Program Revised 1992 Risk Assessment Gudielines.

⁵ Acute: Lower of OSHA PEL or ACGIH TLV divided by 10; Chronic: Lower of OSHA PEL or ACGIH TLV divided by 420. Conversions from ppmv to ug/m³ done at 25°C.

For benzo(a)pyrene equivalents, used OSHA PEL for coal tar pitch volatiles for chronic and acute. For pyrene equivalents, used EPA PRG (EPA 2002) for chronic, and OSHA PEL for naphthalene.

⁷ Chromium: Acute REL based on ACGIH TLV of 500 ug/m³ for total Cr, divided by 10 and multiplied by 6/7 to account for Cr+6 to Cr+3 ratio per EPA PRG (2002) Guidance. Chronic REL = acute REL times 10 divided by 420.

⁸ Lead: National and California Ambient Air Quality Standard used for chronic REL.

UC Berkeley Emergency Generator Emission Rates

Source Number (name-loc.)	Engine Make	Engine Model	Rated bhp	Part. emissions factors g/hp/hr D-2 Test Cycle	Load Factor	Annual Testin Hours	Annualized Emission Rate (g/s)	Cancer Risk Rate (for modeling file)	Chronic Exposure (for modeling file)
Existing Engines				·					
62 (Central Dining)	Caterpillar	3456	764	0.1	25%	26	1.575E-05	4.724E-03	3.149E-06
63 (Barker)	Caterpillar	3456	764	0.05	25%	26	7.874E-06	2.362E-03	1.575E-06
64 (Birge stationary)	Caterpillar	1004-40TW	117	0.1	25%	26	2.412E-06	7.235E-04	4.823E-07
105 (Haas Pav)	Cummins	QST30-G2	1200	1	25%	26	2.473E-04	7.420E-02	4.947E-05
106 (VLSB)	Detroit Diesel	5147541	1006	1	25%	26	2.074E-04	6.221E-02	4.147E-05
107 (Koshland)	Cummins	VTA28G2/37116828	805	1	25%	26	1.659E-04	4.978E-02	3.318E-05
108 (LSBA)	Cummins	YTA28G2	805	1	25%	26	1.659E-04	4.978E-02	3.318E-05
109 (Tan)	Detroit Diesel	500R0ZD71	671	0.4	25%	26	5.532E-05	1.660E-02	1.106E-05
110 (NWAF-S)	Allis Chalmers	3119-0955	335	0.4	25%	26	2.762E-05	8.286E-03	5.524E-06
111 (Doe-Moffitt Stacks)	Detroit Diesel	CID 300	385	1	25%	26	7.935E-05	2.381E-02	1.587E-05
112 (Res 1-1W)	Caterpillar V-8	3208	335	1	25%	26	6.905E-05	2.071E-02	1.381E-05
113 (Res 1-2E)	Caterpillar V-8	3208	335	1	25%	26	6.905E-05	2.071E-02	1.381E-05
114 (Res 2-1W)	Caterpillar V-8	3208	335	1	25%	26	6.905E-05	2.071E-02	1.381E-05
115 (Res 2-2E)	Caterpillar V-8	3208	335	1	25%	26	6.905E-05	2.071E-02	1.381E-05
116 (Tang)1	Detroit Diesel	80637405	335	1	25%	26	6.905E-05	2.071E-02	1.381E-05
117 (Minor)	Detroit Diesel	80637405	335	1	25%	26	6.905E-05	2.071E-02	1.381E-05
118 (NWAF-N)	Volvo Penta	TAD1030GE	400	0.4	25%	26	3.298E-05	9.893E-03	6.596E-06
119 (Warren)	Allis Chambers	DES 200	235	1	25%	26	4.844E-05	1.453E-02	9.687E-06
120 (Sproul)	John Deere	C5PG 6005-A	169	1	25%	26	3.483E-05	1.045E-02	6.967E-06
121 (I- House)	Allis-Chalmers	12ST6	168	1	25%	26	3.463E-05	1.039E-02	6.925E-06
123 (Stanley)	Cummins	GCT8.3-G 207HP	207	1	25%	26	4.267E-05	1.280E-02	8.533E-06
124 (ABRS)2	Cummins	N-55-G	168	1	25%	26	3.463E-05	1.039E-02	6.925E-06
125 (EHS/HMF)	Caterpillar	27D6	166	0.4	25%	26	1.369E-05	4.106E-03	2.737E-06
126 (GBCR)	Cummins	6BT5.9-GC	134	0.4	25%	26	1.105E-05	3.314E-03	2.210E-06
128 (Donner)	John Deere	4030TF001	67	1	25%	26	1.381E-05	4.143E-03	2.762E-06
129 (Birge port)	Cummins	KW50	67	1	25%	26	1.381E-05	4.143E-03	2.762E-06
130 (Hildebrand)	Cummins	6CTA8.3-G2	277	0.15	25%	26	8.564E-06	2.569E-03	1.713E-06
131 (Haas Rec. Sports CEV)	Caterpillar	1004-40TW	117	0.1	25%	26	2.412E-06	7.235E-04	4.823E-07
132 (Mulford CEV)	Caterpillar	1004-40TW	117	0.1	25%	26	2.412E-06	7.235E-04	4.823E-07
133 (HMMB)	Cummins	QSX15-G9	755	0.4	25%	26	6.225E-05	1.867E-02	1.245E-05
New LRDP Engines									
Stanley Hall (NEQSS)	N/A	N/A	750	0.15	25%	26	2.319E-05	6.956E-03	4.638E-06
Davis Hall North (NEQSS)	N/A	N/A	750	0.15	25%	26	2.319E-05	6.956E-03	4.638E-06
McCone	N/A	N/A	300	0.15	25%	26	9.275E-06	2.783E-03	1.855E-06
SRB ¹	N/A	N/A	300	0.15	25%	26	9.275E-06	2.783E-03	1.855E-06
New Lab	N/A	N/A	750	0.15	25%	26	2.319E-05	6.956E-03	4.638E-06
Music Library	N/A	N/A	300	0.15	25%	26	9.275E-06	2.783E-03	1.855E-06
Unit 1 Infill Housing	N/A	N/A	300	0.15	25%	26	9.275E-06	2.783E-03	1.855E-06
Unit 2 Infill Housing	N/A	N/A	300	0.15	25%	26	9.275E-06	2.783E-03	1.855E-06
Unit 3	N/A	N/A	300	0.15	25%	26	9.275E-06	2.783E-03	1.855E-06
116 Tang Center ¹	N/A	N/A	635	0.15	25%	26	1.963E-05	5.890E-03	3.926E-06

¹ The HP value represents 300 HP of additional power for the LRDP. The existing Tang Center generator operates at 335 HP.

SOURCE PARAMETERS (EXISTING)

	UTM		Base	Stack	Exit	Exit	Inner Stack
Building and Modeling Source ID	Coordinates		Elevation	Height	Temperature	Velocity	Diameter
	(m)	(m)	(m)	(m)	(K)	(m/s)	(m)
Warren Hall							
WHSTL1_8	564704.44	4191782.75	67	31.70	293.15	7.12	0.19
WHSTK10	564724.44	4191826	67	8.60	293.15	7.12	0.34
NW Animal Facility	564510.01	4101701 25		20.57	202.15	16.40	0.74
NWAF9	564718.81	4191791.25	67	29.57	293.15	16.48	0.74
Morgan Hall MHSTK1	564794.44	4191795.75	75	7.61	293.15	17.25	0.34
MHSTK1 MHSTK2	564798.56		75 75	10.89	293.15	17.25	0.34
MHSTK3	564794.06	4191843 4191843	75 75	10.89	293.15	17.25	0.29
MHSTK4	564800.94	4191787.25	75 75	15.61	293.15	17.25	0.48
MHSTK6	564801.31	4191808.25	75 75	10.94	293.15	17.25	0.34
Koshland Hall	201001.31	1171000.23	7.5	10.51	275.15	17.20	0.51
KHSTK1	564761.13	4191879.75	73	18.45	293.15	1.28	2.76
KHSTK2	564759.38	4191891.75	73	18.45	293.15	1.28	2.76
KHSTK3	564732.38	4191877.5	73	18.45	293.15	1.28	2.76
KHSTK4	564731.38	4191889	73	18.45	293.15	1.28	2.76
Barker Hall							
BHSTK1	564678.94	4191889	67	27.85	293.15	2.78	1.26
BHSTK2	564675	4191896.75	67	29.68	293.15	2.78	1.26
BHSTK3	564704.5	4191898	67	29.68	293.15	2.78	1.26
BHSTK4	564707.38	4191887.75	67	33.34	293.15	2.78	0.37
BHSTK5	564691.63	4191888	67	33.34	293.15	2.78	0.37
Valley Life Sciences Building	564022.56	4101622.25	C 4	27.04	202.15	2.07	1.22
VLSBSTK1	564933.56	4191633.25	64	27.04	293.15	3.97	1.22
VLSBSTK2	564954	4191566.5	64	27.04	293.15	3.97	1.22
VLSBSTK3 VLSBSTK4	565051.31	4191594.75	64 64	27.04 27.04	293.15 293.15	3.97 3.97	1.22 1.22
Life Sciences Addition	565030.63	4191662.25	04	27.04	293.13	3.97	1.22
LSASTK1	564892.19	4191637.25	64	28.31	293.15	5.18	1.22
LSASTK2	564875.88	4191632.75	64	28.31	293.15	5.18	1.22
LSASTK3	564907.56	4191580.5	64	28.31	293.15	5.18	1.22
LSASTK4	564897.06	4191578	64	28.31	293.15	5.18	1.22
LSASTK5	564908.63	4191576.25	64	28.31	293.15	5.18	1.22
LSASTK6	564899.06	4191573.5	64	28.31	293.15	5.18	1.22
LSASTK7	564900.75	4191572.25	64	28.31	293.15	5.18	0.30
Lewis Hall							
LEWHSTK1	565605.75	4191772	107	12.80	293.15	3.11	0.36
LEWHSTK2	565591.5	4191786	107	12.80	293.15	3.11	0.36
LEWHSTK3	565585.88	4191792.25	107	12.80	293.15	3.11	0.36
LEWHSTK4	565583.13	4191800	107	12.80	293.15	3.11	0.36
LEWHSTK5	565598.06	4191787.75	107	12.80	293.15	3.11	0.36
LEWHSTK6	565619.38	4191775.75	107	12.80	293.15	3.11	0.36
LEWHSTK7	565608.75	4191787.25	107	12.80	293.15	3.11	0.36
LEWHSTK8	565597.63	4191800.5	107	12.80	293.15	3.11	0.30
LEWHSTK9 Latimer Hall	565593.31	4191808.25	107	12.80	293.15	3.11	0.36
LATHSTK1	565555.06	4191799.25	105	42.37	293.15	6.28	0.34
LATHSTKI LATHSTK2	565561.06	4191799.23	105	36.88	293.15	6.28	0.70
LATHSTK3	565531.56	4191800.25	105	36.88	293.15	6.28	0.48
LATHSTK4	565515.06	4191799.5	105	37.19	293.15	6.28	0.96
LATHSTK5	565539.69	4191794.25	105	42.37	293.15	6.28	0.70
LATHSTK6	565527.31	4191776	105	38.40	293.15	6.28	0.74
LATHSTK7	565544.94	4191781.5	105	38.40	293.15	6.28	0.31
LATHSTK8	565562.31	4191787	105	38.40	293.15	6.28	0.70
Tan Hall							
TANHSTKA	565492.06	4191793	101	39.32	293.15	2.94	1.69
TANHSTKB	565496.75	4191794	101	39.32	293.15	2.94	1.69
TANHSTKC							
TANHSTKC	565494.13 565499.06	4191787.25 4191788.25	101 101	39.32 39.32	293.15 293.15	2.94 2.94	1.69 1.69

SOURCE PARAMETERS (EXISTING)

	UTM		Base	Stack	Exit	Exit	Inner Stack
Building and Modeling Source ID	Coordinates		Elevation	Height	Temperature	Velocity	Diameter
	(m)	(m)	(m)	(m)	(K)	(m/s)	(m)
Hildebrand/Giaque/Minor/Minor Addition							
HHSTKA	565540.75	4191749.5	104	20.12	293.15	4.15	1.52
HHSTKB	565565.63	4191756.75	104	20.12	293.15	4.15	1.52
HHSTKC	565576.81	4191717.75	104	20.12	293.15	4.15	1.52
HHSTKD	565553.25	4191710.5	104	20.12	293.15	4.15	1.52
HHSTKE	565543.44	4191746.5	104	20.12	293.15	4.15	0.81
Stanley Hall1 ¹							
STHSTK1	565530.31	4191891.75	113	13.87	293.15	2.17	0.27
STHSTK2	565522	4191918.25	113	13.87	293.15	2.17	0.34
STHSTK3	565537.88	4191871	113	17.56	293.15	2.17	0.34
STHSTK4	565529.5	4191871.75	113	13.87	293.15	2.17	0.34
STHSTK5	565530.94	4191870	113	14.02	293.15	2.17	0.34
STHSTK6	565530.13	4191869.5	113	14.02	293.15	2.17	0.27
STHSTK7	565532.56	4191866.5	113	14.02	293.15	2.17	0.39
STHSTK8	565538.25	4191864	113	14.02	293.15	2.17	0.27
STHSTK9	565525.88	4191880.5	113	14.02	293.15	2.17	0.53
STHSTK11	565519	4191907.5	113	13.87	293.15	2.17	0.34
Gilman/Birge/LeConte Hall							
GHSTK1	565507.13	4191756	104	16.06	293.15	5.92	0.30
GHSTK2	565510.56	4191744.75	104	16.06	293.15	5.92	0.25
GHSTK3	565512.44	4191739	104	16.37	293.15	5.92	0.30
GHSTK4	565514.69	4191737.75	104	15.91	293.15	5.92	0.31
GHSTK5	565514.88	4191732.25	104	16.06	293.15	5.92	0.30
GHSTK6	565500.25	4191755.25	104	16.12	293.15	5.92	0.30
GHSTK7	565501.13	4191753	104	16.37	293.15	5.92	0.84
GHSTK8	565503.69	4191744.25	104	16.00	293.15	5.92	0.30
GHSTK9	565505.25	4191740.25	104	16.37	293.15	5.92	0.26
GHSTK10	565506.94	4191735.25	104	16.06	293.15	5.92	0.30
GHSTK11	565509.69	4191728.25	104	16.22	293.15	5.92	0.30
GHSTK11	565509	4191725.5	104	16.06	293.15	5.92	0.30
GHSTK13	565516.94	4191725.75	104	15.91	293.15	5.92	0.40
Cory Hall	303310.74	4171723.73	104	13.71	275.15	3.72	0.40
CHSTK1	565393.94	4192008.75	110	26.85	293.15	2.00	1.00
Davis /Etcheverry Hall ¹	303373.74	41/2000.75	110	20.03	275.15	2.00	1.00
Davis /Etcheverry Hall DHSTK1	565329.44	4191982	107	16.36	293.15	2.00	1.00
Hess/McCone/O'Brien Hall	303329.44	4191982	107	10.30	293.13	2.00	1.00
HESSTK1	565724 56	4191926.25	98	15.39	293.15	2.00	1.00
Hilgard Hall	565234.56	4191920.23	90	13.39	293.13	2.00	1.00
HILSTK1	564874.56	4191815	80	14.96	293.15	2.00	1.00
Mulford Hall	304874.30	4191013	80	14.90	293.13	2.00	1.00
MULSTK1	564779.69	4191737.75	74	17.24	293.15	2.00	1.00
	304779.09	4191/37.73	/4	17.24	293.13	2.00	1.00
Wellman Hall WELSTC1	564933.69	4191795.25	82	5.89	293.15	2.00	1.00
Printing Operations	304933.09	4191/93.23	82	3.89	293.13	2.00	1.00
PRINTA	564584.69	4191553.25	60	8.91	293.15	2.70	0.84
PRINTB	564614.44	4191520.75	60	8.91	293.15	2.70	0.84
PRINTC Cognoration Plant	564643.13	4191525.5	60	8.91	293.15	2.70	0.60
Cogeneration Plant	5(107)	4101402	72	12.77	420.27	10.45	2.20
COGEN (Turbine)	564876	4191492	72 72	12.77	430.37	10.45	2.28
BOILER#2	564863.56	4191499.5	72 72	8.80	522.82	7.97	1.52
BOILER#3	564881.94	4191505.75	72 72	8.80	554.11	10.53	1.52
BOILER#4	564885.81	4191495.75	72	8.80	566.65	12.63	1.52
Hazardous Materials Facility	564045.01	4101465	70	1404	202.12	4.62	0.55
POURING	564847.81	4191467	70	14.94	293.15	4.62	0.56

SOURCE PARAMETERS (EXISTING)

Building and Modeling Source ID	UTM Coordinates		Base Elevation	Stack Height	Exit	Exit Velocity	Inner Stack Diameter
Building and Modering Source ID	(m)	(m)	(m)	meight (m)	Temperature (K)	(m/s)	(m)
Diesel Generators	(111)	(111)	(111)	(111)	(11)	(111/3)	(111)
62 (Central Dining)	565567.63	4191086.5	85.1	4.6	800	146.0	0.13
63 (Barker)	564668.25	4191897.5	70.2	4.6	800	152.0	0.13
64 (Birge stationary)	565452.94	4191687	98.2	3.0	817	58.5	0.08
105 (Haas Pav)	564939.13	4191457.75	71.1	4.6	811	70.1	0.23
106 (VLSB)	564991.56	4191614.5	73.6	30.5	811	70.1	0.20
107 (Koshland)	564767.38	4191906.75	76.2	0.0	811	70.1	0.18
108 (LSBA)	564930.63	4191564.25	68.8	7.6	811	70.1	0.18
109 (Tan)	565615.81	4191801.25	111.7	3.0	811	70.1	0.15
110 (NWAF-S)	564655.88	4191874.5	68.4	4.6	811	70.1	0.10
111 (Doe-Moffitt Stacks)	565091.13	4191757.75	78.9	3.0	811	70.1	0.11
112 (Res 1-1W)	565542.81	4191208.25	85.7	3.0	811	70.1	0.10
113 (Res 1-2E)	565673.63	4191194.75	92	3.0	811	70.1	0.10
114 (Res 2-1W)	565601.44	4191014.25	86	3.0	811	70.1	0.10
115 (Res 2-2E)	565702.94	4190991.75	91.4	3.0	811	70.1	0.10
117 (Minor)	565575.94	4191609	99.3	3.0	811	70.1	0.10
118 (NWAF-N)	564654.81	4191890.5	68.6	4.6	811	70.1	0.13
119 (Warren)	564728.81	4191771	70.5	4.6	811	70.1	0.08
120 (Sproul)	565318	4191422.5	86.1	3.0	811	70.1	0.08
121 (I- House)	565926.25	4191443	118.9	3.0	811	70.1	0.08
123 (Stanley)	565259.44	4191652.75	88.3	3.0	811	70.1	0.08
125 (EHS/HMF)	564811.19	4191460.75	67.7	3.0	811	70.1	0.08
126 (GBCR)	565137.94	4191441.5	77.6	0.0	811	70.1	0.08
128 (Donner)	565469.25	4191955.25	109.8	3.0	811	70.1	0.05
129 (Birge port)	565383.13	4191740.25	97	2.4	811	70.1	0.05
130 (Hildebrand)	565533.31	4191713.5	98.9	2.4	815	134.5	0.08
131 (Haas Rec. Sports CEV)	564970.31	4191484.25	71.3	1.8	817	58.5	0.08
132 (Mulford CEV)	564800.31	4191781.75	74.3	1.8	817	58.5	0.08
133 (HMMB)	565380	4191939.25	104.3	3.0	769	135.1	0.13

Volume Source Parameters					
Building and Modeling Source ID	UTM Coordinates (m)	(m)	Base Elevation (m)	Stack Height (m)	Initial Vertical Dimension (m)
Morgan Hall	, ,	, ,	•		, ,
MHSTK5	564821.19	4191842.75	75	6.95	2.42
Stanley Hall					
STHSTK10	565522.63	4191880.75	113	14.02	5.39
s Painting Acitvities					
PAINT1	564917.13	4191432.5	72	4.57	4.25
PAINT2	565322.69	4191834.75	96	4.57	4.25
PAINT3	565541.5	4191525.75	97	4.57	4.25
PAINT4	564865.69	4191751	77	4.57	4.25

¹ These parameters were used for the existing conditions modeling for Stanley and Davis Hall. New design parameters were used for LRDP modeling.

SOURCE PARAMETERS (LRDP)

							Inner
	UTM		Base	Stack	Exit	Exit	Stack
Building and Modeling Source ID	Coordinates		Elevation	Height	Temperature	Velocity	Diameter
g	(m)	(m)	(m)	(m)	(K)	(m/s)	(m)
Laboratories		()				()	
NEQSS Projects (currently under construct	ion)						
NEW STANLEY 1	565533.9	4191903.9	112.9	41.9012	293.15	17.249	0.762
NEW STANLEY 2	565535.5	4191899.1	112.9	41.9012	293.15	17.249	0.762
NEW STANLEY 3	565537.2	4191894.4	112.9	41.9012	293.15	17.249	0.762
NEW STANLEY 4	565538.8	4191889.7	112.9	41.9012	293.15	17.249	0.6096
NEW STANLEY 5	565545.4	4191891.5	112.9	41.9012	293.15	17.249	0.762
NEW STANLEY 6	565543.61	4191896.3	112.9	41.9012	293.15	17.249	0.762
NEW STANLEY 7	565542	4191901.1	112.9	41.9012	293.15	17.249	0.762
NEW STANLEY 8	565540.3	4191905.8	112.9	41.9012	293.15	17.249	0.762
NEW DAVIS 1	565340.58	4191981.1	108.9	33.7895	293.15	12.656	1.6255
NEW DAVIS 2	565338.69	4191980.6	108.9	33.7895	293.15	12.656	1.6255
NEW DAVIS 3	565329.47	4191986.6	109.2	33.7895	293.15	13.617	0.8636
NEW DAVIS 4	565328.36	4191986.3	109.2	33.7895	293.15	13.617	0.8636
Assumed LRDP Laboratory Emission Locat	tions						
Zone A	564808.75	4191708.3	70.5	6.096	293.15	3.97	1
Zone B	565047	4191787.5	77.9	6.096	293.15	3.97	1
Zone C	565301.88	4191832	90.7	6.096	293.15	3.97	1
Zone D	565490.25	4191861.5	106.7	6.096	293.15	3.97	1
Zone E	565089.5	4191460.8	73.6	6.096	293.15	3.97	1
Zone F	565368.75	4191521.8	86.7	6.096	293.15	3.97	1
Zone G	565641.69	4191569.5	102.4	6.096	293.15	3.97	1
Emergency Generators							
Stanley Hall (NEQSS)	565539.13	4191905.3	114.2	2.1336	769.26	76.14	0.1778
Davis Hall North (NEQSS)	565364.13	4191990.5	109.8	2.1336	769.26	76.14	0.1778
McCone	565176.38	4191928.8	93.8	2.1336	810.93	59.08	0.127
SRB1	564595.25	4191928.3	67.3	2.1336	810.93	59.08	0.127
New Lab	564559.25	4191851	64.9	2.1336	769.26	76.14	0.1778
Music Library	565510.94	4191488.8	94.8	2.1336	810.93	59.08	0.127
Unit 1 Infill Housing	565595.56	4191185	87.9	2.1336	810.93	59.08	0.127
Unit 2 Infill Housing	565647	4191033.3	88.8	2.1336	810.93	59.08	0.127
Unit 3	565112.13	4191138.8	72.6	2.1336	810.93	59.08	0.127
116 Tang Center1	564775.81	4191177.5	63.2	2.1336	810.93	87.63	0.1524

ANNUAL LABORATORY EMISSIONS BY BUILDING UNDER EXISTING CONDITIONS

Chemical	Barker Hall	Cory Hall	Davis/ Etcheverry Hall (Existing) ¹ (g/s)	Gillman/ Birge/ LeConte Hall (g/s)	Hesse/ McCone/ O'Brien (g/s)	Hildebrand/ Giauque/ Minor/ Minor Add Hall (g/s)	Hilgard Hall (g/s)	Koshland Hall (g/s)	Latimer Hall (g/s)	Lewis Hall	LSA	Morgan Hall (g/s)	Mulford Hall	Northwest Animal Facilty (g/s)	Stanley Hall (Existing) ¹	Tan Hall (g/s)	Valley Life Sciences Building (g/s)	Warren Hall	Wellman Hall (g/s)
Tier I	(5/3)	(g/3)	(5/3)	(5/3)	(5/3)	(5/3)	(5/3)	(5/3)	(g/3)	(5/3)	(5/3)	(5/3)	(5/3)	(g/s)	(5/3)	(g/3)	(5/3)	(5/3)	(5/3)
Acetonitrile	1.83E-04	0.00E+00	4.82E-05	6.39E-05	0.00E+00	2.98E-04	3.18E-05	2.45E-04	5.12E-04	1.35E-04	1.71E-04	5.20E-05	0.00E+00	0.00E+00	4.37E-04	2.21E-04	1.05E-05	4.95E-05	0.00E+00
Benzene	1.21E-06	0.00E+00	6.86E-07	1.60E-05	6.18E-06	7.13E-05	1.06E-05	1.48E-06	1.23E-04	3.22E-05	6.02E-06	5.81E-07	0.00E+00	0.00E+00	2.22E-06	5.29E-05	7.39E-07	2.64E-07	0.00E+00
Carbon tetrachloride	1.14E-05	0.00E+00	0.00E+00	3.94E-05	1.15E-05	5.86E-06	6.01E-06	8.20E-05	1.01E-05	2.65E-06	2.94E-05	4.49E-06	0.00E+00	0.00E+00	2.25E-06	4.35E-06	3.45E-07	0.00E+00	0.00E+00
Chloroform	2.61E-04	1.17E-05	6.21E-07	2.59E-04	2.31E-06	8.62E-04	1.99E-05	7.99E-04	1.48E-03	3.88E-04	5.92E-04	5.92E-05	1.78E-07	8.88E-06	5.34E-05	6.37E-04	1.90E-05	4.62E-06	2.40E-06
Dioxane, 1,4-	1.17E-06	0.00E+00	0.00E+00	1.76E-05	1.17E-06	8.34E-05	8.03E-07	2.72E-06	1.41E-04	3.72E-05	1.79E-06	3.16E-05	0.00E+00	0.00E+00	5.07E-06	6.10E-05	0.00E+00	0.00E+00	6.18E-08
Formaldehyde	5.05E-05	2.88E-07	6.67E-06	1.67E-07	9.60E-08	2.84E-06	6.33E-06	5.72E-05	1.34E-06	3.51E-07	9.88E-04	9.88E-06	0.00E+00	9.23E-05	9.12E-06	5.76E-07	4.87E-04	9.55E-06	4.80E-08
n-Hexane	9.90E-06	0.00E+00	1.63E-05	6.29E-05	5.15E-07	1.77E-06	1.58E-05	5.11E-06	3.05E-06	8.02E-07	4.67E-06	2.81E-05	0.00E+00	3.96E-06	1.58E-05	1.32E-06	8.35E-06	1.03E-06	0.00E+00
Hydrazine	0.00E+00	0.00E+00	0.00E+00	7.48E-08	0.00E+00	4.10E-07	0.00E+00	1.03E-06	6.00E-07	1.58E-07	2.18E-07	1.21E-07	0.00E+00	0.00E+00	1.21E-07	2.59E-07	0.00E+00	0.00E+00	0.00E+00
Hydrogen chloride	8.89E-05	3.73E-05	1.55E-05	2.04E-05	8.05E-04	2.90E-05	3.82E-04	1.19E-03	4.11E-05	1.08E-05	1.01E-04	8.43E-05	0.00E+00	2.81E-06	2.59E-05	1.77E-05	2.51E-03	4.36E-06	5.57E-06
Isopropyl alcohol	1.35E-03	1.42E-04	2.79E-04	5.20E-04	6.35E-04	9.62E-05	8.89E-05	7.78E-04	1.45E-04	3.80E-05	2.48E-03	2.38E-04	3.79E-07	2.36E-04	1.38E-04	6.23E-05	1.77E-04	6.01E-05	4.17E-06
Methanol	2.64E-03	1.46E-04	3.17E-04	7.19E-04	1.08E-04	7.72E-04	1.17E-04	5.04E-04	1.32E-03	3.47E-04	5.45E-04	8.05E-05	4.75E-05	1.85E-06	6.35E-04	5.70E-04	8.69E-05	2.48E-04	1.38E-05
Methylene chloride	6.97E-05	0.00E+00	1.25E-05	7.41E-04	8.38E-06	3.42E-03	3.99E-06	4.28E-05	5.88E-03	1.55E-03	5.62E-05	2.55E-05	4.39E-06	0.00E+00	4.42E-05	2.54E-03	2.53E-05	0.00E+00	1.60E-07
Tetrachloroethylene (Perch)	0.00E+00	0.00E+00	1.94E-07	6.73E-07	4.86E-06	3.14E-06	1.26E-06	0.00E+00	5.40E-06	1.42E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.33E-06	0.00E+00	0.00E+00	0.00E+00
Toulene	1.76E-05	0.00E+00	8.45E-06	6.90E-05	1.13E-05	2.47E-04	4.10E-05	5.42E-05	4.24E-04	1.12E-04	2.44E-05	1.85E-05	0.00E+00	6.57E-06	8.35E-07	1.83E-04	7.36E-06	0.00E+00	0.00E+00
Trichloroethane (1,1,1-)	0.00E+00	1.31E-04	0.00E+00	8.58E-06	2.09E-06	6.77E-07	0.00E+00	0.00E+00	1.16E-06	3.06E-07	9.64E-07	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.02E-07	8.04E-08	4.18E-06	0.00E+00
Trichloroethylene	0.00E+00	1.16E-05	9.19E-06	1.26E-05	6.92E-06	0.00E+00	0.00E+00	9.19E-06	0.00E+00	0.00E+00	4.55E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Xylenes	6.26E-06	0.00E+00	1.25E-06	9.42E-06	4.96E-06	3.02E-05	1.22E-05	9.33E-05	1.44E-05	3.79E-06	1.42E-04	6.68E-06	1.04E-07	5.12E-05	9.39E-07	6.22E-06	1.18E-05	1.41E-05	5.22E-07
Tier II					T	T.			T	T	T	1			1		T	1	
Bromine (bromine gas, hydrogen bromide, bromide pentafluoride, other inorganic compounds)	0.00E+00	1.12E-06	0.00E+00	3.90E-06	1.87E-07	6.84E-06	0.00E+00	7.49E-07	1.18E-05	3.09E-06	0.00E+00	1.12E-06	0.00E+00	0.00E+00	0.00E+00	5.07E-06	0.00E+00	0.00E+00	0.00E+00
Butyl alcohol, tert-	1.27E-05	1.23E-06	9.48E-08	4.55E-07	1.12E-05	2.12E-06	1.22E-05	1.00E-02	3.65E-06	9.60E-07	7.11E-07	7.11E-07	0.00E+00	0.00E+00	5.59E-06	1.57E-06	0.00E+00	0.00E+00	0.00E+00
Dimethylformamide	5.07E-06	0.00E+00	0.00E+00	3.69E-06	3.42E-07	1.72E-05	1.14E-07	3.76E-06	2.96E-05	7.78E-06	4.99E-05	1.20E-06	0.00E+00	0.00E+00	1.48E-06	1.28E-05	0.00E+00	6.84E-06	1.14E-07
Epichlorohydrin	0.00E+00	0.00E+00	0.00E+00	1.65E-07	0.00E+00	7.69E-07	0.00E+00	0.00E+00	1.32E-06	3.47E-07	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.08E-08	5.70E-07	0.00E+00	0.00E+00	0.00E+00
Ethanol	6.39E-02	0.00E+00	9.15E-04	1.97E-03	7.28E-04	3.30E-03	5.89E-04	5.02E-03	4.97E-03	1.31E-03	1.93E-02	2.14E-03	7.82E-05	1.25E-03	7.75E-03	2.14E-03	1.38E-01	1.39E-03	1.46E-02
Ethyl acetate	2.89E-05	0.00E+00	7.02E-07	4.45E-04	0.00E+00	2.08E-03	4.94E-05	3.11E-05	3.57E-03	9.38E-04	2.69E-05	1.39E-05	0.00E+00	0.00E+00	8.10E-06	1.54E-03	5.83E-06	2.81E-06	7.77E-06
Ethyl ether	1.83E-05	0.00E+00	0.00E+00	2.43E-04	2.81E-05	1.13E-03	4.26E-07	8.39E-06	1.95E-03	5.13E-04	2.48E-05	2.47E-06	2.13E-06	4.47E-06	6.17E-06	8.41E-04	2.43E-06	2.13E-07	4.26E-08
Glutaraldehyde	1.39E-06	0.00E+00	1.32E-07	9.95E-09	0.00E+00	5.26E-06	0.00E+00	2.80E-05	7.99E-08	2.10E-08	1.38E-05	7.26E-07	0.00E+00	4.35E-06	5.08E-06	3.44E-08	3.30E-07	0.00E+00	0.00E+00
Hydrogen fluoride	0.00E+00	1.39E-04	0.00E+00	9.26E-07	4.41E-05	1.02E-07	2.09E-07	4.52E-07	1.75E-07	4.61E-08	8.70E-07	0.00E+00	4.17E-07	0.00E+00	0.00E+00	7.57E-08	3.12E-05	0.00E+00	0.00E+00
Methyl bromide	0.00E+00	0.00E+00	0.00E+00	1.99E-06	0.00E+00	9.30E-06	1.38E-02	0.00E+00	1.60E-05	4.20E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.89E-06	0.00E+00	0.00E+00	0.00E+00
Phosgene	0.00E+00	0.00E+00	0.00E+00	5.29E-07	0.00E+00	2.47E-06	0.00E+00	0.00E+00	4.25E-06	1.12E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.83E-06	0.00E+00	0.00E+00	0.00E+00
Pyridine	3.12E-06	0.00E+00	0.00E+00	7.84E-06	7.64E-07	1.49E-05	3.88E-06	1.19E-05	2.56E-05	6.74E-06	6.76E-06	9.99E-07	0.00E+00	0.00E+00	1.18E-07	1.11E-05	3.88E-06	5.88E-08	0.00E+00
Tetrahydrofuran	6.94E-07	0.00E+00	5.34E-08	1.18E-04	0.00E+00	5.49E-04	0.00E+00	4.43E-06	9.44E-04	2.48E-04	2.17E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.07E-04	0.00E+00	0.00E+00	5.34E-08
Triethylamine	9.85E-06	0.00E+00	0.00E+00	4.35E-06	0.00E+00	2.03E-05	0.00E+00	9.94E-06	3.49E-05	9.19E-06	2.71E-06	0.00E+00	0.00E+00	0.00E+00	2.32E-06	1.51E-05	5.69E-07	8.76E-08	3.46E-06
Hydrogen-3 (Tritium)	9.12E-15	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.47E-15	2.21E-14	0.00E+00	0.00E+00	1.68E-14	5.40E-15	2.43E-15	5.11E-16	4.09E-16	0.00E+00	2.17E-14	3.15E-15	2.83E-15
Iodine-125	3.65E-15	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.99E-15	8.82E-15	0.00E+00	0.00E+00	6.74E-15	2.16E-15	9.74E-16	2.05E-16	1.64E-16	0.00E+00	8.69E-15	1.26E-15	1.13E-15

¹ These emissions used for existing modeling only. The LRDP modeling accounts for the buildings under construction.

HOURLY LABORATORY EMISSIONS BY BUILDING UNDER EXISTING CONDITIONS

Chemical	Barker Hall (g/s)	Cory Hall	Davis/ Etcheverry Hall (Existing) ¹	Gillman/ Birge/ LeConte Hall (g/s)	Hesse/ McCone/ O'Brien	Hildebrand/ Giauque/ Minor/ Minor Add Hall (g/s)	Hilgard Hall (g/s)	Koshland Hall (g/s)	Latimer Hall	Lewis Hall	LSA	Morgan Hall	Mulford Hall	Northwest Animal Facilty (g/s)	Stanley Hall (Existing) ¹ (g/s)	Tan Hall (g/s)	Valley Life Sciences Building (g/s)	Warren Hall (g/s)	Wellman Hall (g/s)
Tier I	(5/3)	(5/3)		(5/3)	(5/3)	(5/3)	(5/3)	(5/3)	(5/3)	(5/3)	(8/3)	(5/3)	(5/3)	(5/3)	(5/3)	(5/3)	(5/3)	(5/3)	(5/3)
Acetonitrile	9.46E-04	0.00E+00	2.50E-04	3.31E-04	0.00E+00	1.54E-03	1.65E-04	1.27E-03	2.65E-03	6.98E-04	8.85E-04	2.69E-04	0.00E+00	0.00E+00	2.27E-03	1.14E-03	5.43E-05	2.57E-04	0.00E+00
Benzene	6.29E-06	0.00E+00	3.55E-06	8.27E-05	3.20E-05	3.69E-04	5.50E-05	7.66E-06	6.35E-04	1.67E-04	3.12E-05	3.01E-06	0.00E+00	0.00E+00	1.15E-05	2.74E-04	3.83E-06	1.37E-06	0.00E+00
Carbon tetrachloride	5.93E-05	0.00E+00	0.00E+00	2.04E-04	5.94E-05	3.04E-05	3.11E-05	4.25E-04	5.22E-05	1.37E-05	1.52E-04	2.33E-05	0.00E+00	0.00E+00	1.16E-05	2.25E-05	1.79E-06	0.00E+00	0.00E+00
Chloroform	1.35E-03	6.07E-05	3.22E-06	1.34E-03	1.20E-05	4.46E-03	1.03E-04	4.14E-03	7.65E-03	2.01E-03	3.07E-03	3.07E-04	9.20E-07	4.60E-05	2.77E-04	3.30E-03	9.84E-05	2.39E-05	1.24E-05
Dioxane, 1,4-	6.08E-06	0.00E+00	0.00E+00	9.13E-05	6.08E-06	4.32E-04	4.16E-06	1.41E-05	7.32E-04	1.93E-04	9.28E-06	1.64E-04	0.00E+00	0.00E+00	2.62E-05	3.16E-04	0.00E+00	0.00E+00	3.20E-07
Formaldehyde	2.61E-04	1.49E-06	3.45E-05	8.63E-07	4.97E-07	1.47E-05	3.28E-05	2.96E-04	6.92E-06	1.82E-06	5.12E-03	5.12E-05	0.00E+00	4.78E-04	4.72E-05	2.98E-06	2.52E-03	4.95E-05	2.49E-07
n-Hexane	5.13E-05	0.00E+00	8.43E-05	3.26E-04	2.67E-06	9.19E-06	8.20E-05	2.65E-05	1.58E-05	4.15E-06	2.42E-05	1.46E-04	0.00E+00	2.05E-05	8.16E-05	6.81E-06	4.33E-05	5.33E-06	0.00E+00
Hydrazine	0.00E+00	0.00E+00	0.00E+00	3.87E-07	0.00E+00	2.12E-06	0.00E+00	5.33E-06	3.11E-06	8.17E-07	1.13E-06	6.28E-07	0.00E+00	0.00E+00	6.28E-07	1.34E-06	0.00E+00	0.00E+00	0.00E+00
Hydrogen chloride	4.60E-04	1.93E-04	8.02E-05	1.06E-04	4.17E-03	1.50E-04	1.98E-03	6.16E-03	2.13E-04	5.60E-05	5.21E-04	4.37E-04	0.00E+00	1.46E-05	1.34E-04	9.18E-05	1.30E-02	2.26E-05	2.89E-05
Isopropyl alcohol	6.98E-03	7.35E-04	1.45E-03	2.69E-03	3.29E-03	4.98E-04	4.60E-04	4.03E-03	7.49E-04	1.97E-04	1.29E-02	1.23E-03	1.96E-06	1.22E-03	7.15E-04	3.23E-04	9.19E-04	3.11E-04	2.16E-05
Methanol	1.37E-02	7.59E-04	1.64E-03	3.72E-03	5.59E-04	4.00E-03	6.06E-04	2.61E-03	6.84E-03	1.80E-03	2.82E-03	4.17E-04	2.46E-04	9.57E-06	3.29E-03	2.95E-03	4.50E-04	1.28E-03	7.14E-05
Methylene chloride	3.61E-04	0.00E+00	6.49E-05	3.84E-03	4.34E-05	1.77E-02	2.07E-05	2.22E-04	3.05E-02	8.01E-03	2.91E-04	1.32E-04	2.27E-05	0.00E+00	2.29E-04	1.31E-02	1.31E-04	0.00E+00	8.26E-07
Tetrachloroethylene (Perch)	0.00E+00	0.00E+00	1.01E-06	3.49E-06	2.52E-05	1.63E-05	6.54E-06	0.00E+00	2.80E-05	7.36E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.21E-05	0.00E+00	0.00E+00	0.00E+00
Toulene	9.11E-05	0.00E+00	4.38E-05	3.58E-04	5.84E-05	1.28E-03	2.12E-04	2.81E-04	2.20E-03	5.78E-04	1.26E-04	9.60E-05	0.00E+00	3.41E-05	4.32E-06	9.48E-04	3.81E-05	0.00E+00	0.00E+00
Trichloroethane (1,1,1-)	0.00E+00	6.79E-04	0.00E+00	4.45E-05	1.08E-05	3.50E-06	0.00E+00	0.00E+00	6.02E-06	1.58E-06	5.00E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.60E-06	4.16E-07	2.16E-05	0.00E+00
Trichloroethylene	0.00E+00	5.99E-05	4.76E-05	6.53E-05	3.58E-05	0.00E+00	0.00E+00	4.76E-05	0.00E+00	0.00E+00	2.36E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Xylenes	3.24E-05	0.00E+00	6.49E-06	4.88E-05	2.57E-05	1.56E-04	6.32E-05	4.83E-04	7.47E-05	1.96E-05	7.38E-04	3.46E-05	5.41E-07	2.65E-04	4.87E-06	3.22E-05	6.11E-05	7.30E-05	2.70E-06
TP: 11																			
Tier II Bromine (bromine gas, hydrogen bromide, bromide																			
pentafluoride, other inorganic compounds)	0.00E+00	5.82E-06	0.00E+00	2.02E-05	9.69E-07	3.54E-05	0.00E+00	3.88E-06	6.09E-05	1.60E-05	0.00E+00	5.82E-06	0.00E+00	0.00E+00	0.00E+00	2.63E-05	0.00E+00	0.00E+00	0.00E+00
Butyl alcohol, tert-	6.60E-05	6.38E-06	4.91E-07	2.36E-06	5.82E-05	1.10E-05	6.33E-05	5.20E-02	1.89E-05	4.97E-06	3.68E-06	3.68E-06	0.00E+00	0.00E+00	2.90E-05	8.15E-06	0.00E+00	0.00E+00	0.00E+00
Dimethylformamide	2.63E-05	0.00E+00	0.00E+00	1.91E-05	1.77E-06	8.91E-05	5.90E-07	1.95E-05	1.53E-04	4.03E-05	2.58E-04	6.20E-06	0.00E+00	0.00E+00	7.67E-06	6.61E-05	0.00E+00	3.54E-05	5.90E-07
Epichlorohydrin	0.00E+00	0.00E+00	0.00E+00	8.53E-07	0.00E+00	3.98E-06	0.00E+00	0.00E+00	6.84E-06	1.80E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.67E-07	2.95E-06	0.00E+00	0.00E+00	0.00E+00
Ethanol	3.31E-01	0.00E+00	4.74E-03	1.02E-02	3.77E-03	1.71E-02	3.05E-03	2.60E-02	2.57E-02	6.77E-03	1.00E-01	1.11E-02	4.05E-04	6.48E-03	4.02E-02	1.11E-02	7.13E-01	7.20E-03	7.58E-02
Ethyl acetate	1.50E-04	0.00E+00	3.64E-06	2.30E-03	0.00E+00	1.08E-02	2.56E-04	1.61E-04	1.85E-02	4.86E-03	1.39E-04	7.21E-05	0.00E+00	0.00E+00	4.19E-05	7.97E-03	3.02E-05	1.45E-05	4.03E-05
Ethyl ether	9.49E-05	0.00E+00	0.00E+00	1.26E-03	1.46E-04	5.87E-03	2.21E-06	4.35E-05	1.01E-02	2.66E-03	1.28E-04	1.28E-05	1.10E-05	2.32E-05	3.20E-05	4.36E-03	1.26E-05	1.10E-06	2.21E-07
Glutaraldehyde	7.18E-06	0.00E+00	6.84E-07	5.16E-08	0.00E+00	2.72E-05	0.00E+00	1.45E-04	4.14E-07	1.09E-07	7.14E-05	3.76E-06	0.00E+00	2.26E-05	2.63E-05	1.78E-07	1.71E-06	0.00E+00	0.00E+00
Hydrogen fluoride	0.00E+00	7.23E-04	0.00E+00	4.80E-06	2.29E-04	5.29E-07	1.08E-06	2.34E-06	9.09E-07	2.39E-07	4.50E-06	0.00E+00	2.16E-06	0.00E+00	0.00E+00	3.92E-07	1.62E-04	0.00E+00	0.00E+00
Methyl bromide	0.00E+00	0.00E+00	0.00E+00	1.03E-05	0.00E+00	4.82E-05	7.14E-02	0.00E+00	8.28E-05	2.18E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.57E-05	0.00E+00	0.00E+00	0.00E+00
Phosgene	0.00E+00	0.00E+00	0.00E+00	2.74E-06	0.00E+00	1.28E-05	0.00E+00	0.00E+00	2.20E-05	5.79E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.49E-06	0.00E+00	0.00E+00	0.00E+00
Pyridine	1.61E-05	0.00E+00	0.00E+00	4.06E-05	3.96E-06	7.72E-05	2.01E-05	6.15E-05	1.33E-04	3.49E-05	3.50E-05	5.18E-06	0.00E+00	0.00E+00	6.09E-07	5.73E-05	2.01E-05	3.04E-07	0.00E+00
Tetrahydrofuran	3.59E-06	0.00E+00	2.77E-07	6.10E-04	0.00E+00	2.85E-03	0.00E+00	2.30E-05	4.89E-03	1.29E-03	1.12E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.11E-03	0.00E+00	0.00E+00	2.77E-07
Triethylamine	5.10E-05	0.00E+00	0.00E+00	2.26E-05	0.00E+00	1.05E-04	0.00E+00	5.15E-05	1.81E-04	4.76E-05	1.41E-05	0.00E+00	0.00E+00	0.00E+00	1.20E-05	7.80E-05	2.95E-06	4.54E-07	1.79E-05
Hydrogen-3 (Tritium)	4.73E-14	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.87E-14	1.14E-13	0.00E+00	0.00E+00	8.72E-14	2.80E-14	1.26E-14	2.65E-15	2.12E-15	0.00E+00	1.12E-13	1.63E-14	1.47E-14
Iodine-125	1.89E-14	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.55E-14	4.57E-14	0.00E+00	0.00E+00	3.49E-14	1.12E-14	5.05E-15	1.06E-15	8.47E-16	0.00E+00	4.50E-14	6.53E-15	5.87E-15

¹ These emissions used for existing modeling only. The LRDP modeling accounts for the buildings under construction.

ANNUAL EMISSION RATES FOR LRDP PROPOSED WET LABORATORIES

Chemical	A - Northwest Area	B - Northwest- Center Area	C - Northeast- Center Area	D - Northeast Area	E - Southwest Center Area	F - Southeast- Center Area	G - Southeast- Area	Davis Hall - Additional Labs ¹	Stanley - Additional Labs ¹
					(g/s)				
Tier I									
Acetonitrile	1.43E-03	2.89E-04	1.61E-04	8.59E-05	2.29E-04	1.82E-04	5.23E-05	7.12E-04	1.49E-03
Benzene	2.54E-04	5.15E-05	2.87E-05	1.53E-05	4.08E-05	3.23E-05	9.30E-06	1.27E-04	2.65E-04
Carbon tetrachloride	6.97E-05	1.41E-05	7.88E-06	4.20E-06	1.12E-05	8.88E-06	2.55E-06	3.48E-05	7.29E-05
Chloroform	3.08E-03	6.25E-04	3.48E-04	1.85E-04	4.95E-04	3.92E-04	1.13E-04	1.54E-03	3.22E-03
Dioxane, 1,4-	2.95E-04	5.98E-05	3.33E-05	1.78E-05	4.74E-05	3.75E-05	1.08E-05	1.47E-04	3.08E-04
Formaldehyde	8.77E-04	1.78E-04	9.91E-05	5.28E-05	1.41E-04	1.12E-04	3.21E-05	4.42E-04	9.17E-04
n-Hexane	9.11E-05	1.85E-05	1.03E-05	5.48E-06	1.46E-05	1.16E-05	3.34E-06	5.12E-05	9.53E-05
Hydrazine	1.34E-06	2.71E-07	1.51E-07	8.05E-08	2.15E-07	1.70E-07	4.90E-08	6.67E-07	1.40E-06
Hydrogen chloride	2.25E-03	4.57E-04	2.55E-04	1.36E-04	3.62E-04	2.87E-04	8.26E-05	1.13E-03	2.36E-03
Isopropyl alcohol	2.85E-03	5.77E-04	3.22E-04	1.71E-04	4.57E-04	3.63E-04	1.04E-04	1.52E-03	2.98E-03
Methanol	1.30E-02	2.64E-03	1.47E-03	7.84E-04	2.09E-03	1.66E-03	4.77E-04	6.52E-03	1.36E-02
Methylene chloride	1.21E-02	2.46E-03	1.37E-03	7.30E-04	1.95E-03	1.54E-03	4.44E-04	6.06E-03	1.27E-02
Tetrachloroethylene (Perch)	1.11E-05	2.25E-06	1.25E-06	6.68E-07	1.78E-06	1.41E-06	4.07E-07	5.54E-06	1.16E-05
Toulene	8.72E-04	1.77E-04	9.86E-05	5.25E-05	1.40E-04	1.11E-04	3.20E-05	4.35E-04	9.13E-04
Trichloroethane (1,1,1-)	1.55E-04	3.14E-05	1.75E-05	9.33E-06	2.49E-05	1.97E-05	5.68E-06	7.74E-05	1.62E-04
Trichloroethylene	4.41E-05	8.93E-06	4.98E-06	2.65E-06	7.08E-06	5.61E-06	1.61E-06	3.12E-05	4.61E-05
Xylenes	1.74E-04	3.53E-05	1.97E-05	1.05E-05	2.80E-05	2.22E-05	6.38E-06	8.76E-05	1.82E-04
Tier II									
Bromine (bromine gas, hydrogen bromide, bromide	2.42E-05	4.90E-06	2.73E-06	1.46E-06	3.88E-06	3.08E-06	8.86E-07	1.21E-05	2.53E-05
pentafluoride, other inorganic compounds)									
Butyl alcohol, tert-	5.16E-03	1.05E-03	5.83E-04	3.11E-04	8.29E-04	6.57E-04	1.89E-04	2.58E-03	5.40E-03
Dimethylformamide	6.20E-05	1.26E-05	7.01E-06	3.73E-06	9.96E-06	7.90E-06	2.27E-06	3.09E-05	6.49E-05
Epichlorohydrin	2.77E-06	5.63E-07	3.14E-07	1.67E-07	4.46E-07	3.53E-07	1.02E-07	1.38E-06	2.90E-06
Ethanol	8.67E-02	1.76E-02	9.80E-03	5.22E-03	1.39E-02	1.10E-02	3.18E-03	4.41E-02	9.07E-02
Ethyl acetate	7.34E-03	1.49E-03	8.29E-04	4.42E-04	1.18E-03	9.34E-04	2.69E-04	3.66E-03	7.67E-03
Ethyl ether	4.01E-03	8.13E-04	4.53E-04	2.41E-04	6.44E-04	5.11E-04	1.47E-04	2.00E-03	4.19E-03
Glutaraldehyde	2.75E-05	5.58E-06	3.11E-06	1.66E-06	4.43E-06	3.51E-06	1.01E-06	1.39E-05	2.88E-05
Hydrogen fluoride	2.02E-04	4.09E-05	2.28E-05	1.22E-05	3.24E-05	2.57E-05	7.40E-06	1.01E-04	2.11E-04
Methyl bromide	7.06E-03	1.43E-03	7.98E-04	4.25E-04	1.14E-03	9.00E-04	2.59E-04	3.53E-03	7.39E-03
Phosgene	8.73E-06	1.77E-06	9.86E-07	5.25E-07	1.40E-06	1.11E-06	3.20E-07	4.35E-06	9.13E-06
Pyridine	5.27E-05	1.07E-05	5.96E-06	3.18E-06	8.48E-06	6.72E-06	1.93E-06	2.63E-05	5.52E-05
Tetrahydrofuran	1.94E-03	3.93E-04	2.19E-04	1.17E-04	3.12E-04	2.47E-04	7.11E-05	9.68E-04	2.03E-03
Triethylamine	7.37E-05	1.50E-05	8.34E-06	4.44E-06	1.19E-05	9.39E-06	2.70E-06	3.68E-05	7.71E-05
Hydrogen-3 (Tritium)	3.50E-09	7.09E-10	3.95E-10	2.11E-10	5.62E-10	4.45E-10	1.28E-10	1.75E-09	3.66E-09
Iodine-125	1.40E-09	2.84E-10	1.58E-10	8.42E-11	2.25E-10	1.78E-10	5.13E-11	6.98E-10	1.46E-09

¹ These laboratories are replacements to those represented in the existing conditions modeling.

HOURLY EMISSION RATES FOR LRDP PROPOSED WET LABORATORIES

Chemical	New Laboratories	A - Northwest Area	B - Northwest- Center Area	C - Northeast- Center Area	D - Northeast Area	E - Southwest Center Area	F - Southeast- Center Area	G - Southeast- Area	Davis Hall - Additional Labs	Stanley - Additional Labs
				(g/s)						
Tier I	1	T	T	1	1	1				
Acetonitrile	2.22E-02	7.39E-03	1.50E-03	8.35E-04	4.45E-04	1.19E-03	9.41E-04	2.71E-04	3.69E-03	7.73E-03
Benzene	3.95E-03	1.31E-03	2.67E-04	1.49E-04	7.92E-05	2.11E-04	1.67E-04	4.82E-05	6.56E-04	1.38E-03
Carbon tetrachloride	1.08E-03	3.61E-04	7.32E-05	4.08E-05	2.17E-05	5.80E-05	4.60E-05	1.32E-05	1.80E-04	3.78E-04
Chloroform	4.79E-02	1.60E-02	3.23E-03	1.80E-03	9.61E-04	2.56E-03	2.03E-03	5.85E-04	7.96E-03	1.67E-02
Dioxane, 1,4-	4.59E-03	1.53E-03	3.10E-04	1.73E-04	9.20E-05	2.45E-04	1.95E-04	5.60E-05	7.62E-04	1.60E-03
Formaldehyde	1.36E-02	4.54E-03	9.21E-04	5.13E-04	2.73E-04	7.30E-04	5.78E-04	1.66E-04	2.29E-03	4.75E-03
n-Hexane	1.42E-03	4.72E-04	9.56E-05	5.33E-05	2.84E-05	7.58E-05	6.01E-05	1.73E-05	2.65E-04	4.93E-04
Hydrazine	2.08E-05	6.92E-06	1.40E-06	7.82E-07	4.17E-07	1.11E-06	8.82E-07	2.54E-07	3.45E-06	7.24E-06
Hydrogen chloride	3.51E-02	1.17E-02	2.37E-03	1.32E-03	7.03E-04	1.88E-03	1.49E-03	4.28E-04	5.83E-03	1.22E-02
Isopropyl alcohol	4.43E-02	1.47E-02	2.99E-03	1.67E-03	8.88E-04	2.37E-03	1.88E-03	5.40E-04	7.88E-03	1.54E-02
Methanol	2.03E-01	6.75E-02	1.37E-02	7.63E-03	4.06E-03	1.08E-02	8.59E-03	2.47E-03	3.38E-02	7.06E-02
Methylene chloride	1.89E-01	6.28E-02	1.27E-02	7.09E-03	3.78E-03	1.01E-02	7.99E-03	2.30E-03	3.14E-02	6.57E-02
Tetrachloroethylene (Perch)	1.73E-04	5.75E-05	1.17E-05	6.49E-06	3.46E-06	9.23E-06	7.32E-06	2.11E-06	2.87E-05	6.01E-05
Toulene	1.36E-02	4.52E-03	9.16E-04	5.11E-04	2.72E-04	7.26E-04	5.76E-04	1.66E-04	2.26E-03	4.73E-03
Trichloroethane (1,1,1-)	2.41E-03	8.03E-04	1.63E-04	9.07E-05	4.83E-05	1.29E-04	1.02E-04	2.94E-05	4.01E-04	8.40E-04
Trichloroethylene	6.86E-04	2.28E-04	4.63E-05	2.58E-05	1.37E-05	3.67E-05	2.91E-05	8.36E-06	1.62E-04	2.39E-04
Xylenes	2.71E-03	9.02E-04	1.83E-04	1.02E-04	5.43E-05	1.45E-04	1.15E-04	3.30E-05	4.54E-04	9.43E-04
Tier II										
Bromine (bromine gas, hydrogen bromide, bromide pentafluoride, other inorganic compounds)	3.76E-04	1.25E-04	2.54E-05	1.41E-05	7.54E-06	2.01E-05	1.59E-05	4.59E-06	6.25E-05	1.31E-04
Butyl alcohol, tert-	8.03E-02	2.67E-02	5.42E-03	3.02E-03	1.61E-03	4.30E-03	3.40E-03	9.80E-04	1.33E-02	2.80E-02
Dimethylformamide	9.65E-04	3.21E-04	6.51E-05	3.63E-05	1.93E-05	5.16E-05	4.09E-05	1.18E-05	1.60E-04	3.36E-04
Epichlorohydrin	4.32E-05	1.44E-05	2.91E-06	1.62E-06	8.65E-07	2.31E-06	1.83E-06	5.27E-07	7.17E-06	1.50E-05
Ethanol	1.35E+00	4.49E-01	9.11E-02	5.08E-02	2.70E-02	7.22E-02	5.72E-02	1.65E-02	2.28E-01	4.70E-01
Ethyl acetate	1.14E-01	3.80E-02	7.71E-03	4.30E-03	2.29E-03	6.11E-03	4.84E-03	1.39E-03	1.90E-02	3.98E-02
Ethyl ether	6.24E-02	2.08E-02	4.21E-03	2.35E-03	1.25E-03	3.34E-03	2.65E-03	7.61E-04	1.04E-02	2.17E-02
Glutaraldehyde	4.28E-04	1.43E-04	2.89E-05	1.61E-05	8.59E-06	2.29E-05	1.82E-05	5.23E-06	7.19E-05	1.49E-04
Hydrogen fluoride	3.14E-03	1.05E-03	2.12E-04	1.18E-04	6.30E-05	1.68E-04	1.33E-04	3.83E-05	5.22E-04	1.09E-03
Methyl bromide	1.10E-01	3.66E-02	7.42E-03	4.14E-03	2.20E-03	5.88E-03	4.66E-03	1.34E-03	1.83E-02	3.83E-02
Phosgene	1.36E-04	4.52E-05	9.16E-06	5.11E-06	2.72E-06	7.26E-06	5.76E-06	1.66E-06	2.26E-05	4.73E-05
Pyridine	8.21E-04	2.73E-04	5.54E-05	3.09E-05	1.65E-05	4.39E-05	3.48E-05	1.00E-05	1.36E-04	2.86E-04
Tetrahydrofuran	3.02E-02	1.00E-02	2.04E-03	1.14E-03	6.05E-04	1.61E-03	1.28E-03	3.68E-04	5.02E-03	1.05E-02
Triethylamine	1.15E-03	3.82E-04	7.75E-05	4.32E-05	2.30E-05	6.14E-05	4.87E-05	1.40E-05	1.91E-04	4.00E-04
Hydrogen-3 (Tritium)	5.44E-08	1.81E-08	3.67E-09	2.05E-09	1.09E-09	2.91E-09	2.31E-09	6.64E-10	9.04E-09	1.89E-08
Iodine-125	2.18E-08	7.25E-09	1.47E-09	8.19E-10	4.36E-10	1.16E-09	9.23E-10	2.66E-10	3.62E-09	7.58E-09

CANCER RISK MODEL INPUTS BY BUILDING UNDER EXISTING CONDITIONS

Chemical	Unit Risk Factor			Davis/ Etcheverry Hall (Existing) ¹	Gillman/ Birge/ LeConte Hall	Hesse/ McCone/ O'Brien	Hildebrand/ Giauque/ Minor/ Minor Add Hall		Koshland Hall	Latimer Hall		LSA	Morgan Hall	Mulford Hall	Northwest Animal Facilty	Stanley Hall (Existing) ¹	Tan Hall	Valley Life Sciences Building	Warren Hall	Hall
Tier I	(μg/m3 -1)	$(g/s/\mu g/m3)$	(g/s/μg/m3)	(g/s/μg/m3)	(g/s/μg/m3)	(g/s/μg/m3)	(g/s/μg/m3)	(g/s/μg/m3)	(g/s/μg/m3)	(g/s/μg/m3)	(g/s/μg/m3)	(g/s/μg/m3)	(g/s/μg/m3)	(g/s/μg/m3)	(g/s/μg/m3)	(g/s/μg/m3)	(g/s/μg/m3)	(g/s/µg/m3)	(g/s/μg/m3)	(g/s/μg/m3)
Acetonitrile																				
Benzene	2.90E-05	3.52E-11	0.00E+00	1.99E-11	4.63E-10	1.79E-10	2.07E-09	3.08E-10	4.29E-11	3.56E-09	9.35E-10	1.74E-10	1.68E-11	0.00E+00	0.00E+00	6.43E-11	1.53E-09	2.14E-11	7.65E-12	0.00E+00
Carbon tetrachloride	4.20E-05	4.81E-10	0.00E+00	0.00E+00	1.65E-09	4.81E-10	2.46E-10	2.52E-10	3.44E-09	4.23E-10	1.11E-10	1.23E-09	1.89E-10	0.00E+00	0.00E+00	9.43E-11	1.82E-10	1.45E-11	0.00E+00	0.00E+00
Chloroform	5.30E-06	1.38E-09	6.21E-11	3.29E-12	1.37E-09	1.22E-11	4.57E-09	1.05E-10	4.24E-09	7.83E-09	2.06E-09	3.14E-09	3.14E-10	9.41E-13	4.70E-11	2.83E-10	3.38E-09	1.01E-10	2.45E-11	1.27E-11
Dioxane, 1,4-	7.70E-06	9.04E-12	0.00E+00	0.00E+00	1.36E-10	9.04E-12	6.42E-10	6.18E-12	2.09E-11	1.09E-09	2.86E-10	1.38E-11	2.44E-10	0.00E+00	0.00E+00	3.90E-11	4.70E-10	0.00E+00	0.00E+00	4.76E-13
Formaldehyde	6.00E-06	3.03E-10	1.73E-12	4.00E-11	9.99E-13	5.76E-13	1.70E-11	3.80E-11	3.43E-10	8.01E-12	2.11E-12	5.93E-09	5.93E-11	0.00E+00	5.54E-10	5.47E-11	3.46E-12	2.92E-09	5.73E-11	2.88E-13
n-Hexane																				
Hydrazine	4.90E-03	0.00E+00	0.00E+00	0.00E+00	3.66E-10	0.00E+00	2.01E-09	0.00E+00	5.05E-09	2.94E-09	7.73E-10	1.07E-09	5.94E-10	0.00E+00	0.00E+00	5.94E-10	1.27E-09	0.00E+00	0.00E+00	0.00E+00
Hydrogen chloride																				
Isopropyl alcohol																				
Methanol																				
Methylene chloride	1.00E-06	6.97E-11	0.00E+00	1.25E-11	7.41E-10	8.38E-12	3.42E-09	3.99E-12	4.28E-11	5.88E-09	1.55E-09	5.62E-11	2.55E-11	4.39E-12	0.00E+00	4.42E-11	2.54E-09	2.53E-11	0.00E+00	1.60E-13
Tetrachloroethylene (Perch)	5.90E-06	0.00E+00	0.00E+00	1.15E-12	3.97E-12	2.87E-11	1.85E-11	7.45E-12	0.00E+00	3.19E-11	8.38E-12	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.37E-11	0.00E+00	0.00E+00	0.00E+00
Toulene																				
Trichloroethane (1,1,1-)																				
Trichloroethylene	2.00E-06	0.00E+00	2.31E-11	1.84E-11	2.52E-11	1.38E-11	0.00E+00	0.00E+00	1.84E-11	0.00E+00	0.00E+00	9.11E-12	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Xylenes																				
Tier II												I			_	_			_	
Bromine (bromine gas, hydrogen bromide, bromide pentafluoride, other inorganic compounds)																				
Butyl alcohol, tert-																				
Dimethylformamide																				
Epichlorohydrin	2.30E-05	0.00E+00	0.00E+00	0.00E+00	3.79E-12	0.00E+00	1.77E-11	0.00E+00	0.00E+00	3.04E-11	7.99E-12	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.63E-12	1.31E-11	0.00E+00	0.00E+00	0.00E+00
Ethanol																				
Ethyl acetate																				
Ethyl ether																				
Glutaraldehyde																				
Hydrogen fluoride																				
Methyl bromide																				
Phosgene																				
Pyridine																				
Tetrahydrofuran																				
Triethylamine																				
Hydrogen-3 (Tritium)	4.00E-02	3.65E-16	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.99E-16	8.82E-16	0.00E+00	0.00E+00	6.74E-16	2.16E-16	9.74E-17	2.05E-17	1.64E-17	0.00E+00	8.69E-16	1.26E-16	1.13E-16
Iodine-125	2.70E+00	9.85E-15	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.07E-15	2.38E-14	0.00E+00	0.00E+00	1.82E-14	5.84E-15	2.63E-15	5.52E-16	4.42E-16	0.00E+00	2.35E-14	3.40E-15	3.06E-15
Total		2.28E-09	8.69E-11	9.53E-11	4.77E-09	7.33E-10	1.30E-08	7.21E-10	1.32E-08	2.18E-08	5.73E-09	1.16E-08	1.44E-09	5.33E-12	6.01E-10	1.18E-09	9.40E-09	3.08E-09	8.94E-11	1.36E-11
No. of Stacks per Building		5	1	1	13	1	5	1	4	8	9	7	6	1	1	11	4	4	2	1
Cancer Risk per Stack		4.56E-10	8.69E-11	9.53E-11	3.67E-10	7.33E-10	2.60E-09	7.21E-10	3.30E-09	2.72E-09	6.37E-10	1.66E-09	2.40E-10	5.33E-12	6.01E-10	1.07E-10	2.35E-09	7.71E-10	4.47E-11	1.36E-11
Cancer Risk x 1,000,000 (model input)		4.56E-04	8.69E-05	9.53E-05	3.67E-04	7.33E-04	2.60E-03	7.21E-04	3.30E-03	2.72E-03	6.37E-04	1.66E-03	2.40E-04	5.33E-06	6.01E-04	1.07E-04	2.35E-03	7.71E-04	4.47E-05	1.36E-05

 $^{^{-1}}$ These emissions used for existing modeling only. The LRDP modeling accounts for the buildings under construction.

CHRONIC NON-CANCER MODEL INPUTS BY BUILDING - OEHHA RELs - Existing Buildings

Chemical	Acceptable Exposure Level (OEHHA 1999)	Barker Hall	Cory Hall	Davis/ Etcheverry Hall (Existing)	Gillman/ Birge/ LeConte Hall	Hesse/ McCone/ O'Brien	Hildebrand/ Giauque/ Minor/ Minor Add Hall	Hilgard Hall	Koshland Hall	Latimer Hall	Lewis Hall	LSA	Morgan Hall M	Mulford Hall	Northwest Animal Facilty	Stanley Hall (Existing)	Tan Hall	Valley Life Sciences Building	Warren Hall	Wellman Hall
Tier I																				•
Acetonitrile	5.95E+01	3.07E-06	0.00E+00	8.10E-07	1.07E-06	0.00E+00	5.01E-06	5.34E-07	4.11E-06	8.61E-06	2.27E-06	2.87E-06	8.74E-07	0.00E+00	0.00E+00	7.35E-06	3.71E-06	1.76E-07	8.33E-07	0.00E+00
Benzene2	6.00E+01	2.02E-08	0.00E+00	1.14E-08	2.66E-07	1.03E-07	1.19E-06	1.77E-07	2.46E-08	2.04E-06	5.37E-07	1.00E-07	9.68E-09	0.00E+00	0.00E+00	3.69E-08	8.81E-07	1.23E-08	4.40E-09	0.00E+00
Carbon tetrachloride	4.00E+01	2.86E-07	0.00E+00	0.00E+00	9.85E-07	2.87E-07	1.47E-07	1.50E-07	2.05E-06	2.52E-07	6.62E-08	7.34E-07	1.12E-07	0.00E+00	0.00E+00	5.61E-08	1.09E-07	8.64E-09	0.00E+00	0.00E+00
Chloroform	3.00E+02	8.71E-07	3.91E-08	2.07E-09	8.64E-07	7.69E-09	2.87E-06	6.63E-08	2.66E-06	4.92E-06	1.29E-06	1.97E-06	1.97E-07	5.92E-10	2.96E-08	1.78E-07	2.12E-06	6.33E-08	1.54E-08	7.99E-09
Dioxane, 1,4-	3.00E+03	3.91E-10	0.00E+00	0.00E+00	5.88E-09	3.91E-10	2.78E-08	2.68E-10	9.06E-10	4.71E-08	1.24E-08	5.97E-10	1.05E-08	0.00E+00	0.00E+00	1.69E-09	2.03E-08	0.00E+00	0.00E+00	2.06E-11
Formaldehyde2	3.00E+00	1.68E-05	9.60E-08	2.22E-06	5.55E-08	3.20E-08	9.47E-07	2.11E-06	1.91E-05	4.45E-07	1.17E-07	3.29E-04	3.29E-06	0.00E+00	3.08E-05	3.04E-06	1.92E-07	1.62E-04	3.18E-06	1.60E-08
n-Hexane	7.00E+03	1.41E-09	0.00E+00	2.32E-09	8.98E-09	7.35E-11	2.53E-10	2.26E-09	7.30E-10	4.36E-10	1.15E-10	6.67E-10	4.02E-09	0.00E+00	5.66E-10	2.25E-09	1.88E-10	1.19E-09	1.47E-10	0.00E+00
Hydrazine	2.00E-01	0.00E+00	0.00E+00	0.00E+00	3.74E-07 2.27E-06	0.00E+00	2.05E-06	0.00E+00	5.15E-06	3.00E-06	7.89E-07	1.09E-06	6.06E-07	0.00E+00	0.00E+00	6.06E-07	1.29E-06	0.00E+00	0.00E+00 4.84E-07	0.00E+00
Hydrogen chloride2	9.00E+00 7.00E+03	9.87E-06 1.93E-07	4.14E-06 2.03E-08	1.72E-06 3.99E-08	7.42E-08	8.94E-05 9.07E-08	3.22E-06 1.37E-08	4.24E-05 1.27E-08	1.32E-04 1.11E-07	4.57E-06 2.06E-08	1.20E-06 5.43E-09	1.12E-05 3.55E-07	9.37E-06 3.40E-08	0.00E+00 5.42E-11	3.13E-07 3.37E-08	2.88E-06 1.97E-08	1.97E-06 8.91E-09	2.79E-04 2.53E-08	4.84E-07 8.58E-09	6.19E-07 5.96E-10
Isopropyl alcohol2 Methanol	4.00E+03	6.61E-07	3.66E-08	7.91E-08	1.80E-07	2.70E-08	1.93E-07	2.92E-08	1.11E-07 1.26E-07	3.30E-07	8.68E-08	1.36E-07	2.01E-08	1.19E-08	4.62E-10	1.59E-08	1.42E-07	2.33E-08 2.17E-08	6.20E-08	3.45E-09
Methylene chloride2	4.00E+03 4.00E+02	1.74E-07	0.00E+00	3.13E-08	1.85E-06	2.70E-08 2.09E-08	8.55E-06	9.97E-09	1.20E-07 1.07E-07	1.47E-05	3.87E-06	1.40E-07	6.38E-08	1.19E-08 1.10E-08	0.00E+00	1.10E-07	6.34E-06	6.32E-08	0.20E+00	3.43E-09 3.99E-10
Tetrachloroethylene (Perc)	3.50E+01	0.00E+00	0.00E+00	5.55E-09	1.92E-08	1.39E-07	8.97E-08	3.61E-08	0.00E+00	1.54E-07	4.06E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.65E-08	0.00E+00	0.00E+00	0.00E+00
Toulene	3.00E+01	5.86E-08	0.00E+00	2.82E-08	2.30E-07	3.76E-08	8.23E-07	1.37E-07	1.81E-07	1.41E-06	3.72E-07	8.12E-08	6.17E-08	0.00E+00	2.19E-08	2.78E-09	6.10E-07	2.45E-08	0.00E+00	0.00E+00
Trichloroethane (1,1,1-)2	1.00E+03	0.00E+00	1.31E-07	0.00E+00	8.58E-09	2.09E-09	6.77E-10	0.00E+00	0.00E+00	1.16E-09	3.06E-10	9.64E-10	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.02E-10	8.04E-11	4.18E-09	0.00E+00
Trichloroethylene	6.00E+02	0.00E+00	1.93E-08	1.53E-08	2.10E-08	1.15E-08	0.00E+00	0.00E+00	1.53E-08	0.00E+00	0.00E+00	7.59E-09	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Xylenes	7.00E+02	8.95E-09	0.00E+00	1.79E-09	1.35E-08	7.08E-09	4.31E-08	1.74E-08	1.33E-07	2.06E-08	5.42E-09	2.04E-07	9.54E-09	1.49E-10	7.31E-08	1.34E-09	8.88E-09	1.68E-08	2.01E-08	7.45E-10
Tier II																				
Bromine (bromine gas, hydrogen bromide, bromide pentafluoride, other inorganic compounds)	1.60E+00	0.00E+00	7.02E-07	0.00E+00	2.44E-06	1.17E-07	4.28E-06	0.00E+00	4.68E-07	7.35E-06	1.93E-06	0.00E+00	7.02E-07	0.00E+00	0.00E+00	0.00E+00	3.17E-06	0.00E+00	0.00E+00	0.00E+00
Butyl alcohol, tert-	7.14E+02	1.79E-08	1.73E-09	1.33E-10	6.37E-10	1.57E-08	2.97E-09	1.71E-08	1.41E-05	5.11E-09	1.34E-09	9.95E-10	9.95E-10	0.00E+00	0.00E+00	7.83E-09	2.20E-09	0.00E+00	0.00E+00	0.00E+00
Dimethylformamide	8.00E+01	6.34E-08	0.00E+00	0.00E+00	4.61E-08	4.27E-09	2.15E-07	1.42E-09	4.70E-08	3.70E-07	9.72E-08	6.23E-07	1.50E-08	0.00E+00	0.00E+00	1.85E-08	1.59E-07	0.00E+00	8.55E-08	1.42E-09
Epichlorohydrin	3.00E+00	0.00E+00	0.00E+00	0.00E+00	5.49E-08	0.00E+00	2.56E-07	0.00E+00	0.00E+00	4.40E-07	1.16E-07	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.36E-08	1.90E-07	0.00E+00	0.00E+00	0.00E+00
Ethanol	4.48E+03	1.43E-05	0.00E+00	2.04E-07	4.40E-07	1.63E-07	7.38E-07	1.32E-07	1.12E-06	1.11E-06	2.92E-07	4.31E-06	4.78E-07	1.75E-08	2.79E-07	1.73E-06	4.79E-07	3.07E-05	3.11E-07	3.27E-06
Ethyl acetate	3.15E+03	9.17E-09	0.00E+00	2.23E-10	1.41E-07	0.00E+00	6.59E-07	1.57E-08	9.89E-09	1.13E-06	2.98E-07	8.53E-09	4.42E-09	0.00E+00	0.00E+00	2.57E-09	4.89E-07	1.85E-09	8.91E-10	2.47E-09
Ethyl ether	7.00E+02	2.62E-08	0.00E+00	0.00E+00	3.47E-07	4.02E-08	1.62E-06	6.08E-10	1.20E-08	2.78E-06	7.32E-07	3.54E-08	3.53E-09	3.04E-09	6.39E-09	8.82E-09	1.20E-06	3.47E-09	3.04E-10	6.08E-11
Glutaraldehyde	1.00E-01	1.39E-05	0.00E+00	1.32E-06	9.95E-08	0.00E+00	5.26E-05	0.00E+00	2.80E-04	7.99E-07	2.10E-07	1.38E-04	7.26E-06	0.00E+00	4.35E-05	5.08E-05	3.44E-07	3.30E-06	0.00E+00	0.00E+00
Hydrogen fluoride	5.50E+00	0.00E+00	2.54E-05	0.00E+00	1.68E-07	8.03E-06	1.86E-08	3.79E-08	8.22E-08	3.19E-08	8.39E-09	1.58E-07	0.00E+00	7.59E-08	0.00E+00	0.00E+00	1.38E-08	5.68E-06	0.00E+00	0.00E+00
Methyl bromide	5.00E+00	0.00E+00	0.00E+00	0.00E+00	3.99E-07	0.00E+00	1.86E-06	2.76E-03	0.00E+00	3.20E-06	8.41E-07	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.38E-06	0.00E+00	0.00E+00	0.00E+00
Phosgene	3.00E-01	0.00E+00	0.00E+00	0.00E+00	1.76E-06	0.00E+00	8.24E-06	0.00E+00	0.00E+00	1.42E-05	3.72E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.11E-06	0.00E+00	0.00E+00	0.00E+00
Pyridine	3.50E+00	8.90E-07	0.00E+00	0.00E+00	2.24E-06	2.18E-07	4.26E-06	1.11E-06	3.39E-06	7.32E-06	1.93E-06	1.93E-06	2.85E-07	0.00E+00	0.00E+00	3.36E-08	3.16E-06	1.11E-06	1.68E-08	0.00E+00
Tetrahydrofuran	3.01E+02	2.31E-09	0.00E+00	1.77E-10	3.91E-07	0.00E+00	1.82E-06	0.00E+00	1.47E-08	3.14E-06	8.25E-07	7.20E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.35E-06	0.00E+00	0.00E+00	1.77E-10
Triethylamine	2.00E+02	4.93E-08	0.00E+00	0.00E+00	2.18E-08	0.00E+00	1.02E-07	0.00E+00	4.97E-08	1.75E-07	4.59E-08	1.36E-08	0.00E+00	0.00E+00	0.00E+00	1.16E-08	7.53E-08	2.85E-09	4.38E-10	1.73E-08
Hydrogen-3 (Tritium)	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Iodine-125	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
m		- 00- 0-	2007-07	- cor o c	4.505.05	0.00= 0.5	0.60= 0=	2 007 02	1 24= 01	- 20- 0-	1047.07	100= 0:		4.000 00		- 0 0-	2.40= 2-	4.02= 0.1	1007.05	2045.00
Total		5.82E-05	3.06E-05	5.68E-06	1.58E-05	9.88E-05	9.68E-05	2.80E-03	4.61E-04	7.39E-05	1.94E-05	4.90E-04	2.25E-05	1.20E-07	7.51E-05	5.97E-05	3.19E-05	4.83E-04	4.20E-06	3.94E-06
No of Stacks		5	1	1	13	1	5	1	4	8	9	7	6	1 200 05	1	11	4	4	2 105 06	1
Input per stack		1.16E-05	3.06E-05	5.68E-06	1.21E-06	9.88E-05	1.94E-05	2.80E-03	1.15E-04	9.24E-06	2.16E-06	7.00E-05	3.76E-06	1.20E-07	7.51E-05	5.43E-06	7.97E-06	1.21E-04	2.10E-06	3.94E-06

ACUTE NON-CANCER MODEL INPUTS BY BUILDING - Existing Buildings

Chemical	Acceptable Exposure Level	Barker Hall	Cory Hall	Davis and Ethcheberry (Existing)	Gillman/ Birge/ LeConte Hall	Hesse/ McCone/ O'Brien	Hildebrand/ Giauque/ Minor/ Minor Add Hall	Hilgard Hall	Koshland Hall	Latimer Hall	Lewis Hall	LSA	Morgan Hall	Mulford Hall	Northwest Animal Facilty	Stanley Hall (Existing)	Tan Hall	Valley Life Sciences Building	Warren Hall	Wellman Hall
T* I																				
Tier I Acetonitrile	6.70E+04	1.41E-08	0.00E+00	3.73E-09	4.94E-09	0.00E+00	2.30E-08	2.46E-09	1.89E-08	3.96E-08	1.04E-08	1.32E-08	4.02E-09	0.00E+00	0.00E+00	3.38E-08	1.71E-08	8.10E-10	3.83E-09	0.00E+00
Benzene	1.30E+03	4.84E-09	0.00E+00	2.73E-09	6.36E-08	2.46E-08	2.84E-07	4.23E-08	5.89E-09	4.89E-07	1.04E-08 1.29E-07	2.40E-08	2.31E-09	0.00E+00 0.00E+00	0.00E+00 0.00E+00	8.83E-09	2.11E-07	2.94E-09	1.05E-09	0.00E+00
Carbon tetrachloride	1.90E+03	3.12E-08	0.00E+00	0.00E+00	1.07E-07	3.12E-08	1.60E-08	1.64E-08	2.24E-07	2.75E-08	7.22E-09	8.01E-08	1.22E-08	0.00E+00	0.00E+00 0.00E+00	6.12E-09	1.18E-08	9.42E-10	0.00E+00	0.00E+00 0.00E+00
Chloroform	1.50E+03	9.02E-06	4.05E-07	2.15E-08	8.95E-06	7.97E-08	2.98E-05	6.87E-07	2.76E-05	5.10E-05	1.34E-05	2.04E-05	2.04E-06	6.13E-09	3.07E-07	1.85E-06	2.20E-05	6.56E-07	1.59E-07	8.28E-08
Dioxane, 1,4-	3.00E+03	2.03E-09	0.00E+00	0.00E+00	3.04E-08	2.03E-09	1.44E-07	1.39E-09	4.69E-09	2.44E-07	6.42E-08	3.09E-09	5.46E-08	0.13E-09 0.00E+00	0.00E+00	8.75E-09	1.05E-07	0.00E+00	0.00E+00	1.07E-10
Formaldehyde	9.40E+01	2.78E-06	1.59E-08	3.68E-07	9.18E-09	5.29E-09	1.44E-07 1.57E-07	3.49E-07	3.15E-06	7.36E-08	1.94E-08	5.44E-05	5.45E-07	0.00E+00	5.08E-06	5.02E-07	3.18E-08	2.68E-05	5.26E-07	2.64E-09
n-Hexane	1.76E+05	2.78E-00 2.91E-10	0.00E+00	4.79E-10	1.85E-09	1.51E-11	5.22E-11	4.66E-10	1.50E-10	8.97E-11	2.36E-11	1.37E-10	8.27E-10	0.00E+00	1.17E-10	4.64E-10	3.87E-11	2.46E-10	3.03E-11	0.00E+00
Hydrazine	1.30E+01	0.00E+00	0.00E+00	0.00E+00	2.98E-08	0.00E+00	1.63E-07	0.00E+00	4.10E-07	2.39E-07	6.29E-08	8.69E-08	4.83E-08	0.00E+00	0.00E+00	4.83E-08	1.03E-07	0.00E+00	0.00E+00	0.00E+00
Hydrogen chloride	2.10E+03	2.19E-07	9.19E-08	3.82E-08	5.04E-08	1.98E-06	7.15E-08	9.42E-07	2.93E-06	1.01E-07	2.67E-08	2.48E-07	2.08E-07	0.00E+00	6.94E-09	6.39E-08	4.37E-08	6.19E-06	1.08E-08	1.37E-08
Isopropyl alcohol	3.20E+03	2.18E-06	2.30E-07	4.52E-07	8.41E-07	1.03E-06	1.56E-07	1.44E-07	1.26E-06	2.34E-07	6.15E-08	4.02E-06	3.85E-07	6.14E-10	3.82E-07	2.23E-07	1.01E-07	2.87E-07	9.73E-08	6.75E-09
Methanol	2.80E+04	4.89E-07	2.71E-08	5.86E-08	1.33E-07	2.00E-08	1.43E-07	2.16E-08	9.33E-08	2.44E-07	6.43E-08	1.01E-07	1.49E-08	8.78E-09	3.42E-10	1.18E-07	1.05E-07	1.61E-08	4.59E-08	2.55E-09
Methylene chloride	1.40E+04	2.58E-08	0.00E+00	4.63E-09	2.74E-07	3.10E-09	1.27E-06	1.48E-09	1.58E-08	2.18E-06	5.72E-07	2.08E-08	9.44E-09	1.62E-09	0.00E+00	1.64E-08	9.38E-07	9.36E-09	0.00E+00	5.90E-11
Tetrachloroethylene (Perc)	2.00E+04	0.00E+00	0.00E+00	5.03E-11	1.74E-10	1.26E-09	8.14E-10	3.27E-10	0.00E+00	1.40E-09	3.68E-10	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.03E-10	0.00E+00	0.00E+00	0.00E+00
Toulene	3.70E+04	2.46E-09	0.00E+00	1.18E-09	9.66E-09	1.58E-09	3.46E-08	5.74E-09	7.58E-09	5.94E-08	1.56E-08	3.41E-09	2.59E-09	0.00E+00	9.20E-10	1.17E-10	2.56E-08	1.03E-09	0.00E+00	0.00E+00
Trichloroethane (1,1,1-)	6.80E+04	0.00E+00	9.99E-09	0.00E+00	6.54E-10	1.59E-10	5.15E-11	0.00E+00	0.00E+00	8.86E-11	2.33E-11	7.35E-11	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.82E-11	6.12E-12	3.18E-10	0.00E+00
Trichloroethylene	2.69E+05	0.00E+00	2.23E-10	1.77E-10	2.43E-10	1.33E-10	0.00E+00	0.00E+00	1.77E-10	0.00E+00	0.00E+00	8.77E-11	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Xylenes	2.20E+04	1.47E-09	0.00E+00	2.95E-10	2.22E-09	1.17E-09	7.11E-09	2.87E-09	2.20E-08	3.39E-09	8.93E-10	3.35E-08	1.57E-09	2.46E-11	1.21E-08	2.21E-10	1.46E-09	2.78E-09	3.32E-09	1.23E-10
T' H																				
Tier II Bromine (bromine gas, hydrogen bromide, bromide							T													
pentafluoride, other inorganic compounds)	6.60E+02	0.00E+00	8.81E-09	0.00E+00	3.06E-08	1.47E-09	5.37E-08	0.00E+00	5.87E-09	9.23E-08	2.43E-08	0.00E+00	8.81E-09	0.00E+00	0.00E+00	0.00E+00	3.98E-08	0.00E+00	0.00E+00	0.00E+00
Butyl alcohol, tert-	3.00E+05	2.20E-10	2.13E-11	1.64E-12	7.86E-12	1.94E-10	3.67E-11	2.11E-10	1.73E-07	6.30E-11	1.66E-11	1.23E-11	1.23E-11	0.00E+00	0.00E+00	9.65E-11	2.72E-11	0.00E+00	0.00E+00	0.00E+00
Dimethylformamide	3.00E+04	8.76E-10	0.00E+00	0.00E+00	6.36E-10	5.90E-11	2.97E-09	1.97E-11	6.49E-10	5.10E-09	1.34E-09	8.61E-09	2.07E-10	0.00E+00	0.00E+00	2.56E-10	2.20E-09	0.00E+00	1.18E-09	1.97E-11
Epichlorohydrin	1.30E+03	0.00E+00	0.00E+00	0.00E+00	6.56E-10	0.00E+00	3.06E-09	0.00E+00	0.00E+00	5.26E-09	1.38E-09	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.82E-10	2.27E-09	0.00E+00	0.00E+00	0.00E+00
Ethanol	1.88E+06	1.76E-07	0.00E+00	2.52E-09	5.43E-09	2.01E-09	9.10E-09	1.62E-09	1.38E-08	1.37E-08	3.60E-09	5.32E-08	5.90E-09	2.15E-10	3.44E-09	2.14E-08	5.90E-09	3.79E-07	3.83E-09	4.03E-08
Ethyl acetate	1.40E+06	1.07E-10	0.00E+00	2.60E-12	1.65E-09	0.00E+00	7.68E-09	1.83E-10	1.15E-10	1.32E-08	3.47E-09	9.95E-11	5.15E-11	0.00E+00	0.00E+00	3.00E-11	5.69E-09	2.16E-11	1.04E-11	2.88E-11
Ethyl ether	1.20E+06	7.90E-11	0.00E+00	0.00E+00	1.05E-09	1.21E-10	4.90E-09	1.84E-12	3.62E-11	8.41E-09	2.21E-09	1.07E-10	1.07E-11	9.19E-12	1.93E-11	2.67E-11	3.63E-09	1.05E-11	9.19E-13	1.84E-13
Glutaraldehyde	2.00E+02	3.59E-08	0.00E+00	3.42E-09	2.58E-10	0.00E+00	1.36E-07	0.00E+00	7.26E-07	2.07E-09	5.44E-10	3.57E-07	1.88E-08	0.00E+00	1.13E-07	1.32E-07	8.92E-10	8.54E-09	0.00E+00	0.00E+00
Hydrogen fluoride	2.40E+02	0.00E+00	3.01E-06	0.00E+00	2.00E-08	9.53E-07	2.20E-09	4.50E-09	9.76E-09	3.79E-09	9.96E-10	1.88E-08	0.00E+00	9.01E-09	0.00E+00	0.00E+00	1.63E-09	6.74E-07	0.00E+00	0.00E+00
Methyl bromide	3.90E+03	0.00E+00	0.00E+00	0.00E+00	2.65E-09	0.00E+00	1.24E-08	1.83E-05	0.00E+00	2.12E-08	5.58E-09	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.16E-09	0.00E+00	0.00E+00	0.00E+00
Phosgene	4.00E+00	0.00E+00	0.00E+00	0.00E+00	6.86E-07	0.00E+00	3.20E-06	0.00E+00	0.00E+00	5.50E-06	1.45E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.37E-06	0.00E+00	0.00E+00	0.00E+00
Pyridine	1.50E+04	1.08E-09	0.00E+00	0.00E+00	2.71E-09	2.64E-10	5.15E-09	1.34E-09	4.10E-09	8.85E-09	2.33E-09	2.33E-09	3.45E-10	0.00E+00	0.00E+00	4.06E-11	3.82E-09	1.34E-09	2.03E-11	0.00E+00
Tetrahydrofuran	5.90E+05	6.09E-12	0.00E+00	4.69E-13	1.03E-09	0.00E+00	4.82E-09	0.00E+00	3.89E-11	8.29E-09	2.18E-09	1.90E-10	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.58E-09	0.00E+00	0.00E+00	4.69E-13
Triethylamine	2.80E+03	1.82E-08	0.00E+00	0.00E+00	8.06E-09	0.00E+00	3.76E-08	0.00E+00	1.84E-08	6.46E-08	1.70E-08	5.02E-09	0.00E+00	0.00E+00	0.00E+00	4.29E-09	2.79E-08	1.05E-09	1.62E-10	6.40E-09
Hydrogen-3 (Tritium)	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Iodine-125	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TOTAL		1.50E-05	3.80E-06	9.57E-07	1.13E-05	4.14E-06	3.57E-05	2.05E-05	3.67E-05	6.07E-05	1.60E-05	7.99E-05	3.37E-06	2.64E-08	5.91E-06	3.03E-06	2.62E-05	3.51E-05	8.53E-07	1.56E-07
No. of Stacks		5	1	1	13	1	5	1	4	8	9	7	6	1	1	11	4	4	2	1
Total per stack		3.00E-06	3.80E-06	9.57E-07	8.67E-07	4.14E-06	7.14E-06	2.05E-05	9.18E-06	7.59E-06	1.77E-06	1.14E-05	5.61E-07	2.64E-08	5.91E-06	2.76E-07	6.54E-06	8.77E-06	4.27E-07	1.56E-07

Cancer Risk Inputs for New Laboratories

Chemical	A - Northwest	B - Northwest-	C - Northeast-	D - Northeast	E - Southwest	F - Southeast-	G - Southeast-	Davis Hall -	Stanley -
	Area	Center Area	Center Area	Area	Center Area	Center Area	Area	Additional Labs	Additional Labs
Tier I		1							
Acetonitrile	7.2CF 00	1 405 00	0.22F 10	4 42E 10	1.100.00	0.275.10	2.70F 10	2.675.00	7.705.00
Benzene2	7.36E-09	1.49E-09	8.32E-10	4.43E-10	1.18E-09	9.37E-10	2.70E-10	3.67E-09	7.70E-09
Carbon tetrachloride	2.93E-09	5.93E-10	3.31E-10	1.76E-10	4.70E-10	3.73E-10	1.07E-10	1.46E-09	3.06E-09
Chloroform	1.63E-08	3.31E-09	1.84E-09	9.83E-10	2.62E-09	2.08E-09	5.98E-10	8.15E-09	1.71E-08
Dioxane, 1,4-	2.27E-09	4.60E-10	2.57E-10	1.37E-10	3.65E-10	2.89E-10	8.32E-11	1.13E-09	2.37E-09
Formaldehyde2	5.26E-09	1.07E-09	5.94E-10	3.17E-10	8.45E-10	6.70E-10	1.93E-10	2.65E-09	5.50E-09
n-Hexane									
Hydrazine	6.55E-09	1.33E-09	7.40E-10	3.94E-10	1.05E-09	8.34E-10	2.40E-10	3.27E-09	6.85E-09
Hydrogen chloride2									
Isopropyl alcohol2									
Methanol									
Methylene chloride2	1.21E-08	2.46E-09	1.37E-09	7.30E-10	1.95E-09	1.54E-09	4.44E-10	6.06E-09	1.27E-08
Tetrachloroethylene (Perc)	6.54E-11	1.33E-11	7.40E-12	3.94E-12	1.05E-11	8.34E-12	2.40E-12	3.27E-11	6.85E-11
Toulene									
Trichloroethane (1,1,1-)2									
Trichloroethylene	8.81E-11	1.79E-11	9.96E-12	5.31E-12	1.42E-11	1.12E-11	3.23E-12	6.24E-11	9.22E-11
Xylenes									
Tier II									
Bromine (bromine gas, hydrogen bromide, bromide									
pentafluoride, other inorganic compounds)									
Butyl alcohol, tert-									
Dimethylformamide									
Epichlorohydrin	6.38E-11	1.29E-11	7.21E-12	3.84E-12	1.03E-11	8.13E-12	2.34E-12	3.19E-11	6.68E-11
Ethanol1									
Ethyl acetate									
Ethyl ether									
Glutaraldehyde									
Hydrogen fluoride									
Methyl bromide									
Phosgene									
Pyridine									
Tetrahydrofuran									
Triethylamine									
Hydrogen-3 (Tritium)	1.40E-10	2.84E-11	1.58E-11	8.42E-12	2.25E-11	1.78E-11	5.13E-12	6.98E-11	1.46E-10
Iodine-125	3.78E-09	7.66E-10	4.27E-10	2.27E-10	6.07E-10	4.81E-10	1.38E-10	1.88E-09	3.95E-09
							ı		
Total	5.30E-08	1.08E-08	5.99E-09	3.19E-09	8.52E-09	6.75E-09	1.94E-09	2.65E-08	5.55E-08
No. of Stacks per Building	1	1	1	1	1	1	1	4	8
Cancer Risk per Stack	5.30E-08	1.08E-08	5.99E-09	3.19E-09	8.52E-09	6.75E-09	1.94E-09	6.63E-09	6.93E-09
Cancer Risk per Stack Cancer Risk x 1,000,000 (model input)	5.30E-08 5.30E-02	1.08E-02	5.99E-03	3.19E-03	8.52E-03	6.75E-03	1.94E-03	6.63E-03	6.93E-03
Cancer Risk & 1,000,000 (mouer input)	3.30E-02	1.00E-02	3.27E-03	3.17E-03	0.34E-03	U./3E-U3	1.2412-03	0.03E-03	0.33E-03

Chronic HI Inputs for New Laboratories

Chemical	A - Northwest	B - Northwest-	C - Northeast-	D - Northeast	E - Southwest	F - Southeast-	G - Southeast-	Davis Hall -	Stanley -
Chemicai	Area	Center Area	Center Area	Area	Center Area	Center Area	Area	Additional Labs	Additional Labs
Tier I									
Acetonitrile	2.40E-05	4.86E-06	2.71E-06	1.44E-06	3.85E-06	3.05E-06	8.79E-07	1.20E-05	2.51E-05
Benzene2	4.23E-06	8.58E-07	4.78E-07	2.55E-07	6.80E-07	5.39E-07	1.55E-07	2.11E-06	4.42E-06
Carbon tetrachloride	1.74E-06	3.53E-07	1.97E-07	1.05E-07	2.80E-07	2.22E-07	6.38E-08	8.69E-07	1.82E-06
Chloroform	1.03E-05	2.08E-06	1.16E-06	6.18E-07	1.65E-06	1.31E-06	3.76E-07	5.12E-06	1.07E-05
Dioxane, 1,4-	9.83E-08	1.99E-08	1.11E-08	5.92E-09	1.58E-08	1.25E-08	3.60E-09	4.90E-08	1.03E-07
Formaldehyde2	2.92E-04	5.92E-05	3.30E-05	1.76E-05	4.70E-05	3.72E-05	1.07E-05	1.47E-04	3.06E-04
n-Hexane	1.30E-08	2.64E-09	1.47E-09	7.83E-10	2.09E-09	1.66E-09	4.77E-10	7.31E-09	1.36E-08
Hydrazine	6.68E-06	1.35E-06	7.55E-07	4.02E-07	1.07E-06	8.51E-07	2.45E-07	3.33E-06	6.99E-06
Hydrogen chloride2	2.50E-04	5.08E-05	2.83E-05	1.51E-05	4.02E-05	3.19E-05	9.18E-06	1.25E-04	2.62E-04
Isopropyl alcohol2	4.07E-07	8.25E-08	4.60E-08	2.45E-08	6.53E-08	5.18E-08	1.49E-08	2.17E-07	4.25E-07
Methanol	3.26E-06	6.60E-07	3.68E-07	1.96E-07	5.23E-07	4.15E-07	1.19E-07	1.63E-06	3.41E-06
Methylene chloride2	3.03E-05	6.14E-06	3.42E-06	1.82E-06	4.87E-06	3.86E-06	1.11E-06	1.51E-05	3.17E-05
Tetrachloroethylene (Perc)	3.17E-07	6.43E-08	3.58E-08	1.91E-08	5.09E-08	4.04E-08	1.16E-08	1.58E-07	3.32E-07
Toulene	2.91E-06	5.90E-07	3.29E-07	1.75E-07	4.67E-07	3.70E-07	1.07E-07	1.45E-06	3.04E-06
Trichloroethane (1,1,1-)2	1.55E-07	3.14E-08	1.75E-08	9.33E-09	2.49E-08	1.97E-08	5.68E-09	7.74E-08	1.62E-07
Trichloroethylene	7.34E-08	1.49E-08	8.30E-09	4.42E-09	1.18E-08	9.35E-09	2.69E-09	5.20E-08	7.68E-08
Xylenes	2.49E-07	5.04E-08	2.81E-08	1.50E-08	4.00E-08	3.17E-08	9.11E-09	1.25E-07	2.60E-07
Tier II									
Bromine (bromine gas, hydrogen bromide, bromide pentafluoride, other inorganic compounds)	1.51E-05	3.06E-06	1.71E-06	9.09E-07	2.43E-06	1.92E-06	5.54E-07	7.54E-06	1.58E-05
Butyl alcohol, tert-	7.23E-06	1.47E-06	8.17E-07	4.35E-07	1.16E-06	9.20E-07	2.65E-07	3.61E-06	7.56E-06
Dimethylformamide	7.75E-07	1.57E-07	8.76E-08	4.67E-08	1.25E-07	9.87E-08	2.84E-08	3.87E-07	8.11E-07
Epichlorohydrin	9.25E-07	1.88E-07	1.05E-07	5.57E-08	1.49E-07	1.18E-07	3.39E-08	4.62E-07	9.67E-07
Ethanol1	1.94E-05	3.93E-06	2.19E-06	1.17E-06	3.11E-06	2.47E-06	7.10E-07	9.85E-06	2.03E-05
Ethyl acetate	2.33E-06	4.72E-07	2.63E-07	1.40E-07	3.74E-07	2.97E-07	8.54E-08	1.16E-06	2.44E-06
Ethyl ether	5.73E-06	1.16E-06	6.47E-07	3.45E-07	9.21E-07	7.30E-07	2.10E-07	2.86E-06	5.99E-06
Glutaraldehyde	2.75E-04	5.58E-05	3.11E-05	1.66E-05	4.43E-05	3.51E-05	1.01E-05	1.39E-04	2.88E-04
Hydrogen fluoride	3.67E-05	7.44E-06	4.15E-06	2.21E-06	5.90E-06	4.67E-06	1.35E-06	1.83E-05	3.84E-05
Methyl bromide	1.41E-03	2.86E-04	1.60E-04	8.51E-05	2.27E-04	1.80E-04	5.18E-05	7.05E-04	1.48E-03
Phosgene	2.91E-05	5.90E-06	3.29E-06	1.75E-06	4.67E-06	3.70E-06	1.07E-06	1.45E-05	3.04E-05
Pyridine	1.51E-05	3.06E-06	1.70E-06	9.07E-07	2.42E-06	1.92E-06	5.52E-07	7.52E-06	1.58E-05
Tetrahydrofuran	6.44E-06	1.31E-06	7.28E-07	3.88E-07	1.04E-06	8.21E-07	2.36E-07	3.22E-06	6.74E-06
Triethylamine	3.69E-07	7.48E-08	4.17E-08	2.22E-08	5.93E-08	4.70E-08	1.35E-08	1.84E-07	3.86E-07
I -	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Hydrogen-3 (Tritium) Iodine-125									
IOUIIIC-123	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Total	2.43E-03	4.93E-04	2.75E-04	1.46E-04	3.91E-04	3.10E-04	8.91E-05	1.22E-03	2.54E-03
No of Stacks	1	1	1	1	1	1	1	4	8
Input per stack	2.43E-03	4.93E-04	2.75E-04	1.46E-04	3.91E-04	3.10E-04	8.91E-05	3.04E-04	3.18E-04

Acute HI Inputs for New Laboratories

Chemical	A - Northwest	B - Northwest-	C - Northeast-	D - Northeast	E - Southwest	F - Southeast-	G - Southeast-	Davis Hall -	Stanley -
Chemical	Area	Center Area	Center Area	Area	Center Area	Center Area	Area	Additional Labs	Additional Labs
Tier I									
Acetonitrile	1.10E-07	2.24E-08	1.25E-08	6.64E-09	1.77E-08	1.41E-08	4.04E-09	5.51E-08	1.15E-07
Benzene2	1.01E-06	2.05E-07	1.14E-07	6.09E-08	1.63E-07	1.29E-07	3.71E-08	5.05E-07	1.06E-06
Carbon tetrachloride	1.90E-07	3.85E-08	2.15E-08	1.14E-08	3.05E-08	2.42E-08	6.96E-09	9.48E-08	1.99E-07
Chloroform	1.06E-04	2.16E-05	1.20E-05	6.40E-06	1.71E-05	1.35E-05	3.90E-06	5.31E-05	1.11E-04
Dioxane, 1,4-	5.09E-07	1.03E-07	5.75E-08	3.07E-08	8.18E-08	6.48E-08	1.87E-08	2.54E-07	5.33E-07
Formaldehyde2	4.83E-05	9.79E-06	5.46E-06	2.91E-06	7.76E-06	6.15E-06	1.77E-06	2.44E-05	5.05E-05
n-Hexane	2.68E-09	5.43E-10	3.03E-10	1.61E-10	4.31E-10	3.41E-10	9.82E-11	1.51E-09	2.80E-09
Hydrazine	5.32E-07	1.08E-07	6.02E-08	3.21E-08	8.56E-08	6.78E-08	1.95E-08	2.66E-07	5.57E-07
Hydrogen chloride2	5.56E-06	1.13E-06	6.28E-07	3.35E-07	8.93E-07	7.08E-07	2.04E-07	2.78E-06	5.81E-06
Isopropyl alcohol2	4.61E-06	9.34E-07	5.21E-07	2.77E-07	7.40E-07	5.87E-07	1.69E-07	2.46E-06	4.82E-06
Methanol	2.41E-06	4.89E-07	2.72E-07	1.45E-07	3.87E-07	3.07E-07	8.83E-08	1.21E-06	2.52E-06
Methylene chloride2	4.48E-06	9.09E-07	5.07E-07	2.70E-07	7.21E-07	5.71E-07	1.64E-07	2.24E-06	4.69E-06
Tetrachloroethylene (Perc)	2.87E-09	5.83E-10	3.25E-10	1.73E-10	4.62E-10	3.66E-10	1.05E-10	1.43E-09	3.01E-09
Toulene	1.22E-07	2.48E-08	1.38E-08	7.35E-09	1.96E-08	1.56E-08	4.48E-09	6.10E-08	1.28E-07
Trichloroethane (1,1,1-)2	1.18E-08	2.39E-09	1.33E-09	7.11E-10	1.90E-09	1.50E-09	4.33E-10	5.89E-09	1.24E-08
Trichloroethylene	8.48E-10	1.72E-10	9.59E-11	5.11E-11	1.36E-10	1.08E-10	3.11E-11	6.01E-10	8.88E-10
Xylenes	4.10E-08	8.31E-09	4.63E-09	2.47E-09	6.59E-09	5.22E-09	1.50E-09	2.06E-08	4.29E-08
Tier II		Ti-	1	1	ı		1		
Bromine (bromine gas, hydrogen bromide, bromide pentafluoride, other inorganic compounds)	1.90E-07	3.85E-08	2.14E-08	1.14E-08	3.05E-08	2.42E-08	6.95E-09	9.47E-08	1.98E-07
Butyl alcohol, tert-	8.91E-08	1.81E-08	1.01E-08	5.36E-09	1.43E-08	1.13E-08	3.27E-09	4.45E-08	9.32E-08
Dimethylformamide	1.07E-08	2.17E-09	1.21E-09	6.45E-10	1.72E-09	1.36E-09	3.92E-10	5.34E-09	1.12E-08
Epichlorohydrin	1.11E-08	2.24E-09	1.25E-09	6.66E-10	1.78E-09	1.41E-09	4.05E-10	5.52E-09	1.16E-08
Ethanol1	2.39E-07	4.84E-08	2.70E-08	1.44E-08	3.84E-08	3.04E-08	8.76E-09	1.21E-07	2.50E-07
Ethyl acetate	2.71E-08	5.50E-09	3.07E-09	1.63E-09	4.36E-09	3.46E-09	9.95E-10	1.35E-08	2.84E-08
Ethyl ether	1.73E-08	3.51E-09	1.96E-09	1.04E-09	2.78E-09	2.20E-09	6.34E-10	8.64E-09	1.81E-08
Glutaraldehyde	7.13E-07	1.45E-07	8.06E-08	4.29E-08	1.15E-07	9.08E-08	2.61E-08	3.59E-07	7.46E-07
Hydrogen fluoride	4.36E-06	8.83E-07	4.92E-07	2.62E-07	7.00E-07	5.55E-07	1.60E-07	2.17E-06	4.56E-06
Methyl bromide	9.38E-06	1.90E-06	1.06E-06	5.65E-07	1.51E-06	1.19E-06	3.44E-07	4.68E-06	9.81E-06
Phosgene	1.13E-05	2.29E-06	1.28E-06	6.80E-07	1.82E-06	1.44E-06	4.14E-07	5.64E-06	1.18E-05
Pyridine	1.82E-08	3.69E-09	2.06E-09	1.10E-09	2.93E-09	2.32E-09	6.68E-10	9.09E-09	1.91E-08
Tetrahydrofuran	1.70E-08	3.45E-09	1.92E-09	1.03E-09	2.74E-09	2.17E-09	6.24E-10	8.50E-09	1.78E-08
Triethylamine	1.36E-07	2.77E-08	1.54E-08	8.21E-09	2.19E-08	1.74E-08	5.00E-09	6.81E-08	1.43E-07
Hydrogen-3 (Tritium)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Iodine-125	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TOTAL	2.01E-04	4.07E-05	2.27E-05	1.21E-05	3.23E-05	2.56E-05	7.36E-06	1.01E-04	2.10E-04
No. of Stacks	1	1	1	1	1	1	1	4	8
Total per stack	2.01E-04	4.07E-05	2.27E-05	1.21E-05	3.23E-05	2.56E-05	7.36E-06	2.52E-05	2.63E-05

ANNUAL EMISSIONS RATES FOR CENTRAL CAMPUS PAINT USE AND LITHOGRAPHIC PRINTING AND HAZARDOUS MATERIALS FACILITY (Existing)

Hazardous Haterials Chemical **Paint Use** Printing **Facility** (g/s) (g/s) (g/s) Tier I Carbon tetrachloride 2.44E-05 ----3.62E-05 Chloroform Dioxane, 1,4-----8.96E-08 Formaldehyde 4.57E-08 n-Hexane 3.80E-04 2.70E-05 9.28E-03 Isopropyl alcohol 1.01E-04 Methanol 8.09E-04 0.00E+00 6.29E-05 Methylene chloride Toulene 1.28E-04 2.89E-04 1.28E-04 1.29E-04 Trichloroethylene 6.16E-05 1.35E-02 **Xylenes** Tier II Butyl alcohol, tert-2.42E-06 ----1.49E-05 Hydrogen fluoride Naphthalene 4.31E-05 ----Phenol 7.71E-08

ANNUAL EMISSIONS RATES FOR CENTRAL CAMPUS PAINT USE AND LITHOGRAPHIC PRINTING AND HAZARDOUS MATERIALS FACILITY (LRDP)

Chemical	Paint Use ¹ (g/s)	Printing ¹ (g/s)	Hazardous Haterials Facility ² (g/s)
Tier I			
Carbon tetrachloride			4.26E-05
Chloroform			6.33E-05
Dioxane, 1,4-			
Formaldehyde	5.48E-08		1.57E-07
n-Hexane		4.56E-04	
Isopropyl alcohol	3.24E-05	1.11E-02	
Methanol	1.21E-04		
Methylene chloride	9.71E-04	0.00E+00	1.10E-04
Toulene	1.53E-04	3.47E-04	
Trichloroethylene	1.53E-04	1.55E-04	
Xylenes	7.39E-05	1.62E-02	
Tier II			
Butyl alcohol, tert-	2.90E-06		
Hydrogen fluoride		1.79E-05	
Naphthalene		5.18E-05	
Phenol			1.35E-07

¹ Future emissions assumed to be 20 percent higher than current emissions

² Future emissions assumed to be 75 percent higher than current emissions

HOURLY EMISSIONS RATES FOR CENTRAL CAMPUS PAINT USE AND LITHOGRAPHIC PRINTING AND HAZARDOUS MATERIALS FACILITY¹

Hazardous Chemical **Paint Use Printing** Haterials **Facility** (g/s) (g/s) (g/s) Tier I 1.37E-03 Carbon tetrachloride Chloroform 2.03E-03 ----Formaldehyde 5.03E-06 1.92E-07 1.60E-03 n-Hexane ----Isopropyl alcohol 1.14E-04 3.91E-02 ----Methanol 4.25E-04 Methylene chloride 3.41E-03 0.00E+00 3.53E-03 5.38E-04 1.22E-03 Toulene ----Trichloroethylene 5.38E-04 5.45E-04 ----2.59E-04 5.68E-02 Xylenes Tier II 1.02E-05 Butyl alcohol, tert-Ethylene glycol butyl ether 6.18E-04 3.38E-03 6.28E-05 Hydrogen fluoride Naphthalene 1.82E-04 Phenol 4.33E-06

HOURLY EMISSIONS RATES FOR CENTRAL CAMPUS PAINT USE AND LITHOGRAPHIC PRINTING AND HAZARDOUS MATERIALS FACILITY

Chemical	Paint Use ¹ (g/s)	Printing ¹ (g/s)	Hazardous Haterials Facility ² (g/s)
Tier I			
Carbon tetrachloride			2.39E-03
Chloroform			3.55E-03
Formaldehyde	2.31E-07		8.80E-06
n-Hexane		1.92E-03	
Isopropyl alcohol	1.37E-04	4.69E-02	
Methanol	5.11E-04		
Methylene chloride	4.09E-03	0.00E+00	6.18E-03
Toulene	6.46E-04	1.46E-03	
Trichloroethylene	6.46E-04	6.54E-04	
Xylenes	3.11E-04	6.81E-02	
Tier II			
Butyl alcohol, tert-	1.22E-05		
Ethylene glycol butyl ether	7.42E-04	4.06E-03	
Hydrogen fluoride		7.54E-05	
Naphthalene		2.18E-04	
Phenol			7.57E-06

¹ Hourly emissions assumed operations of 3 hours per week, 52 weeks per year.

¹ Future emissions assumed to be 20 percent higher than current emissions

² Future emissions assumed to be 75 percent higher than current emissions

CANCER RISK MODELING INPUTS FOR CENTRAL CAMPUS PAINT USE AND LITHOGRAPHIC PRINTING AND HAZARDOUS MATERIALS FACILITY (Existing Conditions)

Hazardous **Unit Risk** Chemical **Paint Use** Printing Materials Factor Facility (µg/m3 -1) Tier I Carbon tetrachloride 4.20E-05 1.02E-09 Chloroform 5.30E-06 1.92E-10 Dioxane, 1,4-7.70E-06 Formaldehyde 6.00E-06 2.74E-13 5.37E-13 n-Hexane Isopropyl alcohol --------Methanol Methylene chloride 1.00E-06 8.09E-10 6.29E-11 Toulene Trichloroethylene 2.00E-06 2.56E-10 2.59E-10 Xylenes Tier II Butyl alcohol, tert-Ethylene glycol butyl ether Hydrogen fluoride Naphthalene Phenol ----1.06E-09 2.59E-10 1.28E-09 Total No. of Sources 4 3 1 Per Stack 2.66E-10 8.63E-11 1.28E-09 Cancer Risk x 1,000,000 (model input) 2.66E-04 8.63E-05 1.28E-03

CANCER RISK MODELING INPUTS FOR CENTRAL CAMPUS PAINT USE AND LITHOGRAPHIC PRINTING AND HAZARDOUS MATERIALS FACILITY (Future LRDP)

Chemical	Unit Risk Factor	Paint Use	Printing	Hazardous Materials Facility
Tier I	(µg/m3 -1)			
Carbon tetrachloride	4.20E-05			1.79E-09
Chloroform				
	5.30E-06			3.35E-10
Dioxane, 1,4-	7.70E-06			
Formaldehyde	6.00E-06	3.29E-13		9.40E-13
n-Hexane				
Isopropyl alcohol				
Methanol				
Methylene chloride	1.00E-06	9.71E-10		1.10E-10
Toulene				
Trichloroethylene	2.00E-06	3.07E-10	3.11E-10	
Xylenes				
Tier II				
Butyl alcohol, tert-				
Ethylene glycol butyl ether				
Hydrogen fluoride				
Naphthalene				
Phenol				
		•		
Total	•	1.28E-09	3.11E-10	2.24E-09
No. of Sources		4	3	1
Per Stack		3.19E-10	1.04E-10	2.24E-09
Cancer Risk x 1,000,000 (model input)		3.19E-04	1.04E-04	2.24E-03

CHRONIC NON-CANCER MODELING INPUTS FOR CENTRAL CAMPUS PAINT USE AND LITHOGRAPHIC PRINTING UNDER (Existing Conditions)

CHRONIC NON-CANCER MODELING INPUTS FOR CENTRAL CAMPUS PAINT USE AND LITHOGRAPHIC PRINTING (Future LRDP)

	Acceptable			Hazardous
Chemical	Exposure	Paint Use	Printing	Materials
	Level			Facility
	(µg/m3)			
Tier I				
Carbon tetrachloride	4.00E+01			6.09E-07
Chloroform	3.00E+02			1.21E-07
Formaldehyde	3.00E+00	1.52E-08		2.99E-08
n-Hexane	7.00E+03		5.42E-08	
Isopropyl alcohol	7.00E+03	3.86E-09	1.33E-06	
Methanol	4.00E+03	2.53E-08		
Methylene chloride	4.00E+02	2.02E-06	0.00E+00	1.57E-07
Toulene	3.00E+02	4.26E-07	9.64E-07	
Trichloroethylene	6.00E+02	2.13E-07	2.16E-07	
Xylenes	7.00E+02	8.80E-08	1.93E-05	
Tier II				
Butyl alcohol, tert-	7.14E+02			
Ethylene glycol butyl ether	2.00E+02	7.34E-07	4.01E-06	
Hydrogen fluoride	5.50E+00			
Naphthalene	9.00E+00		4.79E-06	
Phenol	2.00E+02			3.85E-10
Total		3.53E-06	3.06E-05	9.17E-07
No. of Sources		4	3	1
Per Stack		8.82E-07	1.02E-05	9.17E-07

	Acceptable			Hazardous
Chemical	•	Paint Use	Drinting	Materials
Chemicai	Exposure	Paint Use	Printing	
	Level			Facility
T'1	(µg/m3)			
Tier I	4.005.04			4.075.00
Carbon tetrachloride	4.00E+01			1.07E-06
Chloroform	3.00E+02			2.11E-07
Formaldehyde	3.00E+00	1.83E-08		5.22E-08
n-Hexane	7.00E+03		6.51E-08	
Isopropyl alcohol	7.00E+03	4.63E-09	1.59E-06	
Methanol	4.00E+03	3.03E-08		
Methylene chloride	4.00E+02	2.43E-06	0.00E+00	2.75E-07
Toulene	3.00E+02	5.11E-07	1.16E-06	
Trichloroethylene	6.00E+02	2.56E-07	2.59E-07	
Xylenes	7.00E+02	1.06E-07	2.31E-05	
Tier II				
Butyl alcohol, tert-	7.14E+02			
Ethylene glycol butyl ether	2.00E+02	8.80E-07	4.82E-06	
Hydrogen fluoride	5.50E+00			
Naphthalene	9.00E+00		5.75E-06	
Phenol	2.00E+02			6.74E-10
Total		4.23E-06	3.68E-05	1.61E-06
No. of Sources		4	3	1
Per Stack		1.06E-06	1.23E-05	1.61E-06

ACUTE NON-CANCER MODELING INPUTS FOR CENTRAL CAMPUS PAINT USE AND LITHOGRAPHIC PRINTING UNDER (Existing Conditions)

	Acceptable			Hazardous
Chemical	Exposure	Paint Use	Printing	Materials
	Level			Facility
	(µg/m3)			
Tier I				
Carbon tetrachloride	1.90E+03			7.20E-07
Chloroform	1.50E+02			1.35E-05
Formaldehyde	9.40E+01	2.05E-09	0.00E+00	5.35E-08
n-Hexane	1.76E+05		N/A	
Isopropyl alcohol	3.20E+03	3.56E-08	1.22E-05	
Methanol	2.80E+04	1.52E-08	0.00E+00	
Methylene chloride	1.40E+04	2.43E-07	0.00E+00	2.52E-07
Toulene	3.70E+04	1.45E-08	3.29E-08	
Trichloroethylene	2.69E+05	N/A	N/A	
Xylenes	2.20E+04	1.18E-08	2.58E-06	
Tier II				
Butyl alcohol, tert-	3.00E+05			
Ethylene glycol butyl ether				
Hydrogen fluoride	2.40E+02		2.62E-07	
Naphthalene			N/A	
Phenol	5.80E+03			7.46E-10
TOTAL		3.22E-07	1.51E-05	1.46E-05
No. of Stacks		4	3	1
Total per stack		8.06E-08	5.03E-06	1.46E-05

ACUTE NON-CANCER MODELING INPUTS FOR CENTRAL CAMPUS PAINT USE AND LITHOGRAPHIC PRINTING (Future LRDP)

	Acceptable			Hazardous
Chemical	Exposure	Paint Use	Printing	Materials
	Level			Facility
Tier I	(µg/m3)			
Carbon tetrachloride	1.90E+03			1.26E-06
Chloroform	1.50E+02			2.37E-05
Formaldehyde	9.40E+01	2.45E-09	0.00E+00	9.36E-08
n-Hexane	1.76E+05		N/A	
Isopropyl alcohol	3.20E+03	4.27E-08	1.47E-05	
Methanol	2.80E+04	1.82E-08	0.00E+00	
Methylene chloride	1.40E+04	2.92E-07	0.00E+00	4.42E-07
Toulene	3.70E+04	1.75E-08	3.95E-08	
Trichloroethylene	2.69E+05	N/A	N/A	
Xylenes	2.20E+04	1.42E-08	3.10E-06	
Tier II				
Butyl alcohol, tert-	3.00E+05			
Ethylene glycol butyl ether				
Hydrogen fluoride	2.40E+02		3.14E-07	
Naphthalene			N/A	
Phenol	5.80E+03			1.31E-09
TOTAL		3.87E-07	1.81E-05	2.55E-05
No. of Stacks		4	3	1
Total per stack		9.67E-08	6.04E-06	2.55E-05

AIR TOXIC CONTAMINANT EMISSION FACTORS FOR COMBUSTION EMISSION CALCULATIONS

	Т	urbines	Boilers
Pollutant	Natural Gas ¹ lb/MMcf	Diesel ² lb/MMBtu	Natual Gas ³ lb/MMcf
Acenaphthene			1.80E-06
Acenaphthylene			1.80E-06
Acetaldehyde	4.00E-02		
Acrrolein	6.40E-03		
Anthracene			2.40E-06
Benz(a)anthracene			1.80E-06
Benzene	1.20E-02		2.10E-03
Benzo(b/k)fluoranthene			3.60E-06
Benzo(a)pyrene			1.20E-06
Benzo(g,h,i)perylene			1.20E-06
1,3 Butadiene	4.30E-04		
Chrysene			1.80E-06
Dibenzo(a,h)anthracene			1.20E-06
Dichlorobenzene			1.20E-03
7,12-Dimethylbenz(a)anthracene			1.60E-05
Ethylbenzene	3.20E-02		
Fluoranthene			3.00E-06
Fluorene			2.80E-06
Formaldehyde	7.10E-01		7.50E-02
Hexane			1.80E+00
Indeno(1,2,3-cd)pyrene			1.80E-06
2-Methylnaphthalene			2.40E-05
3-Methylchloroanthrene			1.80E-06
Naphthalene	1.30E-03		6.10E-04
PAHs ⁴	9.00E-04		
Pentane ⁵			2.60E+00
Phenanthrene			1.70E-05
Propylene Oxide	2.90E-02		
Pyrene			5.00E-06
Toluene	1.30E-01		3.40E-03
Xylenes	6.40E-02		
Metals	•		
Arsenic	2.00E-04		2.00E-04
Barium ⁵	4.40E-03		4.40E-03
Beryllium	1.20E-05		1.20E-05
Cadmium	1.10E-03		1.10E-03
Chromium	1.40E-03		1.40E-03
Cobalt	8.40E-05		8.40E-05
Copper	8.50E-04		8.50E-04
Lead	5.00E-04		5.00E-04
Manganese	3.80E-04		3.80E-04
Mercury	2.60E-04		2.60E-04
Molybdenum ⁵	1.10E-03		1.10E-03
Nickel	2.10E-03		2.10E-03
Selenium	2.40E-05		2.40E-05
Vanadium	2.30E-03		2.30E-03
Zinc	2.90E-02		2.90E-03
Diesel Particulate		1.20E-02	

¹ Emission factors from Table 3.1-3 (AP-42) AND Table 1.4-4 for metals.

² Emission factor obtained from Table 3.1-2a of AP-42.

³ Emission factors from Table 1.4-3 and 1.4-4 of AP-42.

⁴ Emission factor is based on total PAHs minus naphthalene.

⁵ There are no toxicity factors for this chemical.

UC BERKELEY TOXIC AIR EMISSIONS FROM COMBUSTION SOURCES - ANNUAL AVERAGE (EXISTING CONDITIONS)

		Tur	bines		Boil	er #2	Boil	er #3	Boiler #4	
Pollutant	Natur	al Gas	Die	esel	Natur	al Gas	Natur	al Gas	Natur	al Gas
	lb/hr	g/s	lb/hr	g/s	lb/hr	g/s	lb/hr	g/s	lb/hr	g/s
Actaldehyde	1.06E-04	1.335E-05	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Acrolein	1.58E-03	1.988E-04	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Benzene	2.96E-03	3.727E-04	N/A	N/A	8.81E-06	1.11E-06	3.37E-05	4.25E-06	4.07E-05	5.13E-06
1,3 Butadiene	1.06E-04	1.335E-05	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Dichlorobenzene	0.00E+00	0.000E+00	N/A	N/A	5.03E-06	6.34E-07	1.93E-05	2.43E-06	2.33E-05	2.93E-06
Ethylbenzene	7.89E-03	9.938E-04	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fomaldehyde	1.75E-01	2.205E-02	N/A	N/A	3.15E-04	3.96E-05	1.20E-03	1.52E-04	1.45E-03	1.83E-04
Hexane3	0.00E+00	0.000E+00	N/A	N/A	7.55E-03	9.51E-04	2.89E-02	3.64E-03	3.49E-02	4.40E-03
Naphthalene	3.20E-04	4.037E-05	N/A	N/A	2.56E-06	3.22E-07	9.80E-06	1.23E-06	1.18E-05	1.49E-06
PAHs (BaP Equivalents)	2.22E-04	2.795E-05	N/A	N/A	4.39E-06	5.53E-07	1.68E-05	2.12E-06	2.03E-05	2.55E-06
PAHs (Pyrene Equivalents)	0.00E+00	0.00E+00	N/A	N/A	2.47E-07	3.12E-08	9.48E-07	1.19E-07	1.14E-06	1.44E-07
Proylene Oxide	3.20E-02	4.037E-03	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Toluene	3.20E-02	4.037E-03	N/A	N/A	1.43E-05	1.80E-06	5.46E-05	6.88E-06	6.59E-05	8.31E-06
Xylenes	1.58E-02	1.988E-03	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
<u>Particulates</u>	*									
Arsenic	4.93E-05	6.211E-06	N/A	N/A	8.39E-07	1.06E-07	3.21E-06	4.05E-07	3.88E-06	4.89E-07
Beryllium	2.96E-06	3.727E-07	N/A	N/A	5.03E-08	6.34E-09	1.93E-07	2.43E-08	2.33E-07	2.93E-08
Cadmium	2.71E-04	3.416E-05	N/A	N/A	4.61E-06	5.81E-07	1.77E-05	2.23E-06	2.13E-05	2.69E-06
Chromium	3.45E-04	4.348E-05	N/A	N/A	5.87E-06	7.40E-07	2.25E-05	2.83E-06	2.71E-05	3.42E-06
Cobalt	2.07E-05	2.609E-06	N/A	N/A	3.52E-07	4.44E-08	1.35E-06	1.70E-07	1.63E-06	2.05E-07
Copper	2.10E-04	2.640E-05	N/A	N/A	3.56E-06	4.49E-07	1.37E-05	1.72E-06	1.65E-05	2.08E-06
Lead	1.23E-04	1.553E-05	N/A	N/A	2.10E-06	2.64E-07	8.03E-06	1.01E-06	9.69E-06	1.22E-06
Manganese	9.37E-05	1.180E-05	N/A	N/A	1.59E-06	2.01E-07	6.10E-06	7.69E-07	7.37E-06	9.28E-07
Mercury	6.41E-05	8.075E-06	N/A	N/A	1.09E-06	1.37E-07	4.18E-06	5.26E-07	5.04E-06	6.35E-07
Nickel	5.18E-04	6.522E-05	N/A	N/A	8.81E-06	1.11E-06	3.37E-05	4.25E-06	4.07E-05	5.13E-06
Selenium	5.92E-06	7.453E-07	N/A	N/A	1.01E-07	1.27E-08	3.85E-07	4.86E-08	4.65E-07	5.86E-08
Vanadium	5.67E-04	7.143E-05	N/A	N/A	9.65E-06	1.22E-06	3.69E-05	4.65E-06	4.46E-05	5.62E-06
Zinc	7.15E-03	9.006E-04	N/A	N/A	1.22E-05	1.53E-06	4.66E-05	5.87E-06	5.62E-05	7.08E-06
Diesel Particulate	N/A	N/A	2.40E-03	3.02E-04	N/A	N/A	N/A	N/A	N/A	N/A

	TURBINE +	Catalytic Afterburner				BOILER #2	BOILER #3	BOILER #4
Natural C	Fas	Fuel Oil				Natural Gas	Natural Gas	Natural Gas
Annual		Annual			Annual			
MMBtu/hr (HHV):	246.4775	Gallons/hr	1.428	1.428				
Btu/scf (HHV):	1000	Btu/gal	140,000		MMscf/hr:	0.00419	0.01606	0.01939
MMscf/hr:	0.24648	MMBtu/hr:	0.200					

UC BERKELEY TOXIC AIR EMISSIONS FROM COMBUSTION SOURCES - MAXIMUM HOURLY (EXISTING CONDITIONS)

		Tur	bines		Boil	er #2	Boiler #3		Boiler #4	
Pollutant	Natur	al Gas	Die	esel	Natur	al Gas	Natur	al Gas	Natural Gas	
	lb/hr	g/s	lb/hr	g/s	lb/hr	g/s	lb/hr	g/s	lb/hr	g/s
Actaldehyde	1.41E-04	1.777E-05	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Acrolein	2.10E-03	2.645E-04	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Benzene	3.94E-03	4.959E-04	N/A	N/A	2.88E-04	3.63E-05	2.84E-04	3.57E-05	2.84E-04	3.57E-05
1,3 Butadiene	1.41E-04	1.777E-05	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Dichlorobenzene	0.00E+00	0.000E+00	N/A	N/A	1.64E-04	2.07E-05	1.62E-04	2.04E-05	1.62E-04	2.04E-05
Ethylbenzene	1.05E-02	1.322E-03	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fomaldehyde	2.33E-01	2.934E-02	N/A	N/A	1.03E-02	1.29E-03	1.01E-02	1.28E-03	1.01E-02	1.28E-03
Hexane3	0.00E+00	0.000E+00	N/A	N/A	2.47E-01	3.11E-02	2.43E-01	3.06E-02	2.43E-01	3.06E-02
Naphthalene	4.26E-04	5.373E-05	N/A	N/A	8.36E-05	1.05E-05	8.24E-05	1.04E-05	8.24E-05	1.04E-05
PAHs (BaP Equivalents)	2.95E-04	3.720E-05	N/A	N/A	1.43E-04	1.81E-05	1.41E-04	1.78E-05	1.41E-04	1.78E-05
PAHs (Pyrene Equivalents)	0.00E+00	0.00E+00	N/A	N/A	8.08E-06	1.02E-06	7.97E-06	1.00E-06	7.97E-06	1.00E-06
Provlene Oxide	0.00E+00	0.000E+00	N/A	N/A	6.85E-07	8.63E-08	6.75E-07	8.51E-08	6.75E-07	8.51E-08
Toluene	4.26E-02	5.373E-03	N/A	N/A	4.66E-04	5.87E-05	4.59E-04	5.78E-05	4.59E-04	5.78E-05
Xylenes	2.10E-02	2.645E-03	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Particulates Particulates					•	•	•	•		
Arsenic	6.56E-05	8.266E-06	N/A	N/A	2.74E-05	3.45E-06	2.70E-05	3.40E-06	2.70E-05	3.40E-06
Beryllium	3.94E-06	4.959E-07	N/A	N/A	1.64E-06	2.07E-07	1.62E-06	2.04E-07	1.62E-06	2.04E-07
Cadmium	3.61E-04	4.546E-05	N/A	N/A	1.51E-04	1.90E-05	1.49E-04	1.87E-05	1.49E-04	1.87E-05
Chromium	4.59E-04	5.786E-05	N/A	N/A	1.92E-04	2.42E-05	1.89E-04	2.38E-05	1.89E-04	2.38E-05
Cobalt	2.76E-05	3.472E-06	N/A	N/A	1.15E-05	1.45E-06	1.13E-05	1.43E-06	1.13E-05	1.43E-06
Copper	2.79E-04	3.513E-05	N/A	N/A	1.16E-04	1.47E-05	1.15E-04	1.45E-05	1.15E-04	1.45E-05
Lead	1.64E-04	2.066E-05	N/A	N/A	6.85E-05	8.63E-06	6.75E-05	8.51E-06	6.75E-05	8.51E-06
Manganese	1.25E-04	1.570E-05	N/A	N/A	5.21E-05	6.56E-06	5.13E-05	6.46E-06	5.13E-05	6.46E-06
Mercury	8.53E-05	1.075E-05	N/A	N/A	3.56E-05	4.49E-06	3.51E-05	4.42E-06	3.51E-05	4.42E-06
Nickel	6.89E-04	8.679E-05	N/A	N/A	2.88E-04	3.63E-05	2.84E-04	3.57E-05	2.84E-04	3.57E-05
Selenium	7.87E-06	9.919E-07	N/A	N/A	3.29E-06	4.14E-07	3.24E-06	4.08E-07	3.24E-06	4.08E-07
Vanadium	7.54E-04	9.505E-05	N/A	N/A	3.15E-04	3.97E-05	3.11E-04	3.91E-05	3.11E-04	3.91E-05
Zinc	9.51E-03	1.199E-03	N/A	N/A	3.97E-04	5.01E-05	3.92E-04	4.93E-05	3.92E-04	4.93E-05
Diesel Particulate	N/A	N/A	2.928E+00	3.69E-01	N/A	N/A	N/A	N/A	N/A	N/A

	TURBINE +	- Catalytic Afterburner			BOILER #2	BOILER #3	BOILER #4
Natural (Gas	Fuel C)il		Natural Gas	Natural Gas	Natural Gas
Maximum H	Iourly	Maximum	Hourly	Maximum Hourly			
MMBtu/hr (HHV):	328.0000	Gallons/hr	1,742.857	MMBtu/hr (HHV):	137.0000	135.0000	135.0000
Btu/scf (HHV):	1000	Btu/gal	140,000	Btu/scf (HHV):	1000	1000	1000
MMscf/hr:	0.32800	MMBtu/hr:	244.000	MMscf/hr:	0.13700	0.13500	0.13500

CANCER RISK INPUTS FROM COMBUSTION SOURCES (EXISTING CONDITIONS)

Cl. : I	Unit Risk	Tubi	ne	D 11 //2	D 11 //2	D 21 //4
Chemical	Factor	Natural Gas	Diesel	Boiler #2	Boiler #3	Boiler #4
Actaldehyde	2.7E-06	3.61E-11				
Acrolein	N/A					
Benzene	2.9E-05	1.08E-08		3.22E-11	1.23E-10	1.49E-10
1,3 Butadiene	1.70E-04	2.27E-09		0.00E+00	0.00E+00	0.00E+00
Dichlorobenzene	1.10E-05			6.97E-12	2.67E-11	3.22E-11
Ethylbenzene	N/A					
Fomaldehyde	6.00E-06	1.32E-07		2.38E-10	9.11E-10	1.10E-09
Hexane3	N/A					
2-Methylnaphthalene	N/A					
Naphthalene	N/A					
PAHs (BaP Equivalents)	1.10E-03	3.07E-08		3.43E-11	1.31E-10	1.59E-10
Propylene Oxide	3.70E-06	1.49E-08				
Toluene	N/A					
Xylenes	N/A					
<u>Particulates</u>						
Arsenic	3.30E-03	2.05E-08		3.49E-10	1.34E-09	1.61E-09
Beryllium	2.40E-03	8.94E-10		1.52E-11	5.83E-11	7.03E-11
Cadmium	4.20E-03	1.43E-07		2.44E-09	9.35E-09	1.13E-08
Chromium	1.20E-02	5.22E-07		8.88E-09	3.40E-08	4.10E-08
Cobalt	N/A					
Copper	N/A					
Lead	1.20E-05	1.86E-10		3.17E-12	1.21E-11	1.47E-11
Manganese	N/A					
Mercury	N/A					
Nickel	2.60E-04	1.70E-08		2.88E-10	1.10E-09	1.33E-09
Selenium	N/A					
Vanadium	N/A					
Zinc	N/A					
Diesel Particulates	3.00E-04		9.07E-08			
Total		8.87E-07	9.07E-08	1.23E-08	4.70E-08	5.68E-08
Total x 1000000		8.87E-07 0.887	9.07E-08 0.09069	0.01228	4.70E-08 0.0470	5.68E-08 0.0568
	al Turbine Model Input:	0.97]	0.0170	0.000

CHRONIC HAZARD INDEX INPUTS FROM COMBUSTION SOURCES (EXISTING CONDITIONS)

	Unit Risk	Tubi	ne	D 11 //2	D 11 //2	D 21 //4
Chemical	Factor	Natural Gas	Diesel	Boiler #2	Boiler #3	Boiler #4
Actaldehyde	9	1.48E-06		0.00E+00	0.00E+00	0.00E+00
Acrolein	0.06	3.31E-03		0.00E+00	0.00E+00	0.00E+00
Benzene	60	6.21E-06		1.85E-08	7.08E-08	8.55E-08
1,3 Butadiene	20	6.68E-07		0.00E+00	0.00E+00	0.00E+00
Dichlorobenzene	800	0.00E+00		7.93E-10	3.04E-09	3.66E-09
Ethylbenzene	2000	4.97E-07		0.00E+00	0.00E+00	0.00E+00
Fomaldehyde	3	7.35E-03		1.32E-05	5.06E-05	6.11E-05
Hexane	7000	0.00E+00		1.36E-07	5.20E-07	6.28E-07
Naphthalene	9	4.49E-06		3.58E-08	1.37E-07	1.66E-07
PAHs (BaP Equivalents) cancer	0.48	5.82E-05		1.15E-06	4.41E-06	5.32E-06
PAHs (Pyrene Equivalents) chronic	45	0.00E+00		6.93E-10	2.65E-09	3.20E-09
Propylene Oxide	30	1.35E-04		0.00E+00	0.00E+00	0.00E+00
Toluene	300	1.35E-05		5.99E-09	2.29E-08	2.77E-08
Xylenes	700	2.84E-06		0.00E+00	0.00E+00	0.00E+00
Particulates Particulates	-			-		
Arsenic	0.03	2.07E-04		3.52E-06	1.35E-05	1.63E-05
Beryllium	0.007	5.32E-05		9.06E-07	3.47E-06	4.19E-06
Cadmium	0.02	1.71E-03		2.91E-05	1.11E-04	1.34E-04
Chromium	1.02	4.26E-05		7.25E-07	2.78E-06	3.35E-06
Cobalt	0.005	5.22E-04		8.88E-06	3.40E-05	4.10E-05
Copper	0.02	1.32E-03		2.25E-05	8.60E-05	1.04E-04
Lead	1.5	1.04E-05		1.76E-07	6.74E-07	8.14E-07
Manganese	0.2	5.90E-05		1.00E-06	3.84E-06	4.64E-06
Mercury	0.09	8.97E-05		1.53E-06	5.85E-06	7.06E-06
Nickel	0.05	1.30E-03		2.22E-05	8.50E-05	1.03E-04
Selenium	20	3.73E-08		6.34E-10	2.43E-09	2.93E-09
Vanadium	0.12	5.95E-04		1.01E-05	3.88E-05	4.68E-05
Zinc	0.9	1.00E-03		1.70E-06	6.52E-06	7.87E-06
Diesel Particulate	5		6.05E-05			
TOTAL	TAL TURBINE	1.78E-02 1.79E	6.05E-05	1.17E-04	4.47E-04	5.40E-04

ACUTE HAZARD INDEX INPUTS FROM COMBUSTION SOURCES (EXISTING CODITIONS)

Chamical	Unit Risk	Tubi	ne	D. H #2	D a 21 a 11 #2	Da:lan #4
Chemical	Factor	Natural Gas	Diesel	Boiler #2	Boiler #3	Boiler #4
Actaldehyde	4.51E+03	3.94E-09		0.00E+00	0.00E+00	0.00E+00
Acrolein	1.90E-01	1.39E-03		0.00E+00	0.00E+00	0.00E+00
Benzene	1.30E+03	3.81E-07		2.79E-08	2.75E-08	2.75E-08
1,3 Butadiene	2.21E+02	8.04E-08		0.00E+00	0.00E+00	0.00E+00
Dichlorobenzene	6.00E+03	0.00E+00		3.45E-09	3.40E-09	3.40E-09
Ethylbenzene	4.34E+04	3.05E-08		0.00E+00	0.00E+00	0.00E+00
Fomaldehyde	9.40E+01	3.12E-04		1.38E-05	1.36E-05	1.36E-05
Hexane	1.76E+04	0.00E+00		1.77E-06	1.74E-06	1.74E-06
Naphthalene	5.00E+03	1.07E-08		2.11E-09	2.08E-09	2.08E-09
PAHs (BaP Equivalents) cancer	2.00E+01	1.86E-06		9.03E-07	8.89E-07	8.89E-07
PAHs (Pyrene Equivalents) chronic	5.00E+03	0.00E+00		2.04E-10	2.01E-10	2.01E-10
Propylene Oxide	3.10E+03	0.00E+00		2.78E-11	2.74E-11	2.74E-11
Toluene	3.70E+04	1.45E-07		1.59E-09	1.56E-09	1.56E-09
Xylenes	2.20E+04	1.20E-07		0.00E+00	0.00E+00	0.00E+00
<u>Metals</u>						
Arsenic	1.90E-01	4.35E-05		1.82E-05	1.79E-05	1.79E-05
Beryllium	2.00E-01	2.48E-06		1.04E-06	1.02E-06	1.02E-06
Cadmium	5.00E-01	9.09E-05		3.80E-05	3.74E-05	3.74E-05
Chromium	4.30E+01	1.35E-06		5.62E-07	5.54E-07	5.54E-07
Cobalt	2.00E+00	1.74E-06		7.25E-07	7.14E-07	7.14E-07
Copper	1.00E+02	3.51E-07		1.47E-07	1.45E-07	1.45E-07
Lead	5.00E+00	4.13E-06		1.73E-06	1.70E-06	1.70E-06
Manganese	2.00E+01	7.85E-07		3.28E-07	3.23E-07	3.23E-07
Mercury	1.80E+00	5.97E-06		2.49E-06	2.46E-06	2.46E-06
Nickel	6.00E+00	1.45E-05		6.04E-06	5.95E-06	5.95E-06
Selenium	2.00E+01	4.96E-08		2.07E-08	2.04E-08	2.04E-08
Vanadium (pentoxide)	3.00E+01	3.17E-06		1.32E-06	1.30E-06	1.30E-06
Zinc	5.00E+01	2.40E-05		1.00E-06	9.87E-07	9.87E-07
Diesel Particulate	N/A					
Total		1.90E-03	0.00E+00	8.80E-05	8.67E-05	8.67E-05

UC BERKELEY TOXIC AIR EMISSIONS FROM COMBUSTION SOURCES - ANNUAL AVERAGE (LRDP)

		Turl	oines		Boil	er #2	Boile	er #3	Boil	er #4
Pollutant	Natur	al Gas	Di	esel	Natur	al Gas	Natur	al Gas	Natur	al Gas
	lb/hr	g/s	lb/hr	g/s	lb/hr	g/s	lb/hr	g/s	lb/hr	g/s
					-					
Actaldehyde	1.06E-04	1.335E-05	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Acrolein	1.58E-03	1.988E-04	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Benzene	2.96E-03	3.727E-04	N/A	N/A	8.92E-06	1.12E-06	3.37E-05	4.25E-06	4.07E-05	5.13E-06
1,3 Butadiene	1.06E-04	1.335E-05	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Dichlorobenzene	0.00E+00	0.000E+00	N/A	N/A	5.10E-06	6.42E-07	1.93E-05	2.43E-06	2.33E-05	2.93E-06
Ethylbenzene	7.89E-03	9.938E-04	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fomaldehyde	1.75E-01	2.205E-02	N/A	N/A	3.18E-04	4.01E-05	1.20E-03	1.52E-04	1.45E-03	1.83E-04
Hexane3	0.00E+00	0.000E+00	N/A	N/A	7.64E-03	9.63E-04	2.89E-02	3.64E-03	3.49E-02	4.40E-03
Naphthalene	3.20E-04	4.037E-05	N/A	N/A	2.59E-06	3.26E-07	9.80E-06	1.23E-06	1.18E-05	1.49E-06
PAHs (BaP Equivalents)	2.22E-04	2.795E-05	N/A	N/A	4.44E-06	5.59E-07	1.68E-05	2.12E-06	2.03E-05	2.55E-06
PAHs (Pyrene Equivalents)	0.00E+00	0.00E+00	N/A	N/A	2.51E-07	3.16E-08	9.48E-07	1.19E-07	1.14E-06	1.44E-07
Proylene Oxide	3.20E-02	4.037E-03	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Toluene	3.20E-02	4.037E-03	N/A	N/A	1.44E-05	1.82E-06	5.46E-05	6.88E-06	6.59E-05	8.31E-06
Xylenes	1.58E-02	1.988E-03	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
<u>Particulates</u>										
Arsenic	4.93E-05	6.211E-06	N/A	N/A	8.49E-07	1.07E-07	3.21E-06	4.05E-07	3.88E-06	4.89E-07
Beryllium	2.96E-06	3.727E-07	N/A	N/A	5.10E-08	6.42E-09	1.93E-07	2.43E-08	2.33E-07	2.93E-08
Cadmium	2.71E-04	3.416E-05	N/A	N/A	4.67E-06	5.88E-07	1.77E-05	2.23E-06	2.13E-05	2.69E-06
Chromium	3.45E-04	4.348E-05	N/A	N/A	5.94E-06	7.49E-07	2.25E-05	2.83E-06	2.71E-05	3.42E-06
Cobalt	2.07E-05	2.609E-06	N/A	N/A	3.57E-07	4.49E-08	1.35E-06	1.70E-07	1.63E-06	2.05E-07
Copper	2.10E-04	2.640E-05	N/A	N/A	3.61E-06	4.55E-07	1.37E-05	1.72E-06	1.65E-05	2.08E-06
Lead	1.23E-04	1.553E-05	N/A	N/A	2.12E-06	2.67E-07	8.03E-06	1.01E-06	9.69E-06	1.22E-06
Manganese	9.37E-05	1.180E-05	N/A	N/A	1.61E-06	2.03E-07	6.10E-06	7.69E-07	7.37E-06	9.28E-07
Mercury	6.41E-05	8.075E-06	N/A	N/A	1.10E-06	1.39E-07	4.18E-06	5.26E-07	5.04E-06	6.35E-07
Nickel	5.18E-04	6.522E-05	N/A	N/A	8.92E-06	1.12E-06	3.37E-05	4.25E-06	4.07E-05	5.13E-06
Selenium	5.92E-06	7.453E-07	N/A	N/A	1.02E-07	1.28E-08	3.85E-07	4.86E-08	4.65E-07	5.86E-08
Vanadium	5.67E-04	7.143E-05	N/A	N/A	9.77E-06	1.23E-06	3.69E-05	4.65E-06	4.46E-05	5.62E-06
Zinc	7.15E-03	9.006E-04	N/A	N/A	1.23E-05	1.55E-06	4.66E-05	5.87E-06	5.62E-05	7.08E-06
Diesel Particulate	N/A	N/A	2.40E-03	3.02E-04	N/A	N/A	N/A	N/A	N/A	N/A

	TURBINE +	- Catalytic Afterburner				BOILER #2	BOILER #3	BOILER #4
Natural G	as	Fuel O	il			Natural Gas	Natural Gas	Natural Gas
Annual		Annua	al		Annual			
MMBtu/hr (HHV):	246.4775	Gallons/hr	1.428	1.428				
Btu/scf (HHV):	1000	Btu/gal	140,000		MMscf/hr:	0.00425	0.01606	0.01939
MMscf/hr:	0.24648	MMBtu/hr:	0.200					

UC BERKELEY TOXIC AIR EMISSIONS FROM COMBUSTION SOURCES - MAXIMUM HOURLY (LRDP)

		Turl	bines		Boile	er #2	Boil	er #3	Boiler #4	
Pollutant	Natur	al Gas	Die	esel	Natur	al Gas	Natur	al Gas	Natural Gas	
	lb/hr	g/s	lb/hr	g/s	lb/hr	g/s	lb/hr	g/s	lb/hr	g/s
Actaldehyde	1.41E-04	1.777E-05	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Acrolein	2.10E-03	2.645E-04	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Benzene	3.94E-03	4.959E-04	N/A	N/A	2.88E-04	3.63E-05	2.84E-04	3.57E-05	2.84E-04	3.57E-05
1,3 Butadiene	1.41E-04	1.777E-05	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Dichlorobenzene	0.00E+00	0.000E+00	N/A	N/A	1.64E-04	2.07E-05	1.62E-04	2.04E-05	1.62E-04	2.04E-05
Ethylbenzene	1.05E-02	1.322E-03	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fomaldehyde	2.33E-01	2.934E-02	N/A	N/A	1.03E-02	1.29E-03	1.01E-02	1.28E-03	1.01E-02	1.28E-03
Hexane3	0.00E+00	0.000E+00	N/A	N/A	2.47E-01	3.11E-02	2.43E-01	3.06E-02	2.43E-01	3.06E-02
Naphthalene	4.26E-04	5.373E-05	N/A	N/A	8.36E-05	1.05E-05	8.24E-05	1.04E-05	8.24E-05	1.04E-05
PAHs (BaP Equivalents)	2.95E-04	3.720E-05	N/A	N/A	1.43E-04	1.81E-05	1.41E-04	1.78E-05	1.41E-04	1.78E-05
PAHs (Pyrene Equivalents)	0.00E+00	0.00E+00	N/A	N/A	8.08E-06	1.02E-06	7.97E-06	1.00E-06	7.97E-06	1.00E-06
Proylene Oxide	0.00E+00	0.000E+00	N/A	N/A	6.85E-07	8.63E-08	6.75E-07	8.51E-08	6.75E-07	8.51E-08
Toluene	4.26E-02	5.373E-03	N/A	N/A	4.66E-04	5.87E-05	4.59E-04	5.78E-05	4.59E-04	5.78E-05
Xylenes	2.10E-02	2.645E-03	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Particulates Particulates										
Arsenic	6.56E-05	8.266E-06	N/A	N/A	2.74E-05	3.45E-06	2.70E-05	3.40E-06	2.70E-05	3.40E-06
Beryllium	3.94E-06	4.959E-07	N/A	N/A	1.64E-06	2.07E-07	1.62E-06	2.04E-07	1.62E-06	2.04E-07
Cadmium	3.61E-04	4.546E-05	N/A	N/A	1.51E-04	1.90E-05	1.49E-04	1.87E-05	1.49E-04	1.87E-05
Chromium	4.59E-04	5.786E-05	N/A	N/A	1.92E-04	2.42E-05	1.89E-04	2.38E-05	1.89E-04	2.38E-05
Cobalt	2.76E-05	3.472E-06	N/A	N/A	1.15E-05	1.45E-06	1.13E-05	1.43E-06	1.13E-05	1.43E-06
Copper	2.79E-04	3.513E-05	N/A	N/A	1.16E-04	1.47E-05	1.15E-04	1.45E-05	1.15E-04	1.45E-05
Lead	1.64E-04	2.066E-05	N/A	N/A	6.85E-05	8.63E-06	6.75E-05	8.51E-06	6.75E-05	8.51E-06
Manganese	1.25E-04	1.570E-05	N/A	N/A	5.21E-05	6.56E-06	5.13E-05	6.46E-06	5.13E-05	6.46E-06
Mercury	8.53E-05	1.075E-05	N/A	N/A	3.56E-05	4.49E-06	3.51E-05	4.42E-06	3.51E-05	4.42E-06
Nickel	6.89E-04	8.679E-05	N/A	N/A	2.88E-04	3.63E-05	2.84E-04	3.57E-05	2.84E-04	3.57E-05
Selenium	7.87E-06	9.919E-07	N/A	N/A	3.29E-06	4.14E-07	3.24E-06	4.08E-07	3.24E-06	4.08E-07
Vanadium	7.54E-04	9.505E-05	N/A	N/A	3.15E-04	3.97E-05	3.11E-04	3.91E-05	3.11E-04	3.91E-05
Zinc	9.51E-03	1.199E-03	N/A	N/A	3.97E-04	5.01E-05	3.92E-04	4.93E-05	3.92E-04	4.93E-05
Diesel Particulate	N/A	N/A	2.928E+00	3.69E-01	N/A	N/A	N/A	N/A	N/A	N/A

	TURBINE +	- Catalytic Afterburner			BOILER #2	BOILER #3	BOILER #4
Natural (Fas	Fuel O	il		Natural Gas	Natural Gas	Natural Gas
Maximum H	lourly	Maximum l	Hourly	Maximum Hourly			
MMBtu/hr (HHV):	328.0000	Gallons/hr	1,742.857	MMBtu/hr (HHV):	137.0000	135.0000	135.0000
Btu/scf (HHV):	1000	Btu/gal	140,000	Btu/scf (HHV):	1000	1000	1000
MMscf/hr	0.32800	MMRtu/hr·	244 000	MMscf/hr	0.13700	0.13500	0.13500

CANCER RISK INPUTS FROM COMBUSTION SOURCES (LRDP)

CI 1	Unit Risk	Tubi	ne	D 11 1/2	D 11 112	D 11 //4
Chemical	Factor	Natural Gas	Diesel	Boiler #2	Boiler #3	Boiler #4
Actaldehyde	2.7E-06	3.6E-11		0.00E+00	0.00E+00	0.00E+00
Acrolein	N/A					
Benzene	2.9E-05	1.1E-08		3.26E-11	1.23E-10	1.49E-10
1,3 Butadiene	1.70E-04	2.3E-09		0.00E+00	0.00E+00	0.00E+00
Dichlorobenzene	1.10E-05			7.06E-12	2.67E-11	3.22E-11
Ethylbenzene	N/A					
Fomaldehyde	6.00E-06	1.3E-07		2.41E-10	9.11E-10	1.10E-09
Hexane3	N/A					
Naphthalene	N/A					
PAHs4	1.10E-03	3.07E-08		3.47E-11	1.31E-10	1.59E-10
Propylene Oxide	3.70E-06	1.5E-08				
Toluene	N/A					
Xylenes	N/A					
			•	•		
Arsenic	3.30E-03	2.0E-08		3.53E-10	1.34E-09	1.61E-09
Beryllium	2.40E-03	8.9E-10		1.54E-11	5.83E-11	7.03E-11
Cadmium	4.20E-03	1.4E-07		2.47E-09	9.35E-09	1.13E-08
Chromium	1.20E-02	5.2E-07		8.99E-09	3.40E-08	4.10E-08
Cobalt	N/A					
Copper	N/A					
Lead	1.20E-05	1.9E-10		3.21E-12	1.21E-11	1.47E-11
Manganese	N/A					
Mercury	N/A					
Nickel	2.60E-04	1.7E-08		2.92E-10	1.10E-09	1.33E-09
Selenium	N/A					
Vanadium	N/A					
Zinc	N/A					
Diesel Particulates	3.00E-04		9.07E-08			
Total		8.87E-07	9.07E-08	1.24E-08	4.70E-08	5.68E-08
Total x 1000000		0.887	0.09069	0.01244	0.0470	0.0568
10tm1 A 1000000	Total Turbine Model Input:	0.97		0.01277	0.0470	0.0300

CHRONIC HAZARD INDEX INPUTS FROM COMBUSTION SOURCES (LRDP)

Cl. · · ·	Unit Risk	Tubi	ne	D 11 //2	D 11 //2	D 21 //4
Chemical	Factor	Natural Gas	Diesel	Boiler #2	Boiler #3	Boiler #4
Actaldehyde	9	1.48E-06		0.00E+00	0.00E+00	0.00E+00
Acrolein	0.06	3.31E-03		0.00E+00	0.00E+00	0.00E+00
Benzene	60	6.21E-06		1.87E-08	7.08E-08	8.55E-08
1,3 Butadiene	20	6.68E-07		0.00E+00	0.00E+00	0.00E+00
Dichlorobenzene	800	0.00E+00		8.02E-10	3.04E-09	3.66E-09
Ethylbenzene	2000	4.97E-07		0.00E+00	0.00E+00	0.00E+00
Fomaldehyde	3	7.35E-03		1.34E-05	5.06E-05	6.11E-05
Hexane	7000	0.00E+00		1.38E-07	5.20E-07	6.28E-07
Naphthalene	9	4.49E-06		3.63E-08	1.37E-07	1.66E-07
PAHs (BaP Equivalents) cancer	0.48	5.82E-05		1.17E-06	4.41E-06	5.32E-06
PAHs (Pyrene Equivalents) chronic	45	0.00E+00		7.01E-10	2.65E-09	3.20E-09
Propylene Oxide	30	1.35E-04		0.00E+00	0.00E+00	0.00E+00
Toluene	300	1.35E-05		6.06E-09	2.29E-08	2.77E-08
Xylenes	700	2.84E-06		0.00E+00	0.00E+00	0.00E+00
<u>Particulates</u>						
Arsenic	0.03	2.07E-04		3.57E-06	1.35E-05	1.63E-05
Beryllium	0.007	5.32E-05		9.17E-07	3.47E-06	4.19E-06
Cadmium	0.02	1.71E-03		2.94E-05	1.11E-04	1.34E-04
Chromium	1.02	4.26E-05		7.34E-07	2.78E-06	3.35E-06
Cobalt	0.005	5.22E-04		8.99E-06	3.40E-05	4.10E-05
Copper	0.02	1.32E-03		2.27E-05	8.60E-05	1.04E-04
Lead	1.5	1.04E-05		1.78E-07	6.74E-07	8.14E-07
Manganese	0.2	5.90E-05		1.02E-06	3.84E-06	4.64E-06
Mercury	0.09	8.97E-05		1.55E-06	5.85E-06	7.06E-06
Nickel	0.05	1.30E-03		2.25E-05	8.50E-05	1.03E-04
Selenium	20	3.73E-08		6.42E-10	2.43E-09	2.93E-09
Vanadium	0.12	5.95E-04		1.03E-05	3.88E-05	4.68E-05
Zinc	0.9	1.00E-03		1.72E-06	6.52E-06	7.87E-06
Diesel Particulate	5		6.05E-05			
TOTAL TO	FAL TURBINE	1.78E-02 1.79E	6.05E-05 -02	1.18E-04	4.47E-04	5.40E-04

LRDP ACUTE HAZARD INDEX FROM COMBUSTION SOURCES (LRDP)

Chemical	Unit Risk	Tubi	ne	Boiler #2	Boiler #3	Boiler #4
Chemicai	Factor	Natural Gas	Diesel	Boller #2	Boller #3	Boller #4
Actaldehyde	4.51E+03	3.94E-09		0.00E+00	0.00E+00	0.00E+00
Acrolein	1.90E-01	1.39E-03		0.00E+00	0.00E+00	0.00E+00
Benzene	1.30E+03	3.81E-07		2.79E-08	2.75E-08	2.75E-08
1,3 Butadiene	2.21E+02	8.04E-08		0.00E+00	0.00E+00	0.00E+00
Dichlorobenzene	6.00E+03	0.00E+00		3.45E-09	3.40E-09	3.40E-09
Ethylbenzene	4.34E+04	3.05E-08		0.00E+00	0.00E+00	0.00E+00
Fomaldehyde	9.40E+01	3.12E-04		1.38E-05	1.36E-05	1.36E-05
Hexane	1.76E+04	0.00E+00		1.77E-06	1.74E-06	1.74E-06
Naphthalene	5.00E+03	1.07E-08		2.11E-09	2.08E-09	2.08E-09
PAHs (BaP Equivalents) cancer	2.00E+01	1.86E-06		9.03E-07	8.89E-07	8.89E-07
PAHs (Pyrene Equivalents) chronic	5.00E+03	0.00E+00		2.04E-10	2.01E-10	2.01E-10
Propylene Oxide	3.10E+03	0.00E+00		2.78E-11	2.74E-11	2.74E-11
Toluene	3.70E+04	1.45E-07		1.59E-09	1.56E-09	1.56E-09
Xylenes	2.20E+04	1.20E-07		0.00E+00	0.00E+00	0.00E+00
<u>Metals</u>						
Arsenic	1.90E-01	4.35E-05		1.82E-05	1.79E-05	1.79E-05
Beryllium	2.00E-01	2.48E-06		1.04E-06	1.02E-06	1.02E-06
Cadmium	5.00E-01	9.09E-05		3.80E-05	3.74E-05	3.74E-05
Chromium	4.30E+01	1.35E-06		5.62E-07	5.54E-07	5.54E-07
Cobalt	2.00E+00	1.74E-06		7.25E-07	7.14E-07	7.14E-07
Copper	1.00E+02	3.51E-07		1.47E-07	1.45E-07	1.45E-07
Lead	5.00E+00	4.13E-06		1.73E-06	1.70E-06	1.70E-06
Manganese	2.00E+01	7.85E-07		3.28E-07	3.23E-07	3.23E-07
Mercury	1.80E+00	5.97E-06		2.49E-06	2.46E-06	2.46E-06
Nickel	6.00E+00	1.45E-05		6.04E-06	5.95E-06	5.95E-06
Selenium	2.00E+01	4.96E-08		2.07E-08	2.04E-08	2.04E-08
Vanadium (pentoxide)	3.00E+01	3.17E-06		1.32E-06	1.30E-06	1.30E-06
Zinc	5.00E+01	2.40E-05		1.00E-06	9.87E-07	9.87E-07
Diesel Particulate	N/A					
Total		1.90E-03	0.00E+00	8.80E-05	8.67E-05	8.67E-05

*** ISCST3 - VERSION 02035 ***

*** UC Berkeley - 12/2003; vjh - Acute HI

*** Model Executed on 02/04/04 at 17:37:11 ***

Input File - D:\Beest\UCBerk\10-03\Final\Existing-Acute.DTA

Output File - D:\Beest\UCBerk\10-03\Final\Existing-Acute.LST

Met File - D:\Beest\UCBerk\10-03\lb1-97a.asc

Number of sources - 97
Number of source groups - 26
Number of receptors - 1481

*** POINT SOURCE DATA ***

SOURCE ID		(GRAMS/SEC)	X	Y (METERS)			STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)		EMISSION RATE SCALAR VARY BY
	0	0 407007 06	564504 4	4101500	66.0	01 70	000 15	7.10	0.10		
WHSTK1_8		0.42700E-06					293.15		0.19	YES	
NWAF9		0.59100E-05					293.15		0.74	YES	
WHSTK10		0.42700E-06 0.56100E-06			74.8	8.60	293.15 293.15	7.12 17.25	0.34	YES YES	
MHSTK1		0.56100E-06				7.61 10.89	293.15	17.25	0.34		
MHSTK2 MHSTK3		0.56100E-06				10.89	293.15	17.25	0.29	YES YES	
MHSTK4		0.56100E-06				15.61	293.15	17.25	0.48	YES	
MHSTK6		0.56100E-06			74.8	10.94	293.15	17.25	0.33	YES	
KHSTK1		0.91800E-05					293.15	1.28	2.76	YES	
KHSTK2		0.91800E-05				18.45	293.15		2.76	YES	
KHSTK3		0.91800E-05					293.15	1.28	2.76	YES	
KHSTK4		0.91800E-05			72.7	18.45	293.15	1.28	2.76	YES	
BHSTK1		0.30000E-05			67.4	27.85	293.15	2.78	1.26	YES	
BHSTK2		0.30000E-05				29.68	293.15	2.78	1.26	YES	
BHSTK3		0.30000E-05				29.68	293.15	2.78	1.26	YES	
BHSTK4		0.30000E-05				33.34	293.15	2.78	0.37	YES	
BHSTK5		0.30000E-05				33.34	293.15	2.78	0.37	YES	
VLSBSTK1		0.87700E-05			64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK2		0.87700E-05				27.04	293.15	3.97	1.22	YES	
VLSBSTK3		0.87700E-05				27.04	293.15	3.97	1.22	YES	
VLSBSTK4		0.87700E-05				27.04	293.15	3.97	1.22	YES	
LSASTK1	0	0.11400E-04	564892.2	4191637.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK2	0	0.11400E-04	564875.9	4191632.8	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK3	0	0.11400E-04	564907.6	4191580.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK4	0	0.11400E-04	564897.1	4191578.0	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK5	0	0.11400E-04	564908.6	4191576.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK6	0	0.11400E-04	564899.1	4191573.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK7	0	0.11400E-04	564900.8	4191572.2	64.4	28.31	293.15	5.18	0.30	YES	
LEWHSTK1	0	0.17700E-05	565605.8	4191772.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK2	0	0.17700E-05	565591.5	4191786.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK3	0	0.17700E-05				12.80	293.15	3.11	0.36	YES	
LEWHSTK4	0	0.17700E-05				12.80	293.15	3.11	0.36	YES	
LEWHSTK5	0	0.17700E-05			106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK6	0	0.17700E-05				12.80	293.15	3.11	0.36	YES	
LEWHSTK7	0	0.17700E-05				12.80	293.15	3.11	0.36	YES	
LEWHSTK8	0	0.17700E-05				12.80	293.15	3.11	0.30	YES	
LEWHSTK9	0	0.17700E-05				12.80	293.15	3.11	0.36	YES	
LATHSTK1	0	0.75900E-05	565555.1	4191799.2	104.6	42.37	293.15		0.34	YES	
LATHSTK2	0	0.75900E-05 0.75900E-05 0.75900E-05	565561.1	4191812.0	104.6	36.88			0.70	YES	
LATHSTK3	0	0.75900E-05	565531.6	4191800.2	104.6	36.88	293.15	6.28	0.48	YES	

*** POINT SOURCE DATA ***

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	E X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
LATHSTK4	0	0.75900E-05	565515.1	4191799.5	104.6	37.19	293.15	6.28	0.96	YES	
LATHSTK5	0	0.75900E-05	565539.7	4191794.2	104.6	42.37	293.15	6.28	0.70	YES	
LATHSTK6	0	0.75900E-05	565527.3	4191776.0	104.6	38.40	293.15	6.28	0.74	YES	
LATHSTK7	0	0.75900E-05	565544.9	4191781.5	104.6	38.40	293.15	6.28	0.31	YES	
LATHSTK8	0	0.75900E-05	565562.3	4191787.0	104.6	38.40	293.15	6.28	0.70	YES	
TANHSTKA	0	0.65400E-05	565492.1	4191793.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKB	0	0.65400E-05	565496.8	4191794.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKC	0	0.65400E-05	565494.1	4191787.2	100.6	39.32	293.15	2.94	1.69	YES	

TANHSTKD	0	0.65400E-05	565499.1 4191788.2	100.6	39.32	293.15	2.94	1.69	YES
HHSTKA	0	0.71400E-05	565540.8 4191749.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKB	0	0.71400E-05	565565.6 4191756.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKC	0	0.71400E-05	565576.8 4191717.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKD	0	0.71400E-05	565553.2 4191710.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKE	0	0.71400E-05	565543.4 4191746.5	103.6	20.12	293.15	4.15	0.81	YES
STHSTK1	0	0.27600E-06	565530.3 4191891.8	112.8	13.87	293.15	2.17	0.27	YES
STHSTK2	0	0.27600E-06	565522.0 4191918.2	112.8	13.87	293.15	2.17	0.34	YES
STHSTK3	0	0.27600E-06	565537.9 4191871.0	112.8	17.56	293.15	2.17	0.34	YES
STHSTK4	0	0.27600E-06	565529.5 4191871.8	112.8	13.87	293.15	2.17	0.34	YES
STHSTK5	0	0.27600E-06	565530.9 4191870.0	112.8	14.02	293.15	2.17	0.34	YES
STHSTK6	0	0.27600E-06	565530.1 4191869.5	112.8	14.02	293.15	2.17	0.27	YES
STHSTK7	0	0.27600E-06	565532.6 4191866.5	112.8	14.02	293.15	2.17	0.39	YES
STHSTK8	0	0.27600E-06	565538.2 4191864.0	112.8	14.02	293.15	2.17	0.27	YES
STHSTK9	0	0.27600E-06	565525.9 4191880.5	112.8	14.02	293.15	2.17	0.53	YES
STHSTK11	0	0.27600E-06	565519.0 4191907.5	112.8	13.87	293.15	2.17	0.34	YES
GHSTK1	0	0.86700E-06	565507.1 4191756.0	103.6	16.06	293.15	5.92	0.30	YES
GHSTK2	0	0.86700E-06	565510.6 4191744.8	103.6	16.06	293.15	5.92	0.25	YES
GHSTK3	0	0.86700E-06	565512.4 4191739.0	103.6	16.37	293.15	5.92	0.30	YES
GHSTK4	0	0.86700E-06	565514.7 4191737.8	103.6	15.91	293.15	5.92	0.31	YES
GHSTK5	0	0.86700E-06	565514.9 4191732.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK6	0	0.86700E-06	565500.2 4191755.2	103.6	16.12	293.15	5.92	0.30	YES
GHSTK7	0	0.86700E-06	565501.1 4191753.0	103.6	16.37	293.15	5.92	0.84	YES
GHSTK8	0	0.86700E-06	565503.7 4191744.2	103.6	16.00	293.15	5.92	0.30	YES
GHSTK9	0	0.86700E-06	565505.2 4191740.2	103.6	16.37	293.15	5.92	0.26	YES
GHSTK10	0	0.86700E-06	565506.9 4191735.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK11	0	0.86700E-06	565509.7 4191728.2	103.6	16.22	293.15	5.92	0.30	YES
GHSTK12	0	0.86700E-06	565509.0 4191725.5	103.6	16.06	293.15	5.92	0.30	YES
GHSTK13	0	0.86700E-06	565516.9 4191725.8	103.6	15.91	293.15	5.92	0.40	YES
CHSTK1	0	0.38000E-05	565393.9 4192008.8	110.3	26.85	293.15	2.00	1.00	YES
DHSTK1	0	0.95700E-06	565329.4 4191982.0	107.2	16.36	293.15	2.00	1.00	YES
HESSTK1	0	0.41400E-05	565234.6 4191926.2	98.2	15.39	293.15	2.00	1.00	YES

*** POINT SOURCE DATA ***

BASE STACK STACK STACK STACK BUILDING EMISSION RATE

		(GRAMS/SEC)									SCALAR VARY BY
					<u> </u>						
UTT CMIZ1	0	0.20500E-04	EC4074 C	410101E 0	00.4	14.00	202 15	2.00	1 00	VEC	
		0.26400E-07							1.00	YES	
					81.7						
WELSTK1							293.15		1.00	YES	
PRINTA		0.50300E-05				8.91	293.15		0.84	YES	
PRINTB		0.50300E-05			60.0	8.91	293.15		0.84	YES	
PRINTC		0.50300E-05				8.91		2.70	0.60	YES	
COGEN		0.19000E-02		4191492.0	71.9	12.77	430.37		2.28	YES	
BOILER#2					71.9	8.80	522.82		1.52	YES	
BOILER#3						8.80	554.11			YES	
BOILER#4		0.86700E-04				8.80		12.63			
POURING	0	0.14600E-04	564847.8	4191467.0	70.1	14.94	293.15	4.62	0.56	YES	
				***	. VOTTIME	SOURCE DAT	T7 ***				
					VOLUME	DOUNCE DA.	1.0				
	NUMBER	EMISSION RATE	Ξ		BASE	RELEASE	INIT.	INIT.	EMISSION	RATE	
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	SCALAR	VARY	
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	BY		
		0.56100E-06									
		0.27600E-06									
PAINT1		0.80600E-07									
		0.80600E-07				4.57					
PAINT3	0	0.80600E-07	565541.5	4191525.8	97.0	4.57	3.54	4.25			
PAINT4	0	0.80600E-07	564865.7	4191751.0	77.0	4.57	3.54	4.25			

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDs

NUMBER EMISSION RATE

ALL WHSTK1_8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3 ,

KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,

LSASTK2 ,

```
LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7.
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , STHSTK1 , STHSTK2 , STHSTK3 , STHSTK4 ,
STHSTK5 ,
           STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10, GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6
           GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , DHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
           WELSTK1 , PRINTA , PRINTB , PRINTC , COGEN , BOILER#2, BOILER#3, BOILER#4, POURING , PAINT1 , PAINT2 , PAINT3
           PAINT4 ,
 WH
           WHSTK1 8, WHSTK10 ,
  NWAF
           NWAF9
  МН
           MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 ,
  KH
           KHSTK1 , KHSTK2 , KHSTK3 , KHSTK4 ,
  вн
           BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 ,
  VLSB
           VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4,
  LSA
           LSASTK1 , LSASTK2 , LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 ,
  LEW
           LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6, LEWHSTK7, LEWHSTK8, LEWHSTK9,
           LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8,
  LAT
  TAN
           TANHSTKA, TANHSTKB, TANHSTKC, TANHSTKD,
  НН
           HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE ,
                                          *** SOURCE IDs DEFINING SOURCE GROUPS ***
 GROUP ID
                                                         SOURCE IDs
  STH
           STHSTK1 , STHSTK2 , STHSTK3 , STHSTK4 , STHSTK5 , STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10,
           GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 ,
GHSTK12 ,
           GHSTK13 ,
           CHSTK1 ,
           DHSTK1 ,
  DH
  HES
           HESSTK1 ,
  HIL
           HILSTK1 ,
```

```
MUL
           MULSTK1 ,
 WEL
           WELSTK1 ,
 NOENGINE WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7.
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKC , STHSTK1 , STHSTK1 , STHSTK1 , STHSTK3 , STHSTK4 ,
STHSTK5 ,
           STHSTK6 , STHSTK7 , STHSTK8 , STHSTK1 , STHSTK11, STHSTK10, GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6
           GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , DHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
           WELSTK1 , PRINTA , PRINTB , PRINTC , COGEN , BOILER#2, BOILER#3, BOILER#4, POURING , PAINT1 , PAINT2 , PAINT3
           PAINT4 ,
 PRINT
           PRINTA , PRINTB , PRINTC ,
           COGEN , BOILER#2, BOILER#3, BOILER#4,
 COMBUST
                                         *** SOURCE IDs DEFINING SOURCE GROUPS ***
 GROUP ID
                                                        SOURCE IDs
 HAZMAT
           POURING ,
 PAINT
           PAINT1 , PAINT2 , PAINT3 , PAINT4 ,
 ALL LABS WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , STHSTK1 , STHSTK2 , STHSTK3 , STHSTK4 ,
STHSTK5 ,
           STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10, GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6
           GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , DHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 .
           WELSTK1 ,
```

*** THE SUMMARY OF HIGHEST 1-HR RESULTS ***

GROUP I	D		AVERAGE CONC	DATE (YYMMDDHH)	RECEPT	TOR (XR, YR,	ZELEV, ZFLAG)	OF TYF	NETWORK E GRID-ID
-		100 0000 0000	0 15047	ON 07100007 RM /	F.C.F.O.O. 0.0	4101000 00	1.61 0.0	0 00) 50	272
ALL	HIGH	1ST HIGH VALUE IS 2ND HIGH VALUE IS		ON 97120207: AT (· · · · · · · · · · · · · · · · · · ·		161.00,	0.00) DC	
WH	HIGH	1ST HIGH VALUE IS		ON 97052506: AT (ON 97080502: AT (· · · · · · · · · · · · · · · · · · ·	4191900.00,	161.00,	0.00) DC	
WH	HIGH	2ND HIGH VALUE IS		ON 97080302: AT (· · · · · · · · · · · · · · · · · · ·	4191852.00, 4191852.00,	67.00, 67.00,	0.00) DC	
NWAF	HIGH	1ST HIGH VALUE IS		ON 97061722: AT (· · · · · · · · · · · · · · · · · · ·	4191852.00,	97.00,	0.00) DC	
NWAL	HIGH	2ND HIGH VALUE IS		ON 97101522: AT (4191999.00,	97.00,	0.00) DC	
MH	HIGH	1ST HIGH VALUE IS		ON 97101521: AT (4191999.00,	83.00,	0.00) DC	
MU	HIGH	2ND HIGH VALUE IS		ON 97042201: AT (564842.69,		83.00,	0.00) DC	
KH	HIGH	1ST HIGH VALUE IS		ON 97121200: AT (· · · · · · · · · · · · · · · · · · ·	4192000.00,	81.00,	0.00) DC	
IXII	HIGH	2ND HIGH VALUE IS		ON 97092803: AT (· · · · · · · · · · · · · · · · · · ·	4192000.00,	81.00,	0.00) DC	
BH	HIGH	1ST HIGH VALUE IS		ON 97071508: AT (· · · · · · · · · · · · · · · · · · ·	4191930.25,	78.00,	0.00) DC	
DII	HIGH	2ND HIGH VALUE IS		ON 97011810: AT (,	4191930.25,	78.00,	0.00) DC	
VLSB	HIGH	1ST HIGH VALUE IS		ON 97101003: AT (,	,	90.00,	0.00) DC	
VESE	HIGH	2ND HIGH VALUE IS		ON 97032623: AT (· · · · · · · · · · · · · · · · · · ·	4191967.00,	90.00,	0.00) DC	
LSA	HIGH	1ST HIGH VALUE IS		ON 97032523: AT (,	· · · · · · · · · · · · · · · · · · ·	83.00,	0.00) DC	
2011	HIGH	2ND HIGH VALUE IS		ON 97010421: AT (· · · · · · · · · · · · · · · · · · ·	4191967.00,	90.00,	0.00) DC	
T.EW	HIGH	1ST HIGH VALUE IS		ON 97092303: AT (· · · · · · · · · · · · · · · · · · ·	4191856.75,	116.00,	0.00) DC	
	HIGH	2ND HIGH VALUE IS		ON 97061605: AT (,	4191856.75,	116.00,	0.00) DC	
LAT	HIGH	1ST HIGH VALUE IS		ON 97103018: AT (4191900.00,	128.00,	0.00) DC	
	HTGH	2ND HIGH VALUE IS		ON 97101408: AT (,	4191900.00,	128.00,	0.00) DC	
TAN	HIGH	1ST HIGH VALUE IS		ON 97101502: AT (· · · · · · · · · · · · · · · · · · ·	4191817.50,	117.00,	0.00) DC	
	HIGH	2ND HIGH VALUE IS	0.01586	ON 97101408: AT (565592.25,	4191856.75,	116.00,	0.00) DC	NA
HH	HIGH	1ST HIGH VALUE IS	0.06334	ON 97082702: AT (565654.19,	4191781.25,	118.00,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS	0.05893	ON 97101523: AT (565654.19,	4191781.25,	118.00,	0.00) DC	NA
STH	HIGH	1ST HIGH VALUE IS	0.00393	ON 97013010: AT (565592.25,	4191856.75,	116.00,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS	0.00392	ON 97080219: AT (565592.25,	4191856.75,	116.00,	0.00) DC	NA

*** THE SUMMARY OF HIGHEST 1-HR RESULTS ***

** CONC OF ACUTE IN MICROGRAMS/M**3

GROUP ID	AVERAGE CONC	DATE (YYMMDDHH)	RECEPTOR (XR, YR,	ZELEV, ZFLAG)	OF TYPE	NETWORK GRID-ID
- GH HIGH 1ST HIGH VALUE	IS 0.01017	ON 97051904: AT (56	55693.06, 4191753.75,	117.00,	0.00) DC	NA
HIGH 2ND HIGH VALUE			55654.19, 4191781.25,	118.00,	0.00) DC	NA
CH HIGH 1ST HIGH VALUE			55475.12, 4192018.00,	118.00,	0.00) DC	NA
HIGH 2ND HIGH VALUE			55475.12, 4192018.00,	118.00,	0.00) DC	NA
DH HIGH 1ST HIGH VALUE	IS 0.00193	ON 97041721: AT (56	55339.88, 4192034.25,	108.00,	0.00) DC	NA
HIGH 2ND HIGH VALUE	IS 0.00191	ON 97042201: AT (56	55339.88, 4192034.25,	108.00,	0.00) DC	NA
HES HIGH 1ST HIGH VALUE	IS 0.00280	ON 97092109: AT (56	55241.19, 4192017.75,	102.00,	0.00) DC	NA
HIGH 2ND HIGH VALUE	IS 0.00279	ON 97012811: AT (56	55241.19, 4192017.75,	102.00,	0.00) DC	NA
HIL HIGH 1ST HIGH VALUE	IS 0.05399	ON 97012908: AT (56	4941.88, 4191967.00,	90.00,	0.00) DC	NA
HIGH 2ND HIGH VALUE	IS 0.05361	ON 97052623: AT (56	54941.88, 4191967.00,	90.00,	0.00) DC	NA
MUL HIGH 1ST HIGH VALUE	IS 0.00004	ON 97101421: AT (56	4842.69, 4191950.00,	83.00,	0.00) DC	NA
HIGH 2ND HIGH VALUE			4842.69, 4191950.00,	83.00,	0.00) DC	NA
WEL HIGH 1ST HIGH VALUE			4941.88, 4191967.00,	90.00,	0.00) DC	NA
HIGH 2ND HIGH VALUE			4941.88, 4191967.00,	90.00,	0.00) DC	NA
NOENGINE HIGH 1ST HIGH VALUE			55900.00, 4191900.00,	161.00,	0.00) DC	NA
HIGH 2ND HIGH VALUE			55900.00, 4191900.00,	161.00,	0.00) DC	NA
PRINT HIGH 1ST HIGH VALUE			34673.81, 4191519.00,	63.00,	0.00) DC	NA
HIGH 2ND HIGH VALUE			4191519.00,	63.00,	0.00) DC	NA
COMBUST HIGH 1ST HIGH VALUE			55600.00, 4192200.00,	158.00,	0.00) DC	NA
HIGH 2ND HIGH VALUE			55600.00, 4192200.00,	158.00,	0.00) DC	NA
HAZMAT HIGH 1ST HIGH VALUE			34976.62, 4191271.75,	73.00,	0.00) DC	NA
HIGH 2ND HIGH VALUE			54976.62, 4191271.75,	73.00,	0.00) DC	NA
PAINT HIGH 1ST HIGH VALUE			54842.69, 4191950.00,	83.00,	0.00) DC	NA
HIGH 2ND HIGH VALUE ALL LABS HIGH 1ST HIGH VALUE			54842.69, 4191950.00, 55654.19, 4191781.25,	83.00,	0.00) DC 0.00) DC	NA
ALL_LABS HIGH 1ST HIGH VALUE HIGH 2ND HIGH VALUE			55654.19, 4191781.25, 55654.19, 4191781.25,	118.00, 118.00,	0.00) DC 0.00) DC	NA NA
nign ZND High VALUE	15 0.0/3/2	ON 9/101323: AT (36	0004.19, 4191/81.20,	110.00,	0.00) DC	INA

*** ISCST3 - VERSION 02035 ***

*** UC Berkeley - 12/2003; vjh Sensitive Receptors

*** Model Executed on 02/04/04 at 17:55:04 ***

Input File - D:\Beest\UCBerk\10-03\Final\Existing-Acute-Sensitive.DTA

Output File - D:\Beest\UCBerk\10-03\Final\Existing-Acute-Sensitive.LST

Met File - D:\Beest\UCBerk\10-03\lb1-97a.asc

Number of sources - 97
Number of source groups - 26
Number of receptors - 259

*** POINT SOURCE DATA ***

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
WHSTK1 8	0	0.42700E-06 0.59100E-05 0.42700E-06	564704.4	4191782.8	66.8	31.70	293.15	7.12	0.19	YES	
NWAF9	0	0.59100E-05	564718.8	4191791.2	66.8	29.57	293.15	16.48	0.74	YES	
WHSTK10	0	0.42700E-06	564724.4	4191826.0	66.8	8.60	293.15	7.12	0.34	YES	
MHSTK1	0	0.56100E-06	564794.4	4191795.8	74.8	7.61	293.15	17.25	0.34	YES	
MHSTK2	0	0.42700E-06 0.56100E-06 0.56100E-06 0.56100E-06 0.56100E-06 0.56100E-05 0.91800E-05 0.91800E-05 0.91800E-05 0.3000E-05 0.3000E-05 0.3000E-05	564798.6	4191843.0	74.8	10.89	293.15	17.25	0.29	YES	
MHSTK3	0	0.56100E-06	564794.1	4191843.0	74.8	10.89	293.15	17.25	0.48	YES	
MHSTK4	0	0.56100E-06	564800.9	4191787.2	74.8	15.61	293.15	17.25	0.33	YES	
MHSTK6	0	0.56100E-06	564801.3	4191808.2	74.8	10.94	293.15	17.25	0.34	YES	
KHSTK1	0	0.91800E-05	564761.1	4191879.8	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK2	0	0.91800E-05	564759.4	4191891.8	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK3	0	0.91800E-05	564732.4	4191877.5	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK4	0	0.91800E-05	564731.4	4191889.0	72.7	18.45	293.15	1.28	2.76	YES	
BHSTK1	0	0.30000E-05	564678.9	4191889.0	67.4	27.85	293.15	2.78	1.26	YES	
BHSTK2	0	0.30000E-05	564675.0	4191896.8	67.4	29.68	293.15	2.78	1.26	YES	
BHSTK3	0	0.30000E-05	564704.5	4191898.0	67.4	29.68	293.15	2.78	1.26	YES	
BHSTK4	0	0.30000E-05	564707.4	4191887.8	67.4	33.34	293.15	2.78	0.37	YES	
BHSTK5	0	0.30000E-05	564691.6	4191888.0	67.4	33.34	293.15	2.78	0.37	YES	
VLSBSTK1	0	0.87700E-05 0.87700E-05	564933.6	4191633.2	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK2	0	0.87700E-05	564954.0	4191566.5	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK3	0	0.87700E-05	565051.3	4191594.8	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK4	0	0.87700E-05 0.87700E-05 0.11400E-04	565030.6	4191662.2	64.4	27.04	293.15	3.97	1.22	YES	
LSASTK1	0	0.11400E-04	564892.2	4191637.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK2	0	0.11400E-04	564875.9	4191632.8	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK3	0	0.11400E-04	564907.6	4191580.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK4	0	0.11400E-04	564897.1	4191578.0	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK5	0	0.11400E-04	564908.6	4191576.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK6	0	0.11400E-04	564899.1	4191573.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK7	0	0.11400E-04 0.11400E-04 0.11400E-04 0.11400E-04 0.11400E-04 0.11400E-04	564900.8	4191572.2	64.4	28.31	293.15	5.18	0.30	YES	
LEWHSTK1	0	0.17700E-05	565605.8	4191772.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK2	0	0.17700E-05 0.17700E-05	565591.5	4191786.0	106.7	12.80	293.15	3.11 3.11	0.36	YES YES	
	0	0.17700E-05	565585.9	4191792.2	106.7	12.80	293.15	3.11	0.36		
LEWHSTK4	0	0.17700E-05 0.17700E-05	565583.1	4191800.0	106.7	12.80	293.15	3.11 3.11	0.36	YES YES	
LEWHSTK5	0	0.17700E-05	565598.1	4191787.8	106.7	12.80	293.15	3.11	0.36		
LEWHSTK6	0	0.17700E-05 0.17700E-05 0.17700E-05	565619.4	4191775.8	106.7	12.80	293.15	3.11 3.11	0.36	YES	
LEWHSTK7	0	0.17700E-05	565608.8	4191787.2	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK8	0	0.17700E-05	565597.6	4191800.5	106.7	12.80	293.15	3.11	0.30	YES	
LEWHSTK9	0	0.17700E-05	565593.3	4191808.2	106.7	12.80	293.15	3.11	0.36	YES	
LATHSTK1	0	0.17700E-05 0.75900E-05 0.75900E-05 0.75900E-05	565555.1	4191799.2	104.6	42.37	293.15	6.28	0.34	YES	
LATHSTK2	0	0.75900E-05	565561.1	4191812.0	104.6	36.88	293.15	6.28	0.70	YES	
LATHSTK3	0	0.75900E-05	565531.6	4191800.2	104.6	36.88	293.15	6.28	0.48	YES	

*** POINT SOURCE DATA ***

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	E X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
LATHSTK4	0	0.75900E-05	565515.1	4191799.5	104.6	37.19	293.15	6.28	0.96	YES	
LATHSTK5	0	0.75900E-05	565539.7	4191794.2	104.6	42.37	293.15	6.28	0.70	YES	
LATHSTK6	0	0.75900E-05	565527.3	4191776.0	104.6	38.40	293.15	6.28	0.74	YES	
LATHSTK7	0	0.75900E-05	565544.9	4191781.5	104.6	38.40	293.15	6.28	0.31	YES	
LATHSTK8	0	0.75900E-05	565562.3	4191787.0	104.6	38.40	293.15	6.28	0.70	YES	
TANHSTKA	0	0.65400E-05	565492.1	4191793.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKB	0	0.65400E-05	565496.8	4191794.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKC	0	0.65400E-05	565494.1	4191787.2	100.6	39.32	293.15	2.94	1.69	YES	

TANHSTKD	0	0.65400E-05	565499.1 4191788.2	100.6	39.32	293.15	2.94	1.69	YES
HHSTKA	0	0.71400E-05	565540.8 4191749.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKB	0	0.71400E-05	565565.6 4191756.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKC	0	0.71400E-05	565576.8 4191717.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKD	0	0.71400E-05	565553.2 4191710.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKE	0	0.71400E-05	565543.4 4191746.5	103.6	20.12	293.15	4.15	0.81	YES
STHSTK1	0	0.27600E-06	565530.3 4191891.8	112.8	13.87	293.15	2.17	0.27	YES
STHSTK2	0	0.27600E-06	565522.0 4191918.2	112.8	13.87	293.15	2.17	0.34	YES
STHSTK3	0	0.27600E-06	565537.9 4191871.0	112.8	17.56	293.15	2.17	0.34	YES
STHSTK4	0	0.27600E-06	565529.5 4191871.8	112.8	13.87	293.15	2.17	0.34	YES
STHSTK5	0	0.27600E-06	565530.9 4191870.0	112.8	14.02	293.15	2.17	0.34	YES
STHSTK6	0	0.27600E-06	565530.1 4191869.5	112.8	14.02	293.15	2.17	0.27	YES
STHSTK7	0	0.27600E-06	565532.6 4191866.5	112.8	14.02	293.15	2.17	0.39	YES
STHSTK8	0	0.27600E-06	565538.2 4191864.0	112.8	14.02	293.15	2.17	0.27	YES
STHSTK9	0	0.27600E-06	565525.9 4191880.5	112.8	14.02	293.15	2.17	0.53	YES
STHSTK11	0	0.27600E-06	565519.0 4191907.5	112.8	13.87	293.15	2.17	0.34	YES
GHSTK1	0	0.86700E-06	565507.1 4191756.0	103.6	16.06	293.15	5.92	0.30	YES
GHSTK2	0	0.86700E-06	565510.6 4191744.8	103.6	16.06	293.15	5.92	0.25	YES
GHSTK3	0	0.86700E-06	565512.4 4191739.0	103.6	16.37	293.15	5.92	0.30	YES
GHSTK4	0	0.86700E-06	565514.7 4191737.8	103.6	15.91	293.15	5.92	0.31	YES
GHSTK5	0	0.86700E-06	565514.9 4191732.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK6	0	0.86700E-06	565500.2 4191755.2	103.6	16.12	293.15	5.92	0.30	YES
GHSTK7	0	0.86700E-06	565501.1 4191753.0	103.6	16.37	293.15	5.92	0.84	YES
GHSTK8	0	0.86700E-06	565503.7 4191744.2	103.6	16.00	293.15	5.92	0.30	YES
GHSTK9	0	0.86700E-06	565505.2 4191740.2	103.6	16.37	293.15	5.92	0.26	YES
GHSTK10	0	0.86700E-06	565506.9 4191735.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK11	0	0.86700E-06	565509.7 4191728.2	103.6	16.22	293.15	5.92	0.30	YES
GHSTK12	0	0.86700E-06	565509.0 4191725.5	103.6	16.06	293.15	5.92	0.30	YES
GHSTK13	0	0.86700E-06	565516.9 4191725.8	103.6	15.91	293.15	5.92	0.40	YES
CHSTK1	0	0.38000E-05	565393.9 4192008.8	110.3	26.85	293.15	2.00	1.00	YES
DHSTK1	0	0.95700E-06	565329.4 4191982.0	107.2	16.36	293.15	2.00	1.00	YES
HESSTK1	0	0.41400E-05	565234.6 4191926.2	98.2	15.39	293.15	2.00	1.00	YES

*** POINT SOURCE DATA ***

BASE STACK STACK STACK STACK BUILDING EMISSION RATE

		(GRAMS/SEC)									SCALAR VARY BY
					<u> </u>						
UTT CMIZ1	0	0.20500E-04	EC4074 C	410101E 0	00.4	14.00	202 15	2.00	1 00	VEC	
		0.26400E-07							1.00	YES	
					81.7						
WELSTK1							293.15		1.00	YES	
PRINTA		0.50300E-05				8.91	293.15		0.84	YES	
PRINTB		0.50300E-05			60.0	8.91	293.15		0.84	YES	
PRINTC		0.50300E-05				8.91		2.70	0.60	YES	
COGEN		0.19000E-02		4191492.0	71.9	12.77	430.37		2.28	YES	
BOILER#2					71.9	8.80	522.82		1.52	YES	
BOILER#3						8.80	554.11			YES	
BOILER#4		0.86700E-04				8.80		12.63			
POURING	0	0.14600E-04	564847.8	4191467.0	70.1	14.94	293.15	4.62	0.56	YES	
				***	. VOTTIME	SOURCE DAT	T7 ***				
					VOLUME	DOUNCE DA.	1.0				
	NUMBER	EMISSION RATE	Ξ		BASE	RELEASE	INIT.	INIT.	EMISSION	RATE	
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	SCALAR	VARY	
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	BY		
		0.56100E-06									
		0.27600E-06									
PAINT1		0.80600E-07									
		0.80600E-07				4.57					
PAINT3	0	0.80600E-07	565541.5	4191525.8	97.0	4.57	3.54	4.25			
PAINT4	0	0.80600E-07	564865.7	4191751.0	77.0	4.57	3.54	4.25			

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDs

NUMBER EMISSION RATE

ALL WHSTK1_8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3 ,

KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,

LSASTK2 ,

```
LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7.
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , STHSTK1 , STHSTK2 , STHSTK3 , STHSTK4 ,
STHSTK5 ,
           STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10, GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6
           GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , DHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
           WELSTK1 , PRINTA , PRINTB , PRINTC , COGEN , BOILER#2, BOILER#3, BOILER#4, POURING , PAINT1 , PAINT2 , PAINT3
           PAINT4 ,
 WH
           WHSTK1 8, WHSTK10 ,
  NWAF
           NWAF9
  МН
           MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 ,
  KH
           KHSTK1 , KHSTK2 , KHSTK3 , KHSTK4 ,
  вн
           BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 ,
  VLSB
           VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4,
  LSA
           LSASTK1 , LSASTK2 , LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 ,
  LEW
           LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6, LEWHSTK7, LEWHSTK8, LEWHSTK9,
           LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8,
  LAT
  TAN
           TANHSTKA, TANHSTKB, TANHSTKC, TANHSTKD,
  НН
           HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE ,
                                          *** SOURCE IDs DEFINING SOURCE GROUPS ***
 GROUP ID
                                                         SOURCE IDs
  STH
           STHSTK1 , STHSTK2 , STHSTK3 , STHSTK4 , STHSTK5 , STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10,
           GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 ,
GHSTK12 ,
           GHSTK13 ,
           CHSTK1 ,
           DHSTK1 ,
  DH
  HES
           HESSTK1 ,
  HIL
           HILSTK1 ,
```

```
MUL
           MULSTK1 ,
 WEL
           WELSTK1 ,
 NOENGINE WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7.
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKC , STHSTK1 , STHSTK1 , STHSTK1 , STHSTK3 , STHSTK4 ,
STHSTK5 ,
           STHSTK6 , STHSTK7 , STHSTK8 , STHSTK1 , STHSTK11, STHSTK10, GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6
           GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , DHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
           WELSTK1 , PRINTA , PRINTB , PRINTC , COGEN , BOILER#2, BOILER#3, BOILER#4, POURING , PAINT1 , PAINT2 , PAINT3
           PAINT4 ,
 PRINT
           PRINTA , PRINTB , PRINTC ,
           COGEN , BOILER#2, BOILER#3, BOILER#4,
 COMBUST
                                         *** SOURCE IDs DEFINING SOURCE GROUPS ***
 GROUP ID
                                                        SOURCE IDs
 HAZMAT
           POURING ,
 PAINT
           PAINT1 , PAINT2 , PAINT3 , PAINT4 ,
 ALL LABS WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , STHSTK1 , STHSTK2 , STHSTK3 , STHSTK4 ,
STHSTK5 ,
           STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10, GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6
           GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , DHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 .
           WELSTK1 ,
```

*** THE SUMMARY OF HIGHEST 1-HR RESULTS ***

GROUP II	D		AVERAGE CONC	DATE (YYMMDDHH)	RECEPTO	OR (XR, YR,	ZELEV, ZFLAG)	OF TYPE	NETWORK GRID-ID
- ALL	HIGH	1ST HIGH VALUE IS	0.12541	ON 97101402: AT (565233.75,	4192605.00,	159.72,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS		ON 97071504: AT (,	4192605.00,	159.72,	0.00) DC	NA
WH	HIGH	1ST HIGH VALUE IS		ON 97081224: AT (4192065.50,	102.72,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS		ON 97081704: AT (,	4192065.50,	102.72,	0.00) DC	NA
NWAF	HIGH	1ST HIGH VALUE IS		ON 97092804: AT (,	4192065.50,	102.72,	0.00) DC	NA
MII	HIGH HIGH	2ND HIGH VALUE IS 1ST HIGH VALUE IS		ON 97082302: AT (ON 97090823: AT (· · · · · · · · · · · · · · · · · · ·	4192158.75, 4192065.50,	109.42, 102.72,	0.00) DC 0.00) DC	NA NA
MH	HIGH	2ND HIGH VALUE IS		ON 97090823: AT (564945.62,	,	102.72,	0.00) DC	NA NA
KH	HIGH	1ST HIGH VALUE IS		ON 97032303: AT (,	4192158.75,	102.72,	0.00) DC	NA NA
1011	HIGH	2ND HIGH VALUE IS		ON 97032523: AT (· · · · · · · · · · · · · · · · · · ·	,	83.82,	0.00) DC	NA
BH	HIGH	1ST HIGH VALUE IS		ON 97101408: AT (4192065.50,	102.72,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS	0.00453	ON 97103018: AT (564945.62,	4192065.50,	102.72,	0.00) DC	NA
VLSB	HIGH	1ST HIGH VALUE IS	0.01098	ON 97050122: AT (564945.62,	4192065.50,	102.72,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS	0.01053	ON 97101005: AT (564945.62,	4192065.50,	102.72,	0.00) DC	NA
LSA	HIGH	1ST HIGH VALUE IS	0.03413	ON 97050521: AT (564945.62,	4192065.50,	102.72,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS		ON 97031521: AT (,	4192065.50,	102.72,	0.00) DC	NA
LEW	HIGH	1ST HIGH VALUE IS		ON 97060505: AT (4191711.25,	109.42,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS		ON 97031910: AT (,	4191711.25,	109.42,	0.00) DC	NA
LAT	HIGH	1ST HIGH VALUE IS		ON 97101709: AT (4191711.25,	109.42,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS		ON 97031909: AT (,	4191711.25,	109.42,	0.00) DC	NA
TAN	HIGH	1ST HIGH VALUE IS		ON 97082407: AT (,	4191711.25,	109.42,	0.00) DC	NA
нн	HIGH	2ND HIGH VALUE IS 1ST HIGH VALUE IS		ON 97020107: AT (ON 97101507: AT (,	4191711.25, 4191711.25,	109.42,	0.00) DC 0.00) DC	NA NA
пп	HIGH	2ND HIGH VALUE IS		ON 97101507: AT (,	4191711.25,	109.42, 109.42,	0.00) DC 0.00) DC	NA NA
STH	HIGH	1ST HIGH VALUE IS		ON 97101003: AT (,	4191711.25,	109.42,	0.00) DC	NA NA
0111	HIGH	2ND HIGH VALUE IS		ON 97000303. AT (· · · · · · · · · · · · · · · · · · ·	4191711.25,	109.42,	0.00) DC	NA

*** THE SUMMARY OF HIGHEST 1-HR RESULTS ***

**

** CONC OF ACUTE IN MICROGRAMS/M**3

				DATE					NETWORK
GROUP ID			AVERAGE CONC	(YYMMDDHH)	RECEPTOR	(XR, YR,	ZELEV, ZFLAG)	OF T	PE GRID-ID
-									
GH	HIGH	1ST HIGH VALUE IS	0.00830	ON 97100923: AT (565700.06, 41	91711.25,	109.42,	0.00)	DC NA
	HIGH	2ND HIGH VALUE IS	0.00732	ON 97030609: AT (565700.06, 41	91711.25,	109.42,	0.00)	DC NA
CH	HIGH	1ST HIGH VALUE IS	0.00108	ON 97031802: AT (565009.00, 41	92130.00,	110.64,	0.00)	DC NA
	HIGH	2ND HIGH VALUE IS	0.00107	ON 97020706: AT (,	92130.00,	110.64,	0.00)	DC NA
DH	HIGH	1ST HIGH VALUE IS	0.00055	ON 97041322: AT (565700.06, 41	91711.25,	109.42,	0.00)	DC NA
	HIGH	2ND HIGH VALUE IS	0.00054	ON 97032104: AT (565700.06, 41	91711.25,	109.42,	0.00)	DC NA
HES	HIGH	1ST HIGH VALUE IS	0.00119	ON 97010409: AT (565009.00, 41	92130.00,	110.64,	0.00)	DC NA
	HIGH	2ND HIGH VALUE IS	0.00119	ON 97042020: AT (565009.00, 41	92130.00,	110.64,	0.00)	DC NA
HIL	HIGH	1ST HIGH VALUE IS	0.03911	ON 97032506: AT (564945.62, 41	92065.50,	102.72,	0.00)	DC NA
	HIGH	2ND HIGH VALUE IS	0.03783	ON 97042924: AT (564945.62, 41	92065.50,	102.72,	0.00)	DC NA
MUL	HIGH	1ST HIGH VALUE IS	0.00003	ON 97122705: AT (564945.62, 41	92065.50,	102.72,	0.00)	DC NA
	HIGH	2ND HIGH VALUE IS	0.00002	ON 97071504: AT (564945.62, 41	92065.50,	102.72,	0.00)	DC NA
WEL	HIGH	1ST HIGH VALUE IS	0.00015	ON 97122009: AT (564945.62, 41	92065.50,	102.72,	0.00)	DC NA
	HIGH	2ND HIGH VALUE IS	0.00010	ON 97020520: AT (564945.62, 41	92065.50,	102.72,	0.00)	DC NA
NOENGINE	HIGH	1ST HIGH VALUE IS	0.12541	ON 97101402: AT (565233.75, 41	92605.00,	159.72,	0.00)	DC NA
	HIGH	2ND HIGH VALUE IS	0.12501	ON 97071504: AT (565233.75, 41	92605.00,	159.72,	0.00)	DC NA
PRINT	HIGH	1ST HIGH VALUE IS	0.02177	ON 97082102: AT (564933.25, 41	91275.25,	71.32,	0.00)	DC NA
	HIGH	2ND HIGH VALUE IS	0.02175	ON 97032922: AT (564933.25, 41	91275.25,	71.32,	0.00)	DC NA
COMBUST	HIGH	1ST HIGH VALUE IS	0.11257	ON 97092424: AT (565233.75, 41	92605.00,	159.72,	0.00)	DC NA
	HIGH	2ND HIGH VALUE IS	0.11253	ON 97051804: AT (565233.75, 41	92605.00,	159.72,	0.00)	OC NA
HAZMAT	HIGH	1ST HIGH VALUE IS	0.01954	ON 97090422: AT (564933.25, 41	91275.25,	71.32,	0.00)	DC NA
	HIGH	2ND HIGH VALUE IS	0.01865	ON 97020104: AT (564933.25, 41	91275.25,	71.32,	0.00)	DC NA
PAINT	HIGH	1ST HIGH VALUE IS	0.00036	ON 97122005: AT (564933.25, 41	91275.25,	71.32,	0.00)	DC NA
	HIGH	2ND HIGH VALUE IS	0.00035	ON 97102603: AT (564933.25, 41	91275.25,	71.32,	0.00)	DC NA
ALL LABS	HIGH	1ST HIGH VALUE IS	0.04943	ON 97042924: AT (564945.62, 41	92065.50,	102.72,	0.00)	DC NA
_	HIGH	2ND HIGH VALUE IS	0.04896	ON 97032506: AT (564945.62, 41	92065.50,	102.72,	0.00)	DC NA

*** ISCST3 - VERSION 02035 ***

*** UC Berkeley - 12/2003; vjh - Cancer Risk

*** Model Executed on 02/04/04 at 17:58:31 ***

Input File - D:\Beest\UCBerk\10-03\Final\Existing-Can.DTA

Output File - D:\Beest\UCBerk\10-03\Final\Existing-Can.LST

Met File - D:\Beest\UCBerk\10-03\lb1-97a.asc

Number of sources - 126 Number of source groups - 27 Number of receptors - 1431

*** POINT SOURCE DATA ***

	NUMBER	EMISSION RATE (GRAMS/SEC)			BASE	STACK		STACK			EMISSION RAT
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT		EXIT VEL.		EXISTS	SCALAR VARY
											BY
WHSTK1 8	0	0.44700E-04	564704.4	4191782.8	66.8	31.70	293.15	7.12	0.19	YES	
NWAF9	0	0.60100E-03	564718.8	4191791.2	66.8	29.57	293.15	16.48	0.74	YES	
WHSTK10		0.44700E-04								YES	
MHSTK1	0	0.24000E-03	564794.4	4191795.8	74.8	7.61	293.15	17.25	0.34	YES	
MHSTK2	0	0.24000E-03	564798.6	4191843.0	74.8	10.89	293.15	17.25	0.29	YES	
MHSTK3	0	0.24000E-03	564794.1	4191843.0	74.8	10.89	293.15	17.25	0.48	YES	
MHSTK4	0	0.24000E-03	564800.9	4191787.2	74.8	15.61	293.15	17.25	0.33	YES	
MHSTK6	0	0.24000E-03 0.24000E-03	564801.3	4191808.2	74.8	10.94	293.15	17.25	0.33	YES	
KHSTK1	0	0.33000E-02	564761.1	4191879.8	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK2	0	0.33000E-02 0.33000E-02	564759.4	4191891.8	72.7	18.45	293.15	1.28	2.76 2.76	YES	
KHSTK3	0	0.33000E-02	564732.4	4191877.5	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK4	0	0.33000E-02 0.33000E-02	564731.4	4191889.0	72.7	18.45	293.15		2.76	YES	
BHSTK1	0	0 45600E-03	564678 9	4191889 0	67.4	27 85	293.15	2 78	1 26	YES	
BHSTK2	0	0.45600E-03 0.45600E-03	564675 0	4191896 8	67 4	29 68	293.15	2 78	1.26 1.26	YES	
BHSTK3	0	0.45600E-03	564704 5	4191898 0	67 4	29 68	293.15	2 78	1 26	YES	
BHSTK4	0	0.45600E-03	564707 4	4191887 8	67.4	33 34	293.15	2 78	1.26 0.37	YES	
BHSTK5		0.45600E-03						2.78	0.37	YES	
VLSBSTK1		0.77100E-03						2.78 3.97	1.22	YES	
VLSBSTK2		0.77100E-03						3.97	1.22	YES	
VLSBSTK3		0.77100E-03					293.15		1.22	YES	
VLSBSTK4		0.77100E-03						3.97	1.22	YES	
LSASTK1		0.16600E-02							1.22	YES	
LSASTK2		0.16600E-02						5.18	1.22	YES	
								5.18	1.22	YES	
LSASTK4	0	0.16600E-02 0.16600E-02	564907.0	4101570 N	64.4	20.31	203.15	5.18	1.22	YES	
LSASTK5	0	0.16600E-02	564909 6	4191576.0	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK6	0	0.16600E-02	564900.0	4191570.2	64.4	20.31	293.15	5.18	1.22	YES	
LSASTK7	0	0.16600E-02 0.16600E-02 0.16600E-02	564900 9	4191575.5	64.4	28.31	293.15			YES	
LEWHSTK1		0.63700E-03						2.10	0.30 0.36	YES	
LEWHSTK1		0.63700E-03				12.80	293.15	3.11	0.36	YES	
LEWHSTK3		0.63700E-03				12.80			0.36	YES	
LEWHSTK4		0.63700E-03				12.80	293.15	3.11	0.36	YES	
LEWHSTK5		0.63700E-03				12.80	293.15		0.36	YES	
							293.15	3.11	0.36	YES	
LEWHSTK6		0.63700E-03						3.11 3.11	0.36		
LEWHSTK7		0.63700E-03					293.15	3.11	0.36	YES	
LEWHSTK8		0.63700E-03					293.15		0.30	YES	
LEWHSTK9	U	0.63700E-03 0.27200E-02	505593.3	4191808.2	106./	12.80	293.15	3.11	0.36	YES	
LATHSTK1	U	U.2/2UUE-U2	565555.1	4191/99.2	104.6	42.37	293.15	6.28	0.34	YES	
LATHSTK2	U	0.27200E-02 0.27200E-02 0.27200E-02	565561.1	4191812.0	104.6	36.88	293.15	6.28	0.70	YES	
LATHSTK3	U	U.Z/2UUE-U2	ესეექ1.6	4191800.2	104.6	36.88	293.15	6.28	0.48	YES	

*** POINT SOURCE DATA ***

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
LATHSTK4	0	0.27200E-02	565515.1	4191799.5	104.6	37.19	293.15	6.28	0.96	YES	
LATHSTK5	0	0.27200E-02	565539.7	4191794.2	104.6	42.37	293.15	6.28	0.70	YES	
LATHSTK6	0	0.27200E-02	565527.3	4191776.0	104.6	38.40	293.15	6.28	0.74	YES	
LATHSTK7	0	0.27200E-02	565544.9	4191781.5	104.6	38.40	293.15	6.28	0.31	YES	
LATHSTK8	0	0.27200E-02	565562.3	4191787.0	104.6	38.40	293.15	6.28	0.70	YES	
TANHSTKA	0	0.23500E-02	565492.1	4191793.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKB	0	0.23500E-02	565496.8	4191794.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKC	0	0.23500E-02	565494.1	4191787.2	100.6	39.32	293.15	2.94	1.69	YES	

TANHSTKD	0	0.23500E-02	565499.1 4191788.2	100.6	39.32	293.15	2.94	1.69	YES
HHSTKA	0	0.26000E-02	565540.8 4191749.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKB	0	0.26000E-02	565565.6 4191756.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKC	0	0.26000E-02	565576.8 4191717.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKD	0	0.26000E-02	565553.2 4191710.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKE	0	0.26000E-02	565543.4 4191746.5	103.6	20.12	293.15	4.15	0.81	YES
STHSTK1	0	0.10700E-03	565530.3 4191891.8	112.8	13.87	293.15	2.17	0.27	YES
STHSTK2	0	0.10700E-03	565522.0 4191918.2	112.8	13.87	293.15	2.17	0.34	YES
STHSTK3	0	0.10700E-03	565537.9 4191871.0	112.8	17.56	293.15	2.17	0.34	YES
STHSTK4	0	0.10700E-03	565529.5 4191871.8	112.8	13.87	293.15	2.17	0.34	YES
STHSTK5	0	0.10700E-03	565530.9 4191870.0	112.8	14.02	293.15	2.17	0.34	YES
STHSTK6	0	0.10700E-03	565530.1 4191869.5	112.8	14.02	293.15	2.17	0.27	YES
STHSTK7	0	0.10700E-03	565532.6 4191866.5	112.8	14.02	293.15	2.17	0.39	YES
STHSTK8	0	0.10700E-03	565538.2 4191864.0	112.8	14.02	293.15	2.17	0.27	YES
STHSTK9	0	0.10700E-03	565525.9 4191880.5	112.8	14.02	293.15	2.17	0.53	YES
STHSTK11	0	0.10700E-03	565519.0 4191907.5	112.8	13.87	293.15	2.17	0.34	YES
GHSTK1	0	0.36700E-03	565507.1 4191756.0	103.6	16.06	293.15	5.92	0.30	YES
GHSTK2	0	0.36700E-03	565510.6 4191744.8	103.6	16.06	293.15	5.92	0.25	YES
GHSTK3	0	0.36700E-03	565512.4 4191739.0	103.6	16.37	293.15	5.92	0.30	YES
GHSTK4	0	0.36700E-03	565514.7 4191737.8	103.6	15.91	293.15	5.92	0.31	YES
GHSTK5	0	0.36700E-03	565514.9 4191732.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK6	0	0.36700E-03	565500.2 4191755.2	103.6	16.12	293.15	5.92	0.30	YES
GHSTK7	0	0.36700E-03	565501.1 4191753.0	103.6	16.37	293.15	5.92	0.84	YES
GHSTK8	0	0.36700E-03	565503.7 4191744.2	103.6	16.00	293.15	5.92	0.30	YES
GHSTK9	0	0.36700E-03	565505.2 4191740.2	103.6	16.37	293.15	5.92	0.26	YES
GHSTK10	0	0.36700E-03	565506.9 4191735.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK11	0	0.36700E-03	565509.7 4191728.2	103.6	16.22	293.15	5.92	0.30	YES
GHSTK12	0	0.36700E-03	565509.0 4191725.5	103.6	16.06	293.15	5.92	0.30	YES
GHSTK13	0	0.36700E-03	565516.9 4191725.8	103.6	15.91	293.15	5.92	0.40	YES
CHSTK1	0	0.86900E-04	565393.9 4192008.8	110.3	26.85	293.15	2.00	1.00	YES
DHSTK1	0	0.95300E-04	565329.4 4191982.0	107.2	16.36	293.15	2.00	1.00	YES
HESSTK1	0	0.73300E-03	565234.6 4191926.2	98.2	15.39	293.15	2.00	1.00	YES

*** POINT SOURCE DATA ***

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
HTT.STK1	0	0.72100E-03 0.53300E-04 0.86300E-04 0.86300E-04 0.86300E-04 0.86300E-04 0.97700E+00 0.12280E-01 0.47000E-01 0.12800E-02 0.47241E-02 0.23600E-02 0.72300E-03 0.74200E-01 0.49776E-01 0.49776E-01 0.49776E-01 0.16596E-01 0.20714E-01	564874 6	4191815 0	80 4	14 96	293 15	2 00	1.00	YES	
MULSTK1	0	0.53300E-05	564779.7	4191737.8	74.4	17.24	293.15	2.00	1.00	YES	
WELSTK1	0	0.13600E-04	564933.7	4191795.2	81.7	5.89	293.15	2.00	1.00	YES	
PRINTA	0	0.86300E-04	564584.7	4191553.2	60.0	8.91	293.15	2.70	0.84	YES	
PRINTB	0	0.86300E-04	564614.4	4191520.8	60.0	8.91	293.15	2.70	0.84	YES	
PRINTC	0	0.86300E-04	564643.1	4191525.5	60.0	8.91	293.15	2.70	0.60	YES	
COGEN	0	0.97700E+00	564876.0	4191492.0	71.9	12.77	430.37	10.45	2.28	YES	
BOILER#2	0	0.12280E-01	564863.6	4191499.5	71.9	8.80	522.82	7.97	1.52	YES	
BOILER#3	0	0.47000E-01	564881.9	4191505.8	71.9	8.80	554.11	10.53	1.52	YES	
BOILER#4	0	0.56800E-01	564885.8	4191495.8	71.9	8.80	566.65	12.63	1.52	YES	
POURING	0	0.12800E-02	564847.8	4191467.0	70.1	14.94	293.15	4.62	0.56	YES	
ENG 62	0	0.47241E-02	565567.6	4191086.5	85.1	4.57	800.37	146.01	0.13	NO	
ENG_63	0	0.23600E-02	564668.2	4191897.5	70.2	4.57	799.85	152.00	0.13	YES	
ENG_64	0	0.72300E-03	565452.9	4191687.0	98.2	3.05	817.07	58.47	0.08	YES	
ENG_105	0	0.74200E-01	564939.1	4191457.8	71.1	4.57	810.96	70.10	0.23	YES	
ENG_106	0	0.62205E-01	564991.6	4191614.5	73.6	30.48	810.96	70.10	0.20	YES	
ENG_107	0	0.49776E-01	564767.4	4191906.8	76.2	0.00	810.96	70.10	0.18	YES	
ENG_108	0	0.49776E-01	564930.6	4191564.2	68.8	7.62	810.96	70.10	0.18	YES	
ENG_109	0	0.16596E-01	565615.8	4191801.2	111.7	3.05	810.96	70.10	0.15	YES	
ENG_110	0	0.82858E-02	564655.9	4191874.5	68.4	4.57	810.96	70.10	0.10	YES	
ENG_111	0	0.23810E-01	565091.1	4191757.8	78.9	3.05	810.96	70.10	0.11	YES	
ENG_112	0	0.20714E-01	565542.8	4191208.2	85.7	3.05	810.93	70.10	0.10	NO	
ENG_113	0	0.20714E-01	565673.6	4191194.8	92.0	3.05	810.93	70.10	0.10	NO	
ENG_114	0	0.20714E-01	565601.4	4191014.2	86.0	3.05	810.93	70.10	0.10	NO	
ENG_115	0	0.20714E-01	565702.9	4190991.8	91.4	3.05	810.93	70.10	0.10	NO	
ENG_116	0	0.20714E-01	564775.8	4191177.5	63.2	4.57	810.93	70.10	0.10	NO	
ENG_117	0	0.20714E-01	565575.9	4191609.0	99.3	3.05	810.96	70.10	0.10	YES	
ENG_118	0	0.98935E-02	564654.8	4191890.5	68.6	4.57	810.96	70.10	0.13	YES	
ENG_119	0	0.14531E-01	564728.8	4191771.0	70.5	4.57	810.96	70.10	0.08	YES	
ENG_120	0	0.10450E-01	565318.0	4191422.5	86.1	3.05	810.96	70.10	0.08	YES	
ENG_121	0	0.10388E-01	565926.2	4191443.0	118.9	3.05	810.93	70.10	0.08	NO	
ENG_123	0	0.12800E-01	565259.4	4191652.8	88.3	3.05	810.96	70.10	0.08	YES	
ENG_125	0	0.41058E-02	564811.2	4191460.8	67.7	3.05	810.96	70.10	0.08	YES	
ENG_126	0	0.33143E-02	565137.9	4191441.5	77.6	0.00	810.96	70.10	0.08	YES	
ENG_128	0	0.41429E-02	565469.2	4191955.2	109.8	3.05	810.96	70.10	0.05	YES	
ENG_129	0	U.41429E-02	565383.1	4191740.2	97.0	2.44	810.96	70.10	0.05	YES	
ENG_130	0	0.25692E-02	565533.3	4191713.5	98.9	2.44	815.40	134.54	0.08	YES	
ENG_131	0	0.72350E-03	564970.3	4191484.2	71.3	1.83	817.07	58.47	0.08	YES YES	
ENG_132	0	0.72350E-03	564800.3	4191781.8	74.3	1.83	817.07	58.47	0.08	YES	

*** VOLUME SOURCE DATA ***

LEW

SOURCE ID		EMISSION RA (GRAMS/SEC) X	Y) (METERS)	BASE ELEV. (METERS)	RELEASE HEIGHT (METERS)	INIT. SY (METERS)	SZ	EMISSION RA SCALAR VAR BY			
MHSTK5 STHSTK10 PAINT1 PAINT2 PAINT3 PAINT4	0 0 0	0.24000E-03 0.10700E-03 0.26600E-03 0.26600E-03 0.26600E-03 0.26600E-03	565522.6 564917.1 565322.7 565541.5	4191880.8 4191432.5 4191834.8 4191525.8	96.0 97.0	6.95 14.02 4.57 4.57 4.57 4.57	0.07 0.29 3.54 3.54 3.54 3.54	2.42 5.39 4.25 4.25 4.25 4.25				
				*** SOURCE	E IDs DEF	INING SOUR	CE GROUPS	***				
GROUP ID					SOU	RCE IDs						
ALL	WHSTK1_8	, NWAF9 ,	WHSTK10 , I	MHSTK1 , 1	MHSTK2 ,	MHSTK3 ,	MHSTK4 ,	, MHSTK5	, MHSTK6 ,	KHSTK1 ,	KHSTK2 ,	KHSTK3
LSASTK2 ,	KHSTK4	, BHSTK1 ,	BHSTK2 , 1	BHSTK3 , I	BHSTK4 ,	BHSTK5 ,	VLSBSTK1,	, VLSBSTK2	, VLSBSTK3,	VLSBSTK4,	LSASTK1 ,	
LEWHSTK7,	LSASTK3	, LSASTK4 ,	LSASTK5 ,	LSASTK6 , 1	LSASTK7 ,	LEWHSTK1,	LEWHSTK2,	, LEWHSTK3	, LEWHSTK4,	LEWHSTK5,	LEWHSTK6,	
TANHSTKB,	LEWHSTK8	, LEWHSTK9,	LATHSTK1,	LATHSTK2, 1	LATHSTK3,	LATHSTK4,	LATHSTK5,	, LATHSTK6	, LATHSTK7,	LATHSTK8,	TANHSTKA,	
STHSTK5 ,	TANHSTKC	, TANHSTKD,	HHSTKA , I	ннѕткв , н	ннѕткс ,	HHSTKD ,	HHSTKE ,	, STHSTK1	, STHSTK2 ,	STHSTK3 ,	STHSTK4 ,	
,	STHSTK6	, STHSTK7 ,	STHSTK8 ,	STHSTK9 , S	STHSTK11,	STHSTK10,	GHSTK1 ,	GHSTK2	, GHSTK3 ,	GHSTK4 ,	GHSTK5 ,	GHSTK6
MULSTK1 ,	GHSTK7	, GHSTK8 ,	GHSTK9 ,	GHSTK10 , (GHSTK11 ,	GHSTK12 ,	GHSTK13 ,	. CHSTK1	, DHSTK1 ,	HESSTK1 ,	HILSTK1 ,	
,	WELSTK1	, PRINTA ,	PRINTB ,	PRINTC ,	COGEN ,	BOILER#2,	BOILER#3,	, BOILER#4	, POURING ,	PAINT1 ,	PAINT2 ,	PAINT3
ENG 112 ,	PAINT4	, ENG_62 ,	ENG_63 , 1	ENG_64 , I	ENG_105 ,	ENG_106 ,	ENG_107 ,	, ENG_108	, ENG_109 ,	ENG_110 ,	ENG_111 ,	
ENG 126 ,	ENG_113	, ENG_114 ,	ENG_115 , 1	ENG_116 , E	ENG_117 ,	ENG_118 ,	ENG_119 ,	, ENG_120	, ENG_121 ,	ENG_123 ,	ENG_125 ,	
_	ENG_128	, ENG_129 ,	ENG_130 , 1	ENG_131 , E	ENG_132 ,	E134_133,						
WH	WHSTK1_8	, WHSTK10 ,										
NWAF	NWAF9	,										
МН	MHSTK1	, MHSTK2 ,	MHSTK3 , I	MHSTK4 , 1	MHSTK5 ,	MHSTK6 ,						
KH	KHSTK1	, KHSTK2 ,	KHSTK3 , 1	KHSTK4 ,								
ВН	BHSTK1	, BHSTK2 ,	BHSTK3 , 1	BHSTK4 , I	BHSTK5 ,							
VLSB	VLSBSTK1	, VLSBSTK2,	VLSBSTK3,	VLSBSTK4,								
LSA	LSASTK1	, LSASTK2 ,	LSASTK3 ,	LSASTK4 , 1	LSASTK5 ,	LSASTK6 ,	LSASTK7 ,	,				

LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6, LEWHSTK7, LEWHSTK8, LEWHSTK9,

LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, LAT

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDs

TANHSTKA, TANHSTKB, TANHSTKC, TANHSTKD, TAN

НН HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE ,

STH STHSTK1 , STHSTK2 , STHSTK3 , STHSTK4 , STHSTK5 , STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10,

GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 ,

GHSTK13 ,

СН CHSTK1 ,

DH DHSTK1 ,

HESSTK1 ,

HIL HILSTK1 ,

MUL MULSTK1 ,

WEL WELSTK1 ,

NOENGINE WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3

KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 , LSASTK2 ,

LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,

LEWHSTK7,

LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,

TANHSTKB,

TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , STHSTK1 , STHSTK1 , STHSTK3 , STHSTK4 ,

STHSTK5 ,

STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10, GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6

MULSTK1 ,

GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , DHSTK1 , HESSTK1 , HILSTK1 ,

WELSTK1 , PRINTA , PRINTB , PRINTC , COGEN , BOILER#2, BOILER#3, BOILER#4, POURING , PAINT1 , PAINT2 , PAINT3

PAINT4 ,

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDs

ENGINE ${
m ENG}$ 62 , ${
m ENG}$ 63 , ${
m ENG}$ 64 , ${
m ENG}$ 105 , ${
m ENG}$ 106 , ${
m ENG}$ 107 , ${
m ENG}$ 108 , ${
m ENG}$ 109 , ${
m ENG}$ 110 , ${
m ENG}$ 111 , ${
m ENG}$ 112 , ENG 113 ,

ENG 114 , ENG 115 , ENG 116 , ENG 117 , ENG 118 , ENG 119 , ENG 120 , ENG 121 , ENG 123 , ENG 125 , ENG 126 ,

ENG 128 ,

```
ENG_129 , ENG_130 , ENG_131 , ENG_132 , E134_133,
           PRINTA , PRINTB , PRINTC ,
 PRINT
 COMBUST COGEN , BOILER#2, BOILER#3, BOILER#4,
           POURING ,
 HAZMAT
 PAINT PAINT1 , PAINT2 , PAINT3 , PAINT4 ,
 ALL_LABS WHSTK1_8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , STHSTK1 , STHSTK2 , STHSTK3 , STHSTK4 ,
STHSTK5 ,
           STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10, GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6
           GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , DHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
```

*** THE SUMMARY OF MAXIMUM PERIOD ($8760\ \text{HRS}$) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

WELSTK1 ,

GROUP	ID 		AVERAGE CONC	REC	EPTOR (XR, YR	z, ZELEV, ZFL	AG) OF	TYPE	NETWORK GRID-ID
ALL	1ST HIGHEST V	ALUE IS	4.34956 AT (564700.00,	4192000.00,	76.00,	0.00)	DC	NA
	2ND HIGHEST V	ALUE IS	4.34956 AT (4.05439 AT (564892.25,	4191959.00,	84.00,	0.00)	DC	NA
	3RD HIGHEST V	ALUE IS	3.86120 AT (565800.00,	4191200.00,	100.00,	0.00)	DC	NA
	4TH HIGHEST V								NA
	5TH HIGHEST V	ALUE IS							NA
	6TH HIGHEST V	ALUE IS	3.53583 AT (566100.00,	4191400.00,	149.00,	0.00)	DC	NA
	7TH HIGHEST V	ALUE IS	3.52097 AT (565000.00,	4192000.00,	98.00,	0.00)	DC	NA
	8TH HIGHEST V	ALUE IS	3.49887 AT (565700.00,	4191200.00,	93.00,	0.00)	DC	NA
	9TH HIGHEST V	ALUE IS	3.46530 AT (564800.00,	4192000.00,	81.00,	0.00)	DC	NA
	10TH HIGHEST V	ALUE IS	3.40565 AT (565800.00,	4191000.00,	95.00,	0.00)	DC	NA
WH			0.00268 AT (DC	NA
	2ND HIGHEST V	ALUE IS	0.00263 AT (DC	NA
	3RD HIGHEST V	ALUE IS		564664.50,	4191903.50,	71.00,	0.00)	DC	NA
	4TH HIGHEST V	ALUE IS	0.00247 AT (564600.00,	4191900.00,	67.00,	0.00)	DC	NA
	5TH HIGHEST V	ALUE IS	0.00231 AT (564648.62,	4191891.75,	68.00,	0.00)	DC	NA
	6TH HIGHEST V	ALUE IS	0.00189 AT (564748.50,	4191916.75,	75.00,	0.00)	DC	NA
	7TH HIGHEST V	ALUE IS	0.00135 AT (564795.00,	4191930.25,	78.00,	0.00)	DC	NA
	8TH HIGHEST V	ALUE IS	0.00103 AT (564700.00,	4192000.00,	76.00,	0.00)	DC	NA
	9TH HIGHEST V	ALUE IS	0.00098 AT (564600.00,	4192000.00,	72.00,	0.00)	DC	NA
	10TH HIGHEST V	ALUE IS	0.00247 AT (0.00231 AT (0.00189 AT (0.00135 AT (0.00103 AT (0.00098 AT (0.00093 AT (564500.00,	4191900.00,	65.00,	0.00)	DC	NA
	1.00								
NWAF	1ST HIGHEST V	ALUE IS	0.00249 AT (565000.00,	4192000.00,	98.00,	0.00)	DC	NA
	2ND HIGHEST V			565141.94,	4191999.00,	97.00,	0.00)	DC	NA
	3RD HIGHEST V			565241.19,	4192017.75,	102.00,	0.00)	DC	NA
	4TH HIGHEST V		,						NA
	5TH HIGHEST V		0.00223 AT (NA
	6TH HIGHEST V		,						NA
	7TH HIGHEST V								NA
	8TH HIGHEST V								NA
			0.00198 AT (
	10TH HIGHEST V	ALUE IS	0.00196 AT (565100.00,	4192100.00,	107.00,	0.00)	DC	NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP	ID	AVERAGE CONC	REC	EPTOR (XR, YR	, ZELEV, ZFLAG	OF	TYPE	NETWORK GRID-ID
MH	1ST HIGHEST VALUE IS							
	2ND HIGHEST VALUE IS							
	3RD HIGHEST VALUE IS		564698.50,	4191908.75,	72.00,	0.00)	DC	NA
	4TH HIGHEST VALUE IS							
	5TH HIGHEST VALUE IS							
	6TH HIGHEST VALUE IS							
	7TH HIGHEST VALUE IS							
	8TH HIGHEST VALUE IS							
	9TH HIGHEST VALUE IS	0.02494 AT (564600.00,	4192000.00,	72.00,	0.00)	DC	NA
	10TH HIGHEST VALUE IS	0.02409 AT (564941.88,	4191967.00,	90.00,	0.00)	DC	NA
KH	1ST HIGHEST VALUE IS	0.26554 AT (564842.69,	4191950.00,	83.00,	0.00)	DC	NA
	2ND HIGHEST VALUE IS	0.25816 AT (564700.00,	4192000.00,	76.00,	0.00)	DC	NA
	3RD HIGHEST VALUE IS							NA
	4TH HIGHEST VALUE IS	0.21430 AT (564892.25,	4191959.00,	84.00,	0.00)	DC	NA
	5TH HIGHEST VALUE IS	0.20313 AT (564600.00,	4192000.00,	72.00,	0.00)	DC	NA
	6TH HIGHEST VALUE IS	0.18282 AT (564991.81,	4191975.00,	93.00,	0.00)	DC	NA
	7TH HIGHEST VALUE IS	0.17579 AT (564941.88,	4191967.00,	90.00,	0.00)	DC	NA
	8TH HIGHEST VALUE IS	0.15537 AT (565000.00,	4192000.00,	98.00,	0.00)	DC	NA
	9TH HIGHEST VALUE IS	0.14675 AT (565042.31,	4191983.00,	93.00,	0.00)	DC	NA
	10TH HIGHEST VALUE IS	0.14449 AT (564800.00,	4192100.00,	92.00,	0.00)	DC	NA
вн	1ST HIGHEST VALUE IS	0.04734 AT (564795.00,	4191930.25,	78.00,	0.00)	DC	NA
	2ND HIGHEST VALUE IS	0.03695 AT (564842.69,	4191950.00,	83.00,	0.00)	DC	NA
	3RD HIGHEST VALUE IS	0.02970 AT (564600.00,	4192000.00,	72.00,	0.00)	DC	NA
	4TH HIGHEST VALUE IS	0.02815 AT (564892.25,	4191959.00.	84.00,	0.00)	DC	NA
	5TH HIGHEST VALUE IS							NA
	6TH HIGHEST VALUE IS	0.02336 AT (564941.88,	4191967.00,	90.00,	0.00)	DC	NA
	7TH HIGHEST VALUE IS		564800.00,	4192000.00,	81.00,	0.00)	DC	NA
	8TH HIGHEST VALUE IS	0.02085 AT (564900.00,	4192000.00,	88.00,	0.00)	DC	NA
	9TH HIGHEST VALUE IS	0.01868 AT (565000.00,	4192000.00,	98.00,	0.00)	DC	NA
	10TH HIGHEST VALUE IS	0.01820 AT (564991.81,	4191975.00,	93.00,	0.00)	DC	NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3 **

							NETWORK
GROUP	ID	AVERAGE CONC	REC	CEPTOR (XR, YR,	, ZELEV, ZFL	AG) OF TY	PE GRID-ID
VLSB	1ST HIGHEST VALUE	IS 0.02270 AT (565226.19,	4191310.50,	81.00,	0.00)	C NA
	2ND HIGHEST VALUE	IS 0.02244 AT (564795.00,	4191930.25,	78.00,	0.00) D	C NA
	3RD HIGHEST VALUE	IS 0.02210 AT (565200.00,	4191300.00,	80.00,	0.00) D	C NA
	4TH HIGHEST VALUE	IS 0.02198 AT (565176.31,	4191303.25,	79.00,	0.00) D	C NA
	5TH HIGHEST VALUE	IS 0.02188 AT (565577.06,	4191362.50,	93.00,	0.00) D	C NA
	6TH HIGHEST VALUE	IS 0.02154 AT (564842.69,	4191950.00,	83.00,	0.00) D	C NA
	7TH HIGHEST VALUE	IS 0.02145 AT (565276.06,	4191318.25,	82.00,	0.00) D	C NA
	8TH HIGHEST VALUE	IS 0.02066 AT (565326.25,	4191324.25,	84.00,	0.00) D	C NA
	9TH HIGHEST VALUE	IS 0.02062 AT (565626.50,	4191370.25,	95.00,	0.00) D	C NA
	10TH HIGHEST VALUE	IS 0.02039 AT (564748.50,	4191916.75,	75.00,	0.00) D	C NA
LSA	1ST HIGHEST VALUE	IS 0.07042 AT (565176.31,	4191303.25,	79.00,	0.00) D	C NA
	2ND HIGHEST VALUE	IS 0.07022 AT (565577.06,	4191362.50,	93.00,	0.00) D	C NA
	3RD HIGHEST VALUE	IS 0.06962 AT (565376.81,	4191332.25,	87.00,	0.00) D	C NA
	4TH HIGHEST VALUE	IS 0.06961 AT (565127.75,	4191295.25,	77.00,	0.00) D	C NA
	5TH HIGHEST VALUE	IS 0.06949 AT (565077.25,	4191285.50,	76.00,	0.00) D	C NA
	6TH HIGHEST VALUE	IS 0.06821 AT (565200.00,	4191300.00,	80.00,	0.00) D	C NA
	7TH HIGHEST VALUE	IS 0.06743 AT (565226.19,	4191310.50,	81.00,	0.00) D	C NA
	8TH HIGHEST VALUE	IS 0.06636 AT (565326.25,	4191324.25,	84.00,	0.00) D	C NA
	9TH HIGHEST VALUE	IS 0.06602 AT (565426.81,	4191338.75,	88.00,	0.00) D	C NA
	10TH HIGHEST VALUE	IS 0.06563 AT (565626.50,	4191370.25,	95.00,	0.00)	C NA
LEW	1ST HIGHEST VALUE	IS 0.09123 AT (565475.12,	4192018.00,	118.00,	0.00) D	C NA
	2ND HIGHEST VALUE				117.00,		
	3RD HIGHEST VALUE	IS 0.07129 AT (565438.25,	4192048.75,	117.00,	0.00) D	C NA

0.06439 AT (565500.00, 4192100.00, 0.05506 AT (566100.00, 4191600.00, 0.05221 AT (565400.00, 4192100.00, 0.05199 AT (565300.00, 4192300.00, 0.04762 AT (565390.25, 4192042.25, 0.04488 AT (565600.00, 4192100.00, 0.04368 AT (566200.00, 4191600.00, 126.00, 141.00, 116.00, 123.00, 113.00, 0.00) DC 0.00) DC 0.00) DC 0.00) DC 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS NA NA NΑ 7TH HIGHEST VALUE IS NA 0.00) DC 0.00) DC 0.00) DC 8TH HIGHEST VALUE IS NA 9TH HIGHEST VALUE IS 140.00, NA 144.00, 10TH HIGHEST VALUE IS

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP	ID 	A	VERAGE CONC	REC	EPTOR (XR, YR,	ZELEV, ZFLAC	G) OF	TYPE	NETWORK GRID-ID
LAT		ALUE IS	0.10951 AT (565475.12,	4192018.00,	118.00,	0.00)	DC	NA
	2ND HIGHEST V	ALUE IS	0.10472 AT (566200.00,	4191600.00,	144.00,			NA
	3RD HIGHEST V	ALUE IS	0.09814 AT (565460.56,	4192039.50,	117.00,	0.00)		NA
	4TH HIGHEST V	ALUE IS	0.09814 AT (0.09666 AT (0.09514 AT (565438.25,	4192048.75,	117.00,	0.00)		NA
	5TH HIGHEST V	ALUE IS	0.09514 AT (565390.25,	4192042.25,	113.00,	0.00)	DC	NA
	6TH HIGHEST V	ALUE IS	0.09441 AT (565600.00,	4192100.00,	140.00,	0.00)	DC	NA
	7TH HIGHEST V	ALUE IS	0.09392 AT (566100.00,	4191600.00,	141.00,	0.00)	DC	NA
	8TH HIGHEST V	ALUE IS	0.09036 AT (565339.88,	4192034.25,	108.00,	0.00)	DC	NA
	9TH HIGHEST V	ALUE IS	0.08856 AT (566200.00,	4191500.00,	156.00,	0.00)	DC	NA
	10TH HIGHEST V		0.09441 AT (0.09441 AT (0.09392 AT (0.09036 AT (0.08856 AT (0.08814 AT (NA
TAN	1ST HIGHEST V	ALUE IS	0.05185 AT (566100.00,	4191600.00,	141.00,	0.00)	DC	NA
	2ND HIGHEST V	ALUE IS	0.04649 AT (565475.12,	4192018.00,	118.00,	0.00)	DC	NA
	3RD HIGHEST V	ALUE IS	0.04438 AT (565289.25,	4192025.50,	107.00,	0.00)	DC	NA
	4TH HIGHEST V	ALUE IS	0.04434 AT (566200.00,	4191600.00,	144.00,	0.00)	DC	NA
	5TH HIGHEST V	ALUE IS	0.04185 AT (565390.25,	4192042.25,	113.00,	0.00)	DC	NA
	6TH HIGHEST V	ALUE IS	0.04050 AT (565438.25,	4192048.75,	117.00,	0.00)	DC	NA
	7TH HIGHEST V	ALUE IS	0.03972 AT (565460.56,	4192039.50,	117.00,	0.00)	DC	NA
	8TH HIGHEST V	ALUE IS	0.03967 AT (565600.00,	4192100.00,	140.00,	0.00)	DC	NA
	9TH HIGHEST V	ALUE IS	0.03935 AT (565339.88,	4192034.25,	108.00,	0.00)	DC	NA
	10TH HIGHEST V	ALUE IS	0.05185 AT (0.04649 AT (0.04438 AT (0.04434 AT (0.04185 AT (0.04050 AT (0.03972 AT (0.03967 AT (0.03935 AT (0.03734 AT (565500.00,	4192100.00,	126.00,	0.00)	DC	NA
НН	1ST HIGHEST V	ALUE IS	0.10735 AT (566100.00,	4191600.00,	141.00,	0.00)	DC	NA
	2ND HIGHEST V	ALUE IS	0.08100 AT (566200.00,	4191600.00,	144.00,	0.00)	DC	NA
	3RD HIGHEST V	ALUE IS	0.07321 AT (566200.00,	4191500.00,	156.00,	0.00)	DC	NA
	4TH HIGHEST V	ALUE IS	0.07099 AT (565475.12,	4192018.00,	118.00,	0.00)	DC	NA
	5TH HIGHEST V	ALUE IS	0.07090 AT (565289.25,	4192025.50,	107.00,	0.00)	DC	NA
	6TH HIGHEST V	ALUE IS	0.07072 AT (565600.00,	4192100.00,	140.00,	0.00)	DC	NA
	7TH HIGHEST V	ALUE IS	0.06973 AT (565339.88,	4192034.25,	108.00,	0.00)	DC	NA
	8TH HIGHEST V	ALUE IS	0.06819 AT (566100.00,	4191400.00,	149.00,	0.00)	DC	NA
	9TH HIGHEST V	ALUE IS	0.06698 AT (565390.25.	4192042.25.	113.00,	0.00)	DC	NA
	10TH HIGHEST V	ALUE IS	0.10735 AT (0.08100 AT (0.07321 AT (0.07099 AT (0.07072 AT (0.06973 AT (0.06819 AT (0.06698 AT (0.06389 AT (565460.56,	4192039.50,	117.00,	0.00)	DC	NA

*** THE SUMMARY OF MAXIMUM PERIOD ($8760\ \mathrm{HRS})$ RESULTS ***

GROUP I	ID	AVERAGE CONC	RECEPTOR (XR,	YR, ZELEV, ZFLAG) O	NETWORK F TYPE GRID-ID
STH	1ST HIGHEST VALUE	.s 0.02190 AT (565475.12, 4192018.00	118.00, 0.00) DC NA
	2ND HIGHEST VALUE	S 0.01991 AT (565390.25, 4192042.25	113.00, 0.00) DC NA
	3RD HIGHEST VALUE	S 0.01790 AT (565460.56, 4192039.50	117.00, 0.00) DC NA
	4TH HIGHEST VALUE	S 0.01778 AT (565438.25, 4192048.75	, 117.00, 0.00) DC NA
	5TH HIGHEST VALUE	S 0.01621 AT (565339.88, 4192034.25	108.00, 0.00) DC NA
	6TH HIGHEST VALUE	S 0.01306 AT (565800.00, 4192000.00	178.00, 0.00) DC NA
	7TH HIGHEST VALUE	S 0.01247 AT (565400.00, 4192100.00	, 116.00, 0.00) DC NA
	8TH HIGHEST VALUE	S 0.01210 AT (565289.25, 4192025.50	, 107.00, 0.00) DC NA
	9TH HIGHEST VALUE	S 0.01119 AT (565300.00, 4192100.00	107.00, 0.00) DC NA
	10TH HIGHEST VALUE	O.01118 AT (565600.00, 4192100.00	140.00, 0.00) DC NA
GH	1ST HIGHEST VALUE	S 0.03653 AT (566100.00, 4191600.00	141.00, 0.00) DC NA
	2ND HIGHEST VALUE	· ·	565289.25, 4192025.50	•	
	3RD HIGHEST VALUE	S 0.03001 AT (565241.19, 4192017.75	102.00, 0.00	DC NA
	4TH HIGHEST VALUE	S 0.02990 AT (565500.00, 4192100.00	126.00, 0.00	DC NA
	5TH HIGHEST VALUE	S 0.02864 AT (565339.88, 4192034.25	108.00, 0.00	DC NA
	6TH HIGHEST VALUE	S 0.02845 AT (566200.00, 4191600.00	144.00, 0.00	DC NA
	7TH HIGHEST VALUE	S 0.02727 AT (565475.12, 4192018.00	118.00, 0.00	DC NA

8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS 0.02690 AT (565600.00, 4192100.00, 0.02688 AT (565191.50, 4192009.50, 0.02663 AT (565390.25, 4192042.25, 0.00) DC 0.00) DC 0.00) DC 140.00, NA 97.00, NA 113.00, NA 0.00339 AT (565475.12, 4192018.00, 0.00132 AT (565500.00, 4192100.00, СН 1ST HIGHEST VALUE IS 118.00, 0.00) NA 2ND HIGHEST VALUE IS 126.00, 0.00) DC NA 0.00128 AT (565400.00, 4192100.00, 0.00126 AT (565600.00, 4192100.00, 3RD HIGHEST VALUE IS 116.00, 0.00) NA 4TH HIGHEST VALUE IS 140.00, 0.00) DC NA 5TH HIGHEST VALUE IS 0.00083 AT (565800.00, 4192000.00, 178.00, 0.00) DC NA 6TH HIGHEST VALUE IS 0.00083 AT (565700.00, 4192100.00, 165.00, 0.00) DC NA 7TH HIGHEST VALUE IS 0.00081 AT (565300.00, 4192100.00, 107.00, 0.00) DC NA 0.00068 AT (565300.00, 4192200.00, 0.00067 AT (565400.00, 4192200.00, 8TH HIGHEST VALUE IS 112.00, 0.00) DC NA 9TH HIGHEST VALUE IS 118.00, 0.00) DC NA 10TH HIGHEST VALUE IS 0.00066 AT (565500.00, 4192200.00, 136.00, 0.00) DC NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP I	TD	/A 	/ERAGE CONC	REC	EPTOR (XR, YR	R, ZELEV, ZFLA	G) OF TYI	NETWORK PE GRID-ID
DH	3RD HIGHEST V 4TH HIGHEST V	/ALUE IS /ALUE IS	0.00392 AT (0.00304 AT (0.00261 AT (0.00251 AT (565390.25, 565460.56,	4192042.25, 4192039.50,	113.00, 117.00,	0.00) DO	NA NA
	5TH HIGHEST V 6TH HIGHEST V 7TH HIGHEST V 8TH HIGHEST V 9TH HIGHEST V 10TH HIGHEST V	/ALUE IS /ALUE IS /ALUE IS /ALUE IS	0.00237 AT (0.00171 AT (0.00154 AT (0.00139 AT (0.00138 AT (0.00132 AT (565339.88, 565300.00, 565241.19, 565500.00,	4192034.25, 4192100.00, 4192017.75, 4192100.00,	108.00, 107.00, 102.00, 126.00,	0.00) D0 0.00) D0 0.00) D0	NA NA NA NA NA NA
HES	2ND HIGHEST V 3RD HIGHEST V 4TH HIGHEST V 5TH HIGHEST V 6TH HIGHEST V 7TH HIGHEST V 8TH HIGHEST V	VALUE IS	0.02430 AT (0.02416 AT (0.02162 AT (0.01621 AT (0.01545 AT (0.01318 AT (0.01238 AT (0.01221 AT (0.01239 AT (0.01239 AT (565191.50, 565241.19, 565289.25, 565100.00, 565090.81, 565100.00, 565339.88, 565475.12,	4192009.50, 4192017.75, 4192025.50, 4192000.00, 4191991.50, 4192100.00, 4192034.25, 4192018.00,	97.00, 102.00, 107.00, 96.00, 96.00, 107.00, 108.00, 118.00,	0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC	NA N
HIL	2ND HIGHEST V 3RD HIGHEST V 4TH HIGHEST V 5TH HIGHEST V 6TH HIGHEST V 7TH HIGHEST V	VALUE IS	0.01604 AT (0.01418 AT (0.01415 AT (0.01241 AT (0.01220 AT (0.01008 AT (0.00946 AT (0.00934 AT (0.00902 AT (0.00893 AT (564748.50, 564842.69, 564941.88, 564892.25, 564800.00, 564901.81, 564700.00,	4191916.75, 4191950.00, 4191967.00, 4191959.00, 4192000.00, 4192000.00, 4191975.00, 4192000.00,	75.00, 83.00, 90.00, 84.00, 81.00, 88.00, 93.00, 76.00,	0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC	NA N

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

GROUP I		AVER	AGE CONC	REC	EPTOR (XR, YR,	ZELEV, ZFL	AG) OF TYPE	NETWORK GRID-ID
MUL	1ST HIGHEST V	ALUE IS	0.00006 AT (564664.50,	4191903.50,	71.00,	0.00) DC	NA
	2ND HIGHEST V	ALUE IS	0.00006 AT (564795.00,	4191930.25,	78.00,	0.00) DC	NA
	3RD HIGHEST V	ALUE IS	0.00006 AT (564648.62,	4191891.75,	68.00,	0.00) DC	NA
	4TH HIGHEST V	ALUE IS	0.00006 AT (564698.50,	4191908.75,	72.00,	0.00) DC	NA
	5TH HIGHEST V	ALUE IS	0.00006 AT (564842.69,	4191950.00,	83.00,	0.00) DC	NA
	6TH HIGHEST V	ALUE IS	0.00006 AT (564639.88,	4191852.00,	67.00,	0.00) DC	NA
	7TH HIGHEST V	ALUE IS	0.00005 AT (564748.50,	4191916.75,	75.00,	0.00) DC	NA
	8TH HIGHEST V	ALUE IS	0.00005 AT (564800.00,	4192000.00,	81.00,	0.00) DC	NA
	9TH HIGHEST V	ALUE IS	0.00005 AT (564645.94,	4191801.25,	66.00,	0.00) DC	NA
	10TH HIGHEST V	ALUE IS	0.00005 AT (564600.00,	4191900.00,	67.00,	0.00) DC	NA

0.00048 AT (564795.00, 4191930.25, 0.00036 AT (564892.25, 4191959.00, 0.00032 AT (564941.88, 4191967.00, 0.00031 AT (564748.50, 4191916.75, 0.00030 AT (564842.69, 4191950.00, 0.00027 AT (564900.00, 4192000.00, 4192000.00, 0.00027 AT (564900.00, 4192000.00, 4192000.00, 0.00027 AT (564900.00, 4192000.00, 4192000.00, 4192000.00, 0.00027 AT (564900.00, 419200 78.00, 84.00, 0.00) DC WET. 1ST HIGHEST VALUE IS NΙΔ 2ND HIGHEST VALUE IS 0.00) DC NA 3RD HIGHEST VALUE IS 90.00, 0.00) DC NA 4TH HIGHEST VALUE IS 75.00, 0.00) DC NA 5TH HIGHEST VALUE IS 83.00, 0.00) DC NA 6TH HIGHEST VALUE IS 88.00. 0.00) DC NA 0.00025 AT (564991.81, 4191975.00, 0.00025 AT (564800.00, 4192000.00, 0.00) 7TH HIGHEST VALUE IS 93.00, DC NA 8TH HIGHEST VALUE IS 81.00, 0.00) DC NA 0.00024 AT (564700.00, 4192000.00, 0.00023 AT (564800.00, 4192100.00, 9TH HIGHEST VALUE IS 76.00, 0.00) DC NA 0.00) DC 10TH HIGHEST VALUE IS 92.00. NA 1.40836 AT (566100.00, 4191400.00, 1.35523 AT (566200.00, 4191300.00, 1.34095 AT (566200.00, 4191400.00, 1.33065 AT (566100.00, 4191600.00, 1.27209 AT (566200.00, 4191300.00, 1.26730 AT (566200.00, 4191500.00, 1.25338 AT (566200.00, 4191600.00, 1.25338 AT (566200.00, 4191600.00, 1.23800 AT (566300.00, 4191300.00 149.00, 158.00, NOENGINE 1ST HIGHEST VALUE IS 0.00) DC NA 2ND HIGHEST VALUE IS 0.00) DC NA 3RD HIGHEST VALUE IS 174.00, 0.00) DC NA 4TH HIGHEST VALUE IS 141.00, 0.00) DC NA 140.00, 5TH HIGHEST VALUE IS 0.00) DC NA 6TH HIGHEST VALUE IS 156.00, 0.00) DC MΔ 144.00, 7TH HIGHEST VALUE IS 0.00) DC NA 1.23800 AT (566300.00, 4191300.00, 1.22197 AT (565800.00, 4192000.00, 1.20642 AT (566300.00, 4191400.00, 8TH HIGHEST VALUE IS 176.00, 0.00) DC 178.00, 9TH HIGHEST VALUE IS 0.00) DC NA 10TH HIGHEST VALUE IS 204.00, 0.00) DC

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

NETWORK AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID 3.87614 AT (564700.00, 4192000.00, 76.00, 3.57008 AT (564892.25, 4191959.00, 84.00, 3.32687 AT (565800.00, 4191200.00, 100.00, 3.31013 AT (564941.88, 4191967.00, 90.00, 3.06865 AT (564991.81, 4191975.00, 93.00, 3.05700 AT (565700.00, 4191200.00, 93.00, 3.05465 AT (565800.00, 4191000.00, 95.00, 3.00940 AT (564800.00, 4192000.00, 81.00, 2.99249 AT (565500.00, 4192000.00, 98.00, 2.84619 AT (565376.81, 4191332.25, 87.00, ENGINE 1ST HIGHEST VALUE IS 3.87614 AT (564700.00, 4192000.00, 0.00) 2ND HIGHEST VALUE IS 0.00) DC 3RD HIGHEST VALUE IS 0.00) DC NA 4TH HIGHEST VALUE IS 0.00) DC 5TH HIGHEST VALUE IS 0.00) DC 6TH HIGHEST VALUE IS 0.00) DC 7TH HIGHEST VALUE IS 0.00) DC NA 8TH HIGHEST VALUE IS 0.00) DC 9TH HIGHEST VALUE IS 0.00) DC 0.00) DC 10TH HIGHEST VALUE IS 0.07250 AT (564673.81, 4191519.00, 0.04208 AT (564675.81, 4191504.00, 0.01882 AT (564550.38, 4191600.50, 0.01758 AT (564678.75, 4191454.25, 63.00, 1ST HIGHEST VALUE IS 0.00) DC 2ND HIGHEST VALUE IS 62.00. 0.00) DC NA 3RD HIGHEST VALUE IS 0.00) DC 60.00, 4TH HIGHEST VALUE IS 62.00, 0.00) DC NA 0.01735 AT (564557.88, 4191553.00, 5TH HIGHEST VALUE IS 60.00, 0.00) DC 6TH HIGHEST VALUE IS 0.01568 AT (564603.69, 4191609.25, 62.00, 0.00) DC NA 0.01249 AT (564665.12, 4191621.25, 0.01083 AT (564500.00, 4191600.00, 0.00992 AT (564678.50, 4191403.75, 0.00965 AT (564617.12, 4191507.50, 7TH HIGHEST VALUE IS 65.00, 0.00) DC 8TH HIGHEST VALUE IS 59.00, 0.00) DC 9TH HIGHEST VALUE IS 0.00) DC 61.00, 10TH HIGHEST VALUE IS 0.00) DC 60.00, 158.00, 149.00, 1.10726 AT (566200.00, 4191300.00, 0.00) DC COMBUST 1ST HIGHEST VALUE IS 1.08010 AT (566100.00, 4191400.00, 1.07047 AT (566200.00, 4191400.00, 0.00) DC 2ND HIGHEST VALUE IS NA 3RD HIGHEST VALUE IS 174.00, 0.00) DC 1.02551 AT (566300.00, 4191300.00, 1.00997 AT (566100.00, 4191300.00, 4TH HIGHEST VALUE IS 176.00, 0.00) DC NA 5TH HIGHEST VALUE IS 140.00, 0.00) DC 0.98679 AT (566400.00, 4191200.00, 6TH HIGHEST VALUE IS 166.00, 0.00) DC 7TH HIGHEST VALUE IS 0.97992 AT (566400.00, 4191100.00, 174.00. 0.00) DC NA 8TH HIGHEST VALUE IS 0.97374 AT (566300.00, 4191400.00, 0.00) DC 204.00, 0.96922 AT (566200.00, 4191200.00, 0.96260 AT (566400.00, 4191000.00, 9TH HIGHEST VALUE IS 142.00, 0.00) DC NA 10TH HIGHEST VALUE IS 0.00) DC 162.00,

*** THE SUMMARY OF MAXIMUM PERIOD ($8760\ \mathrm{HRS})$ RESULTS ***

GROUP II) 		AVERAGE CONC	RE(CEPTOR (XR, YF	R, ZELEV, ZFLAC	G) OF TYPE	NETWORK GRID-ID
HAZMAT	1ST HIGHEST 2ND HIGHEST 3RD HIGHEST 4TH HIGHEST	VALUE IS	0.01909 AT (0.01777 AT (,	,	73.00, 74.00, 71.00, 65.00,	0.00) DC 0.00) DC 0.00) DC 0.00) DC	NA NA NA

6тн 7тн 8тн 9тн	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE	IS IS IS	0.01660 0.01642 0.01605 0.01599 0.01543 0.01492	AT (AT (AT (AT (565176.31, 565127.75, 564663.00, 565200.00,	,	76.00, 79.00, 77.00, 65.00, 80.00, 87.00,	0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	DC DC DC DC DC	NA NA NA NA NA
2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE VALUE VALUE VALUE	IS IS IS IS IS IS IS IS IS	0.02007 0.01952 0.01866 0.01791 0.01775 0.01735 0.01645 0.01633 0.01589 0.01539	AT (AT (AT (AT (AT (AT (AT (565026.56, 565241.19, 565100.00, 564976.62,	4191999.00, 4191381.00, 4191370.25, 4191279.00, 4192017.75, 4192000.00, 4191271.75, 4191991.50,	102.00, 96.00, 73.00,	0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	DC DC DC DC DC DC DC DC DC	NA N
3RD 4TH 5TH 6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE VALUE VALUE VALUE	IS IS IS IS IS IS IS IS IS	0.49092 0.47433 0.42810 0.42645 0.42381 0.41724 0.41630 0.41506 0.41443 0.41418	AT (AT (AT (AT (AT (AT (AT (AT (565475.12, 565289.25, 564700.00,	4192025.50, 4192000.00, 4192039.50, 4191975.00, 4191959.00, 4192034.25, 4192048.75,	83.00, 118.00, 107.00, 76.00, 117.00, 93.00, 84.00, 108.00, 117.00, 141.00,	0.00)	DC DC DC DC DC DC DC DC DC	NA

*** ISCST3 - VERSION 02035 ***

*** UC Berkeley - 12/2003; vjh - Girton Hall Daycare Center

*** Model Executed on 02/04/04 at 18:19:41 ***

Input File - D:\Beest\UCBerk\10-03\Final\Existing-Can-Girton.DTA

Output File - D:\Beest\UCBerk\10-03\Final\Existing-Can-Girton.LST

Met File - D:\Beest\UCBerk\10-03\lb1-97a.asc

Number of sources -126 Number of source groups -Number of receptors -

*** POINT SOURCE DATA ***

	NUMBER PART. CATS.		X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	TEMP.	STACK EXIT VEL. (M/SEC)	DIAMETER	BUILDING EMISSION RAEXISTS SCALAR VAN	
WHSTK1_8	0	0.44700E-04 0.60100E-03	564704.4	4191782.8	66.8	31.70	293.15	7.12	0.19	YES	
NWAF9	0	0.60100E-03	564718.8	4191791.2	66.8	29.57	293.15	16.48		YES	
WHSTK10	0	0.44700E-04	564724.4	4191826.0	66.8	8.60		7.12	0.34	YES	
MHSTK1	0	0.24000E-03	564794.4	4191795.8	74.8	7.61	293.15		0.34	YES	
MHSTK2	0	0.24000E-03	564798.6	4191843.0		10.89	293.15	17.25	0.29	YES	
MHSTK3		0.24000E-03				10.89	293.15		0.48	YES	
MHSTK4	0	0.24000E-03	564800.9	4191787.2		15.61	293.15		0.33	YES	
MHSTK6		0.24000E-03				10.94	293.15		0.34	YES	
KHSTK1	0	0.33000E-02	564761.1	4191879.8		18.45	293.15	1.28	2.76	YES	
KHSTK2	0	0.33000E-02	564759.4	4191891.8		18.45	293.15		2.76	YES	
KHSTK3		0.33000E-02				18.45	293.15		2.76	YES	
KHSTK4	0	0.33000E-02	564731.4	4191889.0		18.45	293.15		2.76	YES	
BHSTK1		0.45600E-03				27.85	293.15	2.78 2.78	1.26	YES	
BHSTK2	0	0.45600E-03	564675.0	4191896.8	67.4	29.68	293.15	2.78	1.26	YES	
BHSTK3	0	0.45600E-03	564704.5	4191898.0	67.4	29.68	293.15		1.26	YES	
BHSTK4	0	0.45600E-03	564707.4	4191887.8	67.4		293.15	2.78	0.37	YES	
BHSTK5	0	0.45600E-03	564691.6	4191888.0	67.4	33.34	293.15		0.37	YES	
VLSBSTK1	0	0.77100E-03	564933.6	4191633.2	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK2	0	0.77100E-03	564954.0	4191566.5	64.4	27.04	293.15	3.97 3.97	1.22	YES	
VLSBSTK3	0	0.77100E-03	565051.3	4191594.8	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK4	0	0.77100E-03	565030.6	4191662.2	64.4	27.04	293.15	3.97	1.22	YES	
LSASTK1	0	0.16600E-02	564892.2	4191637.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK2	0	0.16600E-02	564875.9	4191632.8	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK3	0	0.16600E-02	564907.6	4191580.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK4	0	0.16600E-02	564897.1	4191578.0	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK5	0	0.16600E-02	564908.6	4191576.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK6		0.16600E-02				28.31	293.15		1.22	YES	
LSASTK7		0.16600E-02				28.31	293.15	5.18	0.30	YES	
LEWHSTK1	0	0.63700E-03	565605.8	4191772.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK2	0	0.63700E-03	565591.5	4191786.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK3	0	0.63700E-03	565585.9	4191792.2	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK4	0	0.63700E-03	565583.1	4191800.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK5	0	0.63700E-03	565598.1	4191787.8	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK6	0	0.63700E-03	565619.4	4191775.8	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK7	0	0.63700E-03	565608.8	4191787.2	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK8	0	0.63700E-03	565597.6	4191800.5	106.7	12.80	293.15	3.11	0.30	YES	
LEWHSTK9	0	0.63700E-03	565593.3	4191808.2	106.7	12.80	293.15		0.36	YES	
LATHSTK1	0	0.27200E-02	565555.1	4191799.2	104.6	42.37	293.15	6.28 6.28	0.34	YES	
LATHSTK2	0	0.27200E-02 0.27200E-02 0.27200E-02	565561.1	4191812.0	104.6	36.88	293.15		0.70	YES	
LATHSTK3	0	0.27200E-02	565531.6	4191800.2	104.6	36.88	293.15	6.28	0.48	YES	

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
LATHSTK4	0	0.27200E-02	565515.1	4191799.5	104.6	37.19	293.15	6.28	0.96	YES	
LATHSTK5	0	0.27200E-02	565539.7	4191794.2	104.6	42.37	293.15	6.28	0.70	YES	
LATHSTK6	0	0.27200E-02	565527.3	4191776.0	104.6	38.40	293.15	6.28	0.74	YES	
LATHSTK7	0	0.27200E-02	565544.9	4191781.5	104.6	38.40	293.15	6.28	0.31	YES	
LATHSTK8	0	0.27200E-02	565562.3	4191787.0	104.6	38.40	293.15	6.28	0.70	YES	
TANHSTKA	0	0.23500E-02	565492.1	4191793.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKB	0	0.23500E-02	565496.8	4191794.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKC	0	0.23500E-02	565494.1	4191787.2	100.6	39.32	293.15	2.94	1.69	YES	

TANHSTKD	0	0.23500E-02	565499.1 4191788.2	100.6	39.32	293.15	2.94	1.69	YES
HHSTKA	0	0.26000E-02	565540.8 4191749.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKB	0	0.26000E-02	565565.6 4191756.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKC	0	0.26000E-02	565576.8 4191717.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKD	0	0.26000E-02	565553.2 4191710.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKE	0	0.26000E-02	565543.4 4191746.5	103.6	20.12	293.15	4.15	0.81	YES
STHSTK1	0	0.10700E-03	565530.3 4191891.8	112.8	13.87	293.15	2.17	0.27	YES
STHSTK2	0	0.10700E-03	565522.0 4191918.2	112.8	13.87	293.15	2.17	0.34	YES
STHSTK3	0	0.10700E-03	565537.9 4191871.0	112.8	17.56	293.15	2.17	0.34	YES
STHSTK4	0	0.10700E-03	565529.5 4191871.8	112.8	13.87	293.15	2.17	0.34	YES
STHSTK5	0	0.10700E-03	565530.9 4191870.0	112.8	14.02	293.15	2.17	0.34	YES
STHSTK6	0	0.10700E-03	565530.1 4191869.5	112.8	14.02	293.15	2.17	0.27	YES
STHSTK7	0	0.10700E-03	565532.6 4191866.5	112.8	14.02	293.15	2.17	0.39	YES
STHSTK8	0	0.10700E-03	565538.2 4191864.0	112.8	14.02	293.15	2.17	0.27	YES
STHSTK9	0	0.10700E-03	565525.9 4191880.5	112.8	14.02	293.15	2.17	0.53	YES
STHSTK11	0	0.10700E-03	565519.0 4191907.5	112.8	13.87	293.15	2.17	0.34	YES
GHSTK1	0	0.36700E-03	565507.1 4191756.0	103.6	16.06	293.15	5.92	0.30	YES
GHSTK2	0	0.36700E-03	565510.6 4191744.8	103.6	16.06	293.15	5.92	0.25	YES
GHSTK3	0	0.36700E-03	565512.4 4191739.0	103.6	16.37	293.15	5.92	0.30	YES
GHSTK4	0	0.36700E-03	565514.7 4191737.8	103.6	15.91	293.15	5.92	0.31	YES
GHSTK5	0	0.36700E-03	565514.9 4191732.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK6	0	0.36700E-03	565500.2 4191755.2	103.6	16.12	293.15	5.92	0.30	YES
GHSTK7	0	0.36700E-03	565501.1 4191753.0	103.6	16.37	293.15	5.92	0.84	YES
GHSTK8	0	0.36700E-03	565503.7 4191744.2	103.6	16.00	293.15	5.92	0.30	YES
GHSTK9	0	0.36700E-03	565505.2 4191740.2	103.6	16.37	293.15	5.92	0.26	YES
GHSTK10	0	0.36700E-03	565506.9 4191735.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK11	0	0.36700E-03	565509.7 4191728.2	103.6	16.22	293.15	5.92	0.30	YES
GHSTK12	0	0.36700E-03	565509.0 4191725.5	103.6	16.06	293.15	5.92	0.30	YES
GHSTK13	0	0.36700E-03	565516.9 4191725.8	103.6	15.91	293.15	5.92	0.40	YES
CHSTK1	0	0.86900E-04	565393.9 4192008.8	110.3	26.85	293.15	2.00	1.00	YES
DHSTK1	0	0.95300E-04	565329.4 4191982.0	107.2	16.36	293.15	2.00	1.00	YES
HESSTK1	0	0.73300E-03	565234.6 4191926.2	98.2	15.39	293.15	2.00	1.00	YES

	NUMBER	EMISSION RATE	F.		BASE	STACK	STACK	STACK	STACK	BUILDING	EMISSION RATE SCALAR VARY BY
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	TEMP.	EXIT VEL.	DIAMETER	EXISTS	SCALAR VARY
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(DEG.K)	(M/SEC)	(METERS)		BY
HILSTK1	0	0.72100E-03	564874.6	4191815.0	80.4	14.96	293.15			YES	
MULSTKI	0	0.53300E-05 0.13600E-04 0.86300E-04 0.86300E-04	564//9./	4191/3/.8	/4.4	17.24	293.15	2.00		YES	
WELSTK1	0	0.13600E-04	564933.7	4191795.2	81.7	5.89	293.15	2.00 2.70	1.00	YES	
PRINTA	0	0.86300E-04	564584.7	4191553.2	60.0	8.91	293.15			YES	
PRINTB	0	0.86300E-04	564614.4	4191520.8	60.0	8.91	293.15		0.84	YES	
PRINTC	0	0.86300E-04 0.97700E+00	564643.1	4191525.5	60.0	8.91		2.70	0.60	YES	
COGEN	0	0.97700E+00	564876.0	4191492.0	71.9	12.77	430.37	10.45	2.28	YES	
BOILER#2	0	0.12280E-01	564863.6	4191499.5	71.9	8.80 8.80 8.80	522.82	7.97	1.52	YES	
BOILER#3	0	0.47000E-01	564881.9	4191505.8	71.9	8.80	554.11	10.53	1.52	YES	
BOILER#4	0	0.56800E-01	564885.8	4191495.8	71.9	8.80	566.65	12.63	1.52	YES	
POURING	0	0.12800E-02	564847.8	4191467.0	70.1	14.94	293.15	4.62	0.56	YES	
ENG_62	0	0.47241E-02	565567.6	4191086.5	85.1	4.57	800.37	146.01	0.13	NO	
ENG_63	0	0.23600E-02	564668.2	4191897.5	70.2	4.57	799.85	152.00	0.13	YES	
ENG_64	0	0.72300E-03	565452.9	4191687.0	98.2	3.05	817.07	58.47	0.08	YES	
ENG_105	0	0.74200E-01	564939.1	4191457.8	71.1	4.57	810.96	70.10	0.23	YES	
ENG_106	0	0.62205E-01	564991.6	4191614.5	73.6	30.48	810.96	70.10	0.20	YES	
ENG_107	0	0.49776E-01	564767.4	4191906.8	76.2	0.00	810.96	70.10	0.18	YES	
ENG 108	0	0.49776E-01	564930.6	4191564.2	68.8	7.62	810.96	70.10	0.18	YES	
ENG 109	0	0.16596E-01	565615.8	4191801.2	111.7	3.05	810.96	70.10	0.15	YES	
ENG 110	0	0.82858E-02	564655.9	4191874.5	68.4	4.57	810.96	70.10	0.10	YES	
ENG 111	0	0.23810E-01	565091.1	4191757.8	78.9	3.05	810.96	70.10	0.11	YES	
ENG 112	0	0.20714E-01	565542.8	4191208.2	85.7	3.05	810.93	70.10	0.10	NO	
ENG 113	0	0.20714E-01	565673.6	4191194.8	92.0	3.05	810.93	70.10	0.10	NO	
ENG 114	0	0.20714E-01	565601.4	4191014.2	86.0	3.05	810.93	70.10	0.10	NO	
ENG 115	0	0.20714E-01	565702.9	4190991.8	91.4	3.05	810.93	70.10	0.10	NO	
ENG 116	0	0.20714E-01	564775.8	4191177.5	63.2	4.57	810.93	70.10	0.10	NO	
ENG 117	0	0.20714E-01	565575.9	4191609.0	99.3	3.05	810.96	70.10	0.10	YES	
ENG 118	0	0.98935E-02	564654.8	4191890.5	68.6	4.57	810.96	70.10	0.13	YES	
ENG 119	0	0.14531E-01	564728.8	4191771.0	70.5	4.57	810.96	70.10	0.08	YES	
ENG 120	0	0.10450E-01	565318.0	4191422.5	86.1	3.05	810.96	70.10	0.08	YES	
ENG 121	0	0.10388E-01	565926.2	4191443.0	118.9	3.05	810.93	70.10	0.08	NO	
ENG 123	0	0.12800E-01	565259.4	4191652.8	88.3	3.05	810.96	70.10	0.08	YES	
ENG 125	0	0.41058E-02	564811.2	4191460.8	67.7	3.05	810.96	70.10	0.08	YES	
ENG 126	0	0.33143E-02	565137.9	4191441.5	77.6	0.00	810.96	70.10	0.08	YES	
ENG 128	0	0.41429E-02	565469.2	4191955.2	109.8	3.05	810.96	70.10	0.05	YES	
ENG 129	0	0.41429E-02	565383.1	4191740.2	97.0	2.44	810.96	70.10	0.05	YES	
ENG 130	0	0.25692E-02	565533.3	4191713.5	98.9	2.44	815.40	134.54	0.08	YES	
ENG 131	0	0.72350E-03	564970.3	4191484.2	71.3	1.83	817.07	58.47	0.08	YES	
ENG 132	0	0.97700E+00 0.12280E-01 0.47000E-01 0.56800E-01 0.12800E-02 0.47241E-02 0.23600E-03 0.74200E-01 0.62205E-01 0.49776E-01 0.49776E-01 0.49776E-01 0.20714E-01 0.207	564800.3	4191781.8	74.3	1.83	817.07	58.47	0.08	YES	
	-	00									

*** VOLUME SOURCE DATA ***

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	E X (METERS) 	Y (METERS)	BASE ELEV. (METERS)	RELEASE HEIGHT (METERS)	INIT. SY (METERS)	INIT. SZ (METERS)	EMISSION RATE SCALAR VARY BY	
MHSTK5	0	0.24000E-03	564821.2	4191842.8	74.8	6.95	0.07	2.42		
STHSTK10	0	0.10700E-03	565522.6	4191880.8	112.8	14.02	0.29	5.39		
PAINT1	0	0.26600E-03	564917.1	4191432.5	72.0	4.57	3.54	4.25		
PAINT2	0	0.26600E-03	565322.7	4191834.8	96.0	4.57	3.54	4.25		
PAINT3	0	0.26600E-03	565541.5	4191525.8	97.0	4.57	3.54	4.25		
PAINT4	0	0.26600E-03	564865.7	4191751.0	77.0	4.57	3.54	4.25		

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDs

ALL,	WHSTK1_8,	NWAF9 ,	WHSTK10 ,	MHSTK1 ,	MHSTK2 ,	MHSTK3 ,	MHSTK4 ,	MHSTK5 ,	MHSTK6 ,	KHSTK1 ,	KHSTK2 , KHSTK3
LSASTK2 ,	KHSTK4 ,	BHSTK1 ,	BHSTK2 ,	BHSTK3 ,	BHSTK4 ,	BHSTK5 ,	VLSBSTK1,	VLSBSTK2,	VLSBSTK3,	VLSBSTK4,	LSASTK1 ,
LEWHSTK7,	LSASTK3 ,	LSASTK4 ,	LSASTK5 ,	LSASTK6 ,	LSASTK7 ,	LEWHSTK1,	LEWHSTK2,	LEWHSTK3,	LEWHSTK4,	LEWHSTK5,	LEWHSTK6,
TANHSTKB,	LEWHSTK8,	LEWHSTK9,	LATHSTK1,	LATHSTK2,	LATHSTK3,	LATHSTK4,	LATHSTK5,	LATHSTK6,	LATHSTK7,	LATHSTK8,	TANHSTKA,
STHSTK5 ,	TANHSTKC,	TANHSTKD,	HHSTKA ,	HHSTKB ,	HHSTKC ,	HHSTKD ,	HHSTKE ,	STHSTK1 ,	STHSTK2 ,	STHSTK3 ,	STHSTK4 ,
,	STHSTK6 ,	STHSTK7 ,	STHSTK8 ,	STHSTK9 ,	STHSTK11,	STHSTK10,	GHSTK1 ,	GHSTK2 ,	GHSTK3 ,	GHSTK4 ,	GHSTK5 , GHSTK6
MULSTK1 ,	GHSTK7 ,	GHSTK8 ,	GHSTK9 ,	GHSTK10 ,	GHSTK11 ,	GHSTK12 ,	GHSTK13 ,	CHSTK1 ,	DHSTK1 ,	HESSTK1 ,	HILSTK1 ,
,	WELSTK1 ,	PRINTA ,	PRINTB ,	PRINTC ,	COGEN ,	BOILER#2,	BOILER#3,	BOILER#4,	POURING ,	PAINT1 ,	PAINT2 , PAINT3
ENG_112 ,	PAINT4 ,	ENG_62 ,	ENG_63 ,	ENG_64 ,	ENG_105 ,	ENG_106 ,	ENG_107 ,	ENG_108 ,	ENG_109 ,	ENG_110 ,	ENG_111 ,
ENG_126 ,	ENG_113 ,	ENG_114 ,	ENG_115 ,	ENG_116 ,	ENG_117 ,	ENG_118 ,	ENG_119 ,	ENG_120 ,	ENG_121 ,	ENG_123 ,	ENG_125 ,
	ENG_128 ,	ENG_129 ,	ENG_130 ,	ENG_131 ,	ENG_132 ,	E134_133,					
GEN ENG_113 ,	ENG_62 ,	ENG_63 ,	ENG_64 ,	ENG_105 ,	ENG_106 ,	ENG_107 ,	ENG_108 ,	ENG_109 ,	ENG_110 ,	ENG_111 ,	ENG_112 ,
ENG_128 ,	ENG_114 ,	ENG_115 ,	ENG_116 ,	ENG_117 ,	ENG_118 ,	ENG_119 ,	ENG_120 ,	ENG_121 ,	ENG_123 ,	ENG_125 ,	ENG_126 ,
	ENG_129 ,	ENG_130 ,	ENG_131 ,	ENG_132 ,	E134_133,						
LABS	WHSTK1_8,	NWAF9 ,	WHSTK10 ,	MHSTK1 ,	MHSTK2 ,	MHSTK3 ,	MHSTK4 ,	MHSTK5 ,	MHSTK6 ,	KHSTK1 ,	KHSTK2 , KHSTK3
LSASTK2 ,	KHSTK4 ,	BHSTK1 ,	BHSTK2 ,	BHSTK3 ,	BHSTK4 ,	BHSTK5 ,	VLSBSTK1,	VLSBSTK2,	VLSBSTK3,	VLSBSTK4,	LSASTK1 ,
LEWHSTK7,	LSASTK3 ,	LSASTK4 ,	LSASTK5 ,	LSASTK6 ,	LSASTK7 ,	LEWHSTK1,	LEWHSTK2,	LEWHSTK3,	LEWHSTK4,	LEWHSTK5,	LEWHSTK6,
TANHSTKB,	LEWHSTK8,	LEWHSTK9,	LATHSTK1,	LATHSTK2,	LATHSTK3,	LATHSTK4,	LATHSTK5,	LATHSTK6,	LATHSTK7,	LATHSTK8,	TANHSTKA,
	TANHSTKC,	TANHSTKD,	HHSTKA ,	HHSTKB ,	HHSTKC ,	HHSTKD ,	HHSTKE ,	STHSTK1 ,	STHSTK2 ,	STHSTK3 ,	STHSTK4 ,

STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10, GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDs

GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , DHSTK1 , HESSTK1 , HILSTK1 ,

MULSTK1 ,

WELSTK1 ,

COMBUST COGEN , BOILER#2, BOILER#3, BOILER#4,

OTHER PRINTA , PRINTB , PRINTC , POURING , PAINT1 , PAINT2 , PAINT3 , PAINT4 ,

BOILERS BOILER#2, BOILER#3, BOILER#4,

COGEN COGEN ,

*** THE SUMMARY OF MAXIMUM PERIOD ($8760~\mathrm{HRS})$ RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP I	D	AVERAGE CONC	REC	CEPTOR (XR, YR,	ZELEV, ZFLA	G) OF TY	NETWORK PE GRID-ID
ALL		IS 4.23623 AT (0.00) D	C NA
	2ND HIGHEST VALUE					0.00)	
	3RD HIGHEST VALUE					0.00)	
	4TH HIGHEST VALUE					0.00)	
	5TH HIGHEST VALUE	,				0.00)	
	6TH HIGHEST VALUE			0.00,		0.00)	
	7TH HIGHEST VALUE					0.00)	
	8TH HIGHEST VALUE		0.00,	0.00,	0.00,	0.00)	
	9TH HIGHEST VALUE	IS 0.00000 AT (0.00,	0.00,	0.00,	0.00)	
	10TH HIGHEST VALUE	O.00000 AT (0.00,	0.00,	0.00,	0.00)	
GEN	1ST HIGHEST VALUE	IS 2.79101 AT (565700.06,	4191711.25,	109.42,	0.00) D	C NA
	2ND HIGHEST VALUE	IS 0.00000 AT (0.00,	0.00,	0.00,	0.00)	
	3RD HIGHEST VALUE		0.00,	0.00,	0.00,	0.00)	
	4TH HIGHEST VALUE	0.00000 111 (0.00,	0.00,	0.00,	0.00)	
	5TH HIGHEST VALUE	,		0.00,	0.00,	0.00)	
	6TH HIGHEST VALUE	IS 0.00000 AT (0.00,	0.00,	0.00,	0.00)	
	7TH HIGHEST VALUE	,	,	0.00,		0.00)	
	8TH HIGHEST VALUE		,	0.00,		0.00)	
	9TH HIGHEST VALUE	,	0.00,	0.00,	0.00,	0.00)	
	10TH HIGHEST VALUE	IS 0.00000 AT (0.00,	0.00,	0.00,	0.00)	
LABS	1ST HIGHEST VALUE					0.00) D	C NA
	2ND HIGHEST VALUE			0.00,		0.00)	
	3RD HIGHEST VALUE	,		0.00,		0.00)	
	4TH HIGHEST VALUE	,		0.00,		0.00)	
	5TH HIGHEST VALUE	IS 0.00000 AT (0.00,	0.00,	0.00,	0.00)	
	6TH HIGHEST VALUE	IS 0.00000 AT (0.00,	0.00, 0.00, 0.00,	0.00,	0.00)	
	7TH HIGHEST VALUE	IS 0.00000 AT (0.00,	0.00,	0.00,	0.00)	
	8TH HIGHEST VALUE	IS 0.00000 AT (0.00,	0.00,	0.00,	0.00)	
	9TH HIGHEST VALUE	15 U.UUUUU AT (0.00,	0.00,	0.00,	0.00)	
	10TH HIGHEST VALUE	O.00000 AT (0.00,	0.00,	0.00,	0.00)	

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP ID AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID

COMBUST	2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE	IS IS IS IS IS	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	AT AT AT AT AT AT AT	((((((((((((((((((((0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	4191711.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	DC	NA
OTHER	2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE VALUE VALUE VALUE	IS IS IS IS IS IS IS	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	AT AT AT AT AT AT AT	((((((((((((((((((((0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	4191711.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	DC	NA
BOILERS	2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE VALUE VALUE VALUE	IS	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	AT AT AT AT AT AT AT	((((((((((((((((((((0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	4191711.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	DC	NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

GROUP II	D 		AVERAGE CONC	REC	EPTOR (XR, YR,	ZELEV, ZFL	AG) OF TYPE	NETWORK GRID-ID
COGEN	1ST HIGHEST	VALUE IS	0.33033 AT (565700.06,	4191711.25,	109.42,	0.00) DC	NA
	2ND HIGHEST	VALUE IS	0.00000 AT (0.00,	0.00,	0.00,	0.00)	
	3RD HIGHEST	VALUE IS	0.00000 AT (0.00,	0.00,	0.00,	0.00)	
	4TH HIGHEST	VALUE IS	0.00000 AT (0.00,	0.00,	0.00,	0.00)	
	5TH HIGHEST	VALUE IS	0.00000 AT (0.00,	0.00,	0.00,	0.00)	
	6TH HIGHEST	VALUE IS	0.00000 AT (0.00,	0.00,	0.00,	0.00)	
	7TH HIGHEST	VALUE IS	0.00000 AT (0.00,	0.00,	0.00,	0.00)	
	8TH HIGHEST	VALUE IS	0.00000 AT (0.00,	0.00,	0.00,	0.00)	
	9TH HIGHEST	VALUE IS	0.00000 AT (0.00,	0.00,	0.00,	0.00)	
	10TH HIGHEST	VALUE IS	0.00000 AT (0.00,	0.00,	0.00,	0.00)	

*** ISCST3 - VERSION 02035 ***

*** UC Berkeley - 12/2003; vjh

*** Model Executed on 02/05/04 at 13:28:54 ***

Input File - D:\Beest\UCBerk\10-03\Final\Existing-Can-MEI.DTA

Output File - D:\Beest\UCBerk\10-03\Final\Existing-Can-MEI.LST

Met File - D:\Beest\UCBerk\10-03\lb1-97a.asc

Number of sources - 126
Number of source groups - 6
Number of receptors - 1

*** POINT SOURCE DATA ***

WHSTK1_8 NWAF9 WHSTK10 MHSTK1 MHSTK2 MHSTK3 MHSTK4 MHSTK6 KHSTK1 KHSTK2 KHSTK3 KHSTK4 BHSTK4 BHSTK1 BHSTK4 BHSTK4 BHSTK4 BHSTK4 BHSTK4 BHSTK4	CATS.		X (METERS)	Y (METERS)			TEMP.	EXIT VEL.	STACK DIAMETER (METERS)		EMISSION RATE SCALAR VARY BY
NWAF9 WHSTK10 MHSTK1 MHSTK2 MHSTK4 MHSTK4 MHSTK6 KHSTK1 KHSTK2 KHSTK1 KHSTK2 KHSTTK1 BHSTK4 BHSTK1 BHSTK4 BHSTK4 BHSTK5								=			
WHSTK10 MHSTK1 MHSTK2 MHSTK3 MHSTK4 MHSTK6 KHSTK1 KHSTK2 KHSTK3 KHSTK4 BHSTK1 BHSTK2 BHSTK3 BHSTK3 BHSTK3		0.44700E-04								YES	
MHSTK1 MHSTK2 MHSTK3 MHSTK4 MHSTK6 KHSTK1 KHSTK2 KHSTK3 KHSTK4 BHSTK1 BHSTK2 BHSTK3 BHSTK3 BHSTK4 BHSTK3	0	0.60100E-03	564718.8	4191791.2	66.8	29.57	293.15	16.48		YES	
MHSTK2 MHSTK3 MHSTK4 MHSTK6 KHSTK1 KHSTK2 KHSTK3 KHSTK4 BHSTK1 BHSTK2 BHSTK3 BHSTK3 BHSTK4	0	0.44700E-04 0.24000E-03	564724.4	4191826.0	66.8	8.60	293.15	7.12	0.34	YES	
MHSTK3 MHSTK4 MHSTK6 KHSTK1 KHSTK2 KHSTK3 KHSTK4 BHSTK1 BHSTK2 BHSTK2 BHSTK4 BHSTK3	0	0.24000E-03	564794.4	4191795.8	74.8	7.61			0.34	YES	
MHSTK4 MHSTK6 KHSTK1 KHSTK2 KHSTK3 KHSTK4 BHSTK1 BHSTK2 BHSTK2 BHSTK3 BHSTK4 BHSTK5		0.24000E-03					293.15		0.29	YES	
MHSTK6 KHSTK1 KHSTK2 KHSTK3 KHSTK4 BHSTK1 BHSTK2 BHSTK3 BHSTK4 BHSTK4		0.24000E-03							0.48	YES	
KHSTK1 KHSTK2 KHSTK3 KHSTK4 BHSTK1 BHSTK2 BHSTK3 BHSTK4 BHSTK4		0.24000E-03							0.33	YES	
KHSTK2 KHSTK3 KHSTK4 BHSTK1 BHSTK2 BHSTK3 BHSTK4 BHSTK5		0.24000E-03				10.94	293.15		0.34	YES	
KHSTK3 KHSTK4 BHSTK1 BHSTK2 BHSTK3 BHSTK4 BHSTK5		0.33000E-02						1.28	2.76	YES	
KHSTK4 BHSTK1 BHSTK2 BHSTK3 BHSTK4 BHSTK5		0.33000E-02				18.45	293.15		2.76	YES	
BHSTK1 BHSTK2 BHSTK3 BHSTK4 BHSTK5	0	0.33000E-02	564732.4	4191877.5		18.45	293.15		2.76	YES	
BHSTK2 BHSTK3 BHSTK4 BHSTK5		0.33000E-02				18.45	293.15		2.76	YES	
BHSTK3 BHSTK4 BHSTK5		0.45600E-03				27.85	293.15		1.26	YES	
BHSTK4 BHSTK5	0	0.45600E-03	564675.0	4191896.8	67.4	29.68	293.15		1.26	YES	
BHSTK5	0	0.45600E-03	564704.5	4191898.0			293.15	2.78	1.26	YES	
	0	0.45600E-03	564707.4	4191887.8	67.4	33.34	293.15	2.78	0.37	YES	
VLSBSTK1	0	0.45600E-03	564691.6	4191888.0	67.4	33.34	293.15	2.78	0.37	YES	
	0	0.77100E-03	564933.6	4191633.2	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK2	0	0.77100E-03	564954.0	4191566.5	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK3	0	0.77100E-03	565051.3	4191594.8	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK4	0	0.77100E-03	565030.6	4191662.2	64.4	27.04	293.15	3.97	1.22	YES	
LSASTK1	0	0.16600E-02	564892.2	4191637.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK2		0.16600E-02							1.22	YES	
LSASTK3	0	0.16600E-02	564907.6	4191580.5				5.18	1.22	YES	
LSASTK4		0.16600E-02							1.22	YES	
LSASTK5		0.16600E-02					293.15		1.22	YES	
LSASTK6		0.16600E-02					293.15		1.22	YES	
LSASTK7		0.16600E-02				28.31	293.15		0.30	YES	
LEWHSTK1		0.63700E-03				12.80	293.15		0.36	YES	
LEWHSTK2		0.63700E-03				12.80			0.36	YES	
LEWHSTK3	0	0.63700E-03				12.80	293.15		0.36	YES	
LEWHSTK4	0	0.63700E-03				12.80	293.15		0.36	YES	
LEWHSTK5		0.63700E-03				12.80	293.15		0.36	YES	
LEWHSTK6		0.63700E-03				12.80	293.15			YES	
LEWHSTK7	0	0.63700E-03				12.80	293.15	3.11	0.36 0.36	YES	
LEWHSTK8	-	0.63700E-03				12.80	293.15			YES	
LEWHSTK9		0.63700E-03				12.80	293.15			YES	
LATHSTK1		0.83700E-03 0.27200E-02				42.37				YES	
		0.27200E-02 0.27200E-02									
LATHSTK2		0.27200E-02 0.27200E-02								YES	
LATHSTK3	U	0.2/200E-02	0.166606	4191800.2	104.6	36.88	∠93.15	6.28	0.48	YES	

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
LATHSTK4	0	0.27200E-02	565515.1	4191799.5	104.6	37.19	293.15	6.28	0.96	YES	
LATHSTK5	0	0.27200E-02	565539.7	4191794.2	104.6	42.37	293.15	6.28	0.70	YES	
LATHSTK6	0	0.27200E-02	565527.3	4191776.0	104.6	38.40	293.15	6.28	0.74	YES	
LATHSTK7	0	0.27200E-02	565544.9	4191781.5	104.6	38.40	293.15	6.28	0.31	YES	
LATHSTK8	0	0.27200E-02	565562.3	4191787.0	104.6	38.40	293.15	6.28	0.70	YES	
TANHSTKA	0	0.23500E-02	565492.1	4191793.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKB	0	0.23500E-02	565496.8	4191794.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKC	0	0.23500E-02	565494.1	4191787.2	100.6	39.32	293.15	2.94	1.69	YES	

TANHSTKD	0	0.23500E-02	565499.1 4191788.2	100.6	39.32	293.15	2.94	1.69	YES
HHSTKA	0	0.26000E-02	565540.8 4191749.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKB	0	0.26000E-02	565565.6 4191756.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKC	0	0.26000E-02	565576.8 4191717.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKD	0	0.26000E-02	565553.2 4191710.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKE	0	0.26000E-02	565543.4 4191746.5	103.6	20.12	293.15	4.15	0.81	YES
STHSTK1	0	0.10700E-03	565530.3 4191891.8	112.8	13.87	293.15	2.17	0.27	YES
STHSTK2	0	0.10700E-03	565522.0 4191918.2	112.8	13.87	293.15	2.17	0.34	YES
STHSTK3	0	0.10700E-03	565537.9 4191871.0	112.8	17.56	293.15	2.17	0.34	YES
STHSTK4	0	0.10700E-03	565529.5 4191871.8	112.8	13.87	293.15	2.17	0.34	YES
STHSTK5	0	0.10700E-03	565530.9 4191870.0	112.8	14.02	293.15	2.17	0.34	YES
STHSTK6	0	0.10700E-03	565530.1 4191869.5	112.8	14.02	293.15	2.17	0.27	YES
STHSTK7	0	0.10700E-03	565532.6 4191866.5	112.8	14.02	293.15	2.17	0.39	YES
STHSTK8	0	0.10700E-03	565538.2 4191864.0	112.8	14.02	293.15	2.17	0.27	YES
STHSTK9	0	0.10700E-03	565525.9 4191880.5	112.8	14.02	293.15	2.17	0.53	YES
STHSTK11	0	0.10700E-03	565519.0 4191907.5	112.8	13.87	293.15	2.17	0.34	YES
GHSTK1	0	0.36700E-03	565507.1 4191756.0	103.6	16.06	293.15	5.92	0.30	YES
GHSTK2	0	0.36700E-03	565510.6 4191744.8	103.6	16.06	293.15	5.92	0.25	YES
GHSTK3	0	0.36700E-03	565512.4 4191739.0	103.6	16.37	293.15	5.92	0.30	YES
GHSTK4	0	0.36700E-03	565514.7 4191737.8	103.6	15.91	293.15	5.92	0.31	YES
GHSTK5	0	0.36700E-03	565514.9 4191732.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK6	0	0.36700E-03	565500.2 4191755.2	103.6	16.12	293.15	5.92	0.30	YES
GHSTK7	0	0.36700E-03	565501.1 4191753.0	103.6	16.37	293.15	5.92	0.84	YES
GHSTK8	0	0.36700E-03	565503.7 4191744.2	103.6	16.00	293.15	5.92	0.30	YES
GHSTK9	0	0.36700E-03	565505.2 4191740.2	103.6	16.37	293.15	5.92	0.26	YES
GHSTK10	0	0.36700E-03	565506.9 4191735.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK11	0	0.36700E-03	565509.7 4191728.2	103.6	16.22	293.15	5.92	0.30	YES
GHSTK12	0	0.36700E-03	565509.0 4191725.5	103.6	16.06	293.15	5.92	0.30	YES
GHSTK13	0	0.36700E-03	565516.9 4191725.8	103.6	15.91	293.15	5.92	0.40	YES
CHSTK1	0	0.86900E-04	565393.9 4192008.8	110.3	26.85	293.15	2.00	1.00	YES
DHSTK1	0	0.95300E-04	565329.4 4191982.0	107.2	16.36	293.15	2.00	1.00	YES
HESSTK1	0	0.73300E-03	565234.6 4191926.2	98.2	15.39	293.15	2.00	1.00	YES

	NUMBER	EMISSION RATE	F.		BASE	STACK	STACK	STACK	STACK	BUILDING	EMISSION RATE SCALAR VARY BY
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	TEMP.	EXIT VEL.	DIAMETER	EXISTS	SCALAR VARY
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(DEG.K)	(M/SEC)	(METERS)		BY
HILSTK1	0	0.72100E-03	564874.6	4191815.0	80.4	14.96	293.15			YES	
MULSTKI	0	0.53300E-05 0.13600E-04 0.86300E-04 0.86300E-04	564//9./	4191/3/.8	/4.4	17.24	293.15	2.00		YES	
WELSTK1	0	0.13600E-04	564933.7	4191795.2	81.7	5.89	293.15	2.00 2.70	1.00	YES	
PRINTA	0	0.86300E-04	564584.7	4191553.2	60.0	8.91	293.15			YES	
PRINTB	0	0.86300E-04	564614.4	4191520.8	60.0	8.91	293.15		0.84	YES	
PRINTC	0	0.86300E-04 0.97700E+00	564643.1	4191525.5	60.0	8.91		2.70	0.60	YES	
COGEN	0	0.97700E+00	564876.0	4191492.0	71.9	12.77	430.37	10.45	2.28	YES	
BOILER#2	0	0.12280E-01	564863.6	4191499.5	71.9	8.80 8.80 8.80	522.82	7.97	1.52	YES	
BOILER#3	0	0.47000E-01	564881.9	4191505.8	71.9	8.80	554.11	10.53	1.52	YES	
BOILER#4	0	0.56800E-01	564885.8	4191495.8	71.9	8.80	566.65	12.63	1.52	YES	
POURING	0	0.12800E-02	564847.8	4191467.0	70.1	14.94	293.15	4.62	0.56	YES	
ENG_62	0	0.47241E-02	565567.6	4191086.5	85.1	4.57	800.37	146.01	0.13	NO	
ENG_63	0	0.23600E-02	564668.2	4191897.5	70.2	4.57	799.85	152.00	0.13	YES	
ENG_64	0	0.72300E-03	565452.9	4191687.0	98.2	3.05	817.07	58.47	0.08	YES	
ENG_105	0	0.74200E-01	564939.1	4191457.8	71.1	4.57	810.96	70.10	0.23	YES	
ENG_106	0	0.62205E-01	564991.6	4191614.5	73.6	30.48	810.96	70.10	0.20	YES	
ENG_107	0	0.49776E-01	564767.4	4191906.8	76.2	0.00	810.96	70.10	0.18	YES	
ENG 108	0	0.49776E-01	564930.6	4191564.2	68.8	7.62	810.96	70.10	0.18	YES	
ENG 109	0	0.16596E-01	565615.8	4191801.2	111.7	3.05	810.96	70.10	0.15	YES	
ENG 110	0	0.82858E-02	564655.9	4191874.5	68.4	4.57	810.96	70.10	0.10	YES	
ENG 111	0	0.23810E-01	565091.1	4191757.8	78.9	3.05	810.96	70.10	0.11	YES	
ENG 112	0	0.20714E-01	565542.8	4191208.2	85.7	3.05	810.93	70.10	0.10	NO	
ENG 113	0	0.20714E-01	565673.6	4191194.8	92.0	3.05	810.93	70.10	0.10	NO	
ENG 114	0	0.20714E-01	565601.4	4191014.2	86.0	3.05	810.93	70.10	0.10	NO	
ENG 115	0	0.20714E-01	565702.9	4190991.8	91.4	3.05	810.93	70.10	0.10	NO	
ENG 116	0	0.20714E-01	564775.8	4191177.5	63.2	4.57	810.93	70.10	0.10	NO	
ENG 117	0	0.20714E-01	565575.9	4191609.0	99.3	3.05	810.96	70.10	0.10	YES	
ENG 118	0	0.98935E-02	564654.8	4191890.5	68.6	4.57	810.96	70.10	0.13	YES	
ENG 119	0	0.14531E-01	564728.8	4191771.0	70.5	4.57	810.96	70.10	0.08	YES	
ENG 120	0	0.10450E-01	565318.0	4191422.5	86.1	3.05	810.96	70.10	0.08	YES	
ENG 121	0	0.10388E-01	565926.2	4191443.0	118.9	3.05	810.93	70.10	0.08	NO	
ENG 123	0	0.12800E-01	565259.4	4191652.8	88.3	3.05	810.96	70.10	0.08	YES	
ENG 125	0	0.41058E-02	564811.2	4191460.8	67.7	3.05	810.96	70.10	0.08	YES	
ENG 126	0	0.33143E-02	565137.9	4191441.5	77.6	0.00	810.96	70.10	0.08	YES	
ENG 128	0	0.41429E-02	565469.2	4191955.2	109.8	3.05	810.96	70.10	0.05	YES	
ENG 129	0	0.41429E-02	565383.1	4191740.2	97.0	2.44	810.96	70.10	0.05	YES	
ENG 130	0	0.25692E-02	565533.3	4191713.5	98.9	2.44	815.40	134.54	0.08	YES	
ENG 131	0	0.72350E-03	564970.3	4191484.2	71.3	1.83	817.07	58.47	0.08	YES	
ENG 132	0	0.97700E+00 0.12280E-01 0.47000E-01 0.56800E-01 0.12800E-02 0.47241E-02 0.23600E-03 0.74200E-01 0.62205E-01 0.49776E-01 0.49776E-01 0.49776E-01 0.20714E-01 0.207	564800.3	4191781.8	74.3	1.83	817.07	58.47	0.08	YES	
	-	00									

*** VOLUME SOURCE DATA ***

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	E X (METERS) 	Y (METERS)	BASE ELEV. (METERS)	RELEASE HEIGHT (METERS)	INIT. SY (METERS)	INIT. SZ (METERS)	EMISSION RATE SCALAR VARY BY	
MHSTK5	0	0.24000E-03	564821.2	4191842.8	74.8	6.95	0.07	2.42		
STHSTK10	0	0.10700E-03	565522.6	4191880.8	112.8	14.02	0.29	5.39		
PAINT1	0	0.26600E-03	564917.1	4191432.5	72.0	4.57	3.54	4.25		
PAINT2	0	0.26600E-03	565322.7	4191834.8	96.0	4.57	3.54	4.25		
PAINT3	0	0.26600E-03	565541.5	4191525.8	97.0	4.57	3.54	4.25		
PAINT4	0	0.26600E-03	564865.7	4191751.0	77.0	4.57	3.54	4.25		

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDs

ALL,	WHSTK1_8,	NWAF9 ,	WHSTK10 ,	MHSTK1 ,	MHSTK2 ,	MHSTK3 ,	MHSTK4 ,	MHSTK5 ,	MHSTK6 ,	KHSTK1 ,	KHSTK2 , KHSTK3
LSASTK2 ,	KHSTK4 ,	BHSTK1 ,	BHSTK2 ,	BHSTK3 ,	BHSTK4 ,	BHSTK5 ,	VLSBSTK1,	VLSBSTK2,	VLSBSTK3,	VLSBSTK4,	LSASTK1 ,
LEWHSTK7,	LSASTK3 ,	LSASTK4 ,	LSASTK5 ,	LSASTK6 ,	LSASTK7 ,	LEWHSTK1,	LEWHSTK2,	LEWHSTK3,	LEWHSTK4,	LEWHSTK5,	LEWHSTK6,
TANHSTKB,	LEWHSTK8,	LEWHSTK9,	LATHSTK1,	LATHSTK2,	LATHSTK3,	LATHSTK4,	LATHSTK5,	LATHSTK6,	LATHSTK7,	LATHSTK8,	TANHSTKA,
STHSTK5 ,	TANHSTKC,	TANHSTKD,	HHSTKA ,	HHSTKB ,	HHSTKC ,	HHSTKD ,	HHSTKE ,	STHSTK1 ,	STHSTK2 ,	STHSTK3 ,	STHSTK4 ,
,	STHSTK6 ,	STHSTK7 ,	STHSTK8 ,	STHSTK9 ,	STHSTK11,	STHSTK10,	GHSTK1 ,	GHSTK2 ,	GHSTK3 ,	GHSTK4 ,	GHSTK5 , GHSTK6
MULSTK1 ,	GHSTK7 ,	GHSTK8 ,	GHSTK9 ,	GHSTK10 ,	GHSTK11 ,	GHSTK12 ,	GHSTK13 ,	CHSTK1 ,	DHSTK1 ,	HESSTK1 ,	HILSTK1 ,
,	WELSTK1 ,	PRINTA ,	PRINTB ,	PRINTC ,	COGEN ,	BOILER#2,	BOILER#3,	BOILER#4,	POURING ,	PAINT1 ,	PAINT2 , PAINT3
ENG_112 ,	PAINT4 ,	ENG_62 ,	ENG_63 ,	ENG_64 ,	ENG_105 ,	ENG_106 ,	ENG_107 ,	ENG_108 ,	ENG_109 ,	ENG_110 ,	ENG_111 ,
ENG_126 ,	ENG_113 ,	ENG_114 ,	ENG_115 ,	ENG_116 ,	ENG_117 ,	ENG_118 ,	ENG_119 ,	ENG_120 ,	ENG_121 ,	ENG_123 ,	ENG_125 ,
	ENG_128 ,	ENG_129 ,	ENG_130 ,	ENG_131 ,	ENG_132 ,	E134_133,					
GEN ENG_113 ,	ENG_62 ,	ENG_63 ,	ENG_64 ,	ENG_105 ,	ENG_106 ,	ENG_107 ,	ENG_108 ,	ENG_109 ,	ENG_110 ,	ENG_111 ,	ENG_112 ,
ENG_128 ,	ENG_114 ,	ENG_115 ,	ENG_116 ,	ENG_117 ,	ENG_118 ,	ENG_119 ,	ENG_120 ,	ENG_121 ,	ENG_123 ,	ENG_125 ,	ENG_126 ,
	ENG_129 ,	ENG_130 ,	ENG_131 ,	ENG_132 ,	E134_133,						
LABS	WHSTK1_8,	NWAF9 ,	WHSTK10 ,	MHSTK1 ,	MHSTK2 ,	MHSTK3 ,	MHSTK4 ,	MHSTK5 ,	MHSTK6 ,	KHSTK1 ,	KHSTK2 , KHSTK3
LSASTK2 ,	KHSTK4 ,	BHSTK1 ,	BHSTK2 ,	BHSTK3 ,	BHSTK4 ,	BHSTK5 ,	VLSBSTK1,	VLSBSTK2,	VLSBSTK3,	VLSBSTK4,	LSASTK1 ,
LEWHSTK7,	LSASTK3 ,	LSASTK4 ,	LSASTK5 ,	LSASTK6 ,	LSASTK7 ,	LEWHSTK1,	LEWHSTK2,	LEWHSTK3,	LEWHSTK4,	LEWHSTK5,	LEWHSTK6,
TANHSTKB,	LEWHSTK8,	LEWHSTK9,	LATHSTK1,	LATHSTK2,	LATHSTK3,	LATHSTK4,	LATHSTK5,	LATHSTK6,	LATHSTK7,	LATHSTK8,	TANHSTKA,
	TANHSTKC,	TANHSTKD,	HHSTKA ,	HHSTKB ,	HHSTKC ,	HHSTKD ,	HHSTKE ,	STHSTK1 ,	STHSTK2 ,	STHSTK3 ,	STHSTK4 ,

STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10, GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6

,

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID

SOURCE IDs

GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , DHSTK1 , HESSTK1 , HILSTK1 ,

MULSTK1 ,

WELSTK1 .

COGEN COGEN ,

BOILERS BOILER#2, BOILER#3, BOILER#4,

OTHER PRINTA , PRINTB , PRINTC , POURING , PAINT1 , PAINT2 , PAINT3 , PAINT4 ,

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP ID AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID 1ST HIGHEST VALUE IS 4.34956 AT (564700.00, 4192000.00, 76.00, 0.00) DC 0.00, 2ND HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00) 3RD HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00) 0.00000 AT (4TH HIGHEST VALUE IS 0.00, 0.00, 0.00, 5TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 0.00) 0.00, 0.00, 0.00, 6TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00000 AT (7TH HIGHEST VALUE IS 0.00, 0.00, 0.00) 8TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00000 AT (9TH HIGHEST VALUE IS 0.00, 0.00, 10TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 0.00) 00.00, 76.00, 0.00, 0.00, 0.00) DC GEN 1ST HIGHEST VALUE IS 3.87614 AT (564700.00, 4192000.00, NA 0.00000 AT (0.00, 2ND HIGHEST VALUE IS 0.00) 0.00, 3RD HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00) 0.00, 4TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00) 5TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 0.00) 6TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 0.00) 0.00, 0.00000 AT (0.00, 7TH HIGHEST VALUE IS 0.00, 8TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 9TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 10TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 0.00) 0.42645 AT (564700.00, 4192000.00, 76.00, LABS 1ST HIGHEST VALUE IS 0.00) DC 0.00, 2ND HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00) 3RD HIGHEST VALUE IS 0.00000 AT (0.00, 0.00) 4TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 0.00) 0.00, 0.00, 5TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00) 6TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00. 0.00, 7TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00) 8TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00. 0.00) 9TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 0.00) 10TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00,

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

COGEN 1ST HIGHEST VALUE IS 0.02474 AT (564700.00, 4192000.00, 76.00, 0.00) DC NA
2ND HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 0.00) 3RD HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 0.00, 0.00)

	5TH 6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE	IS IS IS IS	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	AT AT AT AT AT	(((((0.00, 0.00, 0.00, 0.00,	0.00, 0.00, 0.00, 0.00,	0.00, 0.00, 0.00,	0.00) 0.00) 0.00) 0.00)		
BOILERS	2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE VALUE VALUE VALUE	IS IS IS IS IS IS IS IS IS	0.00557 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	AT AT AT AT AT AT AT		0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	4192000.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	DC	NA
OTHER	2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE VALUE VALUE VALUE	IS IS IS IS IS IS IS IS IS	0.01729 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	AT AT AT AT AT AT AT		0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	DC	NA

*** ISCST3 - VERSION 02035 ***

*** UC Berkeley - 12/2003; Sensitive Receptors - vjh

*** Model Executed on 02/04/04 at 18:19:57 ***

Input File - D:\Beest\UCBerk\10-03\Final\Existing-Can-Sensitive.DTA

Output File - D:\Beest\UCBerk\10-03\Final\Existing-Can-Sensitive.LST

Met File - D:\Beest\UCBerk\10-03\lb1-97a.asc

Number of sources -126 27 259 Number of source groups -Number of receptors -

*** POINT SOURCE DATA ***

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
WHSTK1 8	0	0.44700E-04	564704.4	4191782.8	66.8	31.70	293.15	7.12	0.19	YES	
NWAF9	0	0.44700E-04 0.60100E-03	564718.8	4191791.2	66.8	29.57	293.15	16.48	0.74	YES	
										YES	
MHSTK1	0	0.44700E-04 0.24000E-03 0.24000E-03 0.24000E-03 0.24000E-03 0.24000E-02 0.33000E-02 0.33000E-02 0.45600E-03	564794.4	4191795.8	74.8	7.61	293.15	17.25	0.34	YES	
MHSTK2	0	0.24000E-03	564798.6	4191843.0	74.8	10.89	293.15	17.25	0.29	YES	
MHSTK3	0	0.24000E-03	564794.1	4191843.0	74.8	10.89	293.15	17.25	0.48	YES	
MHSTK4	0	0.24000E-03	564800.9	4191787.2	74.8	15.61	293.15	17.25	0.33	YES	
MHSTK6	0	0.24000E-03	564801.3	4191808.2	74.8	10.94	293.15	17.25	0.34	YES	
KHSTK1	0	0.33000E-02	564761.1	4191879.8	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK2	0	0.33000E-02	564759.4	4191891.8	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK3	0	0.33000E-02	564732.4	4191877.5	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK4	0	0.33000E-02 0.45600E-03 0.45600E-03 0.45600E-03 0.45600E-03 0.77100E-03 0.77100E-03	564731.4	4191889.0	72.7	18.45	293.15	1.28	2.76	YES	
BHSTK1	0	0.45600E-03	564678.9	4191889.0	67.4	27.85	293.15	2.78	1.26	YES	
BHSTK2	0	0.45600E-03	564675.0	4191896.8	67.4	29.68	293.15	2.78	1.26	YES	
BHSTK3	0	0.45600E-03	564704.5	4191898.0	67.4	29.68	293.15	2.78	1.26	YES	
BHSTK4	0	0.45600E-03	564707.4	4191887.8	67.4	33.34	293.15	2.78	0.37	YES	
BHSTK5	0	0.45600E-03	564691.6	4191888.0	67.4	33.34	293.15	2.78	0.37	YES	
VLSBSTK1	0	0.77100E-03	564933.6	4191633.2	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK2	0	0.77100E-03	564954.0	4191566.5	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK3	0	0.77100E-03 0.77100E-03	565051.3	4191594.8	64.4	27.04	293.15	3.97	1.22	YES	
										IES	
LSASTK1	0	0.16600E-02	564892.2	4191637.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK2	0	0.16600E-02	564875.9	4191632.8	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK3	0	0.16600E-02	564907.6	4191580.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK4	0	0.16600E-02	564897.1	4191578.0	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK5	0	0.16600E-02	564908.6	4191576.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK6	0	0.16600E-02	564899.1	41915/3.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK /	0	0.16600E-02 0.16600E-02 0.16600E-02 0.16600E-02 0.16600E-02 0.16600E-02 0.16600E-02	564900.8	4191572.2	64.4	28.31	293.15	5.18	0.30		
LEWHSTK1	0	0.63700E-03 0.63700E-03	565605.8	4191//2.0	106.7	12.00	293.IJ	3.11	0.30	YES	
									0.36	YES	
LEWHSTK3	0	0.63700E-03 0.63700E-03	565585.9	4191792.2	106.7	12.80	293.15	3.11	0.36 0.36	YES	
LEWHSTK4						12.80	293.15			YES	
LEWHSTK5		0.63700E-03				12.80	293.15		0.36 0.36	YES	
LEWHSTK6	0	0.63700E-03	565619.4	4191775.8	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK /	0	0.03/UUE-U3	505008.8	4191/8/.2	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK8	0	0.03/UUE-U3	505597.6	4191800.5	106.7	12.80	293.15	3.11	0.30	YES	
LEWHSTK9	0	0.03/UUE-U3	505593.3	4191808.2	106.7	12.80	293.15	3.11	0.36	YES	
LATHSTKI	0	0.27200E-02	505555.1	4191/99.2	104.6	42.3/	293.15	6.28	0.34	YES	
LATHSTK2	0	0.27200E-02	505501.1	4191812.0	104.6	36.88	293.15	6.28	0.70	YES YES	
LATHSTAS	U	0.63700E-03 0.63700E-03 0.63700E-03 0.63700E-03 0.27200E-02 0.27200E-02 0.27200E-02	202231.6	4191000.2	104.6	30.08	293.15	0.28	0.48	ILD	

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
LATHSTK4	0	0.27200E-02	565515.1	4191799.5	104.6	37.19	293.15	6.28	0.96	YES	
LATHSTK5	0	0.27200E-02	565539.7	4191794.2	104.6	42.37	293.15	6.28	0.70	YES	
LATHSTK6	0	0.27200E-02	565527.3	4191776.0	104.6	38.40	293.15	6.28	0.74	YES	
LATHSTK7	0	0.27200E-02	565544.9	4191781.5	104.6	38.40	293.15	6.28	0.31	YES	
LATHSTK8	0	0.27200E-02	565562.3	4191787.0	104.6	38.40	293.15	6.28	0.70	YES	
TANHSTKA	0	0.23500E-02	565492.1	4191793.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKB	0	0.23500E-02	565496.8	4191794.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKC	0	0.23500E-02	565494.1	4191787.2	100.6	39.32	293.15	2.94	1.69	YES	

TANHSTKD	0	0.23500E-02	565499.1 4191788.2	100.6	39.32	293.15	2.94	1.69	YES
HHSTKA	0	0.26000E-02	565540.8 4191749.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKB	0	0.26000E-02	565565.6 4191756.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKC	0	0.26000E-02	565576.8 4191717.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKD	0	0.26000E-02	565553.2 4191710.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKE	0	0.26000E-02	565543.4 4191746.5	103.6	20.12	293.15	4.15	0.81	YES
STHSTK1	0	0.10700E-03	565530.3 4191891.8	112.8	13.87	293.15	2.17	0.27	YES
STHSTK2	0	0.10700E-03	565522.0 4191918.2	112.8	13.87	293.15	2.17	0.34	YES
STHSTK3	0	0.10700E-03	565537.9 4191871.0	112.8	17.56	293.15	2.17	0.34	YES
STHSTK4	0	0.10700E-03	565529.5 4191871.8	112.8	13.87	293.15	2.17	0.34	YES
STHSTK5	0	0.10700E-03	565530.9 4191870.0	112.8	14.02	293.15	2.17	0.34	YES
STHSTK6	0	0.10700E-03	565530.1 4191869.5	112.8	14.02	293.15	2.17	0.27	YES
STHSTK7	0	0.10700E-03	565532.6 4191866.5	112.8	14.02	293.15	2.17	0.39	YES
STHSTK8	0	0.10700E-03	565538.2 4191864.0	112.8	14.02	293.15	2.17	0.27	YES
STHSTK9	0	0.10700E-03	565525.9 4191880.5	112.8	14.02	293.15	2.17	0.53	YES
STHSTK11	0	0.10700E-03	565519.0 4191907.5	112.8	13.87	293.15	2.17	0.34	YES
GHSTK1	0	0.36700E-03	565507.1 4191756.0	103.6	16.06	293.15	5.92	0.30	YES
GHSTK2	0	0.36700E-03	565510.6 4191744.8	103.6	16.06	293.15	5.92	0.25	YES
GHSTK3	0	0.36700E-03	565512.4 4191739.0	103.6	16.37	293.15	5.92	0.30	YES
GHSTK4	0	0.36700E-03	565514.7 4191737.8	103.6	15.91	293.15	5.92	0.31	YES
GHSTK5	0	0.36700E-03	565514.9 4191732.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK6	0	0.36700E-03	565500.2 4191755.2	103.6	16.12	293.15	5.92	0.30	YES
GHSTK7	0	0.36700E-03	565501.1 4191753.0	103.6	16.37	293.15	5.92	0.84	YES
GHSTK8	0	0.36700E-03	565503.7 4191744.2	103.6	16.00	293.15	5.92	0.30	YES
GHSTK9	0	0.36700E-03	565505.2 4191740.2	103.6	16.37	293.15	5.92	0.26	YES
GHSTK10	0	0.36700E-03	565506.9 4191735.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK11	0	0.36700E-03	565509.7 4191728.2	103.6	16.22	293.15	5.92	0.30	YES
GHSTK12	0	0.36700E-03	565509.0 4191725.5	103.6	16.06	293.15	5.92	0.30	YES
GHSTK13	0	0.36700E-03	565516.9 4191725.8	103.6	15.91	293.15	5.92	0.40	YES
CHSTK1	0	0.86900E-04	565393.9 4192008.8	110.3	26.85	293.15	2.00	1.00	YES
DHSTK1	0	0.95300E-04	565329.4 4191982.0	107.2	16.36	293.15	2.00	1.00	YES
HESSTK1	0	0.73300E-03	565234.6 4191926.2	98.2	15.39	293.15	2.00	1.00	YES

	NUMBER	EMISSION RATE	F.		BASE	STACK	STACK	STACK	STACK	BUILDING	EMISSION RATE SCALAR VARY BY
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	TEMP.	EXIT VEL.	DIAMETER	EXISTS	SCALAR VARY
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(DEG.K)	(M/SEC)	(METERS)		BY
HILSTK1	0	0.72100E-03	564874.6	4191815.0	80.4	14.96	293.15			YES	
MULSTKI	0	0.53300E-05 0.13600E-04 0.86300E-04 0.86300E-04	564//9./	4191/3/.8	/4.4	17.24	293.15	2.00		YES	
WELSTK1	0	0.13600E-04	564933.7	4191795.2	81.7	5.89	293.15	2.00 2.70	1.00	YES	
PRINTA	0	0.86300E-04	564584.7	4191553.2	60.0	8.91	293.15			YES	
PRINTB	0	0.86300E-04	564614.4	4191520.8	60.0	8.91	293.15		0.84	YES	
PRINTC	0	0.86300E-04 0.97700E+00	564643.1	4191525.5	60.0	8.91		2.70	0.60	YES	
COGEN	0	0.97700E+00	564876.0	4191492.0	71.9	12.77	430.37	10.45	2.28	YES	
BOILER#2	0	0.12280E-01	564863.6	4191499.5	71.9	8.80 8.80 8.80	522.82	7.97	1.52	YES	
BOILER#3	0	0.47000E-01	564881.9	4191505.8	71.9	8.80	554.11	10.53	1.52	YES	
BOILER#4	0	0.56800E-01	564885.8	4191495.8	71.9	8.80	566.65	12.63	1.52	YES	
POURING	0	0.12800E-02	564847.8	4191467.0	70.1	14.94	293.15	4.62	0.56	YES	
ENG_62	0	0.47241E-02	565567.6	4191086.5	85.1	4.57	800.37	146.01	0.13	NO	
ENG_63	0	0.23600E-02	564668.2	4191897.5	70.2	4.57	799.85	152.00	0.13	YES	
ENG_64	0	0.72300E-03	565452.9	4191687.0	98.2	3.05	817.07	58.47	0.08	YES	
ENG_105	0	0.74200E-01	564939.1	4191457.8	71.1	4.57	810.96	70.10	0.23	YES	
ENG_106	0	0.62205E-01	564991.6	4191614.5	73.6	30.48	810.96	70.10	0.20	YES	
ENG_107	0	0.49776E-01	564767.4	4191906.8	76.2	0.00	810.96	70.10	0.18	YES	
ENG 108	0	0.49776E-01	564930.6	4191564.2	68.8	7.62	810.96	70.10	0.18	YES	
ENG 109	0	0.16596E-01	565615.8	4191801.2	111.7	3.05	810.96	70.10	0.15	YES	
ENG 110	0	0.82858E-02	564655.9	4191874.5	68.4	4.57	810.96	70.10	0.10	YES	
ENG 111	0	0.23810E-01	565091.1	4191757.8	78.9	3.05	810.96	70.10	0.11	YES	
ENG 112	0	0.20714E-01	565542.8	4191208.2	85.7	3.05	810.93	70.10	0.10	NO	
ENG 113	0	0.20714E-01	565673.6	4191194.8	92.0	3.05	810.93	70.10	0.10	NO	
ENG 114	0	0.20714E-01	565601.4	4191014.2	86.0	3.05	810.93	70.10	0.10	NO	
ENG 115	0	0.20714E-01	565702.9	4190991.8	91.4	3.05	810.93	70.10	0.10	NO	
ENG 116	0	0.20714E-01	564775.8	4191177.5	63.2	4.57	810.93	70.10	0.10	NO	
ENG 117	0	0.20714E-01	565575.9	4191609.0	99.3	3.05	810.96	70.10	0.10	YES	
ENG 118	0	0.98935E-02	564654.8	4191890.5	68.6	4.57	810.96	70.10	0.13	YES	
ENG 119	0	0.14531E-01	564728.8	4191771.0	70.5	4.57	810.96	70.10	0.08	YES	
ENG 120	0	0.10450E-01	565318.0	4191422.5	86.1	3.05	810.96	70.10	0.08	YES	
ENG 121	0	0.10388E-01	565926.2	4191443.0	118.9	3.05	810.93	70.10	0.08	NO	
ENG 123	0	0.12800E-01	565259.4	4191652.8	88.3	3.05	810.96	70.10	0.08	YES	
ENG 125	0	0.41058E-02	564811.2	4191460.8	67.7	3.05	810.96	70.10	0.08	YES	
ENG 126	0	0.33143E-02	565137.9	4191441.5	77.6	0.00	810.96	70.10	0.08	YES	
ENG 128	0	0.41429E-02	565469.2	4191955.2	109.8	3.05	810.96	70.10	0.05	YES	
ENG 129	0	0.41429E-02	565383.1	4191740.2	97.0	2.44	810.96	70.10	0.05	YES	
ENG 130	0	0.25692E-02	565533.3	4191713.5	98.9	2.44	815.40	134.54	0.08	YES	
ENG 131	0	0.72350E-03	564970.3	4191484.2	71.3	1.83	817.07	58.47	0.08	YES	
ENG 132	0	0.97700E+00 0.12280E-01 0.47000E-01 0.56800E-01 0.12800E-02 0.47241E-02 0.23600E-03 0.74200E-01 0.62205E-01 0.49776E-01 0.49776E-01 0.49776E-01 0.20714E-01 0.207	564800.3	4191781.8	74.3	1.83	817.07	58.47	0.08	YES	
	-	00									

*** VOLUME SOURCE DATA ***

							-				
SOURCE ID		EMISSION RA (GRAMS/SEC	C) X	Y) (METERS)	BASE ELEV. (METERS)	RELEASE HEIGHT (METERS)	INIT. SY (METERS) (SZ	EMISSION RA SCALAR VAR BY		
MHSTK5 STHSTK10 PAINT1 PAINT2 PAINT3	0 0 0	0.24000E-03 0.10700E-03 0.26600E-03 0.26600E-03	3 565522.6 3 564917.1 3 565322.7	4191880.8 4191432.5 4191834.8	112.8 72.0 96.0	6.95 14.02 4.57 4.57 4.57	0.07 0.29 3.54 3.54 3.54	2.42 5.39 4.25 4.25 4.25			
PAINT4		0.26600E-03				4.57	3.54	4.25			
						INING SOUR					
				500110	_ 150 551		02 01.0010				
GROUP ID					SOU	RCE IDs					
ALL	WHSTK1_8	, NWAF9 ,	WHSTK10 ,	MHSTK1 , I	MHSTK2 ,	MHSTK3 ,	MHSTK4 ,	MHSTK5	, MHSTK6 ,	KHSTK1 ,	KHSTK2 , KHSTK3
LSASTK2 ,	KHSTK4	, BHSTK1 ,	BHSTK2 ,	BHSTK3 , 1	BHSTK4 ,	BHSTK5 ,	VLSBSTK1,	VLSBSTK2	, VLSBSTK3,	VLSBSTK4,	LSASTK1 ,
LEWHSTK7,	LSASTK3	LSASTK4 ,	LSASTK5 ,	LSASTK6 ,	LSASTK7 ,	LEWHSTK1,	LEWHSTK2,	LEWHSTK3	, LEWHSTK4,	LEWHSTK5,	LEWHSTK6,
TANHSTKB,	LEWHSTK8	, LEWHSTK9,	LATHSTK1,	LATHSTK2,	LATHSTK3,	LATHSTK4,	LATHSTK5,	LATHSTK6	, LATHSTK7,	LATHSTK8,	TANHSTKA,
STHSTK5 ,	TANHSTKC	, TANHSTKD,	HHSTKA ,	HHSTKB , 1	HHSTKC ,	HHSTKD ,	HHSTKE ,	STHSTK1	, STHSTK2 ,	STHSTK3 ,	STHSTK4 ,
,	STHSTK6	, STHSTK7 ,	STHSTK8 ,	STHSTK9 ,	STHSTK11,	STHSTK10,	GHSTK1 ,	GHSTK2	, GHSTK3 ,	GHSTK4 ,	GHSTK5 , GHSTK6
MULSTK1 ,	GHSTK7	, GHSTK8 ,	GHSTK9 ,	GHSTK10 ,	GHSTK11 ,	GHSTK12 ,	GHSTK13 ,	CHSTK1	, DHSTK1 ,	HESSTK1 ,	HILSTK1 ,
,	WELSTK1	, PRINTA ,	PRINTB ,	PRINTC ,	COGEN ,	BOILER#2,	BOILER#3,	BOILER#4	, POURING ,	PAINT1 ,	PAINT2 , PAINT3
ENG_112 ,	PAINT4	, ENG_62 ,	ENG_63 ,	ENG_64 , 1	ENG_105 ,	ENG_106 ,	ENG_107 ,	ENG_108	, ENG_109 ,	ENG_110 ,	ENG_111 ,
ENG_126 ,	ENG_113	, ENG_114 ,	ENG_115 ,	ENG_116 , 1	ENG_117 ,	ENG_118 ,	ENG_119 ,	ENG_120	, ENG_121 ,	ENG_123 ,	ENG_125 ,
	ENG_128	, ENG_129 ,	ENG_130 ,	ENG_131 , 1	ENG_132 ,	E134_133,					
WH	WHSTK1_8	, WHSTK10 ,									
NWAF	NWAF9	,									
МН	MHSTK1	, MHSTK2 ,	MHSTK3 ,	MHSTK4 , I	MHSTK5 ,	MHSTK6 ,					
KH	KHSTK1	, KHSTK2 ,	KHSTK3 ,	KHSTK4 ,							
ВН	BHSTK1	, BHSTK2 ,	BHSTK3 ,	BHSTK4 , 1	BHSTK5 ,						
VLSB	VLSBSTK1	, VLSBSTK2,	VLSBSTK3,	VLSBSTK4,							
LSA	LSASTK1	, LSASTK2 ,	LSASTK3 ,	LSASTK4 ,	LSASTK5 ,	LSASTK6 ,	LSASTK7 ,				

LEW LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6, LEWHSTK7, LEWHSTK8, LEWHSTK9,

LAT LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8,

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDS

TAN TANHSTKA, TANHSTKB, TANHSTKC, TANHSTKD,

HH HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE ,

STH STHSTK1 , STHSTK2 , STHSTK3 , STHSTK4 , STHSTK5 , STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10,

GH GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 ,

GHSTK13 ,

CH CHSTK1 ,

DH DHSTK1 ,

HES HESSTK1 ,

HIL HILSTK1 ,

MUL MULSTK1 ,

WEL WELSTK1 ,

NOENGINE WHSTK1_8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3

KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 , LSASTK2 ,

LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,

LEWHSTK7,

LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,

TANHSTKB,

TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , STHSTK1 , STHSTK2 , STHSTK3 , STHSTK4 ,

STHSTK5 ,

STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10, GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6

MULSTK1 ,

GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , DHSTK1 , HESSTK1 , HILSTK1 ,

WELSTK1 , PRINTA , PRINTB , PRINTC , COGEN , BOILER#2, BOILER#3, BOILER#4, POURING , PAINT1 , PAINT2 , PAINT3

PAINT4 ,

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDS

ENGINES ENG_62 , ENG_63 , ENG_64 , ENG_105 , ENG_106 , ENG_107 , ENG_108 , ENG_109 , ENG_110 , ENG_111 , ENG_111 , ENG_112 , ENG_113 ,

ENG 114 , ENG 115 , ENG 116 , ENG 117 , ENG 118 , ENG 119 , ENG 120 , ENG 121 , ENG 123 , ENG 125 , ENG 126 ,

ENG_128 ,

```
ENG_129 , ENG_130 , ENG_131 , ENG_132 , E134_133,
           PRINTA , PRINTB , PRINTC ,
 PRINT
 COMBUST COGEN , BOILER#2, BOILER#3, BOILER#4,
           POURING ,
 HAZMAT
 PAINT PAINT1 , PAINT2 , PAINT3 , PAINT4 ,
 ALL_LABS WHSTK1_8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , STHSTK1 , STHSTK2 , STHSTK3 , STHSTK4 ,
STHSTK5 ,
           STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10, GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6
           GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , DHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
```

*** THE SUMMARY OF MAXIMUM PERIOD ($8760\ \text{HRS}$) RESULTS ***

METWORK

** CONC OF CANCER IN MICROGRAMS/M**3

WELSTK1 ,

GROUP ID	AVERAGE CONC	RE	CEPTOR (XR, YR,	ZELEV, ZFLAG)	OF TYPE	NETWORK GRID-ID
ALL 1ST HIGHEST VALU	IS 4.23623 AT (565700.06,	4191711.25,	109.42,	0.00) DC	NA
2ND HIGHEST VALU	IS 4.14134 AT (565700.06,	4191711.25,	108.20,	0.00) DC	NA
3RD HIGHEST VALU	IS 3.13984 AT (564945.62,	4192065.50,	102.72,	0.00) DC	NA
4TH HIGHEST VALU	IS 2.70464 AT (565009.00,	4192130.00,	110.64,	0.00) DC	NA
5TH HIGHEST VALU	3.13984 AT (3.13 3.13984 AT (3.15 2.70464 AT (3.15 2.68294 AT (566093.38,	4191024.75,	114.60,	0.00) DC	NA
6TH HIGHEST VALU	IS 2.62515 AT (564926.69,	4192158.75,	109.42,	0.00) DC	NA
7TH HIGHEST VALU						NA
8TH HIGHEST VALU						NA
9TH HIGHEST VALU	IS 1.67011 AT (565144.62,	4192620.50,	154.84,	0.00) DC	NA
	IS 1.55628 AT (NA
WH 1ST HIGHEST VALU	IS 0.00050 AT (564945 62.	4192065 50.	102 72.	0.00) DC	NA
2ND HIGHEST VALU	TS 0.00045 AT (564228.31	4192049.25.	64.62.	0.00) DC	NA
3RD HIGHEST VALU	TS 0.00040 AT (564487.38	4192391.25.	80.16.	0.00) DC	NA
4TH HIGHEST VALU	S IS 0.00045 AT (S IS 0.00040 AT (S IS 0.00034 AT (564926.69	4192158.75.	109.42.	0.00) DC	NA
5TH HIGHEST VALU	IS 0.00034 AT (564160.38	4192207.75.	64.31.	0.00) DC	NA
6TH HIGHEST VALU		565009.00,	4192130.00.	110.64.	0.00) DC	NA
7TH HIGHEST VALU						NA
8TH HIGHEST VALU						NA
9TH HIGHEST VALU						NA
10TH HIGHEST VALU	,				0.00) DC	NA
NWAF 1ST HIGHEST VALU	IS 0.00212 AT (564045 62	4102065 50	102 72	0.00) DC	NA
2ND HIGHEST VALU	0.00212 A1 (565700 06	4192003.30,	102.72,	0.00) DC	NA NA
3RD HIGHEST VALU		564026 60	4191/11.23,	100.20,	0.00) DC	NA NA
4TH HIGHEST VALU	. 15 0.00103 A1 (565700 06	4192130.73,	109.42,	0.00) DC	NA NA
5TH HIGHEST VALU	0.00102 AI (565000.00,	4191/11.23,	110 64	0.00) DC	NA NA
6TH HIGHEST VALU		564022 25	4192130.00,	71 22	0.00) DC	NA NA
7TH HIGHEST VALU						NA NA
8TH HIGHEST VALU						NA NA
	IS 0.00092 AT (NA NA
10TH HIGHEST VALU		566063 25	4192002.23, 4190799 75	100.20,	0.00) DC	NA NA
TOTH RIGHEST VALO	1 13 0.00003 AI (J00003.2J,	4100100.10,	±∪±•±⊅,	0.00) DC	INT

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP	ID	AVERAGE CONC	RECI	EPTOR (XR, YR,	ZELEV, ZFLAG)	OF TY	NETWORK PE GRID-ID
мн	1ST HIGHEST VALUE IS	. 0 01205 ልጥ /	564945 62	4192065 50	102 72	0 00) T	OC NA
1,111		0.00964 AT (
		0.00774 AT (
	4TH HIGHEST VALUE IS						
	5TH HIGHEST VALUE IS						
	6TH HIGHEST VALUE IS						
	7TH HIGHEST VALUE IS						
	8TH HIGHEST VALUE IS	0.00594 AT (
		0.00593 AT (
	10TH HIGHEST VALUE IS	0.00528 AT (564525.06,	4192613.75,	85.65,	0.00)	OC NA
KH	1ST HIGHEST VALUE IS	0.10497 AT (564945.62,	4192065.50,	102.72,	0.00)	OC NA
	2ND HIGHEST VALUE IS	0.06941 AT (
	3RD HIGHEST VALUE IS						
	4TH HIGHEST VALUE IS		564487.38,	4192391.25,	80.16,	0.00)	OC NA
	5TH HIGHEST VALUE IS						
	6TH HIGHEST VALUE IS						
	7TH HIGHEST VALUE IS		564249.94,	4192208.00,	66.75,	0.00)	OC NA
	8TH HIGHEST VALUE IS	0.04354 AT (564591.56,	4192414.75,	83.82,	0.00)	OC NA
	9TH HIGHEST VALUE IS	0.03574 AT (564933.25,	4191275.25,	71.32,	0.00)	OC NA
	9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS	0.03521 AT (564160.38,	4192207.75,	64.31,	0.00)	OC NA
ВН	1ST HIGHEST VALUE IS	0.01456 AT (564945.62,	4192065.50,	102.72,	0.00)	OC NA
		0.00936 AT (565009.00,	4192130.00,	110.64,	0.00)	OC NA
	3RD HIGHEST VALUE IS	0.00840 AT (564926.69,	4192158.75,	109.42,	0.00)	OC NA
	4TH HIGHEST VALUE IS	0.00642 AT (564249.94,	4192208.00,	66.75,	0.00)	OC NA
	5TH HIGHEST VALUE IS	0.00612 AT (565700.06,	4191711.25,	108.20,	0.00) I	OC NA
	6TH HIGHEST VALUE IS	0.00611 AT (565700.06,	4191711.25,	109.42,	0.00)	OC NA
	7TH HIGHEST VALUE IS	0.00592 AT (564487.38,	4192391.25,	80.16,	0.00)	OC NA
	8TH HIGHEST VALUE IS	0.00526 AT (564228.31,	4192049.25,	64.62,	0.00)	OC NA
	9TH HIGHEST VALUE IS	0.00518 AT (564591.56,	4192414.75,	83.82,	0.00)	OC NA
	ATH HIGHEST VALUE IS 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 7TH HIGHEST VALUE IS 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS	0.00504 AT (564160.38,	4192207.75,	64.31,	0.00)	OC NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

**

GROUP :	ID F	AVERAGE CONC	RECEPTOR (XR,	YR, ZELEV, ZFLAG	OF TYPE	NETWORK GRID-ID
VLSB	1ST HIGHEST VALUE IS	0.01496 AT (56494	5.62, 4192065.50	, 102.72,	0.00) DC	NA
	2ND HIGHEST VALUE IS	0.01074 AT (56570	0.06, 4191711.25	, 108.20,	0.00) DC	NA
	3RD HIGHEST VALUE IS	0.01067 AT (56570	0.06, 4191711.25	, 109.42,	0.00) DC	NA
	4TH HIGHEST VALUE IS	0.00958 AT (56492	6.69, 4192158.75	, 109.42,	0.00) DC	NA
	5TH HIGHEST VALUE IS		9.00, 4192130.00			NA
	6TH HIGHEST VALUE IS		8.31, 4191032.50			NA
	7TH HIGHEST VALUE IS		7.38, 4192391.25		0.00) DC	NA
	8TH HIGHEST VALUE IS		1.56, 4192414.75			NA
	9TH HIGHEST VALUE IS	,	3.25, 4190799.75	'		NA
	10TH HIGHEST VALUE IS	0.00628 AT (56507	0.19, 4191077.50	, 70.41,	0.00) DC	NA
LSA	1ST HIGHEST VALUE IS	,	5.62, 4192065.50	'	0.00) DC	NA
	2ND HIGHEST VALUE IS	,	0.06, 4191711.25	'		NA
	3RD HIGHEST VALUE IS	,	9.00, 4192130.00	'	0.00) DC	NA
	4TH HIGHEST VALUE IS	•	6.69, 4192158.75	'		NA
	5TH HIGHEST VALUE IS	,	0.06, 4191711.25	'		NA
	6TH HIGHEST VALUE IS		0.19, 4191077.50		0.00) DC	NA
	7TH HIGHEST VALUE IS		3.25, 4191275.25		0.00) DC	NA
	8TH HIGHEST VALUE IS		8.31, 4191032.50			NA
	9TH HIGHEST VALUE IS		9.94, 4192208.00			NA
	10TH HIGHEST VALUE IS	0.02253 AT (56448	7.38, 4192391.25	, 80.16,	0.00) DC	NA
LEW	1ST HIGHEST VALUE IS	0.13049 AT (56570	0.06, 4191711.25	, 109.42,	0.00) DC	NA
TI W		,	0.06, 4191711.25	'		NA
		,	4.62, 4192620.50			NA
	OUT HIGHHOI AUTOR IN	0.02033 AI (30314	1.02, 7172020.00	, 101.01,	0.00, DC	TALZ

0.01899 AT (565233.75, 4192605.00, 0.01856 AT (565202.31, 4192629.00, 0.01851 AT (565009.00, 4192130.00, 0.01603 AT (566093.38, 4191024.75, 0.01581 AT (564926.69, 4192158.75, 0.01508 AT (564945.62, 4192065.50, 0.01166 AT (566166.56, 4190836.25, 0.00) DC 0.00) DC 0.00) DC 0.00) DC 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 159.72, 160.32, 110.64, NA NA NΑ 114.60, 109.42, 7TH HIGHEST VALUE IS NA 0.00) DC 0.00) DC 0.00) DC 8TH HIGHEST VALUE IS NA 9TH HIGHEST VALUE IS 102.72, NA 107.59, 10TH HIGHEST VALUE IS

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP	ID	AVERAGE CONC	_	REC:	EPTOR (XR, YR,	ZELEV,	ZFLAG)	OF 	TYPE	NETWORK GRID-ID
LAT	1ST HIGHEST VAL	LUE IS 0.17545 AT	(565700.06,	4191711.25,	109.42,		0.00)	DC	NA
	2ND HIGHEST VAL	LUE IS 0.16401 AT	(565700.06,	4191711.25,	108.20,		0.00)	DC	NA
	3RD HIGHEST VAL	LUE IS 0.04856 AT	(565144.62,	4192620.50,	154.84,		0.00)	DC	NA
	4TH HIGHEST VAL	LUE IS 0.04470 AT	(565009.00,	4192130.00,	110.64,		0.00)	DC	NA
	5TH HIGHEST VAL	LUE IS 0.04229 AT	(565233.75,	4192605.00,	159.72,		0.00)	DC	NA
	6TH HIGHEST VAL	LUE IS 0.04174 AT	(565202.31,	4192629.00,	160.32,		0.00)	DC	NA
	7TH HIGHEST VAL	LUE IS 0.03761 AT	(564926.69,	4192158.75,	109.42,		0.00)	DC	NA
	8TH HIGHEST VAL	LUE IS 0.03234 AT	(564945.62,	4192065.50,	102.72,		0.00)	DC	NA
	9TH HIGHEST VAL	LUE IS 0.02551 AT	(566093.38,	4191024.75,	114.60,		0.00)	DC	NA
	10TH HIGHEST VAL		(564735.81,	4192658.00,	100.28,		0.00)	DC	NA
TAN	1ST HIGHEST VAL	LUE IS 0.09371 AT	(565700.06,	4191711.25,	109.42,		0.00)	DC	NA
	2ND HIGHEST VAL	LUE IS 0.08884 AT	(565700.06,	4191711.25,	108.20,		0.00)	DC	NA
	3RD HIGHEST VAL	LUE IS 0.02239 AT	(565009.00,	4192130.00,	110.64,		0.00)	DC	NA
	4TH HIGHEST VAL	LUE IS 0.01915 AT	(565144.62,	4192620.50,	154.84,		0.00)	DC	NA
	5TH HIGHEST VAL	LUE IS 0.01874 AT	(564926.69,	4192158.75,	109.42,		0.00)	DC	NA
	6TH HIGHEST VAL	LUE IS 0.01688 AT	(564945.62,	4192065.50,	102.72,		0.00)	DC	NA
	7TH HIGHEST VAL	LUE IS 0.01667 AT	(565233.75,	4192605.00,	159.72,		0.00)	DC	NA
	8TH HIGHEST VAL	LUE IS 0.01663 AT	(565202.31,	4192629.00,	160.32,		0.00)	DC	NA
	9TH HIGHEST VAL	LUE IS 0.01141 AT	(566093.38,	4191024.75,	114.60,		0.00)	DC	NA
	10TH HIGHEST VAL		(564735.81,	4192658.00,	100.28,		0.00)	DC	NA
НН	1ST HIGHEST VAL	LUE IS 0.36596 AT LUE IS 0.34145 AT LUE IS 0.03798 AT LUE IS 0.03328 AT LUE IS 0.03276 AT LUE IS 0.03196 AT LUE IS 0.02911 AT LUE IS 0.02867 AT LUE IS 0.02281 AT LUE IS 0.01836 AT	(565700.06,	4191711.25,	109.42,		0.00)	DC	NA
	2ND HIGHEST VAL	LUE IS 0.34145 AT	(565700.06,	4191711.25,	108.20,		0.00)	DC	NA
	3RD HIGHEST VAL	LUE IS 0.03798 AT	(565009.00,	4192130.00,	110.64,		0.00)	DC	NA
	4TH HIGHEST VAL	LUE IS 0.03328 AT	(564926.69,	4192158.75,	109.42,		0.00)	DC	NA
	5TH HIGHEST VAL	LUE IS 0.03276 AT	(564945.62,	4192065.50,	102.72,		0.00)	DC	NA
	6TH HIGHEST VAL	LUE IS 0.03196 AT	(565144.62,	4192620.50,	154.84,		0.00)	DC	NA
	7TH HIGHEST VAL	LUE IS 0.02911 AT	(565233.75,	4192605.00,	159.72,		0.00)	DC	NA
	8TH HIGHEST VAL	LUE IS 0.02867 AT	(565202.31,	4192629.00,	160.32,		0.00)	DC	NA
	9TH HIGHEST VAL	LUE IS 0.02281 AT	(566093.38,	4191024.75,	114.60,		0.00)	DC	NA
	10TH HIGHEST VAL	LUE IS 0.01836 AT	(564735.81,	4192658.00,	100.28,		0.00)	DC	NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

GROUP	ID 	AVERAGE CONC	RECE	EPTOR (XR, YR,	ZELEV, ZFLAG)	OF TYP	NETWORK E GRID-ID
STH	1ST HIGHEST VALUE IS	0.01282 AT (565700.06,	4191711.25,	109.42,	0.00) DC	NA
	2ND HIGHEST VALUE IS	0.01221 AT (565700.06,	4191711.25,	108.20,	0.00) DC	NA
	3RD HIGHEST VALUE IS	0.00612 AT (565009.00,	4192130.00,	110.64,	0.00) DC	NA
	4TH HIGHEST VALUE IS	0.00490 AT (564926.69,	4192158.75,	109.42,	0.00) DC	NA
	5TH HIGHEST VALUE IS	0.00474 AT (565144.62,	4192620.50,	154.84,	0.00) DC	NA
	6TH HIGHEST VALUE IS	0.00428 AT (565233.75,	4192605.00,	159.72,	0.00) DC	NA
	7TH HIGHEST VALUE IS	0.00428 AT (565202.31,	4192629.00,	160.32,	0.00) DC	NA
	8TH HIGHEST VALUE IS	0.00341 AT (564945.62,	4192065.50,	102.72,	0.00) DC	NA
	9TH HIGHEST VALUE IS	0.00236 AT (564735.81,	4192658.00,	100.28,	0.00) DC	NA
	10TH HIGHEST VALUE IS	0.00235 AT (564729.75,	4192662.25,	100.28,	0.00) DC	NA
GH	1ST HIGHEST VALUE IS	0.13462 AT (565700.06,	4191711.25,	109.42,	0.00) DC	NA
	2ND HIGHEST VALUE IS	0.13113 AT (565700.06,	4191711.25,	108.20,	0.00) DC	NA
	3RD HIGHEST VALUE IS	0.02028 AT (565009.00,	4192130.00,	110.64,	0.00) DC	NA
	4TH HIGHEST VALUE IS	0.01775 AT (564945.62,	4192065.50,	102.72,	0.00) DC	NA
	5TH HIGHEST VALUE IS	0.01730 AT (564926.69,	4192158.75,	109.42,	0.00) DC	NA
	6TH HIGHEST VALUE IS	0.01201 AT (565144.62,	4192620.50,	154.84,	0.00) DC	NA
	7TH HIGHEST VALUE IS	0.01090 AT (565233.75,	4192605.00,	159.72,	0.00) DC	NA

0.01080 AT (565202.31, 4192629.00, 0.00941 AT (566093.38, 4191024.75, 0.00805 AT (564735.81, 4192658.00, 160.32, 0.00) DC 0.00) DC 0.00) DC 8TH HIGHEST VALUE IS NΑ 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS 114.60, NA 100.28, NΑ 0.00031 AT (565700.06, 4191711.25, 0.00031 AT (565009.00, 4192130.00, СН 1ST HIGHEST VALUE IS 109.42, 0.00) DC NA 2ND HIGHEST VALUE IS 110.64, 0.00) DC NA 0.00030 AT (565144.62, 4192620.50, 0.00030 AT (565700.06, 4191711.25, 3RD HIGHEST VALUE IS 154.84, 0.00) DC NA 4TH HIGHEST VALUE IS 108.20, 0.00) DC NA 0.00027 AT (565202.31, 4192629.00, 0.00027 AT (565233.75, 4192605.00, 5TH HIGHEST VALUE IS 160.32, 0.00) DC NA 6TH HIGHEST VALUE IS 159.72, 0.00) DC NA 0.00024 AT (564926.69, 4192158.75, 0.00015 AT (564945.62, 4192065.50, 0.00013 AT (564735.81, 4192658.00, 7TH HIGHEST VALUE IS 109.42, 0.00) DC NA 8TH HIGHEST VALUE IS 102.72, 0.00) DC NA 9TH HIGHEST VALUE IS 100.28, 0.00) DC NA 10TH HIGHEST VALUE IS 0.00013 AT (564729.75, 4192662.25, 100.28, 0.00) DC NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP	ID 	AVERAGE CONC	RECEPTOR	(XR, YR, ZELEV, ZFLAG	G) OF TYPE	NETWORK GRID-ID
DH	1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 7TH HIGHEST VALUE IS 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS	0.00028 AT (563 0.00028 AT (563 0.00027 AT (564	55233.75, 419260 5202.31, 419262 4735.81, 419265	5.00, 159.72, 9.00, 160.32, 8.00, 100.28,	0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC	NA
HES	1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 7TH HIGHEST VALUE IS 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS	0.00685 AT (56 0.00667 AT (56 0.00475 AT (56 0.00473 AT (56 0.00201 AT (56 0.00201 AT (56 0.00191 AT (56 0.00190 AT (56 0.00187 AT (56	4945.62, 419206 4926.69, 419215 5700.06, 419171 5700.38, 419102 4735.81, 419265 4729.75, 419266 5144.62, 419262	5.50, 102.72, 8.75, 109.42, 1.25, 108.20, 4.75, 114.60, 8.00, 100.28, 2.25, 100.28, 0.50, 154.84,	0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC	NA
HIL	1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 7TH HIGHEST VALUE IS 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS	0.00483 AT (56 0.00403 AT (56 0.00322 AT (56 0.00320 AT (56 0.00297 AT (56 0.00297 AT (56 0.00292 AT (56 0.00206 AT (56 0.00206 AT (56	4926.69, 419215 5009.00, 419213 5700.06, 419171 5700.06, 419171 4591.56, 419241 4487.38, 419239 4525.06, 419261 4729.75, 419266	8.75, 109.42, 0.00, 110.64, 1.25, 108.20, 1.25, 109.42, 4.75, 83.82, 1.25, 80.16, 3.75, 85.65, 2.25, 100.28,	0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC	NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

**

GROUP ID				AVERAGE CONC	REG	CEPTOR (XR,	YR,	ZELEV,	ZFLAG) OF	TYPE	NETWORK GRID-ID
			-								
MUL	1ST HIGHEST	VALUE	IS	0.00003 AT (564945.62,	4192065.50	,	102.72,	0.00)	DC	NA
	2ND HIGHEST	VALUE	IS	0.00002 AT (564926.69,	4192158.75	,	109.42,	0.00)	DC	NA
	3RD HIGHEST	VALUE	IS	0.00002 AT (564933.25,	4191275.25	,	71.32,	0.00)	DC	NA
	4TH HIGHEST	VALUE	IS	0.00002 AT (565009.00,	4192130.00	,	110.64,	0.00)	DC	NA
	5TH HIGHEST	VALUE	IS	0.00002 AT (564487.38,	4192391.25	,	80.16,	0.00)	DC	NA
	6TH HIGHEST	VALUE	IS	0.00002 AT (564249.94,	4192208.00	,	66.75,	0.00)	DC	NA
	7TH HIGHEST	VALUE	IS	0.00002 AT (565700.06,	4191711.25	,	108.20,	0.00)	DC	NA
	8TH HIGHEST	VALUE	IS	0.00002 AT (565700.06,	4191711.25	,	109.42,	0.00)	DC	NA
	9TH HIGHEST	VALUE	IS	0.00002 AT (564228.31,	4192049.25	,	64.62,	0.00)	DC	NA
	10TH HIGHEST	VALUE	IS	0.00001 AT (564591.56,	4192414.75	,	83.82,	0.00)	DC	NA

0.00014 AT (564945.62, 4192065.50, 0.00010 AT (565009.00, 4192130.00, 0.00010 AT (564926.69, 4192158.75, 0.00008 AT (564487.38, 4192391.25, 102.72, 0.00) DC WET. 1ST HIGHEST VALUE IS NΙΔ 110.64, 2ND HIGHEST VALUE IS 0.00) DC NA 3RD HIGHEST VALUE IS 109.42, 0.00) DC NA 80.16, 4TH HIGHEST VALUE IS 0.00) DC NA 5TH HIGHEST VALUE IS 0.00007 AT (565700.06, 4191711.25, 108.20, 0.00) DC NA 6TH HIGHEST VALUE IS 0.00007 AT (565700.06, 4191711.25, 109.42, 0.00) DC NA 0.00) 7TH HIGHEST VALUE IS 0.00006 AT (564591.56, 4192414.75, 83.82, DC NA 66.75, 8TH HIGHEST VALUE IS 0.00005 AT (564249.94, 4192208.00, 0.00) DC NA 0.00004 AT (564525.06, 4192613.75, 0.00004 AT (564160.38, 4192207.75, 0.00) DC 0.00) DC 9TH HIGHEST VALUE IS 85.65, NA 10TH HIGHEST VALUE IS 64.31, NA 1.44572 AT (565700.06, 4191711.25, 1.38106 AT (565700.06, 4191711.25, 0.87957 AT (565144.62, 4192620.50, 0.82426 AT (565202.31, 4192629.00, 0.80504 AT (565202.31, 4192629.00, 0.80504 AT (56522.375 109.42, 108.20, NOENGINE 1ST HIGHEST VALUE IS 0.00) DC NA 2ND HIGHEST VALUE IS 0.00) DC NA 3RD HIGHEST VALUE IS 154.84, 0.00) DC NA 4TH HIGHEST VALUE IS 160.32, 0.00) DC NA 159.72, 5TH HIGHEST VALUE IS 0.80504 AT (565233.75, 4192605.00, 0.00) DC NA 0.63489 AT (566729.00, 4190469.25, 136.86, 6TH HIGHEST VALUE IS 0.00) DC MΔ 114.60, 7TH HIGHEST VALUE IS 0.61987 AT (566093.38, 4191024.75, 0.00) DC NA 0.54528 AT (567269.62, 4189942.75, 0.53751 AT (565009.00, 4192130.00, 0.49882 AT (564926.69, 4192158.75, 8TH HIGHEST VALUE IS 174.65, 0.00) DC 110.64, 9TH HIGHEST VALUE IS 0.00) DC NA 10TH HIGHEST VALUE IS 109.42, 0.00) DC

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

NETWORK AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID 109.42, ENGINES 1ST HIGHEST VALUE IS 2.79101 AT (565700.06, 4191711.25, 0.00) 2.79101 AT (565700.06, 4191711.25, 109.42, 2.76074 AT (565700.06, 4191711.25, 108.20, 2.64388 AT (564945.62, 4192065.50, 102.72, 2.16735 AT (565009.00, 4192130.00, 110.64, 2.12656 AT (564926.69, 4192158.75, 109.42, 2.06330 AT (566093.38, 4191024.75, 114.60, 114.6024, 11 2ND HIGHEST VALUE IS 0.00) DC 3RD HIGHEST VALUE IS 0.00) DC NA 4TH HIGHEST VALUE IS 0.00) DC 5TH HIGHEST VALUE IS 0.00) DC 6TH HIGHEST VALUE IS 0.00) DC 1.64934 AT (566166.56, 4190836.25, 1.56530 AT (566063.25, 4190799.75, 1.25724 AT (564933.25, 4191275.25, 1.23119 AT (565070.19, 4191077.50, 7TH HIGHEST VALUE IS 107.59, 0.00) DC NA 101.19, 8TH HIGHEST VALUE IS 0.00) DC 9TH HIGHEST VALUE IS 0.00) DC 0.00) DC 71.32, 70.41, 10TH HIGHEST VALUE IS 0.00502 AT (564933.25, 4191275.25, 0.00473 AT (564839.88, 4191259.75, 1ST HIGHEST VALUE IS 0.00) DC 2ND HIGHEST VALUE IS 67.36, 0.00) DC NA 0.00411 AT (564859.75, 4191226.00, 0.00281 AT (565070.19, 4191077.50, 3RD HIGHEST VALUE IS 67.67, 0.00) DC 4TH HIGHEST VALUE IS 70.41, 0.00) DC NA 0.00235 AT (564228.31, 4192049.25, 5TH HIGHEST VALUE IS 64.62, 0.00) DC 6TH HIGHEST VALUE IS 0.00189 AT (564786.81, 4191021.25, 61.26, 0.00) DC NA 0.00182 AT (564079.94, 4192117.50, 0.00159 AT (565328.31, 4191032.50, 0.00149 AT (564160.38, 4192207.75, 0.00142 AT (564249.94, 4192208.00, 7TH HIGHEST VALUE IS 61.57, 0.00) DC 8TH HIGHEST VALUE IS 74.68, 0.00) DC 9TH HIGHEST VALUE IS 0.00) DC 64.31, 10TH HIGHEST VALUE IS 0.00) DC 66.75, NA 0.69838 AT (565144.62, 4192620.50, 154.84, 160.32, 0.00) DC COMBUST 1ST HIGHEST VALUE IS 0.66312 AT (565202.31, 4192629.00, 0.64212 AT (565233.75, 4192605.00, 0.00) DC 2ND HIGHEST VALUE IS NA 3RD HIGHEST VALUE IS 159.72. 0.00) DC 0.55230 AT (566729.00, 4190469.25, 0.49475 AT (567269.62, 4189942.75, 4TH HIGHEST VALUE IS 136.86, 0.00) DC NA 5TH HIGHEST VALUE IS 174.65, 0.00) DC 0.47189 AT (566093.38, 4191024.75, 6TH HIGHEST VALUE IS 114.60, 0.00) DC 7TH HIGHEST VALUE IS 0.40619 AT (565700.06, 4191711.25, 109.42. 0.00) DC NA 8TH HIGHEST VALUE IS 0.38784 AT (565700.06, 4191711.25, 0.00) DC 108.20, 9TH HIGHEST VALUE IS 0.38684 AT (567693.00, 4189595.75, 193.24. 0.00) DC NA 0.31127 AT (566166.56, 4190836.25, 10TH HIGHEST VALUE IS 0.00) DC 107.59,

*** THE SUMMARY OF MAXIMUM PERIOD ($8760\ \mathrm{HRS})$ RESULTS ***

GROUP II) 	AVE	RAGE CONC	REC	EPTOR (XR, YR	, ZELEV, ZFLA	G) OF TYP!	NETWORK GRID-ID	
HAZMAT	1ST HIGHEST VAL 2ND HIGHEST VAL 3RD HIGHEST VAL 4TH HIGHEST VAL	UE IS UE IS	0.01967 AT (0.00840 AT (0.00756 AT (0.00591 AT (564859.75,	4191077.50, 4191226.00,	71.32, 70.41, 67.67, 67.36,	0.00) DC 0.00) DC 0.00) DC 0.00) DC	AN AN AN	

6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE	IS IS IS	0.00575 0.00488 0.00432 0.00402 0.00398 0.00354	AT (AT (AT (AT (565130.12, 564228.31, 564945.62, 564249.94,	4191032.50, 4190916.25, 4192049.25, 4192065.50, 4192208.00, 4192207.75,	64.62, 102.72, 66.75,	0.00) 0.00) 0.00)	DC DC DC DC DC	NA NA NA NA NA
2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE VALUE VALUE VALUE	IS IS IS IS IS IS IS IS IS	0.01170 0.01170 0.01137 0.01107 0.01059 0.00950 0.00557 0.00442 0.00424 0.00421	AT (AT (AT (AT (AT (AT (AT (565700.06, 564945.62, 565009.00, 564933.25, 564926.69, 565070.19, 565328.31, 564487.38,	4192130.00,	102.72, 110.64, 71.32, 109.42, 70.41, 74.68, 80.16,	0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	DC DC DC DC DC DC DC DC DC	NA
ALL_LABS 1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH		VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE	IS	1.02400 0.97771 0.33743 0.29570 0.27118 0.17730 0.15931 0.15764 0.14063 0.14058	AT (AT (AT (AT (AT (AT (AT (AT (565700.06, 565700.06, 564945.62, 565009.00, 564926.69, 565144.62, 565233.75, 565202.31, 566093.38,	4191711.25, 4191711.25, 4192065.50, 4192130.00, 4192158.75, 4192620.50,	109.42, 108.20, 102.72, 110.64, 109.42, 154.84, 159.72, 160.32,	0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	DC DC DC DC DC DC DC DC DC	NA N

*** ISCST3 - VERSION 02035 ***

*** UC Berkeley - 12/2003; vjh - Strawberry Canyon Receptor

*** Model Executed on 02/04/04 at 18:24:12 ***

Input File - D:\Beest\UCBerk\10-03\Final\Existing-Can-Strawberry.DTA

Output File - D:\Beest\UCBerk\10-03\Final\Existing-Can-Strawberry.LST

Met File - D:\Beest\UCBerk\10-03\lb1-97a.asc

Number of sources -126 Number of source groups -Number of receptors -

*** POINT SOURCE DATA ***

	NUMBER PART. CATS.		X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	TEMP.	STACK EXIT VEL. (M/SEC)	DIAMETER	BUILDING EMISSION RAEXISTS SCALAR VAN	
WHSTK1_8	0	0.44700E-04 0.60100E-03	564704.4	4191782.8	66.8	31.70	293.15	7.12	0.19	YES	
NWAF9	0	0.60100E-03	564718.8	4191791.2	66.8	29.57	293.15	16.48		YES	
WHSTK10	0	0.44700E-04	564724.4	4191826.0	66.8	8.60		7.12	0.34	YES	
MHSTK1	0	0.24000E-03	564794.4	4191795.8	74.8	7.61	293.15		0.34	YES	
MHSTK2	0	0.24000E-03	564798.6	4191843.0		10.89	293.15	17.25	0.29	YES	
MHSTK3		0.24000E-03				10.89	293.15		0.48	YES	
MHSTK4	0	0.24000E-03	564800.9	4191787.2		15.61	293.15		0.33	YES	
MHSTK6		0.24000E-03				10.94	293.15		0.34	YES	
KHSTK1	0	0.33000E-02	564761.1	4191879.8		18.45	293.15	1.28	2.76	YES	
KHSTK2	0	0.33000E-02	564759.4	4191891.8		18.45	293.15		2.76	YES	
KHSTK3		0.33000E-02				18.45	293.15		2.76	YES	
KHSTK4	0	0.33000E-02	564731.4	4191889.0		18.45	293.15		2.76	YES	
BHSTK1		0.45600E-03				27.85	293.15	2.78 2.78	1.26	YES	
BHSTK2	0	0.45600E-03	564675.0	4191896.8	67.4	29.68	293.15	2.78	1.26	YES	
BHSTK3	0	0.45600E-03	564704.5	4191898.0	67.4	29.68	293.15		1.26	YES	
BHSTK4	0	0.45600E-03	564707.4	4191887.8	67.4		293.15	2.78	0.37	YES	
BHSTK5	0	0.45600E-03	564691.6	4191888.0	67.4	33.34	293.15		0.37	YES	
VLSBSTK1	0	0.77100E-03	564933.6	4191633.2	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK2	0	0.77100E-03	564954.0	4191566.5	64.4	27.04	293.15	3.97 3.97	1.22	YES	
VLSBSTK3	0	0.77100E-03	565051.3	4191594.8	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK4	0	0.77100E-03	565030.6	4191662.2	64.4	27.04	293.15	3.97	1.22	YES	
LSASTK1	0	0.16600E-02	564892.2	4191637.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK2	0	0.16600E-02	564875.9	4191632.8	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK3	0	0.16600E-02	564907.6	4191580.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK4	0	0.16600E-02	564897.1	4191578.0	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK5	0	0.16600E-02	564908.6	4191576.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK6		0.16600E-02				28.31	293.15		1.22	YES	
LSASTK7		0.16600E-02				28.31	293.15	5.18	0.30	YES	
LEWHSTK1	0	0.63700E-03	565605.8	4191772.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK2	0	0.63700E-03	565591.5	4191786.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK3	0	0.63700E-03	565585.9	4191792.2	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK4	0	0.63700E-03	565583.1	4191800.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK5	0	0.63700E-03	565598.1	4191787.8	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK6	0	0.63700E-03	565619.4	4191775.8	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK7	0	0.63700E-03	565608.8	4191787.2	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK8	0	0.63700E-03	565597.6	4191800.5	106.7	12.80	293.15	3.11	0.30	YES	
LEWHSTK9	0	0.63700E-03	565593.3	4191808.2	106.7	12.80	293.15		0.36	YES	
LATHSTK1	0	0.27200E-02	565555.1	4191799.2	104.6	42.37	293.15	6.28 6.28	0.34	YES	
LATHSTK2	0	0.27200E-02 0.27200E-02 0.27200E-02	565561.1	4191812.0	104.6	36.88	293.15		0.70	YES	
LATHSTK3	0	0.27200E-02	565531.6	4191800.2	104.6	36.88	293.15	6.28	0.48	YES	

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
LATHSTK4	0	0.27200E-02	565515.1	4191799.5	104.6	37.19	293.15	6.28	0.96	YES	
LATHSTK5	0	0.27200E-02	565539.7	4191794.2	104.6	42.37	293.15	6.28	0.70	YES	
LATHSTK6	0	0.27200E-02	565527.3	4191776.0	104.6	38.40	293.15	6.28	0.74	YES	
LATHSTK7	0	0.27200E-02	565544.9	4191781.5	104.6	38.40	293.15	6.28	0.31	YES	
LATHSTK8	0	0.27200E-02	565562.3	4191787.0	104.6	38.40	293.15	6.28	0.70	YES	
TANHSTKA	0	0.23500E-02	565492.1	4191793.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKB	0	0.23500E-02	565496.8	4191794.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKC	0	0.23500E-02	565494.1	4191787.2	100.6	39.32	293.15	2.94	1.69	YES	

TANHSTKD	0	0.23500E-02	565499.1 4191788.2	100.6	39.32	293.15	2.94	1.69	YES
HHSTKA	0	0.26000E-02	565540.8 4191749.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKB	0	0.26000E-02	565565.6 4191756.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKC	0	0.26000E-02	565576.8 4191717.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKD	0	0.26000E-02	565553.2 4191710.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKE	0	0.26000E-02	565543.4 4191746.5	103.6	20.12	293.15	4.15	0.81	YES
STHSTK1	0	0.10700E-03	565530.3 4191891.8	112.8	13.87	293.15	2.17	0.27	YES
STHSTK2	0	0.10700E-03	565522.0 4191918.2	112.8	13.87	293.15	2.17	0.34	YES
STHSTK3	0	0.10700E-03	565537.9 4191871.0	112.8	17.56	293.15	2.17	0.34	YES
STHSTK4	0	0.10700E-03	565529.5 4191871.8	112.8	13.87	293.15	2.17	0.34	YES
STHSTK5	0	0.10700E-03	565530.9 4191870.0	112.8	14.02	293.15	2.17	0.34	YES
STHSTK6	0	0.10700E-03	565530.1 4191869.5	112.8	14.02	293.15	2.17	0.27	YES
STHSTK7	0	0.10700E-03	565532.6 4191866.5	112.8	14.02	293.15	2.17	0.39	YES
STHSTK8	0	0.10700E-03	565538.2 4191864.0	112.8	14.02	293.15	2.17	0.27	YES
STHSTK9	0	0.10700E-03	565525.9 4191880.5	112.8	14.02	293.15	2.17	0.53	YES
STHSTK11	0	0.10700E-03	565519.0 4191907.5	112.8	13.87	293.15	2.17	0.34	YES
GHSTK1	0	0.36700E-03	565507.1 4191756.0	103.6	16.06	293.15	5.92	0.30	YES
GHSTK2	0	0.36700E-03	565510.6 4191744.8	103.6	16.06	293.15	5.92	0.25	YES
GHSTK3	0	0.36700E-03	565512.4 4191739.0	103.6	16.37	293.15	5.92	0.30	YES
GHSTK4	0	0.36700E-03	565514.7 4191737.8	103.6	15.91	293.15	5.92	0.31	YES
GHSTK5	0	0.36700E-03	565514.9 4191732.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK6	0	0.36700E-03	565500.2 4191755.2	103.6	16.12	293.15	5.92	0.30	YES
GHSTK7	0	0.36700E-03	565501.1 4191753.0	103.6	16.37	293.15	5.92	0.84	YES
GHSTK8	0	0.36700E-03	565503.7 4191744.2	103.6	16.00	293.15	5.92	0.30	YES
GHSTK9	0	0.36700E-03	565505.2 4191740.2	103.6	16.37	293.15	5.92	0.26	YES
GHSTK10	0	0.36700E-03	565506.9 4191735.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK11	0	0.36700E-03	565509.7 4191728.2	103.6	16.22	293.15	5.92	0.30	YES
GHSTK12	0	0.36700E-03	565509.0 4191725.5	103.6	16.06	293.15	5.92	0.30	YES
GHSTK13	0	0.36700E-03	565516.9 4191725.8	103.6	15.91	293.15	5.92	0.40	YES
CHSTK1	0	0.86900E-04	565393.9 4192008.8	110.3	26.85	293.15	2.00	1.00	YES
DHSTK1	0	0.95300E-04	565329.4 4191982.0	107.2	16.36	293.15	2.00	1.00	YES
HESSTK1	0	0.73300E-03	565234.6 4191926.2	98.2	15.39	293.15	2.00	1.00	YES

	NUMBER	EMISSION RATE	F.		BASE	STACK	STACK	STACK	STACK	BUILDING	EMISSION RATE SCALAR VARY BY
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	TEMP.	EXIT VEL.	DIAMETER	EXISTS	SCALAR VARY
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(DEG.K)	(M/SEC)	(METERS)		BY
HILSTK1	0	0.72100E-03	564874.6	4191815.0	80.4	14.96	293.15			YES	
MULSTKI	0	0.53300E-05 0.13600E-04 0.86300E-04 0.86300E-04	564//9./	4191/3/.8	/4.4	17.24	293.15	2.00		YES	
WELSTK1	0	0.13600E-04	564933.7	4191795.2	81.7	5.89	293.15	2.00 2.70	1.00	YES	
PRINTA	0	0.86300E-04	564584.7	4191553.2	60.0	8.91	293.15			YES	
PRINTB	0	0.86300E-04	564614.4	4191520.8	60.0	8.91	293.15		0.84	YES	
PRINTC	0	0.86300E-04 0.97700E+00	564643.1	4191525.5	60.0	8.91		2.70	0.60	YES	
COGEN	0	0.97700E+00	564876.0	4191492.0	71.9	12.77	430.37	10.45	2.28	YES	
BOILER#2	0	0.12280E-01	564863.6	4191499.5	71.9	8.80 8.80 8.80	522.82	7.97	1.52	YES	
BOILER#3	0	0.47000E-01	564881.9	4191505.8	71.9	8.80	554.11	10.53	1.52	YES	
BOILER#4	0	0.56800E-01	564885.8	4191495.8	71.9	8.80	566.65	12.63	1.52	YES	
POURING	0	0.12800E-02	564847.8	4191467.0	70.1	14.94	293.15	4.62	0.56	YES	
ENG_62	0	0.47241E-02	565567.6	4191086.5	85.1	4.57	800.37	146.01	0.13	NO	
ENG_63	0	0.23600E-02	564668.2	4191897.5	70.2	4.57	799.85	152.00	0.13	YES	
ENG_64	0	0.72300E-03	565452.9	4191687.0	98.2	3.05	817.07	58.47	0.08	YES	
ENG_105	0	0.74200E-01	564939.1	4191457.8	71.1	4.57	810.96	70.10	0.23	YES	
ENG_106	0	0.62205E-01	564991.6	4191614.5	73.6	30.48	810.96	70.10	0.20	YES	
ENG_107	0	0.49776E-01	564767.4	4191906.8	76.2	0.00	810.96	70.10	0.18	YES	
ENG 108	0	0.49776E-01	564930.6	4191564.2	68.8	7.62	810.96	70.10	0.18	YES	
ENG 109	0	0.16596E-01	565615.8	4191801.2	111.7	3.05	810.96	70.10	0.15	YES	
ENG 110	0	0.82858E-02	564655.9	4191874.5	68.4	4.57	810.96	70.10	0.10	YES	
ENG 111	0	0.23810E-01	565091.1	4191757.8	78.9	3.05	810.96	70.10	0.11	YES	
ENG 112	0	0.20714E-01	565542.8	4191208.2	85.7	3.05	810.93	70.10	0.10	NO	
ENG 113	0	0.20714E-01	565673.6	4191194.8	92.0	3.05	810.93	70.10	0.10	NO	
ENG 114	0	0.20714E-01	565601.4	4191014.2	86.0	3.05	810.93	70.10	0.10	NO	
ENG 115	0	0.20714E-01	565702.9	4190991.8	91.4	3.05	810.93	70.10	0.10	NO	
ENG 116	0	0.20714E-01	564775.8	4191177.5	63.2	4.57	810.93	70.10	0.10	NO	
ENG 117	0	0.20714E-01	565575.9	4191609.0	99.3	3.05	810.96	70.10	0.10	YES	
ENG 118	0	0.98935E-02	564654.8	4191890.5	68.6	4.57	810.96	70.10	0.13	YES	
ENG 119	0	0.14531E-01	564728.8	4191771.0	70.5	4.57	810.96	70.10	0.08	YES	
ENG 120	0	0.10450E-01	565318.0	4191422.5	86.1	3.05	810.96	70.10	0.08	YES	
ENG 121	0	0.10388E-01	565926.2	4191443.0	118.9	3.05	810.93	70.10	0.08	NO	
ENG 123	0	0.12800E-01	565259.4	4191652.8	88.3	3.05	810.96	70.10	0.08	YES	
ENG 125	0	0.41058E-02	564811.2	4191460.8	67.7	3.05	810.96	70.10	0.08	YES	
ENG 126	0	0.33143E-02	565137.9	4191441.5	77.6	0.00	810.96	70.10	0.08	YES	
ENG 128	0	0.41429E-02	565469.2	4191955.2	109.8	3.05	810.96	70.10	0.05	YES	
ENG 129	0	0.41429E-02	565383.1	4191740.2	97.0	2.44	810.96	70.10	0.05	YES	
ENG 130	0	0.25692E-02	565533.3	4191713.5	98.9	2.44	815.40	134.54	0.08	YES	
ENG 131	0	0.72350E-03	564970.3	4191484.2	71.3	1.83	817.07	58.47	0.08	YES	
ENG 132	0	0.97700E+00 0.12280E-01 0.47000E-01 0.56800E-01 0.12800E-02 0.47241E-02 0.23600E-03 0.74200E-01 0.62205E-01 0.49776E-01 0.49776E-01 0.49776E-01 0.20714E-01 0.207	564800.3	4191781.8	74.3	1.83	817.07	58.47	0.08	YES	
	-	00									

*** VOLUME SOURCE DATA ***

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	E X (METERS) 	Y (METERS)	BASE ELEV. (METERS)	RELEASE HEIGHT (METERS)	INIT. SY (METERS)	INIT. SZ (METERS)	EMISSION RATE SCALAR VARY BY	
MHSTK5	0	0.24000E-03	564821.2	4191842.8	74.8	6.95	0.07	2.42		
STHSTK10	0	0.10700E-03	565522.6	4191880.8	112.8	14.02	0.29	5.39		
PAINT1	0	0.26600E-03	564917.1	4191432.5	72.0	4.57	3.54	4.25		
PAINT2	0	0.26600E-03	565322.7	4191834.8	96.0	4.57	3.54	4.25		
PAINT3	0	0.26600E-03	565541.5	4191525.8	97.0	4.57	3.54	4.25		
PAINT4	0	0.26600E-03	564865.7	4191751.0	77.0	4.57	3.54	4.25		

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDs

ALL,	WHSTK1_8,	NWAF9 ,	WHSTK10 ,	MHSTK1 ,	MHSTK2 ,	MHSTK3 ,	MHSTK4 ,	MHSTK5 ,	MHSTK6 ,	KHSTK1 ,	KHSTK2 , KHSTK3
LSASTK2 ,	KHSTK4 ,	BHSTK1 ,	BHSTK2 ,	BHSTK3 ,	BHSTK4 ,	BHSTK5 ,	VLSBSTK1,	VLSBSTK2,	VLSBSTK3,	VLSBSTK4,	LSASTK1 ,
LEWHSTK7,	LSASTK3 ,	LSASTK4 ,	LSASTK5 ,	LSASTK6 ,	LSASTK7 ,	LEWHSTK1,	LEWHSTK2,	LEWHSTK3,	LEWHSTK4,	LEWHSTK5,	LEWHSTK6,
TANHSTKB,	LEWHSTK8,	LEWHSTK9,	LATHSTK1,	LATHSTK2,	LATHSTK3,	LATHSTK4,	LATHSTK5,	LATHSTK6,	LATHSTK7,	LATHSTK8,	TANHSTKA,
STHSTK5 ,	TANHSTKC,	TANHSTKD,	HHSTKA ,	HHSTKB ,	HHSTKC ,	HHSTKD ,	HHSTKE ,	STHSTK1 ,	STHSTK2 ,	STHSTK3 ,	STHSTK4 ,
,	STHSTK6 ,	STHSTK7 ,	STHSTK8 ,	STHSTK9 ,	STHSTK11,	STHSTK10,	GHSTK1 ,	GHSTK2 ,	GHSTK3 ,	GHSTK4 ,	GHSTK5 , GHSTK6
MULSTK1 ,	GHSTK7 ,	GHSTK8 ,	GHSTK9 ,	GHSTK10 ,	GHSTK11 ,	GHSTK12 ,	GHSTK13 ,	CHSTK1 ,	DHSTK1 ,	HESSTK1 ,	HILSTK1 ,
,	WELSTK1 ,	PRINTA ,	PRINTB ,	PRINTC ,	COGEN ,	BOILER#2,	BOILER#3,	BOILER#4,	POURING ,	PAINT1 ,	PAINT2 , PAINT3
ENG_112 ,	PAINT4 ,	ENG_62 ,	ENG_63 ,	ENG_64 ,	ENG_105 ,	ENG_106 ,	ENG_107 ,	ENG_108 ,	ENG_109 ,	ENG_110 ,	ENG_111 ,
ENG_126 ,	ENG_113 ,	ENG_114 ,	ENG_115 ,	ENG_116 ,	ENG_117 ,	ENG_118 ,	ENG_119 ,	ENG_120 ,	ENG_121 ,	ENG_123 ,	ENG_125 ,
	ENG_128 ,	ENG_129 ,	ENG_130 ,	ENG_131 ,	ENG_132 ,	E134_133,					
GEN ENG_113 ,	ENG_62 ,	ENG_63 ,	ENG_64 ,	ENG_105 ,	ENG_106 ,	ENG_107 ,	ENG_108 ,	ENG_109 ,	ENG_110 ,	ENG_111 ,	ENG_112 ,
ENG_128 ,	ENG_114 ,	ENG_115 ,	ENG_116 ,	ENG_117 ,	ENG_118 ,	ENG_119 ,	ENG_120 ,	ENG_121 ,	ENG_123 ,	ENG_125 ,	ENG_126 ,
	ENG_129 ,	ENG_130 ,	ENG_131 ,	ENG_132 ,	E134_133,						
LABS	WHSTK1_8,	NWAF9 ,	WHSTK10 ,	MHSTK1 ,	MHSTK2 ,	MHSTK3 ,	MHSTK4 ,	MHSTK5 ,	MHSTK6 ,	KHSTK1 ,	KHSTK2 , KHSTK3
LSASTK2 ,	KHSTK4 ,	BHSTK1 ,	BHSTK2 ,	BHSTK3 ,	BHSTK4 ,	BHSTK5 ,	VLSBSTK1,	VLSBSTK2,	VLSBSTK3,	VLSBSTK4,	LSASTK1 ,
LEWHSTK7,	LSASTK3 ,	LSASTK4 ,	LSASTK5 ,	LSASTK6 ,	LSASTK7 ,	LEWHSTK1,	LEWHSTK2,	LEWHSTK3,	LEWHSTK4,	LEWHSTK5,	LEWHSTK6,
TANHSTKB,	LEWHSTK8,	LEWHSTK9,	LATHSTK1,	LATHSTK2,	LATHSTK3,	LATHSTK4,	LATHSTK5,	LATHSTK6,	LATHSTK7,	LATHSTK8,	TANHSTKA,
	TANHSTKC,	TANHSTKD,	HHSTKA ,	HHSTKB ,	HHSTKC ,	HHSTKD ,	HHSTKE ,	STHSTK1 ,	STHSTK2 ,	STHSTK3 ,	STHSTK4 ,

STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10, GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDs

GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , DHSTK1 , HESSTK1 , HILSTK1 ,

MULSTK1 ,

WELSTK1 .

COMBUST COGEN , BOILER#2, BOILER#3, BOILER#4,

OTHER PRINTA , PRINTB , PRINTC , POURING , PAINT1 , PAINT2 , PAINT3 , PAINT4 ,

BOILERS BOILER#2, BOILER#3, BOILER#4,

COGEN COGEN ,

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP ID AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID 2.99073 AT (566200.00, 4191300.00, 1ST HIGHEST VALUE IS 0.00, 0.00, 0.00, 2ND HIGHEST VALUE IS 0.00000 AT (0.00) 3RD HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 0.00, 4TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00) 5TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 6TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 0.00) 7TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 0.00) 0.00, 0.00000 AT (0.00, 8TH HIGHEST VALUE IS 0.00, 9TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 10TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, GEN 1ST HIGHEST VALUE IS 1.63559 AT (566200.00, 4191300.00, 158.00, 0.00) DC 0.00, 2ND HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00) 3RD HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 0.00) 0.00, 4TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00) 5TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 0.00) 0.00000 AT (0.00, 6TH HIGHEST VALUE IS 0.00, 0.00, 0.00, 0.00, 7TH HIGHEST VALUE IS 0.00000 AT (0.00. 0.00) 0.00, 8TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 9TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00) 10TH HIGHEST VALUE IS 0.00000 AT (0.00. 0.00. 0.00, 0.00) 1ST HIGHEST VALUE IS 0.24087 AT (566200.00, 4191300.00, 158.00, 0.00) DC LABS 0.00, 0.00000 AT (0.00, 2ND HIGHEST VALUE IS 0.00) 0.00, 3RD HIGHEST VALUE IS 0.00000 AT (0.00. 0.00. 0.00, 0.00) 0.00, 4TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00) 5TH HIGHEST VALUE IS 0.00000 AT (0.00. 0.00, 0.00. 0.00) 6TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 0.00) 7TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 8TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00. 9TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00, 0.00, 10TH HIGHEST VALUE IS 0.00000 AT (0.00.

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP ID AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID

COMBUST	1.S.T	HIGHEST	VALUE	TS	1 10726	ΑТ	(566200 00.	4191300.00,	158 00.	0.00)	DC	NA
00112001				IS					0.00,			20	
		HIGHEST							0.00,				
		HIGHEST			0.00000				0.00,				
				IS				0.00,	0.00,	0.00,			
				IS					0.00,		,		
				IS					0.00,				
				IS					0.00,				
				IS					0.00,				
				IS					0.00,				
							`	,	,	,	,		
OTHER	1ST	HIGHEST	VALUE	IS	0.00713	AT	(566200.00,	4191300.00,	158.00,	0.00)	DC	NA
	2ND	HIGHEST	VALUE	IS					0.00,		0.00)		
	3RD	HIGHEST	VALUE	IS	0.00000	AΤ	(0.00,	0.00,	0.00,	0.00)		
	4TH	HIGHEST	VALUE	IS					0.00,		0.00)		
	5TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)		
	6TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)		
	7TH	HIGHEST	VALUE	IS					0.00,		0.00)		
	8TH	HIGHEST	VALUE	IS					0.00,		0.00)		
	9TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)		
	10TH	HIGHEST	VALUE	IS					0.00,		0.00)		
BOILERS									4191300.00,			DC	NA
				IS					0.00,				
	3RD	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)		
				IS					0.00,				
				IS	0.00000	ΑT	(0.00,	0.00,	0.00,			
	6TH	HIGHEST	VALUE	IS					0.00,		0.00)		
		HIGHEST							0.00,				
				IS					0.00,				
									0.00,				
	10TH	HIGHEST	VALUE	IS	0.00000	AΤ	(0.00,	0.00,	0.00,	0.00)		

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

GROUP ID	AVER	AGE CONC	REC	EPTOR (XR, YR,	ZELEV, ZFLA	G) OF TYPE	NETWORK GRID-ID
COGEN 1ST HIGHEST 2ND HIGHEST 3RD HIGHEST 4TH HIGHEST 5TH HIGHEST 6TH HIGHEST 7TH HIGHEST 8TH HIGHEST 9TH HIGHEST 10TH HIGHEST	VALUE IS	0.95830 AT (0.00000 AT (566200.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	4191300.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	158.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	0.00) DC 0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	NA

*** ISCST3 - VERSION 02035 ***

*** UC Berkeley - 12/2003; vjh - Chronic

*** Model Executed on 02/04/04 at 18:24:21 ***

Input File - D:\Beest\UCBerk\10-03\Final\Existing-Chron.DTA

Output File - D:\Beest\UCBerk\10-03\Final\Existing-Chron.LST

Met File - D:\Beest\UCBerk\10-03\lb1-97a.asc

Number of sources - 126 Number of source groups - 27 Number of receptors - 1431

SOURCE ID	PART. CATS.		X				TEMP.		STACK DIAMETER (METERS)		EMISSION RATE SCALAR VARY BY
WHSTK1 8	0	0.21000E-05	564704.4	4191782.8	66.8	31.70	293.15	7.12	0.19	YES	
NWAF9	0	0.75100E-04	564718.8	4191791.2	66.8	29.57	293.15	16.48	0.74	YES	
WHSTK10	0	0.21000E-05	564724.4	4191826.0	66.8	8.60	293.15	7.12	0.34	YES	
MHSTK1	0	0.37600E-05	564794.4	4191795.8	74.8	7.61	293.15	17.25	0.34	YES	
MHSTK2	0	0.37600E-05	564798.6	4191843.0	74.8	10.89	293.15		0.29	YES	
MHSTK3	0	0.37600E-05	564794.1	4191843.0	74.8	10.89	293.15	17.25	0.48	YES	
MHSTK4	0	0.37600E-05	564800.9	4191787.2	74.8	15.61	293.15	17.25	0.33	YES	
MHSTK6	0	0.37600E-05	564801.3	4191808.2	74.8	10.94	293.15	17.25	0.34	YES	
KHSTK1		0.11500E-03				18.45	293.15	1.28	2.76	YES	
KHSTK2		0.11500E-03					293.15	1.28	2.76	YES	
KHSTK3		0.11500E-03					293.15	1.28	2.76	YES	
KHSTK4		0.11500E-03					293.15	1.28	2.76	YES	
BHSTK1		0.11600E-04				27.85	293.15	2.78	1.26	YES	
BHSTK2		0.11600E-04					293.15		1.26	YES	
BHSTK3		0.11600E-04					293.15	2.78	1.26	YES	
BHSTK4		0.11600E-04					293.15	2.78	0.37	YES	
BHSTK5		0.11600E-04					293.15	2.78	0.37	YES	
VLSBSTK1		0.12100E-03					293.15		1.22	YES	
VLSBSTK2		0.12100E-03					293.15		1.22	YES	
VLSBSTK3		0.12100E-03					293.15		1.22	YES	
VLSBSTK4		0.12100E-03					293.15		1.22	YES	
LSASTK1		0.70000E-04					293.15		1.22	YES	
LSASTK2		0.70000E-04					293.15		1.22	YES	
LSASTK3		0.70000E-04					293.15		1.22	YES	
LSASTK4		0.70000E-04					293.15		1.22	YES	
LSASTK5		0.70000E-04					293.15		1.22	YES	
LSASTK6		0.70000E-04					293.15		1.22	YES	
LSASTK7		0.70000E-04				28.31	293.15		0.30	YES	
LEWHSTK1		0.21600E-05				12.80	293.15		0.36	YES	
LEWHSTK2		0.21600E-05				12.80	293.15		0.36	YES	
LEWHSTK3		0.21600E-05				12.80	293.15		0.36	YES	
LEWHSTK4	-	0.21600E-05				12.80	293.15		0.36	YES	
LEWHSTK5		0.21600E-05				12.80	293.15		0.36	YES	
LEWHSTK6		0.21600E-05				12.80	293.15		0.36	YES	
LEWHSTK7		0.21600E-05				12.80	293.15		0.36	YES	
LEWHSTK8		0.21600E-05				12.80	293.15		0.30	YES	
LEWHSTK9		0.21600E-05				12.80	293.15		0.36	YES	
										YES	
LATHSTK2	0	0.92400E-05 0.92400E-05	565561 1	4191733.Z	104.0	36 89	203.15	6 29	0.34	YES	
LATHSTK3	0	0.92400E-05	565531 6	4191012.U	104.0	36.00	203.15	6 29	0.70	YES	
питиотио	U	0.724000-03	202221.0	-171000.Z	T04.0	20.00	∠ J J • I J	0.20	0.40	1110	

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
LATHSTK4	0	0.92400E-05	565515.1	4191799.5	104.6	37.19	293.15	6.28	0.96	YES	
LATHSTK5	0	0.92400E-05	565539.7	4191794.2	104.6	42.37	293.15	6.28	0.70	YES	
LATHSTK6	0	0.92400E-05	565527.3	4191776.0	104.6	38.40	293.15	6.28	0.74	YES	
LATHSTK7	0	0.92400E-05	565544.9	4191781.5	104.6	38.40	293.15	6.28	0.31	YES	
LATHSTK8	0	0.92400E-05	565562.3	4191787.0	104.6	38.40	293.15	6.28	0.70	YES	
TANHSTKA	0	0.79700E-05	565492.1	4191793.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKB	0	0.79700E-05	565496.8	4191794.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKC	0	0.79700E-05	565494.1	4191787.2	100.6	39.32	293.15	2.94	1.69	YES	

TANHSTKD	0	0.79700E-05	565499.1 4191788.2	100.6	39.32	293.15	2.94	1.69	YES
HHSTKA	0	0.19400E-04	565540.8 4191749.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKB	0	0.19400E-04	565565.6 4191756.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKC	0	0.19400E-04	565576.8 4191717.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKD	0	0.19400E-04	565553.2 4191710.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKE	0	0.19400E-04	565543.4 4191746.5	103.6	20.12	293.15	4.15	0.81	YES
STHSTK1	0	0.54300E-05	565530.3 4191891.8	112.8	13.87	293.15	2.17	0.27	YES
STHSTK2	0	0.54300E-05	565522.0 4191918.2	112.8	13.87	293.15	2.17	0.34	YES
STHSTK3	0	0.54300E-05	565537.9 4191871.0	112.8	17.56	293.15	2.17	0.34	YES
STHSTK4	0	0.54300E-05	565529.5 4191871.8	112.8	13.87	293.15	2.17	0.34	YES
STHSTK5	0	0.54300E-05	565530.9 4191870.0	112.8	14.02	293.15	2.17	0.34	YES
STHSTK6	0	0.54300E-05	565530.1 4191869.5	112.8	14.02	293.15	2.17	0.27	YES
STHSTK7	0	0.54300E-05	565532.6 4191866.5	112.8	14.02	293.15	2.17	0.39	YES
STHSTK8	0	0.54300E-05	565538.2 4191864.0	112.8	14.02	293.15	2.17	0.27	YES
STHSTK9	0	0.54300E-05	565525.9 4191880.5	112.8	14.02	293.15	2.17	0.53	YES
STHSTK11	0	0.54300E-05	565519.0 4191907.5	112.8	13.87	293.15	2.17	0.34	YES
GHSTK1	0	0.12100E-05	565507.1 4191756.0	103.6	16.06	293.15	5.92	0.30	YES
GHSTK2	0	0.12100E-05	565510.6 4191744.8	103.6	16.06	293.15	5.92	0.25	YES
GHSTK3	0	0.12100E-05	565512.4 4191739.0	103.6	16.37	293.15	5.92	0.30	YES
GHSTK4	0	0.12100E-05	565514.7 4191737.8	103.6	15.91	293.15	5.92	0.31	YES
GHSTK5	0	0.12100E-05	565514.9 4191732.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK6	0	0.12100E-05	565500.2 4191755.2	103.6	16.12	293.15	5.92	0.30	YES
GHSTK7	0	0.12100E-05	565501.1 4191753.0	103.6	16.37	293.15	5.92	0.84	YES
GHSTK8	0	0.12100E-05	565503.7 4191744.2	103.6	16.00	293.15	5.92	0.30	YES
GHSTK9	0	0.12100E-05	565505.2 4191740.2	103.6	16.37	293.15	5.92	0.26	YES
GHSTK10	0	0.12100E-05	565506.9 4191735.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK11	0	0.12100E-05	565509.7 4191728.2	103.6	16.22	293.15	5.92	0.30	YES
GHSTK12	0	0.12100E-05	565509.0 4191725.5	103.6	16.06	293.15	5.92	0.30	YES
GHSTK13	0	0.12100E-05	565516.9 4191725.8	103.6	15.91	293.15	5.92	0.40	YES
CHSTK1	0	0.30600E-04	565393.9 4192008.8	110.3	26.85	293.15	2.00	1.00	YES
DHSTK1	0	0.56800E-05	565329.4 4191982.0	107.2	16.36	293.15	2.00	1.00	YES
HESSTK1	0	0.98800E-04	565234.6 4191926.2	98.2	15.39	293.15	2.00	1.00	YES

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	E X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
HTI.STK1	0	0 28000E-02	564874 6	4191815 0	80 4	14 96	293 15	2 00	1.00	YES	
MIILSTK1	0	0.28000E-02 0.12000E-06 0.39400E-05 0.10200E-04	564779 7	4191737 8	74 4	17 24	293.15	2.00	1.00	YES	
WELSTK1	0	0.12000E 00	564933 7	4191795 2	81 7	5 89	293 15	2 00	1.00	YES	
PRINTA	0	0.33100E 03	564584 7	4191553 2	60 0	8 91	293.15	2.70	0.84	YES	
PRINTR	0	0.10200E-04	564614 4	4191520 8	60.0	8 91	293.15	2 70	0.84	YES	
PRINTC	0	0.10200E-04 0.10200E-04 0.10200E-04 0.17900E-01 0.11700E-03 0.44700E-03	564643 1	4191525.5	60.0	8.91 8.91	293.15	2.70 2.70	0.60	YES	
COGEN	0	0.10200E 01	564876 0	4191492 0	71 9	12.77	430 37	10.45	2.28	YES	
BOILER#2	0	0.11700E-03	564863 6	4191499 5	71 9	8 80	522 82			YES	
BOILER#3	0	0.11700E 03	564881 9	4191505 8	71 9	8 80	554 11	10.53	1.52	YES	
BOILER#4	0	0.54000E-03	564885 8	4191495 8	71 9	8 80	566 65	12 63	1.52	YES	
POURTNG	0	0.91700E-06	564847 8	4191467 0	70 1	14 94	293 15	4 62	0.56	YES	
ENG 62	0	0.31700E 00	565567 6	4191086 5	85 1	4 57	800 37	146 01	0.13	NO	
ENG_63	0	0.31191E 03	564668 2	4191897 5	70 2	4 57	799 85	152 00	0.13	YES	
ENG 64	0	0.48200E-06	565452 9	4191687 0	98 2	3 05	817 07	58 47	0.08	YES	
ENG 105	0	0.10230E-04	564939 1	4191457 8	71 1	4 57	810 96	70 10	0.23	YES	
ENG_106	0	0.13170E 01	564991 6	4191614 5	73 6	30 48	810 96	70.10	0.20	YES	
ENG_100	0	0.11170E 01	564767 4	4191906 8	76.2	0.00	810.96	70.10	0.18	YES	
ENG_107	0	0.33184E-04	564930 6	4191564 2	68 8	7 62	810.96	70.10	0.18	YES	
ENG_100	0	0.33161E 01	565615 8	4191801.2	111 7	3 05	810.96	70.10	0.15	YES	
ENG_100	0	0.55239E-05	564655 9	4191874 5	68 4	4 57	810.96	70.10	0.10	YES	
ENG_111	0	0.15870E-04	565091 1	4191757 8	78 9	3 05	810 96	70.10	0.11	YES	
ENG_112	0	0.13810E-04	565542 8	4191208 2	85 7	3 05	810 93	70.10	0.10	NO	
ENG_113	0	0.13810E-04	565673 6	4191194 8	92 0	3 05	810 93	70.10	0.10	NO	
ENG_113	0	0.13010E 01	565601 4	4191014 2	86 0	3.05	810.93	70.10	0.10	NO	
ENG_111	0	0.13010E 01	565702 9	4190991 8	91 4	3.05	810.93	70.10	0.10	NO	
ENG_116	0	0.13810E-04	564775 8	4191177 5	63 2	4 57	810 93	70.10	0.10	NO	
ENG_117	0	0.13810E-04	565575 9	4191609 0	99 3	3 05	810 96	70.10	0.10	YES	
ENG 118	0	0.65956E-05	564654 8	4191890 5	68 6	4 57	810 96	70.10	0.13	YES	
ENG 119	0	0.96873E-05	564728.8	4191771.0	70.5	4.57	810.96	70.10	0.08	YES	
ENG 120	0	0 69666E-05	565318 0	4191422 5	86 1	3 05	810 96	70 10	0.08	YES	
ENG_121	0	0.69254E-05	565926 2	4191443 0	118 9	3 05	810 93	70.10	0.08	NO	
ENG 123	0	0.85331E-05	565259 4	4191652 8	88 3	3 05	810 96	70.10	0.08	YES	
ENG 125	0	0.27372E-05	564811 2	4191460 8	67 7	3 05	810 96	70.10	0.08	YES	
ENG 126	0	0 22095E-05	565137 9	4191441 5	77 6	0.00	810 96	70.10	0.08	YES	
ENG 128	0	0.22630E 00	565469 2	4191955 2	109 8	3 05	810 96	70.10	0.05	YES	
ENG 129	0	0.27619E-05	565383.1	4191740.2	97.0	2.44	810.96	70.10	0.05	YES	
ENG 130	0	0.17128E-05	565533.3	4191713 5	98.9	2.44	815.40	134.54	0.08	YES	
ENG 131	0	0.48231E-06	564970.3	4191484 2	71.3	1.83	817.07	58.47	0.08	YES	
ENG 132	0	0.11700E-03 0.44700E-03 0.54000E-03 0.91700E-06 0.31494E-05 0.15700E-06 0.49470E-04 0.41470E-04 0.33184E-04 0.33184E-04 0.11064E-04 0.155239E-05 0.15870E-04 0.13810E-04 0.13810E-04 0.13810E-04 0.13810E-04 0.13810E-04 0.13810E-05 0.65956E-05 0.69666E-05 0.6966E-05 0.6966E-05 0.69254E-05 0.27619E-05 0.27619E-05 0.48231E-06 0.48231E-06	564800.3	4191781.8	74.3	1.83	817.07	58.47	0.08	YES	
	-										

*** VOLUME SOURCE DATA ***

	NUMBER	EMISSION RA	ATE		BASE	RELEASE	INIT.	INIT.	EMISSION RA	TE		
SOURCE ID	PART. CATS.	(GRAMS/SE		Y) (METERS)	ELEV. (METERS)	HEIGHT (METERS)	SY (METERS)	SZ (METERS)	SCALAR VAR BY	Y		
MHSTK5 STHSTK10			5 564821.2 5 565522.6		74.8 112.8	6.95 14.02	0.07 0.29	2.42 5.39				
PAINT1			6 564917.1			4.57	3.54	4.25				
PAINT2 PAINT3			6 565322.7 6 565541.5			4.57 4.57	3.54 3.54	4.25 4.25				
PAINT4	0	0.88200E-0	6 564865.7	4191751.0	77.0	4.57	3.54	4.25				
				*** SOURCE	E IDs DEF	INING SOUR	CE GROUPS	***				
GROUP ID					SOU	RCE IDs						
ALL	WHSTK1_8,	NWAF9 ,	WHSTK10 , I	MHSTK1 , 1	MHSTK2 ,	MHSTK3 ,	MHSTK4 ,	, MHSTK5	, MHSTK6 ,	KHSTK1 ,	KHSTK2 ,	KHSTK3
,												
LSASTK2 ,	KHSTK4	, BHSTK1 ,	BHSTK2 , 1	BHSTK3 , I	BHSTK4 ,	BHSTK5 ,	VLSBSTK1,	, VLSBSTK2	2, VLSBSTK3,	VLSBSTK4,	LSASTK1 ,	
	LSASTK3	, LSASTK4 ,	LSASTK5 ,	LSASTK6 , 1	LSASTK7 ,	LEWHSTK1,	LEWHSTK2,	, LEWHSTK3	3, LEWHSTK4,	LEWHSTK5,	LEWHSTK6,	
LEWHSTK7,												
TANHSTKB,	LEWHSTK8,	, LEWHSTK9,	LATHSTK1,	LATHSTK2, 1	LATHSTK3,	LATHSTK4,	LATHSTK5,	, LATHSTK	, LATHSTK7,	LATHSTK8,	TANHSTKA,	
,	ma NIII omizo	ma NIII OMIZ D	IIII CMIZA	IIII CMIZD I	UII OMIZO	IIIIOMKD	HILOMKE	omuomy1	OMITOMICO.	CMITCMIX 3	CMII CMIZ 4	
STHSTK5 ,	TANHSTKC,	, TANHSTAD,	HHSTNA ,	ппоткв , п	HHSTRC ,	ннотки ,	HHSTRE ,	, SIHSIKI	, STHSTK2 ,	STHSTKS ,	STHSTK4 ,	
	STHSTK6	STHSTK7 ,	STHSTK8 ,	STHSTK9 , S	STHSTK11,	STHSTK10,	GHSTK1 ,	GHSTK2	, GHSTK3 ,	GHSTK4 ,	GHSTK5 ,	GHSTK6
,												
MULSTK1 ,	GHSTK7	, GHSTK8 ,	GHSTK9 ,	GHSTK10 , (GHSTK11 ,	GHSTK12 ,	GHSTK13 ,	, CHSTK1	, DHSTK1 ,	HESSTK1 ,	HILSTK1 ,	
MODDIKI ,	NET OF 1	DD TAIMA		DD TNIMO	200531	DOTT ED 0	DOTT ED #2	DOTT ED	1 DOUDING	D3 T3/m1	DA TAIMO	D3 T3/m2
,	WELSIKI ,	, PRINTA ,	PRINTB ,	PRINTC ,	JOGEN ,	BUILER#2,	BUILER#3,	, BUILER#4	, POURING,	PAINTI ,	PAINTZ ,	PAINTS
	PAINT4	, ENG 62 ,	ENG 63 , 1	ENG 64 , E	ENG 105 ,	ENG 106 ,	ENG 107 ,	. ENG 108	, ENG 109 ,	ENG 110 ,	ENG 111 ,	
ENG_112 ,			_ ′	_ ′			′	_		_ ′	_ ′	
	ENG_113 ,	ENG_114 ,	ENG_115 , 1	ENG_116 , E	ENG_117 ,	ENG_118 ,	ENG_119 ,	. ENG_120	, ENG_121 ,	ENG_123 ,	ENG_125 ,	
ENG_126 ,												
	ENG_128 ,	. ENG_129 ,	ENG_130 , 1	ENG_131 , E	ENG_132 ,	E134_133,						
WH	WHSTK1_8,	, WHSTK10 ,										
NWAF	NWAF9											
INMAL	NWAF 9	•										
MH	MHSTK1	, MHSTK2 ,	MHSTK3 , I	MHSTK4 , 1	MHSTK5 ,	MHSTK6 ,						
KH	KHSTK1	, KHSTK2 ,	KHSTK3 ,	KHSTK4 ,								
ВН	BHSTK1	, BHSTK2 ,	BHSTK3 , 1	BHSTK4 , I	BHSTK5 ,							
			an a									
VLSB	VLSBSTK1,	, VLSBSTK2,	VLSBSTK3,	VLSBSTK4,								
LSA	I.SASTK1	I.SASTK?	LSASTK3 ,	I.SASTK4	LSASTK5	I.SASTK6	LSASTK7					
2011					,							

LEW LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6, LEWHSTK7, LEWHSTK8, LEWHSTK9,

LAT LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8,

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDS

TAN TANHSTKA, TANHSTKB, TANHSTKC, TANHSTKD,

HH HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE ,

STH STHSTK1 , STHSTK2 , STHSTK3 , STHSTK4 , STHSTK5 , STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10,

GH GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 ,

GHSTK13 ,

CH CHSTK1 ,

DH DHSTK1 ,

HES HESSTK1 ,

HIL HILSTK1 ,

MUL MULSTK1 ,

WEL WELSTK1 ,

NOENGINE WHSTK1_8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3

KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 , LSASTK2 ,

LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,

LEWHSTK7,

LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,

TANHSTKB,

TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , STHSTK1 , STHSTK2 , STHSTK3 , STHSTK4 ,

STHSTK5 ,

STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10, GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6

WELSTK1 , PRINTA , PRINTB , PRINTC , COGEN , BOILER#2, BOILER#3, BOILER#4, POURING , PAINT1 , PAINT2 , PAINT3

MULSTK1 ,

GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , DHSTK1 , HESSTK1 , HILSTK1 ,

PAINT4 ,

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDS

ENG 114 , ENG 115 , ENG 116 , ENG 117 , ENG 118 , ENG 119 , ENG 120 , ENG 121 , ENG 123 , ENG 125 , ENG 126 ,

ENG_128 ,

ENG 129 , ENG 130 , ENG 131 , ENG 132 , E134 133, PRINT PRINTA , PRINTB , PRINTC , COMBUST COGEN , BOILER#2, BOILER#3, BOILER#4, HAZMAT POURTNG . PAINT PAINT1 , PAINT2 , PAINT3 , PAINT4 , ALL LABS WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3 KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 , LSASTK2 , LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6, LEWHSTK7, LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA, TANHSTKB, TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKC , STHSTK1 , STHSTK1 , STHSTK1 , STHSTK3 , STHSTK4 , STHSTK5 . STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10, GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6 GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , DHSTK1 , HESSTK1 , HILSTK1 , MULSTK1 ,

*** THE SUMMARY OF MAXIMUM PERIOD ($8760~\mathrm{HRS}$) RESULTS ***

** CONC OF CHRONIC IN MICROGRAMS/M**3

WELSTK1 ,

NETWORK RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID AVERAGE CONC 1ST HIGHEST VALUE IS 0.07482 AT (564842.69, 4191950.00, 83.00, 0.00) 2ND HIGHEST VALUE IS 0.07397 AT (564795.00, 4191930.25, 0.00) DC 78.00, 3RD HIGHEST VALUE IS 0.06568 AT (564941.88, 4191967.00, 90.00, 0.06550 AT (564892.25, 4191959.00, 4TH HIGHEST VALUE IS 84.00, 0.00) 5TH HIGHEST VALUE IS 0.06468 AT (564748.50, 4191916.75, 75.00, 0.00) 0.06468 AT (564748.50, 4191916.75, 0.05624 AT (564800.00, 4192000.00, 6TH HIGHEST VALUE IS 81.00, 0.00) 7TH HIGHEST VALUE IS 0.05433 AT (564991.81, 4191975.00, 93.00, 0.00) 0.05433 AT (564991.81, 419273.00, 0.05359 AT (564700.00, 4192000.00, 0.05225 AT (565000.00, 4192000.00, 0.05111 AT (564900.00, 4192000.00, 8TH HIGHEST VALUE IS 76.00, 0.00) 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS 0.00013 AT (564698.50, 4191908.75, 0.00012 AT (564639.88, 4191852.00, 0.00) DC 1ST HIGHEST VALUE IS 72.00, 2ND HIGHEST VALUE IS 67.00, 0.00) DC 3RD HIGHEST VALUE IS 0.00012 AT (564664.50, 4191903.50, 71.00, 0.00) 4TH HIGHEST VALUE IS 0.00012 AT (564600.00, 4191900.00, 67.00, 0.00) DC NA 5TH HIGHEST VALUE IS 0.00011 AT (564648.62, 4191891.75, 68.00, 0.00) 6TH HIGHEST VALUE IS 0.00009 AT (564748.50, 4191916.75, 75.00, NA 7TH HIGHEST VALUE IS 0.00006 AT (564795.00, 4191930.25, 0.00) 8TH HIGHEST VALUE IS 0.00005 AT (564700.00, 4192000.00, 9TH HIGHEST VALUE IS 0.00005 AT (564600.00, 4192000.00, 0.00004 AT (564500.00, 4191900.00, 0.00) DC 10TH HIGHEST VALUE IS 65.00, 0.00) DC 1ST HIGHEST VALUE IS 0.00031 AT (565000.00, 4192000.00, NWAF 98.00, 0.00) DC 2ND HIGHEST VALUE IS 0.00031 AT (565141.94, 4191999.00, 97.00, 0.00) DC NA 3RD HIGHEST VALUE IS 0.00029 AT (565241.19, 4192017.75, 102.00, 0.00) DC 4TH HIGHEST VALUE IS 0.00029 AT (565191.50, 4192009.50, 97.00, 0.00) DC 5TH HIGHEST VALUE IS 0.00028 AT (565289.25, 4192025.50, 107.00, 0.00) 6TH HIGHEST VALUE IS 0.00026 AT (565090.81, 0.00) DC 4191991.50, 96.00, 7TH HIGHEST VALUE IS 0.00026 AT (565339.88, 4192034.25, 108.00. 0.00) DC 8TH HIGHEST VALUE IS 0.00025 AT (564900.00, 4192100.00, 102.00, 0.00) DC 9TH HIGHEST VALUE IS 0.00025 AT (565100.00, 4192000.00, 0.00024 AT (565100.00, 4192100.00, 96.00, 0.00) DC NA 0.00) DC 10TH HIGHEST VALUE IS 107.00,

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CHRONIC IN MICROGRAMS/M**3

GROUP I	ID	AVERA	GE CONC	REC	EPTOR (XR, YR,	ZELEV, ZFLAG) OF	TYPE	NETWORK GRID-ID
	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.00100.75.4	564540 50	4101016 85	75.00	0 001		
MH	2ND HIGHEST VAI				4191916.75, 4191930.25,				NA NA
	3RD HIGHEST VAI								NA NA
	4TH HIGHEST VAI				4191908.75, 4191950.00,				NA NA
	5TH HIGHEST VAI				4192000.00,				NA NA
	6TH HIGHEST VAI				4191903.50,				NA NA
	7TH HIGHEST VAI				4191903.30,				NA NA
	8TH HIGHEST VAI				4192000.00,				NA NA
					4192000.00,				NA NA
	10TH HIGHEST VAI								NA NA
	TOTH HIGHEST VAL	DOE 13	0.00036 AI (304341.00,	4191907.00,	90.00,	0.00)	DC	INA
KH	1ST HIGHEST VAI	LUE IS	0.00925 AT (564842.69,	4191950.00,	83.00,	0.00)	DC	NA
	2ND HIGHEST VAI	LUE IS	0.00900 AT (564700.00,	4192000.00,	76.00,	0.00)	DC	NA
	3RD HIGHEST VAI				4192000.00,				NA
	4TH HIGHEST VAI				4191959.00,				NA
	5TH HIGHEST VAI	LUE IS	0.00708 AT (564600.00,	4192000.00,	72.00,	0.00)	DC	NA
	6TH HIGHEST VAI	LUE IS	0.00637 AT (564991.81,	4191975.00,	93.00,	0.00)	DC	NA
	7TH HIGHEST VAI	LUE IS	0.00613 AT (564941.88,	4191967.00,	90.00,	0.00)	DC	NA
	8TH HIGHEST VAI	LUE IS	0.00541 AT (565000.00,	4192000.00,	98.00,	0.00)	DC	NA
	9TH HIGHEST VAI	LUE IS	0.00511 AT (565042.31,	4191983.00,	93.00,	0.00)	DC	NA
	9TH HIGHEST VAI 10TH HIGHEST VAI	LUE IS	0.00504 AT (564800.00,	4192100.00,	92.00,	0.00)	DC	NA
ВН	1ST HIGHEST VAI	TITE TO	0 00120 70 (564795 00	4101030 25	79 00	0 00)	DC	NA
DII	2ND HIGHEST VAL	LUE IS	0.00120 AT (564842 69	4191930.23,	78.00, 83.00	0.00)	DC	NA NA
	3PD HIGHEST VAL	LUE IS	0.000034 AT (564600 00	4192000.00,	72 00	0.00)	DC	NA
	ATU UTCUEST VAL	TITE TO	0.00070 AI (564992 25	4192000.00 ,	94 00	0.00)	DC	NA NA
	5TH HIGHEST VAL	LUE IS	0.00072 AT (564700 00	4191939.00,	76 00	0.00)	DC	NA NA
	6TH HIGHEST VAL	LUE IS	0.00059 AT (564941 88	4192000.00,	90.00,	0.00)	DC	NA NA
	1ST HIGHEST VAI 2ND HIGHEST VAI 3RD HIGHEST VAI 4TH HIGHEST VAI 5TH HIGHEST VAI 6TH HIGHEST VAI 7TH HIGHEST VAI 8TH HIGHEST VAI 9TH HIGHEST VAI	LUE IS	0.00055 AT (564800 00	4192000 00	81 00	0.00)	DC	NA NA
	8TH HIGHEST VAL	LUE IS	0.00053 AT (564900.00,	4192000.00,	88 00	0.00)	DC	NA NA
	9TH HIGHEST VAI	LUE IS	0.000033 AT (565000.00,	4192000.00,	98 00	0.00)	DC	NA
	10TH HIGHEST VAI	LUE IS	0.00016 AT (564991 81	4191975.00,	93 00.	0.00)	DC	NA
	101H HIOHDOI VAI		0.00010 111 (001001.01,	1131373.00,	23.00,	0.00)	DC	7477

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CHRONIC IN MICROGRAMS/M**3 **

							NETWORK
GROUP	ID	AVERAGE CONC	REC	CEPTOR (XR, YR	, ZELEV, ZFI	LAG) OF T	YPE GRID-ID
VLSB	1ST HIGHEST VALUE	IS 0.00356 AT (565226.19,	4191310.50,	81.00,	0.00)	DC NA
	2ND HIGHEST VALUE	IS 0.00352 AT (564795.00,	4191930.25,	78.00,	0.00)	DC NA
	3RD HIGHEST VALUE	IS 0.00347 AT (4191300.00,			DC NA
	4TH HIGHEST VALUE	IS 0.00345 AT (565176.31,	4191303.25,	79.00,	0.00)	DC NA
	5TH HIGHEST VALUE	IS 0.00343 AT (565577.06,	4191362.50,	93.00,	0.00)	DC NA
	6TH HIGHEST VALUE	IS 0.00338 AT (564842.69,	4191950.00,	83.00,	0.00)	DC NA
	7TH HIGHEST VALUE	IS 0.00337 AT (565276.06,	4191318.25,	82.00,	0.00)	DC NA
	8TH HIGHEST VALUE	IS 0.00324 AT (565326.25,	4191324.25,	84.00,	0.00)	DC NA
	9TH HIGHEST VALUE	IS 0.00324 AT (565626.50,	4191370.25,	95.00,	0.00)	DC NA
	10TH HIGHEST VALUE	IS 0.00320 AT (564748.50,	4191916.75,	75.00,	0.00)	DC NA
LSA	1ST HIGHEST VALUE	IS 0.00297 AT (565176.31,	4191303.25,	79.00,	0.00)	DC NA
	2ND HIGHEST VALUE	IS 0.00296 AT (565577.06,	4191362.50,	93.00,	0.00)	DC NA
	3RD HIGHEST VALUE	IS 0.00294 AT (565376.81,	4191332.25,	87.00,	0.00)	DC NA
	4TH HIGHEST VALUE	IS 0.00294 AT (565127.75,	4191295.25,	77.00,	0.00)	DC NA
	5TH HIGHEST VALUE	IS 0.00293 AT (565077.25,	4191285.50,	76.00,	0.00)	DC NA
	6TH HIGHEST VALUE	IS 0.00288 AT (565200.00,	4191300.00,	80.00,	0.00)	DC NA
	7TH HIGHEST VALUE	IS 0.00284 AT (565226.19,	4191310.50,	81.00,	0.00)	DC NA
	8TH HIGHEST VALUE			4191324.25,	84.00,	0.00)	DC NA
	9TH HIGHEST VALUE	IS 0.00278 AT (565426.81,	4191338.75,	88.00,	0.00)	DC NA
	10TH HIGHEST VALUE	IS 0.00277 AT (565626.50,	4191370.25,	95.00,	0.00)	DC NA
LEW	1ST HIGHEST VALUE				118.00,		DC NA
	2ND HIGHEST VALUE				117.00,		DC NA
	3RD HIGHEST VALUE	IS 0.00024 AT (565438.25,	4192048.75,	117.00,	0.00)	DC NA

0.00022 AT (565500.00, 4192100.00, 0.00019 AT (566100.00, 4191600.00, 0.00018 AT (565400.00, 4192100.00, 0.00018 AT (565300.00, 4192300.00, 0.00016 AT (565390.25, 4192042.25, 0.00015 AT (565600.00, 4192100.00, 0.00015 AT (566200.00, 4191600.00, 126.00, 141.00, 116.00, 123.00, 0.00) DC 0.00) DC 0.00) DC 0.00) DC 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS NA NA NΑ 7TH HIGHEST VALUE IS NA 0.00) DC 0.00) DC 0.00) DC 8TH HIGHEST VALUE IS 113.00, NA 9TH HIGHEST VALUE IS 140.00, NA 144.00, 10TH HIGHEST VALUE IS

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CHRONIC IN MICROGRAMS/M**3

GROUP I	D		AVERAGE CONC	REC	EPTOR (XR, YR,	ZELEV, ZFL	AG) OF	TYPE 	NETWORK GRID-ID
LAT	1ST HIGHEST	VALUE IS						DC	NA
	2ND HIGHEST	VALUE IS						DC	NA
	3RD HIGHEST	VALUE IS		565460.56,	4192039.50,	117.00,	0.00)	DC	NA
	4TH HIGHEST	VALUE IS		565438.25,	4192048.75,	117.00,	0.00)	DC	NA
	5TH HIGHEST	VALUE IS		565390.25,	4192042.25,	113.00,	0.00)	DC	NA
	6TH HIGHEST	VALUE IS	0.00032 AT (565600.00,	4192100.00,	140.00,	0.00)	DC	NA
	7TH HIGHEST	VALUE IS	0.00032 AT (566100.00,	4191600.00.	141.00.	0.00)	DC	NA
	8TH HIGHEST		0 00031 AT (565339 88.	4192034 25.	108.00.	0.00)	DC	NA
	9TH HIGHEST		0.00030 AT (566200.00,	4191500.00.	156.00.	0.00)	DC	NA
	10TH HIGHEST	VALUE IS	0.00030 AT (565800.00,	4192000.00,	178.00,	0.00)	DC	NA
TAN	1ST HIGHEST		0.00018 AT (566100.00,	4191600.00,	141.00,		DC	NA
	2ND HIGHEST		0.00016 AT (565475.12,	4192018.00,	118.00,	0.00)	DC	NA
	3RD HIGHEST		. 0 00015 AT (565289 25.	4192025.50,	107.00,	0.00)	DC	NA
	4TH HIGHEST		! በ በበበ15 ኔጥ /	566200 00	41916NN NN	144.00, 113.00,	0.00)	DC	NA
	5TH HIGHEST		0.00014 AT (565390.25,	4192042.25,	113.00,	0.00)	DC	NA
	6TH HIGHEST		0.00014 AT (565438.25,	4 1 9 2 0 4 8 7 5 -	11/.00,	0.00)	DC	NA
	7TH HIGHEST		1 0 00013 AT (565460 56	4192039 50	117.00,	0.00)	DC	NA
	8TH HIGHEST		0.00013 AT (565600.00,	4192100.00,	140.00,	0.00)	DC	NA
	9TH HIGHEST		0.00013 AT (565339.88,	4192034.25,	108.00,	0.00)	DC	NA
	10TH HIGHEST	VALUE IS	0.00013 AT (565500.00,	4192100.00,	126.00,	0.00)	DC	NA
НН	1ST HIGHEST			566100.00,	4191600.00,	141.00,		DC	NA
	2ND HIGHEST			566200.00,	4191600.00,	144.00,	0.00)	DC	NA
	3RD HIGHEST			566200.00,	4191500.00,	156.00,	0.00)	DC	NA
	4TH HIGHEST			565475.12,	4192018.00,	118.00,	0.00)	DC	NA
	5TH HIGHEST					107.00,	0.00)	DC	NA
	6TH HIGHEST					140.00,	0.00)	DC	NA
	7TH HIGHEST			565339.88,	4192034.25,	108.00,	0.00)	DC	NA
	8TH HIGHEST			566100.00,	4191400.00,	149.00,	0.00)	DC	NA
	9TH HIGHEST					113.00,	0.00)	DC	NA
	10TH HIGHEST	VALUE IS	0.00048 AT (565460.56,	4192039.50,	117.00,	0.00)	DC	NA

*** THE SUMMARY OF MAXIMUM PERIOD ($8760\ \mathrm{HRS})$ RESULTS ***

GROUP	ID				AVERAGE CONC		RECE	PTOR	(XR,	YR,	ZELEV,	ZFLAG)	OF	TYPE	NETWORK GRID-ID	
STH	1ST	HIGHEST	VALUE	IS	0.00111 AT (565475	.12,	419201	8.00	,	118.00,		0.00)	DC	NA	
	2ND	HIGHEST	VALUE	IS	0.00101 AT (565390	.25,	419204	2.25	,	113.00,		0.00)	DC	NA	
	3RD	HIGHEST	VALUE	IS	0.00091 AT (565460	.56,	419203	9.50	,	117.00,		0.00)	DC	NA	
	4TH	HIGHEST	VALUE	IS	0.00090 AT (565438	.25,	419204	8.75	,	117.00,		0.00)	DC	NA	
	5TH	HIGHEST	VALUE	IS	0.00082 AT (565339	.88,	419203	4.25	,	108.00,		0.00)	DC	NA	
	6TH	HIGHEST	VALUE	IS	0.00066 AT (565800	.00,	419200	0.00	,	178.00,		0.00)	DC	NA	
	7TH	HIGHEST	VALUE	IS	0.00063 AT (565400	.00,	419210	0.00	,	116.00,		0.00)	DC	NA	
	8TH	HIGHEST	VALUE	IS	0.00061 AT (565289	.25,	419202	5.50	,	107.00,		0.00)	DC	NA	
	9TH	HIGHEST	VALUE	IS	0.00057 AT (565300	.00,	419210	0.00	,	107.00,		0.00)	DC	NA	
	10TH	HIGHEST	VALUE	IS	0.00057 AT (565600	.00,	419210	0.00	,	140.00,		0.00)	DC	NA	
GH		HIGHEST			0.00012 AT (566100		419160			141.00,		0.00)	DC	NA	
	2ND	HIGHEST	VALUE	IS	0.00010 AT (565289	.25,	419202	5.50	,	107.00,		0.00)	DC	NA	
	3RD	HIGHEST	VALUE	IS	0.00010 AT (565241	.19,	419201	7.75	,	102.00,		0.00)	DC	NA	
	4TH	HIGHEST	VALUE	IS	0.00010 AT (565500	.00,	419210	0.00	,	126.00,		0.00)	DC	NA	
	5TH	HIGHEST	VALUE	IS	0.00009 AT (565339	.88,	419203	4.25	,	108.00,		0.00)	DC	NA	
	6TH	HIGHEST	VALUE	IS	0.00009 AT (566200	.00,	419160	0.00	,	144.00,		0.00)	DC	NA	
	7TH	HIGHEST	VALUE	IS	0.00009 AT (565475	.12,	419201	8.00	,	118.00,		0.00)	DC	NA	

0.00009 AT (565600.00, 4192100.00, 0.00009 AT (565191.50, 4192009.50, 0.00009 AT (565390.25, 4192042.25, 140.00, 0.00) DC 0.00) DC 0.00) DC 8TH HIGHEST VALUE IS NΙZ 9TH HIGHEST VALUE IS 97.00, NA 113.00, 10TH HIGHEST VALUE IS NA 0.00119 AT (565475.12, 4192018.00, 0.00046 AT (565500.00, 4192100.00, 0.00) СН 1ST HIGHEST VALUE IS 118.00, NA 2ND HIGHEST VALUE IS 126.00. 0.00) DC NA 0.00045 AT (565400.00, 4192100.00, 0.00044 AT (565600.00, 4192100.00, 116.00, 3RD HIGHEST VALUE IS 0.00) DC NA 4TH HIGHEST VALUE IS 140.00, 0.00) DC NA 0.00029 AT (565800.00, 4192000.00, 0.00029 AT (565700.00, 4192100.00, 5TH HIGHEST VALUE IS 178.00, 0.00) DC NA 6TH HIGHEST VALUE IS 165.00, 0.00) DC NA 7TH HIGHEST VALUE IS 0.00029 AT (565300.00, 4192100.00, 107.00, 0.00) DC NA 0.00024 AT (565300.00, 4192200.00, 0.00024 AT (565400.00, 4192200.00, 8TH HIGHEST VALUE IS 112.00, 0.00) DC NA 9TH HIGHEST VALUE IS 118.00, 0.00) DC NA 10TH HIGHEST VALUE IS 0.00023 AT (565500.00, 4192200.00, 136.00, 0.00) DC NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CHRONIC IN MICROGRAMS/M**3

NETWORK GROUP ID AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID 107.00, 1ST HIGHEST VALUE IS 0.00023 AT (565289.25, 4192025.50, 0.00) DC NA 0.00018 AT (565475.12, 4192018.00, 0.00016 AT (565390.25, 4192042.25, 118.00, 113.00, 2ND HIGHEST VALUE IS 0.00) DC NA 3RD HIGHEST VALUE IS 0.00) DC NA 4TH HIGHEST VALUE IS 0.00015 AT (56546U.56, 4192U39.5U, 0.00014 AT (565438.25, 4192048.75, 0.00010 AT (565339.88, 4192034.25, 0.00009 AT (565300.00, 4192100.00, 0.00008 AT (565241.19, 4192017.75, 0.00008 AT (565500.00, 4192100.00, 0.00008 AT (565200.00, 4192100.00, 0.00015 AT (565460.56, 4192039.50, 117.00, 0.00) DC NA 5TH HIGHEST VALUE IS 117.00, 0.00) DC 6TH HIGHEST VALUE IS 108.00, 0.00) DC NA 7TH HIGHEST VALUE IS 107.00, 0.00) DC 8TH HIGHEST VALUE IS 102.00, 0.00) DC NA 9TH HIGHEST VALUE IS 126.00, 0.00) DC 10TH HIGHEST VALUE IS 99.00, 0.00) DC NA HES 1ST HIGHEST VALUE IS 0.00328 AT (565141.94, 4191999.00, 97.00, 0.00) DC 0.00326 AT (565191.50, 4192009.50, 0.00291 AT (565241.19, 4192017.75, 0.00218 AT (565289.25, 4192025.50, 97.00, 0.00) DC 2ND HIGHEST VALUE IS NA 3RD HIGHEST VALUE IS 102.00, 0.00) DC 4TH HIGHEST VALUE IS 107.00, 0.00) DC 0.00208 AT (565100.00, 4192000.00, 0.00178 AT (565090.81, 4191991.50, 0.00167 AT (565100.00, 4192100.00, 5TH HIGHEST VALUE IS 96.00, 0.00) DC NA 6TH HIGHEST VALUE IS 96.00, 0.00) DC NA 7TH HIGHEST VALUE IS 107.00, 0.00) DC NA 0.00165 AT (565339.88, 4192034.25, 0.00153 AT (565475.12, 4192018.00, 0.00141 AT (565460.56, 4192039.50, 0.00) DC 8TH HIGHEST VALUE IS 108.00, 9TH HIGHEST VALUE IS 118.00, 0.00) DC NA 117.00, 10TH HIGHEST VALUE IS 0.00) DC 0.06229 AT (564795.00, 4191930.25, 0.05508 AT (564748.50, 4191916.75, 0.05494 AT (564842.69, 4191950.00, 0.04821 AT (564842.69, 4191967.00, 0.04736 AT (564892.25, 4191959.00, 0.03913 AT (564800.00, 4192000.00, 0.03629 AT (564901.81, 4191975.00, 0.03629 AT (564991.81, 4191975.00, 78.00, 0.00) HIL 1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS 75.00, 0.00) DC NA 3RD HIGHEST VALUE IS 83.00, 0.00) DC 4TH HIGHEST VALUE IS 90.00, 0.00) DC NA 5TH HIGHEST VALUE IS 0.00) DC 84.00, 6TH HIGHEST VALUE IS 81.00, 0.00) DC 7TH HIGHEST VALUE IS 88.00, 0.00) DC 0.03629 AT (564991.81, 4191975.00, 0.03503 AT (564700.00, 4192000.00, 0.03467 AT (565000.00, 4192000.00, 8TH HIGHEST VALUE IS 0.00) DC 93.00, NA 9TH HIGHEST VALUE IS 76.00, 0.00) DC NA 10TH HIGHEST VALUE IS 98.00, 0.00) DC NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

GROUP I	:D	AVI	ERAGE CONC	REC	CEPTOR (XR, YR,	, ZELEV, ZFI	AG) OF TYP	NETWORK E GRID-ID	
MUL	1ST HIGHEST	VALUE IS	0.00000 AT (564664.50,	4191903.50,	71.00,	0.00) DC	NA	
HOL	2ND HIGHEST		0.00000 AT (564795.00,		78.00,	0.00) DC	NA NA	
	3RD HIGHEST		0.00000 AT (564648.62,	,	68.00,	0.00) DC	NA	
	4TH HIGHEST	VALUE IS	0.00000 AT (564698.50,	4191908.75,	72.00,	0.00) DC	NA	
	5TH HIGHEST	VALUE IS	0.00000 AT (564842.69,	4191950.00,	83.00,	0.00) DC	NA	
	6TH HIGHEST	VALUE IS	0.00000 AT (564639.88,	4191852.00,	67.00,	0.00) DC	NA	
	7TH HIGHEST	VALUE IS	0.00000 AT (564748.50,	4191916.75,	75.00,	0.00) DC	NA	
	8TH HIGHEST	VALUE IS	0.00000 AT (564800.00,	4192000.00,	81.00,	0.00) DC	NA	
	9TH HIGHEST	VALUE IS	0.00000 AT (564645.94,	4191801.25,	66.00,	0.00) DC	NA	
	10TH HIGHEST	VALUE IS	0.00000 AT (564600.00,	4191900.00,	67.00,	0.00) DC	NA	

0.00014 AT (564795.00, 4191930.25, 0.00010 AT (564892.25, 4191959.00, 0.00009 AT (564941.88, 4191967.00, 0.00009 AT (564748.50, 4191916.75, 0.00009 AT (564842.69, 4191950.00, 0.00008 AT (564900.00, 4192000.00, 4192000.00, 4192000.00, 0.00008 AT (564900.00, 419200 78.00, 84.00, 0.00) DC WET. 1ST HIGHEST VALUE IS NΙΔ 2ND HIGHEST VALUE IS 0.00) DC NA 3RD HIGHEST VALUE IS 90.00, 0.00) DC NA 75.00, 4TH HIGHEST VALUE IS 0.00) DC NA 5TH HIGHEST VALUE IS 83.00, 0.00) DC NA 6TH HIGHEST VALUE IS 88.00. 0.00) DC NA 0.00007 AT (564991.81, 4191975.00, 0.00007 AT (564800.00, 4192000.00, 0.00) 7TH HIGHEST VALUE IS 93.00, DC NA 8TH HIGHEST VALUE IS 81.00. 0.00) DC NA 0.00007 AT (564700.00, 4192000.00, 0.00007 AT (564800.00, 4192100.00, 9TH HIGHEST VALUE IS 76.00, 0.00) DC NA 0.00) DC 10TH HIGHEST VALUE IS 92.00. NA 0.07319 AT (564842.69, 4191950.00, 0.07253 AT (564795.00, 4191930.25, 0.06347 AT (564941.88, 4191967.00, 0.06312 AT (564892.25, 4191959.00, 0.06306 AT (564748.50, 4191916.75, 0.05423 AT (564800.00, 4192000.00, 0.05328 AT (564801.81 NOENGINE 1ST HIGHEST VALUE IS 83.00, 0.00) DC NA 2ND HIGHEST VALUE IS 78.00, 0.00) DC NA 3RD HIGHEST VALUE IS 90.00, 0.00) DC NA 4TH HIGHEST VALUE IS 84.00, 0.00) DC NA 75.00, 5TH HIGHEST VALUE IS 0.00) DC NA 6TH HIGHEST VALUE IS 81.00, 0.00) DC MΔ 93.00, 7TH HIGHEST VALUE IS 0.05228 AT (564991.81, 4191975.00, 0.00) DC NA 0.05101 AT (564700.00, 4192000.00, 0.05025 AT (565000.00, 4192000.00, 0.04929 AT (564900.00, 4192000.00, 8TH HIGHEST VALUE IS 76.00, 0.00) DC 98.00, 9TH HIGHEST VALUE IS 0.00) DC NA 10TH HIGHEST VALUE IS 88.00, 0.00) DC

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CHRONIC IN MICROGRAMS/M**3

NETWORK AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID 0.00258 AT (564700.00, 4192000.00, 76.00, 0.00238 AT (564892.25, 4191959.00, 84.00, 0.00222 AT (565800.00, 4191200.00, 100.00, 0.00221 AT (564941.88, 4191967.00, 90.00, 0.00205 AT (564991.81, 4191975.00, 93.00, 0.00204 AT (565700.00, 4191200.00, 93.00, 0.00204 AT (565800.00, 4191000.00, 95.00, 0.00201 AT (564800.00, 4192000.00, 81.00, 0.00199 AT (5655376.81, 4191332.25, 87.00, ENGINE 1ST HIGHEST VALUE IS 0.00258 AT (564700.00, 4192000.00, 0.00) 2ND HIGHEST VALUE IS 0.00) DC 3RD HIGHEST VALUE IS 0.00) DC NA 4TH HIGHEST VALUE IS 0.00) DC 5TH HIGHEST VALUE IS 0.00) DC 6TH HIGHEST VALUE IS 0.00) DC 7TH HIGHEST VALUE IS 0.00) DC NA 8TH HIGHEST VALUE IS 0.00) DC 9TH HIGHEST VALUE IS 0.00) DC 0.00) DC 10TH HIGHEST VALUE IS 0.00857 AT (564673.81, 4191519.00, 0.00497 AT (564675.81, 4191504.00, 0.00222 AT (564550.38, 4191600.50, 0.00208 AT (564678.75, 4191454.25, 63.00, 1ST HIGHEST VALUE IS 0.00) DC 2ND HIGHEST VALUE IS 62.00. 0.00) DC NA 3RD HIGHEST VALUE IS 0.00) DC 60.00, 4TH HIGHEST VALUE IS 62.00, 0.00) DC NA 0.00205 AT (564557.88, 4191553.00, 5TH HIGHEST VALUE IS 60.00, 0.00) DC 6TH HIGHEST VALUE IS 0.00185 AT (564603.69, 4191609.25, 62.00, 0.00) DC NA 0.00148 AT (564665.12, 4191621.25, 0.00128 AT (564500.00, 4191600.00, 0.00117 AT (564678.50, 4191403.75, 0.00114 AT (564617.12, 4191507.50, 7TH HIGHEST VALUE IS 65.00, 0.00) DC 8TH HIGHEST VALUE IS 59.00, 0.00) DC 9TH HIGHEST VALUE IS 0.00) DC 61.00, 10TH HIGHEST VALUE IS 0.00) DC 60.00, NA 0.01897 AT (566200.00, 4191300.00, 158.00, 149.00, 0.00) DC COMBUST 1ST HIGHEST VALUE IS 0.01846 AT (566100.00, 4191400.00, 0.01837 AT (566200.00, 4191400.00, 0.00) DC 2ND HIGHEST VALUE IS NA 3RD HIGHEST VALUE IS 174.00, 0.00) DC 0.01760 AT (566300.00, 4191300.00, 0.01715 AT (566100.00, 4191300.00, 4TH HIGHEST VALUE IS 176.00, 0.00) DC NA 5TH HIGHEST VALUE IS 140.00, 0.00) DC 0.01694 AT (566400.00, 4191200.00, 6TH HIGHEST VALUE IS 166.00, 0.00) DC 7TH HIGHEST VALUE IS 0.01683 AT (566400.00, 4191100.00, 174.00. 0.00) DC NA 8TH HIGHEST VALUE IS 0.01673 AT (566300.00, 4191400.00, 0.00) DC 204.00, 9TH HIGHEST VALUE IS 0.01652 AT (566400.00, 4191000.00, 162.00, 0.00) DC NA 0.01650 AT (566200.00, 4191200.00, 10TH HIGHEST VALUE IS 0.00) DC 142.00,

*** THE SUMMARY OF MAXIMUM PERIOD ($8760\ \mathrm{HRS})$ RESULTS ***

GROUP II) 	AVERAGE CONC	RE	CEPTOR (XR, YR,	ZELEV, ZFLAG)	OF TYPE	NETWORK GRID-ID
HAZMAT	1ST HIGHEST VALU 2ND HIGHEST VALU 3RD HIGHEST VALU 4TH HIGHEST VALU	JE IS 0.00001 AT JE IS 0.00001 AT	(565026.56, (564927.50,	,	73.00, 74.00, 71.00, 65.00,	0.00) DC 0.00) DC 0.00) DC 0.00) DC	NA NA NA

	5TH	HIGHEST	VALUE	IS	0.00001	AT (565077.25,	4191285.50,	76.00,	0.00)	DC	NA
	6TH	HIGHEST	VALUE	IS	0.00001	AT (565176.31,	4191303.25,	79.00,	0.00)	DC	NA
	7TH	HIGHEST	VALUE	IS	0.00001	AT (565127.75,	4191295.25,	77.00,	0.00)	DC	NA
	8TH	HIGHEST	VALUE	IS	0.00001	AT (564663.00,	4191652.50,	65.00,	0.00)	DC	NA
	9TH	HIGHEST	VALUE	IS	0.00001	AT (565200.00,	4191300.00,	80.00,	0.00)	DC	NA
	10TH	HIGHEST	VALUE	IS	0.00001	AT (565376.81,	4191332.25,	87.00,	0.00)	DC	NA
PAINT	1ST	HIGHEST	VALUE	IS	0.00007	AT (565191.50,	4192009.50,	97.00,	0.00)	DC	NA
	2ND	HIGHEST	VALUE	IS	0.00006	AT (565141.94,	4191999.00,	97.00,	0.00)	DC	NA
	3RD	HIGHEST	VALUE	IS	0.00006	AT (565675.94,	4191381.00,	98.00,	0.00)	DC	NA
	4TH	HIGHEST	VALUE	IS	0.00006	AT (565626.50,	4191370.25,	95.00,	0.00)	DC	NA
	5TH	HIGHEST	VALUE	IS	0.00006	AT (565026.56,	4191279.00,	74.00,	0.00)	DC	NA
	6TH	HIGHEST	VALUE	IS	0.00006	AT (565241.19,	4192017.75,	102.00,	0.00)	DC	NA
	7TH	HIGHEST	VALUE	IS	0.00005	AT (565100.00,	4192000.00,	96.00,	0.00)	DC	NA
	8TH	HIGHEST	VALUE	IS	0.00005	AT (564976.62,	4191271.75,	73.00,	0.00)	DC	NA
	9TH	HIGHEST	VALUE	IS	0.00005	AT (565090.81,	4191991.50,	96.00,	0.00)	DC	NA
	10TH	HIGHEST	VALUE	IS	0.00005	AT (565726.62,	4191386.25,	100.00,	0.00)	DC	NA
ALL_LABS	1ST	HIGHEST	VALUE	IS	0.07224	AT (564842.69,	4191950.00,	83.00,	0.00)	DC	NA
	2ND	HIGHEST	VALUE	IS	0.07173	AT (564795.00,	4191930.25,	78.00,	0.00)	DC	NA
		HIGHEST			0.06227	,	564748.50,	4191916.75,	75.00,	0.00)	DC	NA
		HIGHEST			0.06215	,	564941.88,	4191967.00,	90.00,	0.00)	DC	NA
		HIGHEST			0.06213	,	· · · · · · · · · · · · · · · · · · ·	4191959.00,	84.00,	0.00)	DC	NA
		HIGHEST			0.05340	,	,	4192000.00,	81.00,	0.00)	DC	NA
	7TH	HIGHEST	VALUE	IS	0.05081	,	564991.81,	4191975.00,	93.00,	0.00)	DC	NA
	8TH	HIGHEST	VALUE	IS	0.05024	AT (564700.00,	4192000.00,	76.00,	0.00)	DC	NA
		HIGHEST			0.04838	,	565000.00,	4192000.00,	98.00,	0.00)	DC	NA
	10TH	HIGHEST	VALUE	IS	0.04807	AT (564900.00,	4192000.00,	88.00,	0.00)	DC	NA

*** ISCST3 - VERSION 02035 ***

*** UC Berkeley - 12/2003; vjh Senstive Receptors

*** Model Executed on 02/04/04 at 18:45:31 ***

Input File - D:\Beest\UCBerk\10-03\Final\Existing-Chron-Sensitive.DTA

Output File - D:\Beest\UCBerk\10-03\Final\Existing-Chron-Sensitive.LST

Met File - D:\Beest\UCBerk\10-03\lb1-97a.asc

Number of sources - 126
Number of source groups - 27
Number of receptors - 259

*** POINT SOURCE DATA ***

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RAT SCALAR VARY BY
MH2IVI 0	0	0.21000E-05	564704.4	4191782.8	66.8	31.70	293.15	1.12	0.19	ILS	
NWAF9	0	0.75100E-04 0.21000E-05	564718.8	4191/91.2	66.8	29.57	293.15	16.48	0.74	YES	
WHSTKIU	0	0.21000E-05 0.37600E-05 0.37600E-05 0.37600E-05 0.37600E-05 0.37600E-03 0.11500E-03 0.11500E-03 0.11500E-03	564724.4	4191826.0	00.8	8.60	293.15	7.12	0.34	YES	
MHSTKI	0	0.37600E-05	564794.4	4191/95.8	74.8	7.61	293.15	17.25	0.34	YES	
MHSTK2	0	0.37600E-05	564798.6	4191843.0	74.8	10.89	293.15	17.25	0.29		
MHSTK3	0	0.37600E-05	564/94.1	4191843.0	74.8	10.89	293.15	17.25	0.48 0.33	YES	
MHSTK4	0	0.37600E-05	564800.9	4191/8/.2	74.8	15.61	293.15	17.25	0.33	YES	
MHSTK6	0	0.3/600E-05	564801.3	4191808.2	74.8	10.94	293.15	17.25	0.34 2.76	YES	
KHSTKI	0	0.11500E-03	564/61.1	41918/9.8	72.7	18.45	293.15	1.28	2.76		
KHSTK2	0	0.11500E-03	564/59.4	4191891.8	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK3	0	0.11500E-03	564/32.4	41918//.5	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK4	0	0.11500E-03	564731.4	4191889.0	72.7	18.45	293.15	1.28	2.76	YES	
BHSTK1	0	0.11500E-03 0.11600E-04 0.11600E-04 0.11600E-04 0.11600E-04 0.12100E-03 0.12100E-03	564678.9	4191889.0	67.4	27.85	293.15	2.78	1.26	YES	
BHSTK2	0	0.11600E-04	564675.0	4191896.8	67.4	29.68	293.15	2.78	1.26	YES	
BHSTK3	0	0.11600E-04	564704.5	4191898.0	67.4	29.68	293.15	2.78	1.26	YES	
BHSTK4	0	0.11600E-04	564707.4	4191887.8	67.4	33.34	293.15	2.78	0.37	YES	
BHSTK5	0	0.11600E-04	564691.6	4191888.0	67.4	33.34	293.15	2.78	0.37	YES	
VLSBSTK1	0	0.12100E-03	564933.6	4191633.2	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK2	0	0.12100E-03	564954.0	4191566.5	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK3	0	0.12100E-03 0.12100E-03	565051.3	4191594.8	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK4	0	0.12100E-03	565030.6	4191662.2	64.4	27.04	293.15	3.97	1.22	YES	
LSASTK1	0	0.70000E-04 0.70000E-04	564892.2	4191637.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK2	0	0.70000E-04	564875.9	4191632.8	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK3	0	0.70000E-04 0.70000E-04	564907.6	4191580.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK4	0	0.70000E-04	564897.1	4191578.0	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK5	0	0.70000E-04	564908.6	4191576.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK6	0	0.70000E-04	564899.1	4191573.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK7	0	0.70000E-04 0.70000E-04 0.70000E-04	564900.8	4191572.2	64.4	28.31	293.15	5.18	0.30	YES	
LEWHSTK1	0	0.21600E-05	565605.8	4191772.0	106.7	12.80	293.15	3 11	0.36	YES	
LEWHSTK2	0	0.21600E-05	565591.5	4191786.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK3	0	0.21600E-05	565585.9	4191792.2	106.7	12.80	293.15	3.11 3.11	0.36	YES	
LEWHSTK4	0	0.21600E-05	565583.1	4191800.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK5	0	0.21600E-05	565598.1	4191787.8	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK6		0.21600E-05				12.80	293.15	3.11	0.36	YES	
LEWHSTK7		0.21600E-05				12.80	293.15	3.11	0.36		
CMICLEO	0	0 216000-05	565507 6	1101000 5	106 7	12.80	293.15	2 11	0.30	YES	
LEWHSTK9	0	0.21600E-05 0.21600E-05 0.92400E-05 0.92400E-05 0.92400E-05	565593.3	4191808.2	106.7	12.80	293.15	3.11	0.36	YES	
LATHSTK1	0	0.92400E-05	565555.1	4191799 2	104.6	42.37	293.15	6.28	0.34	YES	
LATHSTK2	0	0 92400E-05	565561 1	4191812 0	104 6	36 88	293 15	6 28	0.70	YES	
LATHSTK3	0	0.92400E-05	565531 6	4191800 2	104.6	36.88	293 15	6 28	0.70	YES	

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
LATHSTK4	0	0.92400E-05	565515 1	4191799.5	104.6	37.19	293.15	6.28	0.96	YES	
	-										
LATHSTK5	0	0.92400E-05	565539.7	4191794.2	104.6	42.37	293.15	6.28	0.70	YES	
LATHSTK6	0	0.92400E-05	565527.3	4191776.0	104.6	38.40	293.15	6.28	0.74	YES	
LATHSTK7	0	0.92400E-05	565544.9	4191781.5	104.6	38.40	293.15	6.28	0.31	YES	
LATHSTK8	0	0.92400E-05	565562.3	4191787.0	104.6	38.40	293.15	6.28	0.70	YES	
TANHSTKA	0	0.79700E-05	565492.1	4191793.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKB	0	0.79700E-05	565496.8	4191794.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKC	0	0.79700E-05	565494.1	4191787.2	100.6	39.32	293.15	2.94	1.69	YES	

TANHSTKD	0	0.79700E-05	565499.1 4191788.2	100.6	39.32	293.15	2.94	1.69	YES
HHSTKA	0	0.19400E-04	565540.8 4191749.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKB	0	0.19400E-04	565565.6 4191756.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKC	0	0.19400E-04	565576.8 4191717.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKD	0	0.19400E-04	565553.2 4191710.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKE	0	0.19400E-04	565543.4 4191746.5	103.6	20.12	293.15	4.15	0.81	YES
STHSTK1	0	0.54300E-05	565530.3 4191891.8	112.8	13.87	293.15	2.17	0.27	YES
STHSTK2	0	0.54300E-05	565522.0 4191918.2	112.8	13.87	293.15	2.17	0.34	YES
STHSTK3	0	0.54300E-05	565537.9 4191871.0	112.8	17.56	293.15	2.17	0.34	YES
STHSTK4	0	0.54300E-05	565529.5 4191871.8	112.8	13.87	293.15	2.17	0.34	YES
STHSTK5	0	0.54300E-05	565530.9 4191870.0	112.8	14.02	293.15	2.17	0.34	YES
STHSTK6	0	0.54300E-05	565530.1 4191869.5	112.8	14.02	293.15	2.17	0.27	YES
STHSTK7	0	0.54300E-05	565532.6 4191866.5	112.8	14.02	293.15	2.17	0.39	YES
STHSTK8	0	0.54300E-05	565538.2 4191864.0	112.8	14.02	293.15	2.17	0.27	YES
STHSTK9	0	0.54300E-05	565525.9 4191880.5	112.8	14.02	293.15	2.17	0.53	YES
STHSTK11	0	0.54300E-05	565519.0 4191907.5	112.8	13.87	293.15	2.17	0.34	YES
GHSTK1	0	0.12100E-05	565507.1 4191756.0	103.6	16.06	293.15	5.92	0.30	YES
GHSTK2	0	0.12100E-05	565510.6 4191744.8	103.6	16.06	293.15	5.92	0.25	YES
GHSTK3	0	0.12100E-05	565512.4 4191739.0	103.6	16.37	293.15	5.92	0.30	YES
GHSTK4	0	0.12100E-05	565514.7 4191737.8	103.6	15.91	293.15	5.92	0.31	YES
GHSTK5	0	0.12100E-05	565514.9 4191732.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK6	0	0.12100E-05	565500.2 4191755.2	103.6	16.12	293.15	5.92	0.30	YES
GHSTK7	0	0.12100E-05	565501.1 4191753.0	103.6	16.37	293.15	5.92	0.84	YES
GHSTK8	0	0.12100E-05	565503.7 4191744.2	103.6	16.00	293.15	5.92	0.30	YES
GHSTK9	0	0.12100E-05	565505.2 4191740.2	103.6	16.37	293.15	5.92	0.26	YES
GHSTK10	0	0.12100E-05	565506.9 4191735.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK11	0	0.12100E-05	565509.7 4191728.2	103.6	16.22	293.15	5.92	0.30	YES
GHSTK12	0	0.12100E-05	565509.0 4191725.5	103.6	16.06	293.15	5.92	0.30	YES
GHSTK13	0	0.12100E-05	565516.9 4191725.8	103.6	15.91	293.15	5.92	0.40	YES
CHSTK1	0	0.30600E-04	565393.9 4192008.8	110.3	26.85	293.15	2.00	1.00	YES
DHSTK1	0	0.56800E-05	565329.4 4191982.0	107.2	16.36	293.15	2.00	1.00	YES
HESSTK1	0	0.98800E-04	565234.6 4191926.2	98.2	15.39	293.15	2.00	1.00	YES

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	E X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
HTI.STK1	0	0 28000E-02	564874 6	4191815 0	80 4	14 96	293 15	2 00	1.00	YES	
MIILSTK1	0	0.28000E-02 0.12000E-06 0.39400E-05 0.10200E-04	564779 7	4191737 8	74 4	17 24	293.15	2.00	1.00	YES	
WELSTK1	0	0.12000E 00	564933 7	4191795 2	81 7	5 89	293 15	2 00	1.00	YES	
PRINTA	0	0.33100E 03	564584 7	4191553 2	60 0	8 91	293.15	2 70	0.84	YES	
PRINTR	0	0.10200E-04	564614 4	4191520 8	60.0	8 91	293.15	2 70	0.84	YES	
PRINTC	0	0.10200E-04 0.10200E-04 0.10200E-04 0.17900E-01 0.11700E-03 0.44700E-03	564643 1	4191525.5	60.0	8.91 8.91	293.15	2.70 2.70	0.60	YES	
COGEN	0	0.10200E 01	564876 0	4191492 0	71 9	12.77	430 37	10.45	2.28	YES	
BOILER#2	0	0.11700E-03	564863 6	4191499 5	71 9	8 80	522 82			YES	
BOILER#3	0	0.11700E 03	564881 9	4191505 8	71 9	8 80	554 11	10.53	1.52	YES	
BOILER#4	0	0.54000E-03	564885 8	4191495 8	71 9	8 80	566 65	12 63	1.52	YES	
POURTNG	0	0.91700E-06	564847 8	4191467 0	70 1	14 94	293 15	4 62	0.56	YES	
ENG 62	0	0.31700E 00	565567 6	4191086 5	85 1	4 57	800 37	146 01	0.13	NO	
ENG_63	0	0.31191E 03	564668 2	4191897 5	70 2	4 57	799 85	152 00	0.13	YES	
ENG 64	0	0.48200E-06	565452 9	4191687 0	98 2	3 05	817 07	58 47	0.08	YES	
ENG 105	0	0.10200E-04	564939 1	4191457 8	71 1	4 57	810 96	70 10	0.23	YES	
ENG_106	0	0.13170E 01	564991 6	4191614 5	73 6	30 48	810 96	70.10	0.20	YES	
ENG_100	0	0.11170E 01	564767 4	4191906 8	76.2	0.00	810.96	70.10	0.18	YES	
ENG_107	0	0.33184E-04	564930 6	4191564 2	68 8	7 62	810.96	70.10	0.18	YES	
ENG_100	0	0.33161E 01	565615 8	4191801.2	111 7	3 05	810.96	70.10	0.15	YES	
ENG_100	0	0.55239E-05	564655 9	4191874 5	68 4	4 57	810.96	70.10	0.10	YES	
ENG_111	0	0.15870E-04	565091 1	4191757 8	78 9	3 05	810 96	70.10	0.11	YES	
ENG_112	0	0.13810E-04	565542 8	4191208 2	85 7	3 05	810 93	70.10	0.10	NO	
ENG_113	0	0.13810E-04	565673 6	4191194 8	92 0	3 05	810 93	70.10	0.10	NO	
ENG_113	0	0.13010E 01	565601 4	4191014 2	86 0	3.05	810.93	70.10	0.10	NO	
ENG_111	0	0.13010E 01	565702 9	4190991 8	91 4	3.05	810.93	70.10	0.10	NO	
ENG_116	0	0.13810E-04	564775 8	4191177 5	63 2	4 57	810 93	70.10	0.10	NO	
ENG_117	0	0.13810E-04	565575 9	4191609 0	99 3	3 05	810 96	70.10	0.10	YES	
ENG 118	0	0.65956E-05	564654 8	4191890 5	68 6	4 57	810 96	70.10	0.13	YES	
ENG 119	0	0.96873E-05	564728.8	4191771.0	70.5	4.57	810.96	70.10	0.08	YES	
ENG 120	0	0 69666E-05	565318 0	4191422 5	86 1	3 05	810 96	70 10	0.08	YES	
ENG_121	0	0.69254E-05	565926 2	4191443 0	118 9	3 05	810 93	70.10	0.08	NO	
ENG 123	0	0.85331E-05	565259 4	4191652 8	88 3	3 05	810 96	70.10	0.08	YES	
ENG 125	0	0.27372E-05	564811 2	4191460 8	67 7	3 05	810 96	70.10	0.08	YES	
ENG 126	0	0 22095E-05	565137 9	4191441 5	77 6	0.00	810 96	70.10	0.08	YES	
ENG 128	0	0.22630E 00	565469 2	4191955 2	109 8	3 05	810 96	70.10	0.05	YES	
ENG 129	0	0.27619E-05	565383.1	4191740.2	97.0	2.44	810.96	70.10	0.05	YES	
ENG 130	0	0.17128E-05	565533.3	4191713 5	98.9	2.44	815.40	134.54	0.08	YES	
ENG 131	0	0.48231E-06	564970.3	4191484 2	71.3	1.83	817.07	58.47	0.08	YES	
ENG 132	0	0.11700E-03 0.44700E-03 0.54000E-03 0.91700E-06 0.31494E-05 0.15700E-06 0.49470E-04 0.41470E-04 0.33184E-04 0.33184E-04 0.11064E-04 0.155239E-05 0.15870E-04 0.13810E-04 0.13810E-04 0.13810E-04 0.13810E-04 0.13810E-04 0.13810E-05 0.65956E-05 0.69666E-05 0.6966E-05 0.6966E-05 0.69254E-05 0.27619E-05 0.27619E-05 0.48231E-06 0.48231E-06	564800.3	4191781.8	74.3	1.83	817.07	58.47	0.08	YES	
	-										

*** VOLUME SOURCE DATA ***

	NUMBER	EMISSION RA	ATE		BASE	RELEASE	INIT.	INIT.	EMISSION RA	TE		
SOURCE ID	PART. CATS.	(GRAMS/SE		Y) (METERS)	ELEV. (METERS)	HEIGHT (METERS)	SY (METERS)	SZ (METERS)	SCALAR VAR BY	Y		
MHSTK5 STHSTK10			5 564821.2 5 565522.6		74.8 112.8	6.95 14.02	0.07 0.29	2.42 5.39				
PAINT1			6 564917.1			4.57	3.54	4.25				
PAINT2 PAINT3			6 565322.7 6 565541.5			4.57 4.57	3.54 3.54	4.25 4.25				
PAINT4	0	0.88200E-0	6 564865.7	4191751.0	77.0	4.57	3.54	4.25				
				*** SOURCE	E IDs DEF	INING SOUR	CE GROUPS	***				
GROUP ID					SOUI	RCE IDs						
ALL	WHSTK1_8,	NWAF9 ,	WHSTK10 , I	MHSTK1 , 1	MHSTK2 ,	MHSTK3 ,	MHSTK4 ,	, MHSTK5	, MHSTK6 ,	KHSTK1 ,	KHSTK2 ,	KHSTK3
,												
LSASTK2 ,	KHSTK4 ,	BHSTK1 ,	BHSTK2 , 1	BHSTK3 , I	SHSTK4 ,	BHSTK5 ,	VLSBSTK1,	, VLSBSTK2	, VLSBSTK3,	VLSBSTK4,	LSASTK1 ,	
	LSASTK3 ,	LSASTK4 ,	LSASTK5 ,	LSASTK6 , 1	LSASTK7 ,	LEWHSTK1,	LEWHSTK2,	, LEWHSTK3	, LEWHSTK4,	LEWHSTK5,	LEWHSTK6,	
LEWHSTK7,												
TANHSTKB,	LEWHSTK8,	LEWHSTK9,	LATHSTK1,	LATHSTK2, 1	LATHSTK3,	LATHSTK4,	LATHSTK5,	, LATHSTK6	, LATHSTK7,	LATHSTK8,	TANHSTKA,	
,	manuomizo	ma NII CERT	IIII CMIZA	HILOMKD I	HIOMKO	IIIIOMKD	HILOMKE	omuomy1	OMITOMIZO	OMITOMIC)	CMII CMIZ 4	
STHSTK5 ,	TANHSTKC,	TANHSTRD,	HHSTNA ,	HHSIKB , I	instrc ,	ннотки ,	HHSTRE ,	, SIMSIKI	, STHSTK2 ,	STHSTAS ,	STHSTK4 ,	
	STHSTK6	STHSTK7 ,	STHSTK8 ,	STHSTK9 , S	STHSTK11,	STHSTK10,	GHSTK1 ,	GHSTK2	, GHSTK3 ,	GHSTK4 ,	GHSTK5 ,	GHSTK6
,												
MULSTK1 ,	GHSTK7 ,	GHSTK8 ,	GHSTK9 ,	GHSTK10 , (GHSTK11 ,	GHSTK12 ,	GHSTK13 ,	, CHSTK1	, DHSTK1 ,	HESSTK1 ,	HILSTK1 ,	
MODDIKI ,	NET CENT	DD TM#3	DD TAMES	DD TNIII C	20057	DOTT ED 0	DOTT ED #2	DOTT ED /	DOUDTNG	D3 TNM1	D3.T3.TMO	D3 T31m2
,	WELSTAL ,	PRINTA ,	PRINTB ,	PRINTC , (JUGEN ,	BUILER#2,	BUILER#3,	, BUILER#4	, POURING ,	PAINTI ,	PAINTZ ,	PAINTS
	PAINT4 ,	ENG 62 ,	ENG 63 , 1	ENG 64 , E	ENG 105 ,	ENG 106 ,	ENG 107 ,	, ENG 108	, ENG 109 ,	ENG 110 ,	ENG 111 ,	
ENG_112 ,	·	_ ′	_ ′	_ ′	_ ′		′	_	. – .	_ ′		
	ENG_113 ,	ENG_114 ,	ENG_115 , 1	ENG_116 , E	ENG_117 ,	ENG_118 ,	ENG_119 ,	. ENG_120	, ENG_121 ,	ENG_123 ,	ENG_125 ,	
ENG_126 ,												
	ENG_128 ,	ENG_129 ,	ENG_130 , 1	ENG_131 , E	ENG_132 ,	E134_133,						
WH	WHSTK1_8,	WHSTK10 ,										
NWAF	NWAF9 ,											
NWAF	NWAL 9 ,											
MH	MHSTK1 ,	MHSTK2 ,	MHSTK3 , I	MHSTK4 , 1	MHSTK5 ,	MHSTK6 ,						
KH	KHSTK1 ,	KHSTK2 ,	KHSTK3 ,	KHSTK4 ,								
ВН	BHSTK1 ,	BHSTK2 ,	BHSTK3 , I	BHSTK4 , I	SHSTK5 ,							
	an amari	111 OD 0 ====0	anama	ur anamur								
VLSB	VLSBSTK1,	VLSBSTK2,	VLSBSTK3,	VLSBSTK4,								
LSA	LSASTK1	LSASTK2	LSASTK3 ,	LSASTK4 . 1	SASTK5	LSASTK6	LSASTK7					
	/	/			, ,	,						

LEW LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6, LEWHSTK7, LEWHSTK8, LEWHSTK9,

LAT LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8,

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDS

TAN TANHSTKA, TANHSTKB, TANHSTKC, TANHSTKD,

HH HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE ,

STH STHSTK1 , STHSTK2 , STHSTK3 , STHSTK4 , STHSTK5 , STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10,

GH GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 ,

GHSTK13 ,

CH CHSTK1 ,

DH DHSTK1 ,

HES HESSTK1 ,

HIL HILSTK1 ,

MUL MULSTK1 ,

WEL WELSTK1 ,

NOENGINE WHSTK1_8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3

KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 , LSASTK2 ,

LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,

LEWHSTK7,

LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,

TANHSTKB,

TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , STHSTK1 , STHSTK2 , STHSTK3 , STHSTK4 ,

STHSTK5 ,

STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10, GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6

WELSTK1 , PRINTA , PRINTB , PRINTC , COGEN , BOILER#2, BOILER#3, BOILER#4, POURING , PAINT1 , PAINT2 , PAINT3

MULSTK1 ,

GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , DHSTK1 , HESSTK1 , HILSTK1 ,

PAINT4 ,

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDS

ENG 114 , ENG 115 , ENG 116 , ENG 117 , ENG 118 , ENG 119 , ENG 120 , ENG 121 , ENG 123 , ENG 125 , ENG 126 ,

ENG_128 ,

```
ENG 129 , ENG 130 , ENG 131 , ENG 132 , E134 133,
  PRINT
           PRINTA , PRINTB , PRINTC ,
 COMBUST COGEN , BOILER#2, BOILER#3, BOILER#4,
 HAZMAT
           POURTNG .
 PAINT
           PAINT1 , PAINT2 , PAINT3 , PAINT4 ,
 ALL LABS WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB.
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKC , STHSTK1 , STHSTK1 , STHSTK1 , STHSTK3 , STHSTK4 ,
STHSTK5 .
           STHSTK6 , STHSTK7 , STHSTK8 , STHSTK9 , STHSTK11, STHSTK10, GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6
           GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , DHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
```

** CONC OF CHRONIC IN MICROGRAMS/M**3

WELSTK1 ,

NETWORK RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID AVERAGE CONC 1ST HIGHEST VALUE IS 0.04630 AT (564945.62, 4192065.50, 102.72, 0.00) 2ND HIGHEST VALUE IS 0.03226 AT (565700.06, 4191711.25, 109.42, 0.00) DC 0.03178 AT (565700.06, 4191711.25, 0.03154 AT (564926.69, 4192158.75, 3RD HIGHEST VALUE IS 109.42, 4TH HIGHEST VALUE IS 0.00) DC 5TH HIGHEST VALUE IS 0.02924 AT (565009.00, 4192130.00, 0.00) 0.02007 AT (565144.62, 4192620.50, 154.84, 6TH HIGHEST VALUE IS 0.00) 7TH HIGHEST VALUE IS 0.01869 AT (565202.31, 4192629.00, 160.32, 0.00) 0.01869 AT (565202.31, 4192025.00, 0.01811 AT (565233.75, 4192605.00, 0.01783 AT (564487.38, 4192391.25, 0.01774 AT (564591.56, 4192414.75, 159.72, 8TH HIGHEST VALUE IS 0.00) 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS 83.82, 0.00002 AT (564945.62, 4192065.50, 0.00002 AT (564228.31, 4192049.25, 0.00) DC 1ST HIGHEST VALUE IS 102.72, 2ND HIGHEST VALUE IS 0.00) DC 3RD HIGHEST VALUE IS 0.00002 AT (564487.38, 4192391.25, 0.00) 4TH HIGHEST VALUE IS 0.00002 AT (564926.69, 4192158.75, 109.42. 0.00) DC NA 5TH HIGHEST VALUE IS 0.00002 AT (564160.38, 4192207.75, 64.31, 0.00) DC 6TH HIGHEST VALUE IS 0.00001 AT (565009.00, 4192130.00, 110.64, 7TH HIGHEST VALUE IS 0.00001 AT (564249.94, 4192208.00, 66.75. 0.00) DC 8TH HIGHEST VALUE IS 0.00001 AT (564079.94, 4192117.50, 61.57, 9TH HIGHEST VALUE IS 0.00001 AT (564591.56, 4192414.75, 0.00001 AT (564933.25, 4191275.25, 0.00) DC 10TH HIGHEST VALUE IS 71.32, 0.00) DC 1ST HIGHEST VALUE IS 0.00027 AT (564945.62, 4192065.50, NWAF 102.72, 0.00) DC 0.00023 AT (565700.06, 4191711.25, 0.00023 AT (564926.69, 4192158.75, 2ND HIGHEST VALUE IS 108.20. 0.00) DC NA 3RD HIGHEST VALUE IS 109.42, 0.00) DC 0.00023 AT (565700.06, 4191711.25, 4TH HIGHEST VALUE IS 109.42, 0.00) DC 5TH HIGHEST VALUE IS 0.00022 AT (565009.00, 4192130.00, 0.00) 6TH HIGHEST VALUE IS 0.00016 AT (564933.25, 4191275.25, 0.00) DC 71.32, 7TH HIGHEST VALUE IS 0.00012 AT (565070.19, 4191077.50, 70.41, 0.00) DC 8TH HIGHEST VALUE IS 0.00011 AT (564735.81, 4192658.00, 100.28, 0.00) DC 9TH HIGHEST VALUE IS 0.00011 AT (564729.75, 4192662.25, 0.00011 AT (566063.25, 4190799.75, 100.28, 0.00) DC NA 0.00) DC 10TH HIGHEST VALUE IS 101.19,

** CONC OF CHRONIC IN MICROGRAMS/M**3

GROUP	ID	AVERAGE CONC	REC	EPTOR (XR, Y	R, ZELEV, Z	FLAG) OF	TYPE	NETWORK GRID-ID
MH								
	2ND HIGHEST VALUE IS							NA
	3RD HIGHEST VALUE IS							NA
	4TH HIGHEST VALUE IS							
	5TH HIGHEST VALUE IS	•						
	6TH HIGHEST VALUE IS							
	7TH HIGHEST VALUE IS							
	8TH HIGHEST VALUE IS							
	9TH HIGHEST VALUE IS							
	10TH HIGHEST VALUE IS	0.00008 AT (564525.06,	4192613.75,	85.65,	0.00)	DC	NA
KH	1ST HIGHEST VALUE IS	0.00366 AT (564945.62,	4192065.50,	102.72,	0.00)	DC	NA
	2ND HIGHEST VALUE IS							
	3RD HIGHEST VALUE IS	0.00238 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
	4TH HIGHEST VALUE IS	0.00178 AT (564487.38,	4192391.25,	80.16,	0.00)	DC	NA
	5TH HIGHEST VALUE IS	0.00156 AT (565700.06,	4191711.25,	108.20,	0.00)	DC	NA
	6TH HIGHEST VALUE IS	0.00156 AT (565700.06,	4191711.25,	109.42,	0.00)	DC	NA
	7TH HIGHEST VALUE IS	0 00153 AT (564249 94	4192208 00	66 75	0 00)	DC	NΔ
	8TH HIGHEST VALUE IS	0.00152 AT (564591.56,	4192414.75,	83.82,	0.00)	DC	NA
	9TH HIGHEST VALUE IS	0.00125 AT (564933.25,	4191275.25,	71.32,	0.00)	DC	NA
	8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS							NA
ВН	1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 7TH HIGHEST VALUE IS 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS	0.00037 AT (564945.62,	4192065.50,	102.72,	0.00)	DC	NA
	2ND HIGHEST VALUE IS	0.00024 AT (565009.00,	4192130.00,	110.64,	0.00)	DC	NA
	3RD HIGHEST VALUE IS	0.00021 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
	4TH HIGHEST VALUE IS	0.00016 AT (564249.94,	4192208.00,	66.75,	0.00)	DC	NA
	5TH HIGHEST VALUE IS	0.00016 AT (565700.06,	4191711.25,	108.20,	0.00)	DC	NA
	6TH HIGHEST VALUE IS	0.00016 AT (565700.06,	4191711.25,	109.42,	0.00)	DC	NA
	7TH HIGHEST VALUE IS	0.00015 AT (564487.38,	4192391.25,	80.16,	0.00)	DC	NA
	8TH HIGHEST VALUE IS	0.00013 AT (564228.31,	4192049.25,	64.62,	0.00)	DC	NA
	9TH HIGHEST VALUE IS	0.00013 AT (564591.56,	4192414.75,	83.82,	0.00)	DC	NA
	10TH HIGHEST VALUE IS	0.00013 AT (564160.38,	4192207.75,	64.31,	0.00)	DC	NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CHRONIC IN MICROGRAMS/M**3 **

GROUP :	ID	AVERAGE CONC	REC	CEPTOR (XR, YR,	ZELEV, ZFLAG	OF TYP	NETWORK E GRID-ID
VLSB	1ST HIGHEST VALUE	IS 0.00235 AT (564945.62,	4192065.50,	102.72,	0.00) DC	NA
	2ND HIGHEST VALUE	IS 0.00169 AT (565700.06,	4191711.25,	108.20,	0.00) DC	NA
	3RD HIGHEST VALUE	IS 0.00168 AT (565700.06,	4191711.25,	109.42,	0.00) DC	NA
	4TH HIGHEST VALUE	IS 0.00150 AT (564926.69,	4192158.75,	109.42,	0.00) DC	NA
	5TH HIGHEST VALUE	IS 0.00150 AT (565009.00,	4192130.00,	110.64,	0.00) DC	NA
	6TH HIGHEST VALUE	IS 0.00141 AT (565328.31,	4191032.50,	74.68,	0.00) DC	NA
	7TH HIGHEST VALUE	IS 0.00112 AT (564487.38,	4192391.25,	80.16,	0.00) DC	NA
	8TH HIGHEST VALUE	IS 0.00105 AT (564591.56,	4192414.75,	83.82,	0.00) DC	NA
	9TH HIGHEST VALUE	IS 0.00102 AT (566063.25,	4190799.75,	101.19,	0.00) DC	NA
	10TH HIGHEST VALUE	IS 0.00099 AT (565070.19,	4191077.50,	70.41,	0.00) DC	NA
LSA	1ST HIGHEST VALUE	IS 0.00230 AT (564945.62,	4192065.50,	102.72,	0.00) DC	NA
	2ND HIGHEST VALUE	IS 0.00142 AT (565700.06,	4191711.25,	108.20,	0.00) DC	NA
	3RD HIGHEST VALUE	IS 0.00141 AT (565009.00,	4192130.00,	110.64,	0.00) DC	NA
	4TH HIGHEST VALUE	IS 0.00139 AT (564926.69,	4192158.75,	109.42,	0.00) DC	NA
	5TH HIGHEST VALUE	IS 0.00138 AT (565700.06,	4191711.25,	109.42,	0.00) DC	NA
	6TH HIGHEST VALUE	IS 0.00132 AT (565070.19,	4191077.50,	70.41,	0.00) DC	NA
	7TH HIGHEST VALUE	IS 0.00130 AT (564933.25,	4191275.25,	71.32,	0.00) DC	NA
	8TH HIGHEST VALUE	IS 0.00129 AT (565328.31,	4191032.50,	74.68,	0.00) DC	NA
	9TH HIGHEST VALUE	IS 0.00097 AT (564249.94,	4192208.00,	66.75,	0.00) DC	NA
	10TH HIGHEST VALUE	IS 0.00095 AT (564487.38,	4192391.25,	80.16,	0.00) DC	NA
LEW	1ST HIGHEST VALUE	IS 0.00044 AT (565700.06,	4191711.25,	109.42,	0.00) DC	NA
	2ND HIGHEST VALUE	IS 0.00043 AT (565700.06,	4191711.25,	108.20,	0.00) DC	NA
	3RD HIGHEST VALUE	IS 0.00007 AT (565144.62,	4192620.50,	154.84,	0.00) DC	NA

0.00006 AT (565233.75, 4192605.00, 0.00006 AT (565202.31, 4192629.00, 0.00006 AT (565009.00, 4192130.00, 0.00005 AT (566093.38, 4191024.75, 0.00005 AT (564926.69, 4192158.75, 0.00005 AT (564945.62, 4192065.50, 0.00004 AT (566166.56, 4190836.25, 0.00) DC 0.00) DC 0.00) DC 0.00) DC 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 159.72, 160.32, 110.64, NA NA NΑ 7TH HIGHEST VALUE IS 114.60, NA 0.00) DC 0.00) DC 0.00) DC 8TH HIGHEST VALUE IS 109.42, NA 9TH HIGHEST VALUE IS 102.72, NA 10TH HIGHEST VALUE IS 107.59,

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CHRONIC IN MICROGRAMS/M**3

GROUP	ID	AVERAGE CONC	RECEPT	TOR (XR, YR,	ZELEV, ZFLAG)	OF TY	NETWORK PE GRID-ID
LAT	1ST HIGHEST VALUE IS	S 0.00060 AT (5	565700.06, 41	191711.25,	109.42,	0.00) D	C NA
	2ND HIGHEST VALUE IS	0.00056 AT (5	565700.06, 41	191711.25,	108.20,	0.00) D	C NA
	3RD HIGHEST VALUE IS	S 0.00016 AT (5	565144.62, 41	192620.50,	154.84,	0.00) D	C NA
	4TH HIGHEST VALUE IS	0.00016 AT (5 0.00015 AT (5	565009.00, 41	192130.00,	110.64.	0.00) D	C NA
	5TH HIGHEST VALUE IS					0.00) D	C NA
	6TH HIGHEST VALUE IS	S 0.00014 AT (5	565202.31, 41	192629.00,	160.32,	0.00) D	C NA
	7TH HIGHEST VALUE IS	S 0.00013 AT (5	564926.69, 41	192158.75,	109.42,	0.00) D	C NA
	8TH HIGHEST VALUE IS	S 0.00011 AT (5	564945.62, 41	192065.50,	102.72,	0.00) D	C NA
	9TH HIGHEST VALUE IS	S 0.00009 AT (5	566093.38, 41	191024.75,	114.60,	0.00) D	C NA
	10TH HIGHEST VALUE IS	,					C NA
TAN	1ST HIGHEST VALUE IS	0.00032 AT (5 0.00030 AT (5 0.00008 AT (5 0.00006 AT (5 0.00004 AT (5 0.00004 AT (5 0.00004 AT (5 0.00003 AT (5 0.000003 AT (5 0.00003 AT (5 0.000003 AT (5 0.00003 AT (5 0.00	565700.06, 41	191711.25,	109.42,	0.00) D	C NA
	2ND HIGHEST VALUE IS	S 0.00030 AT (5	565700.06, 41	191711.25,	108.20,	0.00) D	C NA
	3RD HIGHEST VALUE IS	O.00008 AT (5	565009.00, 41	192130.00,	110.64,	0.00) D	
	4TH HIGHEST VALUE IS	S 0.00006 AT (5	565144.62, 41	192620.50,	154.84,	0.00) D	C NA
	5TH HIGHEST VALUE IS	O.00006 AT (5	564926.69, 41	192158.75,	109.42,	0.00) D	C NA
	6TH HIGHEST VALUE IS	S 0.00006 AT (5	564945.62, 41	192065.50,	102.72,	0.00) D	C NA
	7TH HIGHEST VALUE IS	S 0.00006 AT (5	565233.75, 41	192605.00,	159.72,	0.00) D	C NA
	8TH HIGHEST VALUE IS	S 0.00006 AT (5	565202.31, 41	192629.00,	160.32,	0.00) D	C NA
	9TH HIGHEST VALUE IS	S 0.00004 AT (5	566093.38, 41	191024.75,	114.60,	0.00) D	C NA
	10TH HIGHEST VALUE IS	0.00003 AT (5	564735.81, 41	192658.00,	100.28,	0.00) D	C NA
НН	1ST HIGHEST VALUE IS	0.00273 AT (5	565700.06 , 41	191711.25,	109.42,	0.00) D	C NA
	2ND HIGHEST VALUE IS	S 0.00255 AT (5	565700.06, 41	191711.25,	108.20,	0.00) D	C NA
	3RD HIGHEST VALUE IS	S 0.00028 AT (5	565009.00, 41	192130.00,	110.64,	0.00) D	C NA
	4TH HIGHEST VALUE IS	S 0.00025 AT (5	564926.69, 41	192158.75,	109.42,	0.00) D	C NA
	5TH HIGHEST VALUE IS	S 0.00024 AT (5	564945.62, 41	192065.50,	102.72,	0.00) D	C NA
	6TH HIGHEST VALUE IS	S 0.00024 AT (5	565144.62, 41	192620.50,	154.84,	0.00) D	C NA
	7TH HIGHEST VALUE IS	S 0.00022 AT (5	565233.75, 41	192605.00,	159.72,	0.00) D	C NA
	8TH HIGHEST VALUE IS	S 0.00021 AT (5	565202.31, 41	192629.00,	160.32,	0.00) D	C NA
	9TH HIGHEST VALUE IS	S 0.00017 AT (5	566093.38, 41	191024.75,	114.60,	0.00) D	C NA
	10TH HIGHEST VALUE IS	0.00273 AT (5 0.00255 AT (5 0.00255 AT (5 0.00028 AT (5 0.00025 AT (5 0.00024 AT (5 0.00024 AT (5 0.00022 AT (5 0.00022 AT (5 0.00021 AT (5 0.00021 AT (5 0.00021 AT (5 0.00017 AT (5 0.00014 AT (5 0.0001	564735.81, 41	192658.00,	100.28,	0.00) D	C NA

*** THE SUMMARY OF MAXIMUM PERIOD ($8760\ \mathrm{HRS})$ RESULTS ***

GROUP ID		AVERAGE CONC	REC:	EPTOR (XR, YR,	ZELEV, ZFLA	G) OF TY	NETWORK PE GRID-ID
STH 1ST HIG	EST VALUE IS	0.00065 AT (565700.06,	4191711.25,	109.42,	0.00) D	C NA
2ND HIG	EST VALUE IS	0.00062 AT (565700.06,	4191711.25,	108.20,	0.00) D	C NA
3RD HIG	EST VALUE IS	0.00031 AT (565009.00,	4192130.00,	110.64,	0.00) D	C NA
4TH HIG	EST VALUE IS	0.00025 AT (564926.69,	4192158.75,	109.42,	0.00) D	C NA
5TH HIG	EST VALUE IS	0.00024 AT (565144.62,	4192620.50,	154.84,	0.00) D	C NA
6TH HIG	EST VALUE IS	0.00022 AT (565233.75,	4192605.00,	159.72,	0.00) D	C NA
7TH HIG	EST VALUE IS	0.00022 AT (565202.31,	4192629.00,	160.32,	0.00) D	C NA
8TH HIG	EST VALUE IS	0.00017 AT (564945.62,	4192065.50,	102.72,	0.00) D	C NA
9TH HIG	EST VALUE IS	0.00012 AT (564735.81,	4192658.00,	100.28,	0.00) D	C NA
10TH HIG	EST VALUE IS	0.00012 AT (564729.75,	4192662.25,	100.28,	0.00) D	C NA
GH 1ST HIG	EST VALUE IS	0.00044 AT (565700.06,	4191711.25,	109.42,	0.00) D	C NA
2ND HIG	EST VALUE IS	0.00043 AT (565700.06,	4191711.25,	108.20,	0.00) D	C NA
3RD HIG	EST VALUE IS	0.00007 AT (565009.00,	4192130.00,	110.64,	0.00) D	C NA
4TH HIG	EST VALUE IS	0.00006 AT (564945.62,	4192065.50,	102.72,	0.00) D	C NA
5TH HIG	EST VALUE IS	0.00006 AT (564926.69,	4192158.75,	109.42,	0.00) D	C NA
6TH HIG	EST VALUE IS	0.00004 AT (565144.62,	4192620.50,	154.84,	0.00) D	C NA
7TH HIG	EST VALUE IS	0.00004 AT (565233.75,	4192605.00,	159.72,	0.00) D	C NA

8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS 0.00004 AT (565202.31, 4192629.00, 0.00003 AT (566093.38, 4191024.75, 0.00003 AT (564735.81, 4192658.00, 160.32, 0.00) DC NA 0.00) DC 0.00) DC 114.60, NA 100.28, NA 0.00011 AT (565700.06, 4191711.25, 0.00011 AT (565009.00, 4192130.00, СН 1ST HIGHEST VALUE IS 109.42, 0.00) NA 2ND HIGHEST VALUE IS 110.64, 0.00) DC NA 0.00011 AT (565144.62, 4192620.50, 0.00011 AT (565700.06, 4191711.25, 3RD HIGHEST VALUE IS 154.84, 0.00) NA 4TH HIGHEST VALUE IS 108.20, 0.00) DC NA 5TH HIGHEST VALUE IS 0.00009 AT (565202.31, 4192629.00, 160.32, 0.00) DC NA 6TH HIGHEST VALUE IS 0.00009 AT (565233.75, 4192605.00, 159.72, 0.00) DC NA 7TH HIGHEST VALUE IS 0.00009 AT (564926.69, 4192158.75, 109.42, 0.00) DC NA 8TH HIGHEST VALUE IS 0.00005 AT (564945.62, 4192065.50, 102.72, 0.00) DC NA 9TH HIGHEST VALUE IS 0.00005 AT (564735.81, 4192658.00, 100.28, 0.00) DC NA 10TH HIGHEST VALUE IS 0.00005 AT (564729.75, 4192662.25, 100.28, 0.00) DC NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CHRONIC IN MICROGRAMS/M**3

GROUP I	D		AVERAGE CONC	REC	EPTOR (XR, YR,	ZELEV, ZFI	LAG) OF TYPE	NETWORK GRID-ID
DH			0.00004 AT (NA
			0.00003 AT (NA
	3RD HIGHEST							NA
	4TH HIGHEST			564926.69,	4192158.75,	109.42,	0.00) DC	NA
	5TH HIGHEST	VALUE IS	0.00002 AT (564945.62,	4192065.50,	102.72,	0.00) DC	NA
	6TH HIGHEST	VALUE IS	0.00002 AT (565144.62,	4192620.50,	154.84,	0.00) DC	NA
	7TH HIGHEST	VALUE IS	0.00002 AT (565233.75,	4192605.00,	159.72,	0.00) DC	NA
	8TH HIGHEST	VALUE IS	0.00002 AT (565202.31,	4192629.00,	160.32,	0.00) DC	NA
	9TH HIGHEST	VALUE IS	0.00002 AT (564735.81,	4192658.00,	100.28,	0.00) DC	NA
	10TH HIGHEST	VALUE IS	0.00002 AT (564729.75,	4192662.25,	100.28,	0.00) DC	NA
HES	1ST HIGHEST	VALUE IS	0.00122 AT (565009.00,	4192130.00,	110.64,	0.00) DC	NA
	2ND HIGHEST	VALUE IS				102.72,	0.00) DC	NA
	3RD HIGHEST	VALUE IS	0.00090 AT (564926.69,	4192158.75,	109.42,	0.00) DC	NA
	4TH HIGHEST	VALUE IS	0.00064 AT (565700.06,	4191711.25,	109.42,	0.00) DC	NA
	5TH HIGHEST	VALUE IS	0.00064 AT (565700.06,	4191711.25,	108.20,	0.00) DC	NA
	6TH HIGHEST	VALUE IS	0.00027 AT (566093.38,	4191024.75,	114.60,	0.00) DC	NA
	7TH HIGHEST	VALUE IS	0.00026 AT (564735.81,	4192658.00,	100.28,	0.00) DC	NA
	8TH HIGHEST	VALUE IS						NA
	9TH HIGHEST	VALUE IS						NA
	10TH HIGHEST	VALUE IS	0.00025 AT (565233.75,	4192605.00,	159.72,	0.00) DC	NA
HIL	1ST HIGHEST	VALUE IS	0.03120 AT (564945.62,	4192065.50,	102.72,	0.00) DC	NA
	2ND HIGHEST			564926.69,	4192158.75,	109.42,	0.00) DC	NA
	3RD HIGHEST		0.01566 AT (565009.00,	4192130.00,	110.64,	0.00) DC	NA
	4TH HIGHEST		0.01252 AT (565700.06,	4191711.25,	108.20,	0.00) DC	NA
	5TH HIGHEST		0.01244 AT (565700.06,	4191711.25,	109.42,	0.00) DC	NA
	6TH HIGHEST		0.01133 AT (364391.36,	4192414.75,	03.04,	0.00) DC	NA
	7TH HIGHEST			564487.38,	4192391.25,	80.16,	0.00) DC	NA
	8TH HIGHEST							NA
	9TH HIGHEST							NA
	10TH HIGHEST	VALUE IS	0.00754 AT (564249.94,	4192208.00,	66.75,	0.00) DC	NA

*** THE SUMMARY OF MAXIMUM PERIOD ($8760\ \mathrm{HRS})$ RESULTS ***

GROUP I	D 		AVERAGE CONC	REC	CEPTOR (XR, YR,	ZELEV, ZFLAG)	OF TYPE	NETWORK GRID-ID
MUL	1ST HIGHEST	VALUE IS	0.00000 AT (564945.62,	4192065.50,	102.72,	0.00) DC	NA
	2ND HIGHEST	VALUE IS	0.00000 AT (564926.69,	4192158.75,	109.42,	0.00) DC	NA
	3RD HIGHEST	VALUE IS	0.00000 AT (564933.25,	4191275.25,	71.32,	0.00) DC	NA
	4TH HIGHEST	VALUE IS	0.00000 AT (565009.00,	4192130.00,	110.64,	0.00) DC	NA
	5TH HIGHEST	VALUE IS	0.00000 AT (564487.38,	4192391.25,	80.16,	0.00) DC	NA
	6TH HIGHEST	VALUE IS	0.00000 AT (564249.94,	4192208.00,	66.75,	0.00) DC	NA
	7TH HIGHEST	VALUE IS	0.00000 AT (565700.06,	4191711.25,	108.20,	0.00) DC	NA
	8TH HIGHEST	VALUE IS	0.00000 AT (565700.06,	4191711.25,	109.42,	0.00) DC	NA
	9TH HIGHEST	VALUE IS	0.00000 AT (564228.31,	4192049.25,	64.62,	0.00) DC	NA
	10TH HIGHEST	VALUE IS	0.00000 AT (564591.56,	4192414.75,	83.82,	0.00) DC	NA

0.00004 AT (564945.62, 4192065.50, 0.00003 AT (565009.00, 4192130.00, 0.00003 AT (564926.69, 4192158.75, 0.00002 AT (564487.38, 4192391.25, 102.72, 0.00) DC WET. 1ST HIGHEST VALUE IS NΙΔ 110.64, 2ND HIGHEST VALUE IS 0.00) DC NA 3RD HIGHEST VALUE IS 109.42, 0.00) DC NA 4TH HIGHEST VALUE IS 80.16, 0.00) DC NA 5TH HIGHEST VALUE IS 0.00002 AT (565700.06, 4191711.25, 108.20, 0.00) DC NA 6TH HIGHEST VALUE IS 0.00002 AT (565700.06, 4191711.25, 109.42, 0.00) DC NA 0.00) 7TH HIGHEST VALUE IS 0.00002 AT (564591.56, 4192414.75, 83.82, DC NA 66.75, 8TH HIGHEST VALUE IS 0.00001 AT (564249.94, 4192208.00, 0.00) DC NA 0.00001 AT (564525.06, 4192613.75, 0.00001 AT (564160.38, 4192207.75, 85.65, 0.00) DC 0.00) DC 9TH HIGHEST VALUE IS NA 10TH HIGHEST VALUE IS 64.31, NA 0.04454 AT (564945.62, 4192065.50, 0.03040 AT (565700.06, 4191711.25, 0.03012 AT (564926.69, 4192158.75, 0.02994 AT (565700.06, 4191711.25, 102.72, 109.42, NOENGINE 1ST HIGHEST VALUE IS 0.00) DC NA 2ND HIGHEST VALUE IS 0.00) DC NA 3RD HIGHEST VALUE IS 109.42, 0.00) DC NA 4TH HIGHEST VALUE IS 108.20, 0.00) DC NA 110.64, 5TH HIGHEST VALUE IS 0.02779 AT (565009.00, 4192130.00, 0.00) DC NA 0.01955 AT (565144.62, 4192620.50, 6TH HIGHEST VALUE IS 154.84, 0.00) DC MΔ 160.32, 7TH HIGHEST VALUE IS 0.01820 AT (565202.31, 4192629.00, 0.00) DC NA 0.01762 AT (565233.75, 4192605.00, 0.01704 AT (564487.38, 4192391.25, 0.01699 AT (564591.56, 4192414.75, 8TH HIGHEST VALUE IS 159.72, 0.00) DC 9TH HIGHEST VALUE IS 80.16, 0.00) DC NA 10TH HIGHEST VALUE IS 83.82, 0.00) DC

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CHRONIC IN MICROGRAMS/M**3

NETWORK AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID 109.42, ENGINE 1ST HIGHEST VALUE IS 0.00186 AT (565700.06, 4191711.25, 0.00) 0.00186 AT (565/00.06, 4191/11.25, 109.42, 0.00184 AT (565700.06, 4191711.25, 108.20, 0.00176 AT (564945.62, 4192065.50, 102.72, 0.00144 AT (565009.00, 4192130.00, 110.64, 0.00142 AT (564926.69, 4192158.75, 109.42 2ND HIGHEST VALUE IS 0.00) DC 3RD HIGHEST VALUE IS 0.00) DC NA 4TH HIGHEST VALUE IS 0.00) DC 0.00142 AT (564926.69, 4192158.75, 0.00138 AT (566093.38, 4191024.75, 5TH HIGHEST VALUE IS 109.42, 114.60, 0.00) DC 6TH HIGHEST VALUE IS 0.00) DC 0.00136 AT (566063.25, 4190124.75, 0.00104 AT (566166.56, 4190799.75, 0.00084 AT (564933.25, 4191275.25, 0.00082 AT (565070.19, 4191077.50, 7TH HIGHEST VALUE IS 107.59, 0.00) DC 101.19, 8TH HIGHEST VALUE IS 0.00) DC 9TH HIGHEST VALUE IS 0.00) DC 0.00) DC 71.32, 70.41, 10TH HIGHEST VALUE IS 0.00059 AT (564933.25, 4191275.25, 0.00056 AT (564839.88, 4191259.75, 1ST HIGHEST VALUE IS 0.00) DC 2ND HIGHEST VALUE IS 67.36, 0.00) DC NA 0.00049 AT (564859.75, 4191226.00, 0.00033 AT (565070.19, 4191077.50, 3RD HIGHEST VALUE IS 0.00) DC 67.67, 4TH HIGHEST VALUE IS 70.41, 0.00) DC NA 5TH HIGHEST VALUE IS 0.00028 AT (564228.31, 4192049.25, 64.62, 0.00) DC 6TH HIGHEST VALUE IS 0.00022 AT (564786.81, 4191021.25, 61.26, 0.00) DC NA 0.00021 AT (564079.94, 4192117.50, 0.00019 AT (565328.31, 4191032.50, 0.00018 AT (564160.38, 4192207.75, 0.00017 AT (564249.94, 4192208.00, 7TH HIGHEST VALUE IS 61.57, 0.00) DC 8TH HIGHEST VALUE IS 74.68, 0.00) DC 9TH HIGHEST VALUE IS 0.00) DC 64.31, 10TH HIGHEST VALUE IS 66.75, 0.00) DC 0.01198 AT (565144.62, 4192620.50, 154.84, 160.32, 0.00) DC COMBUST 1ST HIGHEST VALUE IS 0.01139 AT (565202.31, 4192629.00, 0.01102 AT (565233.75, 4192605.00, 0.00) DC 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 159.72. 0.00) DC 0.00941 AT (566729.00, 4190469.25, 4TH HIGHEST VALUE IS 136.86, 0.00) DC 0.00854 AT (567269.62, 4189942.75, 0.00792 AT (566093.38, 4191024.75, 5TH HIGHEST VALUE IS 174.65, 0.00) DC 6TH HIGHEST VALUE IS 114.60, 0.00) DC 7TH HIGHEST VALUE IS 0.00677 AT (565700.06, 4191711.25, 109.42. 0.00) DC 8TH HIGHEST VALUE IS 0.00667 AT (567693.00, 4189595.75, 0.00) DC 193.24, 9TH HIGHEST VALUE IS 0.00647 AT (565700.06, 4191711.25, 108.20, 0.00) DC NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

0.00) DC

** CONC OF CHRONIC IN MICROGRAMS/M**3

0.00521 AT (566166.56, 4190836.25,

10TH HIGHEST VALUE IS

GROUP II) 	A	VERAGE CONC	REC	CEPTOR (XR, YR	, ZELEV, ZFLAG	G) OF TYPE	NETWORK GRID-ID
HAZMAT	1ST HIGHEST 2ND HIGHEST 3RD HIGHEST 4TH HIGHEST	VALUE IS VALUE IS	0.00001 AT (0.00001 AT (0.00001 AT (0.00000 AT (4191226.00,	71.32, 70.41, 67.67, 67.36,	0.00) DC 0.00) DC 0.00) DC 0.00) DC	NA NA NA NA

5T	H HIGHEST	VALUE	IS	0.00000	AT (565328.31,	4191032.50,	74.68,	0.00)	DC	NA
6T	H HIGHEST	VALUE	IS	0.00000	AT (565130.12,	4190916.25,	66.75,	0.00)	DC	NA
7T	H HIGHEST	VALUE	IS	0.00000	AT (564228.31,	4192049.25,	64.62,	0.00)	DC	NA
8T	H HIGHEST	VALUE	IS	0.00000	AT (564945.62,	4192065.50,	102.72,	0.00)	DC	NA
9Т	H HIGHEST	VALUE	IS	0.00000	AT (564249.94.	4192208.00,	66.75,	0.00)	DC	NA
10T	H HIGHEST	VALUE	IS	0.00000	AT (564160.38,	4192207.75,	64.31,	0.00)	DC	NA
						,	,	,	•		
PAINT 1S	r HIGHEST	VALUE	IS	0.00004	AT (565700.06,	4191711.25,	109.42,	0.00)	DC	NA
2N) HIGHEST	VALUE	IS	0.00004	AT (565700.06,	4191711.25,	108.20,	0.00)	DC	NA
3R) HIGHEST	VALUE	IS	0.00004	AT (564945.62,	4192065.50,	102.72,	0.00)	DC	NA
4T	H HIGHEST	VALUE	IS	0.00004	AT (565009.00,	4192130.00,	110.64,	0.00)	DC	NA
5T	H HIGHEST	VALUE	IS	0.00004	AT (564933.25,	4191275.25,	71.32,	0.00)	DC	NA
6T	H HIGHEST	VALUE	IS	0.00003	AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
7T	H HIGHEST	VALUE	IS	0.00002	AT (565070.19,	4191077.50,	70.41,	0.00)	DC	NA
8T	H HIGHEST	VALUE	IS	0.00001	AT (565328.31,	4191032.50,	74.68,	0.00)	DC	NA
9T	H HIGHEST	VALUE	IS	0.00001	AT (564487.38,	4192391.25,	80.16,	0.00)	DC	NA
10T	H HIGHEST	VALUE	IS	0.00001	AT (564591.56,	4192414.75,	83.82,	0.00)	DC	NA
ALL LABS 1S	r HIGHEST	VALUE	IS	0.04207	AT (564945.62,	4192065.50,	102.72,	0.00)	DC	NA
- 2N) HIGHEST	VALUE	IS	0.02647	AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
3R	D HIGHEST	VALUE	IS	0.02393	AT (565009.00,	4192130.00,	110.64,	0.00)	DC	NA
4 T	H HIGHEST	VALUE	IS	0.02352	AT (565700.06,	4191711.25,	109.42,	0.00)	DC	NA
5T	H HIGHEST	VALUE	IS	0.02337	AT (565700.06,	4191711.25,	108.20,	0.00)	DC	NA
6T	H HIGHEST	VALUE	IS	0.01601	AT (564487.38,	4192391.25,	80.16,	0.00)	DC	NA
7T	H HIGHEST	VALUE	IS	0.01587	AT (564591.56,	4192414.75,	83.82,	0.00)	DC	NA
8T	H HIGHEST	VALUE	IS	0.01152	AT (564249.94,	4192208.00,	66.75,	0.00)	DC	NA
9T	H HIGHEST	VALUE	IS	0.01121	AT (564525.06,	4192613.75,	85.65,	0.00)	DC	NA
10T	H HIGHEST	VALUE	IS	0.01116	AT (564729.75,	4192662.25,	100.28,	0.00)	DC	NA

*** ISCST3 - VERSION 02035 ***

*** UC Berkeley - 12/2003; vjh Receptor Grid - Acute

*** Model Executed on 02/06/04 at 10:07:32 ***

Input File - D:\Beest\UCBerk\10-03\Final\LRDP\LRDP-Acute.DTA

Output File - D:\Beest\UCBerk\10-03\Final\LRDP\LRDP-Acute.LST

 $\label{local_met2} \mbox{Met File - D:\Beest\UCBerk\10-03\mbox{\mbox{$\mbox{$met2$\lbl-97a.asc}}}} \\$

Number of sources - 104 Number of source groups - 35 Number of receptors - 1481

	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RAT
WHSTK1 8	0	0.42700E-06 0.59100E-05 0.42700E-06 0.56100E-06 0.56100E-06 0.56100E-06 0.56100E-06 0.91800E-05 0.91800E-05 0.91800E-05 0.91800E-05 0.30000E-05 0.30000E-05 0.30000E-05 0.30000E-05 0.30000E-05 0.30000E-05	564704.4	4191782.8	66.8	31.70	293.15	7.12	0.19	YES	
NWAF9	0	0.59100E-05	564718.8	4191791.2	66.8	29.57	293.15	16.48	0.74	YES	
WHSTK10	0	0.42700E-06	564724.4	4191826.0	66.8	8.60	293.15	7.12	0.34	YES	
MHSTK1	0	0.56100E-06	564794.4	4191795.8	74.8	7.61	293.15	17.25	0.34	YES	
MHSTK2	0	0.56100E-06	564798.6	4191843.0	74.8	10.89	293.15	17.25	0.29	YES	
MHSTK3	0	0.56100E-06	564794.1	4191843.0	74.8	10.89	293.15	17.25	0.48	YES	
MHSTK4	0	0.56100E-06	564800.9	4191787.2	74.8	15.61	293.15	17.25	0.33	YES	
MHSTK6	0	0.56100E-06	564801.3	4191808.2	74.8	10.94	293.15	17.25	0.34	YES	
KHSTK1	0	0.91800E-05	564761.1	4191879.8	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK2	0	0.91800E-05	564759.4	4191891.8	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK3	0	0.91800E-05	564732.4	4191877.5	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK4	0	0.91800E-05	564731.4	4191889.0	72.7	18.45	293.15	1.28	2.76	YES	
BHSTK1	0	0.30000E-05	564678.9	4191889.0	67.4	27.85	293.15	2.78	1.26	YES	
BHSTK2	0	0.30000E-05	564675.0	4191896.8	67.4	29.68	293.15	2.78	1.26	YES	
BHSTK3	0	0.30000E-05	564704.5	4191898.0	67.4	29.68	293.15	2.78	1.26	YES	
BHSTK4	0	0.30000E-05	564707.4	4191887.8	67.4	33.34	293.15	2.78	0.37	YES	
BHSTK5	0	0.30000E-05 0.87700E-05	564691.6	4191888.0	67.4	33.34	293.15	2.78	0.37	YES	
VLSBSTK1	0	0.87700E-05	564933.6	4191633.2	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK2	0	0.87700E-05	564954.0	4191566.5	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK3	0	0.87700E-05	565051.3	4191594.8	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK4	0	0.87700E-05	565030.6	4191662.2	64.4	27.04	293.15	3.97	1.22	YES	
LSASTK1	0	0.11400E-04	564892.2	4191637.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK2	0	0.11400E-04	564875.9	4191632.8	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK3	0	0.11400E-04	564907.6	4191580.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK4	0	0.11400E-04	564897.1	4191578.0	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK5	0	0.11400E-04	564908.6	4191576.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK6	0	0.11400E-04	564899.1	4191573.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK7	0	0.11400E-04	564900.8	4191572.2	64.4	28.31	293.15	5.18	0.30	YES	
LEWHSTK1	0	0.17700E-05	565605.8	4191772.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK2	0	0.17700E-05	565591.5	4191786.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK3	0	0.17700E-05	565585.9	4191792.2	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK4	0	0.17700E-05	565583.1	4191800.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK5	0	0.17700E-05	565598.1	4191787.8	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK6	0	0.17700E-05	565619.4	4191775.8	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK7	0	0.17700E-05	565608.8	4191787.2	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK8	0	0.17700E-05	565597.6	4191800.5	106.7	12.80	293.15	3.11	0.30	YES	
LEWHSTK9	0	0.17700E-05	565593.3	4191808.2	106.7	12.80	293.15	3.11	0.36	YES	
LATHSTK1	0	0.75900E-05	565555.1	4191799.2	104.6	42.37	293.15	6.28	0.34	YES	
LATHSTK2	0	0.75900E-05	565561.1	4191812.0	104.6	36.88	293.15	6.28	0.70	YES	
LATHSTK3	0	0.30000E-05 0.30000E-05 0.87700E-05 0.87700E-05 0.87700E-05 0.11400E-04 0.11400E-04 0.11400E-04 0.11400E-04 0.11400E-04 0.11400E-04 0.11400E-05 0.17700E-05	565531.6	4191800.2	104.6	36.88	293.15	6.28	0.48	YES	

SOURCE ID	NUMBER PART. CATS.	EMISSION RAT	E X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
LATHSTK4	0	0.75900E-05	565515.1	4191799.5	104.6	37.19	293.15	6.28	0.96	YES	
LATHSTK5	0	0.75900E-05	565539.7	4191794.2	104.6	42.37	293.15	6.28	0.70	YES	
LATHSTK6	0	0.75900E-05	565527.3	4191776.0	104.6	38.40	293.15	6.28	0.74	YES	
LATHSTK7	0	0.75900E-05	565544.9	4191781.5	104.6	38.40	293.15	6.28	0.31	YES	
LATHSTK8	0	0.75900E-05	565562.3	4191787.0	104.6	38.40	293.15	6.28	0.70	YES	
TANHSTKA	0	0.65400E-05	565492.1	4191793.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKB	0	0.65400E-05	565496.8	4191794.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKC	0	0.65400E-05	565494.1	4191787.2	100.6	39.32	293.15	2.94	1.69	YES	

TANHSTKD	0	0.65400E-05	565499.1 4191788.2	100.6	39.32	293.15	2.94	1.69	YES
HHSTKA	0	0.71400E-05	565540.8 4191749.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKB	0	0.71400E-05	565565.6 4191756.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKC	0	0.71400E-05	565576.8 4191717.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKD	0	0.71400E-05	565553.2 4191710.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKE	0	0.71400E-05	565543.4 4191746.5	103.6	20.12	293.15	4.15	0.81	YES
GHSTK1	0	0.86700E-06	565507.1 4191756.0	103.6	16.06	293.15	5.92	0.30	YES
GHSTK2	0	0.86700E-06	565510.6 4191744.8	103.6	16.06	293.15	5.92	0.25	YES
GHSTK3	0	0.86700E-06	565512.4 4191739.0	103.6	16.37	293.15	5.92	0.30	YES
GHSTK4	0	0.86700E-06	565514.7 4191737.8	103.6	15.91	293.15	5.92	0.31	YES
GHSTK5	0	0.86700E-06	565514.9 4191732.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK6	0	0.86700E-06	565500.2 4191755.2	103.6	16.12	293.15	5.92	0.30	YES
GHSTK7	0	0.86700E-06	565501.1 4191753.0	103.6	16.37	293.15	5.92	0.84	YES
GHSTK8	0	0.86700E-06	565503.7 4191744.2	103.6	16.00	293.15	5.92	0.30	YES
GHSTK9	0	0.86700E-06	565505.2 4191740.2	103.6	16.37	293.15	5.92	0.26	YES
GHSTK10	0	0.86700E-06	565506.9 4191735.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK11	0	0.86700E-06	565509.7 4191728.2	103.6	16.22	293.15	5.92	0.30	YES
GHSTK12	0	0.86700E-06	565509.0 4191725.5	103.6	16.06	293.15	5.92	0.30	YES
GHSTK13	0	0.86700E-06	565516.9 4191725.8	103.6	15.91	293.15	5.92	0.40	YES
CHSTK1	0	0.38000E-05	565393.9 4192008.8	110.3	26.85	293.15	2.00	1.00	YES
HESSTK1	0	0.41400E-05	565234.6 4191926.2	98.2	15.39	293.15	2.00	1.00	YES
HILSTK1	0	0.20500E-04	564874.6 4191815.0	80.4	14.96	293.15	2.00	1.00	YES
MULSTK1	0	0.26400E-07	564779.7 4191737.8	74.4	17.24	293.15	2.00	1.00	YES
WELSTK1	0	0.15600E-06	564933.7 4191795.2	81.7	5.89	293.15	2.00	1.00	YES
PRINTA	0	0.60400E-05	564584.7 4191553.2	60.0	8.91	293.15	2.70	0.84	YES
PRINTB	0	0.60400E-05	564614.4 4191520.8	60.0	8.91	293.15	2.70	0.84	YES
PRINTC	0	0.60400E-05	564643.1 4191525.5	60.0	8.91	293.15	2.70	0.60	YES
COGEN	0	0.19000E-02	564876.0 4191492.0	71.9	12.77	430.37	10.45	2.28	YES
BOILER#2	0	0.88000E-04	564863.6 4191499.5	71.9	8.80	522.82	7.97	1.52	YES
BOILER#3	0	0.86700E-04	564881.9 4191505.8	71.9	8.80	554.11	10.53	1.52	YES
BOILER#4	0	0.86700E-04	564885.8 4191495.8	71.9	8.80	566.65	12.63	1.52	YES
POURING	0	0.25500E-04	564847.8 4191467.0	70.1	14.94	293.15	4.62	0.56	YES

*** POINT SOURCE DATA ***

	PART.	EMISSION RATE (GRAMS/SEC)	X	Y	ELEV.	HEIGHT	TEMP.	EXIT VEL.	DIAMETER	EXISTS	
NEWLAB_A	0	0.20100E-03 0.40700E-04 0.22700E-04 0.12100E-04 0.32300E-04 0.25600E-04 0.73600E-05	564808.8	4191708.2	70.5	6.10	293.15	3.97 3.97 3.97 3.97	1.00	YES	
NEWLAB_B	0	0.40700E-04	565047.0	4191787.5	77.9	6.10	293.15	3.97	1.00	YES	
NEWLAB_C	0	0.22700E-04	565301.9	4191832.0	90.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_D	0	0.12100E-04	565490.2	4191861.5	106.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_E	0	0.32300E-04	565089.5	4191460.8	73.6	6.10	293.15	3.97	1.00	YES	
NEWLAB_F	0	0.25600E-04	565368.8	4191521.8	86.7	6.10	293.15	3.97		YES	
NEWLAB_G	0	0.73600E-05	565641.7	4191569.5	102.4	6.10	293.15	3.97		YES	
NEWSTAN1	0	0.26300E-04	565533.9	4191904.0	112.9	41.90	293.15			YES	
NEWSTAN2		0.26300E-04			112.9	41.90				YES	
NEWSTAN3	0	0.26300E-04	565537.2	4191894.5		41.90	293.15			YES	
NEWSTAN4		0.26300E-04			112.9	41.90				YES	
NEWSTAN5	0	0.26300E-04	565545.4	4191891.5		41.90	293.15	51.74		YES	
NEWSTAN6		0.26300E-04			112.9	41.90	293.15			YES	
NEWSTAN7		0.26300E-04			112.9	41.90	293.15		0.76	YES	
NEWSTAN8		0.26300E-04			112.9	41.90	293.15		0.76	YES	
NEWDAVS1		0.25200E-04				33.79	293.15			YES	
NEWDAVS2		0.25200E-04				33.79			1.63	YES	
NEWDAVS3	0	0.25200E-04 0.25200E-04	565329.5	4191986.8	109.2	33.79	293.15	13.62	0.86	YES	
NEWDAVS4	0	0.25200E-04	565328.4	4191986.2	109.2	33.79	293.15	13.62	0.86	YES	
				***	VOLUME S	SOURCE DA	L'A ***				
	NUMBER	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	EMISSION	RATE	
		(GRAMS/SEC)									
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	BY		
MHSTK5	0	0.56100E-06	564821.2	4191842.8	74.8	6.95	0.07	2.42			
PATNT1	0	0.96700E-07	564917.1	4191432.5	72.0	4.57	3.54	4.25			
PAINT2	0	0.96700E-07	565322.7	4191834.8	96.0	4.57					
PAINT3	0	0.96700E-07	565541.5	4191525.8	97.0	4.57	3.54	4.25			
PAINT4	0	0.96700E-07 0.96700E-07 0.96700E-07	564865.7	4191751.0	77.0	4.57	3.54	4.25			

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDS

```
ALL
           WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7.
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
           WELSTK1 , PRINTA , PRINTB , PRINTC , COGEN , BOILER#2, BOILER#3, BOILER#4, POURING , PAINT1 , PAINT2 , PAINT3
           PAINT4 , NEWLAB A, NEWLAB B, NEWLAB C, NEWLAB D, NEWLAB E, NEWLAB F, NEWLAB G, NEWSTAN1, NEWSTAN2, NEWSTAN3,
NEWSTAN4,
           NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
 WH
           WHSTK1 8, WHSTK10 ,
 NWAF
           NWAF9 ,
           MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 ,
 МН
 KH
           KHSTK1 , KHSTK2 , KHSTK3 , KHSTK4 ,
 ВН
           BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 ,
           VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4,
 VLSB
 LSA
           LSASTK1 , LSASTK2 , LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 ,
           LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6, LEWHSTK7, LEWHSTK8, LEWHSTK9,
 LEW
           LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8,
 LAT
 TAN
           TANHSTKA, TANHSTKB, TANHSTKC, TANHSTKD,
           HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE ,
                                         *** SOURCE IDs DEFINING SOURCE GROUPS ***
 GROUP ID
                                                        SOURCE IDs
           GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 ,
GHSTK12 ,
           GHSTK13 ,
 СН
           CHSTK1 ,
  HES
           HESSTK1 ,
           HILSTK1 ,
 HIL
```

```
WEL
           WELSTK1 ,
 PRINT
           PRINTA , PRINTB , PRINTC ,
 COMBUST
           COGEN , BOILER#2, BOILER#3, BOILER#4,
 HAZMAT
           POURING ,
           PAINT1 , PAINT2 , PAINT3 , PAINT4 ,
 PAINT
 EXISTLAB WHSTK1_8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
           WELSTK1 ,
 NEWLABS
           NEWLAB_A, NEWLAB_B, NEWLAB_C, NEWLAB_D, NEWLAB_E, NEWLAB_F, NEWLAB_G, NEWSTAN1, NEWSTAN2, NEWSTAN3, NEWSTAN4,
NEWSTAN5,
           NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
                                         *** SOURCE IDs DEFINING SOURCE GROUPS ***
GROUP ID
                                                        SOURCE IDs
 ALL_LABS WHSTK1_8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
           WELSTK1 , NEWLAB A, NEWLAB B, NEWLAB C, NEWLAB D, NEWLAB E, NEWLAB G, NEWSTAN1, NEWSTAN2, NEWSTAN3, NEWSTAN4,
NEWSTAN5.
           NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
```

EXISTING WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3

MIIT.

MULSTK1 .

KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 , LSASTK2 , LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6, LEWHSTK7, LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA, TANHSTKB, TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 $\texttt{GHSTK6} \quad \texttt{, GHSTK7} \quad \texttt{, GHSTK8} \quad \texttt{, GHSTK9} \quad \texttt{, GHSTK10} \quad \texttt{, GHSTK11} \quad \texttt{, GHSTK12} \quad \texttt{, GHSTK13} \quad \texttt{, CHSTK1} \quad \texttt{, HESSTK1} \quad \texttt{, HILSTK1} \quad \texttt{, GHSTK1} \quad \texttt{, GHSTK1$ MULSTK1 , WELSTK1 , PRINTA , PRINTB , PRINTC , COGEN , BOILER#2, BOILER#3, BOILER#4, POURING , PAINT1 , PAINT2 , PAINT3 PAINT4 , NEWLAB_A NEWLAB_A, NEWLAB B NEWLAB B, NEWLAB_C NEWLAB_C, NEWLAB_D NEWLAB_D, *** SOURCE IDs DEFINING SOURCE GROUPS *** GROUP ID SOURCE IDs NEWLAB_E NEWLAB_E, NEWLAB F NEWLAB F, NEWLAB G NEWLAB G, DAVISNEW NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4, STAN NEW NEWSTAN1, NEWSTAN2, NEWSTAN3, NEWSTAN4, NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8,

*** THE SUMMARY OF HIGHEST 1-HR RESULTS ***

GROUP I	D 		AVERAGE CONC	DATE (YYMMDDHH)	RECEPTOR (XR, YR,	ZELEV, ZFLAG)	OF TYPE	NETWORK GRID-ID
-								
ALL	HIGH	1ST HIGH VALUE IS		ON 97061905: AT (564600.00, 4191800.00,	65.00,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS		ON 97062504: AT (564795.00, 4191930.25,	78.00,	0.00) DC	NA
WH	HIGH	1ST HIGH VALUE IS	0.00198	ON 97080502: AT (564639.88, 4191852.00,	67.00,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS	0.00195	ON 97061722: AT (564639.88, 4191852.00,	67.00,	0.00) DC	NA
NWAF	HIGH	1ST HIGH VALUE IS	0.00231	ON 97101522: AT (565141.94, 4191999.00,	97.00,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS	0.00228	ON 97101521: AT (565141.94, 4191999.00,	97.00,	0.00) DC	NA
MH	HIGH	1ST HIGH VALUE IS	0.01012	ON 97042201: AT (564842.69, 4191950.00,	83.00,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS	0.00959	ON 97121206: AT (564842.69, 4191950.00,	83.00,	0.00) DC	NA
KH	HIGH	1ST HIGH VALUE IS	0.03411	ON 97092803: AT (564800.00, 4192000.00,	81.00,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS	0.03236	ON 97082701: AT (564800.00, 4192000.00,	81.00,	0.00) DC	NA
BH	HIGH	1ST HIGH VALUE IS	0.01085	ON 97071508: AT (564795.00, 4191930.25,	78.00,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS	0.01062	ON 97011810: AT (564795.00, 4191930.25,	78.00,	0.00) DC	NA
VLSB	HIGH	1ST HIGH VALUE IS	0.01473	ON 97101003: AT (564941.88, 4191967.00,	90.00,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS	0.01471	ON 97032623: AT (564941.88, 4191967.00,	90.00,	0.00) DC	NA
LSA	HIGH	1ST HIGH VALUE IS	0.04447	ON 97021521: AT (564842.69, 4191950.00,	83.00,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS		ON 97010421: AT (564941.88, 4191967.00,	90.00,	0.00) DC	NA
LEW	HIGH	1ST HIGH VALUE IS		ON 97092303: AT (565592.25, 4191856.75,	116.00,	0.00) DC	NA
·						,	,	

0.05486 ON 97061605: AT (565592.25, 4191856.75, 116.00, 0.02568 ON 97103018: AT (565700.00, 4191900.00, 128.00, 0.02411 ON 97101408: AT (565700.00, 4191900.00, 128.00, 0.01661 ON 97101502: AT (565622.62, 4191817.50, 117.00, 0.00) DC HIGH 2ND HIGH VALUE IS NA HIGH 1ST HIGH VALUE IS 0.00) DC LAT NA HIGH 2ND HIGH VALUE IS 0.00) DC NA TAN HIGH 1ST HIGH VALUE IS 0.00) DC NA HIGH 2ND HIGH VALUE IS 0.01586 ON 97101408: AT (565592.25, 4191856.75, 116.00, 0.00) DC NA НН HIGH 1ST HIGH VALUE IS 0.06334 ON 97082702: AT (565654.19, 4191781.25, 118.00, 0.00) DC NA 0.05893 ON 97101523: AT (565654.19, 4191781.25, 0.01017 ON 97051904: AT (565693.06, 4191753.75, HIGH 2ND HIGH VALUE IS 4191781.25, 118.00, 0.00) DC NA 0.00) DC GH HIGH 1ST HIGH VALUE IS 117.00, NA 0.00949 ON 97062307: AT (565654.19, 4191781.25, HIGH 2ND HIGH VALUE IS 118.00, 0.00) DC NA

*** THE SUMMARY OF HIGHEST 1-HR RESULTS ***

** CONC OF ACUTE IN MICROGRAMS/M**3

GROUP ID	AVERAGE CONC	DATE (YYMMDDHH)	RECEPTOR (XR	, YR, ZELEV, ZFLAG)	OF TYPE	NETWORK GRID-ID
CH HIGH 1ST H	IGH VALUE IS 0.00621	ON 97082003: AT (565475.12, 4192018	.00, 118.00,	0.00) DC	NA
HIGH 2ND H	IGH VALUE IS 0.00613	ON 97122722: AT (565475.12, 4192018	.00, 118.00,	0.00) DC	NA
HES HIGH 1ST HI	IGH VALUE IS 0.00280	ON 97092109: AT (565241.19, 4192017	.75, 102.00,	0.00) DC	NA
HIGH 2ND H	IGH VALUE IS 0.00279	ON 97012811: AT (565241.19, 4192017	.75, 102.00,	0.00) DC	NA
HIL HIGH 1ST H	IGH VALUE IS 0.05399	ON 97012908: AT (564941.88, 4191967	.00, 90.00,	0.00) DC	NA
HIGH 2ND H	IGH VALUE IS 0.05361	ON 97052623: AT (564941.88, 4191967	.00, 90.00,	0.00) DC	NA
MUL HIGH 1ST H	IGH VALUE IS 0.00004	ON 97101421: AT (564842.69, 4191950	.00, 83.00,	0.00) DC	NA
HIGH 2ND H	IGH VALUE IS 0.00004	ON 97123123: AT (564842.69, 4191950	.00, 83.00,	0.00) DC	NA
WEL HIGH 1ST H	IGH VALUE IS 0.00027	ON 97102802: AT (564941.88, 4191967	.00, 90.00,	0.00) DC	NA
HIGH 2ND H	IGH VALUE IS 0.00026	ON 97042004: AT (564941.88, 4191967		0.00) DC	NA
PRINT HIGH 1ST HI	IGH VALUE IS 0.12398	ON 97092307: AT (564673.81, 4191519	.00, 63.00,	0.00) DC	NA
HIGH 2ND H	IGH VALUE IS 0.12086		564673.81, 4191519	.00, 63.00,	0.00) DC	NA
COMBUST HIGH 1ST H	IGH VALUE IS 0.13291	ON 97101424: AT (565600.00, 4192200	.00, 158.00,	0.00) DC	NA
HIGH 2ND H	IGH VALUE IS 0.13289	ON 97092804: AT (565600.00, 4192200	.00, 158.00,	0.00) DC	NA
HAZMAT HIGH 1ST H	IGH VALUE IS 0.03281	ON 97070102: AT (564976.62, 4191271	.75, 73.00,	0.00) DC	NA
HIGH 2ND H	IGH VALUE IS 0.03261	ON 97101304: AT (564976.62, 4191271	.75, 73.00,	0.00) DC	NA
PAINT HIGH 1ST HI	IGH VALUE IS 0.00051	ON 97052803: AT (564842.69, 4191950	.00, 83.00,	0.00) DC	NA
HIGH 2ND H	IGH VALUE IS 0.00049	ON 97051802: AT (564842.69, 4191950	.00, 83.00,	0.00) DC	NA
EXISTLAB HIGH 1ST H	IGH VALUE IS 0.07874		565654.19, 4191781	.25, 118.00,	0.00) DC	NA
HIGH 2ND H	IGH VALUE IS 0.07372	ON 97101523: AT (565654.19, 4191781	.25, 118.00,	0.00) DC	NA
	IGH VALUE IS 0.29235		564600.00, 4191800	,	0.00) DC	NA
	IGH VALUE IS 0.22271	ON 97101422: AT (564748.50, 4191916		0.00) DC	NA
ALL_LABS HIGH 1ST H	IGH VALUE IS 0.28575	ON 97061905: AT (564600.00, 4191800		0.00) DC	NA
	IGH VALUE IS 0.22576		564795.00, 4191930		0.00) DC	NA
EXISTING HIGH 1ST H	IGH VALUE IS 0.15335		565900.00, 4191900	.00, 161.00,	0.00) DC	NA
HIGH 2ND H	IGH VALUE IS 0.15327	ON 97052506: AT (565900.00, 4191900	.00, 161.00,	0.00) DC	NA

*** THE SUMMARY OF HIGHEST 1-HR RESULTS ***

** CONC OF ACUTE IN MICROGRAMS/M**3 **

			DATE				NETWORK
GROUP ID		AVERAGE CONC	(YYMMDDHH)	RECEPTOR (XR, YR, ZELEV, ZFLAG)	OF TYPE	GRID-ID
-							
NEWLAB A HIGH	1ST HIGH VALUE IS	0.28557	ON 97061905: AT (564600.00, 41918	00.00, 65.00,	0.00) DC	NA
HIGH	2ND HIGH VALUE IS	0.22271	ON 97101422: AT (564748.50, 41919	16.75, 75.00,	0.00) DC	NA
NEWLAB_B HIGH	1ST HIGH VALUE IS	0.05898	ON 97032623: AT (564991.81, 41919	75.00, 93.00,	0.00) DC	NA
HIGH	2ND HIGH VALUE IS	0.05886	ON 97101003: AT (564991.81, 41919	75.00, 93.00,	0.00) DC	NA
NEWLAB_C HIGH	1ST HIGH VALUE IS	0.01761	ON 97061905: AT (564991.81, 41919	75.00, 93.00,	0.00) DC	NA
HIGH	2ND HIGH VALUE IS	0.01423	ON 97041503: AT (565289.25, 41920	25.50, 107.00,	0.00) DC	NA
NEWLAB_D HIGH	1ST HIGH VALUE IS	0.00992	ON 97042219: AT (565500.00, 41920	00.00, 121.00,	0.00) DC	NA
HIGH	2ND HIGH VALUE IS	0.00991	ON 97011911: AT (565500.00, 41920	00.00, 121.00,	0.00) DC	NA
NEWLAB_E HIGH	1ST HIGH VALUE IS	0.13108	ON 97091923: AT (565200.00, 41913	00.00, 80.00,	0.00) DC	NA
HIGH	2ND HIGH VALUE IS	0.12417	ON 97092001: AT (565200.00, 41913	00.00, 80.00,	0.00) DC	NA
NEWLAB_F HIGH	1ST HIGH VALUE IS	0.06453	ON 97031906: AT (565577.06, 41913	62.50, 93.00,	0.00) DC	NA
HIGH	2ND HIGH VALUE IS	0.06438	ON 97060221: AT (565577.06, 41913	62.50, 93.00,	0.00) DC	NA
NEWLAB_G HIGH	1ST HIGH VALUE IS	0.00456	ON 97051407: AT (565804.06, 41916	52.50, 116.00,	0.00) DC	NA
HIGH	2ND HIGH VALUE IS	0.00456	ON 97051920: AT (565804.06, 41916	52.50, 116.00,	0.00) DC	NA
DAVISNEW HIGH	1ST HIGH VALUE IS	0.05898	ON 97101503: AT (565700.00, 41920	00.00, 145.00,	0.00) DC	NA
HIGH	2ND HIGH VALUE IS	0.05668	ON 97061123: AT (565600.00, 41921	00.00, 140.00,	0.00) DC	NA
STAN_NEW HIGH	1ST HIGH VALUE IS		ON 97081703: AT (565700.00, 41921	00.00, 165.00,	0.00) DC	NA
HIGH	2ND HIGH VALUE IS	0.06992	ON 97051222: AT (565700.00, 41921	00.00, 165.00,	0.00) DC	NA

*** ISCST3 - VERSION 02035 ***

*** UC Berkeley - 12/2003; vjh Sensitive Receptors Acute

*** Model Executed on 02/06/04 at 10:27:08 ***

Input File - D:\Beest\UCBerk\10-03\Final\LRDP\LRDP-Acute-Sensitive.DTA

Output File - D:\Beest\UCBerk\10-03\Final\LRDP\LRDP-Acute-Sensitive.LST

Met File - D:\Beest\UCBerk\10-03\lb1-97a.asc

104 35 259 Number of sources -Number of source groups -Number of receptors -

*** POINT SOURCE DATA ***

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
WHSTK1 8	0	0.42700E-06	564704.4	4191782.8	66.8	31.70	293.15	7.12	0.19	YES	
NWAF9	0	0.42700E-06 0.59100E-05	564718.8	4191791.2	66.8	29.57	293.15	16.48	0.74	YES	
										YES	
MHSTK1	0	0.42700E-06 0.56100E-06 0.56100E-06 0.56100E-06 0.56100E-06 0.56100E-05 0.91800E-05 0.91800E-05 0.91800E-05 0.91800E-05	564794.4	4191795.8	74.8	7.61	293.15	17.25	0.34	YES	
MHSTK2	0	0.56100E-06	564798.6	4191843.0	74.8	10.89	293.15	17.25	0.29	YES	
MHSTK3	0	0.56100E-06	564794.1	4191843.0	74.8	10.89	293.15	17.25	0.48	YES	
MHSTK4	0	0.56100E-06	564800.9	4191787.2	74.8	15.61	293.15	17.25	0.33	YES	
MHSTK6	0	0.56100E-06	564801.3	4191808.2	74.8	10.94	293.15	17.25	0.34	YES	
KHSTK1	0	0.91800E-05	564761.1	4191879.8	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK2	0	0.91800E-05	564759.4	4191891.8	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK3	0	0.91800E-05	564732.4	4191877.5	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK4	0	0.91800E-05 0.30000E-05 0.30000E-05 0.30000E-05 0.30000E-05 0.87700E-05 0.87700E-05	564731.4	4191889.0	72.7	18.45	293.15	1.28	2.76	YES	
BHSTK1	0	0.30000E-05	564678.9	4191889.0	67.4	27.85	293.15	2.78	1.26	YES	
BHSTK2	0	0.30000E-05	564675.0	4191896.8	67.4	29.68	293.15	2.78	1.26	YES	
BHSTK3	0	0.30000E-05	564704.5	4191898.0	67.4	29.68	293.15	2.78	1.26	YES	
BHSTK4	0	0.30000E-05	564/0/.4	4191887.8	67.4	33.34	293.15	2.78	0.37	YES	
BHSTK5	0	0.30000E-05	564691.6	4191888.0	6/.4	33.34	293.15	2.78	0.37	YES	
VLSBSTKI	0	0.87700E-05	564933.6	4191633.2	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK2	0	0.87700E-05	564954.0	4191566.5	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK3	0	0.87700E-05 0.87700E-05	565051.3	4191594.8	64.4	27.04	293.15	3.97	1.22	YES	
LSASTKI	0	0.11400E-04	564892.2	4191637.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK2	0	0.11400E-04 0.11400E-04 0.11400E-04 0.11400E-04 0.11400E-04 0.11400E-04 0.11400E-04	564875.9	4191632.8	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK3	0	0.11400E-04	564907.6	4191580.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK4	0	0.11400E-04	564897.1	4191578.0	64.4	20.31	293.13	5.18	1.22	YES YES	
LSASIKS	0	0.11400E-04	564908.6	41913/0.2	64.4	20.31	293.13	5.18	1.22	YES	
LOAGINU	0	0.11400E-04	564000 0	4191373.3	64.4	20.31	293.13	J.10 E 10	1.22	YES	
LEWHSTK1	0	0.11400E-04	565605 0	4191372.2	106.7	10.31	293.13	3.11	0.36	YES	
LEWHSTK2	0	0.17700E-05 0.17700E-05	565501 5	4191772.0	106.7	12.80	293.13	3.11	0.36	YES	
LEWHSTK3						12.80	293.15			YES	
LEWHSTK4	0	0.17700E-05 0.17700E-05	565583 1	4191792.2	106.7	12.80	293.15	3.11	0.36 0.36	YES	
LEWHSTK5	0	0.17700E-05	565598 1	4191787 8	106.7	12.80	293.15			YES	
						10 00			0.36 0.36		
TEWHSTK7	0	0.17700E 05	565608 8	4191787 2	106.7	12.00	293.15	3 11	0.36	YES	
LEWHSTK8	0	0.17700E-05 0.17700E-05 0.17700E-05 0.17700E-05 0.75900E-05 0.75900E-05	565597 6	4191800 5	106.7	12.80	293.15	3 11	0.30	YES	
LEWHSTK9	0	0 17700E-05	565593 3	4191808 2	106.7	12.80	293.15	3 11	0.36	YES	
LATHSTK1	0	0.75900E-05	565555 1	4191799 2	104 6	42 37	293.15	6 28	0.34	YES	
LATHSTK2	0	0.75900E-05	565561.1	4191812 0	104.6	36.88	293.15	6.28	0.70	YES	
LATHSTK3	0	0.75900E-05	565531.6	4191800 2	104.6	36.88	293.15	6.28	0.48	YES	

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
LATHSTK4	0	0.75900E-05	565515.1	4191799.5	104.6	37.19	293.15	6.28	0.96	YES	
LATHSTK5	0	0.75900E-05	565539.7	4191794.2	104.6	42.37	293.15	6.28	0.70	YES	
LATHSTK6	0	0.75900E-05	565527.3	4191776.0	104.6	38.40	293.15	6.28	0.74	YES	
LATHSTK7	0	0.75900E-05	565544.9	4191781.5	104.6	38.40	293.15	6.28	0.31	YES	
LATHSTK8	0	0.75900E-05	565562.3	4191787.0	104.6	38.40	293.15	6.28	0.70	YES	
TANHSTKA	0	0.65400E-05	565492.1	4191793.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKB	0	0.65400E-05	565496.8	4191794.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKC	0	0.65400E-05	565494.1	4191787.2	100.6	39.32	293.15	2.94	1.69	YES	

TANHSTKD	0	0.65400E-05	565499.1 4191788.2	100.6	39.32	293.15	2.94	1.69	YES
HHSTKA	0	0.71400E-05	565540.8 4191749.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKB	0	0.71400E-05	565565.6 4191756.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKC	0	0.71400E-05	565576.8 4191717.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKD	0	0.71400E-05	565553.2 4191710.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKE	0	0.71400E-05	565543.4 4191746.5	103.6	20.12	293.15	4.15	0.81	YES
GHSTK1	0	0.86700E-06	565507.1 4191756.0	103.6	16.06	293.15	5.92	0.30	YES
GHSTK2	0	0.86700E-06	565510.6 4191744.8	103.6	16.06	293.15	5.92	0.25	YES
GHSTK3	0	0.86700E-06	565512.4 4191739.0	103.6	16.37	293.15	5.92	0.30	YES
GHSTK4	0	0.86700E-06	565514.7 4191737.8	103.6	15.91	293.15	5.92	0.31	YES
GHSTK5	0	0.86700E-06	565514.9 4191732.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK6	0	0.86700E-06	565500.2 4191755.2	103.6	16.12	293.15	5.92	0.30	YES
GHSTK7	0	0.86700E-06	565501.1 4191753.0	103.6	16.37	293.15	5.92	0.84	YES
GHSTK8	0	0.86700E-06	565503.7 4191744.2	103.6	16.00	293.15	5.92	0.30	YES
GHSTK9	0	0.86700E-06	565505.2 4191740.2	103.6	16.37	293.15	5.92	0.26	YES
GHSTK10	0	0.86700E-06	565506.9 4191735.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK11	0	0.86700E-06	565509.7 4191728.2	103.6	16.22	293.15	5.92	0.30	YES
GHSTK12	0	0.86700E-06	565509.0 4191725.5	103.6	16.06	293.15	5.92	0.30	YES
GHSTK13	0	0.86700E-06	565516.9 4191725.8	103.6	15.91	293.15	5.92	0.40	YES
CHSTK1	0	0.38000E-05	565393.9 4192008.8	110.3	26.85	293.15	2.00	1.00	YES
HESSTK1	0	0.41400E-05	565234.6 4191926.2	98.2	15.39	293.15	2.00	1.00	YES
HILSTK1	0	0.20500E-04	564874.6 4191815.0	80.4	14.96	293.15	2.00	1.00	YES
MULSTK1	0	0.26400E-07	564779.7 4191737.8	74.4	17.24	293.15	2.00	1.00	YES
WELSTK1	0	0.15600E-06	564933.7 4191795.2	81.7	5.89	293.15	2.00	1.00	YES
PRINTA	0	0.60400E-05	564584.7 4191553.2	60.0	8.91	293.15	2.70	0.84	YES
PRINTB	0	0.60400E-05	564614.4 4191520.8	60.0	8.91	293.15	2.70	0.84	YES
PRINTC	0	0.60400E-05	564643.1 4191525.5	60.0	8.91	293.15	2.70	0.60	YES
COGEN	0	0.19000E-02	564876.0 4191492.0	71.9	12.77	430.37	10.45	2.28	YES
BOILER#2	0	0.88000E-04	564863.6 4191499.5	71.9	8.80	522.82	7.97	1.52	YES
BOILER#3	0	0.86700E-04	564881.9 4191505.8	71.9	8.80	554.11	10.53	1.52	YES
BOILER#4	0	0.86700E-04	564885.8 4191495.8	71.9	8.80	566.65	12.63	1.52	YES
POURING	0	0.25500E-04	564847.8 4191467.0	70.1	14.94	293.15	4.62	0.56	YES

*** POINT SOURCE DATA ***

	PART.	EMISSION RATE (GRAMS/SEC)	X	Y	ELEV.	HEIGHT	TEMP.	EXIT VEL.	DIAMETER	EXISTS	
NEWLAB_A	0	0.20100E-03 0.40700E-04 0.22700E-04 0.12100E-04 0.32300E-04 0.25600E-04 0.73600E-05	564808.8	4191708.2	70.5	6.10	293.15	3.97 3.97 3.97 3.97	1.00	YES	
NEWLAB_B	0	0.40700E-04	565047.0	4191787.5	77.9	6.10	293.15	3.97	1.00	YES	
NEWLAB_C	0	0.22700E-04	565301.9	4191832.0	90.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_D	0	0.12100E-04	565490.2	4191861.5	106.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_E	0	0.32300E-04	565089.5	4191460.8	73.6	6.10	293.15	3.97	1.00	YES	
NEWLAB_F	0	0.25600E-04	565368.8	4191521.8	86.7	6.10	293.15	3.97		YES	
NEWLAB_G	0	0.73600E-05	565641.7	4191569.5	102.4	6.10	293.15	3.97		YES	
NEWSTAN1	0	0.26300E-04	565533.9	4191904.0	112.9	41.90	293.15	17.25	1.32	YES	
NEWSTAN2	0	0.26300E-04	565535.5	4191899.0	112.9	41.90	293.15	17.25	1.32	YES	
NEWSTAN3	0	0.26300E-04	565537.2	4191894.5	112.9	41.90	293.15	17.25	1.32	YES	
NEWSTAN4	0	0.26300E-04	565538.8	4191889.8	112.9	41.90	293.15	17.25	1.32	YES	
NEWSTAN5	0	0.26300E-04	565545.4	4191891.5	112.9	41.90	293.15	17.25	1.32	YES	
NEWSTAN6	0	0.26300E-04	565543.6	4191896.2	112.9	41.90	293.15	17.25	1.32	YES	
NEWSTAN7	0	0.26300E-04	565542.0	4191901.0	112.9	41.90	293.15	17.25	1.32	YES	
NEWSTAN8	0	0.26300E-04	565540.3	4191905.8	112.9	41.90	293.15	17.25	1.32	YES	
NEWDAVS1	0	0.25200E-04	565340.6	4191981.0	108.9	33.79	293.15	12.66	1.63	YES	
NEWDAVS2		0.25200E-04				33.79		12.66	1.63	YES	
NEWDAVS3	0	0.25200E-04	565329.5	4191986.8	109.2	33.79	293.15	13.62	0.86	YES	
NEWDAVS4	0	0.25200E-04 0.25200E-04	565328.4	4191986.2	109.2	33.79	293.15	13.62	0.86	YES	
				+++	. MOTUME (SOURCE DAT	na +++				
				^ ^ ^	VOLUME 3	SOURCE DAT	I'A ^^^				
	NUMBER	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	EMISSION	RATE	
		(GRAMS/SEC)									
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	BY		
MHSTK5	0	0.56100E-06	564821.2	4191842.8	74.8	6.95	0.07	2.42			
PATNT1	0	0.96700E-07	564917.1	4191432.5	72.0	4.57	3.54	4.25			
PAINT2	0	0.96700E-07	565322.7	4191834.8	96.0	4.57					
PAINT3	0	0.96700E-07	565541.5	4191525.8	97.0	4.57	3.54	4.25			
PAINT4	0	0.96700E-07 0.96700E-07 0.96700E-07	564865.7	4191751.0	77.0	4.57	3.54	4.25			

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDS

```
ALL
           WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7.
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
           WELSTK1 , PRINTA , PRINTB , PRINTC , COGEN , BOILER#2, BOILER#3, BOILER#4, POURING , PAINT1 , PAINT2 , PAINT3
           PAINT4 , NEWLAB A, NEWLAB B, NEWLAB C, NEWLAB D, NEWLAB E, NEWLAB F, NEWLAB G, NEWSTAN1, NEWSTAN2, NEWSTAN3,
NEWSTAN4,
           NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
 WH
           WHSTK1 8, WHSTK10 ,
 NWAF
           NWAF9 ,
           MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 ,
 МН
 KH
           KHSTK1 , KHSTK2 , KHSTK3 , KHSTK4 ,
 ВН
           BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 ,
           VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4,
 VLSB
 LSA
           LSASTK1 , LSASTK2 , LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 ,
           LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6, LEWHSTK7, LEWHSTK8, LEWHSTK9,
 LEW
           LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8,
 LAT
 TAN
           TANHSTKA, TANHSTKB, TANHSTKC, TANHSTKD,
           HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE ,
                                         *** SOURCE IDs DEFINING SOURCE GROUPS ***
 GROUP ID
                                                        SOURCE IDs
           GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 ,
GHSTK12 ,
           GHSTK13 ,
 СН
           CHSTK1 ,
  HES
           HESSTK1 ,
           HILSTK1 ,
 HIL
```

```
WEL
           WELSTK1 ,
 PRINT
           PRINTA , PRINTB , PRINTC ,
 COMBUST
           COGEN , BOILER#2, BOILER#3, BOILER#4,
 HAZMAT
           POURING ,
 PAINT
           PAINT1 , PAINT2 , PAINT3 , PAINT4 ,
 EXISTLAB WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7.
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
           WELSTK1 ,
 NEWLABS
           NEWLAB A, NEWLAB B, NEWLAB C, NEWLAB D, NEWLAB E, NEWLAB F, NEWLAB G, NEWSTAN1, NEWSTAN2, NEWSTAN3, NEWSTAN4,
NEWSTAN5,
           NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
                                          *** SOURCE IDs DEFINING SOURCE GROUPS ***
 GROUP ID
                                                        SOURCE IDs
 ALL LABS WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
           WELSTK1 , NEWLAB A, NEWLAB B, NEWLAB C, NEWLAB D, NEWLAB E, NEWLAB G, NEWSTAN1, NEWSTAN2, NEWSTAN3, NEWSTAN4,
NEWSTAN5,
           NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
```

EXISTING WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3

MIIT.

MULSTK1 .

KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 , LSASTK2 , LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6, LEWHSTK7, LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA, TANHSTKB, TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 $\texttt{GHSTK6} \quad \texttt{, GHSTK7} \quad \texttt{, GHSTK8} \quad \texttt{, GHSTK9} \quad \texttt{, GHSTK10} \quad \texttt{, GHSTK11} \quad \texttt{, GHSTK12} \quad \texttt{, GHSTK13} \quad \texttt{, CHSTK1} \quad \texttt{, HESSTK1} \quad \texttt{, HILSTK1} \quad \texttt{, GHSTK1} \quad \texttt{, GHSTK1$ MULSTK1 , WELSTK1 , PRINTA , PRINTB , PRINTC , COGEN , BOILER#2, BOILER#3, BOILER#4, POURING , PAINT1 , PAINT2 , PAINT3 PAINT4 , NEWLAB_A NEWLAB_A, NEWLAB B NEWLAB B, NEWLAB_C NEWLAB_C, NEWLAB_D NEWLAB_D, *** SOURCE IDs DEFINING SOURCE GROUPS *** GROUP ID SOURCE IDs NEWLAB_E NEWLAB_E, NEWLAB F NEWLAB F, NEWLAB G NEWLAB G, DAVISNEW NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4, STAN NEW NEWSTAN1, NEWSTAN2, NEWSTAN3, NEWSTAN4, NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8,

*** THE SUMMARY OF HIGHEST 1-HR RESULTS ***

* *

GROUP II) 		AVERAGE CONC	DATE (YYMMDDHH) 	RECEPTOR (XR, YR,	ZELEV, ZFLAG)	OF TYPE	NETWORK GRID-ID
_								
ALL	HIGH	1ST HIGH VALUE I	S 0.14832	ON 97012908: AT (565233.75, 4192605.00,	159.72,	0.00) DC	NA
	HIGH	2ND HIGH VALUE I	S 0.14786	ON 97110202: AT (565233.75, 4192605.00,	159.72,	0.00) DC	NA
WH	HIGH	1ST HIGH VALUE I	S 0.00069	ON 97081224: AT (564945.62, 4192065.50,	102.72,	0.00) DC	NA
	HIGH	2ND HIGH VALUE I	S 0.00066	ON 97081704: AT (564945.62, 4192065.50,	102.72,	0.00) DC	NA
NWAF	HIGH	1ST HIGH VALUE I	s 0.00231	ON 97092804: AT (564945.62, 4192065.50,	102.72,	0.00) DC	NA
	HIGH	2ND HIGH VALUE I	S 0.00153	ON 97082302: AT (564926.69, 4192158.75,	109.42,	0.00) DC	NA
MH	HIGH	1ST HIGH VALUE I	S 0.00361	ON 97090823: AT (564945.62, 4192065.50,	102.72,	0.00) DC	NA
	HIGH	2ND HIGH VALUE I	s 0.00357	ON 97092803: AT (564945.62, 4192065.50,	102.72,	0.00) DC	NA
KH	HIGH	1ST HIGH VALUE I	S 0.01489	ON 97020707: AT (564926.69, 4192158.75,	109.42,	0.00) DC	NA
	HIGH	2ND HIGH VALUE I	s 0.01337	ON 97032523: AT (564591.56, 4192414.75,	83.82,	0.00) DC	NA
BH	HIGH	1ST HIGH VALUE I	S 0.00458	ON 97101408: AT (564945.62, 4192065.50,	102.72,	0.00) DC	NA
	HIGH	2ND HIGH VALUE I	s 0.00453	ON 97103018: AT (564945.62, 4192065.50,	102.72,	0.00) DC	NA
VLSB	HIGH	1ST HIGH VALUE I	s 0.01098	ON 97050122: AT (564945.62, 4192065.50,	102.72,	0.00) DC	NA
	HIGH	2ND HIGH VALUE I	s 0.01053	ON 97101005: AT (564945.62, 4192065.50,	102.72,	0.00) DC	NA
LSA	HIGH	1ST HIGH VALUE I	S 0.03413	ON 97050521: AT (564945.62, 4192065.50,	102.72,	0.00) DC	NA
	HIGH	2ND HIGH VALUE I	s 0.03369	ON 97031521: AT (564945.62, 4192065.50,	102.72,	0.00) DC	NA
LEW	HIGH	1ST HIGH VALUE I	S 0.00724	ON 97060505: AT (565700.06, 4191711.25,	109.42,	0.00) DC	NA

0.00643 ON 97071221: AT (565700.06, 4191711.25, 0.01186 ON 97101709: AT (565700.06, 4191711.25, 0.01184 ON 97031909: AT (565700.06, 4191711.25, 109.42, HIGH 2ND HIGH VALUE IS 0.00) DC NA HIGH 1ST HIGH VALUE IS LAT 109.42, 0.00) DC NA HIGH 2ND HIGH VALUE IS 109.42, 0.00) DC NA TAN HIGH 1ST HIGH VALUE IS 0.00854 ON 97082407: AT (565700.06, 4191711.25, 109.42, 0.00) DC NA HIGH 2ND HIGH VALUE IS 0.00845 ON 97020107: AT (565700.06, 4191711.25, 109.42, 0.00) DC NA НН HIGH 1ST HIGH VALUE IS 0.01308 ON 97101507: AT (565700.06, 4191711.25, 109.42, 0.00) DC NA HIGH 2ND HIGH VALUE IS 0.01305 ON 97101603: AT (565700.06, 4191711.25, 109.42, 0.00) DC NA 0.00830 ON 97100923: AT (565700.06, 4191711.25, GH HIGH 1ST HIGH VALUE IS 109.42, 0.00) DC NA HIGH 2ND HIGH VALUE IS 0.00732 ON 97030609: AT (565700.06, 4191711.25, 109.42, 0.00) DC NA

*** THE SUMMARY OF HIGHEST 1-HR RESULTS ***

** CONC OF ACUTE IN MICROGRAMS/M**3

GROUP ID			AVERAGE CONC	DATE (YYMMDDHH)	RECEPTOR	(XR, YR, ZELEV, ZFLAG) OF TYPE	NETWORK GRID-ID
-								
CH	HIGH	1ST HIGH VALUE IS	0.00098	ON 97091705: AT (565700.06, 4191	711.25, 109.42,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS	0.00096	ON 97092404: AT (565700.06, 4191	711.25, 109.42,	0.00) DC	NA
HES	HIGH	1ST HIGH VALUE IS	0.00119	ON 97010409: AT (565009.00, 4192	130.00, 110.64,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS	0.00119	ON 97042020: AT (565009.00, 4192	130.00, 110.64,	0.00) DC	NA
HIL	HIGH	1ST HIGH VALUE IS	0.03911	ON 97032506: AT (564945.62, 4192	065.50, 102.72,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS	0.03783	ON 97042924: AT (564945.62, 4192	065.50, 102.72,	0.00) DC	NA
MUL	HIGH	1ST HIGH VALUE IS	0.00003	ON 97122705: AT (564945.62, 4192	065.50, 102.72,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS		ON 97071504: AT (065.50, 102.72,	0.00) DC	NA
WEL	HIGH	1ST HIGH VALUE IS	0.00015	ON 97122009: AT (564945.62, 4192	065.50, 102.72,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS	0.00010	ON 97020520: AT (564945.62, 4192	065.50, 102.72,	0.00) DC	NA
PRINT	HIGH	1ST HIGH VALUE IS	0.02614	ON 97082102: AT (564933.25, 4191	275.25, 71.32,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS	0.02611	ON 97032922: AT (564933.25, 4191	275.25, 71.32,	0.00) DC	NA
COMBUST	HIGH	1ST HIGH VALUE IS	**	ON 97092424: AT (,	605.00, 159.72,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS		ON 97051804: AT (605.00, 159.72,	0.00) DC	NA
HAZMAT	HIGH	1ST HIGH VALUE IS		ON 97090422: AT (· · · · · · · · · · · · · · · · · · ·	275.25, 71.32,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS	0.03258	ON 97020104: AT (564933.25, 4191	275.25, 71.32,	0.00) DC	NA
PAINT	HIGH	1ST HIGH VALUE IS	0.00043	ON 97122005: AT (564933.25, 4191	275.25, 71.32,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS		ON 97102603: AT (· · · · · · · · · · · · · · · · · · ·	275.25, 71.32,	0.00) DC	NA
EXISTLAB		1ST HIGH VALUE IS		ON 97042924: AT (· · · · · · · · · · · · · · · · · · ·	065.50, 102.72,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS		ON 97032506: AT (· · · · · · · · · · · · · · · · · · ·	065.50, 102.72,	0.00) DC	NA
NEWLABS	HIGH	1ST HIGH VALUE IS		ON 97092401: AT (· · · · · · · · · · · · · · · · · · ·	275.25, 71.32,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS		ON 97012904: AT (,	275.25, 71.32,	0.00) DC	NA
ALL_LABS		1ST HIGH VALUE IS		ON 97092401: AT (,	275.25, 71.32,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS		ON 97012904: AT (,	275.25, 71.32,	0.00) DC	NA
EXISTING		1ST HIGH VALUE IS		ON 97101402: AT (605.00, 159.72,	0.00) DC	NA
	HIGH	2ND HIGH VALUE IS	0.12586	ON 97071504: AT (565233.75, 4192	605.00, 159.72,	0.00) DC	NA

*** THE SUMMARY OF HIGHEST 1-HR RESULTS ***

** CONC OF ACUTE IN MICROGRAMS/M**3 **

						DATE									NETWORK
GROUP ID			AVERA	GE CONC		(YYMMDDHH)		RECEP	PTOR	(XR, YR,	ZELEV,	ZFLAG)	OF	TYPE	GRID-ID
-															
NEWLAB_A HIGH	1ST HIGH	VALUE	IS	0.13282	ON	97092401:	AT (564933.25,	4191	1275.25,	71.3	32,	0.00)	DC	NA
HIGH	2ND HIGH	VALUE	IS	0.12963	ON	97012904:	AT (564933.25,	4191	1275.25,	71.3	32,	0.00)	DC	NA
NEWLAB B HIGH	1ST HIGH	VALUE	IS	0.03481	ON	97071507:	AT (564945.62,	4192	2065.50,	102.7	12,	0.00)	DC	NA
HIGH	2ND HIGH	VALUE	IS	0.03220	ON	97102908:	AT (564945.62,	4192	2065.50,	102.7	12,	0.00)	DC	NA
NEWLAB C HIGH	1ST HIGH	VALUE	IS	0.01154	ON	97090506:	AT (564945.62,	4192	2065.50,	102.7	12,	0.00)	DC	NA
HIGH	2ND HIGH	VALUE	IS	0.00992	ON	97030910:	AT (565700.06,	419	1711.25,	108.2	20,	0.00)	DC	NA
NEWLAB D HIGH	1ST HIGH	VALUE	IS	0.00534	ON	97090506:	AT (565009.00,	4192	2130.00,	110.6	54,	0.00)	DC	NA
HIGH	2ND HIGH	VALUE	IS	0.00433	ON	97090506:	AT (564926.69,	4192	2158.75,	109.4	12,	0.00)	DC	NA
NEWLAB_E HIGH	1ST HIGH	VALUE	IS	0.02259	ON	97012304:	AT (564933.25,	419	1275.25,	71.3	32,	0.00)	DC	NA
HIGH	2ND HIGH	VALUE	IS	0.02195	ON	97110301:	AT (564933.25,	419	1275.25,	71.3	32,	0.00)	DC	NA
NEWLAB_F HIGH	1ST HIGH	VALUE	IS	0.01130	ON	97010708:	AT (566166.56,	4190	0836.25,	107.5	9,	0.00)	DC	NA
HIGH	2ND HIGH	VALUE	IS	0.01070	ON	97102707:	AT (566063.25,	4190	0799.75,	101.1	9,	0.00)	DC	NA
NEWLAB_G HIGH	1ST HIGH	VALUE	IS	0.00404	ON	97012311:	AT (565700.06,	419	1711.25,	109.4	12,	0.00)	DC	NA
HIGH	2ND HIGH	VALUE	IS	0.00404	ON	97021418:	AT (565700.06,	419	1711.25,	109.4	12,	0.00)	DC	NA
DAVISNEW HIGH	1ST HIGH	VALUE	IS	0.03029	ON	97032623:	AT (565144.62,	4192	2620.50,	154.8	34,	0.00)	DC	NA
HIGH	2ND HIGH	VALUE	IS	0.03017	ON	97013121:	AT (565144.62,	4192	2620.50,	154.8	34,	0.00)	DC	NA
STAN NEW HIGH	1ST HIGH	VALUE	IS	0.04584	ON	97082523:	AT (565233.75,	4192	2605.00,	159.7	12,	0.00)	DC	NA
- HIGH	2ND HIGH	VALUE	IS	0.04581	ON	97101002:	AT (565233.75,	4192	2605.00,	159.7	12,	0.00)	DC	NA

*** ISCST3 - VERSION 02035 ***

*** UC Berkeley - 12/2003; vjh

*** Model Executed on 02/06/04 at 10:30:56 ***

Input File - D:\Beest\UCBerk\10-03\Final\LRDP\Lrdp-Can.DTA

Output File - D:\Beest\UCBerk\10-03\Final\LRDP\Lrdp-Can.LST

 $\label{local_met2} \mbox{Met File - D:\Beest\UCBerk\10-03\mbox{\mbox{$\mbox{$met2$\lbl-97a.asc}}}} \\$

Number of sources - 142
Number of source groups - 37
Number of receptors - 1431

*** POINT SOURCE DATA ***

		EMISSION RATE (GRAMS/SEC)	(METERS)	(METERS)	(METERS)	(METERS)	TEMP. (DEG.K)		DIAMETER (METERS)	EXISTS	EMISSION RATE SCALAR VARY BY
WHSTK1_8	0	0.44700E-04	564704.4	4191782.8	66.8	31.70	293.15	7.12	0.19	YES	
NWAF9	0	0.60100E-03	564718.8	4191791.2	66.8	29.57	293.15	16.48	0.74	YES	
WHSTK10	0	0.44700E-04 0.24000E-03	564724.4	4191826.0	66.8	8.60	293.15	7.12	0.34	YES YES	
MHSTK1	0	0.24000E-03	564794.4	4191795.8	74.8	7.61	293.15	17.25	0.34	YES	
MHSTK2	0	0.24000E-03 0.24000E-03 0.24000E-03 0.24000E-03 0.33000E-02	564798.6	4191843.0	74.8	10.89	293.15	17.25	0.29	YES	
MHSTK3	0	0.24000E-03	564794.1	4191843.0	74.8	10.89	293.15	17.25	0.48	YES	
MHSTK4	0	0.24000E-03	564800.9	4191787.2	74.8	15.61	293.15	17.25 17.25	0.33	YES	
MHSTK6	0	0.24000E-03	564801.3	4191808.2	74.8	10.94	293.15	17.25	0.34	YES	
KHSTK1	0	0.33000E-02	564761.1	4191879.8	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK2	0	0.33000E-02 0.33000E-02	564759.4	4191891.8	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK3	0	0.33000E-02	564732.4	4191877.5	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK4	0	0.33000E-02 0.45600E-03	564731.4	4191889.0	72.7	18.45	293.15	1.28	2.76	YES	
BHSTK1	0	0.45600E-03	564678.9	4191889.0	67.4	27.85	293.15	2.78	1.26	YES	
BHSTK2	0	0.45600E-03 0.45600E-03 0.45600E-03 0.45600E-03	564675.0	4191896.8	67.4	29.68	293.15	2.78	1.26	YES	
BHSTK3	0	0.45600E-03	564704.5	4191898.0	67.4	29.68	293.15	2.78	1.26 1.26	YES	
BHSTK4	0	0.45600E-03	564707.4	4191887.8	67.4	33.34	293.15	2.78	0.37	YES	
BHSTK5	0	0.45600E-03	564691.6	4191888.0	67.4	33.34	293.15	2.78	0.37 0.37	YES	
VLSBSTK1	0	0.77100E-03	564933.6	4191633.2	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK2	0	0.77100E-03 0.77100E-03	564954.0	4191566.5	64.4	27.04	293.15	3.97	1.22 1.22	YES	
VLSBSTK3		0.77100E-03						3.97	1.22		
VLSBSTK4								3.97	1.22 1.22	YES	
LSASTK1	0	0.16600E-02	564892.2	4191637.2	64.4	28.31	293.15	5.18		YES	
LSASTK2	0	0.16600E-02	564875.9	4191632.8	64.4	28.31	293.15	5.18	1.22 1.22	YES	
LSASTK3	0	0.16600E-02	564907.6	4191580.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK4	0	0.16600E-02 0.16600E-02 0.16600E-02 0.16600E-02 0.16600E-02	564897.1	4191578.0	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK5	0	0.16600E-02	564908.6	4191576.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK6	0	0.16600E-02	564899.1	4191573.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK7	0	0.16600E-02 0.16600E-02	564900.8	4191572.2	64.4	28.31	293.15	5.18	0.30	YES	
LEWHSTK1	0	0 63700E-03	565605 8	4191772 0	106.7	12.80		3 11	0.36	YES	
LEWHSTK2	0	0.63700E-03 0.63700E-03	565591 5	4191786 0	106.7	12.80	293.15	3 11	0.36	YES	
LEWHSTK3	0	0.63700E-03	565585 9	4191792 2	106.7	12.80	293.15			YES	
LEWHSTK4	0	0.63700E-03 0.63700E-03	565583 1	4191800 0	106.7	12.80		3 11	0.36 0.36	YES	
LEWHSTK5	0	0.63700E-03	565598 1	4191787 8	106.7	12.80	293.15			YES	
LEWHSTK6	0	0.63700E-03 0.63700E-03	565619 4	4191775 8	106.7	12.80	293.15	3 11	0.36 0.36	YES	
LEWHSTK7		0.63700E-03								YES	
LEWHSTK8	0	0.63700E-03	565597 6	4191800 5	106.7	12.80	293.15	3.11 3.11	0.30	YES	
LEWHSTK9	0	0.63700E-03	565593 3	4191808 2		12.80	293.15	3 11	0.36	YES	
LATHSTK1	0	0.27200E-02	565555.1	4191799 2	104.6	42 37	293.15	3.11 6.28	0.34	YES	
LATHSTK2	0	0.27200E-02 0.27200E-02 0.27200E-02	565561 1	4191812 0	104 6	36 88	293.15	6 28	0.01	YES	
LATHSTK3	0	0.27200E 02	565531 6	/1918NN 2	104.0	36.88	293.15	6 28	0.70	YES	

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
LATHSTK4	0	0.27200E-02	565515.1	4191799.5	104.6	37.19	293.15	6.28	0.96	YES	
LATHSTK5	0	0.27200E-02	565539.7	4191794.2	104.6	42.37	293.15	6.28	0.70	YES	
LATHSTK6	0	0.27200E-02	565527.3	4191776.0	104.6	38.40	293.15	6.28	0.74	YES	
LATHSTK7	0	0.27200E-02	565544.9	4191781.5	104.6	38.40	293.15	6.28	0.31	YES	
LATHSTK8	0	0.27200E-02	565562.3	4191787.0	104.6	38.40	293.15	6.28	0.70	YES	
TANHSTKA	0	0.23500E-02	565492.1	4191793.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKB	0	0.23500E-02	565496.8	4191794.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKC	0	0.23500E-02	565494.1	4191787.2	100.6	39.32	293.15	2.94	1.69	YES	

TANHSTKD	0	0.23500E-02	565499.1 4191788.2	100.6	39.32	293.15	2.94	1.69	YES
HHSTKA	0	0.26000E-02	565540.8 4191749.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKB	0	0.26000E-02	565565.6 4191756.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKC	0	0.26000E-02	565576.8 4191717.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKD	0	0.26000E-02	565553.2 4191710.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKE	0	0.26000E-02	565543.4 4191746.5	103.6	20.12	293.15	4.15	0.81	YES
GHSTK1	0	0.36700E-03	565507.1 4191756.0	103.6	16.06	293.15	5.92	0.30	YES
GHSTK2	0	0.36700E-03	565510.6 4191744.8	103.6	16.06	293.15	5.92	0.25	YES
GHSTK3	0	0.36700E-03	565512.4 4191739.0	103.6	16.37	293.15	5.92	0.30	YES
GHSTK4	0	0.36700E-03	565514.7 4191737.8	103.6	15.91	293.15	5.92	0.31	YES
GHSTK5	0	0.36700E-03	565514.9 4191732.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK6	0	0.36700E-03	565500.2 4191755.2	103.6	16.12	293.15	5.92	0.30	YES
GHSTK7	0	0.36700E-03	565501.1 4191753.0	103.6	16.37	293.15	5.92	0.84	YES
GHSTK8	0	0.36700E-03	565503.7 4191744.2	103.6	16.00	293.15	5.92	0.30	YES
GHSTK9	0	0.36700E-03	565505.2 4191740.2	103.6	16.37	293.15	5.92	0.26	YES
GHSTK10	0	0.36700E-03	565506.9 4191735.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK11	0	0.36700E-03	565509.7 4191728.2	103.6	16.22	293.15	5.92	0.30	YES
GHSTK12	0	0.36700E-03	565509.0 4191725.5	103.6	16.06	293.15	5.92	0.30	YES
GHSTK13	0	0.36700E-03	565516.9 4191725.8	103.6	15.91	293.15	5.92	0.40	YES
CHSTK1	0	0.86900E-04	565393.9 4192008.8	110.3	26.85	293.15	2.00	1.00	YES
HESSTK1	0	0.73300E-03	565234.6 4191926.2	98.2	15.39	293.15	2.00	1.00	YES
HILSTK1	0	0.72100E-03	564874.6 4191815.0	80.4	14.96	293.15	2.00	1.00	YES
MULSTK1	0	0.53300E-05	564779.7 4191737.8	74.4	17.24	293.15	2.00	1.00	YES
WELSTK1	0	0.13600E-04	564933.7 4191795.2	81.7	5.89	293.15	2.00	1.00	YES
PRINTA	0	0.10400E-03	564584.7 4191553.2	60.0	8.91	293.15	2.70	0.84	YES
PRINTB	0	0.10400E-03	564614.4 4191520.8	60.0	8.91	293.15	2.70	0.84	YES
PRINTC	0	0.10400E-03	564643.1 4191525.5	60.0	8.91	293.15	2.70	0.60	YES
COGEN	0	0.97700E+00	564876.0 4191492.0	71.9	12.77	430.37	10.45	2.28	YES
BOILER#2	0	0.12440E-01	564863.6 4191499.5	71.9	8.80	522.82	7.97	1.52	YES
BOILER#3	0	0.47000E-01	564881.9 4191505.8	71.9	8.80	554.11	10.53	1.52	YES
BOILER#4	0	0.56800E-01	564885.8 4191495.8	71.9	8.80	566.65	12.63	1.52	YES
POURING	0	0.22400E-02	564847.8 4191467.0	70.1	14.94	293.15	4.62	0.56	YES

TD	CAMC		(MEDEDC)	(MEDEDC)	(MEDEDC)	(MEMEDC)	(DEC E)	/M/CEC)	(MEDEDC)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
ENC. CO	0	0 470415 00	ECEEC7 C	410100C E	0 F 1	4 57	000 27	146 01	0.13	NO	
ENG_62	0	0.47241E-02	564660 2	4191086.5	70.2	4.57	700.57	140.01	0.13		
ENG_03	0	0.23021E-02	504000.2	4191097.3	70.2	2.05	017 07	132.00	0.13 0.08	YES	
ENG_04	0	0.72330E-03	565452.9	4191087.0	98.Z	3.05	010.07	70 10	0.08	YES	
ENG_105	0	0.74200E-01	564939.1	4191437.8	72.6	4.57	010.90	70.10	0.23	YES	
ENG_100	0	0.622U3E-U1	564991.0	4191014.5	75.0	0.48	010.90	70.10	0.20	YES	
ENG_107	0	0.49776E-01	564767.4	4191900.8	70.2	7.62	010.90	70.10	0.18	YES	
ENG_100	0	0.49776E-01	565615 0	4191304.2	111 7	7.02	010.90	70.10	0.15	YES	
ENG_109	0	0.10396E-01	561655 0	4191801.2	111./	3.05	010.90	70.10	0.15	YES	
ENG_IIU	0	0.82838E-02	504055.9	4191874.5	70.0	4.57	010.96	70.10	0.10	YES	
ENG_III	0	0.23806E-01	565091.1	4191/5/.8	78.9	3.05	010.90	70.10	0.11	NO	
ENG_112	0	0.20714E-01	565542.8	4191208.2	85.7	3.05	010.93	70.10	0.10	NO	
ENG_113	0	0.20714E-01	505073.0	4191194.8	92.0	3.05	010.93	70.10	0.10	NO	
ENG_114	0	0.20714E-01	565601.4	4191014.2	01.4	3.05	010.93	70.10	0.10	NO	
ENG_113	0	0.20714E-01	565702.9	4190991.8	91.4	3.05	810.93	70.10	0.10	YES	
ENG_II/	0	0.20714E-01	565575.9	4191009.0	99.3	3.05	810.96	70.10	0.10		
ENG_118	0	0.98935E-UZ	564654.8	4191890.5	68.6	4.5/	810.96	70.10	0.13	YES	
ENG_119	0	0.14531E-01	564728.8	4191//1.0	70.5	4.5/	810.96	70.10	0.08	YES	
ENG_120	0	0.10450E-01	565318.0	4191422.5	86.1	3.05	810.96	70.10	0.08	YES	
ENG_121	0	0.10388E-01	565926.2	4191443.0	118.9	3.05	810.93	70.10	0.08	NO	
ENG_123	0	0.12800E-01	565259.4	4191652.8	88.3	3.05	810.96	70.10	0.08	YES	
ENG_125	0	0.41058E-02	564811.2	4191460.8	67.7	3.05	810.96	70.10	0.08	YES	
ENG_126	0	0.33143E-02	565137.9	4191441.5	//.6	0.00	810.96	70.10	0.08	YES	
ENG_128	0	0.41429E-02	565469.2	4191955.2	109.8	3.05	810.96	70.10	0.05	YES	
ENG_129	0	0.41429E-02	565383.1	4191/40.2	97.0	2.44	810.96	70.10	0.05	YES	
ENG_130	0	0.25692E-02	565533.3	4191713.5	98.9	2.44	815.40	134.54	0.08	YES	
ENG_131	0	0.72350E-03	564970.3	4191484.2	/1.3	1.83	817.07	58.47	0.08	YES	
ENG_132	0	0.72350E-03	564800.3	4191/81.8	/4.3	1.83	817.07	58.4/	0.08	YES	
E134_133	0	0.186/4E-01	565380.0	4191939.2	104.3	3.05	769.29	135.05	0.13	YES	
NEWLAB_A	0	0.53000E-01	564808.8	4191708.2	70.5	6.10	293.15	3.97	1.00	YES	
NEWLAB_B	0	0.10800E-01	565047.0	4191787.5	77.9	6.10	293.15	3.97	1.00	YES	
NEWLAB_C	0	0.59900E-02	565301.9	4191832.0	90.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_D	0	0.31900E-02	565490.2	4191861.5	106.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_E	0	0.85200E-02	565089.5	4191460.8	73.6	6.10	293.15	3.97	1.00	YES	
NEWLAB_F	0	0.67500E-02	565368.8	4191521.8	86.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_G	0	0.19400E-02	565641.7	4191569.5	102.4	6.10	293.15	3.97	1.00	YES	
ENG_STNL	0	U.69563E-02	565539.1	4191905.2	114.2	2.13	769.26	76.14	0.18	YES	
ENG_DVS	0	0.69563E-02	565364.1	4191990.5	109.8	2.13	769.26	76.14	0.18	YES	
ENG_MCCN	0	0.27825E-02	565176.4	4191928.8	93.8	2.13	810.93	59.08	0.13	YES	
ENG_SRB1	0	0.47241E-02 0.23621E-02 0.72350E-03 0.74200E-01 0.62205E-01 0.49776E-01 0.49776E-01 0.16596E-01 0.82858E-02 0.23806E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.1058E-02 0.41429E-02 0.41429E-02 0.41429E-02 0.41429E-02 0.25692E-02 0.72350E-03 0.72350E-03 0.72350E-03 0.18674E-01 0.59900E-02 0.31900E-02 0.31900E-02 0.69563E-02 0.69563E-02 0.69563E-02 0.27825E-02 0.27825E-02	564595.2	4191928.2	67.3	2.13	810.93	59.08	0.13	YES	

	NUMBER	EMISSION RATE	Ε		BASE	STACK	STACK	STACK	STACK	BUILDING	EMISSION RATE SCALAR VARY	
SOURCE										EXISTS		
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(DEG.K)	(M/SEC)	(METERS)		BY	
ENGMUSIC	0	0.27825E-02	565510.9	4191488.8	94.8	2.13	810.93	59.08	0.13	YES		
ENG UNT1	0	0.27825E-02	565595.6	4191185.0	87.9	2.13	810.93			NO		
ENG_UNT2	0	0.27825E-02	565647.0	4191033.2	88.8	2.13			0.13 0.13	NO		
ENG_UNT3		0.27825E-02				2.13			0.13	NO		
ENG116NU		0.58900E-02							0.15	NO		
NEWSTAN1		0.69300E-02							1.32	YES		
NEWSTAN2 NEWSTAN3		0.69300E-02 0.69300E-02							1.32 1.32	YES YES		
NEWSTAN4		0.69300E-02							1.32	YES		
NEWSTAN5		0.69300E-02							1.32	YES		
NEWSTAN6		0.69300E-02							1.32	YES		
NEWSTAN7		0.69300E-02							1.32	YES		
NEWSTAN8		0.69300E-02							1.32	YES		
NEWDAVS1	0	0.66300E-02 0.66300E-02	565340.6	4191981.0	108.9	33.79	293.15	12.66	1.63			
NEWDAVS2 NEWDAVS3		0.66300E-02 0.66300E-02								YES YES		
NEWDAVS3		0.66300E-02								YES		
11211211101	Ü	0.000002 02	000020.1	1191900.2	103.1	00.73	230.10	10.02	0.00	120		
				**	* VOLUME	SOURCE DAT	'A ***					
	NIIMBED	EMISSION RATE	F		BASE	DETEASE	TNIT	INIT.	EMISSION	DATE		
SOURCE		(GRAMS/SEC)										
ID	CATS.	((METERS)			BY			
	0	0.24000E-03	564821.2	4191842.8	74.8	6.95	0.07					
PAINT1	0	0.31900E-03	565322 7	4191432.5 4191934 0	72.0	4.57	3.54	4.25				
PAINT3	0	0.31900E-03	565541 5	4191525.8	97.0	4.57	3.54	4 25				
PAINT4	0	0.31900E-03 0.31900E-03 0.31900E-03	564865.7	4191751.0	77.0	4.57	3.54	4.25				
			,	*** COUDC	E IDO DEE	INING SOUF	CE CDOUD	C ***				
			•	^^^ SUURC	E IDS DEF	INING SOUP	CE GROUP	5 ^^^				
GROUP ID					SOU							
						RCE IDs						
						RCE IDs						
						RCE IDS						
AT.T.	WHSTK1 8.	. NWAF9 . WI	HSTK10 . ME	HSTK1	MHSTK2 .		MHSTK4	. MHSTK5	. MHSTK6	. KHSTK	1 . KHSTK2 . K	нѕтк3
ALL	WHSTK1_8,	, NWAF9 , WI	HSTK10 , ME	HSTK1 ,	MHSTK2 ,		MHSTK4	, MHSTK5	, MHSTK6	, KHSTK	1 , KHSTK2 , K	HSTK3
ALL,	WHSTK1_8,	. NWAF9 , WI	HSTK10 , ME	HSTK1 ,	MHSTK2 ,		MHSTK4	, MHSTK5	, MHSTK6	, KHSTK	1 , KHSTK2 , K	HSTK3
,						MHSTK3 ,					1 , KHSTK2 , K TK4, LSASTK1 ,	HSTK3
						MHSTK3 ,						HSTK3
,	KHSTK4 ,	, BHSTK1 , BI	HSTK2 , BI	HSTK3 ,	BHSTK4 ,	MHSTK3 ,	VLSBSTK	1, VLSBSTF	(2, VLSBST)	K3, VLSBS	TK4, LSASTK1 ,	нѕтк3
LSASTK2 ,	KHSTK4 ,	, BHSTK1 , BI	HSTK2 , BI	HSTK3 ,	BHSTK4 ,	MHSTK3 ,	VLSBSTK	1, VLSBSTF	(2, VLSBST)	K3, VLSBS		нѕтк3
,	KHSTK4 ,	, BHSTK1 , BI	HSTK2 , BI	HSTK3 ,	BHSTK4 ,	MHSTK3 ,	VLSBSTK	1, VLSBSTF	(2, VLSBST)	K3, VLSBS	TK4, LSASTK1 ,	нѕтк3
LSASTK2 ,	KHSTK4 ,	, BHSTK1 , Bi	HSTK2 , BE	HSTK3 ,	BHSTK4 ,	MHSTK3 , BHSTK5 , LEWHSTK1,	VLSBSTK	1, VLSBSTF	(2, VLSBST)	K3, VLSBS	TK4, LSASTK1 ,	нѕтк3
LSASTK2 ,	KHSTK4 ,	, BHSTK1 , Bi	HSTK2 , BE	HSTK3 ,	BHSTK4 ,	MHSTK3 , BHSTK5 , LEWHSTK1,	VLSBSTK	1, VLSBSTF	(2, VLSBST)	K3, VLSBS	TK4, LSASTK1 ,	HSTK3
LSASTK2 ,	KHSTK4 ,	, BHSTK1 , Bi	HSTK2 , BE	HSTK3 ,	BHSTK4 ,	MHSTK3 , BHSTK5 , LEWHSTK1,	VLSBSTK	1, VLSBSTF	(2, VLSBST)	K3, VLSBS	TK4, LSASTK1 ,	HSTK3
LSASTK2 ,	KHSTK4 ,	BHSTK1 , BH. LSASTK4 , LSASTK4 , LSASTK4 , LSASTK9, LA	HSTK2 , BH	HSTK3 , SASTK6 ,	BHSTK4 , LSASTK7 , LATHSTK3,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	VLSBSTK LEWHSTK LATHSTK	1, VLSBSTF 2, LEWHSTF 5, LATHSTF	(3, LEWHST)	X3, VLSBS	TK4, LSASTK1 ,	
LSASTK2 ,	KHSTK4 ,	BHSTK1 , BH. LSASTK4 , LSASTK4 , LSASTK4 , LSASTK9, LA	HSTK2 , BH	HSTK3 , SASTK6 ,	BHSTK4 , LSASTK7 , LATHSTK3,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	VLSBSTK LEWHSTK LATHSTK	1, VLSBSTF 2, LEWHSTF 5, LATHSTF	(3, LEWHST)	X3, VLSBS	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA,	
LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8,	BHSTK1 , BI LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HI	HSTK2 , BESASTK5 , LESATHSTK1, LESTKA , HE	HSTK3 , SASTK6 , ATHSTK2, HSTKB ,	BHSTK4 , LSASTK7 , LATHSTK3,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	VLSBSTK LEWHSTK LATHSTK HHSTKE	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1	22, VLSBST	X3, VLSBS	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G	
LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8,	BHSTK1 , BI LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HI	HSTK2 , BESASTK5 , LESATHSTK1, LESTKA , HE	HSTK3 , SASTK6 , ATHSTK2, HSTKB ,	BHSTK4 , LSASTK7 , LATHSTK3,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	VLSBSTK LEWHSTK LATHSTK HHSTKE	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1	22, VLSBST	X3, VLSBS	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA,	
LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8,	BHSTK1 , BI LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HI	HSTK2 , BESASTK5 , LESATHSTK1, LESTKA , HE	HSTK3 , SASTK6 , ATHSTK2, HSTKB ,	BHSTK4 , LSASTK7 , LATHSTK3,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	VLSBSTK LEWHSTK LATHSTK HHSTKE	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1	22, VLSBST	X3, VLSBS	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G	
LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC , GHSTK6 ,	LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HI	HSTK2 , BH SASTK5 , LS ATHSTK1, LA HSTKA , HH	HSTK3 , SASTK6 , ATHSTK2, HSTKB ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1	32, VLSBST: 33, LEWHST: 46, LATHST: 46, GHSTK2 57, CHSTK1	K4, LEWHS K7, LATHS , GHSTK , HESST	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC , GHSTK6 ,	LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HI	HSTK2 , BH SASTK5 , LS ATHSTK1, LA HSTKA , HH	HSTK3 , SASTK6 , ATHSTK2, HSTKB ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1	32, VLSBST: 33, LEWHST: 46, LATHST: 46, GHSTK2 57, CHSTK1	K4, LEWHS K7, LATHS , GHSTK , HESST	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC , GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GH	HSTK2 , BH SASTK5 , LS ATHSTK1, LA HSTKA , HH HSTK8 , GH	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER#	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER#	32, VLSBST: 33, LEWHST: 46, LATHST: 47, GHSTK2 44, POURING	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 ,	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC , GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GH	HSTK2 , BH SASTK5 , LS ATHSTK1, LA HSTKA , HH HSTK8 , GH	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER#	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER#	32, VLSBST: 33, LEWHST: 46, LATHST: 47, GHSTK2 44, POURING	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC , GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GH	HSTK2 , BH SASTK5 , LS ATHSTK1, LA HSTKA , HH HSTK8 , GH	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER#	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER#	32, VLSBST: 33, LEWHST: 46, LATHST: 47, GHSTK2 44, POURING	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 ,	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC, GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GI PRINTA , PI ENG_62 , EI	HSTK2 , BESASTK5 , LSATHSTK1 , LAHSTKA , HEHSTKA , GERINTB , PENG_63 , EN	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 , RINTC , NG_64 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 , COGEN , ENG_105 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER#	22, VLSBST	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST G, PAINT O, ENG_1	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 , 1 , PAINT2 , P	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 , ENG_112 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC, GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GI PRINTA , PI ENG_62 , EI	HSTK2 , BESASTK5 , LSATHSTK1 , LAHSTKA , HEHSTKA , GERINTB , PENG_63 , EN	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 , RINTC , NG_64 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 , COGEN , ENG_105 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER#	22, VLSBST	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST G, PAINT O, ENG_1	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 ,	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC, GHSTK6 , WELSTK1 , PAINT4 , ENG_113 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GH PRINTA , PH ENG_62 , EH ENG_114 , EH	HSTK2 , BESASTK5 , LSASTK5 , LSASTK5 , LSASTK5 , LSASTK5 , HESTKA , HESTKA , GENTER , PERCENTER , PERC	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 , RINTC , NG_64 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 , COGEN , ENG_105 , ENG_118 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107 ENG_120	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER# , ENG_108 , ENG_121	22, VLSBST	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST G, PAINT D, ENG_1 3, ENG_1	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 , 1 , PAINT2 , P 10 , ENG_111 , 25 , ENG_126 ,	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 , ENG_112 , ENG_128 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC, GHSTK6 , WELSTK1 , PAINT4 , ENG_113 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GH PRINTA , PH ENG_62 , EH ENG_114 , EH	HSTK2 , BESASTK5 , LSASTK5 , LSASTK5 , LSASTK5 , LSASTK5 , HESTKA , HESTKA , GENTER , PERCENTER , PERC	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 , RINTC , NG_64 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 , COGEN , ENG_105 , ENG_118 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107 ENG_120	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER# , ENG_108 , ENG_121	22, VLSBST	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST G, PAINT D, ENG_1 3, ENG_1	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 , 1 , PAINT2 , P	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC, GHSTK6 , WELSTK1 , PAINT4 , ENG_113 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GH PRINTA , PH ENG_62 , EH ENG_114 , EH	HSTK2 , BESASTK5 , LSASTK5 , LSASTK5 , LSASTK5 , LSASTK5 , HESTKA , HESTKA , GENTER , PERCENTER , PERC	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 , RINTC , NG_64 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 , COGEN , ENG_105 , ENG_118 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107 ENG_120	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER# , ENG_108 , ENG_121	22, VLSBST	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST G, PAINT D, ENG_1 3, ENG_1	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 , 1 , PAINT2 , P 10 , ENG_111 , 25 , ENG_126 ,	HSTK5

```
ENG_STNL, ENG_DVS , ENG_MCCN, ENG_SRB1, ENGNULAB, ENGMUSIC, ENG_UNT1, ENG_UNT2, ENG_UNT3, ENG116NU, NEWSTAN1,
NEWSTAN2,
           NEWSTAN3, NEWSTAN4, NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
           WHSTK1 8, WHSTK10 ,
 WH
           NWAF9 ,
 NWAF
 MH
           MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 ,
           KHSTK1 , KHSTK2 , KHSTK3 , KHSTK4 ,
 KH
 вн
           BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 ,
           VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4,
 VLSB
 LSA
           LSASTK1 , LSASTK2 , LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 ,
 LEW
           LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6, LEWHSTK7, LEWHSTK8, LEWHSTK9,
                                         *** SOURCE IDs DEFINING SOURCE GROUPS ***
 GROUP ID
                                                        SOURCE IDs
 LAT
           LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8,
 TAN
           TANHSTKA, TANHSTKB, TANHSTKC, TANHSTKD,
           HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE ,
           GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 ,
 GH
GHSTK12 ,
           GHSTK13 ,
           CHSTK1 ,
 CH
 HES
           HESSTK1 ,
 HIL
           HILSTK1 ,
           MULSTK1 ,
 MUL
 WEL
           WELSTK1 ,
 PRINT
           PRINTA , PRINTB , PRINTC ,
 COMBUST
          COGEN , BOILER#2, BOILER#3, BOILER#4,
 HAZMAT
           POURING ,
 PAINT
           PAINT1 , PAINT2 , PAINT3 , PAINT4 ,
 EXISTLAB WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
```

```
KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7.
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
                                          *** SOURCE IDs DEFINING SOURCE GROUPS ***
GROUP ID
                                                        SOURCE IDs
           WELSTK1 ,
 ENGINES
           ENG 62 , ENG 63 , ENG 64 , ENG 105 , ENG 106 , ENG 107 , ENG 108 , ENG 109 , ENG 110 , ENG 111 , ENG 112 ,
ENG 113 ,
           ENG_114 , ENG_115 , ENG_117 , ENG_118 , ENG_119 , ENG_120 , ENG_121 , ENG_123 , ENG_125 , ENG_126 , ENG_128 ,
ENG 129 ,
           ENG_130 , ENG_131 , ENG_132 , E134_133,
 NEWLABS
           NEWLAB A, NEWLAB B, NEWLAB C, NEWLAB D, NEWLAB E, NEWLAB F, NEWLAB G, NEWSTAN1, NEWSTAN2, NEWSTAN3, NEWSTAN4,
NEWSTAN5,
           NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
 ALL_LABS
           WHSTK1_8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
           WELSTK1 , NEWLAB A, NEWLAB B, NEWLAB C, NEWLAB D, NEWLAB E, NEWLAB G, ENG UNT3, NEWSTAN1, NEWSTAN2, NEWSTAN3,
NEWSTAN4,
           NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
 EXISTING WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MUILSTK1 .
```

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDs

WELSTK1 , PRINTA , PRINTB , PRINTC , COGEN , BOILER#2, BOILER#3, BOILER#4, POURING , PAINT1 , PAINT2 , PAINT3

PAINT4 , ENG_62 , ENG_63 , ENG_64 , ENG_105 , ENG_106 , ENG_107 , ENG_108 , ENG_109 , ENG_110 , ENG_111 ,

ENG 112 ,

 $\texttt{ENG_113} \ , \ \texttt{ENG_114} \ , \ \texttt{ENG_115} \ , \ \texttt{ENG_117} \ , \ \texttt{ENG_118} \ , \ \texttt{ENG_119} \ , \ \texttt{ENG_120} \ , \ \texttt{ENG_121} \ , \ \texttt{ENG_123} \ , \ \texttt{ENG_125} \ , \ \texttt{ENG_126} \ , \\ \texttt{ENG_110} \ , \ \texttt{ENG_120} \ , \ \texttt{ENG_120} \ , \ \texttt{ENG_120} \ , \ \texttt{ENG_120} \ , \\ \texttt{ENG_120} \ , \ \texttt{ENG_120} \ , \ \texttt{ENG_120} \ , \ \texttt{ENG_120} \ , \\ \texttt{ENG_120} \ , \ \texttt{ENG_120} \ , \ \texttt{ENG_120} \ , \\ \texttt{ENG_120} \ , \ \texttt{ENG_120} \ , \ \texttt{ENG_120} \ , \\ \texttt{ENG_120} \ , \ \texttt{ENG_120} \ , \ \texttt{ENG_120} \ , \\ \texttt{EN$ ENG_128 ,

ENG_129 , ENG_130 , ENG_131 , ENG_132 , E134_133,

NEWLAB_A NEWLAB_A,

NEWLAB_B NEWLAB_B,

NEWLAB C NEWLAB C,

NEWLAB_D NEWLAB_D,

NEWLAB_E NEWLAB_E,

NEWLAB F NEWLAB F,

NEWLAB_G NEWLAB_G,

DAVISNEW NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,

STAN NEW NEWSTAN1, NEWSTAN2, NEWSTAN3, NEWSTAN4, NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8,

ENG STNL, ENG DVS , ENG MCCN, ENG SRB1, ENGNULAB, ENG UNT1, ENG UNT2, ENG UNT3, NEWENG

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

GROUP	ID	AVERAGE CONC	REC	EPTOR (XR, YR	, ZELEV, ZFL	AG) OF TY	NETWORK PE GRID-ID
ALL	1ST HIGHEST VALUE I	S 5.35416 AT (564892.25,	4191959.00,	84.00,	0.00)	OC NA
	2ND HIGHEST VALUE I	S 5.32787 AT (564700.00,	4192000.00,	76.00,	0.00)	OC NA
	3RD HIGHEST VALUE I	S 4.92932 AT (564941.88,	4191967.00,	90.00,	0.00)	OC NA
	4TH HIGHEST VALUE I	S 4.56139 AT (564991.81,	4191975.00,	93.00,	0.00)	OC NA
	5TH HIGHEST VALUE I	S 4.53868 AT (564800.00,	4192000.00,	81.00,	0.00)	OC NA
	6TH HIGHEST VALUE I	S 4.45945 AT (565000.00,	4192000.00,	98.00,	0.00)	OC NA
	7TH HIGHEST VALUE I	S 4.44064 AT (565800.00,	4191200.00,	100.00,	0.00)	OC NA
	8TH HIGHEST VALUE I	S 4.38049 AT (564842.69,	4191950.00,	83.00,	0.00)	OC NA
	9TH HIGHEST VALUE I	S 4.29920 AT (564900.00,	4192000.00,	88.00,	0.00)	OC NA
	10TH HIGHEST VALUE I	S 4.27275 AT (564698.50,	4191908.75,	72.00,	0.00)	OC NA
WH	1ST HIGHEST VALUE I	S 0.00268 AT (564698.50,	4191908.75,	72.00,	0.00)	OC NA
	2ND HIGHEST VALUE I	S 0.00263 AT (564639.88,	4191852.00,	67.00,	0.00)	OC NA
	3RD HIGHEST VALUE I	S 0.00258 AT (564664.50,	4191903.50,	71.00,	0.00)	OC NA
	4TH HIGHEST VALUE I	S 0.00247 AT (564600.00,	4191900.00,	67.00,	0.00)	OC NA
	5TH HIGHEST VALUE I	S 0.00231 AT (564648.62,	4191891.75,	68.00,	0.00)	OC NA
	6TH HIGHEST VALUE I	S 0.00189 AT (564748.50,	4191916.75,	75.00,	0.00)	OC NA
	7TH HIGHEST VALUE I	S 0.00135 AT (564795.00,	4191930.25,	78.00,	0.00)	OC NA
	8TH HIGHEST VALUE I	S 0.00103 AT (564700.00,	4192000.00,	76.00,	0.00)	OC NA
	9TH HIGHEST VALUE I	S 0.00098 AT (564600.00,	4192000.00,	72.00,	0.00)	OC NA
	10TH HIGHEST VALUE I	S 0.00093 AT (564500.00,	4191900.00,	65.00,	0.00)	OC NA
NWAF	1ST HIGHEST VALUE I	S 0.00249 AT (565000.00,	4192000.00,	98.00,	0.00)	OC NA

0.00247 AT (565141.94, 4191999.00, 0.00236 AT (565241.19, 4192017.75, 0.00231 AT (565191.50, 4192009.50, 0.00223 AT (565289.25, 4192025.50, 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 4TH HIGHEST VALUE IS 0.00) DC 0.00) DC 97.00, NA 102.00, NA 97.00, 0.00) DC NA 107.00, 5TH HIGHEST VALUE IS 0.00) DC NA 0.00208 AT (565090.81, 4191991.50, 0.00204 AT (565339.88, 4192034.25, 6TH HIGHEST VALUE IS 96.00, 0.00) NA 7TH HIGHEST VALUE IS 108.00, 0.00) DC NA 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 0.00199 AT (564900.00, 4192100.00, 0.00198 AT (565100.00, 4192000.00, 0.00196 AT (565100.00, 4192100.00, 102.00, 0.00) DC NA 96.00, 0.00) DC NA 10TH HIGHEST VALUE IS 107.00, 0.00) DC NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP	ID	AVERAGE CONC	REC	EPTOR (XR, YR,	ZELEV, ZFLAG) OF	TYPE	NETWORK GRID-ID
МН	1cm utcurem value t	S 0.06988 AT (564749 50	/101016 75	75 00	0 00)	DC	NA
PHH		S 0.00988 AT (NA NA
	3RD HIGHEST VALUE I							NA
	4TH HIGHEST VALUE I							
	5TH HIGHEST VALUE I							
	6TH HIGHEST VALUE I							NA
		S 0.02884 AT (NA
		S 0.02844 AT (NA
	9TH HIGHEST VALUE I	S 0.02494 AT (564600.00,	4192000.00,	72.00,	0.00)	DC	NA
	10TH HIGHEST VALUE I	S 0.02409 AT (564941.88,	4191967.00,	90.00,	0.00)	DC	NA
KH		S 0.26554 AT (NA
	2ND HIGHEST VALUE I	S 0.25816 AT (564700.00,	4192000.00,	76.00,	0.00)	DC	NA
	3RD HIGHEST VALUE I	S 0.22663 AT (564800.00,	4192000.00,	81.00,	0.00)	DC	NA
	4TH HIGHEST VALUE I	S 0.21430 AT (564892.25,	4191959.00,	84.00,	0.00)	DC	NA
	5TH HIGHEST VALUE I	S 0.20313 AT (564600.00,	4192000.00,	72.00,	0.00)	DC	NA
	6TH HIGHEST VALUE I	S 0.18282 AT (564991.81,	4191975.00,	93.00,	0.00)	DC	NA
	7TH HIGHEST VALUE I	S 0.17579 AT (564941.88,	4191967.00,	90.00,	0.00)	DC	NA
	8TH HIGHEST VALUE I	S 0.15537 AT (565000.00,	4192000.00,	98.00,	0.00)	DC	NA
	9TH HIGHEST VALUE I	S 0.14675 AT (565042.31,	4191983.00,	93.00,	0.00)	DC	NA
		S 0.17579 AT (S 0.15537 AT (S 0.14675 AT (S 0.14449 AT (NA
BH	1ST HIGHEST VALUE I	S 0.04734 AT (S 0.03695 AT (S 0.02970 AT (S 0.02815 AT (S 0.02339 AT (S 0.02336 AT (S 0.02165 AT (S 0.02085 AT (S 0.01868 AT (564795.00,	4191930.25,	78.00,	0.00)	DC	NA
	2ND HIGHEST VALUE I	S 0.03695 AT (564842.69,	4191950.00,	83.00,	0.00)	DC	NA
	3RD HIGHEST VALUE I	S 0.02970 AT (564600.00,	4192000.00,	72.00,	0.00)	DC	NA
	4TH HIGHEST VALUE I	S 0.02815 AT (564892.25,	4191959.00,	84.00,	0.00)	DC	NA
	5TH HIGHEST VALUE I	S 0.02339 AT (564700.00,	4192000.00,	76.00,	0.00)	DC	NA
	6TH HIGHEST VALUE I	S 0.02336 AT (564941.88,	4191967.00,	90.00,	0.00)	DC	NA
	7TH HIGHEST VALUE I	S 0.02165 AT (564800.00,	4192000.00,	81.00,	0.00)	DC	NA
	8TH HIGHEST VALUE I	S U.U2U85 AT (564900.00,	4192000.00,	88.00,	0.00)	DC	NA
	3111 111011D01 111D0D 1	0.01000 111 (000000.00,	1132000,00,	30.00,	0.00,	20	NA
	10TH HIGHEST VALUE I	S 0.01820 AT (564991.81,	41919/5.00,	93.00,	0.00)	DC	NA

*** THE SUMMARY OF MAXIMUM PERIOD ($8760\ \mathrm{HRS})$ RESULTS ***

* *

CDOUD :		ACE COMO	DECEDEOD (VD VD		OF EVE	NETWORK
GROUP :	ID AVE	RAGE CONC	RECEPTOR (XR, YR,	ZELEV, ZFLAG)	OF TYPE	GRID-ID
VLSB	1ST HIGHEST VALUE IS	0.02270 AT (565226.	19, 4191310.50,	81.00, 0.	.00) DC	NA
	2ND HIGHEST VALUE IS	0.02244 AT (564795.	00, 4191930.25,	78.00, 0.	.00) DC	NA
	3RD HIGHEST VALUE IS	0.02210 AT (565200.	00, 4191300.00,	80.00, 0.	.00) DC	NA
	4TH HIGHEST VALUE IS	0.02198 AT (565176.	31, 4191303.25,	79.00, 0.	.00) DC	NA
	5TH HIGHEST VALUE IS	0.02188 AT (565577.	06, 4191362.50,	93.00, 0.	.00) DC	NA
	6TH HIGHEST VALUE IS	0.02154 AT (564842.	69, 4191950.00,	83.00, 0.	.00) DC	NA
	7TH HIGHEST VALUE IS	0.02145 AT (565276.	06, 4191318.25,	82.00, 0.	.00) DC	NA
	8TH HIGHEST VALUE IS	0.02066 AT (565326.	25, 4191324.25,	84.00, 0.	.00) DC	NA
	9TH HIGHEST VALUE IS	0.02062 AT (565626.	50, 4191370.25,	95.00, 0.	.00) DC	NA
	10TH HIGHEST VALUE IS	0.02039 AT (564748.	50, 4191916.75,	75.00, 0.	.00) DC	NA
LSA	1ST HIGHEST VALUE IS	0.07042 AT (565176.	31, 4191303.25,	79.00, 0.	.00) DC	NA
	2ND HIGHEST VALUE IS	0.07022 AT (565577.	06, 4191362.50,	93.00, 0.	.00) DC	NA
	3RD HIGHEST VALUE IS	0.06962 AT (565376.	81, 4191332.25,	87.00, 0.	.00) DC	NA
	4TH HIGHEST VALUE IS	0.06961 AT (565127.	75, 4191295.25,	77.00, 0.	.00) DC	NA
	5TH HIGHEST VALUE IS	0.06949 AT (565077.	25, 4191285.50,	76.00, 0.	.00) DC	NA

80.00, 81.00, 84.00 0.06821 AT (565200.00, 4191300.00, 0.06743 AT (565226.19, 4191310.50, 0.06636 AT (565326.25, 4191324.25, 0.06602 AT (565326.25, 4191324.25, 0.06602 AT (565326.25) 0.00) DC 6TH HIGHEST VALUE IS NA 7TH HIGHEST VALUE IS 0.00) DC NA 8TH HIGHEST VALUE IS 0.00) DC NA 0.06602 AT (565426.81, 4191338.75, 0.06563 AT (565626.50, 4191370.25, 88.00, 9TH HIGHEST VALUE IS 0.00) DC NA 10TH HIGHEST VALUE IS 95.00. 0.00) DC 0.07244 AT (565475.12, 4192018.00, 0.06431 AT (565500.00, 4192100.00, 0.06282 AT (565460.56, 4192039.50, 0.05757 AT (565438.25, 4192048.75, 118.00, 0.00) LEW 1ST HIGHEST VALUE IS NA 126.00, 2ND HIGHEST VALUE IS 0.00) DC NA 3RD HIGHEST VALUE IS 117.00, 0.00) DC NA 4TH HIGHEST VALUE IS 117.00, 0.00) DC NA 5TH HIGHEST VALUE IS 0.05506 AT (566100.00, 4191600.00, 141.00, 0.00) DC NA 6TH HIGHEST VALUE IS 0.04783 AT (565390.25, 4192042.25, 113.00, 0.00) DC NA 0.04774 AT (565300.00, 4192300.00, 7TH HIGHEST VALUE IS 123.00, 0.00) DC NA 8TH HIGHEST VALUE IS 0.04488 AT (565600.00, 4192100.00, 140.00, 0.00) DC NA 0.04368 AT (566200.00, 4191600.00, 0.04327 AT (565339.88, 4192034.25, 9TH HIGHEST VALUE IS 144.00, 0.00) DC NA 10TH HIGHEST VALUE IS 108.00, 0.00) DC NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

NETWORK AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID GROUP ID 1ST HIGHEST VALUE IS 0.11254 AT (565475.12, 4192018.00, 118.00, 0.10472 AT (566200.00, 4191600.00, 144.00, 0.00) DC 2ND HIGHEST VALUE IS 0.00) DC NA U.104/2 AT (565200.00, 4191600.00, 144.00, 0.10017 AT (565460.56, 4192039.50, 117.00, 0.09461 AT (565438.25, 4192048.75, 117.00, 0.09392 AT (566100.00, 4191600.00, 141.00, 0.09315 AT (565390.25, 4192042.25, 113.00, 3RD HIGHEST VALUE IS 0.00) DC 4TH HIGHEST VALUE IS 0.00) DC NA 5TH HIGHEST VALUE IS 0.00) DC 6TH HIGHEST VALUE IS 0.00) DC NA 0.09313 AT (565339.83, 4192034.25, 0.08856 AT (566200.00, 4191500.00, 0.08814 AT (565800.00, 4192000.00, 0.08747 AT (565900.00, 4192000.00, 7TH HIGHEST VALUE IS 108.00, 0.00) DC 156.00, 8TH HIGHEST VALUE IS 0.00) DC NA 9TH HIGHEST VALUE IS 178.00, 0.00) DC 10TH HIGHEST VALUE IS 182.00, 0.00) DC TAN 1ST HIGHEST VALUE IS 0.05185 AT (566100.00, 4191600.00, 141.00, 0.00) DC 0.04666 AT (565475.12, 4192018.00, 2ND HIGHEST VALUE IS 0.00) DC 118.00, NA 3RD HIGHEST VALUE IS 0.04438 AT (565289.25, 4192025.50, 107.00, 0.00) DC 4TH HIGHEST VALUE IS 0.04434 AT (566200.00, 4191600.00, 144.00, 0.00) DC 5TH HIGHEST VALUE IS 0.04185 AT (565390.25, 4192042.25, 113.00, 0.00) DC NA 6TH HIGHEST VALUE IS 0.04047 AT (565438.25, 4192048.75, 117.00, 0.00) DC 7TH HIGHEST VALUE IS 0.03970 AT (565460.56, 4192039.50, 117.00. 0.00) DC 0.03935 AT (565339.88, 4192034.25, 0.03778 AT (565500.00, 4192100.00, 0.03679 AT (565600.00, 4192100.00, 8TH HIGHEST VALUE IS 108.00, 0.00) DC 9TH HIGHEST VALUE IS 126.00. 0.00) DC NA 10TH HIGHEST VALUE IS 0.00) DC 0.10735 AT (566100.00, 4191600.00, 0.08100 AT (566200.00, 4191600.00, 0.07321 AT (566200.00, 4191500.00, 1ST HIGHEST VALUE IS 0.00) DC НН 141.00, NA 2ND HIGHEST VALUE IS 144.00, 156.00, 0.00) DC NA 3RD HIGHEST VALUE IS 0.00) DC 0.07099 AT (4TH HIGHEST VALUE IS 565475.12, 4192018.00, 118.00, 0.00) DC NA 107.00, 5TH HIGHEST VALUE IS 0.07090 AT (565289.25, 4192025.50, 0.00) DC 6TH HIGHEST VALUE IS 0.07072 AT (565600.00, 4192100.00, 140.00, 0.00) DC 0.06973 AT (565339.88, 4192034.25, 7TH HIGHEST VALUE IS 108.00, 0.00) DC 0.06819 AT (566100.00, 4191400.00, 0.06698 AT (565390.25, 4192042.25, 0.06389 AT (565460.56, 4192039.50, 8TH HIGHEST VALUE IS 149.00, 0.00) DC NA 9TH HIGHEST VALUE IS 0.00) DC 113.00, NA 10TH HIGHEST VALUE IS 0.00) DC 117.00,

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

GROUP ID		AVERA	AGE CONC	REC	EPTOR (XR, YF	z, ZELEV, ZFL	AG) OF TYE	NETWORK E GRID-ID	_
GH	1ST HIGHEST VALU	JE IS	0.03653 AT (566100.00,	4191600.00,	141.00,	0.00) DC	NA	
	2ND HIGHEST VALU	JE IS	0.03119 AT (565289.25,	4192025.50,	107.00,	0.00) DC	NA.	
	3RD HIGHEST VALU	JE IS	0.03001 AT (565241.19,	4192017.75,	102.00,	0.00) DC	NA.	
	4TH HIGHEST VALU	JE IS	0.02990 AT (565500.00,	4192100.00,	126.00,	0.00) DC	NA.	
	5TH HIGHEST VAL	JE IS	0.02864 AT (565339.88,	4192034.25,	108.00,	0.00) DC	NA.	
	6TH HIGHEST VAL	JE IS	0.02845 AT (566200.00,	4191600.00,	144.00,	0.00) DC	NA.	
	7TH HIGHEST VALU	JE IS	0.02727 AT (565475.12,	4192018.00,	118.00,	0.00) DC	NA.	
	8TH HIGHEST VALU	JE IS	0.02690 AT (565600.00,	4192100.00,	140.00,	0.00) DC	NA.	
	9TH HIGHEST VALU	JE IS	0.02688 AT (565191.50,	4192009.50,	97.00,	0.00) DC	. NA	

	10TH HIGHEST	VALUE IS	0.02663 AT (565390.25,	4192042.25,	113.00,	0.00)	DC	NA
СН	1ST HIGHEST 2ND HIGHEST 3RD HIGHEST 4TH HIGHEST 5TH HIGHEST 6TH HIGHEST 7TH HIGHEST 8TH HIGHEST 9TH HIGHEST	VALUE IS	0.00301 AT (0.00132 AT (0.00126 AT (0.00124 AT (0.00115 AT (0.00083 AT (0.00083 AT (0.00066 AT (565500.00, 565600.00, 565400.00, 565300.00, 565800.00, 565700.00, 565500.00,	4192100.00, 4192200.00, 4192200.00,	118.00, 126.00, 140.00, 116.00, 107.00, 178.00, 165.00, 118.00,	0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	DC DC DC DC DC DC DC DC	NA NA NA NA NA NA NA
HES	10TH HIGHEST 1ST HIGHEST 2ND HIGHEST	VALUE IS	0.00063 AT (0.02430 AT (0.02416 AT (565300.00, 565141.94, 565191.50,	,	97.00,	0.00) 0.00) 0.00)	DC DC DC	NA NA NA
	3RD HIGHEST 4TH HIGHEST 5TH HIGHEST 6TH HIGHEST	VALUE IS VALUE IS VALUE IS	0.02416 AT (0.02162 AT (0.01621 AT (0.01545 AT (0.01318 AT (565241.19, 565289.25, 565100.00, 565090.81,	,	102.00, 107.00, 96.00, 96.00,	0.00) 0.00) 0.00) 0.00)	DC DC DC DC	NA NA NA NA
	7TH HIGHEST 8TH HIGHEST 9TH HIGHEST 10TH HIGHEST	VALUE IS	0.01238 AT (0.01221 AT (0.01139 AT (0.01043 AT (565100.00, 565339.88, 565475.12, 565460.56,	4192034.25,	107.00, 108.00, 118.00, 117.00,	0.00) 0.00) 0.00) 0.00)	DC DC DC DC	NA NA NA NA

**

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP	ID 		AVERAGE CONC	REC	EPTOR (XR,	YR, ZELEV,	ZFLAG) OF	TYPE	NETWORK GRID-ID
HIL	1ST HIGHEST V	VALUE IS	0.01604 AT (564795.00,	4191930.25	, 78.00,	0.00)	DC	NA
	2ND HIGHEST V	VALUE IS	0.01418 AT (564748.50,	4191916.75	75.00,	0.00)	DC	NA
	3RD HIGHEST V	VALUE IS	0.01415 AT (564842.69,	4191950.00	83.00,	0.00)	DC	NA
	4TH HIGHEST V	VALUE IS	0.01241 AT (564941.88,	4191967.00	90.00,	0.00)	DC	NA
	5TH HIGHEST V	VALUE IS	0.01220 AT (564892.25,	4191959.00	, 84.00,	0.00)	DC	NA
	6TH HIGHEST V	VALUE IS	0.01008 AT (564800.00,	4192000.00	, 81.00,	0.00)	DC	NA
	7TH HIGHEST V	VALUE IS	0.00946 AT (564900.00,	4192000.00	, 88.00,	0.00)	DC	NA
	8TH HIGHEST V	VALUE IS							NA
	9TH HIGHEST V	VALUE IS	0.00902 AT (564700.00,	4192000.00	76.00,	0.00)	DC	NA
	10TH HIGHEST V	VALUE IS	0.00893 AT (565000.00,	4192000.00	, 98.00,	0.00)	DC	NA
MUL	1ST HIGHEST V	VALUE IS	0.00006 AT (564664.50,	4191903.50	, 71.00,	0.00)	DC	NA
	2ND HIGHEST V	VALUE IS	0.00006 AT (564795.00,	4191930.25	78.00,	0.00)	DC	NA
	3RD HIGHEST V	VALUE IS			4191891.75		0.00)	DC	NA
	4TH HIGHEST V	VALUE IS	0.00006 AT (564698.50,	4191908.75	72.00,	0.00)	DC	NA
	5TH HIGHEST V	VALUE IS	0.00006 AT (564842.69,	4191950.00	, 83.00,	0.00)	DC	NA
	6TH HIGHEST V	VALUE IS	0.00006 AT (564639.88,	4191852.00	, 67.00,	0.00)	DC	NA
	7TH HIGHEST V	VALUE IS	0.00005 AT (564748.50,	4191916.75	75.00,	0.00)	DC	NA
	8TH HIGHEST V	VALUE IS	0.00005 AT (564800.00,	4192000.00	, 81.00,	0.00)	DC	NA
	9TH HIGHEST V	VALUE IS	0.00005 AT (564645.94,	4191801.25	, 66.00,	0.00)	DC	NA
	10TH HIGHEST V	VALUE IS	0.00005 AT (564600.00,	4191900.00	, 67.00,	0.00)	DC	NA
WEL	1ST HIGHEST V	VALUE IS	0.00048 AT (564795.00,	4191930.25	, 78.00,	0.00)	DC	NA
	2ND HIGHEST V	VALUE IS	0.00036 AT (564892.25,	4191959.00	84.00,	0.00)	DC	NA
	3RD HIGHEST V	VALUE IS	0.00032 AT (564941.88,	4191967.00	90.00,	0.00)	DC	NA
	4TH HIGHEST V	VALUE IS	0.00031 AT (564748.50,	4191916.75	75.00,	0.00)	DC	NA
	5TH HIGHEST V	VALUE IS	0.00030 AT (564842.69,	4191950.00	, 83.00,	0.00)	DC	NA
	6TH HIGHEST V	VALUE IS	0.00027 AT (564900.00,	4192000.00	, 88.00,	0.00)	DC	NA
	7TH HIGHEST V	VALUE IS	0.00025 AT (564991.81,	4191975.00	, 93.00,	0.00)	DC	NA
	8TH HIGHEST V	VALUE IS	0.00025 AT (564800.00,	4192000.00	, 81.00,	0.00)	DC	NA
	9TH HIGHEST V	VALUE IS	0.00024 AT (564700.00,	4192000.00	76.00,	0.00)	DC	NA
	10TH HIGHEST V	VALUE IS	0.00023 AT (564800.00,	4192100.00	, 92.00,	0.00)	DC	NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

GROUP ID)	A	VERAGE CONC	RE	CEPTOR (XR,	YR, ZELEV,	ZFLAG) OF	NETWORK IYPE GRID-ID	
PRINT	1ST HIGHEST 2ND HIGHEST		0.08737 AT 0.05071 AT	, ,	4191519.00 4191504.00	,	,	DC NA DC NA	

		HIGHEST			0.02268			564550.38,	,	60.00,	0.00)	DC	NA
		HIGHEST			0.02118		•	564678.75,	4191454.25,	62.00,	0.00)	DC	NA
	5TH	HIGHEST	VALUE	IS	0.02090	ΑT	(564557.88,	4191553.00,	60.00,	0.00)	DC	NA
	6TH	HIGHEST	VALUE	IS	0.01889	AT	(564603.69,	4191609.25,	62.00,	0.00)	DC	NA
	7TH	HIGHEST	VALUE	IS	0.01505	AT	(564665.12,	4191621.25,	65.00,	0.00)	DC	NA
	8TH	HIGHEST	VALUE	IS	0.01305	AT	(564500.00,	4191600.00,	59.00,	0.00)	DC	NA
	9TH	HIGHEST	VALUE	IS	0.01196	AT	(564678.50,	4191403.75,	61.00,	0.00)	DC	NA
	10TH	HIGHEST	VALUE	IS	0.01163	AT	(564617.12,	4191507.50,	60.00,	0.00)	DC	NA
COMBUST	1ST	HIGHEST	VALUE	IS	1.10750	ΑT	(566200.00,	4191300.00,	158.00,	0.00)	DC	NA
	2ND	HIGHEST	VALUE	IS	1.08035	AT	(566100.00,	4191400.00,	149.00,	0.00)	DC	NA
	3RD	HIGHEST	VALUE	IS	1.07069	AT	(566200.00,	4191400.00,	174.00,	0.00)	DC	NA
	4TH	HIGHEST	VALUE	IS	1.02572	AT	(566300.00,	4191300.00,	176.00,	0.00)	DC	NA
	5TH	HIGHEST	VALUE	IS	1.01023	AT	(566100.00,	4191300.00,	140.00,	0.00)	DC	NA
	6TH	HIGHEST	VALUE	IS	0.98699	AT	(566400.00,	4191200.00,	166.00,	0.00)	DC	NA
	7TH	HIGHEST	VALUE	IS	0.98012	AT	(566400.00,	4191100.00,	174.00,	0.00)	DC	NA
	8TH	HIGHEST	VALUE	IS	0.97393	AT	(566300.00,	4191400.00,	204.00,	0.00)	DC	NA
	9TH	HIGHEST	VALUE	IS	0.96945	AT	(566200.00,	4191200.00,	142.00,	0.00)	DC	NA
	10TH	HIGHEST	VALUE	IS	0.96280	AT	(566400.00,	4191000.00,	162.00,	0.00)	DC	NA
HAZMAT		HIGHEST			0.03561			564976.62,	,	73.00,	0.00)	DC	NA
	2ND	HIGHEST	VALUE	IS	0.03340	ΑT	(565026.56,	4191279.00,	74.00,	0.00)	DC	NA
		HIGHEST			0.03109			564927.50,	4191263.50,	71.00,	0.00)	DC	NA
	4TH	HIGHEST	VALUE	IS	0.03029	ΑT	(564665.12,	4191621.25,	65.00,	0.00)	DC	NA
	5TH	HIGHEST	VALUE	IS	0.02904	AT	(565077.25,	4191285.50,	76.00,	0.00)	DC	NA
	6TH	HIGHEST	VALUE	IS	0.02873	AT	(565176.31,	4191303.25,	79.00,	0.00)	DC	NA
	7TH	HIGHEST	VALUE	IS	0.02809	AT	(565127.75,	4191295.25,	77.00,	0.00)	DC	NA
		HIGHEST			0.02798			,	4191652.50,	65.00,	0.00)	DC	NA
	9TH	HIGHEST	VALUE	IS	0.02701	AΤ	(565200.00,	4191300.00,	80.00,	0.00)	DC	NA
	10TH	HIGHEST	VALUE	IS	0.02610	AΤ	(565376.81,	4191332.25,	87.00,	0.00)	DC	NA

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP ID				AVERAGE CONC		RECI	EPTOR 	(XR,	YR, 	ZELEV,	ZFLAG) 	OF 	TYPE 	NETWORK GRID-ID
PAINT 1S	T HIGHEST	VALUE	IS	0.02407 AT (565191.5	50,	419200	09.50	,	97.00,	0	.00)	DC	NA
				0.02341 AT (.00)	DC	NA
	D HIGHEST											.00)	DC	NA
41	H HIGHEST	VALUE	IS	0.02148 AT (565626.5	50,	41913	70.25	,	95.00,	0	.00)	DC	NA
51	H HIGHEST	VALUE	IS	0.02129 AT (565026.5	56,	41912	79.00	,	74.00,	0	.00)	DC	NA
6T	H HIGHEST	VALUE	IS	0.02081 AT (565241.1	L9,	41920	17.75	,	102.00,	0	.00)	DC	NA
71	H HIGHEST	VALUE	IS	0.01973 AT (565100.0	00,	419200	00.00	,	96.00,	0	.00)	DC	NA
18	H HIGHEST	VALUE	IS	0.01958 AT (564976.6	52,	41912	71.75	,	73.00,	0	.00)	DC	NA
91	H HIGHEST	VALUE	IS	0.01905 AT (565090.8	31,	41919	91.50	,	96.00,	0	.00)	DC	NA
101	H HIGHEST	VALUE	IS	0.01846 AT (565726.6	52,	419138	36.25	,	100.00,	0	.00)	DC	NA
EXISTLAB 1S	T HIGHEST	VALUE	IS	0.49014 AT (564842.6	59,	41919	50.00	,	83.00,	0	.00)	DC	NA
2N	D HIGHEST	VALUE	IS	0.43342 AT (565475.1	12,	41920	18.00	,	118.00,	0	.00)	DC	NA
3R	D HIGHEST	VALUE	IS	0.42593 AT (564700.0	00,	419200	00.00	,	76.00,	0	.00)	DC	NA
41	H HIGHEST	VALUE	IS	0.41539 AT (564892.2	25,	41919	59.00	,	84.00,	0	.00)	DC	NA
51	H HIGHEST	VALUE	IS		564991.8	31,	41919	75.00	,	93.00,	0	.00)	DC	NA
6T	H HIGHEST	VALUE	IS		565289.2	25,	419202	25.50	,	107.00,	0	.00)	DC	NA
71	H HIGHEST	VALUE	IS	0.40579 AT (566100.0	00,	419160	00.00	,	141.00,	0	.00)	DC	NA
18	H HIGHEST	VALUE	IS	0.40151 AT (565000.0	00,	419200	00.00	,	98.00,	0	.00)	DC	NA
91	H HIGHEST	VALUE	IS	0.40025 AT (564800.0	00,	419200	00.00	,	81.00,	0	.00)	DC	NA
101	H HIGHEST	VALUE	IS	0.39853 AT (564941.8	38,	41919	57.00	,	90.00,	0	.00)	DC	NA
ENGINES 1S	T HIGHEST	VALUE	IS	3.84870 AT (3.53602 AT (3.27953 AT (3.26003 AT (564700.0	00,	419200	00.00	,	76.00,	0	.00)	DC	NA
2N	D HIGHEST	VALUE	IS	3.53602 AT (564892.2	25,	41919	59.00	,	84.00,	0	.00)	DC	NA
3R	D HIGHEST	VALUE	IS	3.27953 AT (564941.8	38,	41919	57.00	,	90.00,	0	.00)	DC	NA
41	H HIGHEST	VALUE	IS	3.26003 AT (565800.0	00,	419120	00.00	,	100.00,	0	.00)	DC	NA
51	H HIGHEST	VALUE	IS	3.04483 AT (564991.8	31,	41919	75.00	,	93.00, 93.00, 81.00,	0	.00)	DC	NA
61	H HIGHEST	VALUE	IS	2.98473 AT (00,	419120	00.00	,	93.00,	0	.00)	DC	NA
71	H HIGHEST	VALUE	IS	2.98317 AT (564800.0	00,	41920	00.00	,	81.00,	0	.00)	DC	NA
81	H HIGHEST	VALUE	IS	2.97792 AT (565800.0	00,	41910	00.00	,	95.00,	0	.00)		NA
91	H HIGHEST	VALUE	IS	2.97363 AT (565000.0	00,	41920	00.00	,	98.00,	0	.00)	DC	NA
101	H HIGHEST	VALUE	IS	2.77403 AT (564698.5	50,	419190	08.75	,	72.00,	0	.00)	DC	NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

							NETWORK	
GROUP ID	AVERAGE CONC	RECEPTOR	(XR,	YR, ZELEV	ZFLAG)	OF TYPE	GRID-ID	

GROUP ID				AVERAGE CONC		REC	EPTOR (XR, Y	R, ZELEV, ZFLA	G) OF	TYPE	GRID-ID	
NEWLABS	1ST HIGHEST	VALUE	IS	1.40721 7	AT (564649.94,	4191752.00,	66.00,	0.00)	DC	NA	
	2ND HIGHEST	VALUE	IS	1.22284 P 1.18222 P 1.15929 P	AT (564842.69,	4191950.00,	83.00,	0.00)	DC	NA	
	3RD HIGHEST	VALUE	IS	1.18222 #	AT (564748.50,	4191916.75,	75.00,	0.00)	DC	NA	
	4TH HIGHEST	VALUE	IS	1.15929 7	AT (564892.25,	4191959.00,	84.00,	0.00)	DC	NA	
	5TH HIGHEST	VALUE	IS	1.11440 7	AT (564664.50,	4191903.50,	71.00,	0.00)	DC	NA	
	6TH HIGHEST	VALUE	IS	1.11327 #	AT (564645.94,	4191801.25,	66.00,	0.00)	DC	NA	
	7TH HIGHEST	VALUE			AT (564639.88,	4191852.00,	67.00,	0.00)	DC	NA	
	8TH HIGHEST		IS		AT (564648.62,	4191891.75,	68.00,	0.00)	DC	NA	
	9TH HIGHEST	VALUE	IS	1.08111 7	AT (564698.50,	4191908.75,	72.00,	0.00)	DC	NA	
1	OTH HIGHEST	VALUE	IS	1.07704 7	AT (564795.00,	4191930.25,	78.00,	0.00)	DC	NA	
AT.T. T.ARS	19T HIGHEST	WATHE	TQ	1.66586 2	ΔΤ (564842 69	/191950 OO	83 00	0 00)	DC	NA	
ADD_DADS	2ND UTCUEST	WALUE	TC	1.52469 7	Vu. (564992 25	4101050.00,	84.00,	0.00)	DC	NA	
				1.51437 /				66.00,			NA NA	
	4TH HIGHEST							75.00,			NA NA	
	5TH HIGHEST			1.35454 2				71.00,			NA NA	
	6TH HIGHEST			1.32243 /							NA NA	
	7TH HIGHEST			1 30911 2	ΔT (564795 00	4191930 25	78 00	0.00)	DC	NA NA	
	8TH HIGHEST			1.30911 A 1.30720 A 1.28749 A	ΔΤ (564800 00	4192000 00	81 00	0.00)	DC	NA	
	9TH HIGHEST			1 28749 7	ΔΤ (564900 00	4192000.00,	88 00	0.00)	DC	NA	
	OTH HIGHEST			1.28517 7	ΔT (564700.00,	4192000.00,	76.00	0.00)	DC	NA NA	
_	OIN NIONDOI	VIIIOD	10	1.200171	(301700.00,	1132000.00,	70.007	0.00)	DC	1421	
EXISTING	1ST HIGHEST	VALUE	IS	4.32794 7	AT (564700.00,	4192000.00,	76.00,	0.00)	DC	NA	
	2ND HIGHEST	VALUE	IS	4.02594 7	AT (564892.25,	4191959.00,	84.00,	0.00)	DC	NA	
	3RD HIGHEST	VALUE	IS	3.79466 1	AT (565800.00,	4191200.00,	100.00,	0.00)	DC	NA	
	4TH HIGHEST	VALUE	IS	3.77533 1	AT (564941.88,	4191967.00,	90.00,	0.00)	DC	NA	
	5TH HIGHEST	VALUE	IS	3.56674 A 3.50535 A	AT (564991.81,	4191975.00,	93.00,	0.00)	DC	NA	
	6TH HIGHEST	VALUE	IS	3.50535 A	AT (565000.00,	4192000.00,	98.00,	0.00)	DC	NA	
	7TH HIGHEST	VALUE	IS	3.50218 <i>I</i>	AT (566100.00,	4191400.00,	149.00,	0.00)	DC	NA	
	8TH HIGHEST	VALUE	IS	3.44352 7	AT (564800.00,		81.00,			NA	
	9TH HIGHEST	VALUE	IS	3.43255 7	AT (565700.00,	4191200.00,	93.00,	0.00)	DC	NA	
1	OTH HIGHEST	VALUE	IS	3.33136 1	AT (565800.00,	4191000.00,	95.00,	0.00)	DC	NA	

**

GROUP ID				AVERAGE CONC	1	RECEPTO	R (XR,	YR,	ZELEV,	ZFLAG)	OF	TYPE 	NETWORK GRID-ID	
NEWLAB A 1ST	HIGHEST	VALUE	IS	1.33750 AT (564649.9	4, 419	1752.00),	66.00,	. (0.00)	DC	NA	
- 2ND	HIGHEST	VALUE	IS	1.33750 AT (1.04195 AT (564645.9	4, 419	1801.25	5,	66.00,	. (0.00)	DC	NA	
3RD	HIGHEST	VALUE	IS	1.02431 AT (564639.8	8, 419	1852.00),	67.00,	. (0.00)	DC	NA	
4TH	HIGHEST	VALUE	IS	0.98343 AT (564648.62	2, 419	1891.75	5,	68.00,	. (0.00)	DC	NA	
5TH	HIGHEST	VALUE	IS	0.95956 AT (564664.50	0, 419	1903.50),	71.00,	. (0.00)	DC	NA	
6TH	HIGHEST	VALUE	IS	0.92777 AT (564748.50				75.00,				NA	
7TH	HIGHEST	VALUE	IS	0.89558 AT (564600.00				65.00,				NA	
8TH	HIGHEST	VALUE	IS	0.89260 AT (564698.50	0, 419	1908.75	5,	72.00,	. (0.00)	DC	NA	
9TH	HIGHEST	VALUE	IS	0.82366 AT (564600.00	0, 419	1900.00),	67.00,	. (0.00)	DC	NA	
10TH	HIGHEST	VALUE	IS	0.76571 AT (564842.6	9, 419	1950.00	,	83.00,	. (0.00)	DC	NA	
				0.37343 AT (NA	
2ND	HIGHEST	VALUE	IS	0.35155 AT (564941.8	8, 419	1967.00),	90.00,	. (0.00)	DC	NA	
3RD	HIGHEST	VALUE	IS	0.31040 AT (NA	
4TH	HIGHEST	VALUE	IS	0.27918 AT (564842.6	9, 419	1950.00),	83.00,	. (0.00)	DC	NA	
5TH	HIGHEST	VALUE	IS	0.24170 AT (NA	
6TH	HIGHEST	VALUE	IS	0.22282 AT (NA	
7TH	HIGHEST	VALUE	IS	0.21179 AT (0.00)	DC	NA	
	HIGHEST			0.20102 AT (0.00)	DC	NA	
				0.16811 AT (0.00)	DC	NA	
10TH	HIGHEST	VALUE	IS	0.16561 AT (565000.00	0, 419	2000.00	,	98.00,	. (0.00)	DC	NA	
NEWLAB_C 1ST	HIGHEST	VALUE	IS	0.14090 AT (565141.9	4, 419	1999.00),	97.00,	. (0.00)	DC	NA	
2ND	HIGHEST	VALUE	IS	0.13301 AT (565191.50	0, 419	2009.50),	97.00,	. (0.00)	DC	NA	
3RD	HIGHEST	VALUE	IS	0.11922 AT (565241.1	9, 419	2017.75	5,	102.00,	. (0.00)	DC	NA	
4TH	HIGHEST	VALUE	IS	0.11209 AT (565100.00	0, 419			107.00,		0.00)	DC	NA	
5TH	HIGHEST	VALUE	IS	0.10405 AT (565000.00	0, 419			111.00,		0.00)	DC	NA	
6TH	HIGHEST	VALUE	IS	0.10064 AT (565100.00	0. 419			96.00,		0.00)	DC	NA	
	HIGHEST		IS	በ 1በበ5በ ልጥ (565289 21	5 410	2025.50),	107.00,	. (0.00)	DC	NA	
	HIGHEST		IS	0.09758 AT (565090.8	1, 419	1991.50),	96.00,	. (0.00)	DC	NA	
9TH	HIGHEST	VALUE	IS	0.09758 AT (0.09039 AT (0.08691 AT (565000.00	0, 419	2000.00),	98.00,	. (0.00)	DC	NA	
10TH	HIGHEST	VALUE	IS	0.08691 AT (565339.8	8, 419	2034.25	,	108.00,	. (0.00)	DC	NA	

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP ID	AVERAG	E CONC	REC	EPTOR (XR, YR,	ZELEV, ZFLAG) OF	TYPE	NETWORK GRID-ID
NEWLAB_D 1ST HIGHEST VA	LUE IS	0 06819 AT (565475 12.	4192018 00.	118 00.	0.00)	DC	NA
2ND HIGHEST VA	LUE IS	0.06152 AT (565390.25,	4192042.25,	113.00,	0.00)	DC	NA
				4192039.50,				NA
				4192048.75,				NA
5TH HIGHEST VA				4192034.25,				NA
6TH HIGHEST VA	LUE IS	0.04373 AT (565400.00,	4192100.00,	116.00,	0.00)	DC	NA
7TH HIGHEST VA	LUE IS	0.04272 AT (565289.25,	4192025.50,	107.00,	0.00)	DC	NA
8TH HIGHEST VA	LUE IS	0.04011 AT (565500.00,	4192100.00,	126.00,	0.00)	DC	NA
9TH HIGHEST VA	LUE IS	0.03291 AT (565300.00,	4192100.00,	107.00,	0.00)	DC	NA
10TH HIGHEST VA	LUE IS	0.03244 AT (565241.19,	4192017.75,	102.00,	0.00)	DC	NA
NEWLAB_E 1ST HIGHEST VA								NA
				4191324.25,				NA
3RD HIGHEST VA	LUE IS	0.21991 AT (565226.19,	4191310.50,	81.00,	0.00)	DC	NA
4TH HIGHEST VA	LUE IS	0.21174 AT (565176.31,	4191303.25,	79.00,	0.00)	DC	NA
5TH HIGHEST VA	LUE IS	0.19729 AT (565276.06,	4191318.25,	82.00,	0.00)	DC	NA
				4191332.25,				
				4191300.00,				
8TH HIGHEST VA	LUE IS	0.17785 AT (565400.00,	4191300.00,	84.00,	0.00)	DC	NA
9TH HIGHEST VA	LUE IS	0.17385 AT (565127.75,	4191295.25,	77.00,	0.00)	DC	NA
9TH HIGHEST VA 10TH HIGHEST VA	LUE IS	0.17015 AT (565426.81,	4191338.75,	88.00,	0.00)	DC	NA
NEWLAB_F 1ST HIGHEST VA								NA
2ND HIGHEST VA	LUE IS	0.17067 AT (565626.50,	4191370.25,	95.00,	0.00)	DC	NA
3RD HIGHEST VA	LUE IS	0.16118 AT (565675.94,	4191381.00,	98.00,	0.00)	DC	NA
4TH HIGHEST VA	LUE IS	0.14232 AT (565726.62,	4191386.25,	100.00,	0.00)	DC	NA
5TH HIGHEST VA	LUE IS	0.12677 AT (565527.69,	4191354.50,	91.00,	0.00)	DC	NA
6TH HIGHEST VA	LUE IS	0.11756 AT (565776.88,	4191394.00,	103.00,	0.00)	DC	NA
7TH HIGHEST VA	LUE IS	0.11284 AT (565600.00,	4191300.00,	91.00,	0.00)	DC	NA
8TH HIGHEST VA	LUE IS	0.11137 AT (565426.81,	4191338.75,	88.00,	0.00)	DC	NA
9TH HIGHEST VA	LUE IS	0.11056 AT (565700.00,	4191300.00,	94.00,	0.00)	DC	NA
2ND HIGHEST VA 3RD HIGHEST VA 4TH HIGHEST VA 5TH HIGHEST VA 6TH HIGHEST VA 7TH HIGHEST VA 8TH HIGHEST VA 9TH HIGHEST VA 10TH HIGHEST VA	LUE IS	0.11015 AT (565476.12,	4191347.00,	90.00,	0.00)	DC	NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

GROUP ID		AVERA	GE CONC	_	REC	EPTOR (XI	R, YR,	ZELEV,	ZFLAG) OF	TYPE	NETWORK GRID-ID
NEWLAB G 1ST HI	GHEST VALUE	IS	0.03435 AT	(565856.12,	4191409.	75,	110.00,	0.00)	DC	NA
_	GHEST VALUE		0.03241 AT		565726.62,			100.00,			NA
3RD HI	GHEST VALUE	IS	0.03017 AT	(565776.88,	4191394.	00,	103.00,	0.00)	DC	NA
4TH HI	GHEST VALUE	IS	0.02612 AT	(565827.00,			108.00,		DC	NA
5TH HI	GHEST VALUE	IS	0.02481 AT	(565675.94,	4191381.	00,	98.00,	0.00)	DC	NA
6TH HI	GHEST VALUE	IS	0.02277 AT	(566000.00,	4191300.	00,	118.00,	0.00)	DC	NA
7TH HI	GHEST VALUE	IS	0.02258 AT	(566100.00,	4191400.	00,	149.00,	0.00)	DC	NA
8TH HI	GHEST VALUE	IS	0.01897 AT	(566100.00,	4191600.	00,	141.00,	0.00)	DC	NA
9тн ні	GHEST VALUE	IS	0.01788 AT	(565800.00,	4191300.	00,	103.00,	0.00)	DC	NA
10TH HI	GHEST VALUE	IS	0.01745 AT	(566000.00,	4191200.	00,	113.00,	0.00)	DC	NA
DAVISNEW 1ST HI	GHEST VALUE	IS	0.21809 AT	(565600.00,	4192100.	00,	140.00,	0.00)	DC	NA
2ND HI	GHEST VALUE	IS	0.17249 AT	(565700.00,	4192100.	00,	165.00,	0.00)	DC	NA
3RD HI	GHEST VALUE	IS	0.15086 AT	(565800.00,	4192000.	00,	178.00,	0.00)	DC	NA
4TH HI	GHEST VALUE	IS	0.13772 AT	(565600.00,	4192200.	00,	158.00,	0.00)	DC	NA
5TH HI	GHEST VALUE	IS	0.11977 AT	(565500.00,	4192100.	00,	126.00,	0.00)	DC	NA
6ТН НІ	GHEST VALUE	IS	0.11697 AT	(565900.00,	4192000.	00,	182.00,	0.00)	DC	NA
7TH HI	GHEST VALUE	IS	0.11321 AT	(565800.00,	4192100.	00,	198.00,	0.00)	DC	NA
8TH HI	GHEST VALUE	IS	0.10787 AT	(565500.00,	4192200.	00,	136.00,	0.00)	DC	NA
9TH HI	GHEST VALUE	IS	0.10063 AT	(565500.00,	4192300.	00,	149.00,	0.00)	DC	NA
10TH HI	IGHEST VALUE	IS	0.09787 AT	(565400.00,	4192300.	00,	131.00,	0.00)	DC	NA
STAN NEW 1ST HI	GHEST VALUE	IS	0.49597 AT	(565800.00,	4192000.	00,	178.00,	0.00)	DC	NA
- 2ND HI	GHEST VALUE	IS	0.34478 AT	(565900.00,	4192000.	00,	182.00,	0.00)	DC	NA
3RD HI	GHEST VALUE	IS	0.29831 AT	(565700.00,	4192100.	00,	165.00,	0.00)	DC	NA

4TH	HIGHEST	VALUE	IS	0.25143	ΑT	(565600.00,	4192200.00,	158.00,	0.00)	DC	NA
5TH	HIGHEST	VALUE	IS	0.21499	ΑT	(565600.00,	4192100.00,	140.00,	0.00)	DC	NA
6TH	HIGHEST	VALUE	IS	0.20564	ΑT	(565600.00,	4192300.00,	168.00,	0.00)	DC	NA
7TH	HIGHEST	VALUE	IS	0.20151	ΑT	(566000.00,	4192000.00,	224.00,	0.00)	DC	NA
8TH	HIGHEST	VALUE	IS	0.19904	ΑT	(566100.00,	4191900.00,	236.00,	0.00)	DC	NA
9TH	HIGHEST	VALUE	IS	0.19385	ΑT	(565800.00,	4192100.00,	198.00,	0.00)	DC	NA
10TH	HIGHEST	VALUE	IS	0.19172	AT	(565700.00,	4192200.00,	181.00,	0.00)	DC	NA

GROUP II	D 	: :	AVERAGE CONC	RECE	EPTOR (XR, YR,	ZELEV, ZFLAG) OF TYPE	NETWORK GRID-ID
NEWENG	1ST HIGHEST 2ND HIGHEST		0.58975 AT (0.50997 AT (4192018.00, 4192039.50,	118.00, 117.00,	0.00) DC 0.00) DC	NA NA
	3RD HIGHEST	VALUE IS	0.49285 AT (565438.25,	4192048.75,	117.00,	0.00) DC	NA
	4TH HIGHEST 5TH HIGHEST		0.39512 AT (0.36972 AT (,	4192100.00, 4191999.00,	107.00, 97.00,	0.00) DC 0.00) DC	NA NA
	6TH HIGHEST 7TH HIGHEST		0.35878 AT (0.32418 AT (· · · · · · · · · · · · · · · · · · ·	4192017.75, 4192100.00,	102.00, 116.00,	0.00) DC 0.00) DC	NA NA
	8TH HIGHEST 9TH HIGHEST	VALUE IS	0.30644 AT (565100.00,	4192000.00, 4191991.50,	96.00, 96.00,	0.00) DC 0.00) DC	NA NA
	10TH HIGHEST		0.30005 AT (565191.50,	4192009.50,	97.00,	0.00) DC	NA NA

*** ISCST3 - VERSION 02035 ***

*** UC Berkeley - 12/2003; vjh - Girton Hall Daycare Center

*** Model Executed on 02/06/04 at 10:55:08 ***

Input File - D:\Beest\UCBerk\10-03\Final\LRDP\LRDP-Can-Girton.DTA

Output File - D:\Beest\UCBerk\10-03\Final\LRDP\LRDP-Can-Girton.LST

 $\label{local_met2} \mbox{Met File - D:\Beest\UCBerk\10-03\mbox{\mbox{$\mbox{$met2$\lbl-97a.asc}}}} \\$

Number of sources - 142
Number of source groups - 7
Number of receptors - 1

*** POINT SOURCE DATA ***

	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	TEMP.	EXIT VEL.	DIAMETER	EXISTS	EMISSION RATE SCALAR VARY BY
MILOWIZI O	0	0.44700E-04	EC4704 4	4101700 0	66.0	21 70	202 15	7 10	0 10	VEC	
WHSTK1_8 NWAF9		0.44700E-04 0.60100E-03								YES YES	
NWAF9	0	0.60100E-03	564718.8	4191/91.2	66.8	29.57	293.15	7.12			
WHSTK10 MHSTK1	0	0.44700E-04 0.24000E-03	564724.4	4191826.0	74.0	7.61	293.13	17.25	0.34	YES YES	
MHSTKI	0	0.24000E-03	564794.4	4191/93.8	74.8	10.01	293.13	17.25	0.34	YES	
MHSTKZ	0	0.24000E-03 0.24000E-03 0.24000E-03	564798.0	4191843.0	74.8	10.89	293.13	17.25 17.25	0.29	YES	
MHSTKS	0	0.24000E-03	564794.1	4191843.0	74.8	15.61	293.13	17.25		YES	
MHSTK6	0	0.24000E-03	504000.9	4191/0/.2	74.0	10.01	293.13	17.25		YES	
MHSTK0 KHSTK1	0	0.24000E-03 0.33000E-02	564761 1	4191808.2	74.8	10.94	293.13	1 20	2.76	YES	
VHSIVI	0	0.33000E-02	564761.1	4191879.8	72.7	10.45	293.13	1.28	2.76	YES	
KHSTKZ	0	0.33000E-02	564739.4	4191891.8	72.7	10.45	293.13	1.28	2.76	YES	
VAMOUN	0	0.33000E-02 0.33000E-02 0.33000E-02 0.45600E-03 0.45600E-03	564732.4	4191077.3	72.7	10.43	293.13	1.20	2.70	YES	
NHSTN4	0	0.33000E-02	564/31.4	4191889.0	72.1	18.45	293.13	1.28	2.76	YES	
BHSIVI	0	0.45600E-03	564678.9	4191889.0	67.4	27.83	293.13	2.78	1.20	YES	
BHSTNZ	0	0.45600E-03	564675.0	4191896.8	67.4	29.68	293.15	2.78	1.26		
BHSTK3	0	0.45600E-03 0.45600E-03	564704.5	4191898.0	67.4	29.68	293.15	2.78	1.26 0.37	YES	
BHSTK4	0	0.45600E-03	564/0/.4	4191887.8	67.4	33.34	293.15	2.78	0.37	YES	
BHSTK5	0	0.45600E-03	564691.6	4191888.0	6/.4	33.34	293.15	2.78 3.97	0.37	YES	
		0.77100E-03								YES	
VLSBSTK2	0	0.77100E-03	564954.0	4191566.5	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK3	0	0.77100E-03 0.77100E-03	565051.3	4191594.8	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK4	0	0.77100E-03	565030.6	4191662.2	64.4	27.04	293.15	3.97	1.22	YES	
LSASTK1	0	0.16600E-02 0.16600E-02 0.16600E-02	564892.2	4191637.2	64.4	28.31	293.15	5.18 5.18	1.22	YES	
LSASTK2	0	0.16600E-02	564875.9	4191632.8	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK3	0	0.16600E-02	564907.6	4191580.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK4	0	0.16600E-02 0.16600E-02	564897.1	4191578.0	64.4	28.31	293.15	5 18	1 22	YES	
LSASTK5	0	0.16600E-02	564908.6	4191576.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK6	0	0.16600E-02 0.16600E-02	564899.1	4191573.5	64.4	28.31 28.31	293.15	5.18	1.22 0.30	YES	
							293.15	5.18	0.30	YES	
LEWHSTK1		0.63700E-03				12.80				YES	
LEWHSTK2		0.63700E-03				12.80				YES	
LEWHSTK3		0.63700E-03				12.80			0.36	YES	
LEWHSTK4		0.63700E-03				12.80	293.15	3.11	0.36 0.36	YES	
LEWHSTK5		0.63700E-03				12.80	293.15			YES	
LEWHSTK6		0.63700E-03				12.80			0.36	YES	
LEWHSTK7		0.63700E-03				12.80		3.11	0.36	YES	
LEWHSTK8		0.63700E-03							0.30	YES	
LEWHSTK9	0	0.63700E-03 0.27200E-02	565593.3	4191808.2	106.7	12.80	293.15	3.11 6.28	0.36	YES	
LATHSTK1	0	0.27200E-02	565555.1	4191799.2	104.6	42.37	293.15	6.28	0.34	YES	
LATHSTK2	0	0.27200E-02 0.27200E-02	565561.1	4191812.0	104.6	36.88	293.15	6.28	0.70	YES	
LATHSTK3	0	0.27200E-02	565531.6	4191800.2	104.6	36.88	293.15	6.28	0.48	YES	

SOURCE ID	NUMBER PART. CATS.	EMISSION RAT	E X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
LATHSTK4	0	0.27200E-02	565515.1	4191799.5	104.6	37.19	293.15	6.28	0.96	YES	
LATHSTK5	0	0.27200E-02	565539.7	4191794.2	104.6	42.37	293.15	6.28	0.70	YES	
LATHSTK6	0	0.27200E-02	565527.3	4191776.0	104.6	38.40	293.15	6.28	0.74	YES	
LATHSTK7	0	0.27200E-02	565544.9	4191781.5	104.6	38.40	293.15	6.28	0.31	YES	
LATHSTK8	0	0.27200E-02	565562.3	4191787.0	104.6	38.40	293.15	6.28	0.70	YES	
TANHSTKA	0	0.23500E-02	565492.1	4191793.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKB	0	0.23500E-02	565496.8	4191794.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKC	0	0.23500E-02	565494.1	4191787.2	100.6	39.32	293.15	2.94	1.69	YES	

TANHSTKD	0	0.23500E-02	565499.1 4191788.2	100.6	39.32	293.15	2.94	1.69	YES
HHSTKA	0	0.26000E-02	565540.8 4191749.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKB	0	0.26000E-02	565565.6 4191756.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKC	0	0.26000E-02	565576.8 4191717.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKD	0	0.26000E-02	565553.2 4191710.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKE	0	0.26000E-02	565543.4 4191746.5	103.6	20.12	293.15	4.15	0.81	YES
GHSTK1	0	0.36700E-03	565507.1 4191756.0	103.6	16.06	293.15	5.92	0.30	YES
GHSTK2	0	0.36700E-03	565510.6 4191744.8	103.6	16.06	293.15	5.92	0.25	YES
GHSTK3	0	0.36700E-03	565512.4 4191739.0	103.6	16.37	293.15	5.92	0.30	YES
GHSTK4	0	0.36700E-03	565514.7 4191737.8	103.6	15.91	293.15	5.92	0.31	YES
GHSTK5	0	0.36700E-03	565514.9 4191732.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK6	0	0.36700E-03	565500.2 4191755.2	103.6	16.12	293.15	5.92	0.30	YES
GHSTK7	0	0.36700E-03	565501.1 4191753.0	103.6	16.37	293.15	5.92	0.84	YES
GHSTK8	0	0.36700E-03	565503.7 4191744.2	103.6	16.00	293.15	5.92	0.30	YES
GHSTK9	0	0.36700E-03	565505.2 4191740.2	103.6	16.37	293.15	5.92	0.26	YES
GHSTK10	0	0.36700E-03	565506.9 4191735.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK11	0	0.36700E-03	565509.7 4191728.2	103.6	16.22	293.15	5.92	0.30	YES
GHSTK12	0	0.36700E-03	565509.0 4191725.5	103.6	16.06	293.15	5.92	0.30	YES
GHSTK13	0	0.36700E-03	565516.9 4191725.8	103.6	15.91	293.15	5.92	0.40	YES
CHSTK1	0	0.86900E-04	565393.9 4192008.8	110.3	26.85	293.15	2.00	1.00	YES
HESSTK1	0	0.73300E-03	565234.6 4191926.2	98.2	15.39	293.15	2.00	1.00	YES
HILSTK1	0	0.72100E-03	564874.6 4191815.0	80.4	14.96	293.15	2.00	1.00	YES
MULSTK1	0	0.53300E-05	564779.7 4191737.8	74.4	17.24	293.15	2.00	1.00	YES
WELSTK1	0	0.13600E-04	564933.7 4191795.2	81.7	5.89	293.15	2.00	1.00	YES
PRINTA	0	0.10400E-03	564584.7 4191553.2	60.0	8.91	293.15	2.70	0.84	YES
PRINTB	0	0.10400E-03	564614.4 4191520.8	60.0	8.91	293.15	2.70	0.84	YES
PRINTC	0	0.10400E-03	564643.1 4191525.5	60.0	8.91	293.15	2.70	0.60	YES
COGEN	0	0.97700E+00	564876.0 4191492.0	71.9	12.77	430.37	10.45	2.28	YES
BOILER#2	0	0.12440E-01	564863.6 4191499.5	71.9	8.80	522.82	7.97	1.52	YES
BOILER#3	0	0.47000E-01	564881.9 4191505.8	71.9	8.80	554.11	10.53	1.52	YES
BOILER#4	0	0.56800E-01	564885.8 4191495.8	71.9	8.80	566.65	12.63	1.52	YES
POURING	0	0.22400E-02	564847.8 4191467.0	70.1	14.94	293.15	4.62	0.56	YES

TD	CAMC		(MEDEDC)	(MEDEDC)	(MEDEDC)	(MEMEDC)	(DEC E)	/M/CEC)	(MEDEDC)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
ENC. CO	0	0 470415 00	ECEEC7 C	410100C E	0 F 1	4 57	000 27	146 01	0.13	NO	
ENG_62	0	0.47241E-02	564660 2	4191086.5	70.2	4.57	700.57	140.01	0.13		
ENG_03	0	0.23021E-02	504000.2	4191097.3	70.2	2.05	017 07	132.00	0.13 0.08	YES	
ENG_04	0	0.72330E-03	565452.9	4191087.0	98.Z	3.05	010.07	70 10	0.08	YES	
ENG_105	0	0.74200E-01	564939.1	4191437.8	72.6	4.57	010.90	70.10	0.23	YES	
ENG_100	0	0.622U3E-U1	564991.0	4191014.5	75.0	0.48	010.90	70.10	0.20	YES	
ENG_107	0	0.49776E-01	564767.4	4191900.8	70.2	7.62	010.90	70.10	0.18	YES	
ENG_100	0	0.49776E-01	565615 0	4191304.2	111 7	7.02	010.90	70.10	0.15	YES	
ENG_109	0	0.10396E-01	561655 0	4191801.2	111./	3.05	010.90	70.10	0.15	YES	
ENG_IIU	0	0.82838E-02	504055.9	4191874.5	70.0	4.57	010.96	70.10	0.10	YES	
ENG_III	0	0.23806E-01	565091.1	4191/5/.8	78.9	3.05	010.90	70.10	0.11	NO	
ENG_112	0	0.20714E-01	565542.8	4191208.2	85.7	3.05	010.93	70.10	0.10	NO	
ENG_113	0	0.20714E-01	505073.0	4191194.8	92.0	3.05	010.93	70.10	0.10	NO	
ENG_114	0	0.20714E-01	565601.4	4191014.2	01.4	3.05	010.93	70.10	0.10	NO	
ENG_113	0	0.20714E-01	565702.9	4190991.8	91.4	3.05	810.93	70.10	0.10	YES	
ENG_II/	0	0.20714E-01	565575.9	4191009.0	99.3	3.05	810.96	70.10	0.10		
ENG_118	0	0.98935E-UZ	564654.8	4191890.5	68.6	4.5/	810.96	70.10	0.13	YES	
ENG_119	0	0.14531E-01	564728.8	4191//1.0	70.5	4.5/	810.96	70.10	0.08	YES	
ENG_120	0	0.10450E-01	565318.0	4191422.5	86.1	3.05	810.96	70.10	0.08	YES	
ENG_121	0	0.10388E-01	565926.2	4191443.0	118.9	3.05	810.93	70.10	0.08	NO	
ENG_123	0	0.12800E-01	565259.4	4191652.8	88.3	3.05	810.96	70.10	0.08	YES	
ENG_125	0	0.41058E-02	564811.2	4191460.8	67.7	3.05	810.96	70.10	0.08	YES	
ENG_126	0	0.33143E-02	565137.9	4191441.5	//.6	0.00	810.96	70.10	0.08	YES	
ENG_128	0	0.41429E-02	565469.2	4191955.2	109.8	3.05	810.96	70.10	0.05	YES	
ENG_129	0	0.41429E-02	565383.1	4191/40.2	97.0	2.44	810.96	70.10	0.05	YES	
ENG_130	0	0.25692E-02	565533.3	4191713.5	98.9	2.44	815.40	134.54	0.08	YES	
ENG_131	0	0.72350E-03	564970.3	4191484.2	/1.3	1.83	817.07	58.47	0.08	YES	
ENG_132	0	0.72350E-03	564800.3	4191/81.8	/4.3	1.83	817.07	58.4/	0.08	YES	
E134_133	0	0.186/4E-01	565380.0	4191939.2	104.3	3.05	769.29	135.05	0.13	YES	
NEWLAB_A	0	0.53000E-01	564808.8	4191708.2	70.5	6.10	293.15	3.97	1.00	YES	
NEWLAB_B	0	0.10800E-01	565047.0	4191787.5	77.9	6.10	293.15	3.97	1.00	YES	
NEWLAB_C	0	0.59900E-02	565301.9	4191832.0	90.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_D	0	0.31900E-02	565490.2	4191861.5	106.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_E	0	0.85200E-02	565089.5	4191460.8	73.6	6.10	293.15	3.97	1.00	YES	
NEWLAB_F	0	0.67500E-02	565368.8	4191521.8	86.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_G	0	0.19400E-02	565641.7	4191569.5	102.4	6.10	293.15	3.97	1.00	YES	
ENG_STNL	0	U.69563E-02	565539.1	4191905.2	114.2	2.13	769.26	76.14	0.18	YES	
ENG_DVS	0	0.69563E-02	565364.1	4191990.5	109.8	2.13	769.26	76.14	0.18	YES	
ENG_MCCN	0	0.27825E-02	565176.4	4191928.8	93.8	2.13	810.93	59.08	0.13	YES	
ENG_SRB1	0	0.47241E-02 0.23621E-02 0.72350E-03 0.74200E-01 0.62205E-01 0.49776E-01 0.49776E-01 0.16596E-01 0.82858E-02 0.23806E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.1058E-02 0.41429E-02 0.41429E-02 0.41429E-02 0.41429E-02 0.25692E-02 0.72350E-03 0.72350E-03 0.72350E-03 0.18674E-01 0.59900E-02 0.31900E-02 0.31900E-02 0.69563E-02 0.69563E-02 0.69563E-02 0.27825E-02 0.27825E-02	564595.2	4191928.2	67.3	2.13	810.93	59.08	0.13	YES	

SOURCE ID	PART.	EMISSION RATE (GRAMS/SEC)	X (METERS)	(METERS)	(METERS)	HEIGHT (METERS)	TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	DIAMETER (METERS)	BUILDING EXISTS	EMISSION SCALAR BY	
	0	0.27825E-02 0.27825E-02	565510.9	4191488.8	94.8	2.13	810.93 810.93	59.08 59.08	0.13 0.13	YES NO		
ENG_UNT2	0	0.27825E-02	565647.0	4191033.2	88.8	2.13	810.93		0.13	NO		
ENG_UNT3 ENG116NU		0.27825E-02 0.58900E-02							0.13 0.15	NO NO		
NEWSTAN1		0.69300E-02							1.32	YES		
NEWSTAN2		0.69300E-02							1.32	YES		
NEWSTAN3		0.69300E-02							1.32	YES		
NEWSTAN4		0.69300E-02 0.69300E-02							1.32 1.32	YES YES		
NEWSTAN5 NEWSTAN6		0.69300E-02 0.69300E-02							1.32	YES		
NEWSTAN7	0	0.69300E-02	565542.0	4191901.0	112.9	41.90	293.15	17.25	1.32	YES		
NEWSTAN8	0	0.69300E-02	565540.3	4191905.8	112.9				1.32	YES		
NEWDAVS1	0	0.66300E-02	565340.6	4191981.0	108.9	33.79			1.63	YES		
NEWDAVS2 NEWDAVS3	0	0.66300E-02 0.66300E-02	565338.7	4191980.8	108.9	33.79	293.15	12.66	1.63	YES YES		
NEWDAVS3		0.66300E-02								YES		
				:	* VOLUME	SOURCE DAT	'A *					
	NUMBER	EMISSION RATE (GRAMS/SEC)	1		BASE	RELEASE	INIT.	INIT.	EMISSION	RATE		
SOURCE ID									SCALAR V	/ARY		
			(MEIERS)									
MHSTK5	0	0.24000E-03	564821.2	4191842.8	74.8	6.95	0.07	2.42				
PAINT2	0	0.31900E-03 0.31900E-03	565322.7	4191432.3	96.0	4.57	3.54	4.25				
PAINT3	0	0.31900E-03	565541.5	4191525.8	97.0	4.57	3.54	4.25				
PAINT4	0	0.31900E-03	564865.7	4191751.0	77.0	4.57	3.54	4.25				
				*** SOURCE	E IDs DEF	INING SOUF	RCE GROUP	S ***				
GROUP ID					SOU	RCE IDs						
ALL ,	WHSTKI_8,	, NWAF9 , WH	ISTKIU , M.	HSTKI , I	MHSTKZ ,	MHSTK3 ,	MHSTK4	, MHSTK5	, MHSTK6	, KHSTK	L , KHST	K2 , KHSTK3
LSASTK2 ,	KHSTK4 ,	, BHSTK1 , BH	ISTK2 , B	HSTK3 , I	BHSTK4 ,	BHSTK5 ,	VLSBSTK	1, VLSBSTK	2, VLSBSTI	K3, VLSBS1	rk4, LSAS	TK1 ,
LEWHSTK7,	LSASTK3 ,	, LSASTK4 , LS	SASTK5 , L	SASTK6 , 1	LSASTK7 ,	LEWHSTK1,	LEWHSTK	2, LEWHSTK	3, LEWHST	(4, LEWHS)	rk5, LEWH	STK6,
TANHSTKB,	LEWHSTK8,	, LEWHSTK9, LA	ATHSTK1, L	ATHSTK2, 1	LATHSTK3,	LATHSTK4,	LATHSTK	5, LATHSTK	6, LATHSTI	K7, LATHS1	rk8, TANH	STKA,
,	TANHSTKC,	, TANHSTKD, HE	ISTKA , H	HSTKB , I	HHSTKC ,	HHSTKD ,	HHSTKE	, GHSTK1	, GHSTK2	, GHSTK3	3 , GHST	K4 , GHSTK5
MULSTK1 ,	GHSTK6 ,	, GHSTK7 , GF	ISTK8 , G	HSTK9 , (GHSTK10 ,	GHSTK11 ,	GHSTK12	, GHSTK13	, CHSTK1	, HESSTE	K1 , HILS	TK1 ,
,	WELSTK1 ,	, PRINTA , PF	RINTB , P	RINTC , (COGEN ,	BOILER#2,	BOILER#	3, BOILER#	4, POURING	G , PAINT1	L , PAIN	T2 , PAINT3
ENG_112 ,	PAINT4 ,	, ENG_62 , EN	IG_63 , E	NG_64 , I	ENG_105 ,	ENG_106 ,	ENG_107	, ENG_108	, ENG_109	, ENG_11	LO , ENG_	111 ,
ENG_128 ,	ENG_113 ,	, ENG_114 , EN	IG_115 , E	NG_117 , F	ENG_118 ,	ENG_119 ,	ENG_120	, ENG_121	, ENG_123	B , ENG_12	25 , ENG_	126 ,
NEWLAB_G,	ENG_129 ,	. ENG_130 , EN	IG_131 , E	NG_132 , E	E134_133,	NEWLAB_A,	NEWLAB_	B, NEWLAB_	C, NEWLAB	_D, NEWLA	B_E, NEWL	AB_F,

```
ENG STNL, ENG DVS , ENG MCCN, ENG SRB1, ENGNULAB, ENGMUSIC, ENG UNT1, ENG UNT2, ENG UNT3, ENG116NU, NEWSTAN1,
NEWSTAN2,
           NEWSTAN3, NEWSTAN4, NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
           ENG 62 , ENG 63 , ENG 64 , ENG 105 , ENG 106 , ENG 107 , ENG 108 , ENG 109 , ENG 110 , ENG 111 , ENG 112 ,
 GEN
ENG 113 ,
           ENG 114 , ENG 115 , ENG 117 , ENG 118 , ENG 119 , ENG 120 , ENG 121 , ENG 123 , ENG 125 , ENG 126 , ENG 128 ,
ENG 129 ,
           ENG_130 , ENG_131 , ENG_132 , E134_133, ENG_STNL, ENG_DVS , ENG_MCCN, ENG_SRB1, ENGNULAB, ENGMUSIC, ENG_UNT1,
ENG_UNT2,
           ENG UNT3, ENG116NU,
 LABS
           WHSTK1_8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
                                          *** SOURCE IDs DEFINING SOURCE GROUPS ***
GROUP ID
                                                         SOURCE IDs
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
           WELSTK1 , NEWLAB A, NEWLAB B, NEWLAB C, NEWLAB D, NEWLAB E, NEWLAB F, NEWLAB G, NEWSTAN1, NEWSTAN2, NEWSTAN3,
NEWSTAN4,
           NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
 COMBUST
           COGEN , BOILER#2, BOILER#3, BOILER#4,
           PRINTA , PRINTB , PRINTC , POURING , PAINT1 , PAINT2 , PAINT3 , PAINT4 ,
 OTHER
 BOILERS BOILER#2, BOILER#3, BOILER#4,
 COGEN
           COGEN
```

GROUP ID					AVERAGE C	ONC			REC	EPTOR (XI	R, YR,	ZELEV,	ZFLAG)	OF	TYPE	NETWORK GRID-ID	
ALL	ST HIGH	EST	VALUE	IS	5.2	2741	AТ	(565700.06,	4191711.2	25,	109.42	, 0.	.00)	DC	NA	
2	ND HIGH	EST	VALUE	IS	0.0	0000	ΑT	(0.00,	0.0	00,	0.00	. 0.	.00)			
3	RD HIGH	EST	VALUE	IS	0.0	0000	ΑT	(0.00,	0.0	00,	0.00,	, 0.	.00)			
4	TH HIGH	EST	VALUE	IS	0.0	0000	ΑT	(0.00,	0.0	00,	0.00,	, 0.	.00)			
	TH HIGH	EST	VALUE	IS	0.0	0000	ΑT	(0.00,	0.0	00,	0.00,	, 0.	.00)			
	TH HIGH	EST	VALUE	IS	0.0	0000	ΑT	(0.00,	0.0	00,	0.00,	, 0.	.00)			
	TH HIGH	EST	VALUE	IS	0.0	0000	ΑT	(0.00,	0.0	00,	0.00,	, 0.	.00)			
8	TH HIGH	EST	VALUE	IS	0.0	0000	ΑT	(0.00,	0.0	00,	0.00,	, 0.	.00)			
9	TH HIGH	EST	VALUE	IS	0.0	0000	ΑT	(0.00,	0.0	00,	0.00,	, 0.	.00)			
10	TH HIGH	EST	VALUE	IS	0.0	0000	ΑT	(0.00,	0.0	00,	0.00,	, 0.	.00)			

3.18407 AT (565700.06, 4191711.25, 109.42, 0.00) DC 0.00000 AT (0.00, 0.00, 0.00, 0.00, 0.00) GEN 1ST HIGHEST VALUE IS NA 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 0.00, 0.00, 0.00000 AT (0.00, 0.00, 0.00, 0.00, 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 0.00, 0.00) 0.00, 0.00, 0.00, 0.00, 0.00, 7TH HIGHEST VALUE IS 0.00) 8TH HIGHEST VALUE IS 0.00) 0.00, 9TH HIGHEST VALUE IS 0.00) 10TH HIGHEST VALUE IS 0.00) 1.61721 AT (565700.06, 4191711.25, 109.42, 0.00000 AT (0.00, 0.0 565700.06, 4191711.25, 0.00, LABS 1ST HIGHEST VALUE IS 0.00) DC 109.42, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, NA 2ND HIGHEST VALUE IS 0.00) 3RD HIGHEST VALUE IS 0.00) 0.00000 AT (0.00, 4TH HIGHEST VALUE IS 0.00) 5TH HIGHEST VALUE IS 0.00) 6TH HIGHEST VALUE IS 0.00) 7TH HIGHEST VALUE IS 0.00) 8TH HIGHEST VALUE IS 0.00) 9TH HIGHEST VALUE IS 0.00) 10TH HIGHEST VALUE IS 0.00)

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

NETWORK AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID 0.40636 AT (565700.06, 4191711.25, 109.42, 0.00000 AT (0.00, COMBUST 1ST HIGHEST VALUE IS 0.00) DC 0.00) 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 0.00) 4TH HIGHEST VALUE IS 0.00) 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 0.00) 7TH HIGHEST VALUE IS 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS 0.00) 0.02052 AT (565700.06, 4191711.25, 109.42, 0.00000 AT (0.00, 0.0 1ST HIGHEST VALUE IS 109.42, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) DC 0.00000 AT (0.00, 0.00, 0.0000 AT (0.000 2ND HIGHEST VALUE IS 0.00) 3RD HIGHEST VALUE IS 0.00) 0.00000 AT (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 4TH HIGHEST VALUE IS 0.00) 5TH HIGHEST VALUE IS 0.00) 6TH HIGHEST VALUE IS 7TH HIGHEST VALUE IS 0.00) 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.07603 AT (565700.06, 4191711.25, 109.42, 0.00000 AT (0.00, 0.00, 0.00, BOILERS 1ST HIGHEST VALUE IS 0.00) DC 109.42, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2ND HIGHEST VALUE IS 0.00000 AT (0.00) 0.00, 3RD HIGHEST VALUE IS 0.00000 AT (0.00, 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 0.00, 0.00, 6TH HIGHEST VALUE IS 7TH HIGHEST VALUE IS 0.00, 8TH HIGHEST VALUE IS 0.00, 0.00) 9TH HIGHEST VALUE IS 0.00, 0.00) 0.00000 AT (10TH HIGHEST VALUE IS 0.00.

*** THE SUMMARY OF MAXIMUM PERIOD ($8760\ \mathrm{HRS})$ RESULTS ***

GROUP II	D 		AVERAGE CONC		REC	CEPTOR (XR,	YR, ZELEV,	ZFLAG) OF	TYPE 	NETWORK GRID-ID	
COGEN	1ST HIGHEST 2ND HIGHEST 3RD HIGHEST 4TH HIGHEST	VALUE IS	0.00000	AT (AT (565700.06, 0.00, 0.00, 0.00,	4191711.25, 0.00, 0.00, 0.00,	0.00,	0.00)	DC	NA	

5TH	HIGHEST	VALUE	IS	0.00000	AT	(0.00,	0.00,	0.00,	0.00)
6TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)
7TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)
8TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)
9TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)
10TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)

```
*** ISCST3 - VERSION 02035 ***

*** UC Berkeley - 12/2003; vjh - MEI

*** Model Executed on 02/06/04 at 10:55:17 ***
```

Input File - D:\Beest\UCBerk\10-03\Final\LRDP\LRDP-Can-MEI.DTA

Output File - D:\Beest\UCBerk\10-03\Final\LRDP\LRDP-Can-MEI.LST

 $\label{local_met2} \mbox{Met File - D:\Beest\UCBerk\10-03\mbox{\mbox{$\mbox{$met2$\lbl-97a.asc}}}} \\$

Number of sources - 142
Number of source groups - 6
Number of receptors - 1

*** POINT SOURCE DATA ***

SOURCE ID		EMISSION RATE (GRAMS/SEC)	X	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)			STACK DIAMETER (METERS)		EMISSION RATE SCALAR VARY BY
WHSTK1 8	0	0.44700E-04	564704 4	4191782 8	66.8	31.70	293.15	7.12	0.19	YES	
NWAF9		0.60100E-03				29.57	293.15		0.74	YES	
WHSTK10		0.44700E-04				8.60	293.15	7.12	0.74	YES	
MHSTK1		0.24000E-03				7.61	293.15	17.25	0.34	YES	
MHSTK2		0.24000E-03			74.8	10.89	293.15	17.25	0.29	YES	
MHSTK3		0.24000E-03			74.8	10.89	293.15	17.25	0.48	YES	
MHSTK4		0.24000E-03				15.61	293.15	17.25	0.33	YES	
MHSTK6		0.24000E-03			74.8	10.94	293.15	17.25	0.34	YES	
KHSTK1	0	0.33000E-02			72.7		293.15	1.28	2.76	YES	
KHSTK2		0.33000E-02			72.7	18.45	293.15	1.28	2.76	YES	
KHSTK3		0.33000E-02			72.7	18.45	293.15	1.28	2.76	YES	
KHSTK4		0.33000E-02			72.7	18.45	293.15	1.28	2.76	YES	
BHSTK1	0	0.45600E-03			67.4	27.85	293.15	2.78	1.26	YES	
BHSTK2		0.45600E-03				29.68	293.15	2.78	1.26	YES	
BHSTK3		0.45600E-03				29.68	293.15	2.78	1.26	YES	
BHSTK4		0.45600E-03				33.34	293.15	2.78	0.37	YES	
BHSTK5		0.45600E-03				33.34	293.15	2.78	0.37	YES	
VLSBSTK1		0.43600E-03			64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK1 VLSBSTK2	0	0.77100E-03				27.04	293.15	3.97	1.22	YES	
VLSBSTK3		0.77100E-03				27.04	293.15	3.97	1.22	YES	
VLSBSTK4		0.77100E-03				27.04	293.15		1.22	YES	
LSASTK1		0.77100E-03 0.16600E-02				28.31	293.15	5.18	1.22	YES	
LSASTK1 LSASTK2		0.16600E-02				28.31	293.15	5.18	1.22	YES	
		0.16600E-02				28.31	293.15		1.22	YES	
LSASTK3 LSASTK4		0.16600E-02				28.31	293.15	5.18	1.22	YES	
LSASTK4 LSASTK5		0.16600E-02				28.31	293.15	5.18	1.22	YES	
LSASTK5 LSASTK6		0.16600E-02				28.31	293.15	5.18	1.22	YES	
LSASTK7		0.16600E-02				28.31	293.15		0.30	YES	
		0.63700E-03				12.80		3.11	0.36		
LEWHSTK1		0.63700E-03				12.80	293.15	3.11	0.36	YES	
LEWHSTK2	0	0.63700E-03				12.80	293.15 293.15	3.11	0.36	YES YES	
LEWHSTK3		0.63700E-03				12.80	293.15	3.11	0.36	YES	
LEWHSTK4		0.63700E-03				12.80	293.15	3.11	0.36		
LEWHSTK5						12.80		3.11	0.36	YES	
LEWHSTK6		0.63700E-03					293.15			YES	
LEWHSTK7	0	0.63700E-03				12.80	293.15	3.11	0.36	YES	
LEWHSTK8		0.63700E-03				12.80	293.15	3.11	0.30	YES	
LEWHSTK9		0.63700E-03				12.80	293.15	3.11	0.36	YES	
LATHSTK1		0.27200E-02				42.37	293.15	6.28	0.34	YES	
LATHSTK2		0.27200E-02					293.15		0.70	YES	
LATHSTK3	U	0.27200E-02	365531.6	4191800.2	104.6	36.88	293.15	6.28	0.48	YES	

SOURCE ID	NUMBER PART. CATS.	EMISSION RAT	E X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
LATHSTK4	0	0.27200E-02	565515.1	4191799.5	104.6	37.19	293.15	6.28	0.96	YES	
LATHSTK5	0	0.27200E-02	565539.7	4191794.2	104.6	42.37	293.15	6.28	0.70	YES	
LATHSTK6	0	0.27200E-02	565527.3	4191776.0	104.6	38.40	293.15	6.28	0.74	YES	
LATHSTK7	0	0.27200E-02	565544.9	4191781.5	104.6	38.40	293.15	6.28	0.31	YES	
LATHSTK8	0	0.27200E-02	565562.3	4191787.0	104.6	38.40	293.15	6.28	0.70	YES	
TANHSTKA	0	0.23500E-02	565492.1	4191793.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKB	0	0.23500E-02	565496.8	4191794.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKC	0	0.23500E-02	565494.1	4191787.2	100.6	39.32	293.15	2.94	1.69	YES	

TANHSTKD	0	0.23500E-02	565499.1 4191788.2	100.6	39.32	293.15	2.94	1.69	YES
HHSTKA	0	0.26000E-02	565540.8 4191749.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKB	0	0.26000E-02	565565.6 4191756.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKC	0	0.26000E-02	565576.8 4191717.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKD	0	0.26000E-02	565553.2 4191710.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKE	0	0.26000E-02	565543.4 4191746.5	103.6	20.12	293.15	4.15	0.81	YES
GHSTK1	0	0.36700E-03	565507.1 4191756.0	103.6	16.06	293.15	5.92	0.30	YES
GHSTK2	0	0.36700E-03	565510.6 4191744.8	103.6	16.06	293.15	5.92	0.25	YES
GHSTK3	0	0.36700E-03	565512.4 4191739.0	103.6	16.37	293.15	5.92	0.30	YES
GHSTK4	0	0.36700E-03	565514.7 4191737.8	103.6	15.91	293.15	5.92	0.31	YES
GHSTK5	0	0.36700E-03	565514.9 4191732.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK6	0	0.36700E-03	565500.2 4191755.2	103.6	16.12	293.15	5.92	0.30	YES
GHSTK7	0	0.36700E-03	565501.1 4191753.0	103.6	16.37	293.15	5.92	0.84	YES
GHSTK8	0	0.36700E-03	565503.7 4191744.2	103.6	16.00	293.15	5.92	0.30	YES
GHSTK9	0	0.36700E-03	565505.2 4191740.2	103.6	16.37	293.15	5.92	0.26	YES
GHSTK10	0	0.36700E-03	565506.9 4191735.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK11	0	0.36700E-03	565509.7 4191728.2	103.6	16.22	293.15	5.92	0.30	YES
GHSTK12	0	0.36700E-03	565509.0 4191725.5	103.6	16.06	293.15	5.92	0.30	YES
GHSTK13	0	0.36700E-03	565516.9 4191725.8	103.6	15.91	293.15	5.92	0.40	YES
CHSTK1	0	0.86900E-04	565393.9 4192008.8	110.3	26.85	293.15	2.00	1.00	YES
HESSTK1	0	0.73300E-03	565234.6 4191926.2	98.2	15.39	293.15	2.00	1.00	YES
HILSTK1	0	0.72100E-03	564874.6 4191815.0	80.4	14.96	293.15	2.00	1.00	YES
MULSTK1	0	0.53300E-05	564779.7 4191737.8	74.4	17.24	293.15	2.00	1.00	YES
WELSTK1	0	0.13600E-04	564933.7 4191795.2	81.7	5.89	293.15	2.00	1.00	YES
PRINTA	0	0.10400E-03	564584.7 4191553.2	60.0	8.91	293.15	2.70	0.84	YES
PRINTB	0	0.10400E-03	564614.4 4191520.8	60.0	8.91	293.15	2.70	0.84	YES
PRINTC	0	0.10400E-03	564643.1 4191525.5	60.0	8.91	293.15	2.70	0.60	YES
COGEN	0	0.97700E+00	564876.0 4191492.0	71.9	12.77	430.37	10.45	2.28	YES
BOILER#2	0	0.12440E-01	564863.6 4191499.5	71.9	8.80	522.82	7.97	1.52	YES
BOILER#3	0	0.47000E-01	564881.9 4191505.8	71.9	8.80	554.11	10.53	1.52	YES
BOILER#4	0	0.56800E-01	564885.8 4191495.8	71.9	8.80	566.65	12.63	1.52	YES
POURING	0	0.22400E-02	564847.8 4191467.0	70.1	14.94	293.15	4.62	0.56	YES

TD	CAMC		(MEDEDC)	(MEDEDC)	(MEDEDC)	(MEMEDC)	(DEC E)	/M/CEC)	(MEDEDC)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
ENC. CO	0	0 470415 00	ECEEC7 C	410100C E	0 F 1	4 57	000 27	146 01	0.13	NO	
ENG_62	0	0.47241E-02	564660 2	4191086.5	70.2	4.57	700.57	140.01	0.13		
ENG_03	0	0.23021E-02	504000.2	4191097.3	70.2	2.05	017 07	132.00	0.13 0.08	YES	
ENG_04	0	0.72330E-03	565452.9	4191087.0	98.Z	3.05	010.07	70 10	0.08	YES	
ENG_105	0	0.74200E-01	564939.1	4191437.8	72.6	4.57	010.90	70.10	0.23	YES	
ENG_100	0	0.622U3E-U1	564991.0	4191014.5	75.0	0.48	010.90	70.10	0.20	YES	
ENG_107	0	0.49776E-01	564767.4	4191900.8	70.2	7.62	010.90	70.10	0.18	YES	
ENG_100	0	0.49776E-01	565615 0	4191304.2	111 7	7.02	010.90	70.10	0.15	YES	
ENG_109	0	0.10396E-01	561655 0	4191801.2	111./	3.05	010.90	70.10	0.15	YES	
ENG_IIU	0	0.82838E-02	504055.9	4191874.5	70.0	4.57	010.96	70.10	0.10	YES	
ENG_III	0	0.23806E-01	565091.1	4191/5/.8	78.9	3.05	010.90	70.10	0.11	NO	
ENG_112	0	0.20714E-01	565542.8	4191208.2	85.7	3.05	010.93	70.10	0.10	NO	
ENG_113	0	0.20714E-01	505073.0	4191194.8	92.0	3.05	010.93	70.10	0.10	NO	
ENG_114	0	0.20714E-01	565601.4	4191014.2	01.4	3.05	010.93	70.10	0.10	NO	
ENG_113	0	0.20714E-01	565702.9	4190991.8	91.4	3.05	810.93	70.10	0.10	YES	
ENG_II/	0	0.20714E-01	565575.9	4191009.0	99.3	3.05	810.96	70.10	0.10		
ENG_118	0	0.98935E-UZ	564654.8	4191890.5	68.6	4.5/	810.96	70.10	0.13	YES	
ENG_119	0	0.14531E-01	564728.8	4191//1.0	70.5	4.5/	810.96	70.10	0.08	YES	
ENG_120	0	0.10450E-01	565318.0	4191422.5	86.1	3.05	810.96	70.10	0.08	YES	
ENG_121	0	0.10388E-01	565926.2	4191443.0	118.9	3.05	810.93	70.10	0.08	NO	
ENG_123	0	0.12800E-01	565259.4	4191652.8	88.3	3.05	810.96	70.10	0.08	YES	
ENG_125	0	0.41058E-02	564811.2	4191460.8	67.7	3.05	810.96	70.10	0.08	YES	
ENG_126	0	0.33143E-02	565137.9	4191441.5	//.6	0.00	810.96	70.10	0.08	YES	
ENG_128	0	0.41429E-02	565469.2	4191955.2	109.8	3.05	810.96	70.10	0.05	YES	
ENG_129	0	0.41429E-02	565383.1	4191/40.2	97.0	2.44	810.96	70.10	0.05	YES	
ENG_130	0	0.25692E-02	565533.3	4191713.5	98.9	2.44	815.40	134.54	0.08	YES	
ENG_131	0	0.72350E-03	564970.3	4191484.2	/1.3	1.83	817.07	58.47	0.08	YES	
ENG_132	0	0.72350E-03	564800.3	4191/81.8	/4.3	1.83	817.07	58.4/	0.08	YES	
E134_133	0	0.186/4E-01	565380.0	4191939.2	104.3	3.05	769.29	135.05	0.13	YES	
NEWLAB_A	0	0.53000E-01	564808.8	4191708.2	70.5	6.10	293.15	3.97	1.00	YES	
NEWLAB_B	0	0.10800E-01	565047.0	4191787.5	77.9	6.10	293.15	3.97	1.00	YES	
NEWLAB_C	0	0.59900E-02	565301.9	4191832.0	90.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_D	0	0.31900E-02	565490.2	4191861.5	106.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_E	0	0.85200E-02	565089.5	4191460.8	73.6	6.10	293.15	3.97	1.00	YES	
NEWLAB_F	0	0.67500E-02	565368.8	4191521.8	86.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_G	0	0.19400E-02	565641.7	4191569.5	102.4	6.10	293.15	3.97	1.00	YES	
ENG_STNL	0	U.69563E-02	565539.1	4191905.2	114.2	2.13	769.26	76.14	0.18	YES	
ENG_DVS	0	0.69563E-02	565364.1	4191990.5	109.8	2.13	769.26	76.14	0.18	YES	
ENG_MCCN	0	0.27825E-02	565176.4	4191928.8	93.8	2.13	810.93	59.08	0.13	YES	
ENG_SRB1	0	0.47241E-02 0.23621E-02 0.72350E-03 0.74200E-01 0.62205E-01 0.49776E-01 0.49776E-01 0.16596E-01 0.82858E-02 0.23806E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.1058E-02 0.41429E-02 0.41429E-02 0.41429E-02 0.41429E-02 0.25692E-02 0.72350E-03 0.72350E-03 0.72350E-03 0.18674E-01 0.59900E-02 0.31900E-02 0.31900E-02 0.69563E-02 0.69563E-02 0.69563E-02 0.27825E-02 0.27825E-02	564595.2	4191928.2	67.3	2.13	810.93	59.08	0.13	YES	

SOURCE ID	PART.	EMISSION RATE (GRAMS/SEC)	X (METERS)	(METERS)	(METERS)	HEIGHT (METERS)	TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	DIAMETER (METERS)	BUILDING EXISTS	EMISSION SCALAR BY	
	0	0.27825E-02 0.27825E-02	565510.9	4191488.8	94.8	2.13	810.93 810.93	59.08 59.08	0.13 0.13	YES NO		
ENG_UNT2	0	0.27825E-02	565647.0	4191033.2	88.8	2.13	810.93		0.13	NO		
ENG_UNT3 ENG116NU		0.27825E-02 0.58900E-02							0.13 0.15	NO NO		
NEWSTAN1		0.69300E-02							1.32	YES		
NEWSTAN2		0.69300E-02							1.32	YES		
NEWSTAN3		0.69300E-02							1.32	YES		
NEWSTAN4		0.69300E-02 0.69300E-02							1.32 1.32	YES YES		
NEWSTAN5 NEWSTAN6		0.69300E-02 0.69300E-02							1.32	YES		
NEWSTAN7	0	0.69300E-02	565542.0	4191901.0	112.9	41.90	293.15	17.25	1.32	YES		
NEWSTAN8	0	0.69300E-02	565540.3	4191905.8	112.9				1.32	YES		
NEWDAVS1	0	0.66300E-02	565340.6	4191981.0	108.9	33.79			1.63	YES		
NEWDAVS2 NEWDAVS3	0	0.66300E-02 0.66300E-02	565338.7	4191980.8	108.9	33.79	293.15	12.66	1.63	YES YES		
NEWDAVS3		0.66300E-02								YES		
				:	* VOLUME	SOURCE DAT	'A *					
	NUMBER	EMISSION RATE (GRAMS/SEC)	1		BASE	RELEASE	INIT.	INIT.	EMISSION	RATE		
SOURCE ID									SCALAR V	/ARY		
			(MEIERS)									
MHSTK5	0	0.24000E-03	564821.2	4191842.8	74.8	6.95	0.07	2.42				
PAINT2	0	0.31900E-03 0.31900E-03	565322.7	4191432.3	96.0	4.57	3.54	4.25				
PAINT3	0	0.31900E-03	565541.5	4191525.8	97.0	4.57	3.54	4.25				
PAINT4	0	0.31900E-03	564865.7	4191751.0	77.0	4.57	3.54	4.25				
				*** SOURCE	E IDs DEF	INING SOUF	RCE GROUP	S ***				
GROUP ID					SOU	RCE IDs						
ALL ,	WHSTKI_8,	, NWAF9 , WH	ISTKIU , M.	HSTKI , I	MHSTKZ ,	MHSTK3 ,	MHSTK4	, MHSTK5	, MHSTK6	, KHSTK	L , KHST	K2 , KHSTK3
LSASTK2 ,	KHSTK4 ,	, BHSTK1 , BH	ISTK2 , B	HSTK3 , I	BHSTK4 ,	BHSTK5 ,	VLSBSTK	1, VLSBSTK	2, VLSBSTI	K3, VLSBS1	rk4, LSAS	TK1 ,
LEWHSTK7,	LSASTK3 ,	, LSASTK4 , LS	SASTK5 , L	SASTK6 , 1	LSASTK7 ,	LEWHSTK1,	LEWHSTK	2, LEWHSTK	3, LEWHST	(4, LEWHS)	rk5, LEWH	STK6,
TANHSTKB,	LEWHSTK8,	, LEWHSTK9, LA	ATHSTK1, L	ATHSTK2, 1	LATHSTK3,	LATHSTK4,	LATHSTK	5, LATHSTK	6, LATHSTI	K7, LATHS1	rk8, TANH	STKA,
,	TANHSTKC,	, TANHSTKD, HE	ISTKA , H	HSTKB , I	HHSTKC ,	HHSTKD ,	HHSTKE	, GHSTK1	, GHSTK2	, GHSTK3	3 , GHST	K4 , GHSTK5
MULSTK1 ,	GHSTK6 ,	, GHSTK7 , GF	ISTK8 , G	HSTK9 , (GHSTK10 ,	GHSTK11 ,	GHSTK12	, GHSTK13	, CHSTK1	, HESSTE	K1 , HILS	TK1 ,
,	WELSTK1 ,	, PRINTA , PF	RINTB , P	RINTC , (COGEN ,	BOILER#2,	BOILER#	3, BOILER#	4, POURING	G , PAINT1	L , PAIN	T2 , PAINT3
ENG_112 ,	PAINT4 ,	, ENG_62 , EN	IG_63 , E	NG_64 , I	ENG_105 ,	ENG_106 ,	ENG_107	, ENG_108	, ENG_109	, ENG_11	LO , ENG_	111 ,
ENG_128 ,	ENG_113 ,	, ENG_114 , EN	IG_115 , E	NG_117 , F	ENG_118 ,	ENG_119 ,	ENG_120	, ENG_121	, ENG_123	B , ENG_12	25 , ENG_	126 ,
NEWLAB_G,	ENG_129 ,	. ENG_130 , EN	IG_131 , E	NG_132 , E	E134_133,	NEWLAB_A,	NEWLAB_	B, NEWLAB_	C, NEWLAB	_D, NEWLA	B_E, NEWL	AB_F,

```
ENG STNL, ENG DVS , ENG MCCN, ENG SRB1, ENGNULAB, ENGMUSIC, ENG UNT1, ENG UNT2, ENG UNT3, ENG116NU, NEWSTAN1,
NEWSTAN2,
           NEWSTAN3, NEWSTAN4, NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
           ENG 62 , ENG 63 , ENG 64 , ENG 105 , ENG 106 , ENG 107 , ENG 108 , ENG 109 , ENG 110 , ENG 111 , ENG 112 ,
 GEN
ENG 113 ,
           ENG 114 , ENG 115 , ENG 117 , ENG 118 , ENG 119 , ENG 120 , ENG 121 , ENG 123 , ENG 125 , ENG 126 , ENG 128 ,
ENG 129 ,
           ENG_130 , ENG_131 , ENG_132 , E134_133, ENG_STNL, ENG_DVS , ENG_MCCN, ENG_SRB1, ENGNULAB, ENGMUSIC, ENG_UNT1,
ENG_UNT2,
           ENG UNT3, ENG116NU,
 LABS
           WHSTK1_8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
                                          *** SOURCE IDs DEFINING SOURCE GROUPS ***
GROUP ID
                                                         SOURCE IDs
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
           WELSTK1 , NEWLAB A, NEWLAB B, NEWLAB C, NEWLAB D, NEWLAB E, NEWLAB F, NEWLAB G, NEWSTAN1, NEWSTAN2, NEWSTAN3,
NEWSTAN4,
           NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
 OTHER
           PRINTA , PRINTB , PRINTC , POURING , PAINT1 , PAINT2 , PAINT3 , PAINT4 ,
          BOILER#2, BOILER#3, BOILER#4,
 BOILERS
 COGEN
           COGEN ,
```

** CONC OF CANCER IN MICROGRAMS/M**3

NETWORK

GROUP ID			AVERAGE C	ONC		RE(CEPTOR (XR,	YR, ZELEV,	ZFLAG) OF	TYPE	GRID-ID
ALL	1ST HIGHEST	VALUE	S 5.3	5416	AT (564892.25,	4191959.00,	84.00,	0.00)	DC	NA
	2ND HIGHEST	VALUE :	S 0.0	0000 .	AT (0.00,	0.00,	0.00,	0.00)		
	3RD HIGHEST	VALUE :	S 0.0	0000 .	AT (0.00,	0.00,	0.00,	0.00)		
	4TH HIGHEST	VALUE :	S 0.0	0000.	AT (0.00,	0.00,	0.00,	0.00)		
	5TH HIGHEST	VALUE :	S 0.0	0000 .	AT (0.00,	0.00,	0.00,	0.00)		
	6TH HIGHEST	VALUE :	S 0.0	0000	AT (0.00,	0.00,	0.00,	0.00)		
	7TH HIGHEST	VALUE :	S 0.0	0000	AT (0.00,	0.00,	0.00,	0.00)		
	8TH HIGHEST	VALUE :	s 0.0	0000 .	AT (0.00,	0.00,	0.00,	0.00)		
	9TH HIGHEST	VALUE :	s 0.0	0000	AT (0.00,	0.00,	0.00,	0.00)		
1	OTH HIGHEST	VALUE :	s 0.0	0000	AT (0.00,	0.00,	0.00,	0.00)		
GEN	1ST HIGHEST	VALUE :	s 3.7	0524	AT (564892.25,	4191959.00,	84.00,	0.00)	DC	NA
	2ND HIGHEST	VALUE :	S 0.0	0000	AT (0.00,	0.00,	0.00,	0.00)		
	3RD HIGHEST	VALUE :	o.0	0000	AT (0.00,	0.00,	0.00,	0.00)		

	5TH 6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE	IS IS IS IS	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	AT AT AT AT AT	((((((((((((((((((((0.00, 0.00, 0.00, 0.00,	0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	0.00, 0.00, 0.00, 0.00, 0.00, 0.00,	0.00) 0.00) 0.00) 0.00) 0.00) 0.00)		
LABS	1ST	HIGHEST	VALUE	IS	1.57458	AΤ	(564892.25,	4191959.00,	84.00,	0.00)	DC	NA
	2ND	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)		
	3RD	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)		
	4TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)		
	5TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)		
	6TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)		
	7TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)		
	8TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)		
	9TH	HIGHEST	VALUE	IS	0.00000		•	0.00,	0.00,	0.00,	0.00)		
	10TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)		

0.00,

** CONC OF CANCER IN MICROGRAMS/M**3

NETWORK GROUP ID AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID 0.02330 AT (564892.25, 4191959.00, 84.00, 1ST HIGHEST VALUE IS 4191959.00, 84.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 0.00) 0.00) 0.00) DC 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 0.00000 AT (0.00, 4TH HIGHEST VALUE IS 0.00) 5TH HIGHEST VALUE IS 0.00) 6TH HIGHEST VALUE IS 0.00) 7TH HIGHEST VALUE IS 0.00) 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 0.00) 10TH HIGHEST VALUE IS 0.00) 84.00, 0.00, 0.00, BOILERS 1ST HIGHEST VALUE IS 0.01078 AT (564892.25, 4191959.00, 0.00) DC 0.00000 AT (0.00, 0.00000 AT (0.00, 0.00, 2ND HIGHEST VALUE IS 0.00) 3RD HIGHEST VALUE IS 0.00, 0.00) 0.00, 0.00, 0.00, 0.00, 0.00, 0.00000 AT (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 4TH HIGHEST VALUE IS 0.00) 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 0.00) 7TH HIGHEST VALUE IS 0.00) 8TH HIGHEST VALUE IS 0.00) 9TH HIGHEST VALUE IS 0.00) 10TH HIGHEST VALUE IS 0.00, 0.00) COGEN 1ST HIGHEST VALUE IS 0.04084 AT (564892.25, 4191959.00, 84.00, 0.00) DC NA 84.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00000 AT (0.00, 2ND HIGHEST VALUE IS 0.00, 0.00, 0.00, 3RD HIGHEST VALUE IS 0.00000 AT (0.00) 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 4TH HIGHEST VALUE IS 0.00000 AT (0.00000 AT (5TH HIGHEST VALUE IS 0.00) 0.00000 AT (0.00, 6TH HIGHEST VALUE IS 7TH HIGHEST VALUE IS 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 0.00)

10TH HIGHEST VALUE IS

*** ISCST3 - VERSION 02035 ***

*** UC Berkeley - 12/2003; vjh

*** Model Executed on 02/06/04 at 10:55:26 ***

Input File - D:\Beest\UCBerk\10-03\Final\LRDP\LRDP-Can-Sensitive.DTA

Output File - D:\Beest\UCBerk\10-03\Final\LRDP\LRDP-Can-Sensitive.LST

 $\label{local_met2} \mbox{Met File - D:\Beest\UCBerk\10-03\mbox{\mbox{$\mbox{$met2$\lbl-97a.asc}}}} \\$

142 37 259 Number of sources -Number of source groups -Number of receptors -

	CATS.	(GRAMS/SEC)	X				TEMP.		DIAMETER (METERS)		EMISSION RATE SCALAR VARY BY
WHSTK1 8	0	0.44700E-04	564704.4	4191782.8	66.8	31.70	293.15	7.12	0.19	YES	
NWAF9	0	0.60100E-03	564718.8	4191791.2	66.8	29.57	293.15	16.48	0.74	YES	
WHSTK10	0	0.44700E-04	564724.4	4191826.0	66.8	8.60	293.15	7.12	0.34	YES	
MHSTK1	0	0.24000E-03	564794.4	4191795.8	74.8	7.61	293.15	17.25	0.34	YES	
MHSTK2	0	0.24000E-03	564798.6	4191843.0	74.8	10.89	293.15	17.25	0.29	YES	
MHSTK3	0	0.24000E-03	564794.1	4191843.0	74.8	10.89	293.15	17.25	0.48	YES	
MHSTK4	0	0.24000E-03	564800.9	4191787.2	74.8	15.61	293.15	17.25	0.33	YES	
MHSTK6	0	0.24000E-03	564801.3	4191808.2	74.8	10.94	293.15	17.25	0.34	YES	
KHSTK1	0	0.33000E-02	564761.1	4191879.8	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK2	0	0.33000E-02	564759.4	4191891.8	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK3	0	0.33000E-02	564732.4	4191877.5	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK4	0	0.33000E-02	564731.4	4191889.0	72.7	18.45	293.15	1.28	2.76	YES	
BHSTK1	0	0.45600E-03	564678.9	4191889.0	67.4	27.85	293.15	2.78	1.26	YES	
BHSTK2	0	0.45600E-03	564675.0	4191896.8	67.4	29.68	293.15	2.78	1.26	YES	
BHSTK3	0	0.45600E-03	564704.5	4191898.0	67.4	29.68	293.15	2.78	1.26	YES	
BHSTK4	0	0.45600E-03	564707.4	4191887.8	67.4	33.34	293.15	2.78	0.37	YES	
BHSTK5	0	0.45600E-03	564691.6	4191888.0	67.4	33.34	293.15	2.78	0.37	YES	
VLSBSTK1	0	0.77100E-03	564933.6	4191633.2	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK2	0	0.77100E-03	564954.0	4191566.5	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK3	0	0.77100E-03	565051.3	4191594.8	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK4	0	0.77100E-03	565030.6	4191662.2	64.4	27.04	293.15	3.97	1.22	YES	
LSASTK1	0	0.16600E-02	564892.2	4191637.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK2	0	0.16600E-02	564875.9	4191632.8	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK3	0	0.16600E-02	564907.6	4191580.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK4	0	0.16600E-02	564897.1	4191578.0	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK5	0	0.16600E-02	564908.6	4191576.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK6	0	0.16600E-02	564899.1	4191573.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK7	0	0.16600E-02	564900.8	4191572.2	64.4	28.31	293.15	5.18	0.30	YES	
LEWHSTK1	0	0.63700E-03	565605.8	4191772.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK2	0	0.63700E-03	565591.5	4191786.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK3	0	0.63700E-03	565585.9	4191792.2	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK4	0	0.63700E-03	565583.1	4191800.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK5	0	0.63700E-03	565598.1	4191787.8	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK6	0	0.63700E-03	565619.4	4191775.8	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK7	0	0.63700E-03	565608.8	4191787.2	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK8		0.63700E-03				12.80	293.15	3.11	0.30	YES	
LEWHSTK9		0.63700E-03				12.80	293.15	3.11	0.36	YES	
LATHSTK1	0	0.27200E-02 0.27200E-02	565555.1	4191799.2	104.6	42.37	293.15	6.28	0.34	YES	
LATHSTK2	0	0.27200E-02	565561.1	4191812.0	104.6	36.88	293.15	6.28	0.70	YES	
LATHSTK3	0	0.27200E-02	565531.6	4191800.2	104.6	36.88	293.15	6.28	0.48	YES	

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
LATHSTK4	0	0.27200E-02	565515.1	4191799.5	104.6	37.19	293.15	6.28	0.96	YES	
LATHSTK5	0	0.27200E-02	565539.7	4191794.2	104.6	42.37	293.15	6.28	0.70	YES	
LATHSTK6	0	0.27200E-02	565527.3	4191776.0	104.6	38.40	293.15	6.28	0.74	YES	
LATHSTK7	0	0.27200E-02	565544.9	4191781.5	104.6	38.40	293.15	6.28	0.31	YES	
LATHSTK8	0	0.27200E-02	565562.3	4191787.0	104.6	38.40	293.15	6.28	0.70	YES	
TANHSTKA	0	0.23500E-02	565492.1	4191793.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKB	0	0.23500E-02	565496.8	4191794.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKC	0	0.23500E-02	565494.1	4191787.2	100.6	39.32	293.15	2.94	1.69	YES	

TANHSTKD	0	0.23500E-02	565499.1 4191788.2	100.6	39.32	293.15	2.94	1.69	YES
HHSTKA	0	0.26000E-02	565540.8 4191749.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKB	0	0.26000E-02	565565.6 4191756.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKC	0	0.26000E-02	565576.8 4191717.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKD	0	0.26000E-02	565553.2 4191710.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKE	0	0.26000E-02	565543.4 4191746.5	103.6	20.12	293.15	4.15	0.81	YES
GHSTK1	0	0.36700E-03	565507.1 4191756.0	103.6	16.06	293.15	5.92	0.30	YES
GHSTK2	0	0.36700E-03	565510.6 4191744.8	103.6	16.06	293.15	5.92	0.25	YES
GHSTK3	0	0.36700E-03	565512.4 4191739.0	103.6	16.37	293.15	5.92	0.30	YES
GHSTK4	0	0.36700E-03	565514.7 4191737.8	103.6	15.91	293.15	5.92	0.31	YES
GHSTK5	0	0.36700E-03	565514.9 4191732.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK6	0	0.36700E-03	565500.2 4191755.2	103.6	16.12	293.15	5.92	0.30	YES
GHSTK7	0	0.36700E-03	565501.1 4191753.0	103.6	16.37	293.15	5.92	0.84	YES
GHSTK8	0	0.36700E-03	565503.7 4191744.2	103.6	16.00	293.15	5.92	0.30	YES
GHSTK9	0	0.36700E-03	565505.2 4191740.2	103.6	16.37	293.15	5.92	0.26	YES
GHSTK10	0	0.36700E-03	565506.9 4191735.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK11	0	0.36700E-03	565509.7 4191728.2	103.6	16.22	293.15	5.92	0.30	YES
GHSTK12	0	0.36700E-03	565509.0 4191725.5	103.6	16.06	293.15	5.92	0.30	YES
GHSTK13	0	0.36700E-03	565516.9 4191725.8	103.6	15.91	293.15	5.92	0.40	YES
CHSTK1	0	0.86900E-04	565393.9 4192008.8	110.3	26.85	293.15	2.00	1.00	YES
HESSTK1	0	0.73300E-03	565234.6 4191926.2	98.2	15.39	293.15	2.00	1.00	YES
HILSTK1	0	0.72100E-03	564874.6 4191815.0	80.4	14.96	293.15	2.00	1.00	YES
MULSTK1	0	0.53300E-05	564779.7 4191737.8	74.4	17.24	293.15	2.00	1.00	YES
WELSTK1	0	0.13600E-04	564933.7 4191795.2	81.7	5.89	293.15	2.00	1.00	YES
PRINTA	0	0.10400E-03	564584.7 4191553.2	60.0	8.91	293.15	2.70	0.84	YES
PRINTB	0	0.10400E-03	564614.4 4191520.8	60.0	8.91	293.15	2.70	0.84	YES
PRINTC	0	0.10400E-03	564643.1 4191525.5	60.0	8.91	293.15	2.70	0.60	YES
COGEN	0	0.97700E+00	564876.0 4191492.0	71.9	12.77	430.37	10.45	2.28	YES
BOILER#2	0	0.12440E-01	564863.6 4191499.5	71.9	8.80	522.82	7.97	1.52	YES
BOILER#3	0	0.47000E-01	564881.9 4191505.8	71.9	8.80	554.11	10.53	1.52	YES
BOILER#4	0	0.56800E-01	564885.8 4191495.8	71.9	8.80	566.65	12.63	1.52	YES
POURING	0	0.22400E-02	564847.8 4191467.0	70.1	14.94	293.15	4.62	0.56	YES

TD	CAMC		(MEDEDC)	(MEDEDC)	(MEDEDC)	(MEMEDC)	(DEC E)	/M/CEC)	(MEDEDC)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
ENC. CO	0	0 470415 00	ECEEC7 C	410100C E	0 F 1	4 57	000 27	146 01	0.13	NO	
ENG_62	0	0.47241E-02	564660 2	4191086.5	70.2	4.57	700.57	140.01	0.13		
ENG_03	0	0.23021E-02	504000.2	4191097.3	70.2	2.05	017 07	132.00	0.13 0.08	YES	
ENG_04	0	0.72330E-03	565452.9	4191087.0	98.Z	3.05	010.07	70 10	0.08	YES	
ENG_105	0	0.74200E-01	564939.1	4191437.8	72.6	4.57	010.90	70.10	0.23	YES	
ENG_100	0	0.622U3E-U1	564991.0	4191014.5	75.0	0.48	010.90	70.10	0.20	YES	
ENG_107	0	0.49776E-01	564767.4	4191906.8	70.2	7.62	010.90	70.10	0.18	YES	
ENG_100	0	0.49776E-01	565615 0	4191304.2	111 7	7.02	010.90	70.10	0.15	YES	
ENG_109	0	0.10396E-01	561655 0	4191801.2	111./	3.05	010.90	70.10	0.15	YES	
ENG_IIU	0	0.82838E-02	504055.9	4191874.5	70.0	4.57	010.96	70.10	0.10	YES	
ENG_III	0	0.23806E-01	565091.1	4191/5/.8	78.9	3.05	010.90	70.10	0.11	NO	
ENG_112	0	0.20714E-01	565542.8	4191208.2	85.7	3.05	010.93	70.10	0.10	NO	
ENG_113	0	0.20714E-01	505073.0	4191194.8	92.0	3.05	010.93	70.10	0.10	NO	
ENG_114	0	0.20714E-01	565601.4	4191014.2	01.4	3.05	010.93	70.10	0.10	NO	
ENG_113	0	0.20714E-01	565702.9	4190991.8	91.4	3.05	810.93	70.10	0.10	YES	
ENG_II/	0	0.20714E-01	565575.9	4191009.0	99.3	3.05	810.96	70.10	0.10		
ENG_118	0	0.98935E-UZ	564654.8	4191890.5	68.6	4.5/	810.96	70.10	0.13	YES	
ENG_119	0	0.14531E-01	564728.8	4191//1.0	70.5	4.5/	810.96	70.10	0.08	YES	
ENG_120	0	0.10450E-01	565318.0	4191422.5	86.1	3.05	810.96	70.10	0.08	YES	
ENG_121	0	0.10388E-01	565926.2	4191443.0	118.9	3.05	810.93	70.10	0.08	NO	
ENG_123	0	0.12800E-01	565259.4	4191652.8	88.3	3.05	810.96	70.10	0.08	YES	
ENG_125	0	0.41058E-02	564811.2	4191460.8	67.7	3.05	810.96	70.10	0.08	YES	
ENG_126	0	0.33143E-02	565137.9	4191441.5	//.6	0.00	810.96	70.10	0.08	YES	
ENG_128	0	0.41429E-02	565469.2	4191955.2	109.8	3.05	810.96	70.10	0.05	YES	
ENG_129	0	0.41429E-02	565383.1	4191/40.2	97.0	2.44	810.96	70.10	0.05	YES	
ENG_130	0	0.25692E-02	565533.3	4191713.5	98.9	2.44	815.40	134.54	0.08	YES	
ENG_131	0	0.72350E-03	564970.3	4191484.2	/1.3	1.83	817.07	58.47	0.08	YES	
ENG_132	0	0.72350E-03	564800.3	4191/81.8	/4.3	1.83	817.07	58.4/	0.08	YES	
E134_133	0	0.186/4E-01	565380.0	4191939.2	104.3	3.05	769.29	135.05	0.13	YES	
NEWLAB_A	0	0.53000E-01	564808.8	4191708.2	70.5	6.10	293.15	3.97	1.00	YES	
NEWLAB_B	0	0.10800E-01	565047.0	4191787.5	77.9	6.10	293.15	3.97	1.00	YES	
NEWLAB_C	0	0.59900E-02	565301.9	4191832.0	90.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_D	0	0.31900E-02	565490.2	4191861.5	106.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_E	0	0.85200E-02	565089.5	4191460.8	73.6	6.10	293.15	3.97	1.00	YES	
NEWLAB_F	0	0.67500E-02	565368.8	4191521.8	86.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_G	0	0.19400E-02	565641.7	4191569.5	102.4	6.10	293.15	3.97	1.00	YES	
ENG_STNL	0	U.69563E-02	565539.1	4191905.2	114.2	2.13	769.26	76.14	0.18	YES	
ENG_DVS	0	0.69563E-02	565364.1	4191990.5	109.8	2.13	769.26	76.14	0.18	YES	
ENG_MCCN	0	0.27825E-02	565176.4	4191928.8	93.8	2.13	810.93	59.08	0.13	YES	
ENG_SRB1	0	0.47241E-02 0.23621E-02 0.72350E-03 0.74200E-01 0.62205E-01 0.49776E-01 0.49776E-01 0.16596E-01 0.82858E-02 0.23806E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.1058E-02 0.41429E-02 0.41429E-02 0.41429E-02 0.41429E-02 0.25692E-02 0.72350E-03 0.72350E-03 0.72350E-03 0.18674E-01 0.59900E-02 0.31900E-02 0.31900E-02 0.69563E-02 0.69563E-02 0.69563E-02 0.27825E-02 0.27825E-02	564595.2	4191928.2	67.3	2.13	810.93	59.08	0.13	YES	

	NUMBER	EMISSION RATE	Ε		BASE	STACK	STACK	STACK	STACK	BUILDING	EMISSION RATE SCALAR VARY	
SOURCE										EXISTS		
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(DEG.K)	(M/SEC)	(METERS)		BY	
ENGMUSIC	0	0.27825E-02	565510.9	4191488.8	94.8	2.13	810.93	59.08	0.13	YES		
ENG UNT1	0	0.27825E-02	565595.6	4191185.0	87.9	2.13	810.93			NO		
ENG_UNT2	0	0.27825E-02	565647.0	4191033.2	88.8	2.13			0.13 0.13	NO		
ENG_UNT3		0.27825E-02				2.13			0.13	NO		
ENG116NU		0.58900E-02							0.15	NO		
NEWSTAN1		0.69300E-02							1.32	YES		
NEWSTAN2 NEWSTAN3		0.69300E-02 0.69300E-02							1.32 1.32	YES YES		
NEWSTAN4		0.69300E-02							1.32	YES		
NEWSTAN5		0.69300E-02							1.32	YES		
NEWSTAN6		0.69300E-02							1.32	YES		
NEWSTAN7		0.69300E-02							1.32	YES		
NEWSTAN8		0.69300E-02							1.32	YES		
NEWDAVS1	0	0.66300E-02 0.66300E-02	565340.6	4191981.0	108.9	33.79	293.15	12.66	1.63			
NEWDAVS2 NEWDAVS3		0.66300E-02 0.66300E-02								YES YES		
NEWDAVS3		0.66300E-02								YES		
11211211101	Ü	0.000002 02	000020.1	1131300.2	103.1	00.73	230.10	10.02	0.00	120		
				**	* VOLUME	SOURCE DAT	'A ***					
	NIIMBED	EMISSION RATE	F		BASE	DETEASE	TNIT	INIT.	EMISSION	DATE		
SOURCE		(GRAMS/SEC)										
ID	CATS.	((METERS)			BY			
	0	0.24000E-03	564821.2	4191842.8	74.8	6.95	0.07					
PAINT1	0	0.31900E-03	565322 7	4191432.5 4191934 0	72.0	4.57	3.54	4.25				
PAINT3	0	0.31900E-03	565541 5	4191525.8	97.0	4.57	3.54	4 25				
PAINT4	0	0.31900E-03 0.31900E-03 0.31900E-03	564865.7	4191751.0	77.0	4.57	3.54	4.25				
			,	*** COUDC	E IDO DEE	INING SOUF	CE CDOUD	C ***				
			•	^^^ SUURC	E IDS DEF	INING SOUP	CE GROUP	5 ^^^				
GROUP ID					SOU							
						RCE IDs						
						RCE IDs						
						RCE IDS						
AT.T.	WHSTK1 8.	. NWAF9 . WI	HSTK10 . ME	HSTK1	MHSTK2 .		MHSTK4	. MHSTK5	. MHSTK6	. KHSTK	1 . KHSTK2 . K	нѕтк3
ALL	WHSTK1_8,	, NWAF9 , WI	HSTK10 , ME	HSTK1 ,	MHSTK2 ,		MHSTK4	, MHSTK5	, MHSTK6	, KHSTK	1 , KHSTK2 , K	HSTK3
ALL,	WHSTK1_8,	. NWAF9 , WI	HSTK10 , ME	HSTK1 ,	MHSTK2 ,		MHSTK4	, MHSTK5	, MHSTK6	, KHSTK	1 , KHSTK2 , K	HSTK3
,						MHSTK3 ,					1 , KHSTK2 , K TK4, LSASTK1 ,	HSTK3
						MHSTK3 ,						HSTK3
,	KHSTK4 ,	, BHSTK1 , BI	HSTK2 , BI	HSTK3 ,	BHSTK4 ,	MHSTK3 ,	VLSBSTK	1, VLSBSTF	(2, VLSBST)	K3, VLSBS	TK4, LSASTK1 ,	нѕтк3
LSASTK2 ,	KHSTK4 ,	, BHSTK1 , BI	HSTK2 , BI	HSTK3 ,	BHSTK4 ,	MHSTK3 ,	VLSBSTK	1, VLSBSTF	(2, VLSBST)	K3, VLSBS		нѕтк3
,	KHSTK4 ,	, BHSTK1 , BI	HSTK2 , BI	HSTK3 ,	BHSTK4 ,	MHSTK3 ,	VLSBSTK	1, VLSBSTF	(2, VLSBST)	K3, VLSBS	TK4, LSASTK1 ,	нѕтк3
LSASTK2 ,	KHSTK4 ,	, BHSTK1 , Bi	HSTK2 , BE	HSTK3 ,	BHSTK4 ,	MHSTK3 , BHSTK5 , LEWHSTK1,	VLSBSTK	1, VLSBSTF	(2, VLSBST)	K3, VLSBS	TK4, LSASTK1 ,	нѕтк3
LSASTK2 ,	KHSTK4 ,	, BHSTK1 , Bi	HSTK2 , BE	HSTK3 ,	BHSTK4 ,	MHSTK3 , BHSTK5 , LEWHSTK1,	VLSBSTK	1, VLSBSTF	(2, VLSBST)	K3, VLSBS	TK4, LSASTK1 ,	HSTK3
LSASTK2 ,	KHSTK4 ,	, BHSTK1 , Bi	HSTK2 , BE	HSTK3 ,	BHSTK4 ,	MHSTK3 , BHSTK5 , LEWHSTK1,	VLSBSTK	1, VLSBSTF	(2, VLSBST)	K3, VLSBS	TK4, LSASTK1 ,	HSTK3
LSASTK2 ,	KHSTK4 ,	BHSTK1 , BH. LSASTK4 , LSASTK4 , LSASTK4 , LSASTK9, LA	HSTK2 , BH	HSTK3 , SASTK6 ,	BHSTK4 , LSASTK7 , LATHSTK3,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	VLSBSTK LEWHSTK LATHSTK	1, VLSBSTF 2, LEWHSTF 5, LATHSTF	(3, LEWHST)	X3, VLSBS	TK4, LSASTK1 ,	
LSASTK2 ,	KHSTK4 ,	BHSTK1 , BH. LSASTK4 , LSASTK4 , LSASTK4 , LSASTK9, LA	HSTK2 , BH	HSTK3 , SASTK6 ,	BHSTK4 , LSASTK7 , LATHSTK3,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	VLSBSTK LEWHSTK LATHSTK	1, VLSBSTF 2, LEWHSTF 5, LATHSTF	(3, LEWHST)	X3, VLSBS	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA,	
LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8,	BHSTK1 , BI LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HI	HSTK2 , BESASTK5 , LESATHSTK1, LESTKA , HE	HSTK3 , SASTK6 , ATHSTK2, HSTKB ,	BHSTK4 , LSASTK7 , LATHSTK3,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	VLSBSTK LEWHSTK LATHSTK HHSTKE	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1	22, VLSBST	X3, VLSBS	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G	
LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8,	BHSTK1 , BI LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HI	HSTK2 , BESASTK5 , LESATHSTK1, LESTKA , HE	HSTK3 , SASTK6 , ATHSTK2, HSTKB ,	BHSTK4 , LSASTK7 , LATHSTK3,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	VLSBSTK LEWHSTK LATHSTK HHSTKE	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1	22, VLSBST	X3, VLSBS	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA,	
LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8,	BHSTK1 , BI LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HI	HSTK2 , BESASTK5 , LESATHSTK1, LESTKA , HE	HSTK3 , SASTK6 , ATHSTK2, HSTKB ,	BHSTK4 , LSASTK7 , LATHSTK3,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	VLSBSTK LEWHSTK LATHSTK HHSTKE	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1	22, VLSBST	X3, VLSBS	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G	
LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC , GHSTK6 ,	LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HI	HSTK2 , BH SASTK5 , LS ATHSTK1, LA HSTKA , HH	HSTK3 , SASTK6 , ATHSTK2, HSTKB ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1	32, VLSBST: 33, LEWHST: 46, LATHST: 46, GHSTK2 56, CHSTK1	K4, LEWHS K7, LATHS , GHSTK , HESST	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC , GHSTK6 ,	LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HI	HSTK2 , BH SASTK5 , LS ATHSTK1, LA HSTKA , HH	HSTK3 , SASTK6 , ATHSTK2, HSTKB ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1	32, VLSBST: 33, LEWHST: 46, LATHST: 46, GHSTK2 56, CHSTK1	K4, LEWHS K7, LATHS , GHSTK , HESST	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC , GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GH	HSTK2 , BH SASTK5 , LS ATHSTK1, LA HSTKA , HH HSTK8 , GH	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER#	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER#	32, VLSBST: 33, LEWHST: 46, LATHST: 47, GHSTK2 44, POURING	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 ,	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC , GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GH	HSTK2 , BH SASTK5 , LS ATHSTK1, LA HSTKA , HH HSTK8 , GH	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER#	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER#	32, VLSBST: 33, LEWHST: 46, LATHST: 47, GHSTK2 44, POURING	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC , GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GH	HSTK2 , BH SASTK5 , LS ATHSTK1, LA HSTKA , HH HSTK8 , GH	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER#	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER#	32, VLSBST: 33, LEWHST: 46, LATHST: 47, GHSTK2 44, POURING	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 ,	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC, GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GI PRINTA , PI ENG_62 , EI	HSTK2 , BESASTK5 , LSATHSTK1 , LAHSTKA , HEHSTKA , GERINTB , PENG_63 , EN	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 , RINTC , NG_64 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 , COGEN , ENG_105 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER#	22, VLSBST	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST G, PAINT O, ENG_1	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 , 1 , PAINT2 , P	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 , ENG_112 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC, GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GI PRINTA , PI ENG_62 , EI	HSTK2 , BESASTK5 , LSATHSTK1 , LAHSTKA , HEHSTKA , GERINTB , PENG_63 , EN	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 , RINTC , NG_64 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 , COGEN , ENG_105 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER#	22, VLSBST	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST G, PAINT O, ENG_1	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 ,	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC, GHSTK6 , WELSTK1 , PAINT4 , ENG_113 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GH PRINTA , PH ENG_62 , EH ENG_114 , EH	HSTK2 , BESASTK5 , LSASTK5 , LSASTK5 , LSASTK5 , LSASTK5 , HESTKA , HESTKA , GENTER , PERCENTER , PERC	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 , RINTC , NG_64 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 , COGEN , ENG_105 , ENG_118 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 , ENG_119 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107 ENG_120	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER# , ENG_108 , ENG_121	22, VLSBST	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST G, PAINT D, ENG_1 3, ENG_1	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 , 1 , PAINT2 , P 10 , ENG_111 , 25 , ENG_126 ,	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 , ENG_112 , ENG_128 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC, GHSTK6 , WELSTK1 , PAINT4 , ENG_113 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GH PRINTA , PH ENG_62 , EH ENG_114 , EH	HSTK2 , BESASTK5 , LSASTK5 , LSASTK5 , LSASTK5 , LSASTK5 , HESTKA , HESTKA , GENTER , PERCENTER , PERC	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 , RINTC , NG_64 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 , COGEN , ENG_105 , ENG_118 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 , ENG_119 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107 ENG_120	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER# , ENG_108 , ENG_121	22, VLSBST	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST G, PAINT D, ENG_1 3, ENG_1	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 , 1 , PAINT2 , P	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC, GHSTK6 , WELSTK1 , PAINT4 , ENG_113 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GH PRINTA , PH ENG_62 , EH ENG_114 , EH	HSTK2 , BESASTK5 , LSASTK5 , LSASTK5 , LSASTK5 , LSASTK5 , HESTKA , HESTKA , GENTER , PERCENTER , PERC	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 , RINTC , NG_64 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 , COGEN , ENG_105 , ENG_118 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 , ENG_119 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107 ENG_120	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER# , ENG_108 , ENG_121	22, VLSBST	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST G, PAINT D, ENG_1 3, ENG_1	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 , 1 , PAINT2 , P 10 , ENG_111 , 25 , ENG_126 ,	HSTK5

```
ENG_STNL, ENG_DVS , ENG_MCCN, ENG_SRB1, ENGNULAB, ENGMUSIC, ENG_UNT1, ENG_UNT2, ENG_UNT3, ENG116NU, NEWSTAN1,
NEWSTAN2,
           NEWSTAN3, NEWSTAN4, NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
           WHSTK1 8, WHSTK10 ,
 WH
           NWAF9 ,
 NWAF
 MH
           MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 ,
           KHSTK1 , KHSTK2 , KHSTK3 , KHSTK4 ,
 KH
 ВН
           BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 ,
           VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4,
 VLSB
 LSA
           LSASTK1 , LSASTK2 , LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 ,
 LEW
           LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6, LEWHSTK7, LEWHSTK8, LEWHSTK9,
                                         *** SOURCE IDs DEFINING SOURCE GROUPS ***
 GROUP ID
                                                        SOURCE IDs
 LAT
           LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8,
 TAN
           TANHSTKA, TANHSTKB, TANHSTKC, TANHSTKD,
           HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE ,
           GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 ,
 GH
GHSTK12 ,
           GHSTK13 ,
           CHSTK1 ,
 CH
 HES
           HESSTK1 ,
 HIL
           HILSTK1 ,
           MULSTK1 ,
 MUL
 WEL
           WELSTK1 ,
 PRINT
           PRINTA , PRINTB , PRINTC ,
 COMBUST
          COGEN , BOILER#2, BOILER#3, BOILER#4,
 HAZMAT
           POURING ,
 PAINT
           PAINT1 , PAINT2 , PAINT3 , PAINT4 ,
 EXISTLAB WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
```

```
KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7.
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
                                          *** SOURCE IDs DEFINING SOURCE GROUPS ***
GROUP ID
                                                        SOURCE IDs
           WELSTK1 ,
 ENGINES
           ENG 62 , ENG 63 , ENG 64 , ENG 105 , ENG 106 , ENG 107 , ENG 108 , ENG 109 , ENG 110 , ENG 111 , ENG 112 ,
ENG 113 ,
           ENG_114 , ENG_115 , ENG_117 , ENG_118 , ENG_119 , ENG_120 , ENG_121 , ENG_123 , ENG_125 , ENG_126 , ENG_128 ,
ENG 129 ,
           ENG_130 , ENG_131 , ENG_132 , E134_133,
 NEWLABS
           NEWLAB A, NEWLAB B, NEWLAB C, NEWLAB D, NEWLAB E, NEWLAB F, NEWLAB G, NEWSTAN1, NEWSTAN2, NEWSTAN3, NEWSTAN4,
NEWSTAN5,
           NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
 ALL_LABS
           WHSTK1_8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
           WELSTK1 , NEWLAB A, NEWLAB B, NEWLAB C, NEWLAB D, NEWLAB E, NEWLAB G, ENG UNT3, NEWSTAN1, NEWSTAN2, NEWSTAN3,
NEWSTAN4,
           NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
 EXISTING WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MUILSTK1 .
```

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDS

WELSTK1 , PRINTA , PRINTB , PRINTC , COGEN , BOILER#2, BOILER#3, BOILER#4, POURING , PAINT1 , PAINT2 , PAINT3 ,

PAINT4 , ENG_62 , ENG_63 , ENG_64 , ENG_105 , ENG_106 , ENG_107 , ENG_108 , ENG_109 , ENG_110 , ENG_111 , ENG_112 ,

ENG_113 , ENG_114 , ENG_115 , ENG_117 , ENG_118 , ENG_119 , ENG_120 , ENG_121 , ENG_123 , ENG_125 , ENG_126 ,

ENG_113 , ENG_114 , ENG_115 , ENG_117 , ENG_118 , ENG_120 , ENG_121 , ENG_123 , ENG_125 , ENG_126 , ENG_128 ,

ENG_129 , ENG_130 , ENG_131 , ENG_132 , E134_133,

NEWLAB A NEWLAB A,

NEWLAB B NEWLAB B,

NEWLAB C NEWLAB C,

NEWLAB D NEWLAB D,

NEWLAB_E NEWLAB_E,

NEWLAB F NEWLAB F,

NEWLAB G NEWLAB G,

DAVISNEW NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,

STAN NEW NEWSTAN1, NEWSTAN2, NEWSTAN3, NEWSTAN4, NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8,

NEWENG ENG_STNL, ENG_DVS , ENG_MCCN, ENG_SRB1, ENGNULAB, ENG_UNT1, ENG_UNT2, ENG_UNT3,

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID GROUP ID AVERAGE CONC 5.22741 AT (565700.06, 4191711.25, 5.12918 AT (565700.06, 4191711.25, 4.01899 AT (564945.62, 4192065.50, 3.47902 AT (56500.00) 1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 0.00) 102.72, 4TH HIGHEST VALUE IS 3.47902 AT (565009.00, 4192130.00, 3.39447 AT (564926.69, 4192158.75, 3.05633 AT (566093.38, 4191024.75, 0.00) 5TH HIGHEST VALUE IS 109.42, 6TH HIGHEST VALUE IS 114.60, 0.00) 2.37426 AT (566166.56, 4190836.25, 7TH HIGHEST VALUE IS 107.59, 0.00) DC 2.21261 AT (566063.25, 4190799.75, 2.10530 AT (565144.62, 4192620.50, 1.96675 AT (565202.31, 4192629.00, 8TH HIGHEST VALUE IS 101.19, 0.00) NA 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS 160.32, 0.00) DC 0.00050 AT (564945.62, 4192065.50, WH 1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS 0.00045 AT (564228.31, 4192049.25, 0.00) 3RD HIGHEST VALUE IS 0.00040 AT (564487.38, 4192391.25, 80.16, 0.00) 4TH HIGHEST VALUE IS 0.00034 AT (564926.69, 4192158.75, 109.42. 0.00) DC 5TH HIGHEST VALUE IS 0.00034 AT (564160.38, 4192207.75, 64.31, 0.00) DC 0.00032 AT (565009.00, 4192130.00, 6TH HIGHEST VALUE IS 110.64, 0.00) DC 7TH HIGHEST VALUE IS 0.00032 AT (564249.94, 4192208.00, 0.00) 0.00029 AT (564079.94, 4192117.50, 8TH HIGHEST VALUE IS 61.57, 0.00) 9TH HIGHEST VALUE IS 0.00029 AT (564591.56, 4192414.75, 0.00) 83.82. DC 10TH HIGHEST VALUE IS 0.00028 AT (564933.25, 4191275.25, 71.32, 0.00) DC 1ST HIGHEST VALUE IS 0.00212 AT (564945.62, 4192065.50, 0.00) DC 102.72,

0.00186 AT (565700.06, 4191711.25, 0.00183 AT (564926.69, 4192158.75, 0.00182 AT (565700.06, 4191711.25, 0.00175 AT (565009.00, 4192130.00, 0.00131 AT (564933.25, 4191275.25, 0.00093 AT (565070.19, 4191077.50, 0.0003 AT (56478.1) 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 4TH HIGHEST VALUE IS 0.00) DC 0.00) DC 108.20, NA 109.42, NA 109.42, 0.00) DC NA 5TH HIGHEST VALUE IS 110.64, 0.00) DC NA 71.32, 6TH HIGHEST VALUE IS 0.00) NA 7TH HIGHEST VALUE IS 70.41, 0.00) DC NA 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 0.00092 AT (564735.81, 4192658.00, 0.00092 AT (564729.75, 4192662.25, 0.00085 AT (566063.25, 4190799.75, 100.28, 0.00) DC NA 100.28, 0.00) DC NA 10TH HIGHEST VALUE IS 101.19, 0.00) DC NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP	ID	AVERAGE CONC	REC	EPTOR (XR, Y	YR, ZELEV, ZFLA	G) OF	TYPE 	NETWORK GRID-ID
MH	1ST HIGHEST VALUE I	S 0.01205 AT (S 0.00964 AT (S 0.00774 AT (S 0.00765 AT (564945.62,	4192065.50,	102.72,	0.00)	DC	NA
	2ND HIGHEST VALUE IS	S 0.00964 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
	3RD HIGHEST VALUE IS	S 0.00774 AT (564487.38,	4192391.25,	80.16,	0.00)	DC	NA
	4TH HIGHEST VALUE IS	S 0.00765 AT (565009.00,	4192130.00,	110.64,	0.00)	DC	NA
	5TH HIGHEST VALUE IS	S 0.00695 AT (564591.56,	4192414.75,	83.82,	0.00)	DC	NA
	6TH HIGHEST VALUE IS	S 0.00664 AT (564249.94,	4192208.00,	66.75,	0.00)	DC	NA
	7TH HIGHEST VALUE I							NA
	8TH HIGHEST VALUE I							NA
	9TH HIGHEST VALUE I	S 0.00593 AT (565700.06,	4191711.25,	109.42,	0.00)	DC	NA
	10TH HIGHEST VALUE IS	S 0.00528 AT (564525.06,	4192613.75,	85.65,	0.00)	DC	NA
KH	1ST HIGHEST VALUE IS	S 0.10497 AT (564945.62,	4192065.50,	102.72,	0.00)	DC	NA
	2ND HIGHEST VALUE IS	S 0.06941 AT (565009.00,	4192130.00,	110.64,	0.00)	DC	NA
	3RD HIGHEST VALUE IS	S 0.06837 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
	4TH HIGHEST VALUE IS							NA
	5TH HIGHEST VALUE I							NA
	6TH HIGHEST VALUE IS							NA
	7TH HIGHEST VALUE I		564249.94,	4192208.00,	66.75,	0.00)	DC	NA
	8TH HIGHEST VALUE I		564591.56,	4192414.75,	83.82,	0.00)	DC	NA
	9TH HIGHEST VALUE I							NA
	10TH HIGHEST VALUE I	S 0.03521 AT (564160.38,	4192207.75,	64.31,	0.00)	DC	NA
ВН	1ST HIGHEST VALUE I	S 0.01456 AT (NA
	2ND HIGHEST VALUE IS	S 0.00936 AT (565009.00,	4192130.00,	110.64,	0.00)	DC	NA
	3RD HIGHEST VALUE IS	S 0.00840 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
	4TH HIGHEST VALUE IS	S 0.00642 AT (564249.94,	4192208.00,	66.75,	0.00)	DC	NA
	5TH HIGHEST VALUE I	S 0.00612 AT (565700.06,	4191711.25,	108.20,	0.00)	DC	NA
	6TH HIGHEST VALUE I	S 0.00611 AT (565700.06,	4191711.25,	109.42,	0.00)	DC	NA
	7TH HIGHEST VALUE I		564487.38,	4192391.25,	80.16,	0.00)	DC	NA
	8TH HIGHEST VALUE I	S 0.00526 AT (564228.31,	4192049.25,	64.62,	0.00)	DC	NA
	9TH HIGHEST VALUE I	S 0.00518 AT (564591.56,	4192414.75,	83.82,	0.00)	DC	NA
	10TH HIGHEST VALUE IS	S 0.00504 AT (564160.38,	4192207.75,	64.31,	0.00)	DC	NA

*** THE SUMMARY OF MAXIMUM PERIOD ($8760\ \mathrm{HRS})$ RESULTS ***

* *

GROUP I	ID AVE	RAGE CONC	RECEPTOR (XR, YR,	ZELEV, ZFLAG) OI	F TYPE	NETWORK GRID-ID
VLSB	1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS	0.01496 AT (564945.6 0.01074 AT (565700.0 0.01067 AT (565700.0	6, 4191711.25,	102.72, 0.00; 108.20, 0.00; 109.42, 0.00;	DC	NA NA NA
	4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS	0.00958 AT (564926.6 0.00956 AT (565009.0 0.00901 AT (565328.3		109.42, 0.00) 110.64, 0.00) 74.68, 0.00)	DC	NA NA NA
	7TH HIGHEST VALUE IS 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS	0.00716 AT (564487.3 0.00668 AT (564591.5 0.00650 AT (566063.2	.,	80.16, 0.00) 83.82, 0.00) 101.19, 0.00)	DC	NA NA NA
LSA	10TH HIGHEST VALUE IS 1ST HIGHEST VALUE IS	0.00628 AT (565070.1 0.05449 AT (564945.6	, ,	70.41, 0.00) 102.72, 0.00)		NA NA
	2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS	0.03357 AT (565700.0 0.03354 AT (565009.0 0.03306 AT (564926.6 0.03262 AT (565700.0	0, 4192130.00, 9, 4192158.75,	108.20, 0.00) 110.64, 0.00) 109.42, 0.00) 109.42, 0.00)	DC DC	AA NA NA NA

70.41, 71.32 0.03137 AT (565070.19, 4191077.50, 0.03074 AT (564933.25, 4191275.25, 0.03065 AT (565328.31, 4191032.50, 0.02297 AT (564040.04 0.00) DC 6TH HIGHEST VALUE IS NA 7TH HIGHEST VALUE IS 0.00) DC NA 74.68, 8TH HIGHEST VALUE IS 0.00) DC NA 0.02297 AT (564249.94, 4192208.00, 0.02253 AT (564487.38, 4192391.25, 66.75, 9TH HIGHEST VALUE IS 0.00) DC NA 10TH HIGHEST VALUE IS 80.16, 0.00) DC 109.42, 0.12469 AT (565700.06, 4191711.25, 0.12244 AT (565700.06, 4191711.25, 0.02055 AT (565144.62, 4192620.50, 0.01899 AT (565233.75, 4192605.00, 0.00) LEW 1ST HIGHEST VALUE IS NA 108.20, 2ND HIGHEST VALUE IS 0.00) DC NA 154.84, 3RD HIGHEST VALUE IS 0.00) DC 4TH HIGHEST VALUE IS 159.72. 0.00) DC NA 5TH HIGHEST VALUE IS 0.01856 AT (565202.31, 4192629.00, 160.32, 0.00) DC NA 6TH HIGHEST VALUE IS 0.01794 AT (565009.00, 4192130.00, 110.64, 0.00) DC NA 0.01543 AT (564926.69, 4192158.75, 109.42, 7TH HIGHEST VALUE IS 0.00) DC NA 8TH HIGHEST VALUE IS 0.01498 AT (564945.62, 4192065.50, 102.72, 0.00) DC NA 0.01085 AT (566093.38, 4191024.75, 0.00981 AT (564735.81, 4192658.00, 9TH HIGHEST VALUE IS 114.60, 0.00) DC NA 10TH HIGHEST VALUE IS 100.28, 0.00) DC NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

NETWORK AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID GROUP ID 0.17544 AT (565700.06, 4191711.25, 109.42, 0.16414 AT (565700.06, 4191711.25, 108.20, 0.04832 AT (565144.62, 4192620.50, 154.84, 0.04487 AT (565009.00, 4192130.00, 110.64, 0.04229 AT (565233.75, 4192605.00, 159.72, 0.04174 AT (565202.31, 4192629.00, 160.32, 0.03760 AT (564026.69 1ST HIGHEST VALUE IS 0.00) DC 2ND HIGHEST VALUE IS 0.00) DC NA 3RD HIGHEST VALUE IS 0.00) DC 4TH HIGHEST VALUE IS 0.00) DC NA 5TH HIGHEST VALUE IS 0.00) DC 6TH HIGHEST VALUE IS 0.00) DC NA 0.03769 AT (564926.69, 4192158.75, 0.03234 AT (564945.62, 4192065.50, 0.02504 AT (566093.38, 4191024.75, 0.01961 AT (564735.81, 4192658.00, 7TH HIGHEST VALUE IS 109.42, 0.00) DC 8TH HIGHEST VALUE IS 0.00) DC 102.72, NA 9TH HIGHEST VALUE IS 114.60, 0.00) DC 10TH HIGHEST VALUE IS 100.28, 0.00) DC TAN 1ST HIGHEST VALUE IS 0.09371 AT (565700.06, 4191711.25, 109.42, 0.00) DC 0.08884 AT (565700.06, 4191711.25, 0.02239 AT (565009.00, 4192130.00, 2ND HIGHEST VALUE IS 108.20, 0.00) DC NA 3RD HIGHEST VALUE IS 110.64, 0.00) DC 4TH HIGHEST VALUE IS 0.01915 AT (565144.62, 4192620.50, 154.84, 0.00) DC 5TH HIGHEST VALUE IS 0.01874 AT (564926.69, 4192158.75, 109.42, 0.00) DC NA 0.01688 AT (564945.62, 4192065.50, 0.01667 AT (565233.75, 4192605.00, 6TH HIGHEST VALUE IS 102.72, 0.00) DC 7TH HIGHEST VALUE IS 159.72. 0.00) DC 0.01663 AT (565202.31, 4192629.00, 0.01141 AT (566093.38, 4191024.75, 0.00927 AT (564735.81, 4192658.00, 8TH HIGHEST VALUE IS 160.32, 0.00) DC 9TH HIGHEST VALUE IS 114.60. 0.00) DC NA 10TH HIGHEST VALUE IS 0.00) DC 0.36596 AT (565700.06, 4191711.25, 0.34145 AT (565700.06, 4191711.25, 0.03798 AT (565009.00, 4192130.00, 1ST HIGHEST VALUE IS 109.42, 0.00) DC НН NA 2ND HIGHEST VALUE IS 108.20, 110.64, 0.00) DC NA 3RD HIGHEST VALUE IS 0.00) DC 0.03328 AT (564926.69, 4192158.75, 0.03276 AT (564945.62, 4192065.50, 4TH HIGHEST VALUE IS 109.42, 0.00) DC NA 102.72, 5TH HIGHEST VALUE IS 0.00) DC 6TH HIGHEST VALUE IS 0.03196 AT (565144.62, 4192620.50, 154.84, 0.00) DC 0.02911 AT (565233.75, 4192605.00, 159.72, 7TH HIGHEST VALUE IS 0.00) DC 0.02867 AT (565202.31, 4192629.00, 0.02281 AT (566093.38, 4191024.75, 0.01836 AT (564735.81, 4192658.00, 8TH HIGHEST VALUE IS 160.32, 0.00) DC NA 9TH HIGHEST VALUE IS 0.00) DC 114.60, NA 10TH HIGHEST VALUE IS 0.00) DC 100.28,

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

GROUP I	D	AVERAGE CONC	RECEPTOR	(XR, YR, ZELEV, ZFLAG)	OF TYPE	NETWORK GRID-ID
GH	1ST HIGHEST VALUE	IS 0.13462 AT (565700.06, 41917	11.25, 109.42,	0.00) DC	NA
	2ND HIGHEST VALUE	IS 0.13113 AT (565700.06, 41917	11.25, 108.20,	0.00) DC	NA
	3RD HIGHEST VALUE	IS 0.02028 AT (565009.00, 41921	30.00, 110.64,	0.00) DC	NA
	4TH HIGHEST VALUE	IS 0.01775 AT (564945.62, 41920	65.50, 102.72,	0.00) DC	NA
	5TH HIGHEST VALUE	IS 0.01730 AT (564926.69, 41921	58.75, 109.42,	0.00) DC	NA
	6TH HIGHEST VALUE	IS 0.01201 AT (565144.62, 41926	20.50, 154.84,	0.00) DC	NA
	7TH HIGHEST VALUE	IS 0.01090 AT (565233.75, 41926	05.00, 159.72,	0.00) DC	NA
	8TH HIGHEST VALUE	IS 0.01080 AT (565202.31, 41926	29.00, 160.32,	0.00) DC	NA
	9TH HIGHEST VALUE	IS 0.00941 AT (566093.38, 41910	24.75, 114.60,	0.00) DC	NA

	10TH	HIGHEST	VALUE	IS	0.00805	AT	(564735.81,	4192658.00,	100.28,	0.00)	DC	NA
CH	1ST	HIGHEST	VALUE	IS	0.00031	ΑT	(565700.06,	4191711.25,	109.42,	0.00)	DC	NA
	2ND	HIGHEST	VALUE	IS	0.00031	ΑT	(565009.00,	4192130.00,	110.64,	0.00)	DC	NA
	3RD	HIGHEST	VALUE	IS	0.00030	AΤ	(565144.62,	4192620.50,	154.84,	0.00)	DC	NA
	4TH	HIGHEST	VALUE	IS	0.00030	AΤ	(565700.06,	4191711.25,	108.20,	0.00)	DC	NA
	5TH	HIGHEST	VALUE	IS	0.00027	AΤ	(565202.31,	4192629.00,	160.32,	0.00)	DC	NA
	6TH	HIGHEST	VALUE	IS	0.00027	AΤ	(565233.75,	4192605.00,	159.72,	0.00)	DC	NA
	7TH	HIGHEST	VALUE	IS	0.00024	AΤ	(564926.69,	4192158.75,	109.42,	0.00)	DC	NA
	8TH	HIGHEST	VALUE	IS	0.00014	AΤ	(564945.62,	4192065.50,	102.72,	0.00)	DC	NA
	9TH	HIGHEST	VALUE	IS	0.00013	AT	(564735.81,	4192658.00,	100.28,	0.00)	DC	NA
	10TH	HIGHEST	VALUE	IS	0.00012	AΤ	(564729.75,	4192662.25,	100.28,	0.00)	DC	NA
HES	1ST	HIGHEST	VALUE	IS	0.00908	AΤ	(565009.00,	4192130.00,	110.64,	0.00)	DC	NA
	2ND	HIGHEST	VALUE	IS	0.00685	ΑT	(564945.62,	4192065.50,	102.72,	0.00)	DC	NA
	3RD	HIGHEST	VALUE	IS	0.00667	ΑT	(564926.69,	4192158.75,	109.42,	0.00)	DC	NA
	4TH	HIGHEST	VALUE	IS	0.00475	ΑT	(565700.06,	4191711.25,	109.42,	0.00)	DC	NA
	5TH	HIGHEST	VALUE	IS	0.00473	AT	(565700.06,	4191711.25,	108.20,	0.00)	DC	NA
	6TH	HIGHEST	VALUE	IS	0.00201	AT	(566093.38,	4191024.75,	114.60,	0.00)	DC	NA
	7TH	HIGHEST	VALUE	IS	0.00191	AT	(564735.81,	4192658.00,	100.28,	0.00)	DC	NA
	8TH	HIGHEST	VALUE	IS	0.00190	AT	(564729.75,	4192662.25,	100.28,	0.00)	DC	NA
	9TH	HIGHEST	VALUE	IS	0.00187	AΤ	(565144.62,	4192620.50,	154.84,	0.00)	DC	NA
	10TH	HIGHEST	VALUE	IS	0.00185	AΤ	(565233.75,	4192605.00,	159.72,	0.00)	DC	NA
							•	,	,	,	- ,		

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP	ID 	AV	YERAGE CONC	REC	EPTOR (XR, YR	R, ZELEV, ZFLA	AG) OF TYE	NETWORK PE GRID-ID
HIL	1ST HIGHEST VA	ALUE IS	0.00803 AT (564945.62,	4192065.50,	102.72,	0.00) DO	. NA
	2ND HIGHEST VA	ALUE IS	0.00483 AT (564926.69,	4192158.75,	109.42,	0.00) DO	. NA
	3RD HIGHEST VA	ALUE IS	0.00403 AT (565009.00,	4192130.00,	110.64,	0.00) DO	. NA
	4TH HIGHEST VA		0.00322 AT (
	5TH HIGHEST VA		0.00320 AT (
	6TH HIGHEST VA		0.00297 AT (
	7TH HIGHEST VA		0.00292 AT (
	8TH HIGHEST VA		0.00206 AT (
	9TH HIGHEST VA		0.00195 AT (
	10TH HIGHEST VA	ALUE IS	0.00194 AT (564249.94,	4192208.00,	66.75,	0.00) DO	. NA
MUL			0.00003 AT (
	2ND HIGHEST VA		0.00002 AT (
	3RD HIGHEST VA		0.00002 AT (
	4TH HIGHEST VA		0.00002 AT (
	5TH HIGHEST VA		0.00002 AT (
	6TH HIGHEST VA		0.00002 AT (
	7TH HIGHEST VA	ALUE IS	0.00002 AT (565700.06,	4191711.25,	108.20,	0.00) DO	. NA
			0.00002 AT (
			0.00002 AT (
	10TH HIGHEST VA	ALUE IS	0.00001 AT (564591.56,	4192414.75,	83.82,	0.00) DC	. NA
WEL	1ST HIGHEST VA		0.00014 AT (
	2ND HIGHEST VA		0.00010 AT (
	3RD HIGHEST VA		0.00010 AT (
	4TH HIGHEST VA		0.00008 AT (
	5TH HIGHEST VA		0.00007 AT (
	6TH HIGHEST VA		0.00007 AT (
	7TH HIGHEST VA		0.00006 AT (
			0.00005 AT (
			0.00004 AT (
	10TH HIGHEST VA	ALUE IS	0.00004 AT (564160.38,	4192207.75,	64.31,	0.00) DC	NA NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

GROUP ID		AVERAGE CONC	RECEPTOR	(XR, YR, ZELEV,	ZFLAG) OF TYPE	NETWORK GRID-ID
PRINT	1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS	· ·	564933.25, 41912 564839.88, 41912		0.00) DC 0.00) DC	NA NA

	4TH 5TH 6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE VALUE	IS IS IS IS IS	0.00496 0.00339 0.00283 0.00227 0.00219 0.00192 0.00179 0.00171	AT (AT (AT (AT (AT (AT (AT (AT (AT (AT (((((((((((((((((((((565070.19, 564228.31, 564786.81, 564079.94, 565328.31, 564160.38,	,	64.62, 61.26, 61.57, 74.68,	0.00) 0.00) 0.00) 0.00) 0.00)	DC DC DC DC DC DC DC	NA NA NA NA NA NA
COMBUST	2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE VALUE VALUE VALUE	IS IS IS IS IS IS IS IS IS	0.69852 0.66325 0.64224 0.55243 0.49483 0.47206 0.40636 0.38799 0.38690 0.31138	AT (AT (AT (AT (AT (AT (AT (AT (AT (AT (565202.31, 565233.75, 566729.00, 567269.62, 566093.38, 565700.06, 567693.00,	4192620.50, 4192629.00, 4192605.00, 4190469.25, 4189942.75, 4191024.75, 4191711.25, 4191711.25, 419836.25,	174.65, 114.60, 109.42, 108.20,	0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	DC DC DC DC DC DC DC DC DC	NA
HAZMAT	2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE	IS	0.03443 0.01470 0.01323 0.01035 0.01006 0.00854 0.00756 0.00703 0.00696 0.00619	AT (AT (AT (AT (AT (AT (AT (AT (AT (AT (565070.19, 564859.75, 564839.88, 565328.31, 565130.12, 564228.31, 564945.62, 564249.94,	4191226.00, 4191259.75, 4191032.50, 4190916.25, 4192049.25, 4192065.50,	70.41, 67.67, 67.36, 74.68, 66.75, 64.62, 102.72, 66.75,	0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	DC DC DC DC DC DC DC DC DC	NA

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP I	D		AVERAGE CONC	REC	CEPTOR (XR,	YR, ZELEV,	ZFLAG) OF	TYPE	GRID-ID
PAINT			0.01403 AT (NA
			0.01403 AT (NA
			0.01363 AT (
			0.01328 AT (565009.00,	4192130.00,	110.64,	0.00)	DC	NA
	5TH HIGHEST	VALUE IS	0.01270 AT (564933.25,	4191275.25,	71.32,	0.00)	DC	
	6TH HIGHEST	VALUE IS	0.01139 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
	7TH HIGHEST	VALUE IS	0.00668 AT (565070.19,	4191077.50,	70.41,	0.00)	DC	NA
	8TH HIGHEST	VALUE IS	0.00531 AT (565328.31,	4191032.50,	74.68,	0.00)	DC	NA
	9TH HIGHEST	VALUE IS	0.01139 AT (0.00668 AT (0.00531 AT (0.00509 AT (564487.38,	4192391.25,	80.16,	0.00)	DC	NA
	10TH HIGHEST	VALUE IS	0.00505 AT (564591.56,	4192414.75,	83.82,	0.00)	DC	NA
EXISTLA	B 1ST HIGHEST	VALUE IS	1.00484 AT (565700.06,	4191711.25,	109.42,	0.00)	DC	NA
	2ND HIGHEST	VALUE IS	0.95963 AT (565700.06,	4191711.25,	108.20,	0.00)	DC	NA
	3RD HIGHEST	VALUE IS	0.33354 AT (564945.62,	4192065.50,	102.72,	0.00)	DC	NA
	4TH HIGHEST	VALUE IS	0.28858 AT (565009.00,	4192130.00,	110.64,	0.00)	DC	NA
	5TH HIGHEST	VALUE IS	0.26549 AT (0.17199 AT (0.15474 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
	6TH HIGHEST	VALUE IS	0.17199 AT (565144.62,	4192620.50,	154.84,	0.00)	DC	NA
	7TH HIGHEST	VALUE IS	0.15474 AT (565233.75,	4192605.00,	159.72,	0.00)	DC	NA
	8TH HIGHEST	VALUE IS	0.15307 AT (565202.31,	4192629.00,	160.32,	0.00)	DC	NA
	9TH HIGHEST	VALUE IS	0.13952 AT (564487.38,	4192391.25,	80.16,	0.00)	DC	NA
	10TH HIGHEST	VALUE IS	0.13625 AT (564591.56,	4192414.75,	83.82	0.00)	DC	NA
			,			,	,		
ENGINES	1ST HIGHEST	VALUE IS	2.96389 AT (565700.06.	4191711.25.	109.42.	0.00)	DC	NA
			2.94770 AT (NA
			2.60863 AT (NA
	ЛТИ ИТСИТОТ	זוז און דער די	2 10003 70 /	565009 00	1192130 00	110 64	0 00)	DC	NA
	5TH HIGHEST	VALUE IS	2.10003 AT (2.06846 AT (2.00022 AT (1.59859 AT (564926 69.	4192158 75.	109 42	0.00)	DC	NA
	6TH HIGHEST	VALUE IS	2 00022 AT (566093 38.	4191024 75.	114 60.	0.00)	DC	NA
	7TH HIGHEST	VALUE TO	1 59859 AT (566166 56	4190836 25	107 59	0.00)	DC	NA
	8TH HIGHEST	VALUE TO	1.51225 AT (566063 25	4190799 75	101.33,	0.00)	DC	NA
			1.17279 AT (564487 38	4192391 25	80 16	0.00)	DC	NA NA
	10TH HIGHEST								NA NA
	TOTH HIGHEST	AUDUU IC	, 1.11212 A1 (304331.30,	1172717.73,	03.02,	0.00)	DC	11/17

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

NETWORK

								NETWORK
CDOUD TD	ATTED A CE CONC	DECEDEOD	/37D	VD	C D T D 7 7	DDI ACI	OF MADE	CDID ID

GROUP ID	AVERAGE CONC		REC	EPTOR (XR, YF	R, ZELEV, ZFLA	G) OF T	YPE GRID-ID	
	VALUE IS 0.68930							
2ND HIGHEST								
3RD HIGHEST								
4TH HIGHEST								
5TH HIGHEST								
6TH HIGHEST		AT (564487.38,	4192391.25,	80.16,	0.00)	DC NA	
7TH HIGHEST	VALUE IS 0.45432	AT (564933.25,	4191275.25,	71.32,	0.00)	DC NA	
8TH HIGHEST	VALUE IS 0.43153 VALUE IS 0.35706 VALUE IS 0.35652	AT (564591.56,	4192414.75,	83.82,	0.00)	DC NA	
9TH HIGHEST	VALUE IS 0.35706	AT (565144.62,	4192620.50,	154.84,	0.00)	DC NA	
10TH HIGHEST	VALUE IS 0.35652	AT (564249.94,	4192208.00,	66.75,	0.00)	DC NA	
ALL LADO 10M UTCHEOM I	VALUE TO 1 50042	3 m /	ECE700 0C	4101711 05	100 40	0 00)	DC NA	
	VALUE IS 1.56943							
2ND HIGHEST '	VALUE IS 1.50756							
						,		
4TH HIGHEST								
5TH HIGHEST				4192130.00,				
6TH HIGHEST								
7TH HIGHEST	VALUE IS 0.56024	AT (564933.25,	41912/5.25,	/1.32,	0.00)		
8TH HIGHEST	VALUE IS 0.55492	AT (564591.56,	4192414.75,	83.82,	0.00)		
9TH HIGHEST		AT (565144.62,	4192620.50,	154.84,	0.00)		
10TH HIGHEST	VALUE IS 0.48679	AT (565202.31,	4192629.00,	160.32,	0.00)	DC NA	
EXISTING 1ST HIGHEST	VALUE IS 4.39510	7 m /	565700 06	4101711 05	109.42,	0.00)	DC NA	
2ND HIGHEST								
3RD HIGHEST				4192065.50,	,			
4TH HIGHEST				4192130.00,	,			
5TH HIGHEST				4192130.00,				
6TH HIGHEST						0.00)		
7TH HIGHEST						0.00)		
/TH HIGHEST	VALUE 13 2.02042	VIII (566063 25	4130030.23,	107.39,	0.00)	DC NA	
OTH HIGHEST	VALUE IS 2.02042 VALUE IS 1.86079 VALUE IS 1.64951	AT (500003.23,	4100000 50	101.19,	0.00)	DC NA	
10TH HIGHEST	VALUE 15 1.04931	AT (565202 21	4192620.50,	160.32,	0.00)	DC NA	
TOTH HIGHEST	VALUE 15 1.53//U	HΙ (JUJZUZ.31,	4132029.00,	100.32,	0.00)	DC NA	

GROUP ID	AV.	/ERAGE CONC	REC	EPTOR (XR,	YR, ZELEV, ZFLA	.G) OF	TYPE	NETWORK GRID-ID
NEWLAR A 1ST HIGHES	T VALUE IS	በ 39234 ልጥ (564933 25	4191275 25	71 32	0 00)	DC	NA
NEWLAB_A 1ST HIGHES	T VALUE IS	0.31075 AT (564487.38.	4192391.25,	80.16.	0.00)	DC	NA
3RD HIGHES	T VALUE IS	0.30621 AT (564945.62.	4192065.50,	102.72.	0.00)	DC	NA
4TH HIGHES	T VALUE IS	0.30621 AT (0.26777 AT (0.26350 AT (564249.94,	4192208.00,	66.75,	0.00)	DC	NA
5TH HIGHES	T VALUE IS	0.26350 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
בשר שור שור ב	ייי דוד דכי	በ 2596በ አሞ /	564501 56	1102111 75	63 63	0 001	DC	NIZ
7TH HIGHES	T VALUE IS	0.24092 AT (565070.19,	4191077.50,	70.41,	0.00)	DC	NA
8TH HIGHES	ST VALUE IS	0.23991 AT (564228.31,	4192049.25,	64.62,	0.00)	DC	NA
9TH HIGHES	ST VALUE IS	0.22777 AT (564839.88,	4191259.75,	67.36,	0.00)	DC	NA
10TH HIGHES	T VALUE IS	0.24092 AT (0.23991 AT (0.22777 AT (0.22568 AT (564160.38,	4192207.75,	64.31,	0.00)	DC	NA
NEWLAB_B 1ST HIGHE: 2ND HIGHE: 3RD HIGHE: 4TH HIGHE: 5TH HIGHE: 6TH HIGHE:	ST VALUE IS	0.14160 AT (564945.62,	4192065.50,	102.72,	0.00)	DC	NA
2ND HIGHES	ST VALUE IS	0.09701 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
3RD HIGHES	ST VALUE IS	0.08579 AT (565009.00,	4192130.00,	110.64,	0.00)	DC	NA
4TH HIGHES	ST VALUE IS	0.07536 AT (565700.06,	4191711.25,	108.20,	0.00)	DC	NA
5TH HIGHES	ST VALUE IS	0.07527 AT (565700.06,	4191711.25,	109.42,	0.00)	DC	NA
6TH HIGHES	ST VALUE IS	0.06454 AT (564487.38,	4192391.25,	80.16,	0.00)	DC	NA
/IN NIGHE:	DI VALUE IS	0.001/0 A1 (J04J91.J0,	4132414.73,	03.04,	0.00)	DC	NA
	T VALUE IS	0.06118 AT (564525.06,	4192613.75,	85.65,	0.00)	DC	NA
9TH HIGHES	ST VALUE IS	0.03974 AT (564294.50,	4192949.00,	85.65,	0.00)	DC	NA
10TH HIGHES	ST VALUE IS	0.03689 AT (564/35.81,	4192658.00,	100.28,	0.00)	DC	NA
NEWLAB C 1ST HIGHES	I TATUE TO	0 00007 78 /	ECE000 00	4100120 00	110 64	0 00)	DC	NA
		0.09807 AT (NA NA
		0.09392 AT (NA NA
		0.09267 AT (
		0.08162 AT (NA NA
		0.02999 AT (NA NA
		0.02999 AT (NA NA
ATH HIGHE	T VALUE IS	0.02330 AT (564591 56	4192414 75	83 82	0.00)	DC	NA NA
9TH HIGHE	T VALUE IS	0.02140 AI (566093 38	4191024 75	114 60	0.00)	DC	NA NA
10TH HIGHES	T VALUE IS	0.02146 AT (0.01919 AT (0.01874 AT (566063.25	4190799 75	101 19.	0.00)	DC	NA NA
TOTH HIGHE	.1 .1111011 10	0.010/1 111 (230003.23,	110,00,00	,	0.00)	20	7477

** CONC OF CANCER IN MICROGRAMS/M**3

GROUP ID	AVE:	RAGE CONC	REC	EPTOR (XR, YR	, ZELEV, ZFL	AG) OF TY	NETWORK PE GRID-ID
NEWLAB D 1ST HIGHEST	VALUE IS	በ በ3583 ልጥ (565700 06	4191711 25	109 42	0 00) 1	OC NA
		0.03569 AT (
		0.01382 AT (
4TH HIGHEST		0.01310 AT (
5TH HIGHEST		0.01154 AT (
6TH HIGHEST		0.01146 AT (
7TH HIGHEST		0.01144 AT (
		0.01119 AT (
9TH HIGHEST	VALUE IS	0.01054 AT (564945.62,	4192065.50,	102.72,	0.00)	OC NA
10TH HIGHEST	VALUE IS	0.00753 AT (564735.81,	4192658.00,	100.28,	0.00)	OC NA
NEWLAB_E 1ST HIGHEST							
		0.04413 AT (
		0.04205 AT (
		0.03788 AT (
5TH HIGHEST	VALUE IS	0.03739 AT (565729.00,	4190469.25,	81.08,	0.00)	OC NA
6TH HIGHEST	VALUE IS	0.03707 AT (564945.62,	4192065.50,	102.72,	0.00)	OC NA
7TH HIGHEST	VALUE IS	0.03598 AT (565787.88,	4190436.50,	82.91,	0.00)	OC NA
8TH HIGHEST	VALUE IS	0.03510 AT (565700.06,	4191711.25,	108.20,	0.00)	OC NA
9TH HIGHEST	VALUE IS	0.03504 AT (0.03130 AT (565700.06,	4191711.25,	109.42,	0.00)	OC NA
10TH HIGHEST	VALUE IS	0.03130 AT (565936.88,	4190529.25,	90.83,	0.00)	OC NA
NEWLAB_F 1ST HIGHEST							
2ND HIGHEST	VALUE IS	0.05308 AT (565700.06,	4191711.25,	108.20,	0.00) I	OC NA
3RD HIGHEST	VALUE IS	0.05278 AT (565700.06,	4191711.25,	109.42,	0.00) I	OC NA
4TH HIGHEST	VALUE IS	0.04554 AT (565009.00,	4192130.00,	110.64,	0.00) I	OC NA
5TH HIGHEST	VALUE IS	0.04483 AT (564926.69,	4192158.75,	109.42,	0.00)	OC NA
6TH HIGHEST	VALUE IS	0.02976 AT (566063.25,	4190799.75,	101.19,	0.00)	OC NA
7TH HIGHEST	VALUE IS	U.U2918 AT (566093.38,	4191024.75,	114.60,	0.00) I	OC NA
8TH HIGHEST	VALUE IS	U.U2833 AT (566166.56,	4190836.25,	107.59,	0.00) I	OC NA
9TH HIGHEST	VALUE IS	U.U2U65 AT (564729.75,	4192662.25,	100.28,	U.UU) I	OC NA
IUTH HIGHEST	VALUE IS	0.05308 AT (0.05278 AT (0.04554 AT (0.04483 AT (0.02976 AT (0.02918 AT (0.02833 AT (0.02065 AT (0.02060 AT (564/35.81,	4192658.00,	100.28,	U.UU) I	OC NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

GROUP ID	AVERAGE CONC	RECEPTOR (XR, YR	, ZELEV, ZFLAG) OF	NETWORK TYPE GRID-ID
NEWLAB_G 1ST HIGHEST VALUE IS	0.03976 AT (565700.06, 4191711.25,	109.42, 0.00)	DC NA
2ND HIGHEST VALUE IS		565700.06, 4191711.25,	108.20, 0.00)	DC NA
3RD HIGHEST VALUE IS		565009.00, 4192130.00,	110.64, 0.00)	DC NA
4TH HIGHEST VALUE IS		566093.38, 4191024.75,	114.60, 0.00)	DC NA
5TH HIGHEST VALUE IS	0.01038 AT (564926.69, 4192158.75,	109.42, 0.00)	DC NA
6TH HIGHEST VALUE IS		564945.62, 4192065.50,	102.72, 0.00)	
7TH HIGHEST VALUE IS		566166.56, 4190836.25,	107.59, 0.00)	
8TH HIGHEST VALUE IS		566063.25, 4190799.75,	101.19, 0.00)	DC NA
9TH HIGHEST VALUE IS	0.00504 AT (565144.62, 4192620.50,	154.84, 0.00)	DC NA
10TH HIGHEST VALUE IS	0.00465 AT (565233.75, 4192605.00,	159.72, 0.00)	DC NA
DAVISNEW 1ST HIGHEST VALUE IS	0.00106.75	ECE144 CO 4100CO0 EO	154 04 0 00)	DC NA
2ND HIGHEST VALUE IS		565144.62, 4192620.50, 565202.31, 4192629.00,	154.84, 0.00) 160.32, 0.00)	
2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS		565233.75, 4192629.00,	,	
4TH HIGHEST VALUE IS		565009.00, 4192130.00,	159.72, 0.00) 110.64, 0.00)	
5TH HIGHEST VALUE IS				
		564926.69, 4192158.75,	109.42, 0.00)	
6TH HIGHEST VALUE IS		565700.06, 4191711.25,	109.42, 0.00)	
7TH HIGHEST VALUE IS		565700.06, 4191711.25,	108.20, 0.00)	
8TH HIGHEST VALUE IS		564735.81, 4192658.00,	100.28, 0.00)	
9TH HIGHEST VALUE IS		564729.75, 4192662.25,	100.28, 0.00)	
10TH HIGHEST VALUE IS	0.02252 AT (566093.38, 4191024.75,	114.60, 0.00)	DC NA
STAN NEW 1ST HIGHEST VALUE IS	0.13226 AT (565202.31, 4192629.00,	160.32, 0.00)	DC NA
2ND HIGHEST VALUE IS		565233.75, 4192605.00,	159.72, 0.00)	
3RD HIGHEST VALUE IS	0.11815 AT (565144.62, 4192620.50,	154.84, 0.00)	DC NA

4TH	HIGHEST	VALUE	IS	0.05690	AT	(565009.00,	4192130.00,	110.64,	0.00)	DC	NA
5TH	HIGHEST	VALUE	IS	0.05035	ΑT	(565700.06,	4191711.25,	109.42,	0.00)	DC	NA
6TH	HIGHEST	VALUE	IS	0.04789	ΑT	(564926.69,	4192158.75,	109.42,	0.00)	DC	NA
7TH	HIGHEST	VALUE	IS	0.04555	AT	(565700.06,	4191711.25,	108.20,	0.00)	DC	NA
8TH	HIGHEST	VALUE	IS	0.03661	AT	(566093.38,	4191024.75,	114.60,	0.00)	DC	NA
9TH	HIGHEST	VALUE	IS	0.03626	AT	(567269.62,	4189942.75,	174.65,	0.00)	DC	NA
10TH	HIGHEST	VALUE	IS	0.03196	ΑT	(566729.00,	4190469.25,	136.86,	0.00)	DC	NA

GROUP II)	P	AVERAGE CONC	RECE	EPTOR (XR, YR,	ZELEV, ZFLAG)	OF TYPE	NETWORK GRID-ID
NEWENG	1ST HIGHEST	VALUE IS	0.19549 AT (565009.00,	4192130.00,	110.64,	0.00) DC	NA
	2ND HIGHEST	VALUE IS	0.19206 AT (564945.62,	4192065.50,	102.72,	0.00) DC	NA
	3RD HIGHEST	VALUE IS	0.18644 AT (565700.06,	4191711.25,	109.42,	0.00) DC	NA
	4TH HIGHEST	VALUE IS	0.18477 AT (565700.06,	4191711.25,	108.20,	0.00) DC	NA
	5TH HIGHEST	VALUE IS	0.16590 AT (564926.69,	4192158.75,	109.42,	0.00) DC	NA
	6TH HIGHEST	VALUE IS	0.11953 AT (566093.38,	4191024.75,	114.60,	0.00) DC	NA
	7TH HIGHEST	VALUE IS	0.09215 AT (566166.56,	4190836.25,	107.59,	0.00) DC	NA
	8TH HIGHEST	VALUE IS	0.08907 AT (565144.62,	4192620.50,	154.84,	0.00) DC	NA
	9TH HIGHEST	VALUE IS	0.08677 AT (566063.25,	4190799.75,	101.19,	0.00) DC	NA
	10TH HIGHEST	VALUE IS	0.08240 AT (564735.81,	4192658.00,	100.28,	0.00) DC	NA

```
*** ISCST3 - VERSION 02035 ***

*** UC Berkeley - 12/2003; vjh - Strawberry Canyon Receptor

*** Model Executed on 02/06/04 at 11:00:16 ***

Input File - D:\Beest\UCBerk\10-03\Final\LRDP\LRDP-Can-Strawberry.DTA
```

Output File - D:\Beest\UCBerk\10-03\Final\LRDP\LRDP-Can-Strawberry.LST

Met File - D:\Beest\UCBerk\10-03\met2\lb1-97a.asc

Number of sources - 142
Number of source groups - 7
Number of receptors - 1

*** POINT SOURCE DATA ***

ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(DEG.K)	(M/SEC)	(METERS)		EMISSION RATE SCALAR VARY BY
WHSTK1 8	0	0.44700E-04 0.60100E-03 0.44700E-03 0.24000E-03 0.24000E-03 0.24000E-03 0.24000E-03 0.24000E-02 0.33000E-02 0.33000E-02 0.35000E-02 0.45600E-03 0.45600E-03 0.45600E-03 0.45600E-03 0.45600E-03 0.45600E-03 0.45600E-03 0.77100E-03	564704 4	4191782 8	66.8	31 70	293 15	7 12	0 19	YES	
NWAF9	0	0.44700E 04	564718 8	4191791 2	66.8	29 57	293.15	16 48	0.13	YES	
WHSTK10	0	0.44700E-04	564724 4	4191826 0	66.8	8 60	293.15	7 12	0.71	YES	
MHSTK1	0	0.24000E-03	564794.4	4191795.8	74.8	7.61	293.15	17.25	0.34	YES	
MHSTK2	0	0.24000E-03	564798.6	4191843.0	74.8	10.89	293.15	17.25	0.29	YES	
MHSTK3	0	0.24000E-03	564794.1	4191843.0	74.8	10.89	293.15	17.25	0.48	YES	
MHSTK4	0	0.24000E-03	564800.9	4191787.2	74.8	15.61	293.15	17.25	0.33	YES	
MHSTK6	0	0.24000E-03	564801.3	4191808.2	74.8	10.94	293.15	17.25	0.34	YES	
KHSTK1	0	0.33000E-02	564761.1	4191879.8	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK2	0	0.33000E-02	564759.4	4191891.8	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK3	0	0.33000E-02	564732.4	4191877.5	72.7	18.45	293.15	1.28	2.76	YES	
KHSTK4	0	0.33000E-02	564731.4	4191889.0	72.7	18.45	293.15	1.28	2.76	YES	
BHSTK1	0	0.45600E-03	564678.9	4191889.0	67.4	27.85	293.15	2.78	1.26	YES	
BHSTK2	0	0.45600E-03	564675.0	4191896.8	67.4	29.68	293.15	2.78	1.26	YES	
BHSTK3	0	0.45600E-03	564704.5	4191898.0	67.4	29.68	293.15	2.78	1.26	YES	
BHSTK4	0	0.45600E-03	564707.4	4191887.8	67.4	33.34	293.15	2.78	0.37	YES	
BHSTK5	0	0.45600E-03	564691.6	4191888.0	67.4	33.34	293.15	2.78	0.37	YES	
VLSBSTK1	0	0.77100E-03	564933.6	4191633.2	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK2	0	0.77100E-03 0.77100E-03	564954.0	4191566.5	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK3	0	0.77100E-03	565051.3	4191594.8	64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK4	0	0.77100E-03	565030.6	4191662.2	64.4	27.04	293.15	3.97	1.22	YES	
LSASTK1	0	0.16600E-02	564892.2	4191637.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK2	0	0.16600E-02	564875.9	4191632.8	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK3	0	0.16600E-02	564907.6	4191580.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK4	0	0.16600E-02	564897.1	4191578.0	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK5	0	0.16600E-02	564908.6	4191576.2	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK6	0	0.16600E-02	564899.1	4191573.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK7	0	0.77100E-03 0.77100E-03 0.16600E-02 0.16600E-02 0.16600E-02 0.16600E-02 0.16600E-02 0.16600E-02 0.16600E-03 0.63700E-03 0.63700E-03	564900.8	4191572.2	64.4	28.31	293.15	5.18	0.30	YES	
LEWHSTK1	0	0.63700E-03	565605.8	4191772.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK2	0	0.63700E-03	565591.5	4191786.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK3	0	0.63700E-03 0.63700E-03	565585.9	4191792.2	106.7	12.80 12.80	293.15	3.11	0.36 0.36	120	
LEWHSTK4	0	0.63700E-03	565583.1	4191800.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK5	0	0.63700E-03 0.63700E-03 0.63700E-03	565598.1	4191787.8	106.7	12.80	293.15	3.11 3.11	0.36	YES	
LEWHSTK6	0	0.63700E-03	565619.4	4191775.8	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK7	0	0.63700E-03	565608.8	4191787.2	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK8	0	0.63700E-03 0.63700E-03 0.27200E-02 0.27200E-02 0.27200E-02	565597.6	4191800.5	106.7	12.80	293.15	3.11	0.30	YES	
LEWHSTK9	0	0.63700E-03	565593.3	4191808.2	106.7	12.80	293.15	3.11	0.36	YES	
LATHSTK1	0	0.27200E-02	565555.1	4191799.2	104.6	42.37	293.15	6.28	0.34	YES	
LATHSTK2	0	0.27200E-02	565561.1	4191812.0	104.6	36.88	293.15	6.28	0.70	YES	
LATHSTK3	0	0.27200E-02	565531.6	4191800.2	104.6	36.88	293.15	6.28	0.48	YES	

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
LATHSTK4	0	0.27200E-02	565515.1	4191799.5	104.6	37.19	293.15	6.28	0.96	YES	
LATHSTK5	0	0.27200E-02	565539.7	4191794.2	104.6	42.37	293.15	6.28	0.70	YES	
LATHSTK6	0	0.27200E-02	565527.3	4191776.0	104.6	38.40	293.15	6.28	0.74	YES	
LATHSTK7	0	0.27200E-02	565544.9	4191781.5	104.6	38.40	293.15	6.28	0.31	YES	
LATHSTK8	0	0.27200E-02	565562.3	4191787.0	104.6	38.40	293.15	6.28	0.70	YES	
TANHSTKA	0	0.23500E-02	565492.1	4191793.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKB	0	0.23500E-02	565496.8	4191794.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKC	0	0.23500E-02	565494.1	4191787.2	100.6	39.32	293.15	2.94	1.69	YES	

TANHSTKD	0	0.23500E-02	565499.1 4191788.2	100.6	39.32	293.15	2.94	1.69	YES
HHSTKA	0	0.26000E-02	565540.8 4191749.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKB	0	0.26000E-02	565565.6 4191756.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKC	0	0.26000E-02	565576.8 4191717.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKD	0	0.26000E-02	565553.2 4191710.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKE	0	0.26000E-02	565543.4 4191746.5	103.6	20.12	293.15	4.15	0.81	YES
GHSTK1	0	0.36700E-03	565507.1 4191756.0	103.6	16.06	293.15	5.92	0.30	YES
GHSTK2	0	0.36700E-03	565510.6 4191744.8	103.6	16.06	293.15	5.92	0.25	YES
GHSTK3	0	0.36700E-03	565512.4 4191739.0	103.6	16.37	293.15	5.92	0.30	YES
GHSTK4	0	0.36700E-03	565514.7 4191737.8	103.6	15.91	293.15	5.92	0.31	YES
GHSTK5	0	0.36700E-03	565514.9 4191732.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK6	0	0.36700E-03	565500.2 4191755.2	103.6	16.12	293.15	5.92	0.30	YES
GHSTK7	0	0.36700E-03	565501.1 4191753.0	103.6	16.37	293.15	5.92	0.84	YES
GHSTK8	0	0.36700E-03	565503.7 4191744.2	103.6	16.00	293.15	5.92	0.30	YES
GHSTK9	0	0.36700E-03	565505.2 4191740.2	103.6	16.37	293.15	5.92	0.26	YES
GHSTK10	0	0.36700E-03	565506.9 4191735.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK11	0	0.36700E-03	565509.7 4191728.2	103.6	16.22	293.15	5.92	0.30	YES
GHSTK12	0	0.36700E-03	565509.0 4191725.5	103.6	16.06	293.15	5.92	0.30	YES
GHSTK13	0	0.36700E-03	565516.9 4191725.8	103.6	15.91	293.15	5.92	0.40	YES
CHSTK1	0	0.86900E-04	565393.9 4192008.8	110.3	26.85	293.15	2.00	1.00	YES
HESSTK1	0	0.73300E-03	565234.6 4191926.2	98.2	15.39	293.15	2.00	1.00	YES
HILSTK1	0	0.72100E-03	564874.6 4191815.0	80.4	14.96	293.15	2.00	1.00	YES
MULSTK1	0	0.53300E-05	564779.7 4191737.8	74.4	17.24	293.15	2.00	1.00	YES
WELSTK1	0	0.13600E-04	564933.7 4191795.2	81.7	5.89	293.15	2.00	1.00	YES
PRINTA	0	0.10400E-03	564584.7 4191553.2	60.0	8.91	293.15	2.70	0.84	YES
PRINTB	0	0.10400E-03	564614.4 4191520.8	60.0	8.91	293.15	2.70	0.84	YES
PRINTC	0	0.10400E-03	564643.1 4191525.5	60.0	8.91	293.15	2.70	0.60	YES
COGEN	0	0.97700E+00	564876.0 4191492.0	71.9	12.77	430.37	10.45	2.28	YES
BOILER#2	0	0.12440E-01	564863.6 4191499.5	71.9	8.80	522.82	7.97	1.52	YES
BOILER#3	0	0.47000E-01	564881.9 4191505.8	71.9	8.80	554.11	10.53	1.52	YES
BOILER#4	0	0.56800E-01	564885.8 4191495.8	71.9	8.80	566.65	12.63	1.52	YES
POURING	0	0.22400E-02	564847.8 4191467.0	70.1	14.94	293.15	4.62	0.56	YES

TD	CAMC		(MEDEDC)	(MEDEDC)	(MEDEDC)	(MEMEDC)	(DEC E)	/M/CEC)	(MEDEDC)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
ENC. CO	0	0 470415 00	ECEEC7 C	410100C E	0 F 1	4 57	000 27	146 01	0.13	NO	
ENG_62	0	0.47241E-02	564660 2	4191086.5	70 2	4.57	700.57	140.01	0.13		
ENG_03	0	0.23021E-02	504000.2	4191097.3	70.2	2.05	017 07	132.00	0.13 0.08	YES	
ENG_04	0	0.72330E-03	565452.9	4191087.0	98.Z	3.05	010.07	70 10	0.08	YES	
ENG_105	0	0.74200E-01	564939.1	4191437.8	72.6	4.57	010.90	70.10	0.23	YES	
ENG_100	0	0.622U3E-U1	564991.0	4191014.5	75.0	0.48	010.90	70.10	0.20	YES	
ENG_107	0	0.49776E-01	564767.4	4191900.8	70.2	7.62	010.90	70.10	0.18	YES	
ENG_100	0	0.49776E-01	565615 0	4191304.2	111 7	7.02	010.90	70.10	0.15	YES	
ENG_109	0	0.10396E-01	561655 0	4191801.2	111./	3.05	010.90	70.10	0.15	YES	
ENG_IIU	0	0.82838E-02	504055.9	4191874.5	70.0	4.57	010.96	70.10	0.10	YES	
ENG_III	0	0.23806E-01	565091.1	4191/5/.8	78.9	3.05	010.90	70.10	0.11	NO	
ENG_112	0	0.20714E-01	565542.8	4191208.2	85.7	3.05	010.93	70.10	0.10	NO	
ENG_113	0	0.20714E-01	505073.0	4191194.8	92.0	3.05	010.93	70.10	0.10	NO	
ENG_114	0	0.20714E-01	565601.4	4191014.2	01.4	3.05	010.93	70.10	0.10	NO	
ENG_113	0	0.20714E-01	565702.9	4190991.8	91.4	3.05	810.93	70.10	0.10	YES	
ENG_II/	0	0.20714E-01	565575.9	4191009.0	99.3	3.05	810.96	70.10	0.10		
ENG_118	0	0.98935E-UZ	564654.8	4191890.5	68.6	4.5/	810.96	70.10	0.13	YES	
ENG_119	0	0.14531E-01	564728.8	4191//1.0	70.5	4.5/	810.96	70.10	0.08	YES	
ENG_120	0	0.10450E-01	565318.0	4191422.5	86.1	3.05	810.96	70.10	0.08	YES	
ENG_121	0	0.10388E-01	565926.2	4191443.0	118.9	3.05	810.93	70.10	0.08	NO	
ENG_123	0	0.12800E-01	565259.4	4191652.8	88.3	3.05	810.96	70.10	0.08	YES	
ENG_125	0	0.41058E-02	564811.2	4191460.8	67.7	3.05	810.96	70.10	0.08	YES	
ENG_126	0	0.33143E-02	565137.9	4191441.5	//.6	0.00	810.96	70.10	0.08	YES	
ENG_128	0	0.41429E-02	565469.2	4191955.2	109.8	3.05	810.96	70.10	0.05	YES	
ENG_129	0	0.41429E-02	565383.1	4191/40.2	97.0	2.44	810.96	70.10	0.05	YES	
ENG_130	0	0.25692E-02	565533.3	4191713.5	98.9	2.44	815.40	134.54	0.08	YES	
ENG_131	0	0.72350E-03	564970.3	4191484.2	/1.3	1.83	817.07	58.47	0.08	YES	
ENG_132	0	0.72350E-03	564800.3	4191/81.8	/4.3	1.83	817.07	58.4/	0.08	YES	
E134_133	0	0.186/4E-01	565380.0	4191939.2	104.3	3.05	769.29	135.05	0.13	YES	
NEWLAB_A	0	0.53000E-01	564808.8	4191708.2	70.5	6.10	293.15	3.97	1.00	YES	
NEWLAB_B	0	0.10800E-01	565047.0	4191787.5	77.9	6.10	293.15	3.97	1.00	YES	
NEWLAB_C	0	0.59900E-02	565301.9	4191832.0	90.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_D	0	0.31900E-02	565490.2	4191861.5	106.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_E	0	0.85200E-02	565089.5	4191460.8	73.6	6.10	293.15	3.97	1.00	YES	
NEWLAB_F	0	0.67500E-02	565368.8	4191521.8	86.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_G	0	0.19400E-02	565641.7	4191569.5	102.4	6.10	293.15	3.97	1.00	YES	
ENG_STNL	0	U.69563E-02	565539.1	4191905.2	114.2	2.13	769.26	76.14	0.18	YES	
ENG_DVS	0	0.69563E-02	565364.1	4191990.5	109.8	2.13	769.26	76.14	0.18	YES	
ENG_MCCN	0	0.27825E-02	565176.4	4191928.8	93.8	2.13	810.93	59.08	0.13	YES	
ENG_SRB1	0	0.47241E-02 0.23621E-02 0.72350E-03 0.74200E-01 0.62205E-01 0.49776E-01 0.49776E-01 0.16596E-01 0.82858E-02 0.23806E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.20714E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.10450E-01 0.1058E-02 0.41429E-02 0.41429E-02 0.41429E-02 0.41429E-02 0.25692E-02 0.72350E-03 0.72350E-03 0.72350E-03 0.18674E-01 0.59900E-02 0.31900E-02 0.31900E-02 0.69563E-02 0.69563E-02 0.69563E-02 0.27825E-02 0.27825E-02	564595.2	4191928.2	67.3	2.13	810.93	59.08	0.13	YES	

	NUMBER	EMISSION RATE	Ε		BASE	STACK	STACK	STACK	STACK	BUILDING	EMISSION RATE SCALAR VARY	
SOURCE										EXISTS		
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(DEG.K)	(M/SEC)	(METERS)		BY	
ENGMUSIC	0	0.27825E-02	565510.9	4191488.8	94.8	2.13	810.93	59.08	0.13	YES		
ENG UNT1	0	0.27825E-02	565595.6	4191185.0	87.9	2.13	810.93			NO		
ENG_UNT2	0	0.27825E-02	565647.0	4191033.2	88.8	2.13			0.13 0.13	NO		
ENG_UNT3		0.27825E-02				2.13			0.13	NO		
ENG116NU		0.58900E-02							0.15	NO		
NEWSTAN1		0.69300E-02							1.32	YES		
NEWSTAN2 NEWSTAN3		0.69300E-02 0.69300E-02							1.32 1.32	YES YES		
NEWSTAN4		0.69300E-02							1.32	YES		
NEWSTAN5		0.69300E-02							1.32	YES		
NEWSTAN6		0.69300E-02							1.32	YES		
NEWSTAN7		0.69300E-02							1.32	YES		
NEWSTAN8		0.69300E-02							1.32	YES		
NEWDAVS1	0	0.66300E-02 0.66300E-02	565340.6	4191981.0	108.9	33.79	293.15	12.66	1.63			
NEWDAVS2 NEWDAVS3		0.66300E-02 0.66300E-02								YES YES		
NEWDAVS3		0.66300E-02								YES		
11211211101	Ü	0.000002 02	000020.1	1191900.2	103.1	00.73	230.10	10.02	0.00	120		
				**	* VOLUME	SOURCE DAT	'A ***					
	NIIMBED	EMISSION RATE	F		BASE	DETEASE	TNIT	INIT.	EMISSION	DATE		
SOURCE		(GRAMS/SEC)										
ID	CATS.	((METERS)			BY			
	0	0.24000E-03	564821.2	4191842.8	74.8	6.95	0.07					
PAINT1	0	0.31900E-03	565322 7	4191432.5 4191934 0	72.0	4.57	3.54	4.25				
PAINT3	0	0.31900E-03	565541 5	4191525.8	97.0	4.57	3.54	4 25				
PAINT4	0	0.31900E-03 0.31900E-03 0.31900E-03	564865.7	4191751.0	77.0	4.57	3.54	4.25				
			,	*** COUDC	E IDO DEE	INING SOUF	CE CDOUD	C ***				
			•	^^^ SUURC	E IDS DEF	INING SOUP	CE GROUP	5 ^^^				
GROUP ID					SOU							
						RCE IDs						
						RCE IDs						
						RCE IDS						
AT.T.	WHSTK1 8.	. NWAF9 . WI	HSTK10 . ME	HSTK1	MHSTK2 .		MHSTK4	. MHSTK5	. MHSTK6	. KHSTK	1 . KHSTK2 . K	нѕтк3
ALL	WHSTK1_8,	, NWAF9 , WI	HSTK10 , ME	HSTK1 ,	MHSTK2 ,		MHSTK4	, MHSTK5	, MHSTK6	, KHSTK	1 , KHSTK2 , K	HSTK3
ALL,	WHSTK1_8,	. NWAF9 , WI	HSTK10 , ME	HSTK1 ,	MHSTK2 ,		MHSTK4	, MHSTK5	, MHSTK6	, KHSTK	1 , KHSTK2 , K	HSTK3
,						MHSTK3 ,					1 , KHSTK2 , K TK4, LSASTK1 ,	HSTK3
						MHSTK3 ,						HSTK3
,	KHSTK4 ,	, BHSTK1 , BI	HSTK2 , BI	HSTK3 ,	BHSTK4 ,	MHSTK3 ,	VLSBSTK	1, VLSBSTF	(2, VLSBST)	K3, VLSBS	TK4, LSASTK1 ,	нѕтк3
LSASTK2 ,	KHSTK4 ,	, BHSTK1 , BI	HSTK2 , BI	HSTK3 ,	BHSTK4 ,	MHSTK3 ,	VLSBSTK	1, VLSBSTF	(2, VLSBST)	K3, VLSBS		нѕтк3
,	KHSTK4 ,	, BHSTK1 , BI	HSTK2 , BI	HSTK3 ,	BHSTK4 ,	MHSTK3 ,	VLSBSTK	1, VLSBSTF	(2, VLSBST)	K3, VLSBS	TK4, LSASTK1 ,	нѕтк3
LSASTK2 ,	KHSTK4 ,	, BHSTK1 , Bi	HSTK2 , BE	HSTK3 ,	BHSTK4 ,	MHSTK3 , BHSTK5 , LEWHSTK1,	VLSBSTK	1, VLSBSTF	(2, VLSBST)	K3, VLSBS	TK4, LSASTK1 ,	нѕтк3
LSASTK2 ,	KHSTK4 ,	, BHSTK1 , Bi	HSTK2 , BE	HSTK3 ,	BHSTK4 ,	MHSTK3 , BHSTK5 , LEWHSTK1,	VLSBSTK	1, VLSBSTF	(2, VLSBST)	K3, VLSBS	TK4, LSASTK1 ,	HSTK3
LSASTK2 ,	KHSTK4 ,	, BHSTK1 , Bi	HSTK2 , BE	HSTK3 ,	BHSTK4 ,	MHSTK3 , BHSTK5 , LEWHSTK1,	VLSBSTK	1, VLSBSTF	(2, VLSBST)	K3, VLSBS	TK4, LSASTK1 ,	HSTK3
LSASTK2 ,	KHSTK4 ,	BHSTK1 , BH. LSASTK4 , LSASTK4 , LSASTK4 , LSASTK9, LA	HSTK2 , BH	HSTK3 , SASTK6 ,	BHSTK4 , LSASTK7 , LATHSTK3,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	VLSBSTK LEWHSTK LATHSTK	1, VLSBSTF 2, LEWHSTF 5, LATHSTF	(3, LEWHST)	X3, VLSBS	TK4, LSASTK1 ,	
LSASTK2 ,	KHSTK4 ,	BHSTK1 , BH. LSASTK4 , LSASTK4 , LSASTK4 , LSASTK9, LA	HSTK2 , BH	HSTK3 , SASTK6 ,	BHSTK4 , LSASTK7 , LATHSTK3,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	VLSBSTK LEWHSTK LATHSTK	1, VLSBSTF 2, LEWHSTF 5, LATHSTF	(3, LEWHST)	X3, VLSBS	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA,	
LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8,	BHSTK1 , BI LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HI	HSTK2 , BESASTK5 , LESATHSTK1, LESTKA , HE	HSTK3 , SASTK6 , ATHSTK2, HSTKB ,	BHSTK4 , LSASTK7 , LATHSTK3,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	VLSBSTK LEWHSTK LATHSTK HHSTKE	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1	22, VLSBST	X3, VLSBS	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G	
LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8,	BHSTK1 , BI LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HI	HSTK2 , BESASTK5 , LESATHSTK1, LESTKA , HE	HSTK3 , SASTK6 , ATHSTK2, HSTKB ,	BHSTK4 , LSASTK7 , LATHSTK3,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	VLSBSTK LEWHSTK LATHSTK HHSTKE	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1	22, VLSBST	X3, VLSBS	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA,	
LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8,	BHSTK1 , BI LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HI	HSTK2 , BESASTK5 , LESATHSTK1, LESTKA , HE	HSTK3 , SASTK6 , ATHSTK2, HSTKB ,	BHSTK4 , LSASTK7 , LATHSTK3,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	VLSBSTK LEWHSTK LATHSTK HHSTKE	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1	22, VLSBST	X3, VLSBS	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G	
LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC , GHSTK6 ,	LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HI	HSTK2 , BH SASTK5 , LS ATHSTK1, LA HSTKA , HH	HSTK3 , SASTK6 , ATHSTK2, HSTKB ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1	32, VLSBST: 33, LEWHST: 46, LATHST: 46, GHSTK2 56, CHSTK1	K4, LEWHS K7, LATHS , GHSTK , HESST	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC , GHSTK6 ,	LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HI	HSTK2 , BH SASTK5 , LS ATHSTK1, LA HSTKA , HH	HSTK3 , SASTK6 , ATHSTK2, HSTKB ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1	32, VLSBST: 33, LEWHST: 46, LATHST: 46, GHSTK2 56, CHSTK1	K4, LEWHS K7, LATHS , GHSTK , HESST	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC , GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GH	HSTK2 , BH SASTK5 , LS ATHSTK1, LA HSTKA , HH HSTK8 , GH	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER#	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER#	32, VLSBST: 33, LEWHST: 46, LATHST: 47, GHSTK2 44, POURING	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 ,	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC , GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GH	HSTK2 , BH SASTK5 , LS ATHSTK1, LA HSTKA , HH HSTK8 , GH	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER#	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER#	32, VLSBST: 33, LEWHST: 46, LATHST: 47, GHSTK2 44, POURING	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC , GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GH	HSTK2 , BH SASTK5 , LS ATHSTK1, LA HSTKA , HH HSTK8 , GH	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER#	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER#	32, VLSBST: 33, LEWHST: 46, LATHST: 47, GHSTK2 44, POURING	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 ,	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC, GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GI PRINTA , PI ENG_62 , EI	HSTK2 , BESASTK5 , LSATHSTK1 , LAHSTKA , HEHSTKA , GERINTB , PENG_63 , EN	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 , RINTC , NG_64 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 , COGEN , ENG_105 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER#	22, VLSBST	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST G, PAINT O, ENG_1	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 , 1 , PAINT2 , P	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 , ENG_112 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC, GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GI PRINTA , PI ENG_62 , EI	HSTK2 , BESASTK5 , LSATHSTK1 , LAHSTKA , HEHSTKA , GERINTB , PENG_63 , EN	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 , RINTC , NG_64 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 , COGEN , ENG_105 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER#	22, VLSBST	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST G, PAINT O, ENG_1	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 ,	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC, GHSTK6 , WELSTK1 , PAINT4 , ENG_113 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GH PRINTA , PH ENG_62 , EH ENG_114 , EH	HSTK2 , BESASTK5 , LSASTK5 , LSASTK5 , LSASTK5 , LSASTK5 , HESTKA , HESTKA , GENTER , PERCENTER , PERC	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 , RINTC , NG_64 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 , COGEN , ENG_105 , ENG_118 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 , ENG_119 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107 ENG_120	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER# , ENG_108 , ENG_121	22, VLSBST	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST G, PAINT D, ENG_1 3, ENG_1	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 , 1 , PAINT2 , P 10 , ENG_111 , 25 , ENG_126 ,	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 , ENG_112 , ENG_128 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC, GHSTK6 , WELSTK1 , PAINT4 , ENG_113 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GH PRINTA , PH ENG_62 , EH ENG_114 , EH	HSTK2 , BESASTK5 , LSASTK5 , LSASTK5 , LSASTK5 , LSASTK5 , HESTKA , HESTKA , GENTER , PERCENTER , PERC	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 , RINTC , NG_64 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 , COGEN , ENG_105 , ENG_118 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 , ENG_119 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107 ENG_120	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER# , ENG_108 , ENG_121	22, VLSBST	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST G, PAINT D, ENG_1 3, ENG_1	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 , 1 , PAINT2 , P	HSTK5
LSASTK2 , LEWHSTK7, TANHSTKB, MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC, GHSTK6 , WELSTK1 , PAINT4 , ENG_113 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LS TANHSTKD, HI GHSTK7 , GH PRINTA , PH ENG_62 , EH ENG_114 , EH	HSTK2 , BESASTK5 , LSASTK5 , LSASTK5 , LSASTK5 , LSASTK5 , HESTKA , HESTKA , GENTER , PERCENTER , PERC	HSTK3 , SASTK6 , ATHSTK2, HSTKB , HSTK9 , RINTC , NG_64 ,	BHSTK4 , LSASTK7 , LATHSTK3, HHSTKC , GHSTK10 , COGEN , ENG_105 , ENG_118 ,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 , ENG_119 ,	VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107 ENG_120	1, VLSBSTF 2, LEWHSTF 5, LATHSTF , GHSTK1 , GHSTK13 3, BOILER# , ENG_108 , ENG_121	22, VLSBST	X3, VLSBS X4, LEWHS X7, LATHS , GHSTK , HESST G, PAINT D, ENG_1 3, ENG_1	TK4, LSASTK1 , TK5, LEWHSTK6, TK8, TANHSTKA, 3 , GHSTK4 , G K1 , HILSTK1 , 1 , PAINT2 , P 10 , ENG_111 , 25 , ENG_126 ,	HSTK5

```
ENG STNL, ENG DVS , ENG MCCN, ENG SRB1, ENGNULAB, ENGMUSIC, ENG UNT1, ENG UNT2, ENG UNT3, ENG116NU, NEWSTAN1,
NEWSTAN2,
           NEWSTAN3, NEWSTAN4, NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
           ENG 62 , ENG 63 , ENG 64 , ENG 105 , ENG 106 , ENG 107 , ENG 108 , ENG 109 , ENG 110 , ENG 111 , ENG 112 ,
 GEN
ENG 113 ,
           ENG 114 , ENG 115 , ENG 117 , ENG 118 , ENG 119 , ENG 120 , ENG 121 , ENG 123 , ENG 125 , ENG 126 , ENG 128 ,
ENG 129 ,
           ENG_130 , ENG_131 , ENG_132 , E134_133, ENG_STNL, ENG_DVS , ENG_MCCN, ENG_SRB1, ENGNULAB, ENGMUSIC, ENG_UNT1,
ENG_UNT2,
           ENG UNT3, ENG116NU,
 LABS
           WHSTK1_8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
                                          *** SOURCE IDs DEFINING SOURCE GROUPS ***
GROUP ID
                                                         SOURCE IDs
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
           WELSTK1 , NEWLAB A, NEWLAB B, NEWLAB C, NEWLAB D, NEWLAB E, NEWLAB F, NEWLAB G, NEWSTAN1, NEWSTAN2, NEWSTAN3,
NEWSTAN4,
           NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
 COMBUST
           COGEN , BOILER#2, BOILER#3, BOILER#4,
           PRINTA , PRINTB , PRINTC , POURING , PAINT1 , PAINT2 , PAINT3 , PAINT4 ,
 OTHER
 BOILERS BOILER#2, BOILER#3, BOILER#4,
 COGEN
           COGEN
```

GROUP ID					AVERAGE CONC			REC	EPTOR (XR,	YR,	ZELEV, ZFL	AG) OF	TYPE	NETWORK GRID-ID	
ALL	LST HIG	HEST	VALUE	IS	3.50645	ΑT	(566200.00,	4191300.00	,	158.00,	0.00)	DC	NA	
	2ND HIG	HEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00	,	0.00,	0.00)			
	BRD HIG	HEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00	,	0.00,	0.00)			
	TH HIG	HEST	VALUE	IS	0.00000	AT	(0.00,	0.00	,	0.00,	0.00)			
	TH HIG	HEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00	,	0.00,	0.00)			
	STH HIG	HEST	VALUE	IS	0.00000	AT	(0.00,	0.00	,	0.00,	0.00)			
	7TH HIG	HEST	VALUE	IS	0.00000	AT	(0.00,	0.00	,	0.00,	0.00)			
	BTH HIG	HEST	VALUE	IS	0.00000	AT	(0.00,	0.00	,	0.00,	0.00)			
	TH HIG	HEST	VALUE	TS	0.00000	ΑТ	(0.00,	0.00		0.00,	0.00)			
	TH HIG				0.00000		•	0.00,	0.00	,	0.00,	0.00)			

1.73129 AT (566200.00, 4191300.00, 158.00, 0.00) DC 0.00000 AT (0.00, 0.00, 0.00, 0.00, 0.00) GEN 1ST HIGHEST VALUE IS NA 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 4TH HIGHEST VALUE IS 0.00000 AT (5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.00) 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 7TH HIGHEST VALUE IS 0.00) 8TH HIGHEST VALUE IS 0.00) 0.00, 9TH HIGHEST VALUE IS 0.00) 10TH HIGHEST VALUE IS 0.00) 0.65797 AT (566200.00, 4191300.00, 158.00, 0.00000 AT (0.00, 0.00, 0.00, 0.00, 0.00, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 0.65797 AT (566200.00, 4191300.UU, 0.00000 AT (0.00, 0.00, 0.00, 0.00, 0.0000 AT (0.00, 0.00, 0.00, 0.0000 AT (0.00, 0.00, 0.00, 0.00, 0.0000 AT (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.0000 AT (0.00, 0.000, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, LABS 1ST HIGHEST VALUE IS 0.00) DC 158.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, NA 2ND HIGHEST VALUE IS 0.00) 3RD HIGHEST VALUE IS 0.00) 4TH HIGHEST VALUE IS 0.00) 5TH HIGHEST VALUE IS 0.00) 6TH HIGHEST VALUE IS 0.00) 7TH HIGHEST VALUE IS 0.00) 8TH HIGHEST VALUE IS 0.00) 9TH HIGHEST VALUE IS 0.00) 10TH HIGHEST VALUE IS 0.00)

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CANCER IN MICROGRAMS/M**3

NETWORK AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID 1.10750 AT (566200.00, 4191300.00, 158.00, 0.00000 AT (0.00, COMBUST 1ST HIGHEST VALUE IS 0.00) DC 0.00) 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 0.00) 4TH HIGHEST VALUE IS 0.00) 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 0.00) 7TH HIGHEST VALUE IS 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS 0.00) 0.00983 AT (566200.00, 4191300.00, 158.00, 0.00000 AT (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1ST HIGHEST VALUE IS 0.00) DC 0.00000 AT (0.00, 0.0000 AT (0.00, 0.0000 AT (0.00, 158.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2ND HIGHEST VALUE IS 0.00) 3RD HIGHEST VALUE IS 0.00) 0.00000 AT (0.00, 0.00, 4TH HIGHEST VALUE IS 0.00) 0.00, 5TH HIGHEST VALUE IS 0.00) 0.00, 6TH HIGHEST VALUE IS 7TH HIGHEST VALUE IS 0.00, 0.00) 0.00, 0.00, 0.00, 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS 0.00000 AT (0.00, 0.14920 AT (566200.00, 4191300.00, 158.00, 0.00000 AT (0.00, 0.00, 0.00, BOILERS 1ST HIGHEST VALUE IS 0.00) DC 158.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00000 AT (0.00, 2ND HIGHEST VALUE IS 0.00) 0.00, 0.00000 AT (0.00, 3RD HIGHEST VALUE IS 0.00000 AT (0.00, 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 0.00, 0.00, 6TH HIGHEST VALUE IS 7TH HIGHEST VALUE IS 0.00, 8TH HIGHEST VALUE IS 0.00, 0.00) 9TH HIGHEST VALUE IS 0.00, 0.00) 10TH HIGHEST VALUE IS 0.00.

*** THE SUMMARY OF MAXIMUM PERIOD ($8760\ \mathrm{HRS})$ RESULTS ***

GROUP II	D 		AVERAGE CONC		REC	EPTOR (XR,	YR, ZELEV,	ZFLAG) OF	TYPE	NETWORK GRID-ID	
COGEN	1ST HIGHEST 2ND HIGHEST 3RD HIGHEST 4TH HIGHEST	VALUE IS	0.00000 A 0.00000 A	T (T (566200.00, 0.00, 0.00, 0.00,	4191300.00, 0.00, 0.00, 0.00,	0.00,	0.00)	DC	NA	

5TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)
6TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)
7TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)
8TH	HIGHEST	VALUE	IS	0.00000	AΤ	(0.00,	0.00,	0.00,	0.00)
9TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)
10TH	HIGHEST	VALUE	IS	0.00000	ΑT	(0.00,	0.00,	0.00,	0.00)

*** ISCST3 - VERSION 02035 ***

*** UC Berkeley - 12/2003; vjh Receptor Grid - Chronic

*** Model Executed on 02/06/04 at 11:00:26 ***

Input File - D:\Beest\UCBerk\10-03\Final\LRDP\LRDP-Chron.DTA

Output File - D:\Beest\UCBerk\10-03\Final\LRDP\LRDP-Chron.LST

 $\label{local_met2} \mbox{Met File - D:\Beest\UCBerk\10-03\mbox{\mbox{$\mbox{$met2$\lbl-97a.asc}}}} \\$

Number of sources - 142
Number of source groups - 37
Number of receptors - 1431

*** POINT SOURCE DATA ***

		EMISSION RATE			BASE			STACK			EMISSION RATE
		(GRAMS/SEC)			ELEV.		TEMP.		DIAMETER	EXISTS	SCALAR VARY
	CATS.							(M/SEC)			BY
WHSTK1 8	0	0.21000E-05	564704.4	4191782.8	66.8	31.70	293.15	7.12	0.19	YES	
NWAF9	0	0.75100E-04	564718.8	4191791.2	66.8	29.57	293.15	16.48	0.74	YES	
WHSTK10	0	0.21000E-05	564724.4	4191826.0	66.8	8.60	293.15	7.12	0.34	YES	
MHSTK1	0	0.37600E-05	564794.4	4191795.8	74.8	7.61	293.15	17.25	0.34	YES	
MHSTK2							293.15		0.29	YES	
MHSTK3	0	0.37600E-05 0.37600E-05	564794.1	4191843.0	74.8	10.89			0.48	YES	
MHSTK4	0	0.37600E-05	564800.9	4191787.2	74.8	15.61	293.15		0.33	YES	
MHSTK6	0	0.37600E-05	564801 3	4191808 2	74 8	10 94	293.15		0.34	YES	
KHSTK1		0.11500E-03					293.15		2.76	YES	
KHSTK2		0.11500E-03					293.15		2.76	YES	
KHSTK3		0.11500E-03					293.15		2.76	YES	
KHSTK4		0.11500E-03					293.15		2.76	YES	
BHSTK1		0.11500E-03					293.15		1.26	YES	
BHSTK2		0.11600E-04					293.15		1.26	YES	
BHSTK3		0.11600E-04					293.15		1.26	YES	
BHSTK4		0.11600E-04 0.11600E-04					293.15		0.37	YES	
BHSTK5		0.11600E-04 0.11600E-04							0.37	YES	
VLSBSTK1	0	0.12100E-03	504091.0	4191000.0	67.4	27.04	293.15		1.22	YES	
VLSBSTK1 VLSBSTK2	0	0.12100E-03 0.12100E-03	504933.0	4191033.2	64.4	27.04	293.15		1.22	YES	
		0.12100E-03 0.12100E-03					293.15		1.22	YES	
VLSBSTK3		0.12100E-03 0.12100E-03									
VLSBSTK4									1.22	YES	
LSASTK1		0.70000E-04							1.22	YES	
LSASTK2		0.70000E-04							1.22	YES	
LSASTK3		0.70000E-04							1.22	YES	
LSASTK4		0.70000E-04					293.15		1.22	YES	
LSASTK5		0.70000E-04							1.22	YES	
LSASTK6		0.70000E-04					293.15		1.22	YES	
LSASTK7		0.70000E-04							0.30	YES	
LEWHSTK1		0.21600E-05				12.80	293.15		0.36	YES	
LEWHSTK2		0.21600E-05				12.80	293.15		0.36	YES	
LEWHSTK3		0.21600E-05				12.80	293.15		0.36	YES	
LEWHSTK4		0.21600E-05				12.80	293.15		0.36	YES	
LEWHSTK5		0.21600E-05				12.80	293.15		0.36	YES	
LEWHSTK6		0.21600E-05				12.80	293.15		0.36	YES	
LEWHSTK7		0.21600E-05				12.80	293.15		0.36	YES	
LEWHSTK8		0.21600E-05				12.80	293.15			YES	
LEWHSTK9	0	0.21600E-05	565593.3	4191808.2	106.7	12.80	293.15	3.11	0.36	YES	
LATHSTK1	0	0.92400E-05	565555.1	4191799.2	104.6	42.37	293.15	6.28	0.34	YES	
LATHSTK2	0	0.92400E-05 0.92400E-05	565561.1	4191812.0	104.6	36.88	293.15	6.28	0.70	YES	
LATHSTK3	0	0.92400E-05	565531.6	4191800.2	104.6	36.88	293.15	6.28	0.48	YES	

SOURCE ID	NUMBER PART. CATS.	EMISSION RAT	E X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
LATHSTK4	0	0.92400E-05	565515.1	4191799.5	104.6	37.19	293.15	6.28	0.96	YES	
LATHSTK5	0	0.92400E-05	565539.7	4191794.2	104.6	42.37	293.15	6.28	0.70	YES	
LATHSTK6	0	0.92400E-05	565527.3	4191776.0	104.6	38.40	293.15	6.28	0.74	YES	
LATHSTK7	0	0.92400E-05	565544.9	4191781.5	104.6	38.40	293.15	6.28	0.31	YES	
LATHSTK8	0	0.92400E-05	565562.3	4191787.0	104.6	38.40	293.15	6.28	0.70	YES	
TANHSTKA	0	0.79700E-05	565492.1	4191793.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKB	0	0.79700E-05	565496.8	4191794.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKC	0	0.79700E-05	565494.1	4191787.2	100.6	39.32	293.15	2.94	1.69	YES	

TANHSTKD	0	0.79700E-05	565499.1 4191788.2	100.6	39.32	293.15	2.94	1.69	YES
HHSTKA	0	0.19400E-04	565540.8 4191749.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKB	0	0.19400E-04	565565.6 4191756.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKC	0	0.19400E-04	565576.8 4191717.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKD	0	0.19400E-04	565553.2 4191710.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKE	0	0.19400E-04	565543.4 4191746.5	103.6	20.12	293.15	4.15	0.81	YES
GHSTK1	0	0.12100E-05	565507.1 4191756.0	103.6	16.06	293.15	5.92	0.30	YES
GHSTK2	0	0.12100E-05	565510.6 4191744.8	103.6	16.06	293.15	5.92	0.25	YES
GHSTK3	0	0.12100E-05	565512.4 4191739.0	103.6	16.37	293.15	5.92	0.30	YES
GHSTK4	0	0.12100E-05	565514.7 4191737.8	103.6	15.91	293.15	5.92	0.31	YES
GHSTK5	0	0.12100E-05	565514.9 4191732.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK6	0	0.12100E-05	565500.2 4191755.2	103.6	16.12	293.15	5.92	0.30	YES
GHSTK7	0	0.12100E-05	565501.1 4191753.0	103.6	16.37	293.15	5.92	0.84	YES
GHSTK8	0	0.12100E-05	565503.7 4191744.2	103.6	16.00	293.15	5.92	0.30	YES
GHSTK9	0	0.12100E-05	565505.2 4191740.2	103.6	16.37	293.15	5.92	0.26	YES
GHSTK10	0	0.12100E-05	565506.9 4191735.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK11	0	0.12100E-05	565509.7 4191728.2	103.6	16.22	293.15	5.92	0.30	YES
GHSTK12	0	0.12100E-05	565509.0 4191725.5	103.6	16.06	293.15	5.92	0.30	YES
GHSTK13	0	0.12100E-05	565516.9 4191725.8	103.6	15.91	293.15	5.92	0.40	YES
CHSTK1	0	0.30600E-04	565393.9 4192008.8	110.3	26.85	293.15	2.00	1.00	YES
HESSTK1	0	0.98800E-04	565234.6 4191926.2	98.2	15.39	293.15	2.00	1.00	YES
HILSTK1	0	0.28000E-02	564874.6 4191815.0	80.4	14.96	293.15	2.00	1.00	YES
MULSTK1	0	0.12000E-06	564779.7 4191737.8	74.4	17.24	293.15	2.00	1.00	YES
WELSTK1	0	0.39400E-05	564933.7 4191795.2	81.7	5.89	293.15	2.00	1.00	YES
PRINTA	0	0.12300E-04	564584.7 4191553.2	60.0	8.91	293.15	2.70	0.84	YES
PRINTB	0	0.12300E-04	564614.4 4191520.8	60.0	8.91	293.15	2.70	0.84	YES
PRINTC	0	0.12300E-04	564643.1 4191525.5	60.0	8.91	293.15	2.70	0.60	YES
COGEN	0	0.17900E-01	564876.0 4191492.0	71.9	12.77	430.37	10.45	2.28	YES
BOILER#2	0	0.11800E-03	564863.6 4191499.5	71.9	8.80	522.82	7.97	1.52	YES
BOILER#3	0	0.44700E-03	564881.9 4191505.8	71.9	8.80	554.11	10.53	1.52	YES
BOILER#4	0	0.54000E-03	564885.8 4191495.8	71.9	8.80	566.65	12.63	1.52	YES
POURING	0	0.16100E-05	564847.8 4191467.0	70.1	14.94	293.15	4.62	0.56	YES

ENG 62 0 0.31494E-05 565567.6 4191086.5 85.1 4.57 800.37 146.01 0.13 NO ENG 63 0 0.1574TE-05 566468.2 4191897.5 70.2 4.57 799.85 125.00 0.13 YES ENG 64 0 0.48231E-06 66648.2 4191897.5 70.2 4.57 799.85 125.00 0.13 YES ENG 105 0 0.41470E-04 566991.4 19167.8 71.1 4.57 810.96 70.10 0.23 YES ENG 106 0 0.41470E-04 566991.4 19167.8 71.1 4.57 810.96 70.10 0.20 YES ENG 107 0 0.3184E-04 566991.4 19196.8 71.2 0.2 0.3 0.48 810.96 70.10 0.20 YES ENG 108 0 0.33184E-04 566991.4 19196.8 76.2 0.00 810.96 70.10 0.18 YES ENG 109 0 0.1064E-04 56691.8 419190.8 7.62 0.00 810.96 70.10 0.18 YES ENG 109 0 0.33184E-04 566951.8 419180.1.2 11.7 3.05 810.96 70.10 0.15 YES ENG 110 0 0.55239E-05 566465.9 4191874.5 68.4 4.57 810.96 70.10 0.15 YES ENG 110 0 0.55239E-05 566465.9 4191874.5 68.4 4.57 810.96 70.10 0.10 YES ENG 111 0 0.13810E-04 565501.1 4191757.8 78.9 3.05 810.96 70.10 0.10 NO ENG 112 0 0.13810E-04 565573.6 419194.8 92.0 3.05 810.93 70.10 0.10 NO ENG 114 0 0.13810E-04 565573.6 419194.8 92.0 3.05 810.93 70.10 0.10 NO ENG 114 0 0.13810E-04 565573.6 419194.8 92.0 3.05 810.93 70.10 0.10 NO ENG 117 0 0.13810E-04 565573.6 419194.8 92.0 3.05 810.93 70.10 0.10 NO ENG 117 0 0.13810E-04 565573.6 419194.8 92.0 3.05 810.93 70.10 0.10 NO ENG 117 0 0.13810E-04 565573.6 419194.8 92.0 3.05 810.93 70.10 0.10 NO ENG 117 0 0.13810E-04 565573.5 9191609.0 99.3 3.05 810.93 70.10 0.10 NO ENG 117 0 0.13810E-04 565573.6 4191404.0 18.9 3.05 810.93 70.10 0.10 NO ENG 119 0 0.69678E-05 566926.2 419443.0 118.9 3.05 810.93 70.10 0.10 NO ENG 119 0 0.77679E-05 568468.8 4191771.0 70.5 4.57 810.96 70.10 0.08 YES ENG 120 0 0.6966E-05 566538.1 4191460.8 67.7 3.05 810.96 70.10 0.08 YES ENG 121 0 0.69254E-05 566538.1 4191460.8 67.7 6.00 810.96 70.10 0.08 YES ENG 122 0 0.77619E-05 566454.8 419144.5 77.6 0.00 810.96 70.10 0.08 YES ENG 130 0 0.77619E-05 5665383.1 4191740.2 97.0 92.4 4815.40 134.54 0.08 YES ENG 131 13 0 0.12430E-05 565536.3 4191493.9 92.0 92.0 92.3 15 3.97 1.00 YES NEMILAB 0 0.69254E-05 566538.1 4191948.1 92.7 10.0 92.15 3.97 1.0	TD	CAMC		(MEMED C)	(MEMEDC)	(MEMEDC)	(MEMEDC)	(DEC E)	(M/CEC)	(MEMEDC)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
ENG_63 0 0.151478-05 565567.6 4191085.5 85.1 4.57 799.8 105.2 00 0.13 YES ENG_64 0 0.482318-06 564668.2 4191687.5 70.2 4.57 799.8 152.00 0.13 YES ENG_105 0 0.19787E-04 564939.1 4191457.8 71.1 4.57 810.9 70.10 0.20 YES ENG_105 0 0.19787E-04 564939.1 4191457.8 71.1 4.57 810.9 6 70.10 0.23 YES ENG_106 0 0.41470E-04 564991.6 4191614.5 73.6 30.48 810.96 70.10 0.20 YES ENG_107 0 0.33184E-04 564767.4 4191906.8 76.2 0.00 810.96 70.10 0.20 YES ENG_107 0 0.33184E-04 566493.6 4191564.2 68.8 76.2 0.00 810.96 70.10 0.18 YES ENG_109 0 0.11064E-04 565615.8 4191801.2 111.7 3.05 810.96 70.10 0.18 YES ENG_109 0 0.1564E-04 565615.8 4191801.2 111.7 3.05 810.96 70.10 0.15 YES ENG_110 0 0.55239E-05 564655.9 4191874.5 68.4 4.57 810.96 70.10 0.10 YES ENG_110 0 0.55239E-05 564655.9 4191874.5 68.4 4.57 810.96 70.10 0.10 YES ENG_111 0 0.15871E-04 656591.6 4191575.8 78.9 3.05 810.96 70.10 0.11 YES ENG_111 0 0.13810E-04 656576.4 4191014.2 86.0 3.05 810.93 70.10 0.10 NO ENG_113 0 0.13810E-04 565576.9 4191891.2 85.7 3.05 810.93 70.10 0.10 NO ENG_114 0 0.13810E-04 565576.9 4191991.8 92.0 3.05 810.93 70.10 0.10 NO ENG_115 0 0.13810E-04 565575.9 4191609.0 99.3 3.05 810.93 70.10 0.10 NO ENG_115 0 0.13810E-04 565575.9 4191609.0 99.3 3.05 810.93 70.10 0.10 NO ENG_117 0 0.13810E-04 565575.9 4191609.0 99.3 3.05 810.93 70.10 0.10 NO ENG_117 0 0.13810E-04 565575.9 4191609.0 99.3 3.05 810.96 70.10 0.10 NO ENG_117 0 0.96678E-05 5646548 8191809.5 86.6 4.57 810.96 70.10 0.10 YES ENG_118 0 0.66956E-05 5646548 8191809.5 86.6 4.57 810.96 70.10 0.08 YES ENG_120 0 0.69556E-05 5645548 8191809.5 86.6 4.57 810.96 70.10 0.08 YES ENG_120 0 0.6956E-05 5645548 8191809.5 86.6 4.57 810.96 70.10 0.08 YES ENG_120 0 0.6956E-05 56538.9 4191804.2 97.0 2.44 810.96 70.10 0.08 YES ENG_123 0 0.27619E-05 565383.1 4191740.2 97.0 2.44 810.96 70.10 0.08 YES ENG_130 0 0.27619E-05 565489.2 4191442.5 77.6 0.00 810.96 70.10 0.08 YES ENG_130 0 0.27619E-05 5654891.2 4191852.9 80.9 3.05 810.96 70.10 0.08 YES ENG_130 0 0.27619E-05 5654891.2 4191852.9 80.9 3.05 810.96 70.10 0.08 YES ENG_130												
ENC_64	ENG_62	0	0.31494E-05	565567.6	4191086.5	85.1	4.57	800.37	146.01	0.13		
ENG_105 0 0.482218-06 56542.9 4191687.0 98.2 3.05 817.07 0.23 YES ENG_106 0 0.41470E-04 564991.6 4191614.5 73.6 30.48 810.96 70.10 0.23 YES ENG_107 0 0.33184E-04 564691.6 4191614.5 73.6 30.48 810.96 70.10 0.20 YES ENG_108 0 0.33184E-04 564674.4 4191906.8 76.2 0.00 810.96 70.10 0.18 YES ENG_108 0 0.33184E-04 564630.6 4191564.2 68.8 7.62 810.96 70.10 0.18 YES ENG_109 0 0.11064E-04 565615.8 4191801.2 111.7 3.05 810.96 70.10 0.15 YES ENG_110 0 0.55239E-05 564665.9 4191874.5 68.4 4.57 810.96 70.10 0.15 YES ENG_110 0 0.55239E-05 564665.9 4191874.5 68.4 4.57 810.96 70.10 0.10 YES ENG_111 0 0.15871E-04 565091.1 4191757.8 78.9 3.05 810.96 70.10 0.11 YES ENG_112 0 0.13810E-04 565551.4 4191194.8 92.0 3.05 810.93 70.10 0.10 NO ENG_113 0 0.13810E-04 565501.4 4191014.2 86.0 3.05 810.93 70.10 0.10 NO ENG_114 0 0.13810E-04 565570.2 9 41910991.8 91.4 3.05 810.93 70.10 0.10 NO ENG_117 0 0.13810E-04 565570.9 94191609.0 99.3 3.05 810.93 70.10 0.10 NO ENG_117 0 0.03810E-05 56472.8 4191710.0 0.99.3 3.05 810.93 70.10 0.10 NO ENG_118 0 0.66936E-05 564664.8 4191890.5 68.6 4.57 810.96 70.10 0.13 YES ENG_119 0 0.96873E-05 564654.8 4191710. 70.5 4.57 810.96 70.10 0.08 YES ENG_120 0 0.69666E-05 565318.0 4191422.5 86.1 3.05 810.93 70.10 0.00 NO ENG_121 0 0.69254E-05 565452.8 4191710. 70.5 4.57 810.96 70.10 0.08 YES ENG_120 0 0.69666E-05 565318.0 4191422.5 86.1 3.05 810.96 70.10 0.08 YES ENG_120 0 0.7372E-05 565526.4 4191431.5 77.6 0.00 810.96 70.10 0.08 YES ENG_120 0 0.72712E-05 565526.4 4191431.5 77.6 0.00 810.96 70.10 0.08 YES ENG_121 0 0.04231E-06 56497.0 4191955.2 193.8 3.05 810.96 70.10 0.08 YES ENG_122 0 0.277619E-05 565469.2 41919450. 97.0 8.9 8.3 3.05 810.96 70.10 0.08 YES ENG_131 0 0.46231E-06 56497.0 4191851.5 98.9 2.44 815.40 134.54 0.08 YES ENG_131 0 0.46231E-06 56497.0 4191851.5 98.9 2.44 815.40 134.54 0.08 YES ENG_132 0 0.69360E-05 56533.3 4191718.8 77.6 6.10 293.15 3.97 1.00 YES ENG_131 0 0.46231E-06 56497.0 4191861.5 106.7 6.10 293.15 3.97 1.00 YES ENG_131 0 0.46380E-05 565363.4 4191940.2 70.5 6.10 293.15 3.97 1.00 YES ENG_1	ENG_63	0	0.15/4/E-05	564668.2	4191897.5	70.2	4.5/	799.85	152.00	0.13	YES	
ENG_106	ENG_64	0	0.48231E-06	565452.9	4191687.0	98.2	3.05	817.07	58.47	0.08		
ENG_107	ENG_105	0	0.19787E-04	564939.1	4191457.8	71.1	4.57	810.96	70.10	0.23		
ENG_108	ENG_106	0	0.41470E-04	564991.6	4191614.5	73.6	30.48	810.96	70.10	0.20		
ENG 109 0 0.11064E-04 565615.8 4191801.2 111.7 3.05 810.96 70.10 0.15 YES ENG 110 0 0.55239E-05 564655.9 4191874.5 68.4 4.57 810.96 70.10 0.10 YES ENG 111 0 0.15871E-04 565091.1 4191575.8 78.9 3.05 810.93 70.10 0.10 YES ENG 111 0 0.13810E-04 565613.6 4191194.8 92.0 3.05 810.93 70.10 0.10 NO ENG 114 0 0.13810E-04 5656673.6 4191194.8 92.0 3.05 810.93 70.10 0.10 NO ENG 114 0 0.13810E-04 565601.4 4191014.2 86.0 3.05 810.93 70.10 0.10 NO ENG 114 0 0.13810E-04 565670.4 4191014.2 86.0 3.05 810.93 70.10 0.10 NO ENG 115 0 0.13810E-04 565501.9 4191609.0 99.3 3.05 810.93 70.10 0.10 NO ENG 117 0 0.13810E-04 565575.9 4191609.0 99.3 3.05 810.93 70.10 0.10 NO ENG 117 0 0.13810E-04 565575.9 4191609.0 99.3 3.05 810.93 70.10 0.10 NO ENG 117 0 0.03810E-05 564654.8 4191890.5 68.6 4.57 810.96 70.10 0.10 YES ENG 118 0 0.69866E-05 564654.8 4191890.5 68.6 4.57 810.96 70.10 0.13 YES ENG 120 0 0.69866E-05 565926.2 4191443.0 118.9 3.05 810.93 70.10 0.08 YES ENG 121 0 0.69254E-05 565926.2 4191445.2 86.1 3.05 810.93 70.10 0.08 YES ENG 121 0 0.69254E-05 565926.2 4191443.0 118.9 3.05 810.96 70.10 0.08 YES ENG 123 0 0.85331E-05 565256.4 4191652.8 88.3 3.05 810.93 70.10 0.08 YES ENG 125 0 0.27372E-05 564811.2 4191460.8 67.7 3.05 810.96 70.10 0.08 YES ENG 126 0 0.22055E-05 565383.1 419173.5 98.9 2.44 810.96 70.10 0.08 YES ENG 120 0 0.27619E-05 565383.1 419173.5 98.9 2.44 810.96 70.10 0.08 YES ENG 130 0 0.17128E-05 565533.3 4191713.5 98.9 2.44 810.96 70.10 0.05 YES ENG 131 0 0.48231E-06 564970.3 4191484.2 71.3 1.83 817.07 58.47 0.08 YES ENG 132 0 0.2803E-05 565383.4 419173.5 98.9 2.44 810.96 70.10 0.05 YES ENG 132 0 0.48231E-06 564900.3 4191787.5 77.9 6.10 293.15 3.97 1.00 YES ENG 132 0 0.48231E-06 565380.0 4191939.2 104.3 3.05 769.29 135.05 0.13 YES ENG 132 0 0.48231E-06 565380.0 4191939.2 104.3 3.05 769.29 135.05 0.13 YES ENG 132 0 0.48231E-06 565808.3 4191509.5 105.8 105.8 10.9 10.9 10.9 10.9 YES ENG 132 0 0.48231E-06 565808.0 4191939.2 104.3 3.05 769.29 135.05 0.13 YES ENG 132 0 0.4830E-05 565364.1 4191990.5 109.8 2.13 769.26 76.14 0.18 YES	ENG_107	0	0.33184E-04	564767.4	4191906.8	76.2	0.00	810.96	70.10	0.18		
ENG 110 0 0.55239E-05 56465.9 4191874.5 68.4 4.57 810.96 70.10 0.10 YES ENG 111 0 0.55239E-05 56465.9 4191874.5 68.4 4.57 810.96 70.10 0.10 YES ENG 111 0 0.15871E-04 565091.1 4191757.8 78.9 3.05 810.96 70.10 0.11 YES ENG 112 0 0.13810E-04 565542.8 4191208.2 85.7 3.05 810.93 70.10 0.10 NO ENG 113 0 0.13810E-04 565673.6 4191194.8 92.0 3.05 810.93 70.10 0.10 NO ENG 114 0 0.13810E-04 565673.6 4191194.8 92.0 3.05 810.93 70.10 0.10 NO ENG 114 0 0.13810E-04 565671.9 4191014.2 86.0 3.05 810.93 70.10 0.10 NO ENG 115 0 0.13810E-04 565570.9 4191060.0 99.3 3.05 810.93 70.10 0.10 NO ENG 117 0 0.13810E-04 565575.9 4191609.0 99.3 3.05 810.93 70.10 0.10 NO ENG 117 0 0.13810E-04 565575.9 4191609.0 99.3 3.05 810.96 70.10 0.10 YES ENG 118 0 0.65956E-05 564654.8 419180.5 68.6 4.57 810.96 70.10 0.13 YES ENG 119 0 0.96873E-05 564728.8 4191771.0 70.5 4.57 810.96 70.10 0.08 YES ENG 120 0 0.69254E-05 565925.2 4191443.0 118.9 3.05 810.96 70.10 0.08 YES ENG 121 0 0.69254E-05 565925.2 4191443.0 118.9 3.05 810.96 70.10 0.08 YES ENG 123 0 0.85331E-05 565259.4 4191652.8 88.3 3.05 810.96 70.10 0.08 YES ENG 125 0 0.27372E-05 564811.2 4191460.8 67.7 3.05 810.96 70.10 0.08 YES ENG 126 0 0.22055E-05 565469.2 4191471.5 77.6 0.00 810.96 70.10 0.08 YES ENG 129 0 0.27619E-05 565383.1 4191740.2 97.0 2.44 815.40 134.54 0.08 YES ENG 129 0 0.27619E-05 56533.3 4191740.2 97.0 2.44 815.40 134.54 0.08 YES ENG 129 0 0.27619E-05 56533.3 4191740.2 97.0 2.44 815.40 134.54 0.08 YES ENG 130 0 0.17128E-05 565533.3 4191740.2 97.0 2.44 815.40 134.54 0.08 YES ENG 131 0 0.48231E-06 56469.2 4191955.2 109.8 3.05 810.96 70.10 0.05 YES ENG 130 0 0.17128E-05 565533.3 4191740.2 97.0 2.44 815.40 134.54 0.08 YES ENG 132 0 0.48231E-06 564800.3 4191781.8 74.3 1.83 817.07 58.47 0.08 YES ENG 132 0 0.48231E-06 565688.8 4191570.2 109.8 3.05 769.29 135.05 0.13 YES NEWLAB B 0 0.49300E-03 565604.7 4191861.5 106.7 6.10 293.15 3.97 1.00 YES NEWLAB B 0 0.49300E-03 565604.7 4191861.5 106.7 6.10 293.15 3.97 1.00 YES NEWLAB G 0 0.46380E-05 5656595.2 4191846.8 73.6 6.00 293.15 3.97 1.00 YES N	ENG_108	0	0.33184E-04	564930.6	4191564.2	68.8	7.62	810.96	70.10	0.18		
ENG_110	ENG_109	0	0.11064E-04	565615.8	4191801.2	111.7	3.05	810.96	70.10	0.15		
ENG_111	ENG_110	0	0.55239E-05	564655.9	4191874.5	68.4	4.57	810.96	70.10	0.10		
ENG 112	ENG_111	0	0.15871E-04	565091.1	4191757.8	78.9	3.05	810.96	70.10	0.11		
ENG_113	ENG_112	0	0.13810E-04	565542.8	4191208.2	85.7	3.05	810.93	70.10	0.10		
ENG_114	ENG_113	0	0.13810E-04	565673.6	4191194.8	92.0	3.05	810.93	70.10	0.10		
ENG_117	ENG_114	0	0.13810E-04	565601.4	4191014.2	86.0	3.05	810.93	70.10	0.10		
ENG_118	ENG_115	0	0.13810E-04	565702.9	4190991.8	91.4	3.05	810.93	70.10	0.10		
ENG_118	ENG_117	0	0.13810E-04	565575.9	4191609.0	99.3	3.05	810.96	70.10	0.10		
ENG_119	ENG_118	0	0.65956E-05	564654.8	4191890.5	68.6	4.57	810.96	70.10	0.13		
ENG_120	ENG_119	0	0.96873E-05	564728.8	4191771.0	70.5	4.57	810.96	70.10	0.08		
ENG_121	ENG_120	0	0.69666E-05	565318.0	4191422.5	86.1	3.05	810.96	70.10	0.08		
ENG_123	ENG_121	0	0.69254E-05	565926.2	4191443.0	118.9	3.05	810.93	70.10	0.08		
ENG_125	ENG_123	0	0.85331E-05	565259.4	4191652.8	88.3	3.05	810.96	70.10	0.08	YES	
ENG_126	ENG_125	0	0.27372E-05	564811.2	4191460.8	67.7	3.05	810.96	70.10	0.08		
ENG_128	ENG_126	0	0.22095E-05	565137.9	4191441.5	77.6	0.00	810.96	70.10	0.08		
ENG_129	ENG_128	0	0.27619E-05	565469.2	4191955.2	109.8	3.05	810.96	70.10	0.05	YES	
ENG_130	ENG_129	0	0.27619E-05	565383.1	4191740.2	97.0	2.44	810.96	70.10	0.05	YES	
ENG_131	ENG_130	0	0.17128E-05	565533.3	4191713.5	98.9	2.44	815.40	134.54	0.08	YES	
ENG_132	ENG 131	0	0.48231E-06	564970.3	4191484.2	71.3	1.83	817.07	58.47	0.08	YES	
E134_133	ENG 132	0	0.48231E-06	564800.3	4191781.8	74.3	1.83	817.07	58.47	0.08	YES	
NEWLÄB_A 0 0.24300E-02 564808.8 4191708.2 70.5 6.10 293.15 3.97 1.00 YES NEWLAB_B 0 0.49300E-03 565047.0 4191787.5 77.9 6.10 293.15 3.97 1.00 YES NEWLAB_C 0 0.27500E-03 565301.9 4191832.0 90.7 6.10 293.15 3.97 1.00 YES NEWLAB_D 0 0.14600E-03 565490.2 4191861.5 106.7 6.10 293.15 3.97 1.00 YES NEWLAB_E 0 0.39100E-03 565089.5 4191460.8 73.6 6.10 293.15 3.97 1.00 YES NEWLAB_F 0 0.31000E-03 565368.8 4191521.8 86.7 6.10 293.15 3.97 1.00 YES NEWLAB_G 0 0.89100E-04 565641.7 4191569.5 102.4 6.10 293.15 3.97 1.00 YES NEWLAB_G 0 0.46380E-05 565539.1 4191905.2 114.2 2.13 769.26 76.14 0.18	E134 133	0	0.12449E-04	565380.0	4191939.2	104.3	3.05	769.29	135.05	0.13	YES	
NEWLAB_B 0 0.49300E-03 565047.0 4191787.5 77.9 6.10 293.15 3.97 1.00 YES NEWLAB_C 0 0.27500E-03 565301.9 4191832.0 90.7 6.10 293.15 3.97 1.00 YES NEWLAB_D 0 0.14600E-03 565490.2 4191861.5 106.7 6.10 293.15 3.97 1.00 YES NEWLAB_E 0 0.39100E-03 565308.9 54191460.8 73.6 6.10 293.15 3.97 1.00 YES NEWLAB_F 0 0.31000E-03 565368.8 4191521.8 86.7 6.10 293.15 3.97 1.00 YES NEWLAB_G 0 0.89100E-04 565641.7 4191569.5 102.4 6.10 293.15 3.97 1.00 YES NEWLAB_G 0 0.46380E-05 565539.1 4191905.2 114.2 2.13 769.26 76.14 0.18 YES ENG_MCN 0 0.46380E-05	NEWLAB A	0	0.24300E-02	564808.8	4191708.2	70.5	6.10	293.15	3.97	1.00	YES	
NEWLAB_C 0 0.27500E-03 565301.9 4191832.0 90.7 6.10 293.15 3.97 1.00 YES NEWLAB_D 0 0.14600E-03 565490.2 4191861.5 106.7 6.10 293.15 3.97 1.00 YES NEWLAB_E 0 0.39100E-03 565368.8 4191460.8 73.6 6.10 293.15 3.97 1.00 YES NEWLAB_F 0 0.31000E-03 565368.8 4191521.8 86.7 6.10 293.15 3.97 1.00 YES NEWLAB_G 0 0.89100E-04 565641.7 4191569.5 102.4 6.10 293.15 3.97 1.00 YES ENG_STNL 0 0.46380E-05 565539.1 4191905.2 114.2 2.13 769.26 76.14 0.18 YES ENG_MCCN 0 0.46380E-05 565364.1 4191928.8 93.8 2.13 769.26 76.14 0.18 YES ENG_SRB1 0 0.18550E-05	NEWLAB B	0	0.49300E-03	565047.0	4191787.5	77.9	6.10	293.15	3.97	1.00	YES	
NEWLAB_D 0 0.14600E-03 565490.2 4191861.5 106.7 6.10 293.15 3.97 1.00 YES NEWLAB_E 0 0.39100E-03 565089.5 4191460.8 73.6 6.10 293.15 3.97 1.00 YES NEWLAB_F 0 0.31000E-03 565368.8 4191521.8 86.7 6.10 293.15 3.97 1.00 YES NEWLAB_G 0 0.89100E-04 565641.7 4191569.5 102.4 6.10 293.15 3.97 1.00 YES ENG_STNL 0 0.46380E-05 565539.1 4191905.2 114.2 2.13 769.26 76.14 0.18 YES ENG_DVS 0 0.46380E-05 565364.1 4191990.5 109.8 2.13 769.26 76.14 0.18 YES ENG_MCCN 0 0.18550E-05 565176.4 4191928.8 93.8 2.13 810.93 59.08 0.13 YES ENG_SRB1 0 0.18550E-05	NEWLAB C	0	0.27500E-03	565301.9	4191832.0	90.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_E 0 0.39100E-03 565089.5 4191460.8 73.6 6.10 293.15 3.97 1.00 YES NEWLAB_F 0 0.31000E-03 565368.8 4191521.8 86.7 6.10 293.15 3.97 1.00 YES NEWLAB_G 0 0.89100E-04 565641.7 4191569.5 102.4 6.10 293.15 3.97 1.00 YES ENG_STNL 0 0.46380E-05 565539.1 4191905.2 114.2 2.13 769.26 76.14 0.18 YES ENG_DVS 0 0.46380E-05 565364.1 4191990.5 109.8 2.13 769.26 76.14 0.18 YES ENG_MCCN 0 0.18550E-05 565176.4 4191928.8 93.8 2.13 810.93 59.08 0.13 YES ENG_SRB1 0 0.18550E-05 564595.2 4191928.2 67.3 2.13 810.93 59.08 0.13 YES	NEWLAB D	0	0.14600E-03	565490.2	4191861.5	106.7	6.10	293.15	3.97	1.00	YES	
NEWLAB_F 0 0.31000E-03 565368.8 4191521.8 86.7 6.10 293.15 3.97 1.00 YES NEWLAB_G 0 0.89100E-04 565641.7 4191569.5 102.4 6.10 293.15 3.97 1.00 YES ENG_STNL 0 0.46380E-05 565539.1 4191905.2 114.2 2.13 769.26 76.14 0.18 YES ENG_DVS 0 0.46380E-05 565364.1 4191990.5 109.8 2.13 769.26 76.14 0.18 YES ENG_MCCN 0 0.18550E-05 565176.4 4191928.8 93.8 2.13 810.93 59.08 0.13 YES ENG_SRB1 0 0.18550E-05 564595.2 4191928.2 67.3 2.13 810.93 59.08 0.13 YES	NEWLAB E	0	0.39100E-03	565089.5	4191460.8	73.6	6.10	293.15	3.97	1.00	YES	
NEWLAB_G 0 0.89100E-04 565641.7 4191569.5 102.4 6.10 293.15 3.97 1.00 YES ENG_STNL 0 0.46380E-05 565539.1 4191905.2 114.2 2.13 769.26 76.14 0.18 YES ENG_DVS 0 0.46380E-05 565364.1 4191990.5 109.8 2.13 769.26 76.14 0.18 YES ENG_MCCN 0 0.18550E-05 565176.4 4191928.8 93.8 2.13 810.93 59.08 0.13 YES ENG_SRB1 0 0.18550E-05 564595.2 4191928.2 67.3 2.13 810.93 59.08 0.13 YES	NEWLAB F	0	0.31000E-03	565368.8	4191521.8	86.7	6.10	293.15	3.97	1.00	YES	
ENG_STNL 0 0.46380E-05 565539.1 4191905.2 114.2 2.13 769.26 76.14 0.18 YES ENG_DVS 0 0.46380E-05 565364.1 4191990.5 109.8 2.13 769.26 76.14 0.18 YES ENG_MCCN 0 0.18550E-05 565176.4 4191928.8 93.8 2.13 810.93 59.08 0.13 YES ENG_SRB1 0 0.18550E-05 564595.2 4191928.2 67.3 2.13 810.93 59.08 0.13 YES	NEWLAB G	0	0.89100E-04	565641.7	4191569.5	102.4	6.10	293.15	3.97	1.00	YES	
ENG_DVS 0 0.46380E-05 565364.1 4191990.5 109.8 2.13 769.26 76.14 0.18 YES ENG_MCCN 0 0.18550E-05 565176.4 4191928.8 93.8 2.13 810.93 59.08 0.13 YES ENG_SRB1 0 0.18550E-05 564595.2 4191928.2 67.3 2.13 810.93 59.08 0.13 YES	ENG STNL	0	0.46380E-05	565539.1	4191905.2	114.2	2.13	769.26	76.14	0.18	YES	
ENG_MCCN 0 0.18550E-05 565176.4 4191928.8 93.8 2.13 810.93 59.08 0.13 YES ENG_SRB1 0 0.18550E-05 564595.2 4191928.2 67.3 2.13 810.93 59.08 0.13 YES	ENG DVS	0	0.46380E-05	565364.1	4191990.5	109.8	2.13	769.26	76.14	0.18	YES	
ENG SRB1 0 0.18550E-05 564595.2 4191928.2 67.3 2.13 810.93 59.08 0.13 YES	ENG MCCN	0	0.18550E-05	565176.4	4191928.8	93.8	2.13	810.93	59.08	0.13		
	ENG_SRB1	0	0.18550E-05	564595.2	4191928.2	67.3	2.13	810.93	59.08	0.13		

BASE STACK STACK STACK BUILDING EMISSION RATE

*** POINT SOURCE DATA ***

NUMBER EMISSION RATE

SOURCE ID	PART.	(GRAMS/SEC)	X			HEIGHT (METERS)		EXIT VEL. (M/SEC)			SCALAR VARY BY	
ENGMISTO	0	0.18550E-05	565510.9	4191488 8	94 8	2 13	810 93	59 08	0.13	YES		
ENG UNT1		0.18550E-05							0.13	NO		
ENG_UNT2		0.18550E-05							0.13	NO		
ENG_UNT3		0.18550E-05							0.13	NO		
ENG116NU		0.39260E-05							0.15	NO		
NEWSTAN1		0.31800E-03							1.32	YES YES		
NEWSTAN2		0.31800E-03										
NEWSTAN3 NEWSTAN4		0.31800E-03 0.31800E-03					293.15 293.15		0.76 0.61	YES YES		
NEWSTAN5		0.31800E-03					293.15		0.76	YES		
NEWSTAN6		0.31800E-03					293.15		0.76	YES		
NEWSTAN7	0	0.31800E-03 0.31800E-03	565542.0	4191901.0	112.9	41.90	293.15			YES		
NEWSTAN8									0.76	YES YES		
NEWDAVS1	0	0.30400E-03	565340.6	4191981.0	108.9	33.79	293.15	12.66	1.63	YES YES YES		
NEWDAVS2	0	0.30400E-03 0.30400E-03	565338./	4191980.8	108.9	33.79	293.15	12.66	1.63	YES		
NEWDAVS3 NEWDAVS4	0	0.30400E-03	565328 4	4191900.0	109.2	33.79	293.13	13.62	0.86	YES		
11211101		0.001002 00	0000201	1131300.2	103.2	00.73	230.10	10.02	0.00	120		
				***	VOLUME	SOURCE DAT	'A ***					
			_									
COLIDGE	NUMBER	EMISSION RATE (GRAMS/SEC)	37	37	BASE	RELEASE	INIT.		EMISSION			
	CATS.								SCALAR Y			
			•					. ,				
MHSTK5	0	0.37600E-05	564821.2	4191842.8	74.8	6.95	0.07	2.42				
PAINTI	0	0.10600E-05	564917.1	4191432.5	72.0	4.57	3.54	4.25				
PAINIZ PAINT3	0	0.10600E-05	565541 5	4191034.0	90.0	4.57	3.54	4.25				
PAINT4	0	0.10600E-05 0.10600E-05 0.10600E-05 0.10600E-05	564865.7	4191751.0	77.0	4.57	3.54	4.25				
				+++ COUDCE	TD- DDD	TNITNIC COLLE	CE CDOUE	0 +++				
				*** SOURCE	E IDs DEF	INING SOUF	RCE GROUP	S ***				
GROUP ID				*** SOURCE		INING SOUF RCE IDs	RCE GROUP	PS ***				
GROUP ID				*** SOURCE			RCE GROUP	PS ***				
GROUP ID				*** SOURCE			RCE GROUP	PS ***				
	WHSTK1 8,	NWAF9 , WI	ISTK10 ,		SOU	RCE IDs			, MHSTK6	, KHSTK1	, KHSTK2 , K	HSTK3
ALL	WHSTK1_8,	NWAF9 , W	istk10 , 1		SOU	RCE IDs			, MHSTK6	, KHSTK1	. , KHSTK2 , KI	HSTK3
	_			MHSTK1 , N	SOU:	RCE IDs	MHSTK4	, MHSTK5				HSTK3
ALL ,	_			MHSTK1 , N	SOU:	RCE IDs	MHSTK4	, MHSTK5			. , KHSTK2 , KI	HSTK3
ALL	_			MHSTK1 , N	SOU:	RCE IDs	MHSTK4	, MHSTK5				HSTK3
ALL ,	KHSTK4 ,	BHSTK1 , BH	HSTK2 ,	MHSTK1 , N BHSTK3 , F	SOU: MHSTK2 , BHSTK4 ,	MHSTK3 ,	MHSTK4	, MHSTK5	K2, VLSBSTI	K3, VLSBST	K4, LSASTK1 ,	HSTK3
ALL , LSASTK2 ,	KHSTK4 ,	BHSTK1 , BH	HSTK2 ,	MHSTK1 , N BHSTK3 , F	SOU: MHSTK2 , BHSTK4 ,	MHSTK3 ,	MHSTK4	, MHSTK5	K2, VLSBSTI	K3, VLSBST		нѕтк3
ALL ,	KHSTK4 ,	BHSTK1 , BH	HSTK2 ,	MHSTK1 , N BHSTK3 , F	SOU: MHSTK2 , BHSTK4 ,	MHSTK3 ,	MHSTK4	, MHSTK5	K2, VLSBSTI	K3, VLSBST	K4, LSASTK1 ,	нѕтк3
ALL , LSASTK2 , LEWHSTK7,	KHSTK4 ,	BHSTK1 , BH	SASTK5 ,	MHSTK1 , N BHSTK3 , E LSASTK6 , I	SOU: MHSTK2 , BHSTK4 , LSASTK7 ,	MHSTK3 , BHSTK5 , LEWHSTK1,	MHSTK4 VLSBSTK	, MHSTK5	K2, VLSBSTI	K3, VLSBS1	K4, LSASTK1 ,	HSTK3
ALL , LSASTK2 ,	KHSTK4 ,	BHSTK1 , BH	SASTK5 ,	MHSTK1 , N BHSTK3 , E LSASTK6 , I	SOU: MHSTK2 , BHSTK4 , LSASTK7 ,	MHSTK3 , BHSTK5 , LEWHSTK1,	MHSTK4 VLSBSTK	, MHSTK5	K2, VLSBSTI	K3, VLSBS1	K4, LSASTK1 ,	HSTK3
ALL , LSASTK2 , LEWHSTK7,	KHSTK4 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LA	SASTK2 , :	MHSTK1 , N BHSTK3 , F LSASTK6 , I LATHSTK2, I	SOU: MHSTK2 , BHSTK4 , LSASTK7 , LATHSTK3,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	MHSTK4 VLSBSTK LEWHSTK LATHSTK	, MHSTK5 (1, VLSBSTF (2, LEWHSTF (5, LATHSTF	(2, VLSBST) (3, LEWHST)	X3, VLSBST X4, LEWHST	rk4, LSASTK1 ,	
ALL , LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LA	SASTK2 , :	MHSTK1 , N BHSTK3 , F LSASTK6 , I LATHSTK2, I	SOU: MHSTK2 , BHSTK4 , LSASTK7 , LATHSTK3,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	MHSTK4 VLSBSTK LEWHSTK LATHSTK	, MHSTK5 (1, VLSBSTF (2, LEWHSTF (5, LATHSTF	(2, VLSBST) (3, LEWHST)	X3, VLSBST X4, LEWHST	K4, LSASTK1 ,	
ALL , LSASTK2 , LEWHSTK7,	KHSTK4 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LA	SASTK2 , :	MHSTK1 , N BHSTK3 , F LSASTK6 , I LATHSTK2, I	SOU: MHSTK2 , BHSTK4 , LSASTK7 , LATHSTK3,	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	MHSTK4 VLSBSTK LEWHSTK LATHSTK	, MHSTK5 (1, VLSBSTF (2, LEWHSTF (5, LATHSTF	(2, VLSBST) (3, LEWHST)	X3, VLSBST X4, LEWHST	rk4, LSASTK1 ,	
ALL , LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HE	SASTK5 , :	MHSTK1 , NBHSTK3 , FLSASTK6 , ILATHSTK2, ILATHSTK8 , F	SOUTHING SOU	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	MHSTK4 VLSBSTK LEWHSTK LATHSTK HHSTKE	, MHSTK5 (1, VLSBSTF) (2, LEWHSTF) (5, LATHSTF) , GHSTK1	(2, VLSBST) (3, LEWHST) (6, LATHST) , GHSTK2	K3, VLSBST K4, LEWHST K7, LATHST , GHSTK3	rk4, LSASTK1 ,	
ALL , LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HE	SASTK5 , :	MHSTK1 , NBHSTK3 , FLSASTK6 , ILATHSTK2, ILATHSTK8 , F	SOUTHING SOU	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4,	MHSTK4 VLSBSTK LEWHSTK LATHSTK HHSTKE	, MHSTK5 (1, VLSBSTF) (2, LEWHSTF) (5, LATHSTF) , GHSTK1	(2, VLSBST) (3, LEWHST) (6, LATHST) , GHSTK2	K3, VLSBST K4, LEWHST K7, LATHST , GHSTK3	CK4, LSASTK1 , CK5, LEWHSTK6, CK8, TANHSTKA, CK8 , GHSTK4 , GI	
ALL , LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8 , TANHSTKC , GHSTK6 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HH GHSTK7 , GH	SASTK5 , : ATHSTK1, : SISTKA , :	MHSTK1 , NBHSTK3 , FLSASTK6 , ILSASTK6 , ILATHSTK2, ILBTKSTK8 , FLSTK9 , C	SOUND	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 ,	MHSTK4 VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12	, MHSTK5 (1, VLSBSTF) (2, LEWHSTF) (5, LATHSTF) , GHSTK1	(2, VLSBST) (3, LEWHST) (6, LATHST) , GHSTK2	K3, VLSBST K4, LEWHST K7, LATHST , GHSTK3	EK4, LSASTK1 , EK5, LEWHSTK6, EK8, TANHSTKA, E , GHSTK4 , GH	HSTK5
ALL , LSASTK2 , LEWHSTK7, TANHSTKB, , MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8 , TANHSTKC , GHSTK6 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HH GHSTK7 , GH	SASTK5 , : ATHSTK1, : SISTKA , :	MHSTK1 , NBHSTK3 , FLSASTK6 , ILSASTK6 , ILATHSTK2, ILBTKSTK8 , FLSTK9 , C	SOUND	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 ,	MHSTK4 VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12	, MHSTK5 (1, VLSBSTF) (2, LEWHSTF) (5, LATHSTF) , GHSTK1	(2, VLSBST) (3, LEWHST) (6, LATHST) , GHSTK2	K3, VLSBST K4, LEWHST K7, LATHST , GHSTK3	CK4, LSASTK1 , CK5, LEWHSTK6, CK8, TANHSTKA, CK8 , GHSTK4 , GI	HSTK5
ALL , LSASTK2 , LEWHSTK7, TANHSTKB,	KHSTK4 , LSASTK3 , LEWHSTK8 , TANHSTKC , GHSTK6 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HH GHSTK7 , GH	SASTK5 , : ATHSTK1, : SISTKA , :	MHSTK1 , NBHSTK3 , FLSASTK6 , ILSASTK6 , ILATHSTK2, ILBTKSTK8 , FLSTK9 , C	SOUND	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 ,	MHSTK4 VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12	, MHSTK5 (1, VLSBSTF) (2, LEWHSTF) (5, LATHSTF) , GHSTK1	(2, VLSBST) (3, LEWHST) (6, LATHST) , GHSTK2	K3, VLSBST K4, LEWHST K7, LATHST , GHSTK3	EK4, LSASTK1 , EK5, LEWHSTK6, EK8, TANHSTKA, E , GHSTK4 , GH	HSTK5
ALL , LSASTK2 , LEWHSTK7, TANHSTKB, , MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC , GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HH GHSTK7 , GH PRINTA , PH	SASTK5 , : ATHSTK1, : ASTKA , :	MHSTK1 , N BHSTK3 , F LSASTK6 , I LATHSTK2, I HHSTKB , F GHSTK9 , C	SOUND	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2,	MHSTK4 VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER#	, MHSTK5 (1, VLSBSTE) (2, LEWHSTE) (5, LATHSTE) , GHSTK1 (2, GHSTK13) (33, BOILER#	(3, LEWHST) (6, LATHST) (6, GHSTK2 (7) (7) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	K4, LEWHST K4, LEWHST , GHSTKS , HESSTR G , PAINT1	EK4, LSASTK1 , EK5, LEWHSTK6, EK8, TANHSTKA, E , GHSTK4 , GH	HSTK5
ALL , LSASTK2 , LEWHSTK7, TANHSTKB, , MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8, TANHSTKC , GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HH GHSTK7 , GH PRINTA , PH	SASTK5 , : ATHSTK1, : ASTKA , :	MHSTK1 , N BHSTK3 , F LSASTK6 , I LATHSTK2, I HHSTKB , F GHSTK9 , C	SOUND	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2,	MHSTK4 VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER#	, MHSTK5 (1, VLSBSTE) (2, LEWHSTE) (5, LATHSTE) , GHSTK1 (2, GHSTK13) (33, BOILER#	(3, LEWHST) (6, LATHST) (6, GHSTK2 (7) (7) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	K4, LEWHST K4, LEWHST , GHSTKS , HESSTR G , PAINT1	EK4, LSASTK1 , EK5, LEWHSTK6, EK8, TANHSTKA, E , GHSTK4 , GH	HSTK5
ALL , LSASTK2 , LEWHSTK7, TANHSTKB, , MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8 , TANHSTKC , GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HH GHSTK7 , GH PRINTA , PH ENG_62 , EN	SASTK5 , SASTK5 , SASTK5 , SASTK5 , SASTK5 , SASTK8 , SAS	MHSTK1 , NBHSTK3 , FLSASTK6 , ILSASTK6 , ILSASTK6 , FLSASTK8 , FLSASTK9 , CORRESTED , CORR	SOUTHING SOU	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 ,	MHSTK4 VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107	, MHSTK5 (1, VLSBSTF) (2, LEWHSTF) (5, LATHSTF) , GHSTK1 (2, GHSTK13) (3, BOILER) (7, ENG_108)	(2, VLSBST) (3, LEWHST) (6, LATHST) , GHSTK2 (3, CHSTK1 (4, POURING) (3, ENG_10)	X3, VLSBST X4, LEWHST X7, LATHST , GHSTK3 , HESSTR G, PAINT1	EK4, LSASTK1 , EK5, LEWHSTK6, EK8, TANHSTKA, E , GHSTK4 , GH E1 , HILSTK1 , PAINT2 , PAI	HSTK5
ALL , LSASTK2 , LEWHSTK7, TANHSTKB, , MULSTK1 , , ENG_112 ,	KHSTK4 , LSASTK3 , LEWHSTK8 , TANHSTKC , GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HH GHSTK7 , GH PRINTA , PH ENG_62 , EN	SASTK5 , SASTK5 , SASTK5 , SASTK5 , SASTK5 , SASTK8 , SAS	MHSTK1 , NBHSTK3 , FLSASTK6 , ILSASTK6 , ILSASTK6 , FLSASTK8 , FLSASTK9 , CORRESTED , CORR	SOUTHING SOU	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 ,	MHSTK4 VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107	, MHSTK5 (1, VLSBSTF) (2, LEWHSTF) (5, LATHSTF) , GHSTK1 (2, GHSTK13) (3, BOILER) (7, ENG_108)	(2, VLSBST) (3, LEWHST) (6, LATHST) , GHSTK2 (3, CHSTK1 (4, POURING) (3, ENG_10)	X3, VLSBST X4, LEWHST X7, LATHST , GHSTK3 , HESSTR G, PAINT1	EK4, LSASTK1 , EK5, LEWHSTK6, EK8, TANHSTKA, E , GHSTK4 , GH	HSTK5
ALL , LSASTK2 , LEWHSTK7, TANHSTKB, , MULSTK1 ,	KHSTK4 , LSASTK3 , LEWHSTK8 , TANHSTKC , GHSTK6 , WELSTK1 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HH GHSTK7 , GH PRINTA , PH ENG_62 , EN	SASTK5 , SASTK5 , SASTK5 , SASTK5 , SASTK5 , SASTK8 , SAS	MHSTK1 , NBHSTK3 , FLSASTK6 , ILSASTK6 , ILSASTK6 , FLSASTK8 , FLSASTK9 , CORRESTED , CORR	SOUTHING SOU	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 ,	MHSTK4 VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107	, MHSTK5 (1, VLSBSTF) (2, LEWHSTF) (5, LATHSTF) , GHSTK1 (2, GHSTK13) (3, BOILER) (7, ENG_108)	(2, VLSBST) (3, LEWHST) (6, LATHST) , GHSTK2 (3, CHSTK1 (4, POURING) (3, ENG_10)	X3, VLSBST X4, LEWHST X7, LATHST , GHSTK3 , HESSTR G, PAINT1	EK4, LSASTK1 , EK5, LEWHSTK6, EK8, TANHSTKA, E , GHSTK4 , GH E1 , HILSTK1 , PAINT2 , PAI	HSTK5
ALL , LSASTK2 , LEWHSTK7, TANHSTKB, , MULSTK1 , , ENG_112 ,	KHSTK4 , LSASTK3 , LEWHSTK8 , TANHSTKC , GHSTK6 , WELSTK1 , PAINT4 , ENG_113 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HH GHSTK7 , GH PRINTA , PH ENG_62 , EN ENG_114 , EN	SASTK5 , SASTK8 , SAS	MHSTK1 , N BHSTK3 , F LSASTK6 , I LATHSTK2, I HHSTKB , F GHSTK9 , C PRINTC , C ENG_64 , F	SOUND	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 ,	MHSTK4 VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107 ENG_120	, MHSTK5 (1, VLSBSTF) (2, LEWHSTF) (5, LATHSTF) , GHSTK1 (2, GHSTK1) (3, BOILER) (4, ENG_10) (6) , ENG_121	(2, VLSBST) (3, LEWHST) (6, LATHST) , GHSTK2 (8, CHSTK1 (4, POURING) (8, ENG_10) (1, ENG_12)	X3, VLSBST X4, LEWHST X7, LATHST , GHSTX3 , HESSTR G, PAINT1 D, ENG_11 3, ENG_12	EK4, LSASTK1, EK5, LEWHSTK6, EK8, TANHSTKA, E , GHSTK4 , GI E1 , HILSTK1 , E1 , PAINT2 , PAIN	HSTK5
ALL , LSASTK2 , LEWHSTK7, TANHSTKB, , MULSTK1 , , ENG_112 ,	KHSTK4 , LSASTK3 , LEWHSTK8 , TANHSTKC , GHSTK6 , WELSTK1 , PAINT4 , ENG_113 ,	BHSTK1 , BH LSASTK4 , LS LEWHSTK9, LA TANHSTKD, HH GHSTK7 , GH PRINTA , PH ENG_62 , EN ENG_114 , EN	SASTK5 , SASTK8 , SAS	MHSTK1 , N BHSTK3 , F LSASTK6 , I LATHSTK2, I HHSTKB , F GHSTK9 , C PRINTC , C ENG_64 , F	SOUND	MHSTK3 , BHSTK5 , LEWHSTK1, LATHSTK4, HHSTKD , GHSTK11 , BOILER#2, ENG_106 ,	MHSTK4 VLSBSTK LEWHSTK LATHSTK HHSTKE GHSTK12 BOILER# ENG_107 ENG_120	, MHSTK5 (1, VLSBSTF) (2, LEWHSTF) (5, LATHSTF) , GHSTK1 (2, GHSTK1) (3, BOILER) (4, ENG_10) (6) , ENG_121	(2, VLSBST) (3, LEWHST) (6, LATHST) , GHSTK2 (8, CHSTK1 (4, POURING) (8, ENG_10) (1, ENG_12)	X3, VLSBST X4, LEWHST X7, LATHST , GHSTX3 , HESSTR G, PAINT1 D, ENG_11 3, ENG_12	EK4, LSASTK1 , EK5, LEWHSTK6, EK8, TANHSTKA, E , GHSTK4 , GH E1 , HILSTK1 , PAINT2 , PAI	HSTK5

```
ENG_STNL, ENG_DVS , ENG_MCCN, ENG_SRB1, ENGNULAB, ENGMUSIC, ENG_UNT1, ENG_UNT2, ENG_UNT3, ENG116NU, NEWSTAN1,
NEWSTAN2,
           NEWSTAN3, NEWSTAN4, NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
           WHSTK1 8, WHSTK10 ,
 WH
           NWAF9 ,
 NWAF
 МН
           MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 ,
           KHSTK1 , KHSTK2 , KHSTK3 , KHSTK4 ,
 KH
 вн
           BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 ,
           VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4,
 VLSB
 LSA
           LSASTK1 , LSASTK2 , LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 ,
 LEW
           LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6, LEWHSTK7, LEWHSTK8, LEWHSTK9,
                                         *** SOURCE IDs DEFINING SOURCE GROUPS ***
 GROUP ID
                                                        SOURCE IDs
 LAT
           LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8,
 TAN
           TANHSTKA, TANHSTKB, TANHSTKC, TANHSTKD,
           HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE ,
           GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 ,
 GH
GHSTK12 ,
           GHSTK13 ,
           CHSTK1 ,
 CH
 HES
           HESSTK1 ,
 HIL
           HILSTK1 ,
           MULSTK1 ,
 MUL
 WEL
           WELSTK1 ,
 PRINT
           PRINTA , PRINTB , PRINTC ,
 COMBUST
          COGEN , BOILER#2, BOILER#3, BOILER#4,
 HAZMAT
           POURING ,
 PAINT
           PAINT1 , PAINT2 , PAINT3 , PAINT4 ,
 EXISTLAB WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
```

```
KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7.
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
                                          *** SOURCE IDs DEFINING SOURCE GROUPS ***
GROUP ID
                                                        SOURCE IDs
           WELSTK1 ,
 ENGINES
           ENG 62 , ENG 63 , ENG 64 , ENG 105 , ENG 106 , ENG 107 , ENG 108 , ENG 109 , ENG 110 , ENG 111 , ENG 112 ,
ENG 113 ,
           ENG_114 , ENG_115 , ENG_117 , ENG_118 , ENG_119 , ENG_120 , ENG_121 , ENG_123 , ENG_125 , ENG_126 , ENG_128 ,
ENG 129 ,
           ENG_130 , ENG_131 , ENG_132 , E134_133,
 NEWLABS
           NEWLAB A, NEWLAB B, NEWLAB C, NEWLAB D, NEWLAB E, NEWLAB F, NEWLAB G, NEWSTAN1, NEWSTAN2, NEWSTAN3, NEWSTAN4,
NEWSTAN5,
           NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
 ALL_LABS
           WHSTK1_8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
           WELSTK1 , NEWLAB A, NEWLAB B, NEWLAB C, NEWLAB D, NEWLAB E, NEWLAB G, ENG UNT3, NEWSTAN1, NEWSTAN2, NEWSTAN3,
NEWSTAN4,
           NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
 EXISTING WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MUILSTK1 .
```

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDS

WELSTK1 , PRINTA , PRINTB , PRINTC , COGEN , BOILER#2, BOILER#3, BOILER#4, POURING , PAINT1 , PAINT2 , PAINT3

PAINT4 , ENG_62 , ENG_63 , ENG_64 , ENG_105 , ENG_106 , ENG_107 , ENG_108 , ENG_109 , ENG_110 , ENG_111 ,

ENG_112 ,

ENG_113 , ENG_114 , ENG_115 , ENG_117 , ENG_118 , ENG_119 , ENG_120 , ENG_121 , ENG_123 , ENG_125 , ENG_126 , ENG_128 ,

ENG_129 , ENG_130 , ENG_131 , ENG_132 , E134_133,

NEWLAB_A NEWLAB_A,

NEWLAB_B NEWLAB_B,

NEWLAB C NEWLAB C,

NEWLAB_D NEWLAB_D,

NEWLAB_E NEWLAB_E,

NEWLAB F NEWLAB F,

NEWLAB_G NEWLAB_G,

DAVISNEW NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,

STAN NEW NEWSTAN1, NEWSTAN2, NEWSTAN3, NEWSTAN4, NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8,

NEWENG ENG_STNL, ENG_DVS , ENG_MCCN, ENG_SRB1, ENGNULAB, ENG_UNT1, ENG_UNT2, ENG_UNT3,

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

METWORK

GROUP	ID AV	ERAGE CONC RE	CCEPTOR (XR, YR,	ZELEV, ZFLAC	G) OF TYP	NETWORK E GRID-ID
ALL	1ST HIGHEST VALUE IS		4191950.00,	83.00,	0.00) DC	
	2ND HIGHEST VALUE IS	0.12353 AT (564795.00,	4191930.25,	78.00,	0.00) DC	NA
	3RD HIGHEST VALUE IS	0.11908 AT (564748.50,	4191916.75,	75.00,	0.00) DC	NA
	4TH HIGHEST VALUE IS	0.11883 AT (564892.25,	4191959.00,	84.00,	0.00) DC	NA
	5TH HIGHEST VALUE IS	0.11022 AT (564941.88,	4191967.00,	90.00,	0.00) DC	NA
	6TH HIGHEST VALUE IS	0.09978 AT (564800.00,	4192000.00,	81.00,	0.00) DC	NA
	7TH HIGHEST VALUE IS	0.09726 AT (564900.00,	4192000.00,	88.00,	0.00) DC	NA
	8TH HIGHEST VALUE IS	0.09413 AT (564700.00,	4192000.00,	76.00,	0.00) DC	NA
	9TH HIGHEST VALUE IS	0.09378 AT (564698.50,	4191908.75,	72.00,	0.00) DC	NA
	10TH HIGHEST VALUE IS	0.09066 AT (564991.81,	4191975.00,	93.00,	0.00) DC	NA
WH	1ST HIGHEST VALUE IS	0.00013 AT (564698.50,	4191908.75,	72.00,	0.00) DC	NA
	2ND HIGHEST VALUE IS	0.00012 AT (564639.88,	4191852.00,	67.00,	0.00) DC	NA
	3RD HIGHEST VALUE IS	0.00012 AT (564664.50,	4191903.50,	71.00,	0.00) DC	NA
	4TH HIGHEST VALUE IS	0.00012 AT (564600.00,	4191900.00,	67.00,	0.00) DC	NA
	5TH HIGHEST VALUE IS	0.00011 AT (564648.62,	4191891.75,	68.00,	0.00) DC	NA
	6TH HIGHEST VALUE IS	0.00009 AT (564748.50,	4191916.75,	75.00,	0.00) DC	NA
	7TH HIGHEST VALUE IS	0.00006 AT (564795.00,	4191930.25,	78.00,	0.00) DC	NA
	8TH HIGHEST VALUE IS	0.00005 AT (564700.00,	4192000.00,	76.00,	0.00) DC	NA
	9TH HIGHEST VALUE IS	0.00005 AT (564600.00,	4192000.00,	72.00,	0.00) DC	NA
	10TH HIGHEST VALUE IS	0.00004 AT (564500.00,	4191900.00,	65.00,	0.00) DC	NA
NWAF	1ST HIGHEST VALUE IS	0.00031 AT (565000.00,	4192000.00,	98.00,	0.00) DC	NA

0.00031 AT (565141.94, 4191999.00, 0.00029 AT (565241.19, 4192017.75, 0.00029 AT (565191.50, 4192009.50, 0.00028 AT (565289.25, 4192025.50, 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 4TH HIGHEST VALUE IS 0.00) DC 0.00) DC 97.00, NA 102.00, NA 0.00) DC 97.00, NA 5TH HIGHEST VALUE IS 107.00, 0.00) DC NA 6TH HIGHEST VALUE IS 0.00026 AT (565090.81, 4191991.50, 96.00, 0.00) NA 7TH HIGHEST VALUE IS 0.00026 AT (565339.88, 4192034.25, 108.00, 0.00) DC NA 8TH HIGHEST VALUE IS 0.00025 AT (564900.00, 4192100.00, 0.00025 AT (565100.00, 4192000.00, 0.00024 AT (565100.00, 4192100.00, 102.00, 0.00) DC NA 9TH HIGHEST VALUE IS 96.00, 0.00) DC NA 10TH HIGHEST VALUE IS 107.00, 0.00) DC NA

*** THE SUMMARY OF MAXIMUM PERIOD ($8760\ \mathrm{HRS})$ RESULTS ***

** CONC OF CHRONIC IN MICROGRAMS/M**3

GROUP I	D 		AVERAGE CONC	REC	EPTOR (XR, YR,	ZELEV, ZFLAC	G) OF	TYPE	NETWORK GRID-ID
MH	1ST HIGHEST	VALUE IS	0.00109 AT (564748.50,	4191916.75,	75.00,	0.00)	DC	NA
	2ND HIGHEST	VALUE IS	0.00090 AT (564795.00,	4191930.25,	78.00,	0.00)	DC	NA
	3RD HIGHEST		0 00000 3 7 /	F C 4 C O O F O	4101000 00	70 00	0 001		NA
	4TH HIGHEST	VALUE IS	0.00075 AT (564842.69,	4191950.00,	83.00,	0.00)	DC	NA
	5TH HIGHEST	VALUE IS	0.00056 AT (564700.00,	4192000.00,	76.00,	0.00)	DC	NA
	6TH HIGHEST	VALUE IS	0.00054 AT (564664.50,	4191903.50,	71.00,	0.00)	DC	NA
	7TH HIGHEST	VALUE IS	0.00045 AT (564892.25,	4191959.00,	84.00,	0.00)	DC	NA
	8TH HIGHEST	VALUE IS	0.00045 AT (564800.00,	4192000.00,	81.00,	0.00)	DC	NA
	9TH HIGHEST	VALUE IS	0.00039 AT (564600.00,	4192000.00,	72.00,	0.00)	DC	NA
	10TH HIGHEST	VALUE IS	0.00076 AT (0.00075 AT (0.00056 AT (0.00054 AT (0.00045 AT (0.00045 AT (0.00045 AT (0.00039 AT (0.00038 AT (564941.88,	4191967.00,	90.00,	0.00)	DC	NA
KH	1ST HIGHEST	VALUE IS	0.00925 AT (0.00900 AT (0.00790 AT (0.00747 AT (0.00708 AT (564842.69,	4191950.00,	83.00,	0.00)	DC	NA
	2ND HIGHEST	VALUE IS	0.00900 AT (564700.00,	4192000.00,	76.00,	0.00)	DC	NA
	3RD HIGHEST	VALUE IS	0.00790 AT (564800.00,	4192000.00,	81.00,	0.00)	DC	NA
	4TH HIGHEST	VALUE IS	0.00747 AT (564892.25,	4191959.00,	84.00,	0.00)	DC	NA
	5TH HIGHEST	VALUE IS	0.00708 AT (564600.00,	4192000.00,	72.00,	0.00)	DC	NA
	6TH HIGHEST	VALUE IS	0.0063/ AT (564991.81,	41919/5.00,	93.00,	0.00)	DC	NA
	7TH HIGHEST			564941.88,	4191967.00,	90.00,	0.00)	DC	NA
	8TH HIGHEST								NA
	9TH HIGHEST								NA
	10TH HIGHEST	VALUE IS	0.00504 AT (564800.00,	4192100.00,	92.00,	0.00)	DC	NA
BH	1ST HIGHEST								NA
	2ND HIGHEST								NA
	3RD HIGHEST								NA
	4TH HIGHEST								NA
	5TH HIGHEST								NA
	6TH HIGHEST								NA
	7TH HIGHEST								NA
	8TH HIGHEST		,		,	,			NA
	9TH HIGHEST								NA
	10TH HIGHEST	VALUE IS	0.00046 AT (564991.81,	41919/5.00,	93.00,	0.00)	DC	NA

*** THE SUMMARY OF MAXIMUM PERIOD ($8760\ \mathrm{HRS})$ RESULTS ***

* *

GROUP I	D	AVERAGE CONC	REC	EPTOR (XR, YR,	ZELEV, ZFLA	G) OF TYPE	NETWORK GRID-ID
VLSB	1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS	0.00356 AT (0.00352 AT (0.00347 AT (565226.19, 564795.00, 565200.00,	,	,	0.00) DC 0.00) DC 0.00) DC	NA NA NA
	4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS	0.00345 AT (0.00343 AT (565176.31, 565577.06,	4191303.25,	79.00,	0.00) DC 0.00) DC	NA NA
	6TH HIGHEST VALUE IS 7TH HIGHEST VALUE IS	0.00338 AT (0.00337 AT (564842.69, 565276.06,	,	,	0.00) DC 0.00) DC	NA NA
	8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS	0.00324 AT (0.00324 AT (0.00320 AT (565326.25, 565626.50, 564748.50,		,	0.00) DC 0.00) DC 0.00) DC	NA NA NA
LSA	1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS	0.00297 AT (0.00296 AT (0.00294 AT (0.00294 AT (0.00293 AT (565176.31, 565577.06, 565376.81, 565127.75, 565077.25,	4191303.25, 4191362.50, 4191332.25, 4191295.25, 4191285.50,	,	0.00) DC 0.00) DC 0.00) DC 0.00) DC 0.00) DC	NA NA NA NA

80.00, 81.00, 84.00 0.00288 AT (565200.00, 4191300.00, 0.00284 AT (565226.19, 4191310.50, 0.00280 AT (565326.25, 4191324.25, 0.00278 AT (566326.25, 4191324.25, 419132 0.00) DC 6TH HIGHEST VALUE IS NA 7TH HIGHEST VALUE IS 0.00) DC NA 8TH HIGHEST VALUE IS 0.00) DC NA 0.00278 AT (565426.81, 4191338.75, 0.00277 AT (565626.50, 4191370.25, 88.00, 9TH HIGHEST VALUE IS 0.00) DC NA 10TH HIGHEST VALUE IS 95.00. 0.00) DC 0.00025 AT (565475.12, 4192018.00, 0.00022 AT (565500.00, 4192100.00, 0.00021 AT (565460.56, 4192039.50, 0.00020 AT (565438.25, 4192048.75, 118.00, 0.00) LEW 1ST HIGHEST VALUE IS NA 126.00, 2ND HIGHEST VALUE IS 0.00) DC NA 3RD HIGHEST VALUE IS 117.00, 0.00) DC NA 4TH HIGHEST VALUE IS 117.00, 0.00) DC NA 5TH HIGHEST VALUE IS 0.00019 AT (566100.00, 4191600.00, 141.00, 0.00) DC NA 6TH HIGHEST VALUE IS 0.00016 AT (565390.25, 4192042.25, 113.00, 0.00) DC NA 0.00016 AT (565300.00, 4192300.00, 7TH HIGHEST VALUE IS 123.00, 0.00) DC NA 8TH HIGHEST VALUE IS 0.00015 AT (565600.00, 4192100.00, 140.00, 0.00) DC NA 0.00015 AT (566200.00, 4191600.00, 0.00015 AT (565339.88, 4192034.25, 9TH HIGHEST VALUE IS 144.00, 0.00) DC NA 10TH HIGHEST VALUE IS 108.00, 0.00) DC NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CHRONIC IN MICROGRAMS/M**3

NETWORK AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID GROUP ID 0.00038 AT (565475.12, 4192018.00, 118.00, 0.00036 AT (566200.00, 4191600.00, 144.00, 0.00034 AT (565460.56, 4192039.50, 117.00, 0.00032 AT (565438.25, 4192048.75, 117.00, 0.00032 AT (565390.25, 4192042.25, 113.00, 0.00031 AT (565390.25, 4192042.25, 113.00, 0.00031 AT (565390.28, 4192042.25, 113.00, 0.00031 AT (565390.28, 4192034.25, 108.00 1ST HIGHEST VALUE IS 0.00) DC 2ND HIGHEST VALUE IS 0.00) DC NA 3RD HIGHEST VALUE IS 0.00) DC 4TH HIGHEST VALUE IS 0.00) DC NA 5TH HIGHEST VALUE IS 0.00) DC 6TH HIGHEST VALUE IS 0.00) DC NA 0.00031 AT (565339.88, 4192034.25, 0.00030 AT (566200.00, 4191500.00, 0.00030 AT (565800.00, 4192000.00, 0.00030 AT (565900.00, 4192000.00, 7TH HIGHEST VALUE IS 108.00, 0.00) DC 8TH HIGHEST VALUE IS 156.00, 0.00) DC NA 9TH HIGHEST VALUE IS 178.00, 0.00) DC 10TH HIGHEST VALUE IS 182.00, 0.00) DC TAN 1ST HIGHEST VALUE IS 0.00018 AT (566100.00, 4191600.00, 141.00, 0.00) DC 0.00016 AT (565475.12, 4192018.00, 0.00015 AT (565289.25, 4192025.50, 2ND HIGHEST VALUE IS 0.00) DC 118.00, NA 3RD HIGHEST VALUE IS 107.00, 0.00) DC 4TH HIGHEST VALUE IS 0.00015 AT (566200.00, 4191600.00, 144.00, 0.00) DC 5TH HIGHEST VALUE IS 0.00014 AT (565390.25, 4192042.25, 113.00, 0.00) DC NA 0.00014 AT (565438.25, 4192048.75, 6TH HIGHEST VALUE IS 117.00, 0.00) DC 7TH HIGHEST VALUE IS 0.00013 AT (565460.56, 4192039.50, 117.00. 0.00) DC 0.00013 AT (565339.88, 4192034.25, 0.00013 AT (565500.00, 4192100.00, 0.00012 AT (565600.00, 4192100.00, 8TH HIGHEST VALUE IS 108.00, 0.00) DC 9TH HIGHEST VALUE IS 126.00. 0.00) DC NA 10TH HIGHEST VALUE IS 0.00) DC 0.00080 AT (566100.00, 4191600.00, 0.00060 AT (566200.00, 4191600.00, 0.00055 AT (566200.00, 4191500.00, 1ST HIGHEST VALUE IS 0.00) DC НН 141.00, NA 2ND HIGHEST VALUE IS 144.00, 156.00, 0.00) DC NA 3RD HIGHEST VALUE IS 0.00) DC 4TH HIGHEST VALUE IS 0.00053 AT (565475.12, 4192018.00, 118.00, 0.00) DC NA 0.00053 AT (565289.25, 4192025.50, 107.00, 5TH HIGHEST VALUE IS 0.00) DC 6TH HIGHEST VALUE IS 0.00053 AT (565600.00, 4192100.00, 140.00, 0.00) DC 0.00052 AT (565339.88, 4192034.25, 7TH HIGHEST VALUE IS 108.00, 0.00) DC 0.00051 AT (566100.00, 4191400.00, 0.00050 AT (565390.25, 4192042.25, 0.00048 AT (565460.56, 4192039.50, 8TH HIGHEST VALUE IS 149.00, 0.00) DC NA 9TH HIGHEST VALUE IS 0.00) DC 113.00, NA 10TH HIGHEST VALUE IS 0.00) DC 117.00,

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

GROUP ID	AVERAGE	CONC	REC	EPTOR (XR, YR,	ZELEV, ZFLAG) OF TYPE	NETWORK GRID-ID
GH 1ST HIGHEST	VALUE IS 0	.00012 AT (566100.00,	4191600.00,	141.00,	0.00) DC	NA
2ND HIGHEST	VALUE IS 0	.00010 AT (565289.25,	4192025.50,	107.00,	0.00) DC	NA
3RD HIGHEST	VALUE IS 0	.00010 AT (565241.19,	4192017.75,	102.00,	0.00) DC	NA
4TH HIGHEST	VALUE IS 0	.00010 AT (565500.00,	4192100.00,	126.00,	0.00) DC	NA
5TH HIGHEST	VALUE IS 0	.00009 AT (565339.88,	4192034.25,	108.00,	0.00) DC	NA
6TH HIGHEST	VALUE IS 0	.00009 AT (566200.00,	4191600.00,	144.00,	0.00) DC	NA
7TH HIGHEST	VALUE IS 0	.00009 AT (565475.12,	4192018.00,	118.00,	0.00) DC	NA
8TH HIGHEST	VALUE IS 0	.00009 AT (565600.00,	4192100.00,	140.00,	0.00) DC	NA
9TH HIGHEST	VALUE IS 0	.00009 AT (565191.50,	4192009.50,	97.00,	0.00) DC	NA

	10TH	HIGHEST	VALUE	IS	0.00009	ΑT	(565390.25,	4192042.25,	113.00,	0.00)	DC	NA
CH	1ST	HIGHEST	VALUE	IS	0.00106	AT	(565475.12,	4192018.00,	118.00,	0.00)	DC	NA
	2ND	HIGHEST	VALUE	IS	0.00046	AT	(565500.00,	4192100.00,	126.00,	0.00)	DC	NA
	3RD	HIGHEST	VALUE	IS	0.00044	ΑT	(565600.00,	4192100.00,	140.00,	0.00)	DC	NA
	4TH	HIGHEST	VALUE	IS	0.00044	ΑT	(565400.00,	4192100.00,	116.00,	0.00)	DC	NA
	5TH	HIGHEST	VALUE	IS	0.00041	AT	(565300.00,	4192100.00,	107.00,	0.00)	DC	NA
	6TH	HIGHEST	VALUE	IS	0.00029	AΤ	(565800.00,	4192000.00,	178.00,	0.00)	DC	NA
	7TH	HIGHEST	VALUE	IS	0.00029	AΤ	(565700.00,	4192100.00,	165.00,	0.00)	DC	NA
	8TH	HIGHEST	VALUE	IS	0.00024	ΑT	(565400.00,	4192200.00,	118.00,	0.00)	DC	NA
	9TH	HIGHEST	VALUE	IS	0.00023	AΤ	(565500.00,	4192200.00,	136.00,	0.00)	DC	NA
	10TH	HIGHEST	VALUE	IS	0.00022	ΑT	(565300.00,	4192200.00,	112.00,	0.00)	DC	NA
HES	1.S.T	HIGHEST	VALUE	TS	0.00328	ΑТ	(565141 94.	4191999.00,	97.00,	0.00)	DC	NA
		HIGHEST			0.00326		•	565191.50,	4192009.50,	97.00,	0.00)	DC	NA
		HIGHEST			0.00291		•	565241.19,	4192017.75,	102.00,	0.00)	DC	NA
	4TH	HIGHEST	VALUE	IS	0.00218			565289.25,	4192025.50,	107.00,	0.00)	DC	NA
	5TH	HIGHEST	VALUE	IS	0.00208	AT	(565100.00,	4192000.00,	96.00,	0.00)	DC	NA
	6TH	HIGHEST	VALUE	IS	0.00178	AT	(565090.81,	4191991.50,	96.00,	0.00)	DC	NA
	7TH	HIGHEST	VALUE	IS	0.00167	ΑT	(565100.00,	4192100.00,	107.00,	0.00)	DC	NA
	8TH	HIGHEST	VALUE	IS	0.00165	AT	(565339.88,	4192034.25,	108.00,	0.00)	DC	NA
	9TH	HIGHEST	VALUE	IS	0.00153	AT	(565475.12,	4192018.00,	118.00,	0.00)	DC	NA
	10TH	HIGHEST	VALUE	IS	0.00141	AT	(565460.56,	4192039.50,	117.00,	0.00)	DC	NA

** CONC OF CHRONIC IN MICROGRAMS/M**3

GROUP I	ID		AVERAGE CONC	REC	EPTOR (XR, YR	, ZELEV, ZFLA	G) OF T	NETWORK YPE GRID-ID	_
HIL	1ST HIGHEST VA	ALUE IS	0.06229 AT (564795.00,	4191930.25,	78.00,	0.00)	DC NA	
			0.05508 AT (
			0.05494 AT (
	4TH HIGHEST VA	ALUE IS	0.04821 AT (564941.88,	4191967.00,	90.00,	0.00)	DC NA	
	5TH HIGHEST VA	ALUE IS	0.04736 AT (564892.25,	4191959.00,	84.00,	0.00)	DC NA	
	6TH HIGHEST VA	ALUE IS	0.03913 AT (564800.00,	4192000.00,	81.00,	0.00)	DC NA	
	7TH HIGHEST VA	ALUE IS	0.03674 AT (564900.00,	4192000.00,	88.00,	0.00)	DC NA	
			0.03629 AT (
	9TH HIGHEST VA	ALUE IS	0.03503 AT (564700.00,	4192000.00,	76.00,	0.00)	DC NA	
	10TH HIGHEST VA	ALUE IS	0.03467 AT (565000.00,	4192000.00,	98.00,	0.00)	DC NA	
MUL			0.00000 AT (
			0.00000 AT (
	3RD HIGHEST VA		0.00000 AT (
	4TH HIGHEST VA		0.00000 AT (
	5TH HIGHEST VA		0.00000 AT (
	6TH HIGHEST VA		0.00000 AT (
			0.00000 AT (
			0.00000 AT (
	9TH HIGHEST VA	ALUE IS	0.00000 AT (564645.94,	4191801.25,	66.00,	0.00)	DC NA	
	10TH HIGHEST VA	ALUE IS	0.00000 AT (564600.00,	4191900.00,	67.00,	0.00)	DC NA	
WEL	1ST HIGHEST VA	ALUE IS	0.00014 AT (564795.00,	4191930.25,	78.00,	0.00)	DC NA	
		ALUE IS	0.00010 AT (564892.25,	4191959.00,	84.00,	0.00)	DC NA	
	3RD HIGHEST VA	ALUE IS	0.00009 AT (564941.88,	4191967.00,	90.00,	0.00)		
	4TH HIGHEST VA	ALUE IS	0.00009 AT (564748.50,	4191916.75,	75.00,	0.00)	DC NA	
	5TH HIGHEST VA	ALUE IS	0.00009 AT (564842.69,	4191950.00,	83.00,	0.00)	DC NA	
	6TH HIGHEST VA	ALUE IS	0.00008 AT (564900.00,	4192000.00,	88.00,	0.00)	DC NA	
	7TH HIGHEST VA	ALUE IS	0.00007 AT (0.00007 AT (0.00007 AT (0.00007 AT (564991.81,	4191975.00,	93.00,	0.00)	DC NA	
	8TH HIGHEST VA	ALUE IS	0.00007 AT (564800.00,	4192000.00,	81.00,	0.00)	DC NA	
	9TH HIGHEST VA	ALUE IS	0.00007 AT (564700.00,	4192000.00,	76.00,	0.00)	DC NA	
	10TH HIGHEST VA	ALUE IS	0.00007 AT (564800.00,	4192100.00,	92.00,	0.00)	DC NA	

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

(GROUP II)	AVERAGE CONC	RECEPTOR	(XR, YR, ZELEV,	ZFLAG) OF TYPE	NETWORK GRID-ID
	PRINT	1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS		564673.81, 41915 564675.81, 41915	, ,	,	NA NA

	4TH 5TH 6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE VALUE	IS IS IS IS IS	0.00268 0.00251 0.00247 0.00223 0.00178 0.00154 0.00141 0.00138	AT (AT (AT (AT (AT (AT (AT (AT (AT (AT (((((((((((((((((((((,	4191600.50, 4191454.25, 4191553.00, 4191609.25, 4191600.00, 4191403.75, 4191507.50,	60.00, 62.00, 60.00, 62.00, 65.00, 59.00, 61.00,	0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	DC DC DC DC DC DC DC	NA NA NA NA NA NA
COMBUST	2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE VALUE VALUE VALUE	IS IS IS IS IS IS IS IS IS	0.01898 0.01846 0.01837 0.01760 0.01715 0.01694 0.01683 0.01674 0.01652 0.01650	AT (AT (AT (AT (AT (AT (AT (AT (AT (AT (566200.00, 566100.00, 566200.00, 566300.00, 566400.00, 566400.00, 566400.00, 566400.00, 566200.00,	4191300.00, 4191400.00, 4191400.00, 4191300.00, 4191300.00, 4191200.00, 4191400.00, 4191400.00, 4191200.00,	158.00, 149.00, 174.00, 176.00, 140.00, 166.00, 174.00, 204.00, 162.00, 142.00,	0.00)	DC DC DC DC DC DC DC DC DC	NA
HAZMAT	2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE	IS	0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002	AT (AT (AT (AT (AT (AT (AT (AT (AT (AT (564976.62, 565026.56, 564927.50, 564665.12, 565077.25, 565176.31, 565127.75, 564663.00, 565200.00, 565376.81,	4191271.75, 4191279.00, 4191263.50, 4191621.25, 4191285.50, 4191303.25, 4191295.25, 4191652.50, 4191300.00, 4191332.25,	73.00, 74.00, 71.00, 65.00, 76.00, 77.00, 65.00, 80.00, 87.00,	0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	DC DC DC DC DC DC DC DC DC	NA

** CONC OF CHRONIC IN MICROGRAMS/M**3

GROUP ID	AVERAGE	CONC	RECI	EPTOR (XR, YR,	ZELEV, ZFL	AG) OF T	TYPE GRID-1	ID
	ST VALUE IS 0							
				4191999.00,			DC NA	
				4191381.00,			DC NA	
	ST VALUE IS 0	.00007 AT (565626.50,	4191370.25,	95.00,	0.00)	DC NA	
	ST VALUE IS 0	.00007 AT (565026.56,	4191279.00, 4192017.75, 4192000.00, 4191271.75,	74.00,	0.00)	DC NA	
	ST VALUE IS 0	.00007 AT (565241.19,	4192017.75,	102.00,	0.00)	DC NA	
	ST VALUE IS 0	.00007 AT (565100.00,	4192000.00,	96.00,	0.00)	DC NA	
	ST VALUE IS 0	.00007 AT (564976.62,	4191271.75,	73.00,	0.00)	DC NA	
9TH HIGHE	ST VALUE IS 0	.00006 AT (565090.81,	4191991.50,	96.00,	0.00)	DC NA	
10TH HIGHE	ST VALUE IS 0	.00006 AT (565726.62,	4191386.25,	100.00,	0.00)	DC NA	
EXISTLAB 1ST HIGHE	ST VALUE IS 0	.07220 AT (564842.69,	4191950.00,	83.00,	0.00)	DC NA	
2ND HIGHE				4191930.25,			DC NA	
3RD HIGHE				4191916.75,			DC NA	
4TH HIGHE	ST VALUE IS 0	.06208 AT (564892.25,	4191959.00,	84.00,	0.00)	DC NA	
5TH HIGHE	ST VALUE IS 0	.06207 AT (564941.88,	4191967.00, 4192000.00, 4191975.00, 4192000.00,	90.00,	0.00)	DC NA	
6TH HIGHE	ST VALUE IS 0	.05336 AT (564800.00,	4192000.00,	81.00,	0.00)	DC NA	
7TH HIGHE	ST VALUE IS 0	.05071 AT (564991.81,	4191975.00,	93.00,	0.00)	DC NA	
8TH HIGHE	ST VALUE IS 0	.05021 AT (564700.00,	4192000.00,	76.00,	0.00)	DC NA	
9TH HIGHE	ST VALUE IS 0	.04823 AT (565000.00,	4192000.00,	98.00,	0.00)	DC NA	
10TH HIGHE	ST VALUE IS 0	.04800 AT (564900.00,	4192000.00,	88.00,		DC NA	
ENGINES 1ST HIGHE	ST VALUE IS 0	.00251 AT (564700.00,	4192000.00,	76.00,	0.00)	DC NA	
2ND HIGHE	ST VALUE IS 0	.00231 AT (564892.25,	4191959.00,	84.00,	0.00)	DC NA	
3RD HIGHE	ST VALUE IS 0	.00213 AT (564941.88,	4191967.00,	90.00,	0.00)	DC NA	
4TH HIGHE	ST VALUE IS 0	.00206 AT (565800.00,	4191200.00,	100.00,	0.00)	DC NA	
5TH HIGHE	ST VALUE IS 0	.00197 AT (564991.81,	4191975.00,	93.00,	0.00)	DC NA	
6TH HIGHE	ST VALUE IS 0	.00195 AT (564800.00,	4192000.00,	81.00,	0.00)	DC NA	
	ST VALUE IS 0	.00191 AT (565000.00,	4191975.00, 4192000.00, 4192000.00,	98.00,	0.00)	DC NA	
	ST VALUE IS 0	.00191 AT (565800.00,	4191000.00,	95.00,	0.00)	DC NA	
		.00188 AT (93.00,		DC NA	
		.00180 AT (,		72.00,		DC NA	
			,	/	,	/		

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

NETWORK

				NETWORK
GROUP ID	AVERAGE CONC	RECEPTOR	(XR. YR. ZELEV. ZFLAG)	OF TYPE GRID-ID

GROUP ID				AVERAGE CONC	RE	CEPTOR	(XR, Y	YR, ZELEV,	ZFLAG) OF	TYPE	GRID-ID	
NEWLABS 1ST	HIGHEST	VALUE	IS	0.06457 AT (0.05622 AT (564649.94,	41917	52.00,	66.00,	0.00)	DC	NA	
2NI	HIGHEST	VALUE	IS	0.05622 AT (564842.69,	41919	50.00,	83.00,	0.00)	DC	NA	
3RI	HIGHEST	VALUE	IS	0.05431 AT (564748.50,	419191	16.75,	75.00,	0.00)	DC	NA	
4TF	HIGHEST	VALUE	IS	0.05331 AT (564892.25,	41919	59.00,	84.00,	0.00)	DC	NA	
5TH	HIGHEST	VALUE	IS								NA	
6TF	HIGHEST	VALUE	IS								NA	
7TF	HIGHEST	VALUE	IS		564639.88,	41918	52.00,	67.00,	0.00)	DC	NA	
8TF	HIGHEST	VALUE	IS	0.05040 AT (564648.62,	41918	91.75,	68.00,	0.00)	DC	NA	
9TF	HIGHEST	VALUE	IS	0.04966 AT (0.04950 AT (564698.50,	419190	08.75,	72.00,	0.00)	DC	NA	
10TF	HIGHEST	VALUE	IS	0.04950 AT (564795.00,	419193	30.25,	78.00,	0.00)	DC	NA	
ALL LARS 1ST	HIGHEST	VALUE	TS	0.12593 AT (564842 69.	41919	50.00.	83 00.	0.00)	DC	NA	
2NI	HIGHEST	VALUE	TS	0.11954 AT (NA	
	HIGHEST										NA	
	HIGHEST										NA	
	HIGHEST										NA	
	HIGHEST										NA	
7TF	HIGHEST	VALUE	IS	0 09201 AT (564900 00.	419200	00.00.	88 00.	0.00)	DC	NA	
8TF	HIGHEST	VALUE	IS		564698.50,	419190	08.75,	72.00,	0.00)	DC	NA	
9TF	HIGHEST	VALUE	IS	0.08943 AT (564700.00,	419200	00.00,	76.00,	0.00)	DC	NA	
101	HIGHEST	VALUE	IS	0.08633 AT (564664.50,	419190	03.50,	71.00,	0.00)	DC	NA	
EXISTING 1ST	HIGHEST	WATHE	TS	0.07475 AT (564842 69	11919	50 00	83 00	0 00)	DC	NA	
	HIGHEST										NA NA	
	HIGHEST										NA	
	HIGHEST										NA	
	HIGHEST			0 06465 AT (564748 50	11919	16 75	75 00	0 00)		NA	
	HIGHEST			0.00103 HI (564800 00.	419200	0.70,	81 00.	0.00)		NA	
	HIGHEST			0.05418 AT (564991.81.	41919	75.00.	93.00,	0.00)		NA	
	HIGHEST				564700.00.	419200	00.00.	76.00,	0.00)		NA	
	HIGHEST			0.05205 AT (565000.00,	419200	00.00.	98.00,	0.00)		NA	
	HIGHEST			0.05100 AT (564900.00,	41920	00.00,	88.00,	0.00)		NA	

GROUP ID				AVERAGE CONC	RE	CEPTOR	(XR,	YR,	ZELEV,	ZFLAG)	OF	TYPE 	NETWORK GRID-ID
NEWLAB A 1ST H	HIGHEST	VALUE	IS	0.06132 AT (0.04777 AT (0.04696 AT (0.04509 AT (0.04400 AT (0.04254 AT (564649.94,	41917	52.00	,	66.00,	,	0.00)	DC	NA
- 2ND H	HIGHEST	VALUE	IS	0.04777 AT (564645.94,	41918	01.25	,	66.00,		0.00)	DC	NA
3RD H	HIGHEST	VALUE	IS	0.04696 AT (564639.88,	41918	52.00	,	67.00,		0.00)	DC	NA
4TH H	HIGHEST	VALUE	IS	0.04509 AT (564648.62,	41918	91.75	,	68.00,		0.00)	DC	NA
5TH H	HIGHEST	VALUE	IS	0.04400 AT (564664.50,	41919	03.50	,	71.00,		0.00)	DC	NA
6TH H	HIGHEST	VALUE	IS	0.04254 AT (564748.50,	41919	16.75	,	75.00,		0.00)	DC	NA
7TH H	HIGHEST	VALUE	IS	0.04106 AT (564600.00,	41918	00.00	,	65.00,		0.00)	DC	NA
8TH H	HIGHEST	VALUE	IS	0.04093 AT (564698.50,	41919	08.75	,	72.00,	,	0.00)	DC	NA
9TH H	HIGHEST	VALUE	IS	0.03776 AT (67.00,				NA
10тн н	HIGHEST	VALUE	IS	0.03511 AT (564842.69,	41919	50.00	,	83.00,	,	0.00)	DC	NA
NEWLAB_B 1ST H	HIGHEST	VALUE	IS	0.01705 AT (564892.25,	41919	59.00	,	84.00,		0.00)	DC	NA
2ND H	HIGHEST	VALUE	IS	0.01605 AT (564941.88,	41919	67.00	,	90.00,		0.00)	DC	NA
3RD H	HIGHEST	VALUE	IS										NA
4TH H	HIGHEST	VALUE	IS	0.01274 AT (NA
	HIGHEST			0.01103 AT (NA
	HIGHEST			0.01017 AT (NA
	HIGHEST			0.00967 AT (0.00)	DC	NA
				0.00918 AT (0.00)	DC	NA
				0.00767 AT (0.00)	DC	NA
10тн н	HIGHEST	VALUE	IS	0.00756 AT (565000.00,	41920	00.00	,	98.00,		0.00)	DC	NA
NEWLAB_C 1ST H	HIGHEST	VALUE	IS	0.00647 AT (565141.94,	41919	99.00	,	97.00,	,	0.00)	DC	NA
2ND H	HIGHEST	VALUE	IS	0.00611 AT (565191.50,	41920	09.50	,	97.00,		0.00)	DC	NA
3RD H	HIGHEST	VALUE	IS	0.00547 AT (565241.19,	41920	17.75	,	102.00,		0.00)	DC	NA
4TH H	HIGHEST	VALUE	IS	0.00515 AT (565100.00,	41921	00.00	,	107.00,		0.00)	DC	NA
5TH H	HIGHEST	VALUE	IS	0.00478 AT (565000.00,	41921	00.00	,	111.00,		0.00)	DC	NA
6TH H	HIGHEST	VALUE	IS	0.00462 AT (565100.00,	41920	00.00	,	96.00,		0.00)	DC	NA
7TH H	HIGHEST	VALUE	IS	0.00461 AT (565289.25,	41920	25.50	,	107.00,		0.00)	DC	NA
8TH H	HIGHEST	VALUE	IS	0.00448 AT (565090.81,	41919	91.50	,	96.00,		0.00)	DC	NA
9TH H	HIGHEST	VALUE	IS	0.00415 AT (565000.00,	41920	00.00	,	98.00,		0.00)	DC	NA
10TH H	HIGHEST	VALUE	IS	0.00647 AT (0.00611 AT (0.00515 AT (0.00478 AT (0.00462 AT (0.00461 AT (0.00448 AT (0.00415 AT (565339.88,	41920	34.25	,	108.00,		0.00)	DC	NA

** CONC OF CHRONIC IN MICROGRAMS/M**3

GROUP ID	AVERAGE CONC	REC	CEPTOR (XR, YR,	ZELEV, ZFLAG)	OF T	NETWORK YPE GRID-ID
NEWLAD D 10m HIGHEOM WALLE	TO 0.00212 7m /	ECE47E 10	4100010 00	110 00	0 00)	DC NA
NEWLAB_D 1ST HIGHEST VALUE	IS 0.00312 AT (565300 35	4192018.00,	110.00,	0.00)	DC NA
3RD HIGHEST VALUE						
4TH HIGHEST VALUE						
5TH HIGHEST VALUE						
6TH HIGHEST VALUE						
7TH HIGHEST VALUE						
	IS 0.00130 AT (
	IS 0.00151 AT (
	IS 0.00131 AT (
TOTH HIGHBOT WHOOL	0.00110 111 (303211.13,	1132017.73	102.007	0.00)	1421
NEWLAB_E 1ST HIGHEST VALUE	IS 0.01104 AT (565200.00,	4191300.00,	80.00,	0.00)	DC NA
2ND HIGHEST VALUE	IS 0.01022 AT (565326.25,	4191324.25,	84.00,	0.00)	DC NA
ODD UTOUROR USTU	TO 01000 3TH (F C F O O C 1 O	4101010 50	01 00	0 001	DO 373
4TH HIGHEST VALUE	IS 0.00972 AT (565176.31,	4191303.25,	79.00,	0.00)	DC NA
5TH HIGHEST VALUE	IS 0.00905 AT (565276.06,	4191318.25,	82.00,	0.00)	DC NA
6TH HIGHEST VALUE	IS 0.00897 AT (565376.81,	4191332.25,	87.00,	0.00)	DC NA
7TH HIGHEST VALUE	IS 0.00818 AT (565300.00,	4191300.00,	82.00,	0.00)	DC NA
8TH HIGHEST VALUE	IS 0.00816 AT (565400.00,	4191300.00,	84.00,	0.00)	DC NA
9TH HIGHEST VALUE	IS 0.00798 AT (565127.75,	4191295.25,	77.00,	0.00)	DC NA
10TH HIGHEST VALUE	IS 0.01009 AT (IS 0.00972 AT (IS 0.00975 AT (IS 0.00897 AT (IS 0.00818 AT (IS 0.00816 AT (IS 0.00798 AT (IS 0.00781 AT (565426.81,	4191338.75,	88.00,	0.00)	DC NA
NEWLAB_F 1ST HIGHEST VALUE	IS 0.00909 AT (565577.06,	4191362.50,	93.00,	0.00)	DC NA
2ND HIGHEST VALUE	IS 0.00784 AT (565626.50,	4191370.25,	95.00,	0.00)	DC NA
3RD HIGHEST VALUE	IS 0.00740 AT (565675.94,	4191381.00,	98.00,	0.00)	DC NA
4TH HIGHEST VALUE	IS 0.00654 AT (565726.62,	4191386.25,	100.00,	0.00)	DC NA
5TH HIGHEST VALUE	IS 0.00582 AT (565527.69,	4191354.50,	91.00,	0.00)	DC NA
6TH HIGHEST VALUE	IS 0.00540 AT (565776.88,	4191394.00,	103.00,	0.00)	DC NA
7TH HIGHEST VALUE	IS 0.00518 AT (565600.00,	4191300.00,	91.00,	0.00)	DC NA
8TH HIGHEST VALUE	IS 0.00511 AT (565426.81,	4191338.75,	88.00,	0.00)	DC NA
9TH HIGHEST VALUE	IS 0.00508 AT (565700.00,	4191300.00,	94.00,	0.00)	DC NA
NEWLAB_F 1ST HIGHEST VALUE 2ND HIGHEST VALUE 3RD HIGHEST VALUE 4TH HIGHEST VALUE 5TH HIGHEST VALUE 6TH HIGHEST VALUE 7TH HIGHEST VALUE 8TH HIGHEST VALUE 9TH HIGHEST VALUE 10TH HIGHEST VALUE	IS 0.00506 AT (565476.12,	4191347.00,	90.00,	0.00)	DC NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

GROUP ID	AVERAGE CONC	RECEPTOR (XR,	YR, ZELEV, ZFLAG) OF	NETWORK TYPE GRID-ID
NEWLAB G 1ST HIGHEST VALUE I	S 0.00158 AT (56	55856.12, 4191409.75,	110.00, 0.00)	DC NA
2ND HIGHEST VALUE I	S 0.00149 AT (56	5726.62, 4191386.25,	100.00, 0.00)	DC NA
3RD HIGHEST VALUE I	S 0.00139 AT (56	55776.88, 4191394.00,	103.00, 0.00)	DC NA
4TH HIGHEST VALUE I	S 0.00120 AT (56	55827.00, 4191402.25,	108.00, 0.00)	DC NA
5TH HIGHEST VALUE I	S 0.00114 AT (56	55675.94, 4191381.00,	98.00, 0.00)	DC NA
6TH HIGHEST VALUE I	S 0.00105 AT (56	6000.00, 4191300.00,	118.00, 0.00)	DC NA
7TH HIGHEST VALUE I	S 0.00104 AT (56	6100.00, 4191400.00,	149.00, 0.00)	DC NA
8TH HIGHEST VALUE I	S 0.00087 AT (56	6100.00, 4191600.00,	141.00, 0.00)	DC NA
9TH HIGHEST VALUE I	S 0.00082 AT (56	55800.00, 4191300.00,	103.00, 0.00)	DC NA
10TH HIGHEST VALUE I	S 0.00080 AT (56	6000.00, 4191200.00,	113.00, 0.00)	DC NA
DAVISNEW 1ST HIGHEST VALUE I	•	55600.00, 4192100.00,		
2ND HIGHEST VALUE I		55700.00, 4192100.00,		
3RD HIGHEST VALUE I		55800.00, 4192000.00,		
4TH HIGHEST VALUE I	•	55600.00, 4192200.00,		
5TH HIGHEST VALUE I		55500.00, 4192100.00,	,	
6TH HIGHEST VALUE I		5900.00, 4192000.00,		
7TH HIGHEST VALUE I		55800.00, 4192100.00,		
8TH HIGHEST VALUE I		55500.00, 4192200.00,		
9TH HIGHEST VALUE I		55500.00, 4192300.00,	,	
10TH HIGHEST VALUE I	S 0.00449 AT (56	55400.00, 4192300.00,	131.00, 0.00)	DC NA
STAN_NEW 1ST HIGHEST VALUE I	•	5800.00, 4192000.00,		
2ND HIGHEST VALUE I		55700.00, 4192100.00,	,	
3RD HIGHEST VALUE I	S 0.01497 AT (56	55900.00, 4192000.00,	182.00, 0.00)	DC NA

4TH	HIGHEST	VALUE	IS	0.01483	ΑT	(565600.00,	4192100.00,	140.00,	0.00)	DC	NA
5TH	HIGHEST	VALUE	IS	0.01371	ΑT	(565600.00,	4192200.00,	158.00,	0.00)	DC	NA
6TH	HIGHEST	VALUE	IS	0.01022	ΑT	(566000.00,	4192000.00,	224.00,	0.00)	DC	NA
7TH	HIGHEST	VALUE	IS	0.01022	ΑT	(565600.00,	4192300.00,	168.00,	0.00)	DC	NA
8TH	HIGHEST	VALUE	IS	0.01013	ΑT	(566100.00,	4191900.00,	236.00,	0.00)	DC	NA
9TH	HIGHEST	VALUE	IS	0.00880	ΑT	(565800.00,	4192100.00,	198.00,	0.00)	DC	NA
10TH	HIGHEST	VALUE	IS	0.00873	AT	(566300.00,	4191600.00,	155.00,	0.00)	DC	NA

GROUP II)		AVERAGE CONC	REC:	EPTOR (XR, YF	R, ZELEV, ZFLAG) OF TYPE	NETWORK GRID-ID
NEWENG	1ST HIGHEST	VALUE IS	0.00039 AT (565475.12,	4192018.00,	118.00,	0.00) DC	NA
	2ND HIGHEST	VALUE IS	0.00034 AT (565460.56,	4192039.50,	117.00,	0.00) DC	NA
	3RD HIGHEST	VALUE IS	0.00033 AT (565438.25,	4192048.75,	117.00,	0.00) DC	NA
	4TH HIGHEST	VALUE IS	0.00026 AT (565300.00,	4192100.00,	107.00,	0.00) DC	NA
	5TH HIGHEST	VALUE IS	0.00025 AT (565141.94,	4191999.00,	97.00,	0.00) DC	NA
	6TH HIGHEST	VALUE IS	0.00024 AT (565241.19,	4192017.75,	102.00,	0.00) DC	NA
	7TH HIGHEST	VALUE IS	0.00022 AT (565400.00,	4192100.00,	116.00,	0.00) DC	NA
	8TH HIGHEST	VALUE IS	0.00020 AT (565100.00,	4192000.00,	96.00,	0.00) DC	NA
	9TH HIGHEST	VALUE IS	0.00020 AT (565090.81,	4191991.50,	96.00,	0.00) DC	NA
	10TH HIGHEST	VALUE IS	0.00020 AT (565191.50,	4192009.50,	97.00,	0.00) DC	NA

*** ISCST3 - VERSION 02035 ***

*** UC Berkeley - 12/2003; vjh Sensitive Receptors Chronic

*** Model Executed on 02/06/04 at 11:24:40 ***

Input File - D:\Beest\UCBerk\10-03\Final\LRDP\LRDP-Chron-Sensitive.DTA

Output File - D:\Beest\UCBerk\10-03\Final\LRDP\LRDP-Chron-Sensitive.LST

 $\label{local_met2} \mbox{Met File - D:\Beest\UCBerk\10-03\mbox{\mbox{$\mbox{$met2$\lbl-97a.asc}}}} \\$

Number of sources - 142
Number of source groups - 37
Number of receptors - 259

*** POINT SOURCE DATA ***

ID	PART. CATS.	(GRAMS/SEC)		Y (METERS)			STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)		EMISSION RATE SCALAR VARY BY
	0	0.01000= 05	564504	4101500	66.0	01 70	000 15	7.10	0.10		
WHSTK1_8 NWAF9		0.21000E-05 0.75100E-04					293.15		0.19	YES	
WHSTK10		0.75100E-04 0.21000E-05					293.15 293.15		0.74	YES YES	
MHSTK1		0.21000E-05			74.8	8.60 7.61	293.15	17.25	0.34	YES	
MHSTK2		0.37600E-05				10.89	293.15	17.25	0.34	YES	
MHSTK3		0.37600E-05				10.89	293.15	17.25	0.48	YES	
MHSTK4		0.37600E-05				15.61	293.15	17.25	0.33	YES	
MHSTK6		0.37600E-05			74.8	10.94	293.15	17.25	0.34	YES	
KHSTK1		0.11500E-03					293.15	1.28	2.76	YES	
KHSTK1		0.11500E-03				18.45	293.15		2.76	YES	
KHSTK3		0.11500E-03					293.15	1.28	2.76	YES	
KHSTK4		0.11500E-03			72.7	18.45	293.15	1.28	2.76	YES	
BHSTK1		0.11600E-04			67.4	27.85	293.15	2.78	1.26	YES	
BHSTK2		0.11600E-04				29.68	293.15		1.26	YES	
BHSTK3		0.11600E-04				29.68	293.15	2.78	1.26	YES	
BHSTK4		0.11600E-04				33.34	293.15	2.78	0.37	YES	
BHSTK5		0.11600E-04				33.34	293.15	2.78	0.37	YES	
VLSBSTK1		0.12100E-03			64.4	27.04	293.15	3.97	1.22	YES	
VLSBSTK2	0	0.12100E-03				27.04	293.15	3.97	1.22	YES	
VLSBSTK3	0	0.12100E-03				27.04	293.15	3.97	1.22	YES	
VLSBSTK4		0.12100E-03				27.04	293.15	3.97	1.22	YES	
LSASTK1	0	0.70000E-04				28.31	293.15	5.18	1.22	YES	
LSASTK2	0	0.70000E-04				28.31	293.15	5.18	1.22	YES	
LSASTK3		0.70000E-04				28.31	293.15		1.22	YES	
LSASTK4		0.70000E-04				28.31	293.15	5.18	1.22	YES	
LSASTK5	0	0.70000E-04				28.31	293.15	5.18	1.22	YES	
LSASTK6	0	0.70000E-04	564899.1	4191573.5	64.4	28.31	293.15	5.18	1.22	YES	
LSASTK7		0.70000E-04				28.31	293.15	5.18	0.30	YES	
LEWHSTK1	0	0.21600E-05	565605.8	4191772.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK2	0	0.21600E-05	565591.5	4191786.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK3	0	0.21600E-05	565585.9	4191792.2	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK4	0	0.21600E-05	565583.1	4191800.0	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK5	0	0.21600E-05	565598.1	4191787.8	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK6	0	0.21600E-05	565619.4	4191775.8	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK7	0	0.21600E-05	565608.8	4191787.2	106.7	12.80	293.15	3.11	0.36	YES	
LEWHSTK8	0	0.21600E-05	565597.6	4191800.5	106.7	12.80	293.15	3.11	0.30	YES	
LEWHSTK9	0	0.21600E-05	565593.3	4191808.2	106.7	12.80	293.15	3.11	0.36	YES	
LATHSTK1	0	0.92400E-05	565555.1	4191799.2	104.6	42.37	293.15	6.28	0.34	YES	
LATHSTK2	0	0.92400E-05	565561.1	4191812.0	104.6	36.88			0.70	YES	
LATHSTK3	0	0.92400E-05 0.92400E-05 0.92400E-05	565531.6	4191800.2	104.6	36.88	293.15		0.48	YES	

*** POINT SOURCE DATA ***

SOURCE ID	NUMBER PART. CATS.	EMISSION RAT	E X (METERS) 	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
LATHSTK4	0	0.92400E-05	565515.1	4191799.5	104.6	37.19	293.15	6.28	0.96	YES	
LATHSTK5	0	0.92400E-05	565539.7	4191794.2	104.6	42.37	293.15	6.28	0.70	YES	
LATHSTK6	0	0.92400E-05	565527.3	4191776.0	104.6	38.40	293.15	6.28	0.74	YES	
LATHSTK7	0	0.92400E-05	565544.9	4191781.5	104.6	38.40	293.15	6.28	0.31	YES	
LATHSTK8	0	0.92400E-05	565562.3	4191787.0	104.6	38.40	293.15	6.28	0.70	YES	
TANHSTKA	0	0.79700E-05	565492.1	4191793.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKB	0	0.79700E-05	565496.8	4191794.0	100.6	39.32	293.15	2.94	1.69	YES	
TANHSTKC	0	0.79700E-05	565494.1	4191787.2	100.6	39.32	293.15	2.94	1.69	YES	

TANHSTKD	0	0.79700E-05	565499.1 4191788.2	100.6	39.32	293.15	2.94	1.69	YES
HHSTKA	0	0.19400E-04	565540.8 4191749.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKB	0	0.19400E-04	565565.6 4191756.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKC	0	0.19400E-04	565576.8 4191717.8	103.6	20.12	293.15	4.15	1.52	YES
HHSTKD	0	0.19400E-04	565553.2 4191710.5	103.6	20.12	293.15	4.15	1.52	YES
HHSTKE	0	0.19400E-04	565543.4 4191746.5	103.6	20.12	293.15	4.15	0.81	YES
GHSTK1	0	0.12100E-05	565507.1 4191756.0	103.6	16.06	293.15	5.92	0.30	YES
GHSTK2	0	0.12100E-05	565510.6 4191744.8	103.6	16.06	293.15	5.92	0.25	YES
GHSTK3	0	0.12100E-05	565512.4 4191739.0	103.6	16.37	293.15	5.92	0.30	YES
GHSTK4	0	0.12100E-05	565514.7 4191737.8	103.6	15.91	293.15	5.92	0.31	YES
GHSTK5	0	0.12100E-05	565514.9 4191732.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK6	0	0.12100E-05	565500.2 4191755.2	103.6	16.12	293.15	5.92	0.30	YES
GHSTK7	0	0.12100E-05	565501.1 4191753.0	103.6	16.37	293.15	5.92	0.84	YES
GHSTK8	0	0.12100E-05	565503.7 4191744.2	103.6	16.00	293.15	5.92	0.30	YES
GHSTK9	0	0.12100E-05	565505.2 4191740.2	103.6	16.37	293.15	5.92	0.26	YES
GHSTK10	0	0.12100E-05	565506.9 4191735.2	103.6	16.06	293.15	5.92	0.30	YES
GHSTK11	0	0.12100E-05	565509.7 4191728.2	103.6	16.22	293.15	5.92	0.30	YES
GHSTK12	0	0.12100E-05	565509.0 4191725.5	103.6	16.06	293.15	5.92	0.30	YES
GHSTK13	0	0.12100E-05	565516.9 4191725.8	103.6	15.91	293.15	5.92	0.40	YES
CHSTK1	0	0.30600E-04	565393.9 4192008.8	110.3	26.85	293.15	2.00	1.00	YES
HESSTK1	0	0.98800E-04	565234.6 4191926.2	98.2	15.39	293.15	2.00	1.00	YES
HILSTK1	0	0.28000E-02	564874.6 4191815.0	80.4	14.96	293.15	2.00	1.00	YES
MULSTK1	0	0.12000E-06	564779.7 4191737.8	74.4	17.24	293.15	2.00	1.00	YES
WELSTK1	0	0.39400E-05	564933.7 4191795.2	81.7	5.89	293.15	2.00	1.00	YES
PRINTA	0	0.12300E-04	564584.7 4191553.2	60.0	8.91	293.15	2.70	0.84	YES
PRINTB	0	0.12300E-04	564614.4 4191520.8	60.0	8.91	293.15	2.70	0.84	YES
PRINTC	0	0.12300E-04	564643.1 4191525.5	60.0	8.91	293.15	2.70	0.60	YES
COGEN	0	0.17900E-01	564876.0 4191492.0	71.9	12.77	430.37	10.45	2.28	YES
BOILER#2	0	0.11800E-03	564863.6 4191499.5	71.9	8.80	522.82	7.97	1.52	YES
BOILER#3	0	0.44700E-03	564881.9 4191505.8	71.9	8.80	554.11	10.53	1.52	YES
BOILER#4	0	0.54000E-03	564885.8 4191495.8	71.9	8.80	566.65	12.63	1.52	YES
POURING	0	0.16100E-05	564847.8 4191467.0	70.1	14.94	293.15	4.62	0.56	YES

*** POINT SOURCE DATA ***

TD	CAMC		(MEMED C)	(MEMEDC)	(MEMEDC)	(MEMEDC)	(DEC E)	(M/CEC)	(MEMEDC)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
		0.31494E-05 0.15747E-05 0.48231E-06 0.19787E-04 0.41470E-04 0.33184E-04 0.11064E-04 0.55239E-05 0.15871E-04 0.13810E-04 0.13810E-04 0.13810E-04 0.13810E-04 0.13810E-04 0.13810E-05 0.6966E-05 0.96873E-05 0.96873E-05 0.27372E-05 0.27372E-05 0.27372E-05 0.27372E-05 0.27372E-05 0.27372E-05 0.27372E-05 0.27372E-05 0.27372E-05 0.27372E-05 0.27372E-05 0.27372E-05 0.27372E-05 0.27372E-05 0.27619E-05 0.48231E-06 0.48231E-06 0.48231E-06 0.48231E-06 0.49300E-03 0.39100E-03 0.39100E-03 0.89100E-04 0.46380E-05 0.46380E-05 0.18550E-05									
ENG_62	0	0.31494E-05	565567.6	4191086.5	85.1	4.57	800.37	146.01	0.13	NO	
ENG_63	0	0.15/4/E-05	564668.2	4191897.5	70.2	4.5/	799.85	152.00	0.13 0.08	YES	
ENG_64	0	0.48231E-06	565452.9	4191687.0	98.2	3.05	817.07	58.47	0.08		
ENG_105	0	0.19787E-04	564939.1	4191457.8	71.1	4.57	810.96	70.10	0.23	YES	
ENG_106	0	0.41470E-04	564991.6	4191614.5	73.6	30.48	810.96	70.10	0.20	YES	
ENG_107	0	0.33184E-04	564767.4	4191906.8	76.2	0.00	810.96	70.10	0.18	YES	
ENG_108	0	0.33184E-04	564930.6	4191564.2	68.8	7.62	810.96	70.10	0.18	YES	
ENG_109	0	0.11064E-04	565615.8	4191801.2	111.7	3.05	810.96	70.10	0.15	YES	
ENG_110	0	0.55239E-05	564655.9	4191874.5	68.4	4.57	810.96	70.10	0.10	YES	
ENG_111	0	0.15871E-04	565091.1	4191757.8	78.9	3.05	810.96	70.10	0.11	YES	
ENG_112	0	0.13810E-04	565542.8	4191208.2	85.7	3.05	810.93	70.10	0.10	NO	
ENG_113	0	0.13810E-04	565673.6	4191194.8	92.0	3.05	810.93	70.10	0.10	NO	
ENG_114	0	0.13810E-04	565601.4	4191014.2	86.0	3.05	810.93	70.10	0.10	NO	
ENG_115	0	0.13810E-04	565702.9	4190991.8	91.4	3.05	810.93	70.10	0.10	NO	
ENG_117	0	0.13810E-04	565575.9	4191609.0	99.3	3.05	810.96	70.10	0.10	YES	
ENG_118	0	0.65956E-05	564654.8	4191890.5	68.6	4.57	810.96	70.10	0.13	YES	
ENG_119	0	0.96873E-05	564728.8	4191771.0	70.5	4.57	810.96	70.10	0.08	YES	
ENG_120	0	0.69666E-05	565318.0	4191422.5	86.1	3.05	810.96	70.10	0.08	YES	
ENG_121	0	0.69254E-05	565926.2	4191443.0	118.9	3.05	810.93	70.10	0.08	NO	
ENG_123	0	0.85331E-05	565259.4	4191652.8	88.3	3.05	810.96	70.10	0.08	YES	
ENG_125	0	0.27372E-05	564811.2	4191460.8	67.7	3.05	810.96	70.10	0.08	YES	
ENG_126	0	0.22095E-05	565137.9	4191441.5	77.6	0.00	810.96	70.10	0.08	YES	
ENG_128	0	0.27619E-05	565469.2	4191955.2	109.8	3.05	810.96	70.10	0.05	YES	
ENG_129	0	0.27619E-05	565383.1	4191740.2	97.0	2.44	810.96	70.10	0.05	YES	
ENG_130	0	0.17128E-05	565533.3	4191713.5	98.9	2.44	815.40	134.54	0.08	YES	
ENG 131	0	0.48231E-06	564970.3	4191484.2	71.3	1.83	817.07	58.47	0.08	YES	
ENG 132	0	0.48231E-06	564800.3	4191781.8	74.3	1.83	817.07	58.47	0.08	YES	
E134 133	0	0.12449E-04	565380.0	4191939.2	104.3	3.05	769.29	135.05	0.13	YES	
NEWLAB A	0	0.24300E-02	564808.8	4191708.2	70.5	6.10	293.15	3.97	1.00	YES	
NEWLAB B	0	0.49300E-03	565047.0	4191787.5	77.9	6.10	293.15	3.97	1.00	YES	
NEWLAB C	0	0.27500E-03	565301.9	4191832.0	90.7	6.10	293.15	3.97	1.00	YES	
NEWLAB D	0	0.14600E-03	565490.2	4191861.5	106.7	6.10	293.15	3.97	1.00	YES	
NEWLAB E	0	0.39100E-03	565089.5	4191460.8	73.6	6.10	293.15	3.97	1.00	YES	
NEWLAB F	0	0.31000E-03	565368.8	4191521.8	86.7	6.10	293.15	3.97	1.00	YES	
NEWLAB G	0	0.89100E-04	565641.7	4191569.5	102.4	6.10	293.15	3.97	1.00	YES	
ENG STNL	0	0.46380E-05	565539.1	4191905.2	114.2	2.13	769.26	76.14	0.18	YES	
ENG DVS	0	0.46380E-05	565364.1	4191990.5	109.8	2.13	769.26	76.14	0.18	YES	
ENG MCCN	0	0.18550E-05	565176.4	4191928.8	93.8	2.13	810.93	59.08	0.13	YES	
ENG SRB1	0	0.18550E-05	564595.2	4191928.2	67.3	2.13	810.93	59.08	0.13	YES	
_											

*** POINT SOURCE DATA ***

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)		(METERS)	HEIGHT (METERS)	TEMP.	STACK EXIT VEL. (M/SEC)	DIAMETER	BUILDING EXISTS	EMISSION SCALAR BY	
ENGMUSIC ENG_UNT1 ENG_UNT2	0	0.18550E-05 0.18550E-05 0.18550E-05	565595.6 565647.0	4191185.0 4191033.2	87.9 88.8	2.13 2.13	810.93 810.93 810.93	59.08	0.13 0.13 0.13 0.13	YES NO NO		
ENG_UNT3 ENG116NU NEWSTAN1 NEWSTAN2	0 0 0	0.18550E-05 0.39260E-05 0.31800E-03 0.31800E-03	564775.8 565533.9 565535.5	4191177.5 4191904.0 4191899.0	63.2 112.9 112.9	2.13 41.90 41.90	810.93 293.15 293.15	87.63 17.25 17.25	0.15 1.32 0.76	NO NO YES YES		
NEWSTAN3 NEWSTAN4 NEWSTAN5 NEWSTAN6	0 0 0	0.31800E-03 0.31800E-03 0.31800E-03	565538.8 565545.4 565543.6	4191889.8 4191891.5 4191896.2	112.9 112.9 112.9	41.90 41.90 41.90	293.15 293.15 293.15 293.15	17.25 17.25 17.25	0.76 0.61 0.76 0.76	YES YES YES YES		
NEWSTAN7 NEWSTAN8 NEWDAVS1 NEWDAVS2	0	0.31800E-03 0.31800E-03 0.30400E-03 0.30400E-03 0.30400E-03	565540.3 565340.6	4191905.8 4191981.0	112.9 108.9	41.90 33.79	293.15	17.25 12.66	1.63	YES YES YES YES		
NEWDAVS3 NEWDAVS4	0	0.30400E-03	565329.5	4191986.2	109.2	33.79	293.15	13.62	0.86	YES YES		
SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)		Y	BASE ELEV.		INIT.		SCALAR V			
MHSTK5 PAINT1 PAINT2	0	0.37600E-05 0.10600E-05 0.10600E-05	564917.1 565322.7	4191432.5 4191834.8	72.0 96.0	4.57 4.57	3.54 3.54	4.25 4.25				
PAINT3 PAINT4	0	0.10600E-05 0.10600E-05	565541.5	4191525.8 4191751.0	97.0 77.0	4.57 4.57	3.54	4.25 4.25				
				*** SOURCE	E IDs DEF	INING SOUF	RCE GROUP	s ***				
GROUP ID					SOUI	RCE IDs						
ALL	WHSTK1_8,	NWAF9 , WF	ISTK10 , M	MHSTK1 , M	MHSTK2 ,	MHSTK3 ,	MHSTK4	, MHSTK5	, MHSTK6	, KHSTKI	l , KHST	K2 , KHSTK3
LSASTK2 ,	KHSTK4 ,	BHSTK1 , BH	ISTK2 , B	BHSTK3 , E	BHSTK4 ,	BHSTK5 ,	VLSBSTK	(1, VLSBST	(2, VLSBSTI	K3, VLSBS	rk4, LSAS	TK1 ,
LEWHSTK7,		LSASTK4 , LS										
TANHSTKB,		LEWHSTK9, LA										
,		TANHSTKD, HE										
MULSTK1 ,	GHSTK6 ,	GHSTK7 , GF	ISTK8 , G	GHSTK9 , (GHSTK10 ,	GHSTK11 ,	GHSTK12	, GHSTKI	3 , CHSTK1	, HESSTI	KI , HILS	rki ,
,	WELSTK1 ,	PRINTA , PF	RINTB , P	PRINTC , (COGEN ,	BOILER#2,	BOILER#	3, BOILER	4, POURING	G , PAINT1	l , PAIN	T2 , PAINT3
ENG_112 ,	PAINT4 ,	ENG_62 , EN	IG_63 , E	NG_64 , E	ENG_105 ,	ENG_106 ,	ENG_107	, ENG_108	B , ENG_10	9 , ENG_11	10 , ENG_	111 ,
ENG_128 ,	ENG_113 ,	ENG_114 , EN	IG_115 , E	NG_117 , E	ENG_118 ,	ENG_119 ,	ENG_120	, ENG_121	, ENG_123	3 , ENG_12	25 , ENG_	126 ,
NEWLAB_G,	ENG_129 ,	ENG_130 , EN	IG_131 , E	NG_132 , E	E134_133,	NEWLAB_A,	NEWLAB_	B, NEWLAB	_C, NEWLAB_	_D, NEWLA	B_E, NEWL	AB_F,

```
ENG_STNL, ENG_DVS , ENG_MCCN, ENG_SRB1, ENGNULAB, ENGMUSIC, ENG_UNT1, ENG_UNT2, ENG_UNT3, ENG116NU, NEWSTAN1,
NEWSTAN2,
           NEWSTAN3, NEWSTAN4, NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
           WHSTK1 8, WHSTK10 ,
 WH
           NWAF9 ,
 NWAF
 MH
           MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 ,
           KHSTK1 , KHSTK2 , KHSTK3 , KHSTK4 ,
 KH
 ВН
           BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 ,
           VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4,
 VLSB
 LSA
           LSASTK1 , LSASTK2 , LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 ,
 LEW
           LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6, LEWHSTK7, LEWHSTK8, LEWHSTK9,
                                         *** SOURCE IDs DEFINING SOURCE GROUPS ***
 GROUP ID
                                                        SOURCE IDs
 LAT
           LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8,
 TAN
           TANHSTKA, TANHSTKB, TANHSTKC, TANHSTKD,
           HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE ,
           GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5 , GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 ,
 GH
GHSTK12 ,
           GHSTK13 ,
           CHSTK1 ,
 CH
 HES
           HESSTK1 ,
 HIL
           HILSTK1 ,
           MULSTK1 ,
 MUL
 WEL
           WELSTK1 ,
 PRINT
           PRINTA , PRINTB , PRINTC ,
 COMBUST
          COGEN , BOILER#2, BOILER#3, BOILER#4,
 HAZMAT
           POURING ,
 PAINT
           PAINT1 , PAINT2 , PAINT3 , PAINT4 ,
 EXISTLAB WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
```

```
KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7.
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
                                          *** SOURCE IDs DEFINING SOURCE GROUPS ***
GROUP ID
                                                        SOURCE IDs
           WELSTK1 ,
 ENGINES
           ENG 62 , ENG 63 , ENG 64 , ENG 105 , ENG 106 , ENG 107 , ENG 108 , ENG 109 , ENG 110 , ENG 111 , ENG 112 ,
ENG 113 ,
           ENG_114 , ENG_115 , ENG_117 , ENG_118 , ENG_119 , ENG_120 , ENG_121 , ENG_123 , ENG_125 , ENG_126 , ENG_128 ,
ENG 129 ,
           ENG_130 , ENG_131 , ENG_132 , E134_133,
 NEWLABS
           NEWLAB A, NEWLAB B, NEWLAB C, NEWLAB D, NEWLAB E, NEWLAB F, NEWLAB G, NEWSTAN1, NEWSTAN2, NEWSTAN3, NEWSTAN4,
NEWSTAN5,
           NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
 ALL_LABS
           WHSTK1_8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MULSTK1 ,
           WELSTK1 , NEWLAB A, NEWLAB B, NEWLAB C, NEWLAB D, NEWLAB E, NEWLAB G, ENG UNT3, NEWSTAN1, NEWSTAN2, NEWSTAN3,
NEWSTAN4,
           NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8, NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,
 EXISTING WHSTK1 8, NWAF9 , WHSTK10 , MHSTK1 , MHSTK2 , MHSTK3 , MHSTK4 , MHSTK5 , MHSTK6 , KHSTK1 , KHSTK2 , KHSTK3
           KHSTK4 , BHSTK1 , BHSTK2 , BHSTK3 , BHSTK4 , BHSTK5 , VLSBSTK1, VLSBSTK2, VLSBSTK3, VLSBSTK4, LSASTK1 ,
LSASTK2 ,
           LSASTK3 , LSASTK4 , LSASTK5 , LSASTK6 , LSASTK7 , LEWHSTK1, LEWHSTK2, LEWHSTK3, LEWHSTK4, LEWHSTK5, LEWHSTK6,
LEWHSTK7,
           LEWHSTK8, LEWHSTK9, LATHSTK1, LATHSTK2, LATHSTK3, LATHSTK4, LATHSTK5, LATHSTK6, LATHSTK7, LATHSTK8, TANHSTKA,
TANHSTKB,
           TANHSTKC, TANHSTKD, HHSTKA , HHSTKB , HHSTKC , HHSTKD , HHSTKE , GHSTK1 , GHSTK2 , GHSTK3 , GHSTK4 , GHSTK5
           GHSTK6 , GHSTK7 , GHSTK8 , GHSTK9 , GHSTK10 , GHSTK11 , GHSTK12 , GHSTK13 , CHSTK1 , HESSTK1 , HILSTK1 ,
MUILSTK1 .
```

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDS

WELSTK1 , PRINTA , PRINTB , PRINTC , COGEN , BOILER#2, BOILER#3, BOILER#4, POURING , PAINT1 , PAINT2 , PAINT3

PAINT4 , ENG_62 , ENG_63 , ENG_64 , ENG_105 , ENG_106 , ENG_107 , ENG_108 , ENG_109 , ENG_110 , ENG_111 ,

ENG_112 ,

ENG_113 , ENG_114 , ENG_115 , ENG_117 , ENG_118 , ENG_119 , ENG_120 , ENG_121 , ENG_123 , ENG_125 , ENG_126 , ENG_128 ,

ENG_129 , ENG_130 , ENG_131 , ENG_132 , E134_133,

NEWLAB_A NEWLAB_A,

NEWLAB_B NEWLAB_B,

NEWLAB C NEWLAB C,

NEWLAB_D NEWLAB_D,

NEWLAB_E NEWLAB_E,

NEWLAB F NEWLAB F,

NEWLAB_G NEWLAB_G,

DAVISNEW NEWDAVS1, NEWDAVS2, NEWDAVS3, NEWDAVS4,

STAN NEW NEWSTAN1, NEWSTAN2, NEWSTAN3, NEWSTAN4, NEWSTAN5, NEWSTAN6, NEWSTAN7, NEWSTAN8,

NEWENG ENG_STNL, ENG_DVS , ENG_MCCN, ENG_SRB1, ENGNULAB, ENG_UNT1, ENG_UNT2, ENG_UNT3,

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

GROUP	ID AT	FRAGE CONC	RECEPTOR (XR, YR,	ZELEV, ZFLAG)	OF TYPE	NETWORK GRID-ID
ALL	1ST HIGHEST VALUE IS	0.07843 AT (564945.	62, 4192065.50,	102.72, 0.	.00) DC	NA
	2ND HIGHEST VALUE IS	0.06228 AT (565700.	06, 4191711.25,	109.42, 0.	.00) DC	NA
	3RD HIGHEST VALUE IS	0.06099 AT (564926.	69, 4192158.75,	109.42, 0.	.00) DC	NA
	4TH HIGHEST VALUE IS	0.06094 AT (565700.	06, 4191711.25,	108.20, 0.	.00) DC	NA
	5TH HIGHEST VALUE IS	0.05767 AT (565009.	00, 4192130.00,	110.64, 0.	.00) DC	NA
	6TH HIGHEST VALUE IS	0.04008 AT (564487.	38, 4192391.25,	80.16, 0.	.00) DC	NA
	7TH HIGHEST VALUE IS	0.03776 AT (564591.	56, 4192414.75,	83.82, 0.	.00) DC	NA
	8TH HIGHEST VALUE IS	0.03714 AT (565144.	62, 4192620.50,	154.84, 0.	.00) DC	NA
	9TH HIGHEST VALUE IS	0.03497 AT (565202.	31, 4192629.00,	160.32, 0.	.00) DC	NA
	10TH HIGHEST VALUE IS	0.03415 AT (565233.	75, 4192605.00,	159.72, 0.	.00) DC	NA
WH	1ST HIGHEST VALUE IS	0.00002 AT (564945.	62, 4192065.50,	102.72, 0.	.00) DC	NA
	2ND HIGHEST VALUE IS	0.00002 AT (564228.	31, 4192049.25,	64.62, 0.	.00) DC	NA
	3RD HIGHEST VALUE IS	0.00002 AT (564487.	38, 4192391.25,	80.16, 0.	.00) DC	NA
	4TH HIGHEST VALUE IS	0.00002 AT (564926.	69, 4192158.75,	109.42, 0.	.00) DC	NA
	5TH HIGHEST VALUE IS	0.00002 AT (564160.	38, 4192207.75,	64.31, 0.	.00) DC	NA
	6TH HIGHEST VALUE IS	0.00001 AT (565009.	00, 4192130.00,	110.64, 0.	.00) DC	NA
	7TH HIGHEST VALUE IS	0.00001 AT (564249.	94, 4192208.00,	66.75, 0.	.00) DC	NA
	8TH HIGHEST VALUE IS	0.00001 AT (564079.	94, 4192117.50,	61.57, 0.	.00) DC	NA
	9TH HIGHEST VALUE IS	0.00001 AT (564591.	56, 4192414.75,	83.82, 0.	.00) DC	NA
	10TH HIGHEST VALUE IS	0.00001 AT (564933.	25, 4191275.25,	71.32, 0.	.00) DC	NA
NWAF	1ST HIGHEST VALUE IS	0.00027 AT (564945.	62, 4192065.50,	102.72, 0.	.00) DC	NA

0.00023 AT (565700.06, 4191711.25, 0.00023 AT (564926.69, 4192158.75, 0.00023 AT (565700.06, 4191711.25, 0.00022 AT (565009.00, 4192130.00, 0.00016 AT (564933.25, 4191275.25, 0.00012 AT (565070.19, 4191077.50, 0.00012 AT (56473.21, 4191077.50, 0.00012 AT 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 4TH HIGHEST VALUE IS 0.00) DC 0.00) DC 108.20, NA 109.42, NA 109.42, 0.00) DC NA 5TH HIGHEST VALUE IS 110.64, 0.00) DC NA 6TH HIGHEST VALUE IS 71.32, 0.00) NA 7TH HIGHEST VALUE IS 70.41, 0.00) DC NA 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 0.00011 AT (564735.81, 4192658.00, 0.00011 AT (564729.75, 4192662.25, 0.00011 AT (566063.25, 4190799.75, 100.28, 0.00) DC NA 100.28, 0.00) DC NA 10TH HIGHEST VALUE IS 101.19, 0.00) DC NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

** CONC OF CHRONIC IN MICROGRAMS/M**3

GROUP	ID	AVERAGE CONC	REC	EPTOR (XR, Y	'R, ZELEV, ZFLA 	G) OF	TYPE 	NETWORK GRID-ID
MH	1ST HIGHEST VALUE IS	0.00019 AT (0.00015 AT (0.00012 AT (0.00012 AT (564945.62,	4192065.50,	102.72,	0.00)	DC	NA
	2ND HIGHEST VALUE IS	S 0.00015 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
	3RD HIGHEST VALUE IS	S 0.00012 AT (564487.38,	4192391.25,	80.16,	0.00)	DC	NA
	4TH HIGHEST VALUE IS	S 0.00012 AT (565009.00,	4192130.00,	110.64,	0.00)	DC	NA
	5TH HIGHEST VALUE IS	S 0.00011 AT (564591.56,	4192414.75,	83.82,	0.00)	DC	NA
	6TH HIGHEST VALUE IS	S 0.00010 AT (564249.94,	4192208.00,	66.75,	0.00)	DC	NA
	7TH HIGHEST VALUE IS							NA
	8TH HIGHEST VALUE IS							NA
	9TH HIGHEST VALUE IS	S 0.00009 AT (565700.06,	4191711.25,	109.42,	0.00)	DC	NA
	10TH HIGHEST VALUE IS	S 0.00008 AT (564525.06,	4192613.75,	85.65,	0.00)	DC	NA
KH	1ST HIGHEST VALUE IS	S 0.00366 AT (564945.62,	4192065.50,	102.72,	0.00)	DC	NA
	2ND HIGHEST VALUE IS	S 0.00242 AT (565009.00,	4192130.00,	110.64,	0.00)	DC	NA
	3RD HIGHEST VALUE IS	S 0.00238 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
	4TH HIGHEST VALUE IS							NA
	5TH HIGHEST VALUE IS							NA
	6TH HIGHEST VALUE IS							NA
	7TH HIGHEST VALUE IS		564249.94,	4192208.00,	66.75,	0.00)	DC	NA
	8TH HIGHEST VALUE IS		564591.56,	4192414.75,	83.82,	0.00)	DC	NA
	9TH HIGHEST VALUE IS							NA
	10TH HIGHEST VALUE IS	S 0.00123 AT (564160.38,	4192207.75,	64.31,	0.00)	DC	NA
BH	1ST HIGHEST VALUE IS	S 0.00037 AT (NA
	2ND HIGHEST VALUE IS	S 0.00024 AT (565009.00,	4192130.00,	110.64,	0.00)	DC	NA
	3RD HIGHEST VALUE IS	S 0.00021 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
	4TH HIGHEST VALUE IS	S 0.00016 AT (564249.94,	4192208.00,	66.75,	0.00)	DC	NA
	5TH HIGHEST VALUE IS	S 0.00016 AT (565700.06,	4191711.25,	108.20,	0.00)	DC	NA
	6TH HIGHEST VALUE IS		565700.06,	4191711.25,	109.42,	0.00)	DC	NA
	7TH HIGHEST VALUE IS	S 0.00015 AT (564487.38,	4192391.25,	80.16,	0.00)	DC	NA
	8TH HIGHEST VALUE IS	S 0.00013 AT (564228.31,	4192049.25,	64.62,	0.00)	DC	NA
	9TH HIGHEST VALUE IS	S 0.00013 AT (564591.56,	4192414.75,	83.82,	0.00)	DC	NA
	10TH HIGHEST VALUE IS	S 0.00013 AT (564160.38,	4192207.75,	64.31,	0.00)	DC	NA

*** THE SUMMARY OF MAXIMUM PERIOD ($8760\ \mathrm{HRS})$ RESULTS ***

* *

GROUP I	ID AVER	RAGE CONC	RECEPTOR (XR, YR, ZEL	EV, ZFLAG) OF TYPE	NETWORK E GRID-ID
VLSB	1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS	0.00235 AT (564945.0 0.00169 AT (565700.0 0.00168 AT (565700.0	6, 4191711.25, 108 6, 4191711.25, 109	.72, 0.00) DC .20, 0.00) DC .42, 0.00) DC	NA NA NA
	4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 7TH HIGHEST VALUE IS	0.00150 AT (564926.6 0.00150 AT (565009.0 0.00141 AT (565328.3 0.00112 AT (564487.3	0, 4192130.00, 110 1, 4191032.50, 74	.42, 0.00) DC .64, 0.00) DC .68, 0.00) DC .16, 0.00) DC	NA NA NA NA
	8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS	0.00105 AT (564591.5	6, 4192414.75, 83 5, 4190799.75, 101	.10, 0.00) DC .82, 0.00) DC .19, 0.00) DC .41, 0.00) DC	NA NA NA
LSA	1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS	0.00230 AT (564945.0 0.00142 AT (565700.0 0.00141 AT (565009.0 0.00139 AT (564926.0 0.00138 AT (565700.0	6, 4191711.25, 108 0, 4192130.00, 110 9, 4192158.75, 109	.72, 0.00) DC .20, 0.00) DC .64, 0.00) DC .42, 0.00) DC .42, 0.00) DC	NA NA NA NA

	6.T.H	HIGHEST	VALUE	18	0.00132		•	565070.19,	4191077.50,	70.41,	0.00)	DC	NA
	7TH	HIGHEST	VALUE	IS	0.00130	AΤ	(564933.25,	4191275.25,	71.32,	0.00)	DC	NA
	8TH	HIGHEST	VALUE	IS	0.00129	AT	(565328.31,	4191032.50,	74.68,	0.00)	DC	NA
	9TH	HIGHEST	VALUE	IS	0.00097	AT	(564249.94,	4192208.00,	66.75,	0.00)	DC	NA
	10TH	HIGHEST	VALUE	IS	0.00095	ΑT	(564487.38,	4192391.25,	80.16,	0.00)	DC	NA
LEW	1ST	HIGHEST	VALUE	IS	0.00042	AT	(565700.06,	4191711.25,	109.42,	0.00)	DC	NA
	2ND	HIGHEST	VALUE	IS	0.00042	AT	(565700.06,	4191711.25,	108.20,	0.00)	DC	NA
	3RD	HIGHEST	VALUE	IS	0.00007	AT	(565144.62,	4192620.50,	154.84,	0.00)	DC	NA
	4TH	HIGHEST	VALUE	IS	0.00006	AT	(565233.75,	4192605.00,	159.72,	0.00)	DC	NA
	5TH	HIGHEST	VALUE	IS	0.00006	AT	(565202.31,	4192629.00,	160.32,	0.00)	DC	NA
	6TH	HIGHEST	VALUE	IS	0.00006	AT	(565009.00,	4192130.00,	110.64,	0.00)	DC	NA
	7TH	HIGHEST	VALUE	IS	0.00005	AT	(564926.69,	4192158.75,	109.42,	0.00)	DC	NA
	8TH	HIGHEST	VALUE	IS	0.00005	AT	(564945.62,	4192065.50,	102.72,	0.00)	DC	NA
	9TH	HIGHEST	VALUE	IS	0.00004	AT	(566093.38,	4191024.75,	114.60,	0.00)	DC	NA
	10TH	HIGHEST	VALUE	IS	0.00003	AT	(564735.81,	4192658.00,	100.28,	0.00)	DC	NA

** CONC OF CHRONIC IN MICROGRAMS/M**3

GROUP I	ID	AVERAGE CONC	REC	EPTOR (XR, YR,	ZELEV, ZFLAG	OF	TYPE	NETWORK GRID-ID
LAT	1ST HIGHEST VALUE IS	0.00060 AT (565700.06,	4191711.25,	109.42,	0.00)	DC	NA
	2ND HIGHEST VALUE IS	0.00056 AT (565700.06,	4191711.25,	108.20,	0.00)	DC	NA
	3RD HIGHEST VALUE IS	0.00016 AT (565144.62,	4192620.50,	154.84,	0.00)	DC	NA
	4TH HIGHEST VALUE IS	0.00015 AT (565009.00,	4192130.00,	110.64,	0.00)	DC	NA
	5TH HIGHEST VALUE IS	0.00014 AT (565233.75,	4192605.00,	159.72,	0.00)	DC	NA
	6TH HIGHEST VALUE IS	0.00014 AT (565202.31,	4192629.00,	160.32,	0.00)	DC	NA
	7TH HIGHEST VALUE IS	0.00013 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
	4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 7TH HIGHEST VALUE IS 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS	0.00011 AT (564945.62,	4192065.50,	102.72,	0.00)	DC	NA
	9TH HIGHEST VALUE IS	0.00009 AT (566093.38,	4191024.75,	114.60,	0.00)	DC	NA
	10TH HIGHEST VALUE IS	0.00007 AT (564735.81,	4192658.00,	100.28,	0.00)	DC	NA
TAN	1ST HIGHEST VALUE IS							NA
	2ND HIGHEST VALUE IS							NA
	3RD HIGHEST VALUE IS							NA
	4TH HIGHEST VALUE IS							NA
	5TH HIGHEST VALUE IS			4192158.75,				NA
	6TH HIGHEST VALUE IS							NA
	7TH HIGHEST VALUE IS		565233.75,	4192605.00,	159.72,	0.00)	DC	NA
	8TH HIGHEST VALUE IS		565202.31,	4192629.00,	160.32,	0.00)	DC	NA
	9TH HIGHEST VALUE IS		566093.38,	4191024.75,	114.60,	0.00)	DC	NA
	10TH HIGHEST VALUE IS	0.00003 AT (564735.81,	4192658.00,	100.28,	0.00)	DC	NA
HH		0.00273 AT (565700.06,	4191711.25,	109.42,	0.00)	DC	NA
	2ND HIGHEST VALUE IS		565700.06,	4191711.25,	108.20,	0.00)	DC	NA
	3RD HIGHEST VALUE IS	0.00028 AT (565009.00,	4192130.00,	110.64,	0.00)	DC	NA
	4TH HIGHEST VALUE IS	0.00025 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
	5TH HIGHEST VALUE IS	0.00024 AT (564945.62,	4192065.50,	102.72,	0.00)	DC	NA
	6TH HIGHEST VALUE IS				154.84,			NA
	7TH HIGHEST VALUE IS				159.72,			NA
	8TH HIGHEST VALUE IS			4192629.00,				NA
		0.00017 AT (NA
	10TH HIGHEST VALUE IS	0.00014 AT (564735.81,	4192658.00,	100.28,	0.00)	DC	NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

**

GROUP I	D 		VERAGE CONC	REC	CEPTOR (XR, YR	, ZELEV, ZFLA	G) OF TYPF	NETWORK GRID-ID
GH	1ST HIGHEST 2ND HIGHEST		0.00044 AT (0.00043 AT (565700.06, 565700.06,	4191711.25, 4191711.25,	109.42, 108.20,	0.00) DC 0.00) DC	NA NA
	3RD HIGHEST	VALUE IS	0.00007 AT (565009.00,	4192130.00,	110.64,	0.00) DC	NA
	4TH HIGHEST	VALUE IS	0.00006 AT (564945.62,	4192065.50,	102.72,	0.00) DC	NA
	5TH HIGHEST	VALUE IS	0.00006 AT (564926.69,	4192158.75,	109.42,	0.00) DC	NA
	6TH HIGHEST	VALUE IS	0.00004 AT (565144.62,	4192620.50,	154.84,	0.00) DC	NA
	7TH HIGHEST	VALUE IS	0.00004 AT (565233.75,	4192605.00,	159.72,	0.00) DC	NA
	8TH HIGHEST	VALUE IS	0.00004 AT (565202.31,	4192629.00,	160.32,	0.00) DC	NA
	9TH HIGHEST	VALUE IS	0.00003 AT (566093.38,	4191024.75,	114.60,	0.00) DC	NA

	10TH	HIGHEST	VALUE	IS	0.00003	AT	(564735.81,	4192658.00,	100.28,	0.00)	DC	NA
CH		HIGHEST			0.00011				4191711.25,	109.42,	0.00)	DC	NA
	2ND	HIGHEST	VALUE	IS	0.00011	ΑT	(565009.00,	4192130.00,	110.64,	0.00)	DC	NA
	3RD	HIGHEST	VALUE	IS	0.00011	ΑT	(565144.62,	4192620.50,	154.84,	0.00)	DC	NA
	4TH	HIGHEST	VALUE	IS	0.00011	ΑT	(565700.06,	4191711.25,	108.20,	0.00)	DC	NA
	5TH	HIGHEST	VALUE	IS	0.00009	AΤ	(565202.31,	4192629.00,	160.32,	0.00)	DC	NA
	6TH	HIGHEST	VALUE	IS	0.00009	AΤ	(565233.75,	4192605.00,	159.72,	0.00)	DC	NA
	7TH	HIGHEST	VALUE	IS	0.00009	AT	(564926.69,	4192158.75,	109.42,	0.00)	DC	NA
	8TH	HIGHEST	VALUE	IS	0.00005	AT	(564945.62,	4192065.50,	102.72,	0.00)	DC	NA
	9TH	HIGHEST	VALUE	IS	0.00004	AΤ	(564735.81,	4192658.00,	100.28,	0.00)	DC	NA
	10TH	HIGHEST	VALUE	IS	0.00004	AΤ	(564729.75,	4192662.25,	100.28,	0.00)	DC	NA
HES	1ST	HIGHEST	VALUE	IS	0.00122	AΤ	(565009.00,	4192130.00,	110.64,	0.00)	DC	NA
	2ND	HIGHEST	VALUE	IS	0.00092	AΤ	(564945.62,	4192065.50,	102.72,	0.00)	DC	NA
	3RD	HIGHEST	VALUE	IS	0.00090	AT	(564926.69,	4192158.75,	109.42,	0.00)	DC	NA
	4TH	HIGHEST	VALUE	IS	0.00064	ΑT	(565700.06,	4191711.25,	109.42,	0.00)	DC	NA
	5TH	HIGHEST	VALUE	IS	0.00064	AΤ	(565700.06,	4191711.25,	108.20,	0.00)	DC	NA
	6TH	HIGHEST	VALUE	IS	0.00027	AΤ	(566093.38,	4191024.75,	114.60,	0.00)	DC	NA
	7TH	HIGHEST	VALUE	IS	0.00026	AΤ	(564735.81,	4192658.00,	100.28,	0.00)	DC	NA
	8TH	HIGHEST	VALUE	TS	0.00026	ΑТ	ì	564729.75,	4192662.25,	100.28,	0.00)	DC	NA
		HIGHEST			0.00025		•	565144.62,	4192620.50,	154.84,	0.00)	DC	NA
	10TH	HIGHEST	VALUE	TS	0.00025			565233.75,	4192605.00,	159.72,	0.00)	DC	NA
							`	,	,	- /	/		

** CONC OF CHRONIC IN MICROGRAMS/M**3

GROUP	ID 		AVERAGE CONC	REC	EPTOR (XR, Y	YR, ZELEV, ZFLAG	G) OF	TYPE	NETWORK GRID-ID
HIL	1ST HIGHEST	VALUE IS	0.03120 AT (564945.62,	4192065.50,	102.72,	0.00)	DC	NA
	2ND HIGHEST	VALUE IS	0.01874 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
	3RD HIGHEST	VALUE IS	0.01566 AT (565009.00,	4192130.00,	110.64,	0.00)	DC	NA
	4TH HIGHEST	VALUE IS	0.01252 AT (565700.06,	4191711.25,	108.20,	0.00)	DC	NA
	5TH HIGHEST	VALUE IS							NA
	6TH HIGHEST	VALUE IS							NA
	7TH HIGHEST	VALUE IS	0.01134 AT (564487.38,	4192391.25,	80.16,	0.00)	DC	NA
			0.00801 AT (NA
	9TH HIGHEST	VALUE IS	0.00759 AT (NA
	10TH HIGHEST	VALUE IS	0.00754 AT (564249.94,	4192208.00,	66.75,	0.00)	DC	NA
MUL	1ST HIGHEST								NA
	2ND HIGHEST					109.42,			NA
	3RD HIGHEST					71.32,			NA
	4TH HIGHEST	VALUE IS				110.64,			NA
	5TH HIGHEST	VALUE IS				80.16,			NA
	6TH HIGHEST								NA
	7TH HIGHEST								NA
	8TH HIGHEST								NA
			0.00000 AT (NA
	10TH HIGHEST	VALUE IS	0.00000 AT (564591.56,	4192414.75,	83.82,	0.00)	DC	NA
WEL	1ST HIGHEST								NA
	2ND HIGHEST					110.64,			NA
	3RD HIGHEST					109.42,			NA
	4TH HIGHEST					80.16,			NA
	5TH HIGHEST					108.20,			NA
	6TH HIGHEST					109.42,			NA
	7TH HIGHEST								NA
	8TH HIGHEST								NA
			0.00001 AT (NA
	10TH HIGHEST	VALUE IS	0.00001 AT (564160.38,	4192207.75,	64.31,	0.00)	DC	NA

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

GROUP II		AVERAGE CONC	RECEPTOR	(XR, YR, ZELEV,	ZFLAG) OF TYPE	NETWORK GRID-ID
PRINT	1ST HIGHEST VALUE I 2ND HIGHEST VALUE I		564933.25, 41912 564839.88, 41912	,	,	NA NA

	4TH 5TH 6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE VALUE	IS IS IS IS IS	0.00040 0.00033 0.00027	AT (AT (AT (AT (AT (AT (56507 56422 56478 56407 56532 56416	0.19, 8.31, 6.81, 9.94, 8.31, 0.38,	4191226.0 4191077.5 4192049.2 4191021.2 4192117.5 4191032.5 4192207.7 4192208.0	0, 70.41, 5, 64.62, 5, 61.26, 0, 61.57, 0, 74.68, 5, 64.31,	0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	DC DC DC DC DC	NA NA NA NA NA NA
COMBUST	2ND 3RD 4TH 5TH 6TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE	IS IS IS IS		AT (AT (AT (AT (AT (56520. 56523 56672 56726 56609	2.31, 3.75, 9.00, 9.62, 3.38,	4192629.0 4192605.0 4190469.2 4189942.7 4191024.7	0, 154.84, 0, 160.32, 0, 159.72, 5, 136.86, 5, 174.65, 5, 114.60, 5, 109.42,	0.00) 0.00) 0.00) 0.00) 0.00)	DC DC DC DC	NA NA NA NA NA NA
	9TH 10TH	HIGHEST HIGHEST HIGHEST	VALUE VALUE	IS IS	0.00667 0.00647 0.00522	AT (56570 56616	0.06, 6.56,	4191711.2 4190836.2	,	0.00)	DC DC	NA NA NA
HAZMAT	2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH	HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST HIGHEST	VALUE VALUE VALUE VALUE VALUE VALUE VALUE	IS IS IS IS IS IS IS IS IS	0.00002 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	AT (AT (AT (AT (AT (AT (AT (56507 56485 56483 56532 56513 56422 56494 56424	0.19, 9.75, 9.88, 8.31, 0.12, 8.31, 5.62, 9.94,	4192049.2 4192065.5	0, 70.41, 0, 67.67, 5, 67.36, 0, 74.68, 5, 66.75, 5, 64.62, 0, 102.72, 0, 66.75,	0.00) 0.00) 0.00) 0.00) 0.00) 0.00) 0.00)	DC DC DC DC DC DC DC	NA NA NA NA NA NA

** CONC OF CHRONIC IN MICROGRAMS/M**3

GROUP ID AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID 1ST HIGHEST VALUE IS 0.00005 AT (565700.06, 4191711.25, 109.42, 0.00) PAINT 2ND HIGHEST VALUE IS 0.00005 AT (565700.06, 4191711.25, 108.20, 0.00) DC NA 3RD HIGHEST VALUE IS 0.00005 AT (564945.62, 4192065.50, 102.72, 0.00) NA 0.00004 AT (4TH HIGHEST VALUE IS 565009.00, 4192130.00, 110.64, 0.00) 5TH HIGHEST VALUE IS 0.00004 AT (564933.25, 4191275.25, 0.00) 71.32, 109.42, 6TH HIGHEST VALUE IS 0.00004 AT (564926.69, 4192158.75, 0.00) DC NA 7TH HIGHEST VALUE IS 0.00002 AT (565070.19, 4191077.50, 70.41, 0.00) 8TH HIGHEST VALUE IS 0.00002 AT (565328.31, 4191032.50, 0.00) DC 74.68, NA 9TH HIGHEST VALUE IS 0.00002 AT (564487.38, 4192391.25, 80.16, 0.00) DC 10TH HIGHEST VALUE IS 0.00002 AT (564591.56, 4192414.75, 83.82, 0.00) DC EXISTLAB 1ST HIGHEST VALUE IS 0.04188 AT (564945.62, 4192065.50, 102.72, 0.00) 2ND HIGHEST VALUE IS 0.02619 AT (564926.69, 4192158.75, 109.42, 0.00) DC 0.02358 AT (3RD HIGHEST VALUE IS 565009.00, 4192130.00, 110.64, 0.00) 4TH HIGHEST VALUE IS 0.02282 AT (565700.06, 4191711.25, 109.42, 0.00) DC 5TH HIGHEST VALUE IS 0.02269 AT (565700.06, 4191711.25, 108.20, 0.00) DC 6TH HIGHEST VALUE IS 0.01597 AT (564487.38, 4192391.25, 80.16, 0.00) DC NA 7TH HIGHEST VALUE IS 0.01581 AT (564591.56, 4192414.75, 83.82. 0.00) 8TH HIGHEST VALUE IS 0.01150 AT (564249.94, 4192208.00, 0.00) DC 66.75, 9TH HIGHEST VALUE IS 0.01115 AT (564525.06, 4192613.75, 85.65, 0.00) DC 0.01103 AT (564729.75, 4192662.25, 10TH HIGHEST VALUE IS 0.00) DC 100.28, 0.00189 AT (565700.06, 4191711.25, ENGINES 1ST HIGHEST VALUE IS 109.42. 0.00) 4191711.25, 2ND HIGHEST VALUE IS 0.00188 AT (565700.06, 108.20, 0.00) DC NA 3RD HIGHEST VALUE IS 0.00167 AT (564945.62, 4192065.50, 102.72. 0.00) 4TH HIGHEST VALUE IS 0.00133 AT (4192130.00, 565009.00, 110.64, 0.00) DC NA 5TH HIGHEST VALUE IS 0.00131 AT (564926.69, 4192158.75, 0.00) 109.42, 6TH HIGHEST VALUE IS 0.00126 AT (566093.38, 4191024.75, 114.60, 0.00) NA 7TH HIGHEST VALUE IS 0.00100 AT (566166.56, 4190836.25, 107.59, 0.00) 0.00094 AT (4190799.75, 8TH HIGHEST VALUE IS 566063.25, 101.19, 0.00) DC 9TH HIGHEST VALUE IS 0.00074 AT (564487.38, 4192391.25, 80.16, 0.00) DC NA 10TH HIGHEST VALUE IS 0.00070 AT (564591.56, 4192414.75, DC 0.00)

*** THE SUMMARY OF MAXIMUM PERIOD ($8760 \ \mathrm{HRS}$) RESULTS ***

NETWORK

								NETWORK	
CDOUD ID	ATTEDACE CONC	DECEDEOD	/VD	VD	777 777	PPT ACI	OF MADE	CDID ID	

GROUP ID	AVER	AGE CONC	REC	EPTOR (XR, Y	R, ZELEV, ZFI	LAG) OF	TYPE	GRID-ID
NEWLABS 1ST HIGHEST								
2ND HIGHEST	VALUE IS	0.03052 AT (565700.06,	4191711.25,	109.42,	0.00)	DC	NA
3RD HIGHEST	VALUE IS	0.02968 AT (0.02962 AT (0.02962 AT (0.02872 AT (0.02229 AT (0.02087 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
4TH HIGHEST	VALUE IS	0.02962 AT (565700.06,	4191711.25,	108.20,	0.00)	DC	NA
5TH HIGHEST	VALUE IS	0.02872 AT (565009.00,	4192130.00,	110.64,	0.00)	DC	NA
6TH HIGHEST	VALUE IS	0.02229 AT (564487.38,	4192391.25,	80.16,	0.00)	DC	NA
7TH HIGHEST	VALUE IS	0.02087 AT (564933.25,	4191275.25,	71.32,	0.00)	DC	NA
8TH HIGHEST	VALUE IS	0.02006 AT (364391.36,	4192414.75,	83.82,	0.00)	DC	NA
9TH HIGHEST	VALUE IS	0.01729 AT (565144.62,	4192620.50,	154.84,	0.00)	DC	NA
10TH HIGHEST	VALUE IS	0.01649 AT (565202.31,	4192629.00,	160.32,	0.00)	DC	NA
ALL_LABS 1ST HIGHEST	VALUE IS	0.07158 AT (564945.62,	4192065.50,	102.72,	0.00)	DC	NA
2ND HIGHEST	VALUE IS	0.05382 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
3RD HIGHEST	VALUE IS	0.05091 AT (565700.06,	4191711.25,	109.42,	0.00)	DC	NA
4TH HIGHEST	VALUE IS	0.03091 AT (0.05021 AT (0.04988 AT (0.03733 AT (565009.00,	4192130.00,	110.64,	0.00)	DC	NA
5TH HIGHEST	VALUE IS	0.04988 AT (565700.06,	4191711.25,	108.20,	0.00)	DC	NA
6TH HIGHEST	VALUE IS	0.03733 AT (564487.38,	4192391.25,	80.16,	0.00)	DC	NA
7TH HIGHEST	VALUE IS	0.03505 AT (564591.56,	4192414.75,	83.82,	0.00)	DC	NA
8TH HIGHEST	VALUE IS	0.02993 AT (564933.25,	4191275.25,	71.32,	0.00)	DC	NA
9TH HIGHEST	VALUE IS	0.02744 AT (564249.94,	4192208.00,	66.75,	0.00)	DC	NA
		0.02645 AT (NA
EXISTING 1ST HIGHEST	VALUE IS	0.04604 AT (564945.62,	4192065.50,	102.72,	0.00)	DC	NA
2ND HIGHEST	WALUE IS	0 03162 ДТ (565700 06	4191711 25	109 42	0 00)	DC	NA
3RD HIGHEST	VALUE IS	0.03118 AT (0.03118 AT (0.02880 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
4TH HIGHEST	VALUE IS	0.03118 AT (565700.06.	4191711.25,	108.20,	0.00)	DC	NA
5TH HIGHEST	VALUE IS	0.02880 AT (565009.00.	4192130.00.	110.64.	0.00)	DC	NA
6TH HIGHEST	VALUE IS	0.01978 AT (565144.62.	4192620.50,	154.84.	0.00)	DC	NA
7TH HIGHEST	VALUE IS	0.01842 AT (565202.31.	4192629.00.	160.32.	0.00)	DC	NA
8TH HIGHEST		0.01785 AT (NA
		0.01774 AT (NA
10TH HIGHEST		0.01771 AT (NA
10111 1110111101		(221031.00,		00.02/	0.00/		

GROUP ID	AVE	CRAGE CONC	REC	CEPTOR (XR,	YR, ZELEV, Z	FLAG) OF	TYPE	NETWORK GRID-ID
NEWLAB A 1ST HIGHEST	VALUE IS	0.01799 AT (564933.25.	4191275.25,	71.32,	0.00)	DC	NA
NEWLAB_A 1ST HIGHEST 2ND HIGHEST	VALUE IS	0.01425 AT (564487.38,	4192391.25,	80.16,	0.00)	DC	NA
3RD HIGHEST	VALUE IS	0.01404 AT (564945.62,	4192065.50,	102.72,	0.00)	DC	NA
4TH HIGHEST	VALUE IS	0.01228 AT (564249.94,	4192208.00,	66.75,	0.00)	DC	NA
5TH HIGHEST		0.01208 AT (NA
6TH HIGHEST		0.01186 AT (NA
7TH HIGHEST	VALUE IS	0.01105 AT (565070.19,	4191077.50,	70.41,	0.00)	DC	NA
8TH HIGHEST		0.01100 AT (NA
9TH HIGHEST	VALUE IS	0.01044 AT (564839.88,	4191259.75,	67.36,	0.00)	DC	NA
10TH HIGHEST	VALUE IS	0.01035 AT (564160.38,	4192207.75,	64.31,	0.00)	DC	NA
NEWLAB_B 1ST HIGHEST								NA
		0.00443 AT (NA
3RD HIGHEST		0.00392 AT (NA
4TH HIGHEST		0.00344 AT (NA
5TH HIGHEST		0.00344 AT (
6TH HIGHEST		0.00295 AT (NA
7TH HIGHEST	VALUE IS	0.00282 AT (564591.56,	4192414.75,	83.82,	0.00)	DC	NA
8TH HIGHEST	VALUE IS	0.00279 AT (564525.06,	4192613.75,	85.65,	0.00)	DC	NA
9TH HIGHEST	VALUE IS	0.00181 AT (564294.50,	4192949.00,	85.65,	0.00)		NA
10TH HIGHEST	VALUE IS	0.00168 AT (564735.81,	4192658.00,	100.28,	0.00)	DC	NA
NEWLAB_C 1ST HIGHEST								NA
2ND HIGHEST	VALUE IS	0.00431 AT (565700.06,	4191/11.25,	108.20,	0.00)	DC	NA
3RD HIGHEST	VALUE IS	0.00426 AT (565700.06,	4191/11.25,	109.42,	0.00)	DC	NA
4TH HIGHEST	VALUE IS	0.0040/ AT (564945.62,	4192065.50,	102.72,	0.00)	DC	NA
5TH HIGHEST	VALUE IS	0.003/5 AT (564926.69,	4192158.75,	109.42,	0.00)	DC	NA
6TH HIGHEST	VALUE IS	0.00431 AT (0.00426 AT (0.00407 AT (0.00375 AT (0.00138 AT (0.00137 AT (0.00099 AT (0.00088 AT (564725 01	4192002.23,	100.28,	0.00)	DC	NA NA
7TH HIGHEST	VALUE IS	0.0000 AT (504/33.81,	4192030.00,	100.28,	0.00)	DC	
8TH HIGHEST 9TH HIGHEST	VALUE IS	0.00099 AT (504591.56,	4192414./5,	83.82,	0.00)	DC.	NA NA
9TH HIGHEST	VALUE IS	0.00088 AT (566063 25	4191024.75,	101 10	0.00)	DC	NA NA
TOTH HIGHEST	VALUE IS	U.UUU86 AT (J00U0J.25,	4190/99./5,	101.19,	0.00)	DС	NA

** CONC OF CHRONIC IN MICROGRAMS/M**3

GROUP ID	AVERAGE CONC	REC	CEPTOR (XR, YR,	ZELEV, ZFLAG) OF 1	NETWORK TYPE GRID-ID
NEWLAB_D 1ST HIGHEST V	VALUE IS 0.00164 AT (565700.06,	4191711.25,	109.42,	0.00)	DC NA
	VALUE IS 0.00163 AT (565700.06,	4191711.25,	108.20,		
3RD HIGHEST V				110.64,		
4TH HIGHEST V				154.84,		
5TH HIGHEST V	,			160.32,		
6TH HIGHEST V						
7TH HIGHEST V						
8TH HIGHEST V						
	VALUE IS 0.00048 AT (
10TH HIGHEST V	VALUE IS 0.00034 AT (564735.81,	4192658.00,	100.28,	0.00)	DC NA
NEWLAB E 1ST HIGHEST V	VALUE IS 0.00247 AT (565328.31,	4191032.50,	74.68,	0.00)	DC NA
	VALUE IS 0.00203 AT (
3RD HIGHEST V						
4TH HIGHEST V						
5TH HIGHEST V		565729.00,	4190469.25,	81.08,	0.00)	DC NA
6TH HIGHEST V	VALUE IS 0.00170 AT (564945.62,	4192065.50,	102.72,	0.00)	DC NA
7TH HIGHEST V	VALUE IS 0 00165 AT (565787 88.	4190436 50.	82 91.	0.00)	DC NA
8TH HIGHEST V	VALUE IS 0.00161 AT (565700.06,	4191711.25,	108.20,	0.00)	DC NA
9TH HIGHEST V	VALUE IS 0.00161 AT (565700.06,	4191711.25,	109.42,	0.00)	DC NA
10TH HIGHEST V	VALUE IS 0.00161 AT (VALUE IS 0.00161 AT (VALUE IS 0.00144 AT (565936.88,	4190529.25,	90.83,	0.00)	DC NA
	VALUE IS 0.00254 AT (VALUE IS 0.00244 AT (VALUE IS 0.00242 AT (VALUE IS 0.00209 AT (VALUE IS 0.00206 AT (VALUE IS 0.00137 AT (VALUE IS 0.00134 AT (VALUE IS 0.00130 AT (VALUE IS 0.00095 AT (VALUE IS 0.00095 AT (
NEWLAD_F 131 HIGHEST V	VALUE IS 0.00254 AI (565700 06	4192003.30,	102.72,	0.00)	DC NA
SBD DICHEGE A	VALUE IS 0.00244 AI (565700.00,	4191711.23, 4101711 25	100.20,	0.00)	DC NA
AMU UTCUECM I	VALUE IS 0.00242 AI (565000.00,	4191711.23,	110 64	0.00)	DC NA
41n nighbol V	VALUE IS 0.00209 AI (564026 60	4192130.00,	10.04,	0.00)	DC NA
SIN NIGHESI V	VALUE IS 0.00200 AI (566062 25	4192130.73,	109.42,	0.00)	DC NA
7 111 111 111 111 1	VALUE IS 0.0013/ AI (566003.23,	4101024 75	114 60	0.00)	DC NA
844 HIGHEST /	0.00134 AI (566166 56	4190836 25	107 59	0.00)	DC NA
0111 11174251 /	VALUE IS U.UUISU AI (564720 75	1102662 25	100.39,	0.00)	DC NA
10mm HIGHESI V	VALUE IS 0.00095 AT (564735 91	4192658 00	100.20,	0.00)	DC NA
TOTH HIGHEST V	VALUE 13 0.00093 AI (504/55.01,	4102000.00,	100.20,	0.00)	DÇ IND

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

GROUP ID	AVERAGE CONC	RECEPTOR (XR, YR	, ZELEV, ZFLAG) OF TY	NETWORK PE GRID-ID
NEWLAB G 1ST HIGHEST VAI	JE IS 0.00183 AT (565700.06, 4191711.25,	109.42, 0.00) DO	C NA
- 2ND HIGHEST VAI	JE IS 0.00134 AT (565700.06, 4191711.25,	108.20, 0.00) DO	C NA
3RD HIGHEST VAI	JE IS 0.00056 AT (565009.00, 4192130.00,	110.64, 0.00) DO	C NA
4TH HIGHEST VAI	JE IS 0.00056 AT (566093.38, 4191024.75,	114.60, 0.00) DO	C NA
5TH HIGHEST VAI	JE IS 0.00048 AT (564926.69, 4192158.75,	109.42, 0.00) DO	C NA
6TH HIGHEST VAI	JE IS 0.00031 AT (564945.62, 4192065.50,	102.72, 0.00) DO	C NA
7TH HIGHEST VAI	JE IS 0.00024 AT (566166.56, 4190836.25,	107.59, 0.00) DO	C NA
8TH HIGHEST VAI	JE IS 0.00024 AT (566063.25, 4190799.75,	101.19, 0.00) DO	C NA
9TH HIGHEST VAI	JE IS 0.00023 AT (565144.62, 4192620.50,	154.84, 0.00) DO	C NA
10TH HIGHEST VAI	JE IS 0.00021 AT (565233.75, 4192605.00,	159.72, 0.00) DO	D NA
DAVISNEW 1ST HIGHEST VAI	JE IS 0.00375 AT (565144.62, 4192620.50,	154.84, 0.00) DO	C NA
2ND HIGHEST VAI	,	· · · · · · · · · · · · · · · · · · ·	160.32, 0.00) DO	
3RD HIGHEST VAI		· · · · · · · · · · · · · · · · · · ·	159.72, 0.00) DO	
4TH HIGHEST VAI	,		110.64, 0.00) Do	
5TH HIGHEST VAI			109.42, 0.00) DO	
6TH HIGHEST VAI		565700.06, 4191711.25,	109.42, 0.00) Do	
7TH HIGHEST VAI		· · · · · · · · · · · · · · · · · · ·	108.20, 0.00) DO	
8TH HIGHEST VAI			100.28, 0.00) DO	
9TH HIGHEST VAI	JE IS 0.00110 AT (564729.75, 4192662.25,	100.28, 0.00) DO	C NA
10TH HIGHEST VAI	UE IS 0.00103 AT (566093.38, 4191024.75,	114.60, 0.00) Do	NA NA
STAN_NEW 1ST HIGHEST VAI		· · · · · · · · · · · · · · · · · · ·	159.72, 0.00) DO	
2ND HIGHEST VAI	,	· · · · · · · · · · · · · · · · · · ·	160.32, 0.00) DO	
3RD HIGHEST VAI	JE IS 0.00634 AT (565144.62, 4192620.50,	154.84, 0.00) DO	C NA

5TH HIGHEST VALUE IS 0.00439 AT (565700. 6TH HIGHEST VALUE IS 0.00347 AT (565009. 7TH HIGHEST VALUE IS 0.00289 AT (564926. 8TH HIGHEST VALUE IS 0.00202 AT (566093. 9TH HIGHEST VALUE IS 0.00202 AT (564945.	.38, 4191024.75, 114.60, 0.00) DC NA
---	--------------------------------------

GROUP ID)		AVERAGE CONC	RECEPTO	DR (XR, YR, ZELEV,	ZFLAG) OF TYPE	NETWORK GRID-ID
NEWENG	1ST HIGHEST	VALUE IS	0.00013 AT (565009.00, 419	92130.00, 110.64	, 0.00) DC	NA
	2ND HIGHEST	VALUE IS	0.00013 AT (564945.62, 419	92065.50, 102.72	, 0.00) DC	NA
	3RD HIGHEST	VALUE IS	0.00012 AT (565700.06, 419	91711.25, 109.42	, 0.00) DC	NA
	4TH HIGHEST	VALUE IS	0.00012 AT (565700.06, 419	91711.25, 108.20	, 0.00) DC	NA
	5TH HIGHEST	VALUE IS	0.00011 AT (564926.69, 419	92158.75, 109.42	, 0.00) DC	NA
	6TH HIGHEST	VALUE IS	0.00008 AT (566093.38, 419	91024.75, 114.60	, 0.00) DC	NA
	7TH HIGHEST	VALUE IS	0.00006 AT (566166.56, 419	90836.25, 107.59	, 0.00) DC	NA
	8TH HIGHEST	VALUE IS	0.00006 AT (565144.62, 419	92620.50, 154.84	, 0.00) DC	NA
	9TH HIGHEST	VALUE IS	0.00006 AT (566063.25, 419	90799.75, 101.19	, 0.00) DC	NA
	10TH HIGHEST	VALUE IS	0.00005 AT (564735.81, 419	92658.00, 100.28	, 0.00) DC	NA

C.4 REFERENCES

- ¹ Bay Area Air Quality Management District (BAAQMD), *Bay Area 2000 Clean Air Plan and Triennial Assessment*, Bay Area Air Quality Management District, Adopted December 20, 2000.
- ² EPA, Federal Register, 62 FR 38856. U.S. Environmental Protection Agency, July 18, 1997; EPA, Federal Register, 62 FR 3865, U.S. Environmental Protection Agency, July 18, 1997.
- ³ EPA, Federal Register, 62 FR 38856, U.S. Environmental Protection Agency. July 18, 1997.
- ⁴ EPA, Federal Register, 62 FR 38856, U.S. Environmental Protection Agency. July 18, 1997.
- ⁵ EPA, Federal Register, 62 FR 38856, U.S. Environmental Protection Agency. July 18, 1997.
- ⁶ EPA, Federal Register, 62 FR 38651, U.S. Environmental Protection Agency. July 18, 1997.
- ⁷ EPA, Federal Register, 62 FR 38651, U.S. Environmental Protection Agency. July 18, 1997.
- ⁸ EPA, Federal Register, 62 FR 38651, U.S. Environmental Protection Agency. July 18, 1997.
- ⁹ EPA, Federal Register, 62 FR 38651, U.S. Environmental Protection Agency. July 18, 1997.
- ¹⁰ URS Corporation, Central Campus Human Health Risk Assessment, Prepared for UC Berkeley Physical and Environmental Planning, June 28, 2000.
- ¹¹ BAAQMD, *Toxic Air Contaminant Control Program Annual Report: 2001*. Bay Area Air Quality Management District, July, 2003, page 10.
- ¹² BAAQMD, Toxic Air Contaminant Control Program Annual Report: 2001. Bay Area Air Quality Management District, July, 2003, Appendix C-1, page C-1-3.
- National Cancer Institute, Surveillance, Epidemiology, and End Results (SEER) Cancer Statistics Review, 1975-2000, National Institutes of Health. Bethesda, MD, 2003, Table I-15, http://www.seer.cancer.gov/crs/1975_2000/sections.html
- ¹⁴ MMBtu/hr = million British thermal units per hour
- Note that the June 28, 2000 HRA included Calvin and Donner labs. In the 2003 re-run, these have been removed since they will be included in Lawrence Berkeley National Laboratories' LRDP analysis.
- Decision Focus, Stanford Biology Chemistry Quadrangle Project: Final Internal Report, prepared for Stanford University, Facilities Project Management, Ambient Air Working Group, Document DFI No. 1798, March 1989, Attachment 1-K.
- ¹⁷ Note that the emission factors presented in Table 1 have been updated since the June 28, 2000 HRA because calculation errors were subsequently identified. The effect on the calculated health risk values were minimal; however, the updated calculations are reflected in the updated baseline HRA and 2020 LRDP HRA prepared to support the 2020 LRDP EIR.
- ¹⁸ URS Corporation, Air Toxics Health Risk Assessment for the University of California Davis 2003 Long Range Development Plan, April 2003, page 3-3.
- ¹⁹ EPA, Compilation of Air Pollutant Emission Factors, Volume I: Stationary and Area Sources. 1995 et seq.
- ²⁰ M.H. Chew and Associates, Health Impact Analysis for the Environment, Health and Safety Facility, May 6, 1994, page 4-5 through 4-10.
- ²¹ CARB, Risk Management Guidance for the Permitting of New Stationary Diesel-Fueled Engines, October 2000.
- ²⁴ California Office of Environmental Health Hazard Assessment (OEHHA), http://www.oehha.ca.gov/air/hot_spots/index.html, downloaded on February 6, 2004.
- ²⁶ California Air Pollution Control Officers Association (CAPCOA). Air Toxics "Hot Spots" Program Revised 1992 Risk Assessment Guidelines, October 1993, Table III-5, III-6, III-8, III-10.
- ²⁷ URS Corporation, Air Toxics Health Risk Assessment for the University of California Davis 2003 Long Range Development Plan, April 2003, Table 3-4.

UNIVERSITY OF CALIFORNIA, BERKELEY 2020 LRDP DRAFT EIR APPENDIX C: AIR QUALITY

- Note that in the 2003 HRA re-run when diesel-fired emergency generators were included, the OEHHA convention is to calculate inhalation health risks only for DPM. Thus, DPM does not enter into the non-inhalation pathway calculations.
- ²⁹ Since the production of the June 28, 2000 HRA, the California Office of Environmental Health Hazard Assessment (OEHHA) published Air Toxics Hot Spots Program Risk Assessment Guidelines, Part IV: Technical Support Document for Exposure Assessment and Stochastic Analysis (OEHHA 2000). The exposure algorithms addressed in this guidance for the single point approach used in the UCB HRA analyses are virtually identical to those in the CAPCOA 1993 Guidelines.
- ³⁰ UC Berkeley, Northeast Quadrant Science and Safety Projects and 1990 Long Range Development Plan Amendment, June 2001, page 3.7-16.
- ³² CARB, Staff Report: Initial Statement of Reasons for Proposed Rulemaking: Airborne Toxic Control Measure for Stationary Compression-Ignition Engines, Stationary Source Division, Emissions Assessment Branch. September 2003, page 60, Table V-2.

APPENDIX D

Cultural Resources

.....

TABLE OF CONTENTS

D.1	Cultural Resource Histories	0.1-1				
	D.1.1 Campus Park	0.1-1				
	D.1.2 Adjacent Blocks North	0.1-9				
	D.1.3 Adjacent Blocks West	0.1-10				
	D.1.4 Adjacent Blocks South	0.1-13				
	D.1.5 Southside	0.1-14				
	D.1.6 Hill Campus	D.1-18				
	D.1.7 LRDP Housing Zone	D.1-18				
	D.1.8 References).1- 19				
D.2	2003 Archaeological Field Research at the Conservatory/					
	Observatory Hill Sites - Excerpted Report					

APPENDIX D.I CULTURAL RESOURCE HISTORIES

This appendix contains written histories for resources owned by the University in each of the following land use zones: Campus Park, Adjacent Blocks North, Adjacent Blocks West, Adjacent Blocks South, the Southside, Hill Campus and the LRDP Housing Zone. The numbered resources profiled below correspond to the numbered resources listed in Chapter 4.4. After the resource name is listed the architect and the construction dates. This primary source of information was the City of Berkeley Designated Landmarks and Structures of Merit list revised on February 5, 2003. The secondary sources of information are the State Inventory and Harvey Helfand's book *University of California, Berkeley*. This appendix contains histories drawn mainly from three sources: Harvey Helfand's *University of California, Berkeley*; Susan Cerny's *Berkeley Landmarks: An Illustrated Guide to Berkeley, California's Architectural Heritage*; and the internet.

4.12.1 CAMPUS PARK

HISTORIES OF PRIMARY RESOURCES

- 1. Founders' Rock. Prehistoric Natural Landscape Feature. In 1860, the Trustees of the College of California (the predecessor the University of California, Berkeley) and three other men gathered at what would become to be known as Founders Rock and dedicated the future site of the campus. In 1896, the Class of 1896 placed a plaque on the rock to memorialize the 1860 event.¹
- 2. South Hall. David Farquharson, 1872-1903. South Hall is significant because it was the first building to be built on the Campus Park and the first building constructed by the University of California. It was originally named the College of Agriculture and housed laboratories for agriculture and the physical and natural sciences, the library, and the office of the Secretary of the Regents. The four-story brick hall was built in the Second Empire style with a slate mansard roof topped with ornamental cast-iron cresting. Early examples of seismic fittings are the cast-iron pilasters on the building's corners that secure iron reinforcement bars that penetrate through the brick masonry walls.²
- 3. The Faculty Club and Glade. Bernard Maybeck, 1899-1903. Bernard Maybeck designed the first part of the Faculty Club, what is now the Great Hall, a steep-gabled Gothic hall constructed out of rough-sawn dark stained redwood with a monumental fireplace. Opened in 1903, the Club has since undergone several renovations and additions. The adjacent Faculty Glade is an important historic and picturesque open space on the Core Campus, serving as a setting for University ceremonies, gatherings, recreation and study. Evidence of Native American use has been found in the Faculty Glade area. ³
- 4. California Hall. John Galen Howard, 1903-1905. This steel-frame building is clad in Raymond granite, topped with a red-tiled roof and copper skylight, and has wood casement windows. The building was the second academic structure begun under the Phoebe Apperson Hearst Architectural Plan and the first completed. The building originally housed a large lecture hall, classrooms and other academic functions, with offices for the President, Regents, and Deans on the second floor. In 1960 the lecture room was removed and converted to offices and the interior was modernized.⁴

- **5.** North Gate Hall. John Galen Howard, 1906. Originally the home of the Department of Architecture, North Gate Hall now accommodates the Graduate School of Journalism. John Galen Howard designed the building in a rustic shingle style, blending in with the adjacent Northside neighborhood. The one- to two-story structure has small balconies, square-paned wood casement windows, a hipped roof with dormers, and exposed framing on the interior. For additions and renovations have expanded and altered the structure.⁵
- 6. Senior Hall. John Galen Howard, 1906. This redwood log hall was designed to provide meeting space for the men of the Senior Class and the Order of the Golden Bear, originally a senior men's honor society and currently a student led organization which includes faculty, administrators, staff, and alumni in its discussions of campus issues within a "framework of frankness, tolerance, and confidentiality." The rectangular structure contains two rooms, the larger front room for gatherings and a smaller back room originally used exclusively by the Order; the rooms are served by clinker brick fireplaces. The Hall was saved from demolition in 1973 and partially renovated in the early 1980s.⁶
- 7. Hearst Memorial Mining Building. John Galen Howard, 1901-1909. This building was constructed to house a large mining laboratory, metallurgical and research labs, drafting rooms, a crushing tower, smelting shops, mills and support spaces. The exterior is a blend of Beaux-Arts classicism and California vernacular. Raymond granite facades are topped with roofs of red mission tile with copper-framed skylights. The main interior vestibule is a three-story high space with slender iron columns supporting open perimeter galleries. Three domed skylights supported by Gustavino tile pendentives evoke the Bibliotheque Nationale in Paris.⁷
- 8. Sather Gate and Bridge. John Galen Howard, 1908-1910. Standing at the original southern edge of the Berkeley campus, this Beaux Arts ensemble serves as both a functional and symbolic entrance across Strawberry Creek into the Core Campus. French Baroque and other neo-classical motifs combine in the granite and bronze gateway with four piers topped with marble sculptural reliefs and glass globe lamps. Flanking neo-classical granite balustrades and urns define the gate approaches and bridge. The area immediately south of the Gate once functioned as a site for political rallies and speakers, a function now shifted further south to the center of Sproul Plaza.⁸
- 9. Girton Hall. Julia Morgan, 1911. Girton Hall is the only building designed on the campus solely by Julia Morgan. It served as a meeting and informal gathering place for the senior class women, and now houses a childcare center. The hall is symmetrical in plan (influenced by Beaux-Arts ideas) but the sheathed redwood clapboard and shingled exterior is typical of the First Bay Region style. The interior meeting room has exposed redwood roof trusses and wall framing and the large brick fireplace has a rounded-arch opening. The hipped roof has large eaves that provide shading for the banded large casement windows. Originally sited next to Strawberry Creek, the building was relocated in 1946 to make room for Lewis Hall.⁹

- 10. University House. Albert Pissis, 1911. Originally designed to be the home of the President, University House now serves as official residence for the Chancellor. The building is the only one that conforms to Emile Benard's 1900 Master Plan. Built in the style of a country Italian villa, the symmetrical exterior is faced with sandstone and topped with a mission-tile hipped roof. The portico entrance, a triple-arched colonnade, fills out the recessed central bay. Many distinguished guests have visited University House, including Presidents Truman and Kennedy, and royalty and politicians from Morocco, Iran, Greece, Nepal, France, India, Canada, Germany, Pakistan and the Netherlands. 10
- 11. Wellman Hall. John Galen Howard, 1912. Originally called Agriculture Hall, this was the first building in the Agriculture Group, now consisting of Wellman, Hilgard, and Giannini Halls. The group was arranged on a knoll originally occupied by growing grounds of the College of Agriculture, and surrounded by plantings intended by John Galen Howard to resemble an idealized farm in the Tuscan countryside. The steel frame structure is faced with granite and covered with a red tile roof with a copper-framed skylight. The most prominent feature of the building is the large apse on the south façade, arranged symmetrically with the Valley Life Sciences Building across the Central Glade. The apse originally contained a semi-circular lecture hall and museum display space. ¹¹
- 12. Durant Hall (Former Boalt Hall). John Galen Howard, 1908-1911. Durant Hall is a three-level steel-frame and concrete structure with a granite façade. Tuscan pilasters differentiate the center bay and the windows are double-hung, representing a departure from the French casement window so prominent in previous structures on campus. The Hall was built to accommodate the School of Jurisprudence, but now houses the Department of East Asian Languages. The former Lawyers Memorial Hall now houses the East Asian Library. When the new law building was built in 1951, the building was renamed Durant Hall from Boalt Hall in honor of the University's first president. 12
- 13. Naval Architecture / Drawing Building. John Galen Howard, 1914. The Naval Architecture building first housed drawing classes in tall north-lit studios. Because the building would front the neighboring residential area, John Galen Howard designed it in the same style as his adjacent North Gate Hall, the vernacular Bay Area Tradition, with gabled roofs, shingled exteriors and Craftsman-style entrances. The building has survived numerous programmatic changes, with only one original interior studio room left intact today. A portion of the building was demolished to allow for construction of Davis Hall in the early 1930s.

- 14. Doe Memorial Library. John Galen Howard, 1907-1917. The original Greco-Roman building remains the "physical and intellectual heart of the campus" with its Main Reading Room with its 45-foot, coffered elliptical barrel-vaulted ceiling and equally ornate Reference Room. A granite exterior, tile roofs, copper skylights, and neo-classical columns define the exterior. Enlarged in several stages, the building is the most prominent of John Galen Howard's academic facilities in the Campus Core. ¹⁴
- 15. Sather Tower (Campanile) and Esplanade. John Galen Howard, 1913-1917. The approximately 307-foot high tower designed by John Galen Howard is an enduring icon of the University and a "lodestone for student pride and affection." Inspired by the San Marco Campanile in Venice, the granite-faced tower is constructed with a steel frame and reinforced concrete walls, floors, and roof. The Campanile Esplanade serves as a podium for the tower and also emphasizes a north-south cross-axis through the campus. The Esplanade is formally arranged with lawn panels, brick walkways, symmetrical staircases, six rows of pollarded London plane trees, and formal plantings at the corners of the Tower. ¹⁵
- 16. Wheeler Hall. John Galen Howard, 1915-1917. Planned to house classrooms, faculty offices, and what was the University's largest lecture hall, this neo-classical building is prominently sited between Doe Library and Sather Gate. The primary south façade is faced in Raymond granite and displays two-story ionic columns on top of a rusticated arched base punctured by seven arched doorways. The attic level is adorned with "urn shaped lamps (that) symbolize the light of learning." A stone terrace and stairs run along much of the width of the south façade and have been a traditional gathering and meeting place for generations of students. ¹⁶
- 17. Gilman Hall, Room 307. John Galen Howard, 1917. Room 307 is listed a National Landmark because it was where Glenn T. Seaborg and Edwin M. McMillan discovered the element Plutonium-238, which made possible the development of atomic explosives and nuclear energy reactors. The two researchers were awarded the Nobel Chemistry Prize in 1951. This room is also listed as a National Historic Chemistry Landmark.¹⁷
- 18. Hilgard Hall. John Galen Howard, 1916-1918. This hall is the second building built of the Agriculture Group. Although asymmetrical in plan, the west façade is a perfectly symmetrical neoclassical design with two-story engaged Doric columns. Due to budgetary constraints, concrete was substituted for granite and the details were crafted out of plaster in a Renaissance technique called sgraffito in which a cameo effect is achieved by scratching through overlaid coats of contrasting plaster. The hall now houses offices and labs of the College of Natural Resources.¹⁸

- 19. Haviland Hall. John Galen Howard, 1923. The hall first housed the School of Education and now serves the School of Social Welfare and School of Public Health. It was sited on axis with California Hall; however, this relationship was compromised by the erection of the Moffitt Library to the south. The neoclassical building is constructed out of steel and concrete with a red tile roof and a large copper skylight and the exterior is decorated with cast concrete ornamentation. The first campus branch library for the School of Education was housed on the second floor. After years of programmatic and spatial changes, the library was restored to its original state in 1986. 19
- 20. Hearst Gymnasium for Women. Bernard Maybeck and Julia Morgan, 1927. The gymnasium funded by William Randolph Hearst was built to honor his mother, Phoebe, and her role as a major benefactor and regent of the University. Due to budgetary constraints, the gymnasium was the only part built of a much more ambitious plan for an extensive complex that was to include an auditorium-rotunda and a barrel-vaulted museum. Bernard Maybeck designed the exterior for the Gymnasium and Julia Morgan designed and programmed the interiors, and also oversaw the construction phase. The building is neoclassical in style and monumental in scale with large columns, windows and balustrades, projecting pavilions and large urns (replicas of the original). The gymnasium contains pools, gymnasia, support spaces and the Department of Human Biodynamics and the ROTC headquarters.²⁰
- 21. Giannini Hall. William Charles Hays, 1930. This hall was the last to be completed of the Agriculture Group and was designed by William C. Hays, a faculty colleague of John Galen Howard. The building footprint is symmetrical with that of Hilgard Hall, but the main entrance is placed on the chamfered southeast corner. The neoclassical design is accented with modern elements, such as the Regency style travertine entry; the interior Art Deco lobby is one of the best examples of the style in the Bay area. The building currently houses the College of Natural Resources and the Electron Microscope Laboratory. ²¹
- 22. Edwards Stadium. Warren Perry and Stafford Jory, 1932. At the time when the stadium was built, it was the largest and most expensive facility in the United States constructed exclusively for track and field events. The track is flanked by concrete stepped bleachers, under which is an open public concourse. The stadium was built in the Moderne style and accented with extensive geometrical cast-in-place concrete details. There have been numerous world records set in this stadium; it has been renovated to accommodate an intercollegiate soccer field.²²
- 23. First Unitarian Church / UC Dance Studio. Albert Schweinfurth, 1898. This church is an excellent example of the Arts and Crafts movement or Bay Area Shingle style. It is one of the few non-residential examples of this style, with its rustic post-and-beam construction and handcrafted details. Large redwood pillars with the bark still intact support recessed entry eaves and a 12-foot diameter amber glass window set in an industrial metal frame is symmetrically placed on the west façade. The building is currently used by the Theater Arts Program.²³

HISTORIES OF SECONDARY RESOURCES

- 1. Students Observatory, Observatory Hill, Leuschner Observatory. Clinton Day, 1885. In 1972, the nine buildings that housed the Leuschner Observatory were torn down except for portions of two structures. The first structure on this site was an observatory for students, hence one of the site's many names.²⁴ One of the first seismographic stations in the western hemisphere was also located on the hill.
- 2. Warren Cheney House. Warren Cheney, 1885. This wood-framed house was built as a residence by editor and developer Warren Cheney and housed several individuals important in local and US history. It has Eastlake-style characteristics, like the gabled pediment that overhangs the west entrance and a decorative facade consisting of scalloped shingles, board siding and detailed latticework. It is a rare survivor of southeast Berkeley's early private residences, and is now used as offices for the University.²⁵
- **3.** Cupola from Giauque Lab. Clinton Day, 1891. The wooden cupola is the only surviving remnant of the 1890s Chemistry Building, a large brick Dutch-Gothic structure which once stood where Hildebrand Hall is now located. The old building was demolished in the 1960s, but the cupola was saved and installed on the plaza between Gilman and Hildebrand. ²⁶ It is one of only three surviving fragments of 19th century academic facilities on the campus (the others being South Hall and portions of the Students' Observatory).
- **4. Tilden or Phelan Football Statue. Douglas Tilden, 1889**. Formally titled "The Football Players", this is the first permanent outdoor sculpture placed on the campus. Created by Douglas Tilden, it was a gift of San Francisco Mayor James Duval Phelan, who offered the statue in 1898 as a prize to the next school, California or Stanford, to win two consecutive Big Games. California won in 1898 and 1899 and secured the trophy, which was installed at its current location in early 1900. ²⁷
- **5.** Warren Cheney House. Carl Ericson, 1902. This house was built by Warren Cheney as income property. It was designed with Stick and Chalet styles in mind, with bracketed overhangs, projecting bays, and expressed framing. Like the other Warren Cheney House, it is now used as office space.²⁸
- **6.** Old Power House. John Galen Howard, 1904. The Old Power House designed by John Galen Howard, produced power for the University for over thirty years before being converted to the University Art Gallery who then vacated the space in 1970. The brick structure is Romanesque in style with round arched openings and brick corbels detailing the crowns of the inset panels. The mission-tile gabled roof is crowned with a copper-framed sky-light. The current use of the building is for storage and various campus police and financial aid activities. ²⁹

- 7. Charles E. Bancroft House. Fred D. Voorhees, 1908. This English Tudor house was designed for the brother of Hubert Howe Bancroft. In the 1870s, the immediate surrounding area was an exclusive residential area for professors and businessmen. However, during the 1920s, the houses gave way to larger University buildings, leaving only a handful of residential buildings along Piedmont. Although the interior has been subdivided into offices, much of the interior detailing still remains. 30
- 8. Professor Charles A. Noble House. William Knowles, 1908. Built in the mission revival style, this house was designed for Charles Noble, a University mathematics professor. The design is symmetrical with a recessed entry marked by Tuscan columns. The building is currently used by the Anthropology and Demography Departments.³¹
- 9. Walter Y. Kellogg House. Julia Morgan & Ira Hoover, 1908. Walter Y. Kellogg, the manager of the California Door Company, commissioned this English half-timber house from Julia Morgan and her junior partner, Ira Hoover. Characteristic of Morgan's other work was a side entrance that allowed the living room to span the entire width of the house. Kellogg's daughter and son-in-law, Judge William Olney, later inhabited the house. It is now used by the Department of Demography.³²
- 10. Dr. B.P. Wall House. William C. Hayes, 1909. Built in the shingle style, the exterior detailing of this house is unique that the shingles alternate horizontally between wide and narrow strips. This house was originally located on the other side of Piedmont but was moved to its current location to allow for the construction of International House. The house, originally built for the well-known Berkeley physician Dr. Wall, is now occupied by the Berkeley Roundtable on the International Economy.³³
- 11. Zeta Psi. Charles Peter Weeks, 1910. This building is the former residence of the Zeta Psi fraternity, the first fraternity established west of the Mississippi. The house is a three-story Second Empire structure with a mansard red-tile hipped roof. The recently restored building is currently home to the Archaeological Research Facility. ³⁴
- 12. Class of 1910 Bridge. John Bakewell, Jr. and Arthur Brown, Jr., 1910. This arched classical bridge was given to the University by the Class of 1910 and designed by prominent Bay Area architects Bakewell and Brown. It serves as a northeast portal of the Faculty Club and crosses Strawberry Creek. 35
- 13. Class of 1877 Sundial. Clinton Day, 1915. Located on the Sather Esplanade, this sundial sits atop a white marble pedestal on axis with the Campanile. Erected in 1915, it was donated by the Class of 1877 and later renovated by the Engineering Class of 1996.³⁶

- 14. Lawson Adit. College of Mining, 1916-c.1938. Andrew C. Lawson, the dean of the College of Mining in 1916, decided that hands-on instruction in "drilling, drifting, blasting, timbering, and mine surveying" was necessary for the education of mining engineers. The adit served as the "classroom" for many students and by the late 1930s extended approximately 750 feet into the hillside.³⁷
- 15. Stephens Memorial Union. John Galen Howard, 1922. Designed in the Tudor or Collegiate Gothic style, the Union was built to serve as a gathering place for students, alumni and faculty. It housed the student store, lunch room, and other activities. Made of concrete, the detailing of the building includes octagonal turrets, oriel windows and groups of chimneys. The vaulted entryway consists of three ribbed vaults and also leads to the Faculty Glade. The Union functions were moved to the King Student Union in 1962.³⁸
- 16. Sigma Epsilon Fraternity. Gwynn Officer, 1923. This three-story English Tudor revival building is U-shaped in plan with a steeply pitched gable roof that house a large attic meeting hall. In 1943, the university acquired the building and in 1949, it was moved to its present location to make way for construction of the Law Building in 1949. It is currently used by the Program of the School of Law.³⁹
- 17. Women's Faculty Club. John Galen Howard, 1923. The club was built by and for women faculty, professionals and university donors. It was designed in the First Bay Region style by John Galen Howard in order to complement adjacent buildings, including the Faculty Club and Senior Hall. The dark wood-shingled exterior is accented by a white entrance portico with Tuscan columns and a simple entablature and balustrade.⁴⁰
- **18.** Valley Life Sciences Building. George W. Kelham, 1928. Designed by George Kelham, when this structure was built, it was claimed to be "the largest and best equipped" academic building in the world. It housed thirteen departments and had over a mile of hallways. While it is situated axially on campus in the Beaux-Arts tradition, the style of the building is eclectic Moderne. The north and south façades are composed of closely spaced classical pilasters with steel-sash window infill and detailed with Egyptian and Babylonian inspired motifs. ⁴¹
- 19. Harmon Gymnasium/Haas Pavilion. George W. Kelham, 1932. Harmon Gym is a concrete structure designed in the Moderne style with some neoclassical motifs. The east and west entrances consist of three bays each and are surmounted with six bas-relief Art Deco Greco-Roman athletic figures. In the late 1990s, the main gym was demolished and transformed into the Haas Pavilion, but the two entrances were preserved. Also saved was a barrel-vaulted tile-floored vestibule with oak panels and decorative chandeliers. 42

- **20. Anthony Hall (Pelican Building). Joseph Esherick, 1956.** Anthony Hall is listed in the State Inventory as the Pelican Building, its nickname. Its original use was as headquarters for the student humor magazine. It is a one-story pavilion-like building made of post-and-beam construction. The modular redwood trusses, posts and wall panels are characteristic of the architect, Joseph Esherick, while the trellised pergolas are typical of Bernard Maybeck, who served as a consultant to the project. The gabled roof is red tile and the exterior walls are rose-colored stucco. ⁴³ The exterior viewpoints reveal Pelican motifs.
- 21. Sproul Plaza. Hardison and DeMars with Lawrence Halprin, 1959. The plaza was developed at same time as the first buildings of the California Student Center. The former Telegraph Avenue right-of-way was converted to a pollarded London plane tree-lined promenade centered on a brick plaza with a circular fountain. During the 1960s, the plaza was the setting for many student demonstrations and rallies, including the famous Free Speech Movement speech by Mario Savio in December of 1964.
- **22.** Wurster Hall. Demars, Esherick and Olsen, 1964. Wurster Hall is home to the College of Environmental Design. It is a concrete structure built in the Brutalist modernist aesthetic. The design is U-shaped with a large east courtyard. A three-story base serves as the podium for a ten-story tower that houses student studios and a seminar room at the top. ⁴⁵

LANDSCAPE FEATURES

Various landscape features have been designated by the City of Berkeley as city landmarks. All of them were given status at the same time on November 4, 1996.

- 23. Willey Redwood. This coastal redwood is significant due to its age being planted before 1870 and its namesake, Reverend Samuel Willey, who helped found the College of California, the institution that donated the land on which the University of California is currently located.⁴⁶
- **24.** Eucalyptus Grove. The grove consists of Tasmanian blue gum eucalyptuses some rising 200 feet high. Planted in 1877, they are some of the oldest in California. These trees are also listed on the State Inventory, but not as an historic resource.⁴⁷
- **25. Dawn Redwoods.** It is highly likely that the oldest of these redwoods was planted in 1961 by Professor Ralph Chaney who gathered the seeds for this species while on a trip to China. At one time considered extinct, the dawn redwood was known in fossils before the species was "rediscovered" in China. The trees are planted in front of Earth Sciences/McCone Hall, once the home of the Department of Paleontology in which Professor Chaney taught. 48 49

- **26.** Campanile Esplanade (London Plane Trees). These trees are cited in the Multiple Resource Area designation under the Sather Tower (Campanile) and Esplanade, and also designated a city landmark. The London plane trees were relocated from San Francisco's Panama Pacific International Exposition and are most likely the best-preserved landscape feature on campus of the Beaux Arts style. ⁵⁰
- **27. Melaleuca Copse.** Also known as Australian swamp paperbark trees, these trees were planted around 1895 and were associated with the nearby Botanical Garden which has since been removed. In 1906, the trees were cut down but the stumps were left in place to grow again into full trees.⁵¹
- **28.** California Buckeye Tree (*Aesculus californica*). This tree is located near the Class of 1910 Bridge and has been on the campus at least since 1882.⁵²

4.12.2 ADJACENT BLOCKS NORTH

HISTORIES OF PRIMARY RESOURCES

GAYLEY ROAD

1. Bowles Hall. George Kelham, 1928. Bowles Hall is a Collegiate-Gothic or Tudor manor men's residence hall inspired by the dormitories at Princeton University. This was the University of California's first residence hall. The reinforced-concrete structure consists of three wings with steep gabled tiled roofs and a crenellated tower at the northwest corner. The interior entry is paneled with stained oak and has a carved oak staircase. There is also a two-story lounge with ornamental pilasters, beams and cornices, chandeliers, and a marble fireplace. The residents are called "Bowlesmen," with a famous former resident being Justice Wakefield Taylor. ⁵³

LE ROY AVENUE

1. Cloyne Court. John Galen Howard, 1904. An example of the First Bay Tradition, this building is detailed with shingle siding, hipped roofs, projecting bays, balconies and trellises. The symmetrical layout, however, is Beaux-Arts inspired. The building was built as a "high class modern apartment house" for primarily faculty and graduate students, but is now used as a co-op dormitory. ⁵⁴

STADIUM WAY

1. Hearst Greek Theatre. John Galen Howard, 1903. The Hearst Greek Theatre is a part of the 1982 Multiple Resource Area listing. The theatre was built on the former site of a natural amphitheatre used by students for various outdoor events. It was modeled after the Greek theater at Epidauros with some modification and was one of the first outdoor theaters in the United States. The stage is 40 feet high, 135 feet long and is decorated with a row of attached Doric columns and entablature. Many famous people have spoken and performed at the Theatre, including President Theodore Roosevelt, Sarah Bernhardt, and Robert Frost. It is still used today for recitals, operas, lectures, meetings, observances and bonfire rallies.⁵⁵

HISTORIES OF SECONDARY RESOURCES

HEARST AVENUE

- 1. Stern Hall, Corbett & MacMurray and William W. Wurster, with John W. Gregg and Isabella Worn, landscape design, 1941-1942. Stern Hall was the first women's dormitory in the UC system. It is a combination of modern and Bay Tradition styles, with a wood-textured concrete façade and glass-enclosed staircases. The interiors were decorated in bold colors and modern furniture as well as a Diego Rivera fresco, *Still Life and Blossoming Almond Trees*. There have been two additions to the building, one in 1959 and another in 1980. ⁵⁶
- 5. Goldman School of Public Policy / Beta Theta Pi House. Ernest Coxhead, 1893. Built originally for the Richard and Rhoda Goldman Beta Theta Pi fraternity and designed by Ernest Coxhead, with additions by Bakewell and Brown, this structure now houses the Goldman School of Public Policy. It is English Tudor in style and is an important example of the First Bay Tradition, with wood shingles, stucco, half-timbers, and brick.⁵⁷

4.12.3 ADJACENT BLOCKS WEST

HISTORIES OF SECONDARY RESOURCES

BERKELEY WAY

1. Richfield Oil Company/ University Garage. Walter Ratcliff, Jr., 1930. Built in the Mediterranean style with Moorish influences, this picturesque oil station built for the Richfield Oil Company, is faced with brick and plaster, detailed with both round and pointed arches and is topped with a tile roof. It is currently owned by the University and is called the University Garage.⁵⁸

OXFORD STREET

1. UC Press, University Printing Department. Masten & Hurd, 1939. This concrete Moderne building was funded in part by the Work Projects Administration and was designed by Masten & Hurd. It consists of a three-story office block and a one-story wing that houses the printing operations. The University of California Press was once housed in the building.

WALNUT STREET

1. Three Brown Shingle Houses on Walnut Street. Unknown, 1905. Although these three houses were inventoried together, only the house located at 1925 Walnut Street is owned by the University. These three houses are the only remaining structures of residential character in the downtown area. All three are representative of the brown shingle style, with shingles on all the vertical surfaces of the exterior, hipped roofs with dormers, projecting window bays and raised entry porches. ⁶⁰

4.12.4 ADJACENT BLOCKS SOUTH

HISTORIES OF SECONDARY RESOURCES

BANCROFT WAY

6. University Art Museum. Mario J. Ciampi, 1968. Although this building is currently called the "University of California, Berkeley Art Museum and Pacific Film Archive," it is listed in the State Inventory under its former name, the "University Art Museum." Made of exposed concrete, this structure is considered "neo-brutalist" in style and is one of the largest and most prominent modern-era buildings constructed in Berkeley. There are galleries on multiple levels and large skylights that allow light to descend into the various galleries. ⁶¹

PIEDMONT AVENUE

- 1. International House. George W. Kelham, 1928. Designed by George Kelham, International House is one of three facilities in the country funded by the Rockefeller family to provide housing for both foreign and American students and promote international and intercultural understanding. The building is a Mission-Spanish Colonial inspired structure with concrete exterior, red tile roofs, and a domed tower stepped back nine stories above the façade. 62
- **2.** California Memorial Stadium. John Galen Howard, 1923. Completed in 1923 as a venue for the California Golden Bears football team, the Stadium currently has approximately 60,000 seats and was designed as a combination of earthen bowl and elevated arcade. The concrete exterior was designed to resemble a Roman coliseum. Besides serving athletic uses, the Stadium has served as a venue for University ceremonies including Commencement. President John. F. Kennedy and other notables have appeared there. ⁶³

4.12.5 SOUTHSIDE

HISTORIES OF PRIMARY RESOURCES

BOWDITCH STREET

1. Anna Head School for Girls. Soule Edgar Fisher and Walter Ratcliff, Jr., 1892-1927. Although this complex of Arts and Crafts buildings is now owned by the University, it was built for the Anna Head School which operated there for 72 years, starting in 1892. The 14 buildings were built within the span of the school's first 35 years by various architects, creating the largest planned ensemble of early shingle buildings in the Bay Area.⁶⁴ The central quadrangle has since been converted into a parking lot and the buildings now house university offices, a day-care center and various research centers.⁶⁵

PIEDMONT AVENUE

1. Clark Kerr Campus (formerly the California Schools for the Deaf and Blind). State Architects, 1914-1959. The State institution for the deaf and blind relocated from San Francisco to this site in the 1860s, predating the University. All the early buildings except one 1915 structure have since been destroyed, although the perimeter wall is constructed of stones salvaged from the first building on this site. The current buildings were constructed from the 1920s through the 1950s grouped around garden courtyards; they range from Mission Revival to Moderne and early Modern in character and style. Most are of reinforced concrete with board form detailing, and tile roofs. In the 1980s the Deaf and Blind Schools were relocated to new campuses in Fremont and the University acquired the property; it is now used primarily for student and faculty housing, and recreation. 66

HISTORIES OF SECONDARY RESOURCES

BOWDITCH STREET

- 2. Fox Cottage / Rose Berteaux House. Carl Fox, 1930. Built by Carl Fox who designed several similar "storybook" residences in Berkeley. The brick structure with wavy window mullions and intentionally uneven roof was moved from its original location on the south side of Channing just east of Bowditch to its current site in 2001 to clear the site for the Central Dining Facility. ⁶⁷
- 3. People's Park. Open Space, 1969. Originally a block of single-family homes and small apartment buildings at the edge of the Telegraph Avenue commercial district, this site was cleared in the 1960s to provide a location for University residence halls. Construction was delayed and the lot was left largely vacant. In Spring, 1969, a community effort resulted in the construction of an impromptu park. The University's construction of a perimeter fence on May, 15, 1969, led to demonstrations and rioting, part of a pivotal era of confrontation and political and social ferment in both community and University history. The Park has since undergone several eras of use, including the addition of active recreation facilities, and was for a time jointly managed by the City of Berkeley and the University. ⁶⁸

DURANT AVENUE

11. U.C. Berkeley Unit 1. John Carl Warneke, Lawrence Halprin & William Wilson Wurster, 1957-1959. Both Unit 1 and Unit 2 (on Haste Street) are residential dormitory towers completed according to the principles of midtwentieth century modern urban planning. Each Unit consists of four multi-story buildings that face inward overlooking a Japanese-inspired dining pavilion. The landscaping, completed by Lawrence Halprin, consists of vine-covered stone walls and trellises. The stylistic juxtaposition between the modern buildings and the rustic landscaping are clearly brought to light in the dining pavilions where the large glass walls provide ample view to the gardens.

DWIGHT WAY

3. McKinley Elms. No architect, 1903 dedicated. These English Elms were planted and dedicated to mark the entrance to the McKinley School, designed in 1896 by the Cunningham Brothers in a Colonial style with two Mission Revival towers. Even though the building was demolished circa 1970, the elms remained and now frame the entrance to the William J. Davis Park, in honor of the YMCA and University counselor. ⁷⁰

FULTON STREET

2. University Extension, Federal Land Bank. James W. Plachek, 1922. Michael Goodman, 1949. This building is unique in that Plachek's classical building – the Federal Land Bank – built in 1922 was completely renovated beyond recognition by Goodman in the late 1940s. The original 2 ½ story white bank with large fluted Ionic columns was purchased by the California Farm Bureau Federation and was modified into a 5 ½ story stuccoed concrete building with a large protruding center section, aluminum windows, and a salmon pink – turquoise color scheme. ⁷¹

HASTE STREET

- **5.** The Woolley House. Unknown, 1876. From 1876 until 1993, when the University bought the house, this building was used as a private residence. It is a one-story Italianate Victorian with a raised basement and shallow portico flanked by tall double-hung windows. The arched front door has a molded glass transom in a floral design. It is one of the few original Victorian-era homes surviving in this neighborhood.⁷²
- 7. U.C. Berkeley Unit 2. John Carl Warneke, Lawrence Halprin & William Wilson Wurster, 1957-1959. See description under "Durant Avenue" above.

4.12.6 HILL CAMPUS

HISTORIES OF SECONDARY RESOURCES

- 1. Charter Hill and the Big C. Classes of 1907 and 1908, 1905. In the late nineteenth century, on the eve of Charter Day, the university's anniversary, freshman students would try to mark their class numerals on this slope while the sophomores would in turn try to prevent them from doing so. The fighting that ensued led the University to ban the tradition in 1903 and in its place, a large reinforced concrete "C", 60 by 26 feet in dimension, was built by the freshman and sophomore classes of 1907 and 1908 in order to represent a "truce". The "C" was the first feature of its type built on a western American hillside and remains an important spirit symbol of the University.⁷³
- 2. Botanical Garden. John W. Gregg, landscape architect, with Thomas Harper Goodspeed, 1920-1926. The 34-acre Botanical Garden has one of the largest and diverse collections of plants in the country. It was designed by John W. Gregg with the aid of the garden director, Thomas Harper Goodspeed. They organized the plants by geographic origin in settings similar to the plants' native habitats. In 1936, a 5-acre grove of Coast redwood was planted in 1936 across Centennial Drive and was later added to the Garden.⁷⁴

4.12.7 REFERENCES

- ¹ Helfand, Harvey, *The Campus Guide: University of California, Berkeley*, Princeton Architectural Press, 2002, pages 120-121.
- ² Helfand, pages 41-42.
- ³ Helfand, pages 230-231.
- ⁴ Helfand, pages 69-71.
- ⁵ Helfand, pages 113-116.
- ⁶ Helfand, pages 224-226.
- ⁷ Helfand, pages 100-105.
- ⁸ Helfand, pages 37-40.
- ⁹ Helfand, pages 228-230.
- ¹⁰ Helfand, pages 137-139.
- ¹¹ Helfand, pages 140-142.
- ¹² Helfand, pages 72-75.
- ¹³ Helfand, pages 116-118.
- ¹⁴ Helfand, pages 55-62.
- ¹⁵ Helfand, pages 44-54.
- ¹⁶ Helfand, pages 77-80.
- ¹⁷ Helfand, pages 93-95.
- ¹⁸ Helfand, pages 142-144.
- ¹⁹ Helfand, pages 135-136.
- ²⁰ Helfand, pages 204-209.
- ²¹ Helfand, pages 145-146.
- ²² Helfand, pages 168-171.
- ²³ Cerny, Susan Dinkelspiel, *Berkeley Landmarks: An Illustrated Guide to Berkeley, California's Architectural Heritage*, Berkeley Architectural Heritage Association, 2001, page 162.
- ²⁴ Helfand, pages 119-120.
- ²⁵ Helfand, page 240.
- ²⁶ Helfand, pages 90-91.
- ²⁷ Helfand, pages 160-161.
- ²⁸ Helfand, pages 240-241.
- ²⁹ Helfand, pages 202-204.
- ³⁰ Bruce, Anthony Buffington, Historic Resources Inventory: Center for the Project on Linguistic Analysis - Bancroft, (Charles B.) House, California Department of Parks and Recreation, February 29, 1979; Helfand, page 285.
- ³¹ Bruce, Anthony Buffington, Historic Resources Inventory: Center for Study of Law and Society Noble, (Prof. Charles A.) House, California Department of Parks and Recreation, February 29, 1979; Helfand, page 286.
- ³² Boutelle, Sara Holmes, Historic Resources Inventory: Anthropology Conference Building, U.C. Kellogg House (Walter Y. Kellogg) later Olney House, California Department of Parks and Recreation, May 19, 1978; Helfand, pages 286-7.
- ³³ Brown, William Newton, Historic Resources Inventory: Institute of International Studies Wall, (Dr. B.P.) House, California Department of Parks and Recreation, March 9, 1979; Helfand, page 287.
- ³⁴ Helfand, pages 241-242.
- 35 Helfand, page 234.
- ³⁶ Helfand, pages 53-54.
- ³⁷ Helfand, pages 105-106.

UNIVERSITY OF CALIFORNIA, BERKELEY

2020 LRDP EIR APPENDIX D.I: CULTURAL RESOURCE HISTORIES

- ³⁸ Helfand, pages 80-84.
- ³⁹ Brown, William Newton, Sigma Epsilon Fraternity, California Department of Parks and Recreation, March 9, 1979; Helfand, page 287-288.
- ⁴⁰ Helfand, pages 227-228.
- ⁴¹ Helfand, pages 147-148.
- ⁴² Helfand, pages 171-175.
- ⁴³ Helfand, pages 201-202.
- 44 Helfand, pages 192-195.
- ⁴⁵ Helfand, pages 215-218.
- ⁴⁶ Crockrell, Robert A., Trees of the Berkeley Campus, The Regents of the University of California, pages 1 and 65. Quoted in City of Berkeley, Notice of Decision, California: Landmarks Preservation Commission, November 4, 1996.
- ⁴⁷ Helfand, pages 159-162.
- ⁴⁸ Crockrell, page 38.
- ⁴⁹ Ertter, Dr. Barbara, Curator of Western North American Flora, University and Jepson Herbaria, University of California at Berkeley. Letter of March 27, 1995. Quoted in City of Berkeley, Notice of Decision, Landmarks Preservation Commission, November 4, 1996.
- ⁵⁰ Crockrell, page 52.
- ⁵¹ Crockrell, page 38.
- ⁵² Helfand, page 234.
- ⁵³ Helfand, pages 257-258.
- ⁵⁴ Helfand, pages 124-125.
- ⁵⁵ Helfand, pages 253-257.
- ⁵⁶ Helfand, pages 249-251.
- ⁵⁷ Helfand, pages 122-123.
- ⁵⁸ Cerny, page 119.
- ⁵⁹ Helfand, pages 323-324.
- 60 Wright, Katherine R., Historic Resources Inventory: Three Brown Shingle Houses on Walnut Street, California Department of Parks and Recreation, February 28, [no year].
- ⁶¹ Helfand, pages 210-211.
- 62 Helfand, pages 288-291.
- 63 Helfand, pages 259-262.
- 64 Cerny, pages 189-190.
- 65 Helfand, pages 303-304.
- 66 Helfand, pages 293-395.
- ⁶⁷ "Cottage on the move." Berkeleyan Online. November 29, 2000. http://www.berkeley.edu/news/berkeleyan/2000/11/29/cottage.html, retrieved April 28,
- ⁶⁸ Cerny, page 193. Helfand, pages 306-309.
- ⁶⁹ Cerny, pages 192.
- ⁷⁰ Bruce, Anthony Buffington, Historic Resources Inventory: "McKinley Elms" (William H. Davis Park), California Department of Parks and Recreation, March 7, 1979.
- 71 Marvin, Betty, Historic Resources Inventory: University Extension Federal Land Bank, California Department of Parks and Recreation, February 5, 1979.
- ⁷² Cerny, pages 194.
- ⁷³ Helfand, pages 262-265.
- ⁷⁴ Helfand, pages 272-274.

APPENDIX D.2 TIEN CENTER SITE ARCHAEOLOGY

2003 Archaeological Field Research at the Conservatory/Observatory Hill Sites – Excerpted Report

Prepared by
Laurie A. Wilkie, PhD
Associate Professor of Anthropology
and
Stacy Kozakavich, M.A.
Graduate Student in Anthropology
with contributions by Cheryl Smith, Christine Baker, Tara Evans, Derek Shaw, and
Angela Smith

ABSTRACT

Archaeological test excavations were undertaken in the summer of 2003 at the University of California, Berkeley at the documented locations of the late 19th century Students' Observatory and the Agricultural Department's Conservatory structures. The purpose of the excavations was to retrieve information on the location and state of preservation of archaeological deposits that were known or anticipated to be present within the area that could be affected by construction of the proposed Chang-Lin Center for East Asian Studies (Tien Center.) Excavations were directed by members of the University of California, Berkeley Anthropology Department, and were conducted by undergraduate students.

The excavations revealed that the Students' Observatory location had been previously disturbed by past campus construction activities so that significant archaeological resources are not present. The Agricultural Department's Conservatory structure's foundation and associated materials were found, and based upon the excellent state of preservation observed in the accessible portion of the foundation, it is likely that preservation of the inaccessible portions of the structure are likewise intact.

Both the Observatory and Conservatory were built and used at an important period in the development of scientific disciplines and of the University of California as an institute of higher education. The Conservatory foundation and associated materials are recommended as eligible for listing in the National Register of Historic Places.

UNIVERSITY OF CALIFORNIA, BERKELEY 2020 LRDP DRAFT EIR APPENDIX D.2: TIEN CENTER SITE ARCHAEOLOGY

Table of Contents: List of Figures	ii
Abstract	
Section I: The Project Area	1
Research Design and Testing Strategy	3
Results of Testing at Locus C	6
Section II: The Students' Observatory (Locus B)	
Astronomy in the late 19 th to early 20 th centuries	7
The documentary history of the Students' Observatory	9
Development of the Astronomy Complex	
Archaeological Testing at the Students' Observatory	16
The 1875 Observatory Building and Yard	17
The Classroom Building	21
Section III: The Conservatory (Locus A)	21
Conservatories in Victorian Society	
The Conservatory at the University of California	24
Need and Plans for the Plant House	24
Process of Building the Plant House	26
Use of the Plant House	29
Archaeological Testing at the Conservatory	33
Architectural Remains: Building Materials	
Slate	
Flat Glass	37
Metal/Nails	37
Industrial Materials	37
Terra Cotta Flower Pots	37
Ceramics	38
Glassware	40
Small Finds	41
Zoological Remains	43
Summary of Excavation and Materials Analysis	44
Section IV: Evaluation of the Resources	45
Locus C	
Locus B	46
Locus A	
Section V: Bibliography	47

List of Figures

Figure 1: Plan of Proposed Project Area with location of Archaeological Loci	.1
Figure 2: Shovel test pit grid at Locus C	.6
Figure 3: Photograph of Waterman Pen lid recovered from Locus	.7
Figure 4: Photograph of Students' Observatory ca. 1890, with wisteria (Courtesy of Harold Weaver)	.13
Figure 5: Map of 1888 Students' Observatory relative to current landscape	.13
Figure 6: Map of 1908 Students' Observatory relative to current landscape	.14
Figure 7: Map of 1933 Students' Observatory relative to current landscape	.15
Figure 8: Photograph of Observatory Hill ca. 1972	.16
Figure 9: Extent of excavations at the Students' Observatory	.17
Figure 10: Extent of foundations recovered during excavation of the original Students' Observatory	.18
Figure 11: Circa 1890 photograph of University of California students doing coursework in the yard of the Students' Observatory	.20
Figure 12: Photograph of the Conservatory circa 1900	.27
Figure 13: Example of curvilinear green house unit from Lord and Burnham catalog	.28
Figure 14: Interior of palm house, circa 1900	.27
Figure 15: Interior of carnation house, circa 1900	.28
Figure 16: Extent of Excavations at the conservatory	.34
Figure 17: Detail of excavation block in eastern wing of the conservatory	.36
Figure 18: Portion of the conservatory excavated versus area likely to be preserved	.44

SECTION I: THE PROJECT AREA

The project area is located in the north central portion of the University of California, Berkeley campus (Figure 1).

The purpose of the research and excavation was to retrieve information on the location and state of preservation of archaeological deposits that were known or anticipated to be present within the area that could be directly and indirectly impacted by construction of the proposed Chang-Lin Tien Center for East Asian Studies (Tien Center).

Figure 1. Plan of Proposed Project Area with location of Archaeological Loci

A preliminary review of maps and documents housed in campus collections undertaken by Steven Finacom, campus planning analyst/historian, identified two areas that have a high likelihood of containing subsurface architectural remains and associated deposits that could be eligible for listing on the National Register of Historic Places.

The first area of investigation is designated Locus A (Figure 1). This corresponds to the location of the proposed Tien Center building footprint. This locus overlap with the known location of the campus conservatory building, constructed in the 1870s, which is depicted on campus maps dating 1897 and 1911. The building was demolished circa 1923-24. The most likely type of archaeological remains to be found in his area are subsurface foundations. The purpose of the archaeological testing was to determine if such foundations still remain and to document them.

The second area of investigation is designated Locus B (Figure 1), is not located within the proposed Tien Center building footprint, but could be impacted during construction activities. This area, located immediately to the north of the proposed building on what is known as "Observatory Hill", was the site of an astronomical observatory complex that was developed in the 1880s and stood intact on the site until the superstructure was largely demolished in the early 1970s. In addition to being associated with Berkeley's world renowned physics and astronomy programs, one of the structures in this complex also housed one of the two first seismographic station in the western hemisphere. Classes and research were conducted in and around these structures, which are well documented in maps and photographs. The previous use of the yard areas by students and faculty suggested to us that in this area there was a strong possibility of finding intact deposits associated with the historic use of the area.

Given the construction age of the buildings beginning in the 1870s and 1890s respectively, the observatory and conservatory complexes could be potentially significant under state and federal standards and guidelines. The intent of the archaeological research and testing is to provide an evaluation of the sites' potential significance.

In addition to these two known areas of occupation, the proposed Tien Center project could construct a second building adjacent to loci A and B. This location has been designated as Locus C, and is shown in Figure 1. While there are no known historical uses of this portion of the project area, we cannot rule out the possibility that archaeological remains exist there without subsurface testing.

Federal and state laws specify criteria that archaeological resources must meet to qualify for listing on the National Register of Historic Places or the State Register of Historical Resources. In addition to maintaining their archaeological integrity (be largely undisturbed), the most common criteria applied to archaeological sites is whether or not they have the potential to yield information important to the prehistory or history of the local area, California, or the nation. The information that can be derived from the archaeological deposit must be able to contribute to the understanding of significant historical time periods, themes or questions.

The archaeological materials that were likely present within the project area could potentially contribute to a number of different historical discourses. The following broad research questions were identified:

- 1. As early constructions on the Berkeley campus, how did these structures fit into the campus landscape design, and how did their use conform or depart from uses intended by designers?
- 2. What can we learn about the way the campus envisioned itself from the destruction of these buildings?
- 3. How do the archaeological materials illuminate the ways that buildings and the spaces around them were used by the campus community?
- 4. How does the use of these structures demonstrate how members of the University of California campus created social hierarchies among its members, as well as ways that communal identities were constructed?

Locus B, in particular, given the association of the observatory buildings with both the research and teaching missions of the university, was seen as having great potential for studying how a sense of academic community was fostered within one academic unit of the campus. Given the intellectual prominence of Berkeley and its academic units, and its position as the oldest University of California campus, the social history of academic departments in the university is historically relevant beyond this campus. It was to address the potential of these remains to answer important research questions that drove this research and is the focus of this report.

Research Design and Testing Strategy

The purpose of the excavations was to determine the nature of the archaeological resources associated with known structures as well as to test an area with no known resources. The excavation strategy for each locus was shaped by our current understanding of potential resources in each area. The nature of the excavations was also shaped by other campus needs. For instance, the excavation was coordinated with the Campus Landscape Architect and facilities to ensure that no damage was done to the landscape or infrastructure of this part of campus as a result of excavation. With one exception, where a three foot perimeter was maintained, excavations did not take place within a 6 foot distance of any tree that had been designated for preservation or relocation. With the exception of roots found to be associated with a no-longer extant tree, the excavators did not cut or remove any roots that had a 2 inch or larger circumference. The excavators did not affect any buried electrical lines, watering systems or plumbing, nor did we remove any of the asphalt that covers the majority of the footprint for the conservatory building.

All excavations were conducted by 35 University of California undergraduates enrolled in an archaeological field school under the direction of Laurie Wilkie, Associate Professor of Anthropology, and Stacy Kozakavich, Cheryl Smith and Sarah Gonzales, graduate students in anthropology.

To ensure consistent artifact recovery, all matrix was screened through ½" mesh in mixed deposits, and 1/8" mesh in features and intact deposits. Excavation was primarily done in natural levels. When natural levels could not be discerned or were especially thick, we used arbitrary 10 cm levels. All excavations were documented, photographed and mapped. Excavations were conducted with shovel, trowel and brush. Soil samples for flotation were taken from one drainage pipe found associated with the conservatory building. All materials recovered have been processed and analyzed in the Historical Archaeology Laboratory of the Department of Anthropology using techniques and procedures widely employed in the discipline (e.g. Godden 1964; Jones and Sullivan 1989; Majewski and O'Brien 1987; Miller et al. 1991; Toulouse 1971.)

All materials excavated were cataloged by provenience, materials, and where possible, by form, contents, decoration, origin, and date and method of manufacture. For ceramic, glass, and metal vessels and containers, minimum number of vessel counts were tabulated. Since each of the structures was known to have had a significant brick component, it was decided not to curate brick and mortar, but to process it in the field. Brick fragments were sorted by size and where possible, dimensions were recorded. Mortar was also size sorted and counted in the field. Both brick and mortar were returned to the units from which they were recovered during backfilling. All other materials have been bagged and labeled according to their locus, unit and level proveniences. Glass and ceramic artifacts have been labeled with this information in India ink which has been coated with nail polish for later removal, if deemed necessary.

Below is a brief summary of the research conducted at each locus. The work done at Loci A and B will be developed further in a later chapter. Since no significant remains were recovered during testing a Locus C, this will be the only discussion of work in that area.

Locus A:

This part of the proposed project area is now predominately covered with a parking lot, which limited the area in which we could test. However, based upon a footprint of the conservatory drawn from a 1911 Sanborn map, we were confident that a significant portion of the conservatory's architectural footprint would be preserved in the undeveloped areas just to the south of the parking slab. Based upon a survey of other sites on campus, it appears that the university's practice prior to the 1980s when demolishing buildings was to leave the subsurface foundation intact while removing all superstructures to ground level. As a result, building footings are commonly preserved on the campus. We, therefore, expected to find subsurface footings, but not associated material culture. Using the Sanborn maps as a guide, a line of 50 cm shovel test pits was placed to attempt to locate evidence of the buildings' footings. Once part of the foundation was uncovered, units were placed to follow the foundation. Excavations

covering 62 square meters were completed at this locus, revealing the front extent of the building and recovering an abundance of architectural and artifactual data associated with the conservatory and its occupation.

Locus B:

This is the best documented area, but was also the most potentially complex, containing a number of different structures that were built at different times. As at Locus A, one meter square units were used to pin point foundation remains. This task was much easier than at Locus A, since foundations are still visible on the ground surface in some areas. By tracking the foundations, we hoped to pinpoint the exact location of buildings relative to one another and to determine the extent of preservation. Unlike the circumstances at Locus A, however, it was expected that intact artifact deposits could be preserved in the area. One meter square units were placed to study the use of spaces between and around buildings. Of particular importance was testing the "yard" area associated with the astronomical building complex, where an 1890 photograph shows students engaged in class-related activities. Clearly, this was an area of campus where research and teaching merged in one location. The observatory area clearly had the potential for use as a social as well as educational space, allowing for the development of intellectual camaraderie between fellow students and between faculty and students. The ability to coordinate research is essential in sciences like physics and astronomy, and by exploring the use of communal spaces, we were hoping to be able to derive insight into how this was achieved within a very prominent and influential department. We were encouraged because the 1890s photograph of the yard area clearly shows a granite survey pillar that still stands today. The height of the pillar relative to the persons standing next to it in the photograph shows that the past surface level was at a similar level to today. It was our hope that this circumstance would indicate that original deposits associated with the astronomy complex remained intact. What we quickly learned, once excavating, however, is that the entire area has been disturbed by previous major earthmoving activities which have removed much of the rear of the original astronomy building and obliterated evidence of most of the structures in the area. The earth that was removed does not appear to have been redeposited on the site, so a series of sand fill layers have been deposited over the years. Our excavations became focused upon locating what scant remains of structures still stood. A total area of 41.75 square meters was excavated in this locus. With a few notable exceptions, most of the materials recovered from these excavations date to after the removal of the astronomy buildings in the 1960s.

Locus C:

There were no known historical or archaeological resources in this area, however, this area corresponds to the footprint of the second building proposed to be constructed for the Tien Center and needed to have preliminary testing completed. We planned to use a multi-staged excavation plan, first testing the area with 50cm shovel test pits (STPs) to determine whether any significant cultural deposits were located in the area, and pending the outcome of that testing, to excavate meter square units in high density areas.

Results of Testing at Locus C

Access to parts of the project area was limited by slope and vegetation cover. We were able to lay out a 10 meter by 25 meter grid over the area, excavating STPs at five meter intervals (Figure 2). At this interval, we anticipated that we would pick up evidence of any significant deposits or previously unidentified structures. All shovel test pits were excavated to a point at which we were sure we had encountered sterile soil—typically at depths of 20-30cm. Materials were recovered from only 5 of the 18 STPs (Figure 2). Materials recovered from these units consisted primarily of flower pot fragments (presumably related to the activities at the conservatory) or from erosion down the slope from the observatory. The very small collection of glass from Locus C (39 fragments of colorless, green, aqua and yellow glass) provides little insight into activities in this area. One colorless rim fragment and one machine-made, threaded green rim fragment indicate at least two separate bottles.

Figure 2. Shovel test pit grid at Locus C

The most significant artifact recovered from this area was a red, hard rubber Waterman pen lid with a gold-plated clip (Figure 3). Pens like this one were typically popular in the first decade and a half of the 20th century. Similar pens, manufactured by other companies, advertised in the 1902 Sears Roebuck Catalog as costing in the range of \$1.95 to \$3.75 (Amory 1969:98), and still commanding prices of over \$1.00 in 1909 (Schroeder 1971:330). Given that working class laborers often made no more than a dollar a day at this time, the loss of such a pen was not a trifling matter. While the recovery of this pen was interesting, like other artifacts from the area, it was not recovered from an intact deposit, but from an erosion deposit. None of the materials were recovered from intact deposits, and no further excavation was deemed necessary. It is our evaluation that no significant deposits would be impacted by construction in this area.

Figure 3. Photograph of Waterman Pen lid recovered from Locus C

Section II: The Student's Observatory (Locus B)

Astronomy in the late 19th to early 20th centuries

The late 19th and early 20th centuries were exciting times in the development of astronomical science, both as a science and as a social phenomenon. For the Victorian, the earth had been notably conquered. The British Empire was at a zenith, with even the mysterious continent of Africa seemingly subdivided and explored. Even the barren wastelands of the Arctic and Antarctica were being traversed. In the United States, by 1893 Victor Turner had declared the frontier closed and manifest destiny fulfilled. In biology, the late 19th century brought the identification of bacteria, and introduced the public to the possibility of invisible worlds to be explored through the lens of a microscope.

Astronomy offered the opportunity to explore yet another invisible universe, through the lens of a telescope. In a world where progress and modernity were increasingly shaping the world views of the European Diaspora, the star-gazing astronomers were scientists exploring the next realm for human expansion. Yet, unlike the microbiologists in their sterile labs, the life of the astronomer was also highly romantic—scientists who spent long nights exploring the mysteries of the universe, and used seemingly magical science to render the invisible visible.

The public brought the instruments of microbiology and astronomy into their homes. In the period of the Enlightenment, telescopes and surveying instruments were playthings of the wealthy, used to exhibit both their wealth and their position as educated (Leone 1988). By the late 19th century, however, microscopes and telescopes were advertised to the masses. The Montgomery Ward catalog of 1894-95 includes microscopes ranging from hand-held parlor toys costing a mere \$.16 each, to student and professional models ranging from \$4.00 to \$45.00. Telescopes and spy glasses were also sold. Model 23634 sold for \$26.00 and was described as "Telescope for landscape and astronomical purposes, polished mahogany finish, with brass mountings. Length of body 25 inches, fitted with 22-line objectives, a 15" draw tube or terrestrial eye piece, magnifying power 35 diameters. A 6 inch draw tube or celestial eye piece, magnifying power 50 diameters." The \$52.00 telescope was strictly for astronomical use, measuring 38" long with a 3' achromatic objective, and power of 125 diameters." For an additional \$12.00, one could purchase a tripod for this telescope (Schroeder 1970:200). By 1908, the Sears, Roebuck and Company was offering achromatic telescopes with 24X magnification for \$4.70 (Schroeder 1972:190). While these small telescopes would clearly not compare with the instruments used by the professionals, they represent a very real interest on the part of the public in astronomy.

Astronomers fed upon this public interest, often depending upon the support of philanthropists to sponsor the purchase of increasingly large and powerful telescopes (Clerke 1908; Leverington 1995). One could easily argue that the first space wars began in the 19th century, as facilities in different countries vied to establish themselves as the premier observatory. It was through the financial support of James Lick that Lick Observatory, the University of California research facility on the top of Mt. Hamilton, was completed in 1888, bearing, at 36", what was the largest refractor lens in the world (Wright 1987; Osterbrock et al. 1988).

Astronomers recognized their dependence upon the public for funding and continued support, and engaged with them accordingly. The famous Lick Observatory was open to visitors on Saturday nights (Wright 1987: 195). At Berkeley's Student's Observatory, visitors were welcomed to the facility several times a month, as evidenced by a number of Daily Cal advertisements. This September 2, 1897 extract is typical, "The Student's Observatory will be open to visitors, as usual, the first and third Monday of every month from 7 to 10 o'clock pm. Admission will be by ticket, good only for night issued, which may be procured in advance at the Recorder's office. The number of visitors on any one evening is limited to twelve" (Daily Cal, 1897). The Department of Civil Engineering and Astronomy also published the Monthly Meteorological Synopsis of Berkeley, a

newsletter that was sent to interested members of the campus community (Daily Cal, September 2, 1897). Berkeley newspapers, such as the Berkeley Daily Gazette, (Schwartz 2000) regularly featured articles on seismological and astronomical research being conducted on campus.

This March 12, 1924 piece which appeared in the Daily Cal is typical of reporting of the era,

One earthquake a week is the average recorded by the seismographic station on the campus according to investigations which are being carried on by Professor J. B. Maclwane of the Geology Department. Professor Maclwane has been making researches as to the nature of the earthquake waves. During the last few years a large number of quakes were registered. The data collected by the department has been given to scientists the world over for the purposes of study. Data on the Corralitos quake which occurred September 19, 1923 has just been completed. The shock was well-registered here and also at the University of Santa Clara and the Lick Observatory (Daily Cal March 12, 1924).

The public interest was wholly justified. Advances in photographic and telescopic technology had led to new types of astronomical documentation. The period from 1870-1920 saw the development of celestial photography, with the first photographic observation of the red spot on Jupiter occurring in 1878 (Clerke 1908:438, 451). During this time, physicists were discovering x-rays, gamma rays, the electron, and developing the quantum theory of radiation (Leverington 1995:355). People like James Keeler, then at the Alleghany Observatory, were on the cutting edge of the "New Astronomy"—or astrophysics. In a particularly elegant example of the potential of spectroscopic analysis, Keeler demonstrated that Saturn's rings were indeed made of particles rather than a solid mass (Osterbrook et al. 1988:109). World wide collaborations led to systematic catalogs of nebulas, stars, planets and other celestial bodies (Clerke 1908). It was in this period of great hope and innovation that the astronomy program at Berkeley developed.

The documentary history of the Students' Observatory

The Students' Observatory was founded with an appropriation of \$10,000.00 in 1885, with instruction beginning two years later. Professor Armin O. Leuschner took over the instruction of astronomy in 1892, and in 1896, the Astronomy Department was founded (Crawford 1939:2). It is worth providing some background on Leuschner. Armin Leuschner had been born in Detroit, but raised by his widowed mother in Germany. He returned to the States to attend the University of Michigan. Drawn by the recently completed Lick Observatory, he arrived at Berkeley in 1889 to serve as the first graduate student in astronomy to work with William Holden, the Observatory's director. Leuschner lived at the observatory for his first year, earning money as a tutor for Holden's young son. Frustrated by the isolation and by Holden, he returned to Berkeley to take classes and picked up teaching. He ceased working with Holden, who feared having a rival at Berkeley, and focused upon developing his teaching program.

The university hired Leuschner as a professor, without his degree, based upon a competing job offer from Michigan. Keeler married Ida Denicke in 1896, cementing in the process, an alliance with her father, Ernst Denicke, a San Francisco millionaire who was seen by some as an invisible regent (Osterbrock et al. 1988). Leuschner took a yearlong sabbatical with his new wife, and completed his PhD in Berlin (Osterbrock et al. 1988:177).

Upon his return, Leuschner used Denicke's dislike of Holden to his advantage, and through their combined efforts, Holden was driven out of the directorship of Lick, and replaced by James Keeler, who had worked favorably with Leuschner during his 1890 tenure at the observatory (Osterbrock et al. 1988:103). Keeler's appointment was beneficial for Berkeley, for he established the Lick Fellowship, which trained graduates at Lick, and which gave priority to University of California students (Osterbrook et al. 1988:181).

While Leuschner may have seen the advantages of the Lick connection in recruiting students, he did not abandon hope of creating a premier astronomical facility at Berkeley. Leuschner was a noisy advocate for the observatory, and the Office of the President's Records contain several letters from Leuschner to Benjamin Wheeler requesting additional support for the observatory. It may be that Leuschner's family connections made the president more willing to hear out his demands.

Developing the Botanical garden near the Observatory was probably not one of the best campus planning decisions, and the abundance of trees surrounding the observatory became part of Leuschner's crusade to gain an improved facility. Leuschner complained of tree interference in sitings. Writing in February of 1901, Leuschner complained to Benjamin Wheeler, "A branch of a eucalyptus tree to the south of the botanical garden, in the north and south line of the transit instrument, greatly interferes with the proper adjustment of the transit instrument. Kindly issue instructions to the Superintendent of Grounds and Buildings to cut off the branch in question." (Leuschner 1901a). In April of 1901 he wrote again to Wheeler, this time requesting that tall trees northwest of the observatory be cut down to aid observations of the new star in Perseus (Leuschner 1901b). Again, in March of 1902, the trees to the northwest were found to be problematic. "Kindly instruct Superintendent Kellner to cut three trees and some shrubs, north and northwest of the Observatory. The trees interfere with astronomical observations" (Leuschner 1902a).

Leuschner's strategy became apparent in a July 10, 1902 "Memorandum of the Matters Concerning the Berkeley Astronomical Department 1900-1902". After an impressive review of the department's relationship with the Lick Observatory, and the outstanding success of graduates of Berkeley's program, the inadequacies of the current facilities were detailed.

The present location of the observatory has become entirely inadequate for the needs of the department. To afford the necessary relief many large trees would have to yield to the ax. The problem of securing an unobstructed horizon has become a question of immediate importance through the necessity of finding a suitable location for the Fair telescope and for the photographic lens which is to be mounted during the current year. The observatory has been enlarged three times in recent years by the addition of a computing room, an office for the directory, and a lecture room. The Department is now in need of a computing room for graduate students and of a laboratory for the measurement of photographs and for spectroscopic and photographic work. Under these circumstances the question of raising the observatory buildings or of removing them to another location seems to force itself on the University for early consideration. In this connection the hope may be expressed that the suggestion recently made to the Director of the Observatory by the President that the members of the Department be enabled to reside near the Observatory at the University grounds may soon be realized (Leuschner 1902b).

Apparently, the subtly of this missive had no impact on the president, for in 1903, Leuschner wrote, "I beg to urge upon you and the Honorable Board of Regents, the necessity of erecting an annex to the Students' Observatory. The proposed annex should contain a dome for the Fair telescope, a dome for the photographic telescope, a spectroscopic laboratory, a computing room for graduate students, a photographic laboratory, LIVING APARTMENTS FOR THE DIRECTOR AND FAMILY (nine rooms and basement), and possible also for the instructor (two or three rooms) (emphasis in original, Leuschner 1903a). Since as early as 1900, a series of students, employed as "Student Assistants" had resided at the Observatory, receiving pay and supervising readings (Leuschner 1901c). Such an arrangement assured that the evening skies were constantly monitored. Lick Observatory, in its remote location, had living facilities.

A May 1903 letter from Leuschner to Wheeler acknowledged the kind offer of Mrs. Hearst (Regent Phoebe A. Hearst) to "turn over Henry House to the Berkeley Astronomical Department [to] enable us to set aside proper accommodations for the asteroid work." In the same letter, he acknowledges that Wm. M. Preston of San Francisco had donated an 8-inch reflector telescope (Leuschner 1903b). Leuschner's efforts for further resources paid off, for in January 1904, "the new Observatory buildings of the University of California will be opened on Saturday, January 30th, in connection with a meeting of the Astronomical Society of the Pacific, which is to be held in the large lecture room of the Observatory at 8pm" (Leuschner 1904). The new buildings consisted of one main building with two large rooms, two domes, and dark room, store rooms, and a separate dome in which an 8 inch reflector was situated; the other domes housed a 5 inch reflector lens and a photographic telescope.

Leuschner was not satisfied for long, however. The placement of a new lit path through campus had apparently raised Leuschner's ire. Benjamin Wheeler wrote in an apologetic tone, "I wish the new path crossing the grounds to be regularly lighted at night so that people may be sure of one safe way by which to cross the grounds. I will have the light placed in the position, if possible, most convenient for you, but I feel that it will be

necessary to move the Observatory, rather than the path. We must therefore find a way of getting on for the present. It will not do to provide the Observatory with a switch which could turn off the light at an hour in the evening when people are likely to use the path" (Wheeler 1904).

Leuschner's hopes for a new observatory site did not dim, in September 1909, he wrote to Wheeler, "I hope that in the not too distant future the University will provide for an astronomical and for a geophysical (or geodetic) observatory along side each other on the crown of the hill above the campus" (Leuschner 1909). Leuschner's correspondence to Wheeler alternates between asserting the successes of the astronomy department—its various book acquisitions, its discoveries, its large enrollment—and begging for resources, such as a pathetic letter asking to purchase a Remington typewriter (Leuschner 1901d). It must have been frustrating to him when Wheeler seemed to undermine the seriousness of the observatory's scientific works with requests like one he made of Leuschner in October of 1909. "Unless you have other use for the Observatory on the night of October the nineteenth, Tuesday, Dr. Wolle would like to have the University Chorus meet there. Will you kindly let me know if there is still a piano there?" (Wheeler 1909). As one of the largest lecture halls on campus, the observatory was used by a variety of departments, courses, clubs, and visiting lecturers.

The observatory was not moved. Instead, students increasingly depended upon time at Lick Observatory for the completion of their astronomical research. Russell Crawford's 1939 history of the facility summarizes this arrangement. "Our Students' Observatory here on the Berkeley campus is very appropriately named. It is primarily for the students. We are very well equipped for offering the students instruction in practical astronomy. After they have had sufficient course instruction and practice with our small instruments they then may have the opportunity of going up to Lick Observatory and become aquainted with the larger instruments through serving as assistants to the astronomers." (Crawford 1939:1).

The astronomy program at Berkeley was a great success, producing a number of notable graduates by the 1930s. The program was also notable for its training of women, with the first PhD from Lick being granted in 1913 (Osterbrook et al. 1988:190).

Development of the Astronomy Complex

While Leuschner may not have succeeded in his quest to have the observatory move to a new location, the facility did enjoy remarkable growth. A photograph from circa 1890 (Figure 4) of the observatory illustrates the seemingly isolated nature of the structure, a point reinforced by an 1888 campus map (Figure 5). By 1908, not only has the original observatory been expanded, but the classroom building has been constructed (Figure 6). The original observatory structure had been expanded to the east with an addition that tripled the size of the complex. The 1911 Sanborn map also shows the location of the platform that later became known as the "Golden Bear" to the south of the original building. This platform, designed to look like a ship, was used to teach students the art of nautical survey. By 1933 (Figure 7), the observatory complex includes multiple

classroom, domes, and structures, and remained densely covered with structures until just before its demolition (Figure 8).

Figure 4. Photograph of Students' Observatory ca. 1890, with wisteria (courtesy of Harold Weaver)

Figure 5. Map of 1888 Students' Observatory relative to current landscape

Figure 6. Map of 1908 Students' Observatory relative to current landscape

Figure 7. Map of 1933 Students' Observatory relative to current landscape

Figure 8. Photograph of Observatory Hill ca. 1972, Haviland Hall in background

Archaeological Testing at the Student's Observatory

Excavation units numbering from 21 to 62 were excavated at the observatory complex (Figure 9). Forty of these units were 1 meter squares, one was a 50cm square, and one was a .5 by 1 meter unit. We originally estimated that we would excavate 10-20 square meters in this area, thus we feel that a more than adequate sample of materials has been recovered from this area to determine the deposit's research potential.

The stratigraphic sequence at the locus can be summarized as follows. The uppermost level of soil was dark and rich in organics. We recovered numerous coins in this level, none older than the late 1960s, and the majority corresponding to the period following the demolition of the observatory. This level also contained rubber hair combs, pencil and ruler pieces, gum wrappers, sunglass fragments, and other ephemera one would expect to

Figure 9. Extent of Excavations at the Students' Observatory

be lost and discarded by students sitting and reading, eating, or sunbathing in the open glade created by the removal of the observatory buildings.

After the removal of the upper humus layer, in the units adjacent to the structure, we quickly encountered a reddish sand layer, which overlaid a darker sand layer. Underneath this we encountered a mixed cultural level that included demolition rubble and overlaid sterile clay. The layers of sand were clearly introduced following the destruction of the structure, perhaps in attempts to halt erosion or to protect the remaining structural components.

The 1875 Observatory Building and Yard

Our first focus of testing at Locus B was to define what existed of the original building. The eastern additions built onto the observatory building would have been largely destroyed by the construction of McCone Hall. Since a portion of the original structure's front wall (southern wall) had been spared, and a section of the brick foundation left exposed, we decided to work from the known to the unknown. Using the building dimensions recorded on the 1911 Sanborn map, we laid out units to find the northwestern corner of the structure, and to look for evidence of room partitions within the structure.

We also placed a unit adjacent to the granite pillar. Since this feature was visible in early photographs and provided a potential anchoring point for finding other structures relative to it, we wanted to ascertain whether it was in its original position or not. We also hoped to find some material evidence of yard use in this excavation unit.

We quickly learned that once we were beyond the immediate vicinity of the standing wall, subsurface preservation became very poor. The observatory foundation consisted of 4 courses of brick. Based upon excavations adjacent to the preserved foundation remnant, at least two brick courses of the foundation appear to have been laid below the surface. We were able to identify a portion of the northern exterior wall of the original observatory structure only because these subsurface footings had not been uniformly removed during demolition (Figure 10). We identified surviving brick foundations in 7 excavation units. We identified scant artifactual evidence of the historic occupation, and that recovered was found in the units adjacent to the standing foundation remnants. Several of the artifacts do warrant some mention.

Figure 10. Extent of foundations recovered during excavation of the original Students' Observatory

The vast majority of the ceramics recovered from the original observatory building and yard were structurally related. Utility porcelains representing parts of a toilet, sink, and light fixtures were recovered. A minimum of 5 porcelain electrical insulators was found. Drain pipes, of terra cotta and coarse earthenware, suggesting both sewage and run-off water removal were also represented. We did recover a minimum of 5 ceramic tableware vessels from the area: a plain porcelain plate, an undecorated whiteware teacup with an 8 cm rim diameter, an undecorated whiteware plate, an ironstone brown transfer-printed bowl, and a whiteware turquoise art pottery plate. While the undecorated whitewares and porcelains could have been manufactured anytime during the observatory's occupation, the brown transfer-printed wares were particularly popular from the 1880s-early 1900s. Art pottery was popular through the 1930s and 1940s (Cunningham 1992). These ceramics may be a small glimpse into the lives of the students and others who resided in the observatory.

While seemingly extraordinarily large, the number of glass fragments at Locus B (3975) is artificially inflated by the recovery of 2267 colorless glass fragments from a single fluorescent light tube. The number is further inflated by 659 fragments of "safety glass" of the kind used in institutional windows and glass walls. When these anomalous concentrations are subtracted from the Locus B total, 1049 fragments from varied objects and vessels remain.

In total, the glass remains from Locus B suggest the deposition of a small number of electrical parts (light bulbs and circuits), one medicine bottle, and a modest number of beverage bottles.

A few additional artifacts deserve some mention. Among them is a hand-painted China clay marble. It is white with remnants of red and green paint still intact. The design is badly worn but a bulls-eye pattern can be seen on one side of the marble and bits of green paint still cling around the center. These marbles were glazed and fired, then hand-painted usually with bulls-eye designs, flowers, and concentric rings (Grist 2000: 41-42). China Clay marbles like this were popular from 1884 through the 1920s (Grist 2000: 4). This manufacture date suggests that the marble's deposition occurred during the occupation of the observatory. Was this marble a toy played with by a child of one of the astronomers? Or perhaps, the students themselves, bored with long nights of maintaining the record keeping, amused themselves with marble games. Two coins of note were found. One is a Japanese coin made of cupro-nickel bearing a 1954 date. It is a 100 yen piece which is still in circulation today. The other is a 1887 seated liberty dime. Because it precedes the silver crisis of 1965, it is composed of silver instead of cupro-nickel (United States Mint 2003). Both of these coins were manufactured at times when the observatory was still being used by the university.

The units placed in the yards to the south and north of the original observatory demonstrated that cultural remains associated with the use of the observatory complex had been destroyed by previous demolition activities. The soils have not merely been disturbed, but physically relocated. A likely destination for the matrix is that it was used to fill basement spaces in the original complex. Complete excavation of the basements may reveal the presence of relocated 19th and early 20th century materials, however, such

deposits would have limited scientific value. The greatest insight into the use of the site was recovered from the unit placed adjacent to the granite survey pillar. The pillar was clearly not moved at any time in its history. The pillar base was found at a depth of 80cm. The base was surrounded by discarded redwood lumber. It is our belief that the lumber was from a pallet or similar platform that was used to lower the pillar into its construction trench and then discarded as backfill. The remainder of the backfill was coarse gravel, which presumably, would have allowed for the pillar's position to be adjusted and properly leveled once in the ground. Once leveled and positioned, the pillar was unlikely to be moved by simple human force. We had intended to define the size of the original construction trench, but our excavators found pinhead sized balls of mercury resting on the base of the pillar. We stopped excavation and notified Facilities Services, who in turn notified the campus Environment, Health and Safety Department. The amount of mercury recovered was found to be of little threat to our workers, but to be safe, the illustration of the unit's stratigraphy was completed under the guidance of the hazardous waste unit on campus, and we abandoned further excavations around the pillar. The mercury ended up, however, being the most significant find from the observatory. Pools of mercury were used in siting survey points, as can be seen in the circa 1890s photograph of the class in the yard. The students in the photograph are holding containers with mercury as part of their classwork (Figure 11).

Figure 11. Circa 1890 photograph of University of California students doing coursework in the yard of the Students' Observatory (Bancroft Library)

We were unable to find evidence of the "Golden Bear" survey platform and associated activities. Photographs from the 1970s show that the area south of the original observatory served as a parking lot, as evidenced by the recovery of gravel and decayed asphalt. No portion of the seismology building was preserved. The demolition of the buildings, and probably subsequent use of the space as a staging area for the construction of McCone Hall, has eradicated evidence of these structures.

The Classroom Building

We found that previous demolition activities on site had failed to save remnants of the classroom building as well. We were able to identify part of the concrete footing and entrance way from the classroom building. However, while this area does not seem to have been graded to the same extent as the area surrounding the original observatory building and yard, it has been impacted by erosion and encampments by homeless people. We did recover part of a two-piece molded lipping tooled bottle neck from a unit west of the classroom building. This type of manufacture was typical of bottles dating from circa 1875-1920 (Jones and O'Sullivan 1989). Otherwise, materials from this structure were limited to broken florescent light tubes and other structural materials left in the building at the time of demolition.

Section III: The Conservatory (Locus A)

Conservatories in Victorian Society

The wood-framed Conservatory of Flowers in San Francsico's Golden Gate Park, erected in 1874 after the city acquired the components from the estate of James Lick, is perhaps the best known example of a Victorian glass house in the Bay Area. It was not the first, however, as when constructed it provided unwelcome competition for R.B. Woodward's "Woodward's Gardens" (TME-ARG 1998:42), a private estate turned amusement park with a collection of conservatories camellias in 1976:

Adjoining the Museum is an extended series of Conservatories. In these fairy-like apartments beautiful exotics greet the visitor with sweet perfume, while in one room a wilderness of ferns challenges observation. They are of numerous varieties and from widely separated localities. Connected with the largest Conservatory, through which the visitor enters, is a small but select Art Gallery, reached through a vestibule, which is frescoed in imitation of Pompeian art. (Turrill 1876:n.p.)

In similar pattern to that displayed by Lord & Burnham's client lists, most other Northern California conservatories of the late nineteenth and early twentieth centuries were part of private estates, rather than the property of public institutions. An 1879 article by Charles H. Shinn in *The California Horticulturist* describes a few of these structures. The

Stanford and Hopkins conservatories of San Francisco apparently represent "what the wealthy citizens of California are really doing in the growth and delight of flowers." (Shinn 1879:337). Both located on California Street, the Leland Stanford estate had a palm house with two wings and the Hopkins estate had three wings and an "upper conservatory." The "Residence of A.K.P. Harmon, Oakland" is shown in a photo facing the first page of the magazine, pictured is a large estate with a two-wing glass conservatory with a tall, octagonal dome and gothic-influenced vestibule (Shinn 1879). Harmon apparently welcomed Oakland School Children to his Lake Merritt conservatory, while "Frederick Delger, Oakland's first multi-millionaire, could offer guests at his fabulous Telegraph Avenue estate the visual treat presented by his collection of Camellieas [sic] and azaleas, after which they might divert themselves in his commodious aviary twittering with birds of rare and brilliant plumage" (Richey 1970:20). Slightly farther afield, Darius Ogden Mills purchased a Lord & Burnham conservatory for his Millbrae estate in 1872 (TME-ARG 1998;39), and in 1880 Mrs. E.B. Crocker commissioned the Bell Conservatory in Sacramento, which provided flowers for the nearby City Cemetery (Sacramento Bee, May 6, 1885).

Whether public or private, glass conservatory buildings were constructed as part of a larger garden with both indoor and outdoor components. In the examples discussed above, the gardens were designed for the edification of the owners and their guests, and to display a mastery of natural species drawn from the far reaches of the western Empires. While also designed to protect exotic collections, the University of California's conservatory was built with the specific intent to be part of research collections within the realm of higher education. Even though a ca. 1912 postcard depicts the Conservatory, surrounded to the south by lush outdoor botanical gardens, as a sparkling centerpiece, the building's teaching and research functions always outweighed its public and aesthetic appeal. Indeed, the Berkeley location was just one of a network of Experiment Stations throughout the state described by Charles H. Shinn in an 1894 *Overland Monthly* article. He illustrated the Berkeley gardens, including the planned conservatory, as follows:

The central station grounds occupy about twenty-five acres of hill slopes and small levels along the creek north and northwest of the main University plateau. Here are the nurseries, the orchards, the garden of economic plants, the wild garden, the propagating houses, the collection of olives and other plants, the seed house, the fruit house, the grain plats, grasses, clovers and other experimental plats too numerous to be named. The land for the most part is of inferior quality, and slopes to the west, lying exposed to sea winds. The production of fruits is limited, of course; peaches, nectarines, and similar species, being of poor quality, and such things as figs, lemons, oranges, and guavas, requiring more heat to ripen well. Nevertheless, the mild bay-shore climate, subject to but slight changes of temperature, proves adapted to an immense range of plant life, and the outlying stations are being rapidly supplied with extensive collections propagated in the nurseries here.

The grounds are attractive to every botanist and lover of noble trees. The old oaks that Keith has painted look as if they might last five hundred years longer. Immense eucalypts, acacias, pines, cedars, and a great variety of exotic species, mingle with those native to California. Especially effective are groups of palms and several tall deodar cedars. Of interest to every lover of plants are representative trees from Chile, Japan, Australia, and other countries, that have been collected in the course of years from all parts of the world. When the large propagating houses and conservatory, soon to be built, are in working order, the list of plants will be much extended. Even now there are more species of plants represented in the various experiment gardens and on the University grounds than anywhere else on the Pacific Coast." (Shinn 1894:171-172)

Such extensive plant collections enhanced the State University of California's reputation, and that of soils expert and College of Agriculture booster Professor Eugene W. Hilgard.

North American iron-frame glasshouses share a common ancestry in structural and stylistic influence from Joseph Paxton's 1851 Crystal Palace in London, and such symmetrical designs as Decimus Burton and Richard Turner's 1845 – 1848 Palm House at Kew Gardens. While wood-frame glasshouses had long been popular among wealthy Europeans, Paxton's Crystal Palace demonstrated widely the potential of iron-frame buildings made from pre-fabricated parts (Koppelkamm 1981:25) Cast-iron, as a building material, allowed for parts to be mass-produced with great consistency. It was only in the later nineteenth century, however, that a florescence of private and public conservatories bloomed in North America.

Growth of manufacturing industries with access to distant markets connected by rail allowed for companies specializing in greenhouse production to flourish on the East Coast of the United States. Hitchings & Co., of Jersey City, and Lord & Burnham Co., of Irvington, New York supplied plans and parts for conservatories ranging in size from small additions to upper-middle-class homes to the 376 foot long showpiece commissioned by Jay Gould for his Lyndhurst estate in 1881 (Doell 1986: 76), and the Enid A. Haupt Conservatory in the Bronx, New York designed by William R. Cobb, completed in 1902 (Woods and Warren 1988: 152)

The Lord & Burnham Corporation began in 1856 as Lord's Horticultural Manufacturing Company, which settled in 1870 at Irvington, New York, near the estates of wealthy private clients (Lord & Burnham 1956:n.p.) By 1873, the company offered not only a greenhouse's structural elements, but also the boiler for the heating system integral to maintaining controlled environments for plants. Their catalogue of this year listed institutional clients such as the Alabama Polytechnic Institute, the U.S. Department of Agriculture, the Connecticut Hospital for the Insane, Harvard University, and the U.S. Military Academy at West Point. Lord & Burnham's 1892 catalogue, which would have been available for perusal by the University of California committee debating plans for their own conservatory, boasts among their clients Jay Gould, T.C. Eastman, William Rockefeller of Tarrytown, New York. In 1905, the two horticultural building giants of the United States, Lord & Burnham and Hitchings & Co. merged, while continuing to conduct business under their original, separate names (Lord & Burnham 1956:n.p.)

By 1910, Lord & Burnham boasted in its catalogue that

Our Sectional Iron Frame Greenhouse is the culmination of an experience of this firm and its founders covering half a century and more.

It has been developed and perfected through out constant efforts to secure houses of greater durability and to meet the demands of gardeners for more light. The larger the amount of light admitted the greater the quantity of the blooms obtained, besides securing an unequaled perfection in their shape and coloring. (1910: 91)

It is important to recognize the ambiguous position occupied by the University of California's Conservatory from the beginning. While the Regents of the University of California may have referred to the structure as the "plant houses" in their correspondence (RUCR), the plant houses took a form well-known in the vernacular as "conservatories". The purpose of a household conservatory was an expression of the Victorian obsession with collecting—a material endorsement of colonialism.

The Conservatory at the University of California

The construction of the conservatory, or Plant-houses, as the structure is often referred to in the records of the Regents of the University of California (RUCR) was initiated by E. W. Hilgard, professor of agriculture, who indicated a strong need for a palm house at the University, gaining an original appropriation of \$6000.00 to accomplish the task (RUCR-1). Hilgard, still regarded today by many as the father of soil science, studied and developed agricultural fertilizers. It is likely that the plant-houses were related to this research, although we have not yet found limited documents indicating how the conservatory was used during his tenure.

Need and Plans for the Plant House

In an 1890 or 1891 memorandum, Eugene Hilgard, of the College of Agriculture, articulated the need for a facility to house botanical and agricultural research collections:

What is most needed at this time is the central portion, the "Palm House", the height of which to the ridge of the roof is planned at 30 feet. It is for this part that the appropriation of \$6000 was intended. With benches all around and a space in the middle for the palms and other trees, which now cannot be retained in our low-roofed sheds after they attain a respectable development, we will be able to get along so long as the present buildings can be kept up. After their collapse, which cannot be deferred for more than a few years, instead of rebuilding at the present site, which is undesirable, the additions (marked in the plan for "Ferns" and "Orchids") should be built.

The general objects of the whole building would remain the same as at present: The representation of important tropical and other plants not hardy at Berkeley, to serve in the study of Botany, both General and Economic, and to illustrate the practice of Horticulture and Floriculture for the corresponding courses of instruction. (RUCR 1)

The building requested by Hilgard would not be the first, nor only glasshouse on campus, rather it was a replacement for aging College of Agriculture structures housing sensitive collections. An undated photograph likely taken before 1889, titled "Conservatory – University of California, Berkeley Cal." (BancPic 1979.034 – ALB (NRLF W 70 514) "Scenes from various San Francisco Bay Area Locations," p. 31) shows two sloped-roof greenhouses set at right-angles to each other, with North Hall visible in the background above the roofline of the "south" building. No other documentation of this earlier "Conservatory" can be found, though they may be the "low-roofed sheds" Hilgard refers to above. In response to Hilgard's requests, a Regents Special Committee on the Plant House formed and began receiving proposals for the desired structure.

The first plan was submitted by Hitchings and Co. in 1891, before the correspondence with eventual contractors Lord and Burnham Co. started in 1892. It consisted of houses for begonias, ferns, orchids, and camellias, as well as a palm house, in a building with a 180' total span. (RUCR 2) The central range and wings would be furnished (without heating apparatus) at a cost of \$19110.00 (\$22000 with the heating apparatus), with the option of the palm house, passage, and office (without heating apparatus) offered for a cost of \$7800.00. (RUCR 3). In a Jan 29, 1892 memorandum to the College of Agriculture, E.W. Hilgard estimates the full cost of the entire Hitchings and Co. plan, with foundations and transport costs, as \$26,120 (RUCR 4). This could be reduced to \$15180 by omitting the two outer wings. A similar structure, constructed in wood by George C. Pape of Berkeley, could be constructed for \$16,300 and \$11,000 respectively (RUCR 4). These estimates fail to include the palm house, of which Hilgard writes:

The latter portion – the palm house – is what is most urgently needed; it was for this that my estimate of \$6000 was made; Pape offer exceeds this estimate by \$900. Hitchings estimate would probably be in the proportion of the others, say from 10,000 to 11,000 dollars.

Securing funding for the conservatory was clearly a difficult process, as expressed in Hilgard's suggested compromises:

It is for the Committee to determine whether or not iron or wood shall be used. If wood, the work can be proceeded with, the excess being appropriated out of next years allowance. If of iron, it may be necessary to defer the work so as to allow time for the accumulation of funds available for the purpose. I think the latter plan would be preferable to a reduction in the size of the building, which ultimately will require all the space estimated for. (RUCR 4)

Wm. T. Davis and F. Stolk also submitted ink and pencil plans on vellum, displaying an alternate plan for a plant house with a large palm house and short wings. No estimate accompanies this drawing in the University Archives (RUCR 5).

On March 23, 1892, an answer to the need was predicted in a letter from W.A. Burnham, President of Lord and Burnham, Co. of Irvington, New York, who submitted a proposal

to build the greenhouse with two wings for \$20,000, or without wings for \$12,800 (RUCR 6). Burnham estimated that, following six weeks of preparation by the company and rail transport of materials, the conservatory could be built (minus the brick foundation) in approximately 60 days. He writes also of his intent to grant superintendency of the project to Mr. Pape, who had earlier submitted his own bid for the project! By April 30th, 1892, the University of California had drawn up a contract with Lord & Burnham for the construction of the plant houses for a sum of \$20,000 (RUCR 7). Through the spring of that year, letters exchanged between W.A. Burnham, George Pape, and the University of California discussed and revised plans for the size of the Palm House and locations of the potting room and boiler. Some delays, although of unknown origin, were experienced while Lord & Burnham waited to secure the signed contract, as on May 25, 1892 W. A. Burnham wrote to offer the University a deferral of the final \$10,000 payment. The same day he wrote to George Pape that "We are anxious to put up one of our Iron Houses on the Pacific Coast, and we know of no better place to put it than at the University of California. It certainly will be of great advantage to us." (RUCR 8)

Process of Building the Plant House

Bids for masonry work on the conservatory foundation, which was to be in place before Lord & Burnham's pre-fabricated structure could be erected, were taken in 1893. Bids were also submitted for excavation of soil and removal of trees from the proposed conservatory location (RUCR 9).

As of July, 1893 the University's allotment for Lord & Burnham's building had been reduced to \$17,500, as it was understood that the masonry foundation, cartage costs from the railway station, and potting shed would need to be paid for with \$2500 of a \$20,000 allottment. According to Lord & Burnham's policy,

The following items are excepted from our specification and estimate unless there is a special understanding in writing, to the contrary:

Masonry work, which includes foundations, cellar and trench walls, chimney, cement walks, drains, as well as piers for support of the pipe columns benches and heating coils; filling and excavating; bringing water supply main to site; cartage of material to and from nearest railroad station and site; flashing where greenhouse is built against another building. (Lord & Burnham 1910: 94)

W.A. Burnham revised the plans accordingly to fit the University's lowered budget. (RUCR 10). Shortly thereafter, Eugene Hilgard wrote anxiously to Regent John West Martin of the Special Committee on the Plant House that "As it is now certain that the building can be gone ahead with within that appropriation, and as our wooden houses are fast getting useless, I hope you will see your way to forward the job so as to give us the use of the new building for the coming winter." (RUCR 11). While Hilgard was anxious about delays, at least one document suggests that he contributed to the delay. According to an August 22, 1893 Report of the Special Committee on the Plant House by Regents Martin, Marye and Hallidie, was due to Hilgard's absence from campus for a year.

Hilgard apparently spent part of his time inspecting "the most prominent conservatories on the continent of Europe" (RUCR 12). This tour in part inspired his desire to redesign the palm house. Under the revised plan, the palm house was reduced in size to 45' square.

Final specifications were approved by the Committee on August 22, 1893, according to which "The Compartments will consist of Palm House about 45' x 45', and about 42' high at the ridge on top of large dome; Orchid House 20' wide x 37 ½' long x 14' high; Fern House the same dimensions as Orchid House; Carnation House 25' x 60' x 16' at ridge, and a house of same dimensions for Begonias. Also include one Vestibule on the front about 10' x 12'." (Lord & Burnham 1893). The final appearance of the conservatory can be seen in Figure 12, and the method for its architecture in Figure 13.

Figure 12. Photograph of the Conservatory circa 1900 (Bancroft Library)

As contracts were tendered for stages of construction, San Francisco based architect Clinton Day became responsible for overseeing the progress of construction work, acting as an intermediary between soil scientist Eugene Hilgard and the skilled tradesmen who would assemble the building. Robert Smilie and Co. of Berkeley was contracted to complete not only the excavation and masonry work, but also the assembly of parts

delivered by Lord & Burnham, and for the outside finish, iron and other construction, hardware, ventilation, and plant tables. F.N. Woods & Co. was hired to provide glass and complete the glazing work (RUCR 13). Interestingly, an October, 1894 labor contract made between the Regents and Lord & Burnham stipulated that "...no Chinese labor or articles manufactured by Chinese labor shall be used on or in said work." (RUCR 14).

Figure 13. Example of curvilinear green house unit from Lord and Burnham catalog

Excavation and tree removal continued through the summer of 1894, as is evidenced by a letter from Regent J.H.C. Bonte to Robert Smilie and Co. complaining that "... upon Saturday last at 2 P.M., a rock was hurled from the place where you were blasting, at Plant-House, into the Student's Observatory, breaking and otherwise injuring property of the University." (RUCR 15) Later correspondence in the Regents of the University of California Records –Buildings and Grounds – Conservatory file relates to problems encountered during construction – for example, a number of glass lights (small panes)

were originally cut too large and projected beyond the ribs intended to contain them (RUCR 16,

A Daily Californian article from September 6, 1895 describes continuing work on the conservatory

There is not a better constructed conservatory in the state, and California may feel proud of the acquisition.

The work of filling the interior with rare and beautiful plants is being pushed on as rapidly as possible. The center of the main rotunda is being fitted for the reception of the large tropical palms. The left wing is devoted to many varieties of begonias, that are now displaying most exquisite foliage and bloom. The section between the left wing and rotunda is devoted to ferns and small palms.

At present, in the section to the right of the rotunda, a temporary rack has been erected for experiments in the drying of the tobacco experiment ally raised by the University.

In the rear, extensive alterations have been made necessary due to the inadequacy of the former structure for the purposes intended. As a larger boiler was secured than at first expected, it is necessary to enlarge the boiler room and add a coal room, and besides these alterations, plans are being carried out for the erection of a potting room and office.

When completed and fully equipped, the conservatory will be one of the main attractions of the University, both to students and visitors (Daily Californian, September 6, 1895).

Use of the Plant House

Photographs in the collection of the Bancroft Library illustrate small changes made to the Conservatory's structure and surroundings in the years following construction. In an 1897 photograph, for example, the glass surfaces have been whitewashed to filter sunlight for the plants within (Bancroft 10C:6). In a Roland Letts Oliver photo dated ca. 1900, the whitewash is patchy and faded over most of the building (Bancroft 10c:20(ab)). Out-buildings associated with the Conservatory are also visible in a small number of photographs. In a photograph of unknown date (Bancroft 10c:17), a small greenhouse is located at the base of the steps south of the main building. In a rare aerial view showing the rear of the building ("University of California From 1500 Foot Elevation", Pillsbury's Pictures No. 8165, 1913), a small structure is located behind the east wing, a larger one (presumably the potting shed) behind the Palm House, and a lath house behind the west wing. These buildings are also present on the 1911 Sanborn Map Company fire insurance map, but were not part of the plans tendered by Lord & Burnham. Landscaping changes around the conservatory are illustrated by sequential photos – between 1897 and 1920 the ivy covering the slope south of the Conservatory fills in from its planting shortly after construction, and two palms (one in front of each wing) grow to the large size seen in ca. 1910 pictures, but are gone by 1917 (10c:4).

Figure 14. Interior of palm house, circa 1900 (Bancroft Library)

Corresponding information about what was going on inside the Conservatory is comparatively sparse. Only two photographs (Figures 14 and 15) illustrate the interior of the Palm House and the Carnation House in use. Aside from this, our best insights are drawn from a review of the Daily Californian student newspaper.

An 1896 article in the Daily Californian heralded the success of one of the "rare plants". "The three carica pepaiae, or so called melon trees, in the west wing of the conservatory, are now laden with fruit. There appears to be two varieties, but in reality there is but one. The male and female trees bearing entirely different fruit. [These melons are highly esteemed by natives of the Islands, yet they are not very tempting to the European and American palate, so there is little danger of a moonlight raid]"(Daily Californian, Thursday September 10, 1896). Later that same year, the Daily Californian reported, "Notwithstanding the stringency of funds, work in and about the conservatory has progressed very noticeably. Many new and interesting plants have been received. The cotton plant with its round bulb of cotton, attracts much attention. It was grown from the seed here in Berkeley. The peculiar bird-head vine, a rapid growing plant some fifty feet high, is one of the features of the central dome." (Daily Californian Monday November 2,

Figure 15. Interior of carnation house, circa 1900 (Bancroft Library)

1896). The mention of the cotton plant provides some proof that some research was being conducted within the green house. Hilgard had been part of a mid-19th century soils survey in the American south, and a review of his publications indicates an interest in developing cotton agriculture in California—now one of the state's thriving agricultural industries.

A 1901 Daily Californian announces that the University had been awarded a gold medal for an exhibit in Paris that had been submitted by Professor Hilgard. The article cites that the exhibit highlights the research conducted by the University of California at its agricultural laboratories at Berkeley and its experimental stations in various parts of California (Daily Californian Tuesday, January 22, 1901). The article does not mention the conservatory as a part of these research facilities, suggesting that the structure was not, even at this early time, a site of significant research. This is somewhat of a departure from Shinn's hopeful 1894 Overland Monthly article, cited above.

It would appear that the conservatory became a repository of strange and unusual life forms. In 1904, a new resident of the Conservatory was announced.

In the conservatory, where, as a rule, only plants and visitors are allowed, there now resides an alligator basking in the California sunshine. He lives, so it seems. in perfect happiness, taking the artificial surroundings as the best possible substitutes for Florida, and occasionally biting off an extra fern. He spends the balance of his spare time in deciphering the meaning of the queer signs and emblems he sees on the tags and labels of the botanical curiosities which surround him. This monster arrived at the University by express about a week ago. He came in a huge package wrapped in cotton, and labeled "Hands Off". The first California owner of the aquatic brute lived in North Berkeley, and finding he was totally unable to manage such a pet, he kindly gave the thing to J. Joachim, the gardener at the conservatory. This new master now finds that he has a white elephant on his hands. At first he thought the observatory would be just the place to keep his new friend from being killed by frost. Now he says, "The whale swallowed Jonah, may the alligator spare me". In short, an alligator was captured off Florida and has finally come into possession of the University. The animal is a tender youth, about eight inches long, and is at present living comfortably in the Conservatory (Daily Californian, January 28, 1904).

Unfortunately, no further exploits of the alligator are reported. Alligators grow at an average rate of one foot a year, so before long, he would have been harder to manage.

As early as 1911, plans were drafted for a new Botanical Institute in Strawberry Canyon, far from the central campus gardens (Proposed Plans for Botanical Institute. May 20, 1911. UARC G4363.B5.2U5 1911; .P7; case XB) The new UC Botanical Gardens were built during the 1920s, and there was little reason to expect that the conservatory could meet the growing demands of the program (Constance 1989; Goodspeed 1964). In 1912, the Daily Californian ran an article describing renovations of the Conservatory taking place after a long period of decay.

After lying in a condition of neglect and decay for over twenty years and lying entirely forgotten as a part of the University equipment, the Conservatory, one of the largest buildings and landmarks on the campus is now undergoing a process of rapid rejuvenation. This relic of the earlier days of the University has for a long time been closed to visitors because it was considered unsafe.

However, due to increased demands for equipment in greenhouses for the agriculture Department, the conservatory, which is situated opposite Doe library, is being repaired and cleaned out so that it may be used as classrooms and for a public show place for horticultural specimens.

Professor E. B. Babcock of the Agricultural Department has charge of the reconstruction of the Conservatory into a modern greenhouse and classrooms. The white paint has been mostly removed from the glass roof of the dome and the walls in order to improve the appearance of the building. At the same time all the iron framework and the bolts in the dome have been tested and the whole building has been found safe. Old and broken lights are being replaced by new ones so

that the Conservatory will again be a showplace on the campus instead of an eyesore.

The two wings of the structure are already being used as classrooms—that on the west is used by a class of one hundred students in "Plant Propagation". The East Wing is allocated to the soils and entomology classes.

The main dome and the connecting wings are to be converted into an horticultural exhibit of rare plants. This will be open to visitors.

The Conservatory has until this month been a repository for all the tropical and peculiar plants accumulated by the University from al parts of the world. A great many rare orchids, ferns, palms and water lilies have been located thee. Due to inattention however these plants have become scaly and unfit for laboratory investigations.

While the Conservatory is being rejuvenated as far as possible it is certain that it will not suffice for the Agricultural Department for any length of time. A committee composed of Professors Wickson and Setchell and Mr. Lipman, was appointed last November to investigate ways and means for new greenhouses and agricultural laboratories. It is expected that an appropriation for this purpose will be made by the Regents.

The Conservatory also has no place in the plans for the greater university so new structures must be made in time (Daily Californian, February 8, 1912).

A 1913 aerial view of the conservatory shows the boiler room behind the rotunda, as well as what may be another green house and potting shed adjacent to the west wing. The front facade of the structure had been maintained, but clearly, a dense series of buildings and activities areas occupied the rear of the complex.

We have not yet located specific information on the demolition of the Conservatory, though based on campus maps, the most likely date is 1926. A 1924 photograph from the Blue and Gold is captioned, "From the lofty dome of the botanical conservatory or the campanile, one has a striking panoramic view of the beauty of the campus (Blue and Gold 1924:27). A 1928 aerial photograph shows the area inhabited by the Conservatory vacant.

Archaeological Testing at the Conservatory

Our search for architectural remains of the UC Conservatory began with 50cm x 50cm units plotted at five meter intervals along two East-West lines. One unit produced window glass and ceramic plant-pot fragments, and tableware ceramics, bottle and window glass fragments were recovered from another unit. At 18-20cm below surface, part of an intact brick structure was uncovered in a silty clay layer below the decomposing mulch. The following day, this unit was expanded into a 2m x 2m unit that would become part of the East Wing block excavation. We quickly found that despite

electrical line, water line, and sprinkler system intrusions, that while the topmost courses of brick had been removed, the foundation was consistently and remarkably intact, measuring three courses wide at its uppermost extent. As it was determined that the intact brick structure uncovered in the initial shovel test extended east and west, a second was placed west of the first unit. Single 1mx1m units were also placed near shovel test units in order to test areas deemed to be outside of the conservatory building. Further excavations focused on defining the wall present in Unit 1 in spatial extent and depth, with the last excavated units exposing the interior portions of the southern extent of the Conservatory's East Wing (Figure 16).

Figure 16. Extent of excavations at the conservatory

All soil excavated from Locus A, with the exception of the mulch layer that was shoveled away before excavation, was screened through 1/4" wire mesh. Soil below the mulch layer and above the top of the extant wall was excavated as a single Level 1, which extended 10-25cm in depth and was an olive brown fill which contained a range of late 19th and early 20th century materials as well as broken glass and slate. We have interpreted this layer as a mixed deposit resulting from the removal of the building. There are high concentrations of broken plate glass throughout this level. Underlying this layer was a dark yellowish brown soil. This stratum begins at roughly the same depth as

the foundation walls begin and represents an in situ archaeo-soil. The uppermost portion of this soil contains 19th and early 20th century artifacts which, in most instances, disappear at around 35 to 40cm depth. This layer was divided into portions inside and outside of the building.

Unmarked brick and mortar fragments were sorted by color and size category, recorded, and discarded into backdirt. Water pipes (both current and historic) and electrical lines were carefully uncovered and mapped, as their intrusions through the foundation wall provide useful chronological and preservation indicators.

While we were able to uncover a large horizontal block of the East Wing foundation within the time allotted, we were unable to excavate the foundation to its full depth. In Unit I, we excavated a test pit to a depth of one meter, stopping at that depth out of OSHA concerns. At that point, we had just encountered the base of the foundation, which at that point was 14 courses of brick deep and approximately four courses wide. Given our limited time, Stacy Kozakavich, the conservatory field director, in conjunction with Wilkie, decided that it was necessary to recover as much spatial information as possible from the site, to see if preservation were uniformly good across the site and to understand as much as possible the internal and external uses of the structure. Therefore, we did not commit further resources to determining the depth of the foundation.

We excavated units to depths of 40 to 50 cm before stopping to ensure that we recovered the bulk of artifactual evidence from any given unit. Level II extended as deep as our excavations and is likely to represent the base soil the conservatory was built into. We did encounter some deposits of artifacts at deeper depths, and have interpreted these as being associated with the activities of the work crew that built the structure. Materials from earlier levels, like the abundance of terra cotta flower pots and pieces of slate from the potting tables, were clearly linked to the activities of the agricultural department.

Through the areal excavations we learned that, with the exception of the south wall of the palm house, which may or may not have been accessible under the current asphalt pathway, any foundations that were located within our testing area were well preserved. We also recovered a series of brick and cement piers on the interior of the structure that appear to be associated with the heating system used in the green houses. The contract provided by Lord and Burnham in 1893 described their obligations to constructing the heating as such, "to provide 4" cast iron pipes in nine foot lengths weighing about 11 or 12 lbs per lineal foot, to be arranged under the side tables in the various houses, consisting of about 3,000 feet, also fittings, valves, expansion tanks and other necessary appliances to complete the apparatus and control the temperature in each compartment." Further, the interior photo of the Palm and Carnation houses (Figure 14 and 15) show heating pipes resting on support surfaces resembling these piers slightly above the buildings' dirt floor.

Sixty-two square meters of site area were excavated at the conservatory (Figure 16). Of these, 28 square meters were excavated in a block, exposing a 3 meter by 9 meter section of the eastern wing (Figure 17). This excavation block was vital in our understanding of the internal layout of the wings and shaped our testing of the west wing. We found

Figure 17. Detail of excavation block in eastern wing of the conservatory

similar construction techniques in the western wing, but not identical. It may be that differences were related to internal function of the particular green houses.

Architectural remains: Building materials

Building materials recovered from the conservatory were limited to slate, glass, and iron nails.

Slate

Slate was recovered throughout the excavations at the conservatory. The slate found was very fragmented. Several pieces have rust stains, indicating the contact with the cast iron frames described in documentation of the site. Slate was used in the construction of plant tables that were meant to hold potted plants, as described in an 1893 letter from Lord and Burnham to the Regents.

PLANT TABLES. To provide plant tables around the outside of all the compartments about three feet wide, to have wrought iron frames with gas pipe post supports, securely and neatly fastened with brackets and bolts. The bottom of tables to consist of slate about 1/2" thickness with sawed edges, in width not greater than 20" supported by light tee irons. When finished the slate and tee irons will be covered by sand or other material to retain moisture around the base of pots (RUCR 16).

The slate recovered from the excavations was mainly thinner than that documented for use in the plant tables, however, slate is very prone to lamination, and what we see archaeologically is the decayed rock.

Flat Glass

The specifications of the Conservatory according to the Lord & Burnham Company letter to the UC Berkeley Regent's state that "The houses will be glased with double thick 26 oz. C.S. glass. The sizes of the glass will be in widths of 14" and varying from 14" to 30" in length according to the curves of the houses and sizes of sash etc. The glass will be bedded in improved greenhouse putty, and securely fastened by wedged shaped zinc shoe nails."(RUCR 16) Further letters describe the curbed gables, "In the gables of the house the glass is laid with lapped joints, each lap being about ¼ inch thick. In curvilinear houses the glass is bent to fit the sharp curve of the roof. In curved eave houses it is bent to fit the curve of the eave." (Lord and Burnham 1910: 94). There is no clear indication that the glass was intended to be painted, but the company catalog notes, that "Unless otherwise specified, all glass is clear"(1910:94). Pictures indicate that some time between construction and 1886 that the glass was painted white.

Given that the structure was composed mainly of glass, surprisingly little flat glass was found during the excavation. The majority was aqua in color. Other flat glass found included green tinted; green, pink, frost, olive, blue, an additional sherds of undetermined color.

Curved glass was used in the construction of the gables, as described in the specification letter from Lord & Burnham Co.

Metal/Nails

One hundred and thirty-one nails were recovered from the West Wing of the Conservatory. All nail types found were either machine cut, wire cut or unidentifiable. Sixty-six nails were recovered from the East Wing of the Conservatory.

Industrial Materials

Burned materials, representing the by-products of industrial activities at the site, and consists of charcoal, coal and slag found on both the East and West sides of the site.

Terra Cotta Flower pots

The flowerpot sherd assemblage from Locus A, Conservatory, consisted of 1,871 items initially identified as terracotta flowerpots. Included in this assemblage were also pieces of ceramic sewer pipe and rectangular planter vessels. Most predominantly represented in the assemblage were sherds from round flowerpots.

The flowerpots represented in the Conservatory assemblage are similar to flowerpots commercially available today. These flowerpots were mass produced utilitarian vessels with a sturdy rim and a hole in the bottom of the pot for drainage. Although flowerpots represent a seemingly mundane and uniform vessel type, the assemblage of flowerpot sherds from the conservatory displays a great deal of variation. These sherds vary in type of clay and non-plastic in the paste. There is variation in style and form. Also these sherds are representative of different means of manufacture.

Further excavation would allow for the exploration of spatial differences in pot type and size in different portions of the plant houses.

Flowerpots are first and foremost evidence of gardening practices. In a Californian context they represent an attempt to appropriate British practices of formal gardening. Though seemingly straightforward, flowerpots also bear evidence of the evolution of industrial pottery, changing concepts of aesthetics and, to some extent, the Victorian concept of the biological specimen as a discrete and controllable sampling of the natural world.

Ceramics

In addition to the terra cotta flower pots discussed above, a small but significant number of additional ceramics were recovered, including teawares, plates, bowls, pitchers, bottles, jugs, and utility items. Ceramics included white earthenwares, semi-vitrified earthenware, porcelains and stonewares. A total of 80 ceramic sherds were found in around the conservatory structure. In looking at the distribution of sherds across excavation units, certain patterns became apparent, most notably, that the decorated sherds were almost exclusively recovered from contexts that were clearly outside of the structure.

Building Interior

A minimum of 11 vessels was recovered from the interior of the conservatory. These vessels were comprised of 5 teacups, three plates, one bowl, one large flatware, and one electrical insulator. With the exception of one hand-painted porcelain teacup, all of the vessels were plain or undecorated. Most of the sherds recovered from the interior of the building were thick ironstone and the sherds exhibited heavy ware and abrasion on their exteriors and interiors. This could suggest that the ceramics were used in the conservatory in ways other than their intended manufacture. The abrasion could be the result of hollowwares like the bowl or teacups being used to scoop soil or to mix fertilizers. The plates could have also been used in similar ways, or used under larger pots for drainage. It also possible that broken ceramics were used to prevent water from draining through the bottoms of flowerpots, similar to the way that small stones are used. However, if this were the case, I would expect to see evidence of water-wear on the ceramic glaze. The grayed ironstones found in the building interiors were most popular nearly 25 years prior to the construction of the conservatory (Majewski and O'Brien 1987), a circumstance that would also suggest that these materials may have been

enjoying a different use-life in the conservatory setting. Ceramic sherds recovered from the interior of the building were not concentrated in any particular area, but found throughout each of the three building components tested—the east and west wings, and the western green house connecting the west wing to the palm house.

Two ceramic sherds bearing manufacturer's marks were recovered from the building interior. The first was a "John Maddock and Son" mark that was used from 1891-1914; the second was a "R. Cochran and Co." mark used from 1846 to 1918 (Godden 1964).

Building Exterior

Ceramics recovered from the building exterior comprised a wider range of vessel forms and decorative types. A minimum of four saucers, four bowls of varying sizes, one bottle, five crocks, one pitcher, one plate, three teacups and one platter were found, representing a minimum of 20 vessels. The large stoneware crocks showed no evidence of burning, and may have been used as planters or for storage on the building exterior. Compost, fertilizers, bulbs, or any other number of things related to the plant houses could have been stored in these vessels. Likewise, it would not be difficult to imagine the pitcher being used for watering exterior potted plants. While ceramics were recovered throughout the exterior area of the structure, there is a clear association of ceramics with the immediate exterior of the structure, particularly along the west edge of the east wing and the eastern edge of the west wing. Tablewares and teawares were among the vessels found in these areas. It may be that these ceramics were used by those persons who worked in the plant houses. Interior photographs available from the plant houses suggest that there would have been limited space to eat in the structure. Perhaps benches were once located in these areas, or perhaps the exposed strip of brick foundation served as a seat for diners. Four of the 12 tablewares most likely to have been used for food consumption were of Japanese or Chinese manufacture. These mass-produced porcelains were the least expensive ceramics available (Schroeder 1971), and as a result, the most likely to be used within the workplace or when picnicking, since if they broke, they could be easily and cheaply replaced. None of the patterns on the ceramics matched any other example. Again, if these were vessels brought to work to consume from, a diversity in decorative styles would facilitate keeping one person's ceramics separate from another's.

One sherd was recovered from the exterior that bore a manufacturer's mark. The distinctive crossed arrows of the German porcelain-maker, Meissen, was found on one particularly fine porcelain sherd. This mark has been used for so long that it has no usefulness for dating.

Indeterminate

A minimum of an additional four vessels: one bowl, two saucers and one Albany slip jug were recovered from the Conservatory, but because the sherds representing these vessels were recovered from the upper level of units that spanned the interior and exterior, we cannot be sure if their initial context were within or outside of the structure.

Summary

The non-flowerpot ceramics recovered from the conservatory were not abundant, but even with a small sample size, there is some indication that ceramics were used differently in the interior and exterior spaces of the conservatory. It is also likely, based on the composition of the assemblage, that ceramic vessels were employed in the different work-tasks of running the conservatory. A small number of the vessels seem to have been deposited as a result of food consumption activities by employees or other visitors to the conservatory. The mismatched and generally inexpensive nature of the assemblage, however, suggests that there were no large-scale organized food consumption events taking place at the conservatory.

Glassware

Container and other curved glass was recovered in significant amounts from units excavated around the Conservatory foundation at Locus A. Outside of the building foundation, excavators recovered an embossed jar base made by Ben Schloss of San Francisco, which will be discussed below. A small concentration outside of the building in the West Wing, includes four base fragments from one machine-made amber bottle (probably a beer bottle) with amber body sherds. Colorless glass dominated the glass collection in Level 1 of Locus A. Aqua followed in frequency, with amber comprising 8% of the collection, and blue, olive green, dark green, and manganese-tint fragments each make approximately 3%, while less than 2% of the collection consists of each green, opaque white, and multi-colored glass fragments. Fewer glass fragments were located in Level 2 of Locus A, with a total of 134 fragments dominated by colorless, aqua, and amber.

Two identifiable containers were recovered from Locus A. The nearly complete base and of a colorless jar recovered outside of the building foundation, bear the embossed marking "BEN SCHLOSS... MA...T...R...PATENTED FOR.... S.F. CAL..." This base belonged to a "Golden State" Mason Jar manufactured ca. 1910 by the Illinois Pacific Glass Co., of San Francisco (Toulouse 1969: 135-6). Review of the Crocker-Langley San Francisco City Directory issues between 1899 and 1930 indicated that the Schloss Crockery Co., whose president Benjamin Schloss held the patent for this style of jar, operated as container manufacturers between 1899 and 1925. "Golden State Mason" jars are specifically mentioned in issues from 1915 (1695), 1920 (1400), 1921 (1332), and 1925 (1647). By 1930, the company exclusively distributed Western Clock Co. products, including the popular "Big Ben" line of clocks.

Three fragments outside of the building foundation, are parts of a colorless, embossed 6.5oz Dr. Pepper bottle. Based on the "clock" motif with hands pointing at 10, 2, and 4 we identified the bottle as belonging to promotional campaigns used by Dr. Pepper's manufacturer between the late 1920s and 1950s. Consumers were encouraged to have a Dr. Pepper, or "Drink a Bite to Eat" at 10:00am, 2:00pm, and 4:00pm to help revive their lowered blood sugar (Dr Pepper/Seven Up, Inc. 2003). Based on this late date relative to the 1924 demolition of the Conservatory, and the fragments' proximity to copper water

pipes which cut through the brick foundation, it is most likely that the bottle was deposited in a pipe installation trench at some point after the conservatory had been demolished.

Density of glass sherds on the inside of the structure in the East Wing is approximately 6 pieces/m². Outside, adjacent to the structure there is a density of approximately 21 pieces /m², including two identifiable marked containers: a Dr. Pepper Bottle and a Mason Jar base. Corresponding densities were not calculated for the West Wing, as a much smaller number of units were excavated both inside and outside of the building. Further, a meaningful Minimum Number of Vessels was could not be calculated for either the East or West wings, due to the high level of fragmentation of the collection.

A small number of artifacts may represent work-related activities at the Conservatory. Glass tube fragments may have been related to drip irrigation systems utilized in plant care. Similarly, a thermometer fragment may have been part of the Conservatory staff's climate-control measurement activity inside the building. Manganese-tinted fragments from a heavy pressed-glass lamp base and a beaded lamp-globe rim fragment represent indoor lighting prior to, or in addition to, installation of electric lights.

Taken as a whole, the container/curved glass assemblage from Locus A presents no overwhelming evidence that commercial products sold in glass containers had an important social role in use of the Conservatory. The single vessel which conclusively dates to the building's use-life, the Ben Schloss jar base, could represent a variety of activities, from food transportation and storage to rooting of plant cuttings. The predominance of amber and aqua colored glass over other colors (excepting colorless), and the low number of represented vessels, suggests that beverage containers from beer or soda were incidentally deposited by individuals working on or passing over the site. There is no evidence for organized social activities with large amounts of beer or wine, nor are there identifiable sauce or condiment bottles that might suggest picnicking or regular eating in the areas excavated. These results are not surprising, considering that the excavated portions of the building foundation represent only the front area of two of the terminal plant-houses. We expect that, given the opportunity to investigate work areas in the rear of the conservatory, adjacent to the potting shed and lath house, we would observe the remains of more regular individual, incidental product use and refuse deposition.

Small Finds

Several clothing-related items were recovered from the Conservatory. Among them was an unusually large gold jewelry clasp. It has an intact loop that would attach to a chain. Based on its size and shape of the clasp, it is likely that this clasp connected to a watch chain (Amory 1970).

Two glass beads were recovered from the Conservatory. The first is a turquoise colored bead, shaped as a tetrahedron. This bead is similar to beads produced out of Germany and Bohemia during the first part of the 20th century. The second bead is a spherical red glass

bead. Both of these beads are typical of those used in necklaces during the late 19th and early 20th centuries (Romero 1998).

A brass button emblazoned with the California state seal was found. The Waterbury Button Company of Connecticut manufactured these buttons for the California National Guard (Albert 1949: 352; Albert 1969: 120). The front of the button depicts Minerva seated and holding a staff with the motto "Eureka" above her head. "Waterbury Button Co / Extra is inscribed on the back around the edge. Unfortunately, these buttons have been in production from as early as the 1860s until the 1960s.

A possible pendant was found although there is no evidence of how it would be suspended in order to be worn. The carved design is worn making it difficult to distinguish anything but a vague human form, possibly a saint figure. The material has not been positively identified, but it appears to be either an early plastic or rubber.

Unit 18 Level one yielded a brass shell casing. It is a Winchester 32 Special made by the Union Metallic Cartridge Company of Bridgeport Connecticut. The 32 Special was introduced in 1902 and by 1965 ranked number four in popularity, making it a very common cartridge for deer hunting (Hawks 2003).

Four glass marbles were recovered from the conservatory. All were recovered from the first level of excavation, corresponding to the demolition and post-demolition use of the site. Two of the marbles bear single pontil marks typical of early machine manufactured marbles. One of the marbles exhibits the "diaper fold" pattern in its swirl, another indicator of early machine manufacture (Grist 2000). These marbles are the earliest examples recovered from the site and would not have been produced until the early 1920s, and were probably lost after the demolition of the conservatory. Unit 94 level one contained a later machine-manufactured glass marble with an opaque white base with yellow and green swirls. This particular design is common and was made by several companies and is still made today (Grist 2000: 84). A cat's eye marble was recovered. This ubiquitous marble type was not introduced until the 1950s (Grist 2000). The marbles recovered from the conservatory, therefore, are all likely to be the result of postoccupation reuse of the site by children. Among the anthropology graduate students is a life-long Berkeley resident who remembers going to the area around "the old houses on observatory hill" to ride bikes and play with friends in the 1970s and 1980s. Based on archaeological evidence, the former location of the conservatory has drawn children to it as a play area from a much earlier time.

Perhaps one of the more amusing post-occupation discoveries was a plastic contact lens case with the lenses still inside found in level one of Unit 1. The doctors at the Optometry center on the University of California campus have kindly looked at the lenses for us. They believe that the lenses date from the late 1950's to the early 60's. The case is cylindrical in shape with screw lids on either side in blue and white. Each lid has "Hydra-Kit" and an L or R inscribed on it. The lenses are not gas permeable but probably sorely missed by their owner after being lost.

Zooarchaeological remains

Identification of faunal remains took place in the Historical Archaeology laboratory of the Anthropology Department at the University of California, Berkeley. Identification was assisted with the aid of a type collection prepared and maintained by Dr. Laurie A. Wilkie of UC-Berkeley, as well as specimens housed in the Museum of Vertebrate Zoology, UC-Berkeley. Where applicable, identifications were made to species level. However, a number of specimens could not be identified beyond genus (or in some cases, Order) and are indicated as such.

Of the unidentifiable bone, most are considered to be of the Class Mammalia. No fish or reptile remains were clearly identified.

At total of 76 fragments of faunal bone were recovered from excavations at the UC Conservatory. The taxa identified include cattle (*Bos taurus*) and sheep (*Ovis aries*). On the Order level, some medium-sized Artiodactyl (Order Artiodactyla) specimens were also identified; these likely represent a sheep/goat or deer. There were no definitive identifications of reptile or fish remains at the UC Conservatory. All faunal remains falling into Class Aves were recorded as 'identifiable' though no further taxonomic identification was made.

Because of the low number of identifiable bones, there is no clear dominating species in this assemblage. Of the specimens identifiable to Genus, cattle remains are the most prevalent. These appear to represent typical market cuts of meat as do the sheep remains identified. During this period historically and at this particular location, it is highly unlikely that these animals would have been kept on site.

Very few of the fragments exhibit any signs of heat alteration. No bones show definite calcination or carbonization. Only 7 fragments represent incomplete oxidation, one bone is unburned, and the remaining fragments are all indeterminate. The indeterminate category refers to bones that could be heated in some way, but it is unclear. These typically appear as polished, flaky, or slightly browned bones.

No rodent or carnivore damage was observed. Several different butchery methods were observed, however. Butchery marks include knife cuts and sawn bone. Approximately 32% of the bone exhibit butchery marks. The cattle specimens and unidentified mediumlarge mammal remains yield the majority of butchery marks.

Based on the dearth of faunal remains, it is difficult to assess the use of animals at the Conservatory site. That animal bones were recovered from this site in and of themselves is unique, given that this was a campus building and not associated with daily living activities. It is possible that some of the remains represent the disposal of food from occasional social events or gatherings held at the Conservatory. They all appear to be typical market cuts of meat and do not represent overly large quantities. It is unlikely that food was consumed at the Conservatory on a regular basis and the faunal remains recovered from this excavation likely represent unique occurrences.

Summary of Excavation and Materials Analysis

Excavations at the conservatory demonstrated that the site has outstanding architectural, artifactual, and ecofactual materials. While the area excavated was spatially limited (Figure 18), even in this small sample size, the potential for looking at differential activity areas through the archaeology is clear. The limited ceramic, glass, and faunal data available suggests important differences in the uses of the internal and external spaces of the conservatory. The exterior of the building provided workers in the plant houses as well as the broader university community with a social space in which to eat and drink. The difference in the distribution of decorated and undecorated ceramics on the interior and exterior of the building gives some suggestion of how communal versus personal goods may have been distinguished among the workers. The recovery of small personal items, like buttons and jewelry bits speak to the presence of visitors at the site as well. One would hardly expect plant house workers to be wearing National Guard attire.

Figure 18. Portion of the conservatory excavated versus area likely to still be preserved

Artifacts also speak to the workings of the plant houses. Coal and slag speak to the task of maintaining the temperature of the hot houses, as well as possibly the preparation of fertilizers or other soil additives. As mentioned before, the architectural form of the conservatory seemed to clash with the intentions behind it of being a research facility. For Hilgard, himself a product of the Victorian era, perhaps this contradiction was not obvious. He was a man who ushered in a scientific revolution in soil sciences, yet also felt that to be a great institution, Berkeley must have plant houses equivalent to the great palm houses of Europe. There is no clear evidence that Hilgard saw these structures as intrinsically important to his research as to the university's image. We could see Hilgard's attitude as an extension of a collecting mentality. Yet, despite this contradiction, the plant houses were ultimately areas of research and instruction as well as sites of collection.

The flowerpots provide some insight into this dual function. The diversity of pot types and sizes suggests diverse origins for the plants they contained. At least some of the specimens could have been brought to the conservatory in pots originating elsewhere. Yet the pot analysis also shows that a larger portion of the assemblage demonstrates uniformity in stylistic appearance. Certainly, the photograph of the inside of the carnation house demonstrates this organized, uniform, kind of pot assemblage. These identical pots can be seen, as alluded to by Shaw in his discussion, as representative of the scientific endeavor.

The materials recovered from the site demonstrate that there are preserved deposits at the site that have the potential to answer significant research questions about the social history of the University of California, Berkeley. In particular, the site dates to an important time of transformation in the University's development from a small college to an internationally renowned research institution.

SECTION IV: EVALUATION OF THE RESOURCES

The archaeological resources recovered at the three loci were evaluated for significance using the criteria outlined under the California Environmental Quality Act (CEQA) and in accordance with California Code of Regulations, Title 14, Chapter 3, 15064.5. Modifying the criteria for the National Register of Historic Places, the California Register defines a historical resource as being significant if it:

- 1. is associated with events that have made a significant contribution to the broad patterns of local or regional history, or the cultural heritage of California or the United States; or
- 2. are associated with the lives of persons important to local, California, or national history; or
- 3. It embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of a master, or possesses high artistic values; or
- 4. It has yielded, or has the potential to yield, information important in prehistory or history.

Most archaeological sites deemed significant fall under Criteria 4. In addition to meeting one of the above criteria, the resource also must have demonstrated integrity. In the case of archaeological resources, this means that the deposits must be in situ.

Locus C

Historical documents demonstrated that there were no major structures located in this portion of the proposed project area. Testing was conducted to ensure that there were no previously unrecorded prehistoric or historic uses of this area. Shovel testing demonstrated that there were no intact archaeological deposits in this area. The few artifacts recovered during testing had eroded down from Locus B, the Student's Observatory, or remnants of isolated dumping of materials from Locus A, the Conservatory. None of the materials recovered were in a primary context and have no archaeological significance. No significant archaeological remains are threatened by construction in the area of Locus C.

Locus B

Locus B corresponds to the complex of buildings and associated yard spaces of the Student's Observatory. Unlike the Lick Observatory, which was the site of significant faculty research, the Student's Observatory was primarily a facility used by undergraduate and graduate students. The seismograph, the first of its kind in the western hemisphere, was also housed at the facility. The research and teaching programs developed at this location, as well the association of office spaces within the complex with famous faculty persons, made the site potentially eligible for inclusion on the California Register under criteria 1 and 2. Given the proximity of the complex to the proposed project area, the Student's Observatory was archaeologically tested for potentially significant deposits. Forty-one square meters were excavated in this area in order to determine whether significant archaeological remains associated with the late 19th and early 20th century astronomical observatories that once stood on the site are present. During excavation, it was revealed that extensive earthmoving, probably during the construction of McCone Hall, had irreparably damaged any archaeological remains associated with the astronomical observatories, classroom spaces and yard areas associated with the Students' Observatory. There are no significant archaeological resources preserved in this area.

While there are no intact archaeological remains associated with the site, there is a rich documentary record associated with the Students' Observatory which is preserved in collections in the University Archives, the Daily Cal newspapers, and in departmental scrapbooks held by an emeriti faculty member of the Astronomy Department. In addition, there are some architectural remains as well. The southern wall of the original Student's Observatory structure, constructed in 1885, still stands. In addition, a granite pillar, used by astronomy students to learn surveying techniques, still also stands in its

original location. As a remnant of one of the University of California's earliest campus structures, even in its semi-demolished condition, the pillar and standing wall are potentially eligible for inclusion on the California Register, and should be protected by the campus.

Locus A

Based upon the analysis of artifacts recovered from the structure, these deposits have already yielded significant historical information about this structure and its role within the social and intellectual space of the University of California at an important time in its past, and certainly has the potential to yield further information. In terms of the research questions posed by this project, materials recovered from the site are providing some answers to each of the four research questions posed by the project. In addition, the conservatory was built under the direction of Dr. E. W. Hilgard, the leading soil scientist of his time, and a person still widely seen as the father of his discipline. The structure may provide insights into particulars of Hilgard's research.

It is likely, given the state of preservation in the area not capped by asphalt, that the structure is well-preserved under the parking lot. The site is a rare example of a 19th century structure and its associated archaeology preserved on the University of California campus, the first public university in California. The site is also associated with a person important on the local and national level. The site is, therefore, eligible under Criteria 1 and 4 for inclusion on the California Register.

SECTION V. BIBLIOGRAPHY

Albert, Alpheus H

1969 *Record of American Uniform and Historical Buttons*. Boyerton Publishing Company, Boyertown.

Amory, Cleveland

1969 1902 Edition of the Sears, Roebuck Catalog. Bounty Books, New York.

Armory Publications website.

2003 Encyclopedic References for the Small Arms and Ammunition Collector/ Historian. http://www.armorypub.com/Witzel/32spl/32scUMC1SPFN321FCuU.jpg

Behrensmeyer, A.K.

1978 Taphonomic and Ecologic Information from Bone Weathering. Paleobiology. Vol. 4 (2): 150-162.

The Blue and Gold

1924 The 1924 Edition. Unversity of California, Berkeley.

2020 LRDP DRAFT EIR APPENDIX D.2: TIEN CENTER SITE ARCHAEOLOGY

Burnham Corporation

1956 Our 100 Years: Lord & Burnham Since 1856. Irvington, New York.

Clerke, Agnes M.

1908 A Popular History of Astronomy during the Nineteenth Century. London, Adam and Charles Black, London.

Clutton-Brock, J.

1999 *A Natural History of Domesticated Animals*. Cambridge: Cambridge University Press.

COHP (California Office of Historic Preservation)

2003 California Environmental Quality Act (CEQA) and Historical Resources. *Technical Assistance Series #1*.

Constance, Lincoln.

1989 History of the Botanical Garden, University of California, Berkeley. Typescript.

Crawford, Russell Tracy

1939 The Contributions of the Students' Observatory. North Baker Research Library, MS 478.

Crocker-Langley San Francisco City Directory(years 1895, 1899-1900, 1900-1901, 1905, 1915, 1920, 1921, 1922, 1923, 1925, 1930, 1940)

Cunningham, Jo

1992 *The Collector's Encyclopedia of American Dinnerware*. Collector Books: Paducah, Kentucky.

Daily California, selected articles from 1875-1904; 1908-1912.

Doell, M. Christine Klim

1986 Gardens of the Gilded Age: Nineteenth-Century Gardens and Homegrounds of New York State. Syracuse University Press, Syracuse.

Dr. Pepper/Seven Up, Inc.

2003 Dr. Pepper History. http://www.dpsu.com/dr_pepper.htoml accessed January 2004

Godden, Geoffrey

1964 An Encyclopedia of British Pottery and Porcelain Marks. Barrie and Jenkins, London.

Gifford, D.P., and D.C. Crader

1977 A Computer Coding System for Archaeological Faunal Remains. *American Antiquity*. 42 (2): pp. 225-238.

Goodspeed, Thomas Harper.

1964 A History of the University of California Botanical Garden, 1895-1957. San Francisco.

Gravson, D.K.

1984 Quantitative Zooarchaeology. Academic Press, Orlando.

Grist, Everett

2000 Everett Grist's Big Book of Marbles. Second edition. Collector Books, Paducah.

Hawks, Chuck. *The 32 Winchester Special* Website. January 2, 2003. http://www.chuckhawks.com/32spec.htm.

Hix, John

1996 The Glasshouse. Phaidon Press, London.

Jones, Olive, and Catherine O'Sullivan

1989 The Parks Canada Glass Glossary for the Description of Containers, Tableware, Flat Glass, and Closures. Revised edition. Canadian Parks Service, Ottawa.

Koppelkamm, Stefan

1981 *Glasshouses and Wintergardens of the Nineteenth Century*. Translated by Kathrine Talbot. Rizzoli International Publications, Inc., New York.

Leone, Mark

1988 The Georgian Order as the Order of Merchant Capitalism in Annapolis, Maryland. In *The Recovery of Meaning: Historical Archaeology in the Eastern United States*, edited by Mark P. Leone and Parker B. Potter, Jr., pages 235-263. Smithsonian Institution Press, Washington, D.C.

Leuschner, Armin

- 1901a Letter to Benjamin Wheeler, February 21, 1901. CU-5: Office of the President Records: Alphabetical Files, 1885-1913. Box 8 Folder 76. Armin Leuschner. University Archives, Bancroft Library, University of California, Berkeley.
- 1901b Letter to Benjamin Wheeler, April 17, 1901. CU-5: Office of the President Records: Alphabetical Files, 1885-1913. Box 8 Folder 76. Armin Leuschner. University Archives, Bancroft Library, University of California, Berkeley.
- 1901c Letter to Benjamin Wheeler, February 11, 1901. CU-5: Office of the President Records: Alphabetical Files, 1885-1913. Box 8 Folder 76. Armin Leuschner. University Archives, Bancroft Library, University of California, Berkeley.

- 1901d Letter to Benjamin Wheeler, April 11, 1901. CU-5: Office of the President Records: Alphabetical Files, 1885-1913. Box 8 Folder 76. Armin Leuschner. University Archives, Bancroft Library, University of California, Berkeley.
- 1902a Letter to Benjamin Wheeler, March 29, 1902. CU-5: Office of the President Records: Alphabetical Files, 1885-1913. Box 8 folder 76. Armin Leuschner. University Archives, Bancroft Library, University of California, Berkeley.
- 1902b Memorandum to Benjamin Wheeler sent by Miss Hobe, July 10, 1902. CU-5: Office of the President Records: Alphabetical Files, 1885-1913. Box 8 folder 76. Armin Leuschner. University Archives, Bancroft Library, University of California, Berkeley.
- 1903a Letter to Benjamin Wheeler, March 3, 1903. CU-5: Office of the President Records: Alphabetical Files, 1885-1913. Box 15 Folder 34. Armin Leuschner. University Archives, Bancroft Library, University of California, Berkeley.
- 1903b Letter to Benjamin Wheeler, May 8th, 1903. CU-5: Office of the President Records: Alphabetical Files, 1885-1913. Box 15 Folder 34. Armin Leuschner. University Archives, Bancroft Library, University of California, Berkeley.
- 1904 Letter to Moran. January 21, 1904. CU-5: Office of the President Records: Alphabetical Files, 1885-1913. Box 19 Folder 7. Armin Leuschner. University Archives, Bancroft Library, University of California, Berkeley.
- 1909 Letter to Benjamin Wheeler, September 10, 1909. CU-5: Office of the President Records: Alphabetical Files, 1885-1913. Box 22 Folder 37. Armin Leuschner. University Archives, Bancroft Library, University of California, Berkeley.

Leverington, David

1995 A History of Astronomy from 1890 to the Present. Springer, London.

Lord & Burnham Co.

- 1873 Catalogue of Greenhouses. Irvington, New York.
- 1892 Catalogue of Greenhouses. Irvington, New York.
- 1900 Catalogue of Greenhouses. Irvington, New York.
- 1910 Sectional Iron Frame Greenhouses That We Have Designed and Erected: Their Planning and Placing; The Materials Used and the Way We Construct Them. Ninth Edition. Irvington, New York.

Lyman, R. L.

1994 *Vertebrate Taphonomy*. Cambridge Manuals in Archaeology. Cambridge: Cambridge University Press.

Majewski, Theresita and Michael O'Brien

1987 The Use and Misuse of Nineteenth-Century English and American Ceramics in Archaeological Analysis. In *Advances in Archaeological Method and Theory*, Vol. 11, edited by Michael Schiffer, pp. 97-209. Academic Press, Orlando.

Miller, George, Olive Jones, Lester Ross and Teresita Majewski (compilers) 1991 *Approaches to Material Culture Research for Historical Archaeologists*. Society for Historical Archaeology, Tucson.

Orton, Clive, Paul Tyers and Alan Vince.

1993 Pottery in Archaeology. Cambridge University Press, Cambridge.

Osterbrock, Donald E., John R. Gustafson, W. J. Shiloh Unruh

1988 Eye on the Sky: Lick Observatory's First Century. University of California Press, Berkeley.

Pittman, William and Robert Hunter.

2002 "A Cache of Eighteenth-Century Flowerpots in Williamsburg". In *Ceramics in America*. Edited by Robert Hunter. Chipstone Foundation, Milwaukee.

Reitz, E.J., and E.S. Wing.

1999 *Zooarchaeology*. Cambridge Manuals in Archaeology. Cambridge: Cambridge University Press.

Richey, Elinor

1970 The Ultimate Victorians of the Continental Side of San Francisco Bay. Howell-North Books, Berkeley.

Romero, Christie

1998 Warman's Jewelry: 2nd Edition. Krause Publications, Iola, Wisconsin.

RUCR (Regents of the University of California Records)

- 1. Memorandum, no date. CU1 Box 20 Folder 8-Buildings and Grounds—Conservatory. Bancroft Library, University of California, Berkeley.
- 2. Letter from Hitchings & Co, New York to Regents. December 8, 1891. CU1 Box 20 Folder 8-Buildings and Grounds—Conservatory. Bancroft Library, University of California, Berkeley.
- 3. Letter from Hitching and Co. to Mr. E. W. Hilgard. January 26, 1891. CU1 Box 20 Folder 8-Buildings and Grounds—Conservatory. Bancroft Library, University of California, Berkeley.

- 4. Memorandum from E. W. Hilgard regarding Plant Houses for Agriculture and Botany. January 29, 1892. CU1 Box 20 Folder 8-Buildings and Grounds—Conservatory. Bancroft Library, University of California, Berkeley.
- 5. n.d. Vellum plan, CU1 Box 20 Folder 8-Buildings and Grounds—Conservatory. Bancroft Library, University of California, Berkeley.
- 6. Letter from W. A. Burnham of Lord and Burnham, New York, to Regents of UC, March 23, 1892. CU1 Box 20 Folder 8-Buildings and Grounds—Conservatory. Bancroft Library, University of California, Berkeley.
- 7. Letter from W. A. Burnham to Regents of UC, April 30, 1892. CU1 Box 20 Folder 8-Buildings and Grounds—Conservatory. Bancroft Library, University of California, Berkeley.
- 8. Letter from W. A. Burnham to George Pape of Berkeley, May 25th, 1892. CU1 Box 20 Folder 8-Buildings and Grounds—Conservatory. Bancroft Library, University of California, Berkeley.
- 9. Bids presented by Robert Mitchell, George Creed, Mr. Whiney to Regents of UC, July 1893. CU1 Box 20 Folder 8-Buildings and Grounds—Conservatory. Bancroft Library, University of California, Berkeley.
- 10 Letter from W. A. Burnham to Regents of UC, May 29th, 1892. CU1 Box 20 Folder 8-Buildings and Grounds—Conservatory. Bancroft Library, University of California, Berkeley.
- 11. Hilgard to J. West Martin, July 31, 1893. CU1 Box 20 Folder 8-Buildings and Grounds—Conservatory. Bancroft Library, University of California, Berkeley.
- 12. Report of the Special Committee on Plant House, August 22, 1893. CU1 Box 20 Folder 8-Buildings and Grounds—Conservatory. Bancroft Library, University of California, Berkeley.
- 13. Report of the Committee on Grounds and Buildings to the Board of Regents. April 10, 1894. CU1 Box 20 Folder 8-Buildings and Grounds—Conservatory. Bancroft Library, University of California, Berkeley.
- 14. Builder's Contract. The Regents of UC-A Corporation and Lord and Burnham Company. CU1 Box 20 Folder 8-Buildings and Grounds—Conservatory. Bancroft Library, University of California, Berkeley.
- 15. Letter from J.H.C. Bronte, Secretary of the Board of Regents, to Robert Smilie and Co. October 22, 1894. CU1 Box 20 Folder 8-Buildings and Grounds—Conservatory. Bancroft Library, University of California, Berkeley.

16. Clinton Day, Architect, to Dr. J. Bonte, Secretary Board of the Regents. (?) 20th, 1894. CU1 Box 20 Folder 8-Buildings and Grounds—Conservatory. Bancroft Library, University of California, Berkeley.

Rye, Owen S.

1981 "Pottery Technology". *Manuals on Archaeology*. Vol. 4. Taraxacum, Washington D.C.

Sacramento Bee

1885 "The Bell Conservatory," May 6.

Shinn, Charles Howard

1874 "Gardens and Conservatories of California—No. 1". *The California Horticulturalist* 9(11):336-340.

1894 "Among the Experiment Stations". The Overland Monthly XXIV(140):164-176.

Schroeder, Joseph

1971 1908 Sears Roebuck Catalogue. DBI Books, Northfield.

1972 Fall and Winter 1894-1895 Montgomery Ward and Co. Catalog and Buyer's Guide. Follett Publishing Company, Chicago.

Schwartz, Richard

2000 Berkeley 1900: Daily Life at the Turn-of-the-Century. RSB Books, Berkeley.

Todd, L.C.

1999 *Hudson Meng Bison Bonebed Archaeological Field School Handbook*. Colorado State University.

Toulouse, Julian

1969 Fruit Jars. Nelson, Camden N.J.

1971 Bottle Makers and their Marks. Thomas Nelson, Inc. New York.

Turrill, Charles B.

1876 California Notes. E. Bosqui and Co., San Francisco.

United States Mint Website. *The History of the United States Mint*. December 30. http://www.chuckhawks.com/32spec.htm.

Wheeler, Benjamin

1904 To Armin Leuschner, December 21, 1904. CU-5: Office of the President Records: Alphabetical Files, 1885-1913. Box 19 Folder 7. Armin Leuschner. University Archives, Bancroft Library, University of California, Berkeley.

1909 Letter to Armin Leuschner, October 12, 1909. CU-5: Office of the President Records: Alphabetical Files, 1885-1913. Box 22 Folder 37. Armin Leuschner. University Archives, Bancroft Library, University of California, Berkeley.

Woods, May and Warren, Arete Swartz

1988 Glasshouses: A History of Greenhouses, Orangeries and Conservatories. Aurum Press.

Wright, Helen

1987 James Lick's Monument: The Saga of Captain Richard Floyd and the Building of the Lick Observatory. Cambridge University Press, Cambridge.

Zeuner, F.E.

1963 A History of Domesticated Animals. London: Hutchinson & Co., Ltd.

APPENDIX E

HAZARDOUS MATERIALS

.....

APPENDIX E HAZARDOUS MATERIALS

This appendix contains supplementary information regarding UC Berkeley safety programs, and federal, State and local laws and regulations governing hazardous materials.

E.I UC BERKELEY SAFETY PROGRAMS

This section describes the UC Berkeley programs that have been established to protect the health and safety of the campus community and the public. The Office of Environment, Health & Safety (EH&S) at UC Berkeley has primary responsibility for creating and maintaining these programs to provide safe conditions for the campus community in compliance with related standards and regulations. EH&S technical staff has expertise in industrial hygiene, toxicology, chemical safety, radiation safety, physical safety, biohazard safety, hazardous waste management, animal care, and environmental protection.

UC Berkeley has exhibited a long-standing commitment to excellence in the areas of the environment, health, and safety, which is demonstrated by its proactive approach to these issues. The staff has put numerous programs in place, voluntary and mandatory, that not only meet but at some levels exceed compliance standards. Voluntary programs have included, for example, a structural Integrated Pest Management program established in the 1970s that resulted in a substantial reduction in pesticide use at UC Berkeley. In addition to employing biological and source controls, the program instituted policies such as reviewing building and landscape designs for their resistance to insect and animal pests. In another voluntary program, the Physical Plant–Campus Services (PP-CS) adopted less toxic cleaning agents to reduce occupational exposure and minimize waste. Mandatory compliance measures and programs are discussed below.

UC BERKELEY SAFETY PROGRAMS FOR NON-RADIOACTIVE HAZARDOUS CHEMICALS

TRANSPORTATION AND STORAGE OF HAZARDOUS MATERIALS

Hazardous and costly spills and injuries may occur if safe transportation procedures are not used. Safe transportation procedures are outlined in the EH&S Fact Sheet entitled *Transporting Chemicals Safely on Campus*. Specific procedures for safe chemical transportation include the use of secondary containment and other acceptable practices. A separate EH&S publication, *The Move Manual: A Guide to Relocating Hazardous Materials*², sets forth procedures for moving an entire laboratory.

U.S. Department of Transportation regulations apply when hazardous materials or wastes are transported off-campus. These regulations include restrictions on packaging, labeling, and authorized drivers. EH&S staff members are trained in the Department of Transportation (DOT) regulations. They oversee all off-campus shipment of hazardous waste and assist in preparing hazardous materials for off-campus shipment. EH&S Radiation Safety is responsible for proper receipt, shipping and transportation of radioactive materials in accordance with DOT, State law, and the campus radioactive materials license.

Safe and proper storage of hazardous materials in laboratories is the responsibility of the principal investigator or laboratory manager. Requirements governing storage of hazardous materials include inventory and labeling, material compatibility, seismic safety, secondary containment, and spill protection. In addition, State building codes and fire codes contain specific requirements that must be observed for hazardous materials storage. In 1999, a state-of-the-art hazardous materials facility was completed to consolidate, package and ship hazardous waste for up to 90 days.

The EH&S booklets Safe Storage of Hazardous Chemicals, Guidelines for Explosives and Potentially Explosive Chemicals - Safe Storage and Handling, and Fact Sheet Storage of Flammable Liquids in Laboratories, and other publications available on the EH&S website provide details on safe hazardous materials storage practices. ³ EH&S performs periodic site inspections to ensure that current chemical storage procedures are practiced.

The *Radiation Safety Manual*, *Radiation Safety Logbook*, and related documents and training provide guidance in the safe storage and labeling of radioactive materials. EH&S performs routine inspections to verify proper storage and labeling.

HAZARDOUS MATERIALS USE

Safe use of hazardous materials at UC Berkeley begins with EH&S but ultimately rests with the people who use the materials. EH&S issues guidance and fact sheets, evaluates departmental activities, and disseminates general information regarding the handling, storage, and disposal of hazardous materials and wastes. Every department is responsible for developing and maintaining a department safety program, with EH&S available if needed for assistance. EH&S is responsible for providing instruction and assistance to departments in the form of training, hazard communication, groundwater protection measures, and underground and aboveground storage tank programs.

TRAINING PROGRAM. UC Berkeley policy requires that all employees involved with hazardous materials handling undergo training. EH&S is responsible for providing information to the campus community, through established communication channels, on programs, regulatory impact and compliance requirements, and for developing and overseeing programs to be implemented by the campus to meet legal requirements and EH&S policies. The departments are responsible for ensuring that workers are trained to identify, avoid, and mitigate potential environmental health and safety hazards. EH&S provides training programs, guidelines, booklets, fact sheets, videos, and a thrice-yearly newsletter to update workers on safety matters.

In addition, EH&S has a matrix available on its web site detailing the programs and training mandated by law as well as the criteria for workplace conditions that would require training. EH&S provides training and expertise in many environmental health and safety topic areas. Training areas covered by EH&S include:

- Asbestos awareness
- Biological safety cabinet use

UNIVERSITY OF CALIFORNIA, BERKELEY 2020 LRDP DRAFT EIR APPENDIX E: HAZARDOUS MATERIALS

- Chemical inventory software
- Eye safety
- Fire and life safety
- Food sanitation
- Forklift and lift truck safety
- Fume hood use
- Hazard communication
- Hazardous waste disposal and minimization
- Injury and illness prevention
- Laboratory safety
- Respiratory protection
- Radiation Safety
- Laser Safety

Training programs and annual refresher courses are compulsory for individuals whose workplaces can potentially expose them to hazardous materials.

HAZARD COMMUNICATION PROGRAM. UC Berkeley has established a Hazard Communication Program for hazardous materials used outside of a laboratory (for hazardous materials used in laboratories, see below), in accordance with State "employee right-to-know" regulations. The program is designed to help maintain a healthy work environment by increasing employee awareness of workplace chemicals and their potential health effects, safe work practices, and emergency procedures. The Hazard Communication Written Program is available on the EH&S web site.

Under the program, each hazardous substance used by the departments must be listed on the department's "Hazardous Chemicals Inventory," and a copy of the list must be submitted to EH&S at least annually. To facilitate the process, the information can be submitted to EH&S electronically to update the EH&S Chemical Inventory database. EH&S provides oversight to assure that inventories are updated whenever a new hazardous material is brought into the workplace.

Material safety data sheets (MSDSs) contain hazard and precautionary information required by the Hazard Communication Standard. The University requires that the MSDSs are kept for each hazardous substance listed on the department's Hazardous Chemicals Inventory. The most current MSDSs supplied by the chemical manufacturer or distributor are kept on file and made accessible to all employees, their representatives, and contractors for viewing or copying during each work shift. Departments are required to maintain paper copies of MSDSs either in individual workspaces or centrally within the department. In addition, EH&S maintains a collection of duplicate MSDSs electronically. EH&S subscribes to an online service which provides electronic versions of MSDSs for most chemicals purchased by the University.

UNIVERSITY OF CALIFORNIA, BERKELEY 2020 LRDP DRAFT EIR APPENDIX E: HAZARDOUS MATERIALS

CHEMICAL HYGIENE PLAN. Cal/OSHA (Title 8 CCR Section 5191) requires all laboratories to have a Chemical Hygiene Plan (CHP) containing Standard Operating Procedures (SOPs) relevant to safety and health considerations. UC Berkeley has established SOPs for common activities and requires laboratory-specific SOPs for hazards not covered by the campus-wide procedures. EH&S periodically reviews lab-specific SOPs and verifies that proper training has been documented in the CHP.

CHEMICAL INVENTORY DATABASE. UC Berkeley has developed a database that helps the University track its inventory and use of hazardous materials. The UC Berkeley Chemical Inventory (CI) database is used to track regulated substances to comply with chemical inventory, CalARP and other requirements. The CI database inventory includes quantities and locations that are updated continuously regularly as well as a chemical index that includes regulated substances listed by local, state, and federal agencies.

UC Berkeley uses the CI database to evaluate compliance with CalARP through a four-step process. Each step looks increasingly critically at the quantities of regulated substances handled. The first step examines only if a quantity of a particular listed regulated substance exists within the reporting area. If not, the substance will not appear on the report. The second step examines the distribution of a single chemical by building. The third step examines the distribution of a single chemical by room within a building. The last step involves an interview with the inventory taker to more accurately assess the situation, including the inventory amount and the concentration of the material in question. This process provides a detailed chemical and location approach to identifying and controlling potential releases before they occur and thus preventing possible accidents.

RADIOACTIVE MATERIAL DATABASE. UC Berkeley has developed and maintains an inventory of radioactive materials on the campus. This inventory is used to verify compliance with the campus radioactive materials license requirements.

TOXIC USE REDUCTION PROGRAMS FOR CAMPUS FACILITIES. UC Berkeley has taken proactive voluntary steps to reduce the use of toxic substances in maintenance and operations of facilities. An Integrated Pest Management Program was started in the early 1970s that emphasizes the use of parasites, trapping, habitat modification and education over the use of pesticides to control pests such as cockroaches, fleas, rodents, and silver fish. This program has resulted in the reduction in use of chemical pesticides by 100 percent in university housing and research facilities, and by 95 percent in kitchens. In addition, EH&S specialists review all new building designs for their ability to structurally resist pests as well as landscaping plans to make sure that the proposed landscaping would not create conditions that could harbor pests.⁴ Custodial operations have also switched to environmentally friendly cleaning products, reducing both the use of toxic cleaning products and their waste stream.

ABOVEGROUND STORAGE TANK SPILL PREVENTION CONTROL PROGRAM. In California, owners and operators of aboveground storage tanks (ASTs) must comply with State and federal regulations pertaining to oil spill prevention and aboveground petroleum storage. Facilities are subject to these regulations if they operate any tanks with a capacity of 660 gallons or greater, or if the total facility capacity exceeds 1,320 gallons. The daily management of fuel tanks supplying emergency generators is the responsibility of PP-CS. The Spill Prevention Control and Countermeasure (SPCC) plan is aimed at identifying possible spill scenarios and developing safeguards against such occurrences. Tanks are frequently visually inspected by campus PP-CS personnel as part of their normal duties. Any sign of deterioration or leakage that might cause a spill or accumulation of fuel oil on the concrete pad or inside an impounding basin is immediately reported to PP-CS supervisors. PP-CS personnel record monthly tank inspections on a checklist. This checklist requires the operators to inspect and record the conditions of the ASTs and pipings. Additionally, personnel are taught spill prevention and response and other safety measures through classroom and field training.

UNDERGROUND STORAGE TANK MONITORING AND RESPONSE PROGRAM. Although PP-CS is responsible for the day-to-day operations of the underground storage tanks (USTs) and for ensuring that the UST program meets and continues to meet operational requirements, it is not the sole party responsible for maintaining the UST program. University departments that own tanks for research or vehicle fueling also are responsible for those tanks and for routine monitoring, emergency response, and corrective action. Monitoring activities include weekly visual monitoring of the tank and piping with a written record of each inspection. Visual monitoring directly examines all exposed sections of the underground tank system including aboveground piping. Non-visual monitoring is mostly quantitative and can consist of manual tank gauging, automatic tank gauging, etc. UC Berkeley additionally carries out general integrity tests, such as tank integrity tests, piping integrity tests, and systems certification activities on all of their USTs.⁵

UC BERKELEY SAFETY PROGRAMS FOR HAZARDOUS WASTE

MANAGEMENT AND HANDLING PROGRAM

Strict environmental laws govern the disposal of all hazardous wastes. Unwanted hazardous materials may not be discharged into the environment, poured down the drain, or disposed of in the municipal trash. EH&S picks up hazardous materials for proper disposal after users properly package and label unwanted items. Guidelines for proper packaging and labeling of unwanted hazardous materials are described in the EH&S publication *Unwanted Hazardous Chemicals*.⁶

CHEMICAL EXCHANGE PROGRAM

UC Berkeley has established a program to minimize the disposal of hazardous materials that are potentially still usable. The Chemical Exchange Program (CHEX) is an online database that uses the Internet to facilitate the redistribution of unwanted chemicals to UC Berkeley faculty and staff members who can use them. EH&S collects unwanted chemicals when it receives Material Packing Lists from laboratories and facilities. After assessing the unwanted chemicals, staff members put the potentially useful chemicals on the CHEX list of available chemicals. CHEX allows UC Berkeley researchers to search for chemicals they

UNIVERSITY OF CALIFORNIA, BERKELEY 2020 LRDP DRAFT EIR APPENDIX E: HAZARDOUS MATERIALS

need, which are then redistributed by EH&S free of charge. The original owners receive a credit on their Hazardous Waste Recharge Account, equal to the amount of disposal cost. This program is being increasingly utilized by UC Berkeley researchers. In 2003, more than 160 chemicals were redistributed to users and kept out of the waste stream.⁷

WASTE MINIMIZATION PROGRAM

In compliance with the State Hazardous Waste Source Reduction and Management Review Act of 1989, UC Berkeley established a comprehensive waste minimization program in 1991. Unwanted hazardous materials and hazardous wastes produced at UC Berkeley are brought to the Hazardous Materials Facility and sorted by EH&S technical staff. Usable materials are identified for re-use and redistribution. Hazardous waste is packaged for transportation to a permitted hazardous waste treatment, storage, or disposal facility according to the Department of Transportation, Resource Conservation and Recovery Act (RCRA), and California Department of Toxic Substances Control requirements.

Table 4.6-1 in Chapter 4.6 shows the reduction in routinely generated hazardous waste since 1990 due to implementation of UC Berkeley's waste minimization program. The total weight of routinely generated hazardous waste in 2002 for the Main Campus totaled approximately 137,707 pounds, a reduction of over 53 percent from 1990 levels.

UC Berkeley updated its hazardous waste source reduction plan in 2002 to continue implementation of the ten source reduction measures. These measures are both operational and administrative in approach. Measures include the following:

- training professors, students, and staff on hazardous waste source reduction
- developing source reduction policy
- upper management commitment to source reduction
- information exchange
- inventory of chemicals
- surplus chemical exchange
- comprehensive waste tracking system
- disposal cost recharge program
- reduced volume used in experiments; and
- mercury reduction program

Because of their technical and institutional feasibility, these measures have proven successful in decreasing the amount of hazardous waste generated and protecting employee health and safety.

RADIOACTIVE WASTE MINIMIZATION PROGRAM

UC Berkeley has established a three-part program intended to minimize the production of radioactive waste. The parts are: 1) reduction in use, 2) strict segregation of radioactive wastes from other wastes, and 3) storage for decay and disposal program.

UC BERKELEY PROGRAMS FOR BIOHAZARDOUS MATERIALS

CHANCELLOR'S ADVISORY COMMITTEE ON LABORATORY AND ENVIRONMENTAL BIOSAFETY

The Chancellor's Advisory Committee on Laboratory and Environmental Biosafety (CLEB) is charged with the responsibility of formulating University policies to ensure the safe conduct of research involving biohazardous agents and materials. These policies, developed in accordance with guidelines set forth by the National Institutes of Health and the Centers for Disease Control, relate to facility design; containment equipment; safe laboratory practice; and training of students, staff and faculty working in the facility.

All faculty whose research involves working with biohazardous agents in animals and/or the laboratory must hold a valid Biohazard Use Authorization (BUA). BUA requirements apply generally to laboratory research involving organisms with the potential to cause human disease, and to experiments with recombinant DNA, covered by the NIH Guidelines for Research Involving Recombinant DNA Molecules. Before this authorization is issued, the animal and/or laboratory facilities and laboratory practices are reviewed by EH&S and CLEB. All BUAs involving biohazards that require Biosafety Level 3 containment and procedures are reviewed and approved by CLEB. As of 2003, there were 50 active BUAs at UC Berkeley, including two BUAs for Biosafety Level 3 work. The BUAs authorize research with Risk Group 2 and Risk Group 3 viruses, bacteria, fungi, recombinant DNA, and known HIV-positive blood samples.

OFFICE OF ENVIRONMENT, HEALTH AND SAFETY (EH&S)

The EH&S's Biosafety Program consists of three specific programs that are designed to ensure that all work involving biohazardous materials is conducted in compliance with federal and State regulations.

BIOHAZARD USE AUTHORIZATION PROGRAM. EH&S provides application forms and copies of the regulations to persons who plan to conduct laboratory work with biological materials (including recombinant DNA). EH&S also assists researchers in obtaining BUAs and meeting applicable Occupational Safety and Health Administration (OSHA) requirements.

OSHA BLOODBORNE PATHOGENS STANDARD. EH&S provides compliance assistance, technical information, training, and materials to implement the Cal/OSHA bloodborne pathogen standard at UC Berkeley. This standard requires that all laboratories and departments that work with human blood, body fluids, or tissue, develop and implement a written exposure control plan to reduce or eliminate risk of exposure to human bloodborne pathogens during research and teaching. EH&S has prepared and posted on its web site a template that researchers can use to develop a bloodborne pathogen exposure control plan. EH&S also maintains a database to track all research involving bloodborne pathogens, and ensures through annual reviews that the exposure control plans are being implemented in the laboratory.

BIOLOGICAL SAFETY CABINET PROGRAM. EH&S assists users at UC Berkeley in complying with National Sanitation Foundation (NSF) Standard 49 and Cal/OSHA ventilation requirements for biological safety cabinets and also assists users in the proper use of biological safety cabinets and laminar-flow clean benches. EH&S currently oversees the program to ensure that all biological safety cabinets used for biohazard levels 2 or above are tested annually.

OTHER RESOURCES. EH&S has also prepared and posted materials on its web site to assist researchers with biosafety, including fact sheets on using autoclaves in a safe manner, guidelines for management and disposal of medical waste, guidelines on how to relocate hazardous materials safely, sharps safety, and safety guidelines for field research.

MEDICAL WASTE MANAGEMENT PROGRAM

UC Berkeley generates medical waste (including biohazardous waste, biohazardous sharps waste, pathology waste, and chemotherapy wastes) primarily from research, animal facilities, and health services. As a large quantity generator of medical wastes, UC Berkeley is obligated to comply with the California Medical Waste Management Act, which requires that departments, units, and laboratories that generate medical waste properly manage that waste. Procedures documenting proper medical waste management are outlined in the EH&S publication *Guidelines for Managing and Disposing of Medical Waste.* The publication details correct medical waste management practices such as segregation of medical wastes and proper containment, decontamination, and disposal of medical waste. Medical waste is brought to an accumulation area and placed in a proper secondary container, where it is stored until pickup by the medical waste contractor. UC Berkeley's guidelines are more stringent than the regulatory requirements, so some wastes that are not classified as medical waste are treated as such.

UC BERKELEY RADIATION PROTECTION PROGRAMS

EH&S has a dedicated professional staff that ensures that work with radioactive materials and radiation-producing machines is conducted in accordance with policies and standards set forth by the NRC and the State. A Radiation Safety Committee composed of faculty representatives with significant experience in the safe use of radiation and radioactive materials reviews the work of the EH&S radiation safety staff and sets policy.

The UC Berkeley Campus Radiation Safety Program and the EH&S radiation safety staff have implemented processes, methods, and programs intended to assure that work with radioactive materials and radiation-producing machines is conducted in such a manner as to protect health, minimize danger to life and property, meet regulatory requirements, and to keep radiation exposure to all personnel as low as is reasonably achievable.

These methods and programs include the following:

RADIOACTIVE USE AUTHORIZATIONS. Before obtaining radioactive materials, each principal investigator must apply for a Radiation Use Authorization (RUA). The RUA specifies the materials (isotopes), chemical forms, and amounts being used. The RUA also contains a general description of the authorized uses of these materials and/or machines. Each authorized user also maintains an inventory of materials received, materials on hand, and materials disposed of to the sanitary sewer. Periodically, the EH&S radiation safety staff reviews these inventories and resolves any discrepancies that arise. This review is normally performed once each calendar quarter.

RADIATION SAFETY TEAM. The radiation safety team activities include the following:

- Overseeing university compliance with standards and policies for radiation protection and UC Berkeley radiation safety performance, including the review and approval of all initial RUAs and renewals, and verification that RUAs are approved prior to radioactive materials being delivered or work commences.
- Responsibility for operation of the UC Berkeley Campus Radiation Safety Program, for assuring that use of radiation is in conformity with UC Berkeley standards and applicable governmental regulations, and for assuring that radiation exposures to both on-campus and off-campus personnel and members of the general population from radiation and radioactive material used at UC Berkeley is as low as reasonably achievable.
- Responsibility for the development, publication, and revision of the Campus Radiation Safety Manual, which contains license requirements and sets forth UC Berkeley radiation safety policy.
- Reporting radiation safety problems and issues to the Radiation Safety Committee and university management.
- Coordinating radiation safety issues in emergency response, including halting any radioactive operations that pose an immediate health and safety danger to the public and workers.

CAMPUS RADIOACTIVE MATERIALS LICENSE. The campus Radiation Safety Officer is responsible for developing, publishing, and revising as necessary the Campus Radiation Safety Manual (the Manual), which promulgates license requirements and sets forth campus radiation safety policy. The Manual includes statements on:

- The scope of the radiation control program and the activities covered.
- Procedures to be followed in obtaining authorization to acquire and use radioisotopes and radiation producing machines.
- Regulations and procedures for the storage, transportation, and disposal of radioactive materials.
- Responsibilities of Authorized Users for control of radiation hazards.
- Maximum permissible radiation exposure to personnel.
- Minimum requirements for posting of radiation hazard warning signs.
- Procedures to be followed in emergencies involving radiation.
- Authorization for radiation uses.

The Radiation Safety Officer is also responsible for assuring that the Manual is current or making necessary updates. Proposed changes to the Manual are approved by the Radiation Safety Committee.

RADIATION PRODUCING MACHINES. X-ray machines are the main radiation-producing machines used at UC Berkeley. Although they do not contain radioactive material, they produce ionizing radiation. In general, the use of radiation-producing machines requires the same controls as radioactive material use. Precautions are taken to limit human exposure to radiation when X-ray machines are used. All work done with X-ray machines is authorized by an RUA. Radiation-producing machines may only be operated by authorized personnel. X-ray machines (for use with animals and humans or in research) at UC Berkeley are inspected annually by the EH&S. Safety features are checked and verified to be operational and repairs are made as needed.

Radiation-producing machines are not subject to licensing by State or federal agencies; however, State regulations require registration of each machine with the state. EH&S notifies the DHS within 30 days of receipt, transfer, or disposal of ionizing radiation-producing machine. Specific methods and programs to assure the safe use of these machines are described in the UC Berkeley Radiation Safety Manual. That manual is also part of the Campus Radioactive Materials License (incorporated by reference).

RADIOACTIVE WASTE PROGRAM. EH&S is responsible for UC Berkeley's radioactive waste program. This waste program is required to conform with state and federal regulations as set forth in the Campus Radioactive Materials License, and the terms and conditions of the two radiation use authorizations which are monitored for compliance, through quarterly inspections, by the radiation safety staff.

RADIOACTIVE WASTE MINIMIZATION. EH&S with the Radiation Safety Committee has implemented a campus-wide radioactive waste minimization program that provides users of radioactive materials with methods to reduce their generation of radioactive wastes. Some elements of this program include better laboratory technologies, replacement of radioactive materials with nonradioactive materials, trial runs using nonradioactive materials, surveying materials to assess whether they are contaminated with radioactive materials, proper separation of radioactive and nonradioactive materials, and microchemistry procedures. Overall reductions in radioactive materials use have diminished radioactive wastes by over 50 percent since the early 1990s.⁹

UC BERKELEY SAFETY PROGRAMS FOR RESEARCH INVOLVING TRANSGENIC MATERIALS

RECOMBINANT DNA RESEARCH INVOLVING INFECTIOUS AGENTS

Recombinant DNA research involving infectious agents is subject to the same requirements and control programs that apply to research involving biohazardous materials (see Section 4.6). The investigator is required to obtain a BUA before undertaking such research. Infectious waste produced during research must be disposed of in a manner similar to other medical waste.

RESEARCH INVOLVING TRANSGENIC ANIMALS

For research involving transgenic animals, the investigator must register with EH&S. Research involving transgenic animals is subject to compliance with the NIH Guidelines for Research involving Recombinant DNA Molecules and the same control programs that are discussed in Section 4.6 with respect to laboratory animal use and care. The Committee on Animal Research Space Assignment (CARSA) (or OLAC; Jennifer, Karl suggests that we check with Libby) provides oversight for all aspects of transgenic animal care.

RESEARCH INVOLVING TRANSGENIC PLANTS

The Oxford Facilities Committee provides oversight to all research involving transgenic plants. This research also requires registration with EH&S and compliance with NIH Guidelines. Because of the relatively low risk involved in types of transgenic plant research conducted at UC Berkeley, controls consist of the use of segregated and screened greenhouses. Records are also maintained on the plants used in the research. A permit from the USDA is required for open field-based research involving transgenic plants.

UC BERKELEY SAFETY PROGRAMS FOR NON-IONIZING RADIATION (NIR)

It is the policy of UC Berkeley to provide a workplace safe from the known hazards of NIR by assuring compliance with federal and State safety regulations. This policy applies to all persons (staff, researchers, students, and visitors) exposed to NIR hazards on UC Berkeley property. Campus NIR policy is set by the Non-Ionizing Radiation Safety Committee. EH&S is responsible for implementing the NIR safety policies established by the Non-Ionizing Radiation Safety Committee (NIRSC). Committee members are appointed on the basis of knowledge of the hazard control principles and practices of resulting from or associated with the use of lasers and other NIR sources. The NIR Safety Program is divided into two sections: laser safety and other NIR sources.

LASER SAFETY PROGRAM

EH&S oversees and implements the laser safety program through the Laser Use Registration (LUR) Program. No Class 3a, 3b, or 4 laser may be used at UC Berkeley without a LUR. The LUR is used to assure the NIRSC that the laser use has been assessed and found to be safe. The LUR is also used to track the location, use and ownership of each laser.

NIR SAFETY PROGRAM

EH&S oversees and implements the NIR Safety Program assuring that NIR sources are used in conformity with policies set by the NIRSC. Some non-laser NIR sources include (but are not limited to) visible and invisible light sources (e. g. ultraviolet lamps, welding), microwave ovens, antennas, and static magnetic sources (e.g., MRI and NMR units).

Through inspections or request, EH&S reviews the use of these NIR sources and makes appropriate safety recommendations. Problems discovered during these reviews or inspections that cannot be resolved or are of concern are referred to the NIRSC.

EMERGENCY RESPONSE PROGRAMS

EH&S maintains an Emergency Response Team (ERT) that consists of health and safety professionals, hazardous materials technicians, and appropriately licensed hazardous materials drivers. The team is able to respond to most incidents at UC Berkeley and arranges for appropriate outside assistance when necessary. This assistance can include the City of Berkeley Fire Department, the Lawrence Berkeley National Laboratory Fire Department, and outside emergency response contractors. All ERT members have the appropriate OSHA Hazardous Waste Operations and Emergency Response (HAZWOPER) training and renew this with annual 8-hour refresher training. Currently an ERT member will be in contact with the incident caller within 15 minutes (usually much less). Site response time depends on the type of equipment needed and the location of the incident. EH&S staff also respond to radiological spills, contamination, and emergencies.

UC Berkeley periodically assesses its response time and service and makes staffing adjustments as necessary to maintain a high service level. UC Berkeley also meets periodically with the City of Berkeley Fire Department to discuss future campus planning and the city's emergency response equipment needs.

New buildings are automatically included in the campus-wide emergency response plan. This is accomplished by working with the newly appointed building coordinator to develop a new building emergency plan upon occupancy of the new structure. This plan is then provided to a contact from each department in the building. The department contacts in turn provide emergency procedures training to their staff.

E.2 REGULATORY FRAMEWORK

FEDERAL LAWS AND GUIDELINES

RESOURCE CONSERVATION AND RECOVERY ACT OF 1976, AS AMENDED BY THE HAZARDOUS AND SOLID WASTE AMENDMENTS OF 1984

Federal hazardous waste laws are generally promulgated under the Resource Conservation and Recovery Act (RCRA). These laws provide for the "cradle to grave" regulation of hazardous wastes. Any business, institution, or other entity that generates hazardous waste is required to identify and track its hazardous waste from the point of generation until it is recycled, reused, or disposed.

The EPA has primary responsibility for implementing the RCRA, but individual states are encouraged to seek authorization to implement some or all RCRA provisions. California received authority to implement the RCRA program in August 1992. The California DTSC is responsible for implementing the RCRA program as well as California's own hazardous waste laws, which are collectively known as the Hazardous Waste Control Law. The DTSC has in turn delegated enforcement authority in Berkeley, including UC Berkeley, to the City of Berkeley under the Certified Unified Program Agency (CUPA) program.

COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT OF 1980, AS AMENDED BY THE SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT OF 1986

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, commonly called the Superfund program, created a national policy and procedures to identify and clean up sites contaminated by releases of hazardous substances. The law was amended in 1986 by the Superfund Amendments and Reauthorization Act (SARA). The EPA has primary responsibility for implementing Superfund regulations, but State agencies may be authorized to take the lead at some cleanup sites. In California, the DTSC is the State's lead agency for the federal Superfund and also enforces the State's own Superfund Law. Where groundwater contamination is the primary concern, one of the State's Regional Water Quality Control Boards may be the lead agency or a cooperating agency for the cleanup. There are no Superfund sites at UC Berkeley.

EMERGENCY PLANNING AND COMMUNITY RIGHT-TO-KNOW ACT

The Emergency Planning and Community Right-to-Know Act (EPCRA) was adopted as Title III of the Superfund Amendments and Reauthorization Act of 1986. The law is intended to increase public access to information about the storage and use of hazardous chemicals. At the federal level, the EPA administers the EPCRA. However, some of its components overlap with State requirements (the Hazardous Materials Business/Management Plan and Accidental Release Prevention Law) that predated EPCRA, and these are implemented at the State and local level. Businesses, institutions, and other entities that use, store, or release hazardous substances in Berkeley submit most of the required information to the BTMP, the local certified CUPA.

HAZARDOUS MATERIALS TRANSPORTATION ACT

The U. S. Department of Transportation regulates hazardous materials transportation under Title 49 of the CFR. State agencies with primary responsibility for enforcing federal and State regulations and responding to hazardous materials transportation emergencies are the California Highway Patrol and the California Department of Transportation. These agencies also govern permitting for hazardous materials transportation.

TITLE 29 CFR, OCCUPATIONAL SAFETY AND HEALTH ACT

The Occupational Safety and Health Act is intended to ensure that employers provide their workers with a work environment free from recognized hazards to safety and health, such as exposure to toxic chemicals, excessive noise levels, mechanical dangers, or unsanitary conditions. To establish standards for workplace health and safety, the Act also created the National Institute for Occupational Safety and Health (NIOSH) as the research institution for the Occupational Safety and Health Administration (OSHA). OSHA oversees the administration of the Act and enforces standards in all states.

TITLE 40 CFR PART 112, OIL POLLUTION PREVENTION

The Spill Prevention Control and Countermeasure (SPCC) plan is required by Title 40, Code Federal Regulations (CFR) Part 112. In California, owners and operators of aboveground storage tanks (ASTs) must comply with federal regulations pertaining to oil spill prevention and aboveground petroleum storage. Facilities subject to these regulations must complete a SPCC plan if they contain tanks with a capacity of 660 gallons or more, or if the total facility capacity exceeds 1,320 gallons. The SPCC plan provides an analysis of the potential for release from ASTs and the measures that could be put into place to reduce the potential of release. UC Berkeley is required to complete a SPCC plan under this regulation.

TITLE 42 CFR SELECT AGENT REGULATION

In addition to Title 29 of the CFR, which regulates worker safety in laboratories, federal laws relative to biological safety are contained in Title 42 of the CFR. Title 42 CFR Part 73, published in December 2002, implements provisions of the Public Health Security and Bioterrorism Preparedness Response Act, which requires the Secretary of Health and Human Services to regulate the possession of certain biological agents ("select agents") harmful to humans. The regulation controls the access, use, and transfer of select agents to ensure that these are shipped only to institutions or individuals equipped to handle them appropriately and only to those who have legitimate reasons to use them. The CDC is responsible for implementing this regulation; a facility must register with the CDC if it possesses a select agent or agents. The new rule updated the previous select agent rule which required facilities to register with the CDC only if they intended to transfer a select agent. Some of the select agents and toxins subject to regulation by the CDC are also regulated by USDA under 9 CFR part 121. Laboratories at UC Berkeley which possess, use or transfer select agents are required to comply with this regulation.

ATOMIC ENERGY ACT

In the United States, the use of radioactive materials is in general regulated by the Nuclear Regulatory Commission (NRC) under the Atomic Energy Act. The three major NRC rules that apply to UC Berkeley from Title 10 of the CFR (Chapter I, Nuclear Regulatory Commission) are Part 19, Notices, Instructions and Reports to Workers, Inspections, Part 20, Standards for Protection Against Radiation, and Part 30 (seepage E-14).

The following sections of the CFR apply to the UC Berkeley Campus Radiation Safety Program:

- Title 10: Chapter I, Nuclear Regulatory Commission
- Part 19, Notices, Instructions and Reports to Workers, Inspections
- Part 20, Standards for Protection Against Radiation
- Part 30, Rules of General Applicability to Domestic Licensing of Byproduct Material
- Part 40, Domestic Licensing of Source Material
- Part 55, Operator's Licenses
- Part 70, Domestic Licensing of Special Nuclear Materials

• Title 49: Chapter I, Research and Special Programs Administration, Department of Transportation

ANIMAL WELFARE ACT OF 1966

The Animal Welfare Act of 1966 (and its subsequent amendments) is the primary federal law that governs the use of animals in research, testing, and teaching in the United States. This Act is implemented and enforced by the U. S. Department of Agriculture (USDA). It provides the basis for the regulatory authority given to the USDA to ensure the welfare of animal species that are covered by the Act and used in regulated activities. The Act includes all warm-blooded vertebrates but specifically exempts all farm animals used in food and fiber research or production. The Act also exempts rodents used in research. The law defines humane care to include such factors as sanitation, ventilation, and housing.

Compliance with the regulations is ensured by the Institutional Animal Care Use and Committees (IACUC). The primary functions of IACUC are reviewing and inspecting all aspects of an institution's animal care and use program, including all animal facilities and animal care records; reviewing animal use protocols; reviewing and investigating complaints about animal use; and making recommendations to the Institutional Official. This is to ensure compliance with all regulations and policies and allows for interaction between the IACUC and institutional staff members. At UC Berkeley, the Animal Care and Use Committee (ACUC) serves as the IACUC.

U.S. PUBLIC HEALTH SERVICE POLICY ON THE "HUMANE CARE AND USE OF LABORATORY ANIMALS"

The U.S. Public Health Service (PHS) Policy on the "Humane Care and Use of Laboratory Animals requires institutions to establish and maintain proper measures to ensure the appropriate care and use of all animals involved in research, research training, and biological testing conducted or supported by the PHS. The PHS Policy is intended to implement and supplement the U.S. Government Principles for the Utilization and Care of Vertebrate Animals Used in Testing, Research, and Training.

NATIONAL ANIMAL WELFARE GUIDELINES AND ACCREDITATION

AAALAC International is a private nonprofit organization that promotes the humane treatment of animals in science through a voluntary accreditation program. This voluntary accreditation program is conducted in addition to complying with local, State, and federal laws that regulate animal research. By undergoing the voluntary accreditation process, the research programs demonstrate that they not only meet the minimum regulatory requirements but actually exceed them to achieve excellence in animal care and use. AAALAC International relies on the Guide for the Care and Use of Laboratory Animals (published by the National Research Council) as its primary standard for evaluation of laboratory animal care and use programs. As a condition of accreditation, AAALAC International requires correction of any deficiencies in either programs or physical facilities that they observe during site visits.

2020 LRDP DRAFT EIR APPENDIX E: HAZARDOUS MATERIALS

The goal of the National Research Council's Guide for the Care and Use of Laboratory Animals is to promote the humane care of animals used in biomedical and behavioral research, teaching, and testing. In this guide, "laboratory animals" refer to any vertebrate animals, including traditional laboratory animals, farm animals, wildlife, and aquatic animals. The guide serves to provide information that will enhance the well-being of animals, the quality of biomedical research, and the advancement of biological knowledge relevant to humans or animals. UC Berkeley is accredited by the AAALAC and is required to follow the guide.

HEALTH RESEARCH EXTENSION ACT

The Health Research Extension Act of 1985 provides for the establishment of guidelines for the proper care and treatment of animals used in biomedical and behavioral research, by the Director of the NIH. The guidelines require animal care committees at each entity which conducts biomedical and behavioral research with funding from the NIH to ensure compliance with the guidelines. At UC Berkeley, the Animal Care and Use Committee (ACUC) meets this requirement for research.

FEDERAL PLANT PEST ACT

The federal agencies primarily responsible for regulating transgenic materials in the United States are the USDA, the EPA, and the Food and Drug Administration (FDA). Under the authority of the Federal Plant Pest Act, the USDA Animal and Plant Health Inspection Service regulates importation, interstate movement, and environmental release of transgenic plants and organisms. The Service licenses, through permits, the field testing of food crops before commercial release. UC Berkeley researchers who plan to grow transgenic plants in field trials are required to obtain a permit from the USDA.

FEDERAL INSECTICIDE, FUNGICIDE, AND RODENTICIDE ACT

The EPA utilizes its authority under the Federal Insecticide, Fungicide, and Rodenticide Act to regulate the distribution, sale, use, and testing of plants and microbes producing pesticidal substances.

9 CFR PART 121 AND 7 CFR 331

The Agricultural Bioterrorism Protection Act of 2002, a subpart of the Public Health Security and Bioterrorism Preparedness Response Act of 2002, requires that entities that possess, use, or transfer agents or toxins deemed a severe threat to animal or plant health or products must notify and register with the Secretary of the USDA. USDA's Animal and Plant Health Inspection Service (APHIS) has been designated by the Secretary as the Agency for implementing the provisions of the law for USDA.

CDC AND NIH GUIDELINES

The CDC and NIH have issued federal guidelines that address biological safety; because research at university campuses often involves federal funding, compliance with these guidelines becomes mandatory for most research. The CDC and the NIH have developed containment and handling guidelines for use in microbiological and biomedical laboratories. UC Berkeley has adopted these guidelines as standard practice and instituted Biosafety Levels in its laboratories.

BIOSAFETY LEVELS. UC Berkeley has adopted the most current guidelines set forth in the U.S. Department of Health and Human Services' publications *Biosafety in Microbiological and Biomedical Laboratories*¹⁰ and *Guidelines for Research Involving Recombinant DNA Molecules*¹¹ to classify biohazardous agents and to determine the level of safety precautions that must be used. Four biosafety levels apply to biohazardous materials operations, depending on the risk group of the agent used:

- Risk Group 1 agents pose minimal or no known potential hazard to laboratory personnel and the environment.
- Risk Group 2 agents are considered to be of ordinary (not special) potential hazard and may produce varying degrees of disease through accidental inoculation, but Risk Group 2 agents may be effectively contained by ordinary laboratory techniques and facilities.
- Risk Group 3 agents pose serious risks; therefore, work with these agents must be conducted in contained facilities using special ventilation systems and controlled access separate from public areas.
- Risk Group 4 agents pose a high risk of life-threatening disease for which
 there may be no available vaccine or therapy; therefore work with these
 agents must be conducted under the most stringent containment conditions.

Therefore, Biosafety Level 1 is for the least hazardous biological agents and Biosafety Level 4 is for the most hazardous biological agents. No Biosafety Level 4 agents or laboratories exist or are allowed at UC Berkeley. The Department of Health and Human Services guidelines describe Biosafety Levels 1, 2, and 3 as follows:

- Biosafety Level 1 practices, safety equipment, and facilities are appropriate for [work involving] defined and characterized strains of viable microorganisms not known to consistently cause disease in healthy humans. ... Many agents not ordinarily associated with disease processes in humans are, however, opportunistic pathogens and may cause infection in the young, the aged, and immunodeficient or immunosuppressed individuals.
- Biosafety Level 2 practices, equipment, and facilities are applicable to [work involving] moderate-risk agents present in the community and associated with human disease of varying severity. With good microbiological techniques, these agents can be used safely in activities conducted on the open bench, provided the potential for producing splashes or aerosols is low. . . . Primary hazards to personnel working with these agents relate to accidental percutaneous or mucous membrane exposure, or ingestion of infectious materials. ... [P]rocedures with aerosol or high splash potential that may increase the risk of such personnel exposure must be conducted in primary containment equipment [or devices]. ...
- Biosafety Level 3 practices, safety equipment, and facilities are applicable to [work involving] indigenous or exotic agents with a potential for respiratory transmission, and which may cause serious and potentially lethal infection. ... Primary hazards to personnel working with these agents relate to autoinoculation, ingestion, and exposure to infectious aerosols.

BIOLOGICAL SAFETY CABINETS. Aerosol control of infectious agents or other biologically derived molecules is usually achieved by carrying out the procedure using a biological safety cabinet. There are currently three primary classes of biological safety cabinets, which are distinguished by their respective design, containment, and cleanliness capabilities.

- Class I cabinets are similar to conventional laboratory hoods with an openface and negative-pressure design, but Class I cabinets exhaust through a highefficiency particulate air (HEPA) filter.
- Class II cabinets, also referred to as laminar-flow biological safety cabinets, are effective in protecting operators from research materials as well as protecting research materials from external contamination. These cabinets are designed with an inward air flow to protect personnel, HEPA-filtered downward vertical laminar flow for product protection, and HEPA-filtered exhaust air for environmental protection.
- Class III cabinets are totally enclosed, ventilated cabinets of gas-tight construction. Operations in the cabinet are conducted through attached protective gloves.

RESEARCH INVOLVING RECOMBINANT DNA. The NIH Guidelines for Research Involving Recombinant DNA Molecules specifies practices for constructing and handling recombinant DNA molecules and organisms and viruses containing recombinant DNA molecules. These guidelines are applicable to all recombinant DNA research conducted in the United States for institutions receiving NIH funding.

In addition to Biosafety Levels for biohazardous materials, the Guidelines identify containment at four Biosafety Levels for recombinant DNA research involving plants (BL1-P through BL4-P) and small laboratory animals (BL1-N through BL4-N), and containment practices for plants, microorganisms, and animals. Recombinant DNA experiments at Biosafety Level 1 pose no significant hazard, Biosafety Level 2 experiments pose minimal hazard, and Biosafety Levels 3 and 4 involve more hazardous agents. There are no Biosafety Level 4 laboratories at UC Berkeley.

STATE AND LOCAL LAWS AND REGULATIONS

HAZARDOUS MATERIALS BUSINESS OR MANAGEMENT PLAN

Chapter 6.95 of the California Health and Safety Code requires that facilities that use, produce, store, or generate hazardous substances or have a change in business inventory are have a Hazardous Materials Management Plan (HMMP or Business Plan). The plan must disclose of the type, quantity, and storage location of materials. The law also requires a site-specific emergency response plan, employee training, and designation of emergency contact personnel.

As a State agency and large-quantity user of hazardous materials, UC Berkeley is required to submit an HMMP to the local administering agency, the BTMP. The HMMP describes hazardous materials storage and handling practices and contains procedures for monitoring storage, performing regular inspections, detecting releases, and testing of the detection systems on a regular basis. Compliance with the hazardous materials programs at UC Berkeley is verified through annual inspections.

TITLE 23 CCR, UNDERGROUND STORAGE OF HAZARDOUS SUBSTANCES

The underground storage tank (UST) monitoring and response program is required under Chapter 6. 7 of the California Health and Safety Code and Title 23 of the CCR. The program was developed to ensure that the facilities meet regulatory requirements for monitoring, maintenance, and emergency response in operating USTs. UC Berkeley operates several USTs that must meet these requirements.

ABOVEGROUND PETROLEUM STORAGE ACT

The Aboveground Petroleum Storage Act requires registration and spill prevention programs for ASTs that store petroleum. In some cases, ASTs for petroleum may be subject to groundwater monitoring programs that are implemented by the Regional Water Quality Control Boards and the State Water Resources Control Board. UC Berkeley operates a number of ASTs that are subject to these requirements.

SB 1889. ACCIDENTAL RELEASE PREVENTION LAW/CALARP

SB 1889 required California to implement a new federally mandated program governing the accidental airborne release of chemicals promulgated under Section 112 of the Clean Air Act. Effective January 1, 1997, CalARP replaced the previous California Risk Management and Prevention Program (RMPP) and incorporated the mandatory federal requirements. CalARP addresses facilities that contain specified hazardous materials, known as "regulated substances," that, if involved in an accidental release, could result in adverse off-site consequences. CalARP defines regulated substances as chemicals that pose a threat to public health and safety or the environment because they are highly toxic, flammable, or explosive. Detailed chemical inventories maintained by UC Berkeley to comply with the Business Plan law show that it does not use regulated substances in large enough quantities to trigger CalARP requirements. UC Berkeley is therefore currently not required to submit a risk management plan.

TITLE 22, CALIFORNIA HAZARDOUS WASTE CONTROL LAW

The DTSC regulates the generation, transportation, treatment, storage, and disposal of hazardous waste under the RCRA and the California Hazardous Waste Control Law. Both laws impose "cradle to grave" regulatory systems for handling hazardous waste in a manner that protects human health and the environment. The DTSC has delegated some of its authority under the Hazardous Waste Control Law to county health departments and other CUPAs, including the City of Berkeley.

SB 14. HAZARDOUS WASTE SOURCE REDUCTION AND MANAGEMENT REVIEW ACT OF 1989

Federal amendments to hazardous and solid waste laws made waste minimization a national policy in 1984. Under this congressional action, a Generator's Certification is required on each Uniform Hazardous Waste Manifest to help ensure that each generator of hazardous waste has a program in place to reduce the volume and toxicity of waste generated. Additional regulatory oversight was provided in State legislation, the Hazardous Waste Source Reduction and Management Review Act of 1989 (SB 14). The goal of this Act is to achieve optimal minimization of the generation of hazardous waste. Most recently, Hazardous Waste Source Reduction and Management Act Modifications (SB 1726) reduced the reporting threshold, which increased the universe of generators governed by the Act. To comply with this Act, UC Berkeley established a comprehensive waste minimization program in 1991.

TITLE 8 CCR, CALIFORNIA OCCUPATIONAL SAFETY AND HEALTH ACT

Worker Safety. In California, Cal/OSHA assumes primary responsibility for developing and enforcing standards for safe workplaces and work practices. Cal/OSHA standards must be at least as stringent as federal standards, and they are generally more stringent. Cal/OSHA hazardous materials regulations include requirements for safety training, availability of safety equipment, hazardous substance exposure warnings, and emergency action and fire prevention plan preparation. Cal/OSHA enforces hazard communication program regulations, which include identifying and labeling hazardous substances, providing employees with Material Safety Data Sheets (MSDSs), and describing employee-training programs. These regulations also require UC Berkeley to prepare emergency action plans, including escape and evacuation procedures. Title 8 also establishes general industry safety orders for bloodborne pathogens, sharps injury prevention, and disposal of infectious wastes. All laboratories that involve the handling of biohazardous materials must comply with OSHA standards.

ASBESTOS AND LEAD PROGRAMS. The removal and handling of asbestos-containing materials is governed primarily by EPA regulations under Title 40 of the CFR but implemented by the Bay Area Air Quality Management District (BAAQMD). This program is described further in Section 4. 2. Fed/ OSHA also has a survey requirement under Title 29 of the CFR, which is implemented by Cal/OSHA under Title 8 of the CCR. These regulations require facilities to take all necessary precautions to protect employees and the public from exposure to asbestos.

The Cal/OSHA lead standard for construction activities is implemented under Title 8 of the CCR. The standard applies to any construction activity that may release lead dust or fumes, including, but not limited to, manual scraping, manual sanding, heat gun applications, power tool cleaning, rivet busting, abrasive blasting, welding, cutting, or torch burning of lead-based coatings. Unless otherwise determined by approved testing methods, all paints and other surface coatings are assumed to contain lead at prescribed concentrations, depending on the application date of the paint or coating. UC Berkeley requires contractors to implement the Hazardous Waste Control Law as well as all necessary precautions to protect employees, students, subcontractors, and visitors from exposure to lead-containing dust.

PORTER-COLOGNE WATER QUALITY CONTROL ACT

Disposal of chemicals into the sanitary sewer is regulated by the Porter-Cologne Water Quality Control Act, codified in the California Water Code. This set of laws essentially implements the requirements of the Federal Clean Water Act and other requirements including East Bay Municipal Utility District (EBMUD) Ordinance 311 and the EBMUD Wastewater Discharge Permit issued to UC Berkeley. These laws prohibit any drain disposal of hazardous wastes and limit the allowable wastewater concentration of a number of specific hazardous substances. Federal and California hazardous waste laws permit laboratories to drain-dispose of some chemicals in small quantities that do not pose a hazard to human health or the environment. Discharge of hazardous wastes into the university sanitary sewer system is prohibited by EBMUD's drain ordinance.

EMERGENCY RESPONSE TO HAZARDOUS MATERIALS INCIDENT

California has developed an Emergency Response Plan to coordinate emergency services provided by federal, State, and local government and private agencies. The plan is administered by the OES and includes response to hazardous materials incidents. OES coordinates the response of other agencies including the Cal/EPA, the California Highway Patrol, the California Department of Fish and Game, the Regional Water Quality Control Board, the BAAQMD, and the City of Berkeley Fire Department.

MEDICAL WASTE MANAGEMENT ACT

In 1990 the California legislature adopted the Medical Waste Management Act, which provides for the regulation of medical waste generators, transporters, and treatment facilities. The California Department of Health Services (DHS) has adopted statewide regulations covering medical waste treatment permits and shares regulatory authority with local programs that choose to enforce the requirements. As a large generator of medical wastes, UC Berkeley must comply with these regulations.

CALIFORNIA RADIATION LAW

California is an "agreement state" with respect to federal radiation law. The agreement is that the State will administer the NRC federal regulations found in Title 10 of the CFR. The DHS is the agency responsible for administering the agreement. Under the agreement, the rules for California must be adequate to protect public health and safety and compatible with those of the NRC. The California rules are codified under Title 17 of the CCR. Under the California Radiation Control Law, the Radiological Health Branch of the DHS administers these rules.

The State's rules govern the receipt, storage, use, transportation, and disposal of sources of ionizing radiation and provide for the protection of users of these materials and the general public from radiation hazards. The DHS controls the use of radioactive materials in California by issuing Radioactive Material Licenses to California users of radioactive materials and radiation-producing machines. Several types of licenses exist, and UC Berkeley has a Broadscope Radioactive Materials License (the license) granted by the DHS.

E.3 REFERENCES

- ¹ UC Berkeley Office of Environment, Health & Safety (EH&S), Help Sheet No. 09, Transporting Chemicals Safely on Campus, 1997 (revised 1998), http://www.ehs.berkeley.edu/pubs/helpsheets/09chemtransp.pdf, retrieved April 4, 2004.
- ² UC Berkeley Office of Environment, Health & Safety (EH&S), *The Move Manual: A Guide to Relocating Hazardous Materials*, revised 1996, http://www.ehs.berkeley.edu/pubs/movemanual/MoveManual May96.pdf, retrieved April 4, 2004.
- ³ UC Berkeley Office of Environment, Health & Safety (EH&S) publications website, http://www.ehs.berkeley.edu/pubs/publications.html. Note: at publication date, the Fact Sheet was under revision.
- ⁴ Hurlbert, Margaret, EH&S Specialist, UCB Physical Plant-Campus Services. Personal communication with Shabnam Barati, URS Corporation, February 2004.
- ⁵ Haet, Greg, Associate Director, UCB Office of Environment, Health and Safety. Personal communication with John Koehler, URS Corporation, April 6, 2004.
- ⁶ UC Berkeley Office of Environment, Health & Safety (EH&S), Fact Sheet No. 52, *Unwanted Hazardous Chemicals*, revised June 23, 2000, http://www.ehs.berkeley.edu/pubs/factsheets/52hazchems.pdf, retrieved April 4, 2004.
- ⁷ Randol, Heather, EH&S Specialist, UCB Environment, Health & Safety. Personal communication with Shabnam Barati, URS Corporation, April 5, 2004.
- 8 UC Berkeley Office of Environment, Health & Safety (EH&S), Managing and Disposing of Medical Waste, http://www.ehs.berkeley.edu/pubs/helpsheets/01medwastegls.pdf, 1996 (revised 1997), retrieved April 4, 2004.
- ⁹ Lavely, Paul, Associate Director, UCB Environment, Health & Safety. Personal communication with John Koehler, URS Corporation, March 14 and October 1, 2002.
- ¹⁰ U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, and National Institutes of Health, *Biosafety in Microbiological and Biomedical Laboratories*, Fourth Edition, 1999, http://www.cdc.gov/od/ohs/biosfty/bmbl4/bmbl4toc.htm.
- ¹¹ U.S. Department of Health and Human Services, National Institutes of Health, Office of Biotechnology Activities, *Guidelines for Research Involving Recombinant DNA Molecules*, 2002, http://www4.od.nih.gov/oba/rac/guidelines/guidelines.html.

APPENDIX F

Transportation and Traffic

.....

TABLE OF CONTENTS

F.1	Traffic Analysis Background	F.1-1
F.2	Existing Peak Hour Intersection Volumes and Int	ersection
	Lane Configurations	F.2-1
F.3	Level of Service Summaries	F.3-1
F.4	Alameda County CMA Countywide Travel	
	Demand Model	F.4-1
F.5	Level of Service Calculation Sheets	F.5-1

APPENDIX F.I TRAFFIC ANALYSIS BACKGROUND

This appendix contains supplementary information about the traffic analysis study area and the intersection analysis methodology. It also includes an overview of the transportation analysis.

F.I.I IMPACT ANALYSIS STUDY AREA

This section describes the impact analysis study area, beginning with descriptions of the regional and local roadway network serving the LRDP area.

REGIONAL ROADWAYS

Regional access to Campus Park is provided by three freeways including Interstate 80, State Route 13 and State Route 24. The primary streets serving the Campus Park include Ashby Avenue, San Pablo Avenue, University Avenue, Gilman Street, Shattuck Avenue, Martin Luther King Jr. Way, Telegraph Avenue, College Avenue, and the Belrose-Derby-Warring-Piedmont corridor. Roadway descriptions are as follows:

Interstate-80 connects the San Francisco Bay Area with the Sacramento region and continues east across the United States. Within Berkeley, Interstate 80 is oriented in a north-south direction. Interstate 80 and the nearby Interstate 80/Interstate 580 interchange operate at capacity during peak commute periods. The Ashby Avenue, University Avenue and Gilman Street interchanges provide access to Berkeley. The average daily traffic (ADT) on Interstate 80, at University Avenue, is 253,000 vehicles. ¹

State Route 24 links Interstate 80/Interstate 580/Interstate 980 interchange in Alameda County to Interstate 680 in Contra Costa County via the Caldecott Tunnel. Highway 24 provides the primary access from Contra Costa County to Berkeley via Highway 13 and Telegraph Avenue. The ADT on Highway 24 at Telegraph Avenue is 141,000 vehicles.²

Ashby Avenue (State Route 13) is an east-west street, and also a state highway, which connects Interstate 80 to Highway 24. South of Highway 24, Highway 13 continues as a four-lane freeway to its junction at Interstate 580. Ashby Avenue has four lanes west of San Pablo Avenue and two lanes in most places east of San Pablo. During the peak commute hours, on-street parking restrictions on the north side of the street in the morning and the south side in the evening provide an additional travel lane for commuters. The ADT on Ashby Avenue at Telegraph Avenue is 23,500 vehicles.³

San Pablo Avenue (Highway 123) is a major north-south street that connects the Richmond/Pinole area north of Berkeley with Oakland/Emeryville to the south. San Pablo Avenue is a state highway, and is a four-lane road with left-turn pockets at major intersections. The ADT on San Pablo Avenue, at University Avenue is about 23,500 vehicles.⁴

UNIVERSITY OF CALIFORNIA, BERKELEY 2020 LRDP DRAFT EIR APPENDIX F.I: TRAFFIC ANALYSIS BACKGROUND

University Avenue is a four-lane east-west street. University Avenue provides one of the City's three connections to Interstate 80 to the west (along with Gilman Street and Ashby Avenue). The roadway provides parking, is divided and has left turn pockets at major intersections. Left turns from University Avenue onto cross-streets generally are not served by a separate left turn signal phase. University Avenue extends from the west edge of the UC Berkeley campus to Interstate 80 and Berkeley Marina. The ADT on University Avenue at San Pablo Avenue is 27,900 vehicles.⁵

Gilman Street is a major east-west street that connects Interstate 80 with San Pablo Avenue, and continues into North Berkeley to Hopkins Street. Most of the intersections along Gilman are unsignalized and the corridor provides one lane in each direction. The ADT on Gilman Street at San Pablo Avenue is 17,500 vehicles.⁶

Shattuck Avenue is a major north-south street that extends from north Berkeley to downtown Oakland. Shattuck Avenue is generally a four-lane roadway, with a center raised median, left-turn pockets, and on-street parking. Between Adeline Street and Alcatraz Avenue, Shattuck Avenue is a two-lane roadway. The ADT on Shattuck Avenue, at Dwight Way is 36,400 vehicles.⁷

Martin Luther King Jr. Way is a north-south street that extends from Hopkins Street in north Berkeley to Adeline Street in south Berkeley. Martin Luther King Jr. Way is four-lanes south of University Avenue and two-lanes north of University Avenue. There are no medians but there is on-street parking. The ADT on Martin Luther King Jr. Way, at Ashby Avenue is 23,000 vehicles.⁸

Telegraph Avenue is a major north-south street that extends from the Campus Park in the north to downtown Oakland in the south. Telegraph Avenue connects directly with Highway 24 Westbound ramps and to Eastbound Highway 24 via ramps at 51st Street. Between the Campus Park and Dwight Way, Telegraph Avenue is a two-lane, one-way northbound roadway; South of Dwight Way, Telegraph Avenue provides two travel lanes in each direction. Weekend vehicle traffic is often restricted near the Campus Park to foster pedestrian activity. Telegraph Avenue accommodates on-street parking on both sides of the street. The ADT on Telegraph Avenue, at Ashby Avenue is 28,200 vehicles.⁹

College Avenue is a major north-south street that extends from the Campus Park south to Highway 24 and into Oakland. In general, College Avenue provides one travel lane in each direction, and on-street parking. The ADT on College Avenue, at Ashby Avenue is 13,000 vehicles.¹⁰

Belrose-Derby-Warring-Piedmont Corridor is a heavily used street corridor between Highway 24 and the campus Southside area. Its connection to Tunnel Road facilities travel from both Highway 24 and Highway 13. With single lane travel in both directions, the corridor is at capacity for several hours during the morning and evening commute periods. The City and the University encourage travelers to use other routes, especially Telegraph Avenue, using roadway signs and directions in official mailings.

LOCAL ROADWAYS

The following local streets provide access and local circulation to the Campus Park area.

Durant Avenue and Bancroft Way are an east-west street couplet which extends from Downtown Berkeley at Martin Luther King Jr. Way to the Southside area of the Campus Park. Bancroft Way borders the Campus Park between Gayley Road and Oxford Street. Durant Avenue (one way eastbound) and Bancroft Way (one way westbound) each provide two to three travel lanes with on-street parking on both sides of the street.

Hearst Avenue is an east-west street that extends from West Berkeley at Eastshore Highway to Gayley Road at the Northwest corner of the Campus Park. Hearst Avenue borders the Campus Park between Gayley Road and Oxford Street. Hearst Street is generally a two-lane street with on-street parking. During the peak commute hours, on-street parking restrictions on the south side of the street in the morning and the north side in the evening provide an additional travel lane for commuters. These restrictions occur between Gayley Road and Oxford Street. Hearst Avenue is designated as a bicycle lane (Class II) facility west of Shattuck Avenue, and a bicycle route (Class III) facility to the east.

Oxford Street is a two-to four-lane north-south street that extends between downtown Berkeley to the south and Marin Avenue to the north. Oxford Street borders the Campus Park between Hearst Avenue and Bancroft Way, and parking is allowed on both sides of the street. Oxford Street adjacent to the Campus Park is designated as a bicycle lane (Class II) facility.

Gayley Road is a two-lane, north-south street that borders the east side of Campus Park, and extends between Bancroft Way in the south and Hearst Avenue in the north. South of Bancroft Way, Gayley Road becomes Piedmont Avenue and north of Hearst Avenue, Gayley Road becomes La Loma Avenue. No parking is allowed on Gayley Road.

Euclid Avenue is a two-lane north-south street that begins at Hearst Avenue adjacent to the Campus Park and extends through North Berkeley. Euclid Avenue serves as important street for Berkeley Hill residents to access the Campus Park and downtown areas. Parking is allowed on both sides of the street.

Channing Way is an east-west street that extend between Piedmont Avenue in the east to Berkeley Aquatic Park in West Berkeley. Channing Way is a two-lane, two-way facility with parking on the north side of the street. Channing Way is a designated Bicycle Boulevard.

Haste Street is an east-west street that connects Martin Luther King Jr. Way to Piedmont Avenue. Haste Street provides two westbound lanes, with parking on both sides of the street. Haste Street serves as a one-way couplet along with Dwight Way.

Dwight Way is a major east-west street extending from Berkeley Aquatic Park in West Berkeley through Berkeley and past Piedmont Avenue. The street is one-way eastbound with two travel lanes between Martin Luther King Jr. Way and Piedmont Avenue, and two-way with one lane in each direction otherwise. On-street parking is provided along both sides of the street.

F.1.2 CONDUCTING TRAFFIC COUNTS FOR BASELINE CONDITIONS

The following information supplements the discussion in Chapter 4.12.4, Roadway and Intersection Operations -- Analysis Locations.

When conducting traffic counts for baseline condition definitions, it is desirable to ensure no unusual conditions exist. In a citywide traffic count such as that conducted for this EIR, it is difficult to avoid all unusual conditions without substantially delaying the data collection effort. During the count periods, the following unusual conditions, mostly due to construction, were observed:

- Channing Way, west of College Avenue open for parking lot access only;
- Channing Way (westbound) narrowed to one lane shared by both directions at the Channing Way/Shattuck Avenue intersection;
- Gayley Road between Bancroft Avenue and Hearst Avenue periodically closed throughout the day for heavy vehicle movements;
- Euclid Avenue between Hearst Avenue and Ridge Road closed during the morning peak period;
- Hearst Avenue (westbound) narrowed to two lanes at the Hearst Avenue/Oxford Street intersection.

F.1.3 INTERSECTION ANALYSIS METHODOLOGY

SIGNALIZED INTERSECTIONS

Signalized Intersection traffic conditions and resulting level of service were determined using the Highway Capacity Manual (HCM) - Special Report 209 (Transportation Research Board, 2000) methodology. This operations analysis uses various intersection characteristics (such as traffic volumes, lane geometry, and signal phasing) to estimate the control delay per vehicle. Control delay is the portion of the total delay attributed to signal operations and includes initial deceleration, queue move up time, stopped delay, and acceleration delay. Using this methodology, the level of service for a signalized intersection is based on the control delay per vehicle measured in seconds. Qualitative descriptions of level of service are provided in Table F.1-1. The signalized intersection LOS criteria are summarized in Table F.1-2.

TABLE F.1-1 Level of	QUALITATIVE DESCRIPTION OF LEVEL OF SERVICE
Service	Driver's Perception
A	LOS A is the highest quality of traffic flow. Motorists are able to drive at their desired speeds for two and four lane roads and can easily make lane changes to pass on four lane roads. At a traffic signal, all motorists can be served by one green signal phase. Motorists on a stop-controlled approach experience little or no conflicting traffic.
В	LOS B is characterized by light congestion. Motorists are generally able to maintain desired speeds on two and four lane roads and make lane changes on four lane roads. Motorists are still able to pass through traffic controlled intersections in one green phase. Stop-controlled approach motorists begin to notice absence of available gaps.
С	LOS C represents moderate traffic congestion. Average vehicle speeds continue to be near the motorist's desired speed for two and four lane roads. Lane change maneuvers on four lane roads increase to maintain desired speed. Turning traffic and slow vehicles begin to have an adverse impact on traffic flows. Occasionally, motorists do not clear the intersection on the first green phase. Stop-controlled approach motorists begin experiencing delay for available gaps.
D	LOS D is characterized by congestion with average vehicle speeds decreasing below the motorist's desired level for two and four lane roads. Lane change maneuvers on four lane roads are difficult to make and adversely affect traffic flow like turning traffic and slow vehicles. Multiple cars must wait through more than one green phase at a traffic signal. Stop-controlled approach motorists experience queuing due to a reduction in available gaps.
E	LOS E is the lowest grade possible without stop-and-go operations. Driving speeds are substantially reduced and brief periods of stop-and-go conditions can occur on two and four lane roads and lane changes are minimal. At signalized intersections, long vehicle queues can form waiting to be served by the signal's green phase. Insufficient gaps on the major streets cause extensive queuing on the stop-controlled approaches.
F	LOS F represents stop-and-go conditions for two and four lane roads. Traffic flow is constrained and lane changes minimal. Drivers at signalized intersections may wait several green phases prior to being served. Motorists on stop-controlled approaches experience insufficient gaps of suitable size to cross safely through a major traffic stream.
Source: Fehr	x & Peers Associates (interpreted from 2000 Highway Capacity Manual)

TABLE F.1-2 SIGNALIZED INTERSECTION LEVEL OF SERVICE CRITERIA

Level of Service	Control Delay per Vehicle (Seconds)					
A	≤ 10.0					
В	> 10.0 and ≤ 20.0					
С	> 20.0 and ≤ 35.0					
D	>35.0 and ≤ 55.0					
E	>55.0 and ≤ 80.0					
F	>80.0					

Source: Highway Capacity Manual - Special Report 209 (Transportation Research Board, 2000)

TABLE F.1-3 UNSIGNALIZED INTERSECTION LEVEL OF SERVICE CRITERIA

Level of Service	Control Delay per Vehicle (Seconds)
A/B	≤ 15.0
С	> 15.0 and ≤ 25.0
D	$>$ 25.0 and \leq 35.0
Е	$>$ 35.0 and \leq 50.0
F	>50.0

Source: Highway Capacity Manual - Special Report 209 (Transportation Research Board, 2000)

UNSIGNALIZED INTERSECTIONS

Unsignalized Intersections (four-way stop-controlled and side street stop-controlled) were evaluated using the HCM – Special Report 209 (Transportation Research Board, 2000) methodology. With this methodology, operations are defined by the average control delay per vehicle (measured in seconds) for each stop-controlled movement. This incorporates delay associated with deceleration, acceleration, stopping, and moving up in the queue. For side street stop-controlled intersections, the delay is typically represented for each movement from the minor approaches only. Table F.1-3 summarizes the relationship between delay and LOS for unsignalized intersections.

F.I.4 TRANSPORTATION ANALYSIS OVERVIEW

This section describes the transportation analysis of the 2020 LRDP in detail, including the trip generation for each mode of travel; trip distribution and assignment to the roadway system; and the estimated future parking demand. This section is followed by sections discussing the resulting impacts on intersection operations; CMP route traffic capacity; parking supply and demand; bicycle circulation; pedestrian circulation; transit service; and construction period impacts.

FUTURE TRAFFIC FORECASTING METHODOLOGY (2020 NO PROJECT)

Traffic volumes for the Year 2020 Without Project condition were forecast using the Alameda County Countywide Travel Demand Model. Maintained by the Alameda County Congestion Management Agency, the Countywide Travel Demand Model is used to assess project impacts on the Congestion Management Program (CMP) Designated Roadway System and on the Metropolitan Transportation System (MTS), which includes more roadways than the CMP system. In addition, the Countywide Travel Demand Model is the best tool available for forecasting regional traffic growth. Thus the Countywide Travel Demand Model can be used to develop baseline intersection turning movements for the Year 2020 Without Project scenario.

The current model, is based on the Association of Bay Area Governments (ABAG) *Projections 2002* Land Use database, and provides 2005 (to be used as existing conditions), 2010 and 2025 forecasts. In consultation with the CMA staff, it was determined that the 20-year time span between 2005 and 2025 was appropriate to assess 2020 conditions, as it represents just two additional years of regional growth, relative to the 2002 – 2020 time span covered by the LRDP analysis. (A sensitivity analysis was performed to confirm that the two additional years represents negligible differences at individual intersections).

During the initial preparation of the DEIR traffic impact analysis in mid-2003, revised *Projections 2002* land uses were released by ABAG, causing the CMA and many member cities to reconsider the accuracy of the land use distributions within the cities (citywide totals did not change). The CMA began the process of revising the model to better reflect the revised *Projections 2002* data, but the revised model was not ready in time for the analysis in this EIR. Therefore, for this EIR, the 2025 model is used to represent 2020 Without Project conditions, with the following modifications:

- The model land uses by zone were adjusted by Hausrath Economics Group, in consultation with the City of Berkeley, to provide a more accurate land use distribution in the southside and downtown areas. This resulted in Citywide population and employment totals that slightly exceed the previous totals in the model. To reflect these totals, in consultation with the CMA, a modified April 2003 model incorporating the HEG land use adjustments was used to prepare the analysis for this document.
- Subsequent to the completion of the DEIR analysis, a new updated model was released by CMA in March 2004. The updated March 2004 model results were compared to the model results used for the DEIR analysis. The citywide population and employment totals used by CMA are about 3% less than the model used for analysis in this section. The major modification to the model is the redistribution of employment throughout the City of Berkeley. The employment redistribution is applied to both 2005 and 2025 models, thus the net 2005 to 2025 land use growth has not changed. Since the forecasted traffic volumes used for this analysis are based on the growth between 2005 and 2025 models, the forecasted traffic volumes presented in the analysis would be consistent with the latest updated CMA model.

- To obtain intersection turning movement forecasts, the existing volumes were adjusted using an iterative process that incorporates the Countywide Travel Demand Model forecasted 2005 to 2025 growth at each intersection approach and departure. This process is called "furnessing". This process was used at the major (arterial/arterial) intersections, and then the growth at those intersections was distributed to the rest of the study intersections, in a process called volume balancing. Note that the year 2005 Travel Demand Model is used in this process as an approximation of existing conditions.
- The traffic generated by growth currently envisioned for the Lawrence Berkeley National Laboratory 2004 LRDP was added to the model forecast volumes in a separate step, in order to ensure consistency with the traffic forecasts being prepared by Lawrence Berkeley National Laboratory. The volumes were added to each intersection, using a TRAFFIX software-based model prepared by the Lawrence Berkeley National Laboratory traffic consultant, Wilbur Smith Associates. The Lawrence Berkeley National Laboratory 2004 LRDP envisions a growth in the Average Daily Population (defined as full-time equivalent staff plus 40% guests) of 1,200 from 2003 to 2025.
- Since the UC Berkeley LRDP EIR projects traffic only to 2020, LBNL's projected growth of 1,200 by 2025 was reduced to 900, using straight-line interpolation. The corresponding trip generation growth for Lawrence Berkeley National Laboratory, as calculated by Wilbur Smith Associates and reduced by Fehr & Peers to reflect 2003 2020 growth only, is 131 AM peak hour trips and 140 PM peak hour trips. These trips were assigned to the roadway network in the above-noted TRAFFIX model, and Fehr & Peers took the assigned volumes and added them to the UC Berkeley LRDP 2020 traffic projections, to produce final Cumulative Without Project 2020 traffic volumes.
- The University recently completed the Draft Environmental Impact Report (DEIR) for the University Village and Albany/NW Berkeley Properties Master Plan Amendments. The project, which consists of 738 student residential units, 31 faculty residential units, and 73,000 square feet of retail, is estimated to generate 359 AM peak hour trips and 652 PM peak hour trips. The University Village estimated trip generation and trip distribution was taken into account as documented in the DEIR for that project, to provide consistent analysis in the area common to both studies.

Appendix F.4 contains the Countywide Travel Demand Model's land use by zone for Berkeley, for 2005 and 2025, as modified (see above). Appendix F.4 also includes the model's trip generation by zone for 2005 and 2025.

PROJECT DESCRIPTION

Under the proposed 2020 LRDP, the academic and support space would increase by up to 2.2 million square feet, campus headcount by up to 4,520 persons (excluding visitors and vendors), the parking supply by up to 2,300 spaces, and

housing by up to 2,600 beds. The primary factor for trip generation for the 2020 LRDP is the increase in population. Table F.1-4 summarizes the existing and the estimated increase for each population segment under the 2020 LRDP.

The number of parking spaces provided also contributes to the overall project trip generation. Since vehicle trips must begin and end at a parking space, the parking facility location determines the trip distribution characteristics of the project. Figure F.1-1 shows the location of the City Environs zones. The maximum number of new parking spaces allowed under the 2020 LRDP for each zone is: 600 spaces in the Campus Park zone, 600 in the Adjacent Blocks South zone, and 1,300 in the Adjacent Blocks West zone. The total number of spaces in these zones add to 2,500. However, the net increase under the 2020 LRDP would not be more than 2,300 spaces, thus providing some flexibility in the ultimate parking locations.

The 2020 LRDP land use zones, as shown in Figure F.1-1, assume a very large area for potential parking locations. In order to provide a meaningful traffic analysis for study intersections located within or in close proximity to the parking zones, the parking locations need to be defined more specifically. Thus, the proposed number of parking spaces within each area have been assigned to more specific parking clusters. Figure F.1-2 shows the location of these parking clusters and the estimated maximum number of parking spaces assigned to each cluster.

These clusters represent the most likely locations for new parking facilities. They do not represent the ultimate location and size of future parking facilities. The ultimate location and size of future parking facilities is limited only by the parking zones shown in Figure F.1-1.

As previously mentioned, the 2020 LRDP also includes up to 2,500 student beds and up to 200 family-suitable units. About 100 of the family-suitable units would be located in the Hill Campus land use zone. The other 100 family-suitable units and all of the other student housing would be located in the LRDP Housing Zone, shown in Chapter 3, Figure 3.1-5. The LRDP Housing Zone is defined as areas already zoned for high-density housing within a one-mile radius of Doe Library, or within a block of a transit line providing a trip to Doe Library in under 20 minutes. The proximity of the housing units to either the Campus Park or a transit line is designed to minimize the need for residents to commute by auto to the campus. Further, the majority of the new student housing would be within a two-mile radius of the Campus Park, where students are not allowed to purchase commuter parking permits.

The proposed 2,500 student beds would accommodate all of the 1,650-student growth plus an additional 850 existing students. The 850 existing students served by the new beds would be expected to shift primarily from locations further away from the Campus Park to location closer to the Campus Park. Similarly, the 200 new family-suitable units would accommodate faculty/staff in locations closer to the Campus Park and thus reduce their trip generation.

FIGURE F.I-I CITY ENVIRONS PARKING SPACES

Source: Fehr and Peers, 2003.

Note: In some cases, parking cluster borders overlap the land use zones shown in Figure F.I-I.

Estimated Maximum Number of Parking Spaces Assumed in Each Parking Cluster

- - Lawrence Berkeley National Laboratory Boundary

FIGURE F.1-2 **2020 LRDP PARKING CLUSTERS**

TABLE F. I-4 2020 LRDP HEADCOUNT SUMMARY

	Additional				
Population Group	Existing	2020 LRDP	Total 2020		
Students	31,800	1,650	33,450		
Undergraduate	23,100	850	23,950		
Graduate	8,700	800	9,500		
Faculty	1,760	220	1,980		
Post-docs and Visiting Scholars	1,1,935	1,140	3,075		
Academic Staff	1,105	700	1,805		
Non-Academic Staff	8,140	810	8,950		
Total	44,740	4,520	49,260		

Source: UC Berkeley, May 2003

The housing units would be located in areas already zoned for high-density residential developments. Thus there is no change in land use in these areas. These residential developments would be allowable regardless of University residential development needs. However, by providing University-affiliated housing in areas with adequate non-auto access to the Campus Park, the trip generation for these sites would be reduced.

Although the housing component of the 2020 LRDP would lower the overall project trip generation, it has not been taken into account, in order to provide a more conservative analysis.

The traffic analysis for the LRDP Housing Zones is incorporated within the traffic analysis for the 2020 LRDP program as a whole. Because the specific locations of new housing projects within the LRDP Housing Zones zone is not defined, the trip generation, distribution and assignment associated with the new beds is based on the methodology described in the following section. This methodology treats the 2020 LRDP population growth (including those accommodated by the new beds) as a whole, and bases the trip-making characteristics of the new population on factors such as the distance between residence and campus, and the travel mode choice (based on surveys of the current population). The LRDP Housing Zones are all located within 5 miles of campus, so the trips generated by the new students, faculty and staff using the new beds are represented within that category in the analysis. This analysis approach yields a conservative estimate of total 2020 LRDP trips, because no discount for proximity to transit is applied to the LRDP Housing Zone vehicle trips.

MODE CHOICE

Person trip generation estimates were developed based on the *Spring 2001 Faculty/Staff Housing, Transportation, and Parking Survey*, the *Fall 2000 Student Housing and Transportation Survey*, current University population data, and the 2020 LRDP program description. These sources were used to estimate person-trip generation for each travel mode and from this the vehicle-trip estimates for the expected LRDP population growth. The steps taken in estimating the 2020 LRDP trip generation are briefly described here.

Data from the faculty/staff and student surveys were cross-tabulated to identify, for the six population categories, the percentage breakdown by residence distance from Campus Park, and the percentage breakdown by primary travel mode used for the Campus Park commute. This gives, for each group, a unique mode use breakdown for each of four residence distance categories (less than one mile, one to five miles, five to ten miles, and over ten miles). Table F.1-5 summarizes the existing mode choice for each population category based on residence location.

The trip generation for each mode is based on the data summarized in Table F.1-5. The trip generation for each travel mode is discussed in further detail under the appropriate section.

PERSON TRIP GENERATION

Person trip generation estimates for each mode were developed by applying the mode choice data presented in Table F.1-5 to the expected increase in each population category. A daily peak attendance of 90 percent is assumed to account for the combined effects of vacations, sick leaves and other work absences (this is a conservative factor that does not consider part-time employees.) Using these calculations, as shown in Table F.1-6, the 2020 LRDP is estimated to generate 4,101 new person trips; that is, 4,101 new commute round-trips by all travel modes combined.

VEHICLE TRIP GENERATION

The 2020 LRDP is estimated to result in an additional 1,636 persons driving alone to the Campus Park, and 247 persons coming by carpool or vanpool. Based on the faculty/staff and student surveys, a 2.3 carpool/vanpool occupancy rate is assumed. The Campus Park population increase of 4,520 is estimated to result in 1,745 new vehicles driving to the City Environs daily. Each commute round-trip equals two one-way commute trips: one coming to the City Environs, and one leaving the City Environs.

The arrival and departure time data from the surveys were used to estimated the AM and PM peak hour vehicle trip generation. The AM peak hour occurs between 8:00 and 9:00 AM and the PM peak hour occurs between 5:00 and 6:00 PM. As summarized in Table F.1-7, the 2020 LRDP is estimated to result in 3,490 new daily, 732 new inbound AM peak hour, and 685 new outbound PM peak hour vehicle trips.

TABLE F.1-5 EXISTING CAMPUS PARK MODE CHOICE BY POPULATION SEGMENT AND RESIDENCE DISTANCE²

Population	Residence Distance				
Segment	Travel Mode	< 1 Miles	1-5 Miles		> 10 Miles
	Walk	35%	10%	0%	0%
	Bicycle	19%	20%	4%	0%
Faculty	Drive Alone	27%	55%	83%	61%
,	Carpool/Vanpool	8%	8%	7%	2%
	Public Transit	12%	6%	7%	37%
	Walk	35%	10%	0%	0%
Post-Docs and	Bicycle	19%	20%	4%	0%
Visiting	Drive Alone	27%	55%	83%	61%
Scholars ^b	Carpool/Vanpool	8%	8%	7%	2%
	Public Transit	12%	6%	7%	37%
	Walk	63%	13%	0%	0%
	Bicycle	38%	15%	0%	0%
Academic Staff	Drive Alone	0%	58%	81%	59%
	Carpool/Vanpool	0%	7%	19%	6%
	Public Transit	0%	6%	0%	34%
	Walk	66%	9%	0%	0%
Non-Academic	Bicycle	13%	13%	1%	1%
Staff	Drive Alone	10%	52%	65%	51%
Stall	Carpool/Vanpool	1%	9%	15%	14%
	Public Transit	11%	18%	19%	34%
	Walk	85%	13%	5%	0%
T In donous du seo	Bicycle	5%	11%	0%	0%
Undergraduate Students	Drive Alone	0%	22%	50%	37%
Students	Carpool/Vanpool	0%	3%	8%	8%
	Public Transit	10%	49%	38%	54%
	Walk	66%	10%	1%	0%
Graduate	Bicycle	19%	23%	2%	1%
Students	Drive Alone	0%	16%	59%	45%
Students	Carpool/Vanpool	0%	3%	4%	4%
	Public Transit	14%	46%	33%	48%

^a Existing mode choice for commute trips to the Campus Park based on data in the Spring 2001 Faculty/Staff Housing, Transportation, and Parking Survey and the Fall 2000 Student Housing and Transportation Survey.

Source: Fehr & Peers Associates, June 2003.

^b Due to low response rates for post-docs/visiting scholars (2%) to the Spring 2001 Faculty/Staff Housing, Transportation, and Parking Survey, the survey results were excluded. Rather post-docs/visiting scholars were assumed to most closely resemble faculty. As a result, post-docs/visiting scholars are represented by the faculty data.

TABLE F.1-6 2020 LRDP PERSON TRIP GENERATION BY MODE CHOICE, POPULATION SEGMENT AND RESIDENCE DISTANCE^a

Population Segment			Residence Distance				
Faculty	Population Segment		< 1 Miles	1-5 Miles	5-10 Miles	>10 Miles	Total
Paculty		Walk	7	13	0	0	20
Carpool/Vanpool		Bicycle	4	26	1	0	31
Public Transit 2	Faculty	Drive Alone	5	69	21	17	112
Walk 34 68 0 0 102		Carpool/Vanpool	1	10	2	1	14
Post-Docs and Visiting Scholars		Public Transit	2	8	2	10	22
Post-Docs and Visiting Scholars		Walk	34	68	0	0	102
Visiting Scholars Drive Alone Carpool/Vanpool 26 357 111 89 583 583 72 Public Transit 11 39 9 53 112 Walk 30 44 0 0 74 Bicycle 18 49 0 0 0 67 Academic Staff Drive Alone 0 189 76 98 363 Carpool/Vanpool 0 24 18 10 52 Public Transit 0 19 0 57 76 Walk 36 28 0 0 64 Non-Academic Bicycle 7 42 2 1 52 Drive Alone 6 166 107 97 376 Carpool/Vanpool 0 28 25 27 80 Public Transit 6 56 31 64 157 Walk 462 24 1 0 487 Bicycle 25 20 0 0 45 Undergraduate Bicycle 25 20 0 0 45 Students Drive Alone 0 41 12 21 74 Carpool/Vanpool 0 5 2 4 11 Public Transit 57 89 9 31 186 Walk 130 40 0 0 7 Bicycle 37 91 1 1 1 130 Graduate Students Drive Alone 0 65 22 41 128 Carpool/Vanpool 0 13 1 4 18 Public Transit 28 182 12 43 265	Doot Doos and	Bicycle	19	133	6	0	158
Public Transit		Drive Alone	26	357	111	89	583
Walk 30 44 0 0 74	Visiting Scholars	Carpool/Vanpool	8	52	9	3	72
Bicycle		Public Transit	11	39	9	53	112
Academic Staff		Walk	30	44	0	0	74
Carpool/Vanpool O 24 18 10 52 Public Transit O 19 O 57 76 Walk 36 28 O O 64 64 64 65 65 65 65 65		Bicycle	18	49	0	0	67
Public Transit 0 19 0 57 76	Academic Staff	Drive Alone	0	189	76	98	363
Walk 36 28 0 0 64		Carpool/Vanpool	0	24	18	10	52
Non-Academic Staff		Public Transit	0	19	0	57	76
Non-Academic Drive Alone 6 166 107 97 376		Walk	36	28	0	0	64
Staff Drive Alone 6 166 107 97 376 Carpool/Vanpool 0 28 25 27 80 Public Transit 6 56 31 64 157 Walk 462 24 1 0 487 Bicycle 25 20 0 0 45 Drive Alone 0 41 12 21 74 Carpool/Vanpool 0 5 2 4 11 Public Transit 57 89 9 31 186 Walk 130 40 0 0 170 Bicycle 37 91 1 1 130 Graduate Students Drive Alone 0 65 22 41 128 Carpool/Vanpool 0 13 1 4 18 Public Transit 28 182 12 43 265 Walk 699 217 <td>NT 4 1 :</td> <td>Bicycle</td> <td>7</td> <td>42</td> <td>2</td> <td>1</td> <td>52</td>	NT 4 1 :	Bicycle	7	42	2	1	52
Carpool/Vanpool O 28 25 27 80		Drive Alone	6	166	107	97	376
Undergraduate Students Walk Bicycle Drive Alone Students 462 24 1 0 0 0 45 0 45 0 0 0 0 45 0 0 0 0 0 0 0	Stair	Carpool/Vanpool	0	28	25	27	80
Undergraduate Students Bicycle Drive Alone Carpool/Vanpool Drive Alone Students 25 20 0 0 45 Public Transit 0 41 12 21 74 Public Transit 57 89 9 31 186 Walk 130 40 0 0 170 Bicycle 37 91 1 1 130 Graduate Students Drive Alone 0 65 22 41 128 Carpool/Vanpool 0 13 1 4 18 Public Transit 28 182 12 43 265 Walk 699 217 1 0 917 Bicycle 110 361 10 2 483 Total Drive Alone 37 887 349 363 1,636 Carpool/Vanpool 9 132 57 49 247 Public Transit 104 393 63 258		Public Transit	6	56	31	64	157
Undergraduate Students Drive Alone 0 41 12 21 74 Carpool/Vanpool 0 5 2 4 11 Public Transit 57 89 9 31 186 Walk 130 40 0 0 170 Bicycle 37 91 1 1 130 Graduate Students Drive Alone 0 65 22 41 128 Carpool/Vanpool 0 13 1 4 18 Public Transit 28 182 12 43 265 Walk 699 217 1 0 917 Bicycle 110 361 10 2 483 Total Drive Alone 37 887 349 363 1,636 Carpool/Vanpool 9 132 57 49 247 Public Transit 104 393 63 258 818		Walk	462	24	1	0	487
Students Drive Alone 0 41 12 21 74 Carpool/Vanpool 0 5 2 4 11 Public Transit 57 89 9 31 186 Walk 130 40 0 0 170 Bicycle 37 91 1 1 130 Graduate Students Drive Alone 0 65 22 41 128 Carpool/Vanpool 0 13 1 4 18 Public Transit 28 182 12 43 265 Walk 699 217 1 0 917 Bicycle 110 361 10 2 483 Total Drive Alone 37 887 349 363 1,636 Carpool/Vanpool 9 132 57 49 247 Public Transit 104 393 63 258 818	тт 1 1.	Bicycle	25	20	0	0	45
Carpool/Vanpool 0 5 2 4 11 Public Transit 57 89 9 31 186 Walk 130 40 0 0 170 Bicycle 37 91 1 1 130 Graduate Students Drive Alone 0 65 22 41 128 Carpool/Vanpool 0 13 1 4 18 Public Transit 28 182 12 43 265 Walk 699 217 1 0 917 Bicycle 110 361 10 2 483 Total Drive Alone 37 887 349 363 1,636 Carpool/Vanpool 9 132 57 49 247 Public Transit 104 393 63 258 818		Drive Alone	0	41	12	21	74
Walk 130 40 0 0 170 Bicycle 37 91 1 1 130 Graduate Students Drive Alone 0 65 22 41 128 Carpool/Vanpool 0 13 1 4 18 Public Transit 28 182 12 43 265 Walk 699 217 1 0 917 Bicycle 110 361 10 2 483 Total Drive Alone 37 887 349 363 1,636 Carpool/Vanpool 9 132 57 49 247 Public Transit 104 393 63 258 818	Students	Carpool/Vanpool	0	5	2	4	11
Bicycle 37 91 1 1 130 Graduate Students Drive Alone 0 65 22 41 128 Carpool/Vanpool 0 13 1 4 18 Public Transit 28 182 12 43 265 Walk 699 217 1 0 917 Bicycle 110 361 10 2 483 Total Drive Alone 37 887 349 363 1,636 Carpool/Vanpool 9 132 57 49 247 Public Transit 104 393 63 258 818		Public Transit	57	89	9	31	186
Graduate Students Drive Alone 0 65 22 41 128 Carpool/Vanpool 0 13 1 4 18 Public Transit 28 182 12 43 265 Walk 699 217 1 0 917 Bicycle 110 361 10 2 483 Total Drive Alone 37 887 349 363 1,636 Carpool/Vanpool 9 132 57 49 247 Public Transit 104 393 63 258 818		Walk	130	40	0	0	170
Carpool/Vanpool 0 13 1 4 18 Public Transit 28 182 12 43 265 Walk 699 217 1 0 917 Bicycle 110 361 10 2 483 Total Drive Alone 37 887 349 363 1,636 Carpool/Vanpool 9 132 57 49 247 Public Transit 104 393 63 258 818		Bicycle	37	91	1	1	130
Public Transit 28 182 12 43 265 Walk 699 217 1 0 917 Bicycle 110 361 10 2 483 Total Drive Alone 37 887 349 363 1,636 Carpool/Vanpool 9 132 57 49 247 Public Transit 104 393 63 258 818	Graduate Students	Drive Alone	0	65	22	41	128
Walk 699 217 1 0 917 Bicycle 110 361 10 2 483 Total Drive Alone 37 887 349 363 1,636 Carpool/Vanpool 9 132 57 49 247 Public Transit 104 393 63 258 818		Carpool/Vanpool	0	13	1	4	18
Bicycle 110 361 10 2 483 Drive Alone 37 887 349 363 1,636 Carpool/Vanpool 9 132 57 49 247 Public Transit 104 393 63 258 818		Public Transit	28	182	12	43	265
Total Drive Alone 37 887 349 363 1,636 Carpool/Vanpool 9 132 57 49 247 Public Transit 104 393 63 258 818		Walk	699	217	1	0	917
Carpool/Vanpool 9 132 57 49 247 Public Transit 104 393 63 258 818		Bicycle	110	361	10	2	483
Public Transit 104 393 63 258 818	Total	Drive Alone	37	887	349	363	1,636
Public Transit 104 393 63 258 818		Carpool/Vanpool	9	132	57	49	247
Total All modes 959 1,990 480 672 4,101		•	104	393	63	258	818
	Total	All modes	959	1,990	480	672	4,101

^a Based on 2020 LRDP population increase and existing mode choice characteristics summarized in Table 4.12-15.

Source: Fehr & Peers Associates, June 2003.

UNIVERSITY OF CALIFORNIA, BERKELEY 2020 LRDP DRAFT EIR APPENDIX F.I: TRAFFIC ANALYSIS BACKGROUND

Parking driveway occupancy counts conducted at the major University operated parking facilities in February 2003 were used to determine the vehicle-trip generation estimates based on the proposed new parking supply. Based on the surveys, each parking space generates about 0.40 inbound trips during the AM peak hour and 0.35 outbound trips during the PM peak hour. Applying these rates to the new 2,300 parking spaces associated with the 2020 LRDP results in 918 inbound AM peak hour trips and 816 outbound PM peak hour trips. These trips represent both new trips associated with the 2020 LRDP population growth and the existing trips diverted from on-street or non-University operated off-street parking supplies.

Table F.1-8 summarizes the new and existing diverted AM and PM peak hour vehicle trips that would result from the combination of the 2020 LRDP population growth and parking supply increase. The existing diverted vehicle trips represents vehicle trips already using the roadway system. However to present a more conservative analysis, and to account for any potential "backfill" parking demand re-distribution that may occur with changing parking supplies, this study treats the existing diverted trips as new trips. In conclusion, this study is based on AM and PM peak hour trip generation estimate of 918 and 816 vehicle trip, respectively.

In addition to the Campus Park developments, the 2020 LRDP also includes a maximum of 50,000 net new gross square feet at "Other Berkeley Sites": most of the existing UC Berkeley space in this category is at 2000 Carlton Street and 6701 San Pablo Avenue. Both sites are located away from the Campus Park with different population characteristics. Since the exact location of future new space is not yet known, in order to be conservative, for the purposes of analysis we have assumed each of these sites would expand by 50,000 gsf. Since both sites are similar to typical office developments, the office average trip generation rates published in Institute of Transportation Engineers' (ITE) *Trip Generation Manual*, 6th Edition, were used to estimate the additional trip generation at these two sites. Each site is estimated to generate 78 new AM peak hour and 74 new PM peak hour vehicle trips.

VEHICLE TRIP DISTRIBUTION

The Spring 2001 Faculty/Staff Housing, Transportation, and Parking Survey, and the Fall 2000 Student Housing and Transportation Survey identified both residence location by ZIP code and vehicle commute path between residence and campus destination. The survey data were used to quantify the vehicle trip distribution of existing UC Berkeley users. These distributions, summarized in Table F.1-9, are used to assign approach direction to campus for the 2020 LRDP estimated trip generation.

The parking clusters shown in Figure F.1-2 were used to assign project trips in the vicinity of the Campus Park. Trips were assigned to each cluster proportional to the estimated number of parking spaces within the cluster.

TABLE F.1-7 2020 LRDP New Daily and Peak Hour Vehicle Trip Generation by Population Segment and Residence Distance²

		Residence Distance				
D 1.1 C	Time	~ 13 <i>4</i> °1	1.5.3.6.1	5 40 MT	> 10 3 4 1	ਸਾ. 1
Population Segment	Period Daily	< 1 Miles	1-5 Miles 146	5-10 Miles 44	>10 Miles 34	Total 234
Faculty	AM	2	28	8	6	44
1 ucuity	PM	2	28	8	6	44
-	Daily	58	760	230	180	1,228
Post-Doc and	AM	11	144	43	34	232
Visiting Scholars	PM	11	146	44	34	235
	Daily	0	398	168	204	770
Academic Staff	AM	0	97	41	50	188
	PM	0	77	33	40	150
-	Daily	12	358	236	218	824
Non-Academic Staff	AM	3	87	57	53	200
	PM	3	91	61	55	210
-	Daily	0	88	26	46	160
Undergraduate Students	AM	0	14	4	7	25
Students	PM	0	9	3	5	17
	Daily	0	142	46	86	274
Graduate Students	AM	0	22	7	14	43
	PM	0	15	5	9	29
	Daily	80	1,892	750	768	3,490
Total	AM	16	392	160	164	732
	PM	16	366	154	149	685

^a Based on data from the Spring 2001 Faculty/Staff Housing, Transportation, and Parking Survey and the Fall 2000 Student Housing and Transportation Survey. Trips only include commute trips. Daily trips are both in and out trips. AM peak hour trips are in trips, and PM peak hour trips are out trips only. Source: Fehr & Peers Associates, June 2003.

TABLE F.1-8 2020 LRDP NEW AND DIVERTED TRIP GENERATION

	AM Peak Hour ^d			PM Peak Hour ^e		
	In Out Total			In	Out	Total
Total Vehicle Trips ^a	918	92	1,010	114	816	930
New Vehicle Trips ^b	732	73	805	96	685	781
Existing diverted Trips ^c	186	19	205	18	131	149

^a Based on 0.40 AM peak hour, and 0.35 PM peak hour peak direction trip generation rates per parking space for the 2,300 new parking spaces. Rates developed from February 2003 surveys at existing major commuter University operated parking facilities.

PARKING SUPPLY AND DEMAND

The 2020 LRDP population increase is estimated to generate 1,745 new vehicle commute round-trips to the Campus Park and Adjacent Blocks. Thus, the 2,300 new parking spaces associated with the 2020 LRDP would accommodate all new vehicle trips generated by the 2020 LRDP program. In addition, there would be a 555 space surplus. These spaces would attract existing University-related vehicle trips that currently park on-street or at non-University operated parking facilities. The 2020 LRDP parking supply increase is in fact intended to allow the University to serve more of its existing parking demand, resulting in less reliance on non-University parking and on-street parking.

As discussed in Chapter 4.12, changes to the Downtown parking supplies associated with increased demands and potential supply reductions from new Downtown developments are projected to result in future parking deficits. Based on the current approved Downtown projects, the Downtown parking deficit is estimated at about 600 parking spaces during typical weekdays.¹¹

This number does not include current proposed but not yet approved projects such as Library Gardens located on Kittredge Street at Milvia Street and the David Brower Center project that is currently being studied for the City's Oxford Street parking lot. With the approval of additional Downtown projects, the Downtown area parking deficit would continue to increase.

The forecasted Downtown parking deficit of at least 600 spaces, discussed in the *Vista College FEIR*, would more than offset the 555 spaces made available by relocating existing University-affiliated parking to the new 2020 LRDP parking supply.

^b Vehicle trips generated by the new 2020 LRDP population. See F.1-7.

^c Vehicle trips currently parking at non-University operated or on-street parking locations that are expected to divert to the new parking facilities.

^d Based on surveys at existing major commuter University operated parking facilities, the outbound trip generation rate during the AM peak hour is about 10% of inbound trip generation.

^e Based on surveys at existing major commuter University operated parking facilities, the inbound trip generation rate during the PM peak hour is about 14 percent of outbound trip generation. Source: Fehr & Peers Associates, June 2003.

TABLE F.1-9 VEHICLE TRIP DISTRIBUTION

		Trip
Approach Direction and Corridor	Areas Served	Distribution ^a
North of Berkeley (Euclid Avenue, Oxford	North Berkeley	13%
Avenue, Shattuck Avenue)	Kensington	13 70
	Alameda	
South of Berkeley (College Avenue,	Piedmont	13%
Telegraph Avenue, Adeline-Shattuck Corridor)	Oakland	13%
Corridory	South Berkeley	
	North Berkeley	
San Pablo North	Albany	10%
	El Cerrito	
	Oakland	
San Pablo South	Emeryville	5%
	South Berkeley	
	Marin County	
-580 West	Richmond	5%
	El Cerrito	
	West Contra Costa	
	County	
I-80 North	Sonoma County &	7%
	North	
	Sacramento Area	
	San Francisco	
I-880/I-80 South	Alameda	14%
	San Mateo County	
	San Leandro & South	
State Route 13 South	Oakland	8%
State Route 24 East (Grizzly Peak		
Boulevard-Centennial Drive corridor,	Orinda and East	11%
Belrose-Derby-WarrinF.1-Piedmont Corridor)		
West Berkeley	West Berkeley	14%
,,	Total	100%
		100 /0

^a Based on residence location and commute path data in the Spring 2001 Faculty/Staff Housing, Transportation, and Parking Survey and the Fall 2000 Student Housing and Transportation Survey.

BICYCLE TRIP GENERATION AND CIRCULATION

Bicycle trip generation by population group and residence distance from campus was calculated, as shown in Table F.1-10. Note that only commute trips are shown in this table.

TABLE F.1-10 2020 LRDP New Daily and Peak Hour Bicycle Trip Generation by Population Segment and Residence Distance^A

Population Segment Time Period Miles 4 1.5 Miles S-10 Miles > 10 Miles Total Total Total Total Total Total Miles Number Total		_	Residence Distance							
Daily 4 26 1 0 31	Population	Time	< 1	1-5						
Faculty AM 1 8 0 0 9 PM 1 7 0 0 8 Post-Doc and Visiting Scholars AM 5 38 2 0 45 Visiting Scholars PM 5 36 2 0 43 Daily 18 49 0 0 67 Academic Staff AM 14 37 0 0 51 PM 8 20 0 0 28 Daily 7 42 2 2 53 Non-Academic Staff AM 4 23 1 1 29 Daily 25 20 0 0 45 Undergraduate Students AM 8 6 0 0 14 PM 5 4 0 0 9 Daily 37 91 1 1 130 Graduate Students	Segment	Period	Miles	Miles	5-10 Miles	> 10 Miles	Total			
Post-Doc and Visiting Scholars Daily 19 133 6 0 158 AM 5 38 2 0 45 PM 5 36 2 0 43 Daily 18 49 0 0 67 Academic Staff AM 14 37 0 0 51 PM 8 20 0 0 0 28 Daily 7 42 2 2 53 Non-Academic Staff AM 4 23 1 1 29 PM 4 23 1 1 29 PM 4 23 1 1 29 Undergraduate Students AM 8 6 0 0 0 14 PM 5 4 0 0 9 Daily 37 91 1 1 130 Graduate Students AM 11 27 0 0 38 PM 7 17 0 0 24 Daily 110 361 10 2 483		Daily	4	26	1	0	31			
Post-Doc and Visiting Scholars Daily AM 5 38 2 0 45 PM 5 36 2 0 43 Daily 18 49 0 0 67 Academic Staff AM 14 37 0 0 51 PM 8 20 0 0 28 Daily 7 42 2 2 2 53 Non-Academic Staff AM 4 23 1 1 29 PM 4 23 1 1 29 Daily 25 20 0 0 45 Undergraduate Students AM 8 6 0 0 14 PM 5 4 0 0 9 Daily 37 91 1 1 130 Graduate Students AM 11 27 0 0 38 PM 7 17 0 0 24 Daily 110 361 10 2 483	Faculty	AM	1	8	0	0	9			
Non-Academic Staff AM		PM	1	7	0	0	8			
Visiting Scholars AM 5 38 2 0 45 PM 5 36 2 0 43 Daily 18 49 0 0 67 Academic Staff AM 14 37 0 0 51 PM 8 20 0 0 28 Daily 7 42 2 2 53 Non-Academic Staff AM 4 23 1 1 29 PM 4 23 1 1 29 Daily 25 20 0 0 45 Undergraduate Students AM 8 6 0 0 14 PM 5 4 0 0 9 Daily 37 91 1 1 130 Graduate Students AM 11 27 0 0 38 PM 7 17 0 </td <td>D-+ D 1</td> <td>Daily</td> <td>19</td> <td>133</td> <td>6</td> <td>0</td> <td>158</td>	D-+ D 1	Daily	19	133	6	0	158			
Daily 18 49 0 0 67		AM	5	38	2	0	45			
Academic Staff AM 14 37 0 0 51 PM 8 20 0 0 28 Daily 7 42 2 2 53 Non-Academic Staff AM 4 23 1 1 29 PM 4 23 1 1 29 Daily 25 20 0 0 45 Undergraduate Students AM 8 6 0 0 14 PM 5 4 0 0 9 Daily 37 91 1 1 130 Graduate Students AM 11 27 0 0 38 PM 7 17 0 0 24 Daily 110 361 10 2 483	Visiting Scholars	PM	5	36	2	0	43			
PM 8 20 0 0 28 Daily 7 42 2 2 53 Non-Academic Staff AM 4 23 1 1 29 PM 4 23 1 1 29 Daily 25 20 0 0 45 Undergraduate Students AM 8 6 0 0 14 PM 5 4 0 0 9 Daily 37 91 1 1 130 Graduate Students AM 11 27 0 0 38 PM 7 17 0 0 24 Daily 110 361 10 2 483		Daily	18	49	0	0	67			
Non-Academic Staff Daily AM A 23 1 1 29 1 29 1 29 1 1 1 29 1 29 1 20 1 20	Academic Staff	AM	14	37	0	0	51			
Non-Academic Staff AM 4 23 1 1 29 PM 4 23 1 1 29 Daily 25 20 0 0 45 Undergraduate Students AM 8 6 0 0 14 PM 5 4 0 0 9 Daily 37 91 1 1 130 Graduate Students AM 11 27 0 0 38 PM 7 17 0 0 24 Daily 110 361 10 2 483		PM	8	20	0	0	28			
PM 4 23 1 1 29 Daily 25 20 0 0 45 Undergraduate Students AM 8 6 0 0 14 PM 5 4 0 0 9 Daily 37 91 1 1 130 Graduate Students AM 11 27 0 0 38 PM 7 17 0 0 24 Daily 110 361 10 2 483		Daily	7	42	2	2	53			
Undergraduate Students Daily 25 20 0 0 45 Undergraduate Students AM 8 6 0 0 14 PM 5 4 0 0 9 Daily 37 91 1 1 130 Graduate Students AM 11 27 0 0 38 PM 7 17 0 0 24 Daily 110 361 10 2 483	Non-Academic Staff	AM	4	23	1	1	29			
Undergraduate Students AM 8 6 0 0 14 PM 5 4 0 0 9 Daily 37 91 1 1 130 Graduate Students AM 11 27 0 0 38 PM 7 17 0 0 24 Daily 110 361 10 2 483		PM	4	23	1	1	29			
PM 5 4 0 0 9 Daily 37 91 1 1 130 Graduate Students AM 11 27 0 0 38 PM 7 17 0 0 24 Daily 110 361 10 2 483		Daily	25	20	0	0	45			
Daily 37 91 1 1 130 Graduate Students AM 11 27 0 0 38 PM 7 17 0 0 24 Daily 110 361 10 2 483	Undergraduate Students	AM	8	6	0	0	14			
Graduate Students AM 11 27 0 0 38 PM 7 17 0 0 24 Daily 110 361 10 2 483		PM	5	4	0	0	9			
PM 7 17 0 0 24 Daily 110 361 10 2 483		Daily	37	91	1	1	130			
Daily 110 361 10 2 483	Graduate Students	AM	11	27	0	0	38			
•		PM	7	17	0	0	24			
Total AM 43 139 3 1 186		Daily	110	361	10	2	483			
111/1 10 10/ 0 1 100	Total	AM	43	139	3	1	186			
PM 30 107 3 1 141		PM	30	107	3	1	141			

^a Based on data from the *Spring 2001 Faculty/Staff Housing, Transportation, and Parking Survey* and the *Fall 2000 Student Housing and Transportation Survey*. Trips only include commute trips. Daily trips are roundtrips including both in and out trips. AM peak hour trips are in trips, and PM peak hour trips are out trips only.

Source: Fehr & Peers Associates, June 2003.

Approximately 483 new persons are expected to bicycle to Campus Park on a typical weekday, with 186 AM peak hour trips and 141 PM peak hour trips. Existing bicycle distribution characteristics at the major campus entry points were used as the basis for distributing project-related bicycle trips to the roadways adjacent to the Campus Park. (Refer to Figure 4.12-8, which shows the bicycle volumes for the highest peak hour of the day at intersections surrounding the Campus Park area). Because the 2020 LRDP AM peak hour bicycle volume is higher than the PM peak hour volume, the new AM peak hour bicycle volumes are compared to the existing peak hour bicycle volumes at the intersections directly adjacent to the Campus Park. The results are shown in Table F.1-11. Bicycle volumes are anticipated to increase between 8 and 10 percent on roadways adjacent to the Campus Park.

TABLE F. I-II PEAK HOUR CAMPUS ENTRY BICYCLE VOLUMESA

	Existing Bicycle	New LRDP	Future Bicycle	Percent
Entry Point	Volume ^b	Bicycle Trips	Volume	Increase
Hearst at				
Oxford	266	24	290	9%
Arch	37	3	40	8%
Euclid	54	5	59	9%
LeRoy	31	3	34	10%
La Loma	38	3	41	8%
Oxford at				
Berkeley	159	14	173	9%
University	679	60	739	9%
Center	132	12	144	9%
Bancroft	201	18	219	9%
Bancroft at				
Dana	152	13	165	9%
Telegraph	131	12	143	9%
Bowditch	71	6	77	8%
College	61	5	66	8%
Piedmont	85	8	93	9%

^a Based on existing peak hour bicycle volumes, and AM peak hour LRDP trip generation.

Source: Fehr & Peers Associates, June 2003

The Campus Park gateway intersection anticipated to experience the highest increase in bicycle trips is the Oxford Street /University Avenue intersection. This intersection currently serves approximately 680 bicyclists during the peak hour. The LRDP would increase bicycle volumes by approximately 9 percent, or 60 bicycle trips during the peak hour.

The policies and planned improvements in the Berkeley Bicycle Plan are designed to accommodate existing and future growth in bicycle volumes, and the General Plan encourages bicycling along with walking and transit as alternatives to auto use. Therefore, this increase in bicycling is foreseen in local plans, and is desirable. Moreover, bicycle volumes, while expected to increase, would not exceed the capacity of available bicycle facilities. Based on this analysis, this impact is *less than significant*.

PEDESTRIAN TRIP GENERATION AND CIRCULATION

New pedestrian trips for the 2020 LRDP were estimated as part of the trip generation development, as shown in Table F.1-12. Since the majority of pedestrian trips occur during the commute time, this analysis only includes the peak hour commute trips and does not include other walking trips throughout the day, such as trips to area businesses and between campus buildings, both on and off the Campus Park.

^b Existing bicycle volumes as reported in the Downtown/Southside TDM Study.

TABLE F.1-12 2020 LRDP New Daily and Peak Hour Pedestrian Trip Generation by Population Segment and Residence Distance

	<u>.</u>		Re	esidence Dist	ance	
	Peak	< 1	1-5			
Population Segment	Hour	Miles	Miles	5-10 Miles	>10 Miles	Total
	Daily	7	13	0	0	20
Faculty	AM	2	4	0	0	6
	PM	3	5	0	0	8
Post-Doc and	Daily	34	68	0	0	102
	AM	11	21	0	0	32
Visiting Scholars	PM	12	25	0	0	37
	Daily	30	44	0	0	74
Academic Staff	AM	7	10	0	0	17
	PM	18	27	0	0	45
	Daily	36	28	0	0	64
Non-Academic Staff	AM	18	14	0	0	32
	PM	18	14	0	0	32
	Daily	462	24	1	0	487
Undergraduate Students	AM	148	8	0	0	156
	PM	103	5	0	0	108
	Daily	130	40	0	0	170
Graduate Students	AM	42	13	0	0	55
	PM	29	9	0	0	38
	Daily	699	217	1	0	917
Total	AM	228	70	0	0	298
	PM	183	85	0	0	268

^a Based on data from the *Spring 2001 Faculty/Staff Housing, Transportation, and Parking Survey* and the *Fall 2000 Student Housing and Transportation Survey*. Trips only include commute trips. Daily trips are roundtrips including both in and out trips. AM peak hour trips are in trips, and PM peak hour trips are out trips only.

Source: Fehr & Peers Associates, June 2003.

A total of 917 new daily commuting pedestrian trips are anticipated with the 2020 LRDP, with the majority (76 percent) occurring within a one-mile radius of campus. The undergraduate population group is anticipated to generate the most new walking trips, as undergraduate students typically live in areas close to campus and have limited vehicle ownership.

In addition to the new commute walking trips, all transit and vehicle trips begin and end with a pedestrian trip. Ridership on the existing transit routes that serve UC Berkeley were reviewed to estimate the number of transit / pedestrian trips added to the system. The proposed location of future parking zones, their anticipated parking supply, and average vehicle occupancies were used to estimate new pedestrian trips from potential new parking areas. The resulting pedestrian volumes at the primary pedestrian gateways to the Campus Park are presented in Table F.1-13.

TABLE F.1-13 AM PEAK HOUR CAMPUS ENTRY PEDESTRIAN VOLUMES

		New		From	Total	
Entry	Existing	Walking	From	Parking	Future	Percent
Point	Volume ^b	Trips	Transit	Garages ^c	Volume	Increase
Hearst at						
Oxford	484	12	5	628	1,129	133%
Arch	95	2	1	0	98	3%
Euclid	1,105	28	11	0	1,144	4%
LeRoy	536	13	5	0	554	3%
La Loma	621	15	6	0	642	3%
Oxford at						
Berkeley	589	15	6	359	969	65%
University	203	5	3	718	929	358%
Center	760	19	138	807	1,724	127%
Bancroft	540	13	6	718	1,277	136%
Bancroft at						
Dana	1,141	28	12	90	1,271	11%
Telegraph	3,320	83	33	269	3,705	12%
Bowditch	884	22	9	359	1,274	44%
College	1,018	25	10	180	1,233	21%
Piedmont	670	17	7	54	748	12%

^a Based on existing peak hour bicycle volumes, and AM peak hour LRDP trip generation.

Source: Fehr & Peers Associates, June 2003.

Pedestrian volumes at the gateways, primarily along Oxford Street, are anticipated to increase substantially since much of the new parking supply is planned for the downtown zone. The pedestrian increases at specific intersections are approximations only, as the actual volume increases will be directly related to the specific parking locations.

The increased pedestrian volume at these campus gateways, and at intersections in the immediate vicinity of the Campus Park, will affect the way the City manages traffic operations and intersection improvements in the future. For example, as the volume of pedestrians crossing at signalized intersections such as Center Street / Oxford Street, Bancroft Way / Telegraph Avenue, and Hearst Avenue / Oxford Street grows, the amount of green time allocated to certain signal phases may need to be increased. At stop-controlled intersections such as Bancroft Way / Piedmont Avenue / Gayley Road, additional signing or traffic calming measures would be needed to ensure pedestrian safety and appropriate yielding of right-of-way. Finally, at uncontrolled locations (such as the highly used crossing areas along Gayley Road, Hearst Street near LeRoy Avenue, and Bancroft Way near the athletic complex), measures such as mid-block crosswalks, in-pavement flashers, signalized pedestrian crossings, or crossing prohibitions, may be needed to ensure pedestrian safety.

^b Existing bicycle volumes as reported in the Downtown/Southside TDM Study.

 $^{^{\}rm c}$ Walking trips to and from potential parking facilities as shown in Figure F.1-2.

TRANSIT SERVICE

New transit ridership with development of the 2020 LRDP was developed as part of the trip generation development, as shown in Table F.1-14. Note that only commute trips are represented in this table.

Approximately 818 new transit tips would be generated per day with the LRDP, including 269 AM and 259 PM peak hour trips. The majority of new transit trips would occur on the BART and AC Transit systems. Graduate and undergraduate students are projected to make the most new transit trips.

AC TRANSIT. New AC Transit trips during the AM and PM peak hours were estimated for each line that currently serves the UC Berkeley campus, based on responses to the *Spring 2001 Faculty/Staff Housing, Transportation, and Parking Survey* and the *Fall 2000 Student Housing and Transportation Survey*. New transit riders were assigned to the routes based on their existing share of UC Berkeley riders, as presented in Table F.1-15. Some routes do not provide direct service to UC Berkeley, so it was assumed that riders from these routes would transfer to routes that provide direct service to UC Berkeley.

Route 51 is estimated to experience the greatest increase in ridership with the LRDP, as approximately 35 new AM and 32 new PM peak hour trips would be added to this route. Headways for this route during peak hours are approximately 10-minutes, resulting in approximately 5-6 new riders per bus during the AM and PM peak hours. The average peak hour load factors for Route 51 are well below 1.0, as indicated in Table F.1-15. There are short periods during the peak hours when Route 51 ridership is higher than seating capacity in the Southside area, i.e. a peak of 47 riders with only 40 seats. However, for planning purposes AC Transit uses 150% of seating capacity, or 60 riders, as the approximate maximum occupancy. The additional 5 to 6 riders generated per peak hour bus by the project is thus not projected to cause any peak hour bus to exceed its practical capacity.

BART. New BART trips with LRDP development were added to the routes that serve the Downtown Berkeley BART Station: Richmond-Fremont and Millbrae/Richmond. An aggregate load factor for this station area was calculated, as the lines that would attract new riders are unknown. As shown in Table F.1-14, the AM and PM peak hour load factors would increase by 0.02, with the resulting load factor less than 1.0.

New BART riders could be accommodated on the system as a whole, although some trains during peak hours could experience standing room only conditions. This is a less-than-significant impact.

TABLE F.1-14 2020 LRDP New Daily and Peak Hour Transit Trip Generation by Population Segment^a

		Total				
Population	Peak	Public	AC		Campus	LBL/RFS
Segment	Hour	Transit	Transit	BART	Shuttle	Shuttle
	Daily	22	7	14	0	1
Faculty	AM	7	2	4	0	0
	PM	3	1	4	0	0
Post-Doc and	Daily	112	32	70	0	10
	AM	32	10	20	0	3
Visiting Scholars	PM	20	7	20	0	2
	Daily	76	15	62	0	10
Academic Staff	AM	16	3	13	0	2
	PM	40	8	13	0	5
	Daily	157	51	64	2	21
Non-Academic Staff	AM	66	21	27	0	9
	PM	84	28	27	2	12
I Indonesia de esta	Daily	186	111	44	15	4
Undergraduate Students	AM	61	36	15	5	1
Students	PM	46	28	15	4	1
Graduate	Daily	265	167	72	11	3
	AM	87	54	24	3	1
Students	PM	66	41	24	3	1
	Daily	818	383	326	28	50
Total	AM	269	126	103	8	16
	PM	259	113	103	9	21

^s Based on data from the Spring 2001 Faculty/Staff Housing, Transportation, and Parking Survey and the Fall 2000 Student Housing and Transportation Survey. Trips only include commute trips. Daily trips are roundtrips including both in and out trips. AM peak hour trips are in trips, and PM peak hour trips are out trips only. Public transit trips do not sum to total as some transit riders use more than one transit provider per trip.

Source: Fehr & Peers Associates, June 2003.

BEAR TRANSIT. Ridership on BEAR Transit, the campus shuttle, will increase with the growth in campus population. Ridership will grow due to an increase in commute trips (i.e., shuttle trips linked with BART, bus, or auto trips), as well as trips throughout the day for various purposes (i.e., to travel from one end of campus to the other, to travel between campus and downtown, or to commute to or from the campus outside the peak commute times). The peak hour commute trip growth on BEAR Transit is estimated in Table F.1-14; however, many more mid-day trips will be generated as the population grows on campus. The actual trip growth will need to be monitored by the Parking and Transportation Office, and the service frequency may need to be increased, along with route adjustments, as ridership grows. The shuttle provides a critical link for many who use BART and AC Transit to commute to campus, or for other mid-day trip purposes; therefore, meeting the demand for shuttle service is key to maximizing transit use.

TABLE F.1-15 New Peak Hour AC Transit Ridership Estimate by Routea

_		AM Peak Ho	ur		PM Peak Hour			
			Boarding/ Alighting			Boarding/ Alighting		
	New		in Campus	New		in Campus		
Line	Riders	Transfers	Area	Riders	Transfers	Area		
6 ^b	3			3				
7	14	1	15	12	1	13		
8	1		1	1		1		
9	1		1	1		1		
15	4		4	3		3		
17 ^b	1			1				
40/40L	14	1	15	12	1	13		
43	7		7	6		6		
51	33	2	35	30	2	32		
52	14	1	15	13	1	14		
52L	11	1	12	10	1	11		
65	4		4	4		4		
67	2		2	2		2		
72/72L/73 ^b	2			2				
A^{b}	1			1				
E^b	1			1				
F/FS	10	1	11	9	1	10		
Total	126	7	126	113	7	113		

^a Based on existing peak hour AC Transit ridership and peak hour LRDP trip generation.

Source: Fehr & Peers Associates, June 2003.

TABLE F.1-16 BART LINES PEAK HOUR LOAD FACTORS

	AM Pe	ak Hour	PM Peak Hour			
	Load Factor	LRDP Load	Load Factor	LRDP Load		
	near Campus	Factor near	near Campus	Factor near		
Station	Park ^a	Campus Park ^b	Park ^a	Campus Park ^b		
Downtown Berkeley	0.92	0.94	0.83	0.85		

^a Fall 2002 average peak hour load factor at the Downtown Berkeley Station for the Richmond - Fremont and Daly City/Colma - Richmond lines.

Source: Bay Area Rapid Transit District, January 2003 and Fehr & Peers Associates, June 2003.

^b These routes provide transfer service and do not provide direct access to UC Berkeley. Passengers must transfer to another route to complete their trip.

^b Average peak hour load factor at the Downtown Berkeley Station for the Richmond – Fremont and Daly City/Colma – Richmond lines with the 2020 LRDP estimated demand.

F.1.5 REFERENCES

- ¹ California Department of Transportation (Caltrans), 2001 Traffic Volumes on the California State Highway System, http://www.dot.ca.gov/hq/traffops/saferesr/trafdata/2001all.htm, retrieved April 4, 2004.
- ² California Department of Transportation (Caltrans), 2001 Traffic Volumes on the California State Highway System, http://www.dot.ca.gov/hq/traffops/saferesr/trafdata/2001all.htm, retrieved April 4, 2004.
- ³ California Department of Transportation (Caltrans), 2001 Traffic Volumes on the California State Highway System, http://www.dot.ca.gov/hq/traffops/saferesr/trafdata/2001all.htm, retrieved April 4, 2004.
- ⁴ California Department of Transportation (Caltrans), 2001 Traffic Volumes on the California State Highway System, http://www.dot.ca.gov/hq/traffops/saferesr/trafdata/2001all.htm, retrieved April 4, 2004.
- ⁵ City of Berkeley Draft General Plan EIR, February 2001, Table IV.D-1, page 100.
- ⁶ City of Berkeley Draft General Plan EIR, February 2001, Table IV.D-1, page 100.
- ⁷ City of Berkeley Draft General Plan EIR, February 2001, Table IV.D-1, page 100.
- ⁸ City of Berkeley Draft General Plan EIR, February 2001, Table IV.D-1, page 100.
- ⁹ City of Berkeley Draft General Plan EIR, February 2001, Table IV.D-1, page 100.
- ¹⁰ City of Berkeley Draft General Plan EIR, February 2001, Table IV.D-1, page 100.
- ¹¹ Mundie and Associates, Final Environmental Impact Report Vista College Permanent Facility Project, April 2002.

UNIVERSITY OF CALIFORNIA, BERKELEY 2020 LRDP DRAFT EIR APPENDIX F.I: TRAFFIC ANALYSIS BACKGROUND

APPENDIX F.2

EXISTING PEAK HOUR INTERSECTION VOLUMES AND INTERSECTION LANE CONFIGURATIONS

UNIVERSITY OF CALIFORNIA, BERKELEY
2020 LRDP DRAFT EIR
APPENDIX F.2: EXISTING PEAK HOUR INTERSECTION VOLUMES AND INTERSECTION LANE
CONFIGURATIONS

FIGURE F.2-I
EXISTING CONDITIONS
INTERSECTION VOLUMES AND LANE CONFIGURATION

FIGURE F.2-2
EXISTING CONDITIONS
INTERSECTION VOLUMES AND LANE CONFIGURATION

FIGURE F.2-3

EXISTING CONDITIONS
INTERSECTION VOLUMES AND LANE CONFIGURATION

FIGURE F.2-4
EXISTING CONDITIONS
INTERSECTION VOLUMES AND LANE CONFIGURATION

FIGURE F.2-5
EXISTING CONDITIONS
INTERSECTION VOLUMES AND LANE CONFIGURATION

FIGURE F.2-6
EXISTING CONDITIONS
INTERSECTION VOLUMES AND LANE CONFIGURATION

FIGURE F.2-7
EXISTING CONDITIONS
INTERSECTION VOLUMES AND LANE CONFIGURATION

APPENDIX F.3

LEVEL OF SERVICE SUMMARIES

TABLE F.3-I
2020 WITHOUT PROJECT CONDITIONS STUDY INTERSECTION LEVELS OF SERVICE

			sting		2020 Without Project			
	AM Pea		PM Pea		AM Pea	ak Hour	PM Pea	
2Marin Avenue / The Alameda 3. Gilman Street / Sixth Street 4. Gilman Street / San Pablo Avenue 5. Shattuck Avenue / Rose Street 6. Cedar Street / MLK Way 7. Cedar Street / Shattuck Avenue 8. Cedar Street / Oxford Street 9. Cedar Street / Euclid Avenue 11. Hearst Avenue / Shattuck Avenue 12. Hearst Avenue / Oxford Street 16. Hearst Avenue / Euclid Avenue 18. Hearst Avenue / Euclid Avenue 19. Berkeley Way / Oxford Street 20. University Avenue / Sixth Street 21. University Avenue / San Pablo Avenue 22. University Avenue / MLK Way 23. University Avenue / Milvia Street	Delay	LOSª	Delay	LOSª	Delay	LOSª	Delay	LOSª
	Signa	ılized Inter	sectionsa					
1. Marin Avenue / San Pablo Avenue	79	E	50	D	>80	F	80	F
2Marin Avenue / The Alameda	13	В	15	В	15	В	22	С
3. Gilman Street / Sixth Street	11	В	75	E	16	В	>80	F
4. Gilman Street / San Pablo Avenue	41	D	42	D	43	D	62	E
5. Shattuck Avenue / Rose Street	7	A	12	В	10	A	16	В
6. Cedar Street / MLK Way	17	В	25	С	31	С	47	D
7. Cedar Street / Shattuck Avenue	10	A	14	В	10	В	16	В
8. Cedar Street / Oxford Street	49	D	22	С	58	E	41	D
9. Cedar Street / Euclid Avenue	13	В	12	В	14	В	14	В
11. Hearst Avenue / Shattuck Avenue	6	A	15	В	8	A	22	С
12. Hearst Avenue / Oxford Street	10	В	54	D	12	В	52	D
16. Hearst Avenue / Euclid Avenue	15	В	20	В	18	В	17	В
18. Hearst Ave / Gayley Rd / La Loma Ave	23	С	25	С	57	E	67	E
19. Berkeley Way / Oxford Street	5	A	7	A	7	A	10	A
20. University Avenue / Sixth Street	>80	F	>80	F	>80	F	>80	F
21. University Avenue / San Pablo Avenue	>80	F	>80	F	>80	F	>80	F
22. University Avenue / MLK Way	21	С	32	С	30	С	41	D
23. University Avenue / Milvia Street	11	В	17	В	13	В	19	В
24. University Avenue / Shattuck Avenue (West)	20	В	18	В	22	С	18	В
25. University Avenue / Shattuck Avenue (East)	16	В	17	В	16	В	18	В
26. University Avenue / Oxford Street	29	С	18	В	29	С	23	С
29. Center Street / Shattuck Avenue (West)	15	В	14	В	16	В	17	В
30. Center Street / Shattuck Avenue (East)	5	A	8	A	5	A	10	A
31. Center Street / Oxford Street	8	A	8	A	12	В	10	В
36. Bancroft Way / Shattuck Avenue	9	A	13	В	10	A	17	В
37. Bancroft Way / Fulton Street	6	A	7	A	9	A	9	A
40. Bancroft Way / Telegraph Avenue	20	С	18	В	22	С	18	В
44. Durant Avenue / Shattuck Avenue	11	В	14	В	16	В	19	В

TABLE F.3-I
2020 WITHOUT PROJECT CONDITIONS STUDY INTERSECTION LEVELS OF SERVICE

		Exi	sting		2020 Without Project			
	AM Pea	ak Hour	PM Pea	k Hour	AM Pea	ak Hour	PM Pea	k Hour
Intersection	Delay	LOSª	Delay	LOSª	Delay	LOSª	Delay	LOSa
45. Durant Avenue / Fulton Street	7	A	7	A	10	A	10	A
46. Durant Avenue / Telegraph Avenue	11	В	13	В	11	В	13	В
47. Durant Avenue / College Avenue	9	A	13	В	13	В	14	В
49. Channing Way / Shattuck Avenue	5	A	6	A	6	A	9	A
51. Channing Way / Telegraph Avenue	9	A	13	В	12	В	16	В
52. Channing Way / College Avenue	16	В	10	В	22	С	16	В
53. Haste Street / Shattuck Avenue	51	D	10	A	43	D	15	В
54. Haste Street / Fulton Street	14	В	19	В	15	В	23	С
55. Haste Street / Telegraph Avenue	16	В	13	В	17	В	14	В
56. Haste Street / College Avenue	8	A	9	A	11	В	11	В
57. Dwight Way / MLK Way	14	В	18	В	21	С	24	С
58. Dwight Way / Shattuck Avenue	10	В	13	В	14	В	16	В
59. Dwight Way / Fulton Street	11	В	14	В	14	В	16	В
60. Dwight Way / Telegraph Avenue	16	В	20	С	18	В	30	С
61. Dwight Way / College Avenue	10	В	15	В	12	В	14	В
62. Dwight Way / Piedmont Avenue	9	A	13	В	11	В	13	В
64. Adeline Street / Shattuck Avenue	15	В	24	С	18	В	32	С
66. Derby Street / Claremont Boulevard	13	В	16	В	19	В	23	С
67. Ashby Avenue / Seventh Street	34	С	52	D	54	D	>80	F
68. Ashby Avenue / San Pablo Avenue	29	С	31	С	36	D	46	D
69. Ashby Avenue / Adeline Street	40	D	37	D	42	D	39	D
70. Ashby Avenue / Shattuck Avenue	15	В	30	С	16	В	37	D
71. Ashby Avenue / Telegraph Avenue	26	С	26	С	26	С	27	С
72. Ashby Avenue /College Avenue	31	С	29	С	36	D	37	D
73. Ashby Avenue / Claremont Avenue	22	С	22	В	24	С	25	С
74. Tunnel Road / Highway 13	16	В	14	В	16	В	15	В
- ·	All-Way Sto	op-Controlle	d Intersection	ns ^b				
10. Grizzly Peak Blvd/Centennial /Golf Course Dr	11	В	18	С	11	В	23	С
32. Stadium Rim Road / Gayley Road	26	D	35	D	> 50	F	> 50	F

TABLE F.3-I
2020 WITHOUT PROJECT CONDITIONS STUDY INTERSECTION LEVELS OF SERVICE

		Ex	isting		2020 Without Project			
	AM Pea	k Hour	PM Peak	Hour	AM Peal	K Hour	PM Peak	Hour
Intersection	Delay	LOSª	Delay	LOSª	Delay	LOSª	Delay	LOSª
35. Stadium Rim Road / Centennial Drive	9	A	12	В	10	A	12	В
41. Bancroft Way / Bowditch Street	12	В	12	В	12	В	13	В
42. Bancroft Way / College Avenue	12	В	12	В	11	В	14	В
43.Bancroft Way / Piedmont Avenue ^c	>50	F	>50	F	>50	F	>50	F
48. Durant Avenue / Piedmont Avenue	17	С	18	С	26	D	27	D
50. Channing Way / Fulton Street	12	В	18	С	15	В	27	D
65.Derby Street / Warring Street	>50	F	>50	F	>50	F	>50	F
	Side-Street St	op-Control	led Intersectio	ns ^d				
13. Hearst Avenue / Spruce Street	12 (SB)	В	16 (SB)	С	13 (SB)	В	20 (SB)	С
14. Hearst Avenue / Arch Street / Le Conte Avenue	11 (SB)	В	14 (SB)	В	11 (SB)	В	18 (SB)	С
15. Hearst Avenue / Scenic Avenue	11 (SB)	В	12 (SB)	В	10 (SB)	A	13 (SB)	В
17. Hearst Avenue / Le Roy Avenue	12 (SB)	В	15 (SB)	С	13 (SB)	В	19 (SB)	С
27. East Gate / Gayley Road	22 (EB)	С	20 (EB)	С	>35(EB)	Е	27 (EB)	D
28. Addison Street / Oxford Street	10 (EB)	A	17 (EB)	С	11 (EB)	В	18 (EB)	С
33. Allston Way / Oxford Street	32 (EB)	D	30 (EB)	D	33 (EB)	D	36 (EB)	E
34.Kittredge Street / Oxford Street	20 (EB)	С	> 50 (EB)	F	23 (EB)	С	> 50 (EB)	F
38. Bancroft Way / Ellsworth Street	17 (NB)	С	13 (NB)	В	17 (NB)	С	28(NB)	D
39. Bancroft Way / Dana Street	0	A	0	A	0	A	0	A
63. Dwight Way / Prospect Street	10 (SB)	В	12 (SB)	В	10 (SB)	В	12 (SB)	В

Notes:

Bold - Indicates an intersection operated at unacceptable LOS E or F.

Source: Fehr & Peers Associates, June 2003.

^a Signalized intersection level of service based on average control delay per vehicle, according to the Highway Capacity Manual, Special Report 209, Transportation Research Board, 2000

^b All-way stop-controlled intersection level of service based on average control delay per vehicle, according to the Highway Capacity Manual, Special Report 209, Transportation Research Board, 2000.

^c Based on 2000 HCM methodology, the intersection operates at LOS D during the AM peak hour and LOS C during the PM peak hour under Existing Conditions and LOS D under both AM and PM peak hours under 2020 Without Project Conditions. However, this does not take into account pedestrian volumes. Based on field observations, this intersection has a heavy pedestrian volume, result-ing in major delays for vehicles under existing conditions which are expected to continue in the future.

^d Side-street stop-controlled intersection level of service based on worst approach control delay, according to the Highway Capacity Manual, Special Report 209, Transportation Research Board, 2000.

TABLE F.3-2

PROJECTED YEAR 2010 AND 2025 LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

					2010 Wit	hout Projec	2025 Without Project			
System ^a	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS
CMP	I-80	North of Gilman	EB	7,200	10,001	1.39	F	10,201	1.42	F
			WB	7,200	8,900	1.24	F	9,720	1.35	F
CMP	I-80	North of University	EB	6,400	9,340	1.46	F	9,274	1.45	F
			WB	6,400	8,270	1.29	F	8,261	1.29	F
CMP	I-80	North of Ashby	EB	6,400	9,152	1.43	F	9,078	1.42	F
			WB	6,400	8,159	1.27	F	8,285	1.29	F
CMP	I-80	South of Ashby	EB	6,400	9,888	1.55	F	10,499	1.64	F
			WB	6,400	9,516	1.49	F	9,119	1.42	F
CMP	I-580	West of SR 24	EB	8,000	9,779	1.22	F	10,016	1.25	F
			WB	8,000	7,907	0.99	E	8,410	1.05	F
CMP	I-580	East of SR 24	EB	7,200	9,339	1.30	F	9,513	1.32	F
		WB	7,200	5,633	0.78	С	6,011	0.83	D	
CMP	SR 24	East of SR 13	EB	6,600	9,937	1.51	F	10,294	1.56	F
			WB	6,600	6,172	0.94	E	6,513	0.99	Е
CMP	SR 24	East of Broadway	EB	6,600	8,463	1.28	F	8,695	1.32	F
			WB	6,600	4,444	0.67	В	4,707	0.71	С
CMP	SR 24	East of Telegraph	EB	6,600	7,860	1.19	F	8,215	1.24	F
			WB	6,600	4,041	0.61	В	4,332	0.66	В
CMP	SR 24	West of Telegraph	EB	6,600	7,757	1.18	F	8,127	1.23	F
			WB	6,600	4,847	0.73	С	5,126	0.78	С
CMP	SR 13	South of SR 24	NB	3,300	4,036	1.22	F	4,208	1.28	F
			SB	3,300	4,691	1.42	F	4,649	1.41	F
CMP	SR 13	East of Claremont	EB	650	1,213	1.87	F	1,246	1.92	F
			WB	650	900	1.38	F	873	1.34	F
CMP	SR 13 (Ashby)	East of College	EB	650	881	1.36	F	956	1.47	F
		WB	650	535	.82	D	547	.84	D	

TABLE F.3-2

PROJECTED YEAR 2010 AND 2025 LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

C 1 D 1				_	2010 Wit	thout Projec	t	2025 Wit	thout Proje	ect .
System ^a	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS
CMP	SR 13 (Ashby)	East of Telegraph	EB	650	644	0.99	F	697	1.07	F
			WB	650	366	0.56	A	379	0.58	A
CMP	SR 13 (Ashby)	East of Shattuck	EB	650	761	1.17	F	869	1.34	F
			WB	650	601	0.92	Е	694	1.07	F
CMP	SR 13 (Ashby)	East of MLK	EB	650	861	1.32	F	942	1.45	F
			WB	650	756	1.16	F	739	1.14	F
CMP	SR 13 (Ashby)	East of Sacramento	EB	650	836	1.29	F	984	1.51	F
			WB	650	545	0.84	D	538	0.83	D
CMP	SR 13 (Ashby)	East of San Pablo	EB	650	1,290	1.98	F	1,291	1.99	F
			WB	650	710	1.09	F	577	.89	Е
CMP	SR 13 (Ashby)	East of Seventh	EB	1,300	1,280	0.98	Е	1,299	1.00	F
			WB	1,300	1,018	0.78	С	633	0.49	A
CMP	SR 13 (Ashby)	West of Seventh	EB	1,300	1,183	0.91	Е	900	0.69	В
			WB	1,300	1,320	1.02	F	488	0.38	A
CMP	University	East of MLK	EB	1,600	793	0.50	A	865	0.54	A
			WB	1,600	1,118	0.70	В	1,086	0.68	В
CMP	University	East of Sacramento	EB	1,600	1,158	0.72	С	1,213	0.76	С
			WB	1,600	1,552	0.97	E	1,481	0.93	Е
CMP	University	East of San Pablo	EB	1,600	1,162	0.73	С	1,282	0.80	D
			WB	1,600	1,647	1.03	F	1,517	0.95	Е
CMP	University	East of Sixth	EB	1,600	832	0.51	A	1,013	0.63	В
			WB	1,600	1,552	0.97	E	1,499	0.4	Е
CMP	University	West of Sixth	EB	1,600	890	0.56	A	1,056	0.66	В
			WB	1,600	1,650	1.03	F	1,695	1.06	F
CMP	San Pablo	North of Marin	NB	1,600	1,035	0.65	В	1,089	0.68	С
			SB	1,600	494	0.31	A	668	0.42	A

TABLE F.3-2

PROJECTED YEAR 2010 AND 2025 LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

				_	2010 Wi	2010 Without Project			2025 Without Project		
System ^a	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS	
CMP	San Pablo	North of Gilman	NB	1,600	1,521	0.95	E	1,605	1.00	F	
			SB	1,600	1,347	0.84	D	1,464	0.92	Е	
CMP	San Pablo	North of Cedar	NB	1,600	2,078	1.30	F	2,240	1.40	F	
			SB	1,600	1,856	1.16	F	2,021	1.26	F	
CMP	San Pablo	North of University	NB	1,600	2,217	1.39	F	2,351	1.47	F	
			SB	1,600	2,179	1.36	F	2,303	1.44	F	
CMP	San Pablo	North of Dwight	NB	1,600	2,128	1.33	F	2,205	1.38	F	
			SB	1,600	2,058	1.29	F	2,133	1.33	F	
CMP	San Pablo	North of Ashby	NB	1,600	1,969	1.23	F	2,032	1.27	F	
			SB	1,600	2,381	1.49	F	2,374	1.48	F	
CMP	San Pablo	South of Ashby	NB	1,600	1,523	0.95	Е	1,645	1.03	F	
			SB	1,600	1,617	1.01	F	1,939	1.21	F	
CMP	Shattuck	South of University	NB	1,600	1,237	0.77	С	1,304	0.82	D	
			SB	1,600	821	0.51	В	1,041	0.65	В	
CMP	Shattuck	South of Dwight	NB	1,600	1,738	1.09	F	1,878	1.17	F	
			SB	1,600	2,216	1.39	F	2,295	1.43	F	
CMP	Adeline	North of Ashby	NB	2,400	1,321	0.55	A	1,496	0.62	В	
			SB	2,400	2,032	0.85	D	2,116	0.88	D	
CMP	Adeline	South of Ashby	NB	2,400	1,359	0.57	A	1,587	0.66	В	
			SB	2,400	2,089	0.87	D	2,208	0.92	Е	
CMP	MLK	South of Adeline	NB	2,400	1,539	0.64	В	1,746	0.73	С	
			SB	2,400	2,546	1.06	F	2,694	1.12	F	
MTS	Solano Ave	East of San Pablo	EB	550	364	0.66	В	444	0.81	D	
			WB	550	315	0.57	A	344	0.63	В	
MTS	Solano Ave	East of Colusa	EB	550	599	1.09	F	676	1.23	F	
			WB	550	590	1.07	F	649	1.18	F	

TABLE F.3-2

PROJECTED YEAR 2010 AND 2025 LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

				_	2010 Wit	thout Projec	t	2025 Wit	thout Proje	ect
System ^a	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS
MTS	Sutter	East of the Alameda	EB	550	638	1.16	F	710	1.29	F
			WB	550	478	0.87	D	515	0.94	E
MTS	Henry	North of Rose	NB	550	1,141	2.07	F	1,248	2.27	F
			SB	550	1,015	1.85	F	1,059	1.93	F
MTS	Shattuck	North of Cedar	NB	1,600	1,673	1.05	F	1,885	1.18	F
			SB	1,600	1,245	0.78	С	1,370	0.86	D
MTS	Shattuck	North of Hearst	NB	1,600	1,798	1.12	F	2,049	1.28	F
			SB	1,600	1,361	0.85	D	1,550	.97	F
MTS	Shattuck	North of University	NB	1,600	1,902	1.19	F	2,100	1.31	F
			SB	1,600	1,507	0.94	E	1,723	1.08	F
MTS	The Alameda	South of Solano	NB	1,100	434	0.39	A	474	0.43	Α
			SB	1,100	285	0.26	A	310	0.28	A
MTS	The Alameda	South of Marin	NB	1,100	1,369	1.24	F	1,438	1.31	F
			SB	1,100	926	0.84	D	1,037	0.94	Е
MTS	MLK	North of Cedar	NB	550	554	1.01	F	607	1.10	F
			SB	550	303	0.55	A	379	0.69	В
MTS	MLK	North of Hearst	NB	550	582	1.06	F	634	1.15	F
			SB	550	505	0.92	E	564	1.03	F
MTS	MLK	North of University	NB	550	887	1.61	F	929	1.69	F
			SB	550	776	1.41	F	826	1.50	F
MTS	MLK	North of Dwight	NB	1,100	948	0.86	D	1,087	0.99	Е
			SB	1,100	1,576	1.43	F	1,658	1.51	F
MTS	MLK	North of Ashby	NB	1,100	1,121	1.02	F	1,250	1.14	F
		•	SB	1,100	1,471	1.34	F	1,564	1.42	F
MTS	MLK	South of Ashby	NB	1,600	1,076	0.67	В	1,220	0.76	С
			SB	1,600	1,616	1.01	F	1,779	1.11	F

TABLE F.3-2

PROJECTED YEAR 2010 AND 2025 LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

					2010 Wi	2010 Without Project			2025 Without Proje	
System ^a	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS
MTS	Sacramento	North of Cedar	NB	1,600	1,025	0.64	В	1,073	0.67	В
			SB	1,600	820	0.51	A	873	0.55	A
MTS	Sacramento	North of Hearst	NB	1,600	1,695	1.06	F	1,843	1.15	F
			SB	1,600	1,559	0.97	Е	1,656	1.04	F
MTS	Sacramento	North of University	NB	1,600	1,762	1.10	F	1,932	1.21	F
			SB	1,600	1,740	1.09	F	1,840	1.15	F
MTS	Sacramento	North of Dwight	NB	1,600	2,017	1.26	F	2,097	1.31	F
			SB	1,600	1,997	1.25	F	2,105	1.32	F
MTS	Sacramento	North of Ashby	NB	1,600	2,003	1.25	F	2,071	1.29	F
			SB	1,600	2,044	1.28	F	2,216	1.39	F
MTS	Sixth	South of University	NB	550	791	1.44	F	786	1.43	F
			SB	550	537	0.98	E	619	1.13	F
MTS	Seventh	North of Ashby	NB	550	622	1.13	F	626	1.14	F
			SB	550	721	1.31	F	751	1.37	F
MTS	Telegraph	South of Bancroft	NB	1,600	1,235	0.77	С	1,257	0.79	С
MTS	Telegraph	South of Dwight	NB	1,600	1,142	0.71	С	1,218	0.76	С
			SB	1,600	1,220	0.76	С	1,297	0.81	D
MTS	Telegraph	South of Ashby	NB	1,600	1,274	0.80	С	1,297	0.81	D
			SB	1,600	1,540	0.96	E	1,602	1.00	F
MTS	College	South of Bancroft	NB	550	63	0.11	A	63	0.11	A
			SB	550	86	0.16	A	99	0.18	A
MTS	College	South of Dwight	NB	550	516	0.94	E	564	1.03	F
			SB	550	848	1.54	F	915	1.66	F
MTS	College	South of Ashby	NB	550	511	0.93	E	528	0.96	Е
			SB	550	666	1.21	F	790	1.29	F

TABLE F.3-2

PROJECTED YEAR 2010 AND 2025 LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

					2010 Wi	thout Projec	ct	2025 Wit	thout Proje	ect
System ^a	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS
MTS	Gilman	West of Sixth	EB	1,100	379	0.34	A	567	0.52	Α
			WB	1,100	1,038	0.94	E	991	0.90	E
MTS	Gilman	East of Sixth	EB	550	552	1.00	F	727	1.32	F
			WB	550	638	1.16	F	769	1.40	F
MTS	Gilman	East of San Pablo	EB	550	465	0.85	D	508	0.92	Е
			WB	550	477	0.87	D	475	0.86	D
MTS	Hopkins	West of Sacramento	EB	500	572	1.14	F	666	1.33	F
			WB	500	617	1.23	F	660	1.32	F
MTS	Hopkins	East of Sacramento	EB	500	457	0.91	Е	499	1.00	Е
			WB	500	323	0.65	В	359	0.72	С
MTS	Dwight	East of Sixth	EB	550	528	0.96	Е	443	0.81	D
			WB	550	554	1.01	F	421	0.77	С
MTS	Dwight	East of San Pablo	EB	550	760	1.38	F	792	1.44	F
			WB	550	881	1.60	F	804	1.46	F
MTS	Dwight	East of Sacramento	EB	550	569	1.03	F	571	1.04	F
			WB	550	497	0.90	Е	489	0.89	D
MTS	Dwight	East of MLK	EB	1,600	544	0.34	A	543	0.34	A
MTS	Dwight	East of Shattuck	EB	1,600	764	0.48	A	788	0.49	A
MTS	Dwight	East of Telegraph	EB	1,600	909	0.57	A	885	0.55	A
MTS	Bancroft	East of Shattuck	WB	1,600	530	0.33	A	518	0.32	A
MTS	Bancroft	West of Telegraph	WB	1,600	931	0.58	A	951	0.59	В
MTS	Bancroft	West of College	WB	1,600	124	0.08	A	130	.08	A

Notes:

Source: The Countywide Travel Demand Model updated by Fehr & Peers in January 2004.

^a All CMP roadways are also part of MTS.

^b Capacity based on peak hour directional link volumes in the Countywide Travel Demand Model.

^c 2010 PM peak hour volume as estimated by the Countywide Travel Demand Model.

^d 2025 PM peak hour volume as estimated by the Countywide Travel Demand Model.

TABLE F.3-3

2020 WITH PROJECT CONDITIONS STUDY INTERSECTION LEVELS OF SERVICE

		2	020 Witho	out Project			_						
	AM Peal	k Hour	PM Pea	k Hour	AM Peak	Hour	PM Peal	k Hour	AM Pea	k Hour	PM Peal	k Hour	Impact
Intersection	Delay	LOSª	Delay	LOSª	Delay	LOSª	Delay	LOSª	Delay	LOSª	Delay	LOSª	Significant?
				Si	gnalized	Intersect	tions ^a						
1. Marin Avenue / San Pablo Avenue	79	E	50	D	>80	F	780	F	>80	F	>80	F	No
2Marin Avenue / The Alameda	13	В	15	В	15	В	22	С	15	В	22	С	No
3. Gilman Street / Sixth Street	11	В	75	E	16	В	>80	F	17	В	>80	F	No
4. Gilman Street / San Pablo Avenue	41	D	42	D	43	D	62	E	46	D	69	E	No
5. Shattuck Avenue / Rose Street	7	A	12	В	10	A	16	В	10	A	16	В	No
6. Cedar Street / MLK Way	17	В	25	С	31	С	47	D	33	С	51	D	No
7. Cedar Street / Shattuck Avenue	10	A	14	В	10	В	16	В	11	В	17	В	No
8. Cedar Street / Oxford Street	49	D	22	С	58	E	41	D	58	E	63	E	Yes TRA-6a
9. Cedar Street / Euclid Avenue	13	В	12	В	14	В	14	В	14	В	14	В	No
11. Hearst Avenue / Shattuck Avenue	6	A	15	В	8	A	22	С	8	A	23	С	No
12. Hearst Avenue / Oxford Street	10	В	54	D	12	В	52	D	12	В	49	D	No
16. Hearst Avenue / Euclid Avenue	15	В	20	В	18	В	17	В	18	В	17	В	No
18. Hearst Avenue / Gayley Road / La Loma Avenue	23	С	25	С	>57	E	>67	E	>60	E	>69	Е	No
19. Berkeley Way / Oxford Street	5	A	7	A	7	A	10	A	7	A	10	A	No
20. University Avenue / Sixth Street	>80	F	>80	F	>80	F	>80	F	>80	F	>80	F	Yes TRA-8a

TABLE F.3-3

2020 WITH PROJECT CONDITIONS STUDY INTERSECTION LEVELS OF SERVICE

		Exis	ting		2	2020 With	out Project						
	AM Peal	k Hour	PM Pea	k Hour	AM Peal	k Hour	PM Peal	k Hour	AM Pea	k Hour	PM Peal	k Hour	Impact
Intersection	Delay	LOSª	Delay	LOSª	Delay	LOSª	Delay	LOSª	Delay	LOSª	Delay	LOSª	Significant?
21. University Avenue / San Pablo Avenue	>80	F	>80	F	>80	F	>80	F	>80	F	>80	F	Yes TRA-8b
22. University Avenue / MLK Way	21	С	32	С	30	С	41	D	40	D	41	D	No
23. University Avenue / Milvia Street	11	В	17	В	13	В	19	В	14	В	23	С	No
24. University Avenue / Shattuck Avenue (West)	20	В	18	В	22	С	18	В	37	D	22	С	No
25. University Avenue / Shattuck Avenue (East)	16	В	17	В	16	В	18	В	17	В	19	В	No
26. University Avenue / Oxford Street	29	С	18	В	29	С	23	С	39	D	29	С	No
29. Center Street / Shattuck Avenue (West)	15	В	14	В	16	В	17	В	17	В	17	В	No
30. Center Street / Shattuck Avenue (East)	5	A	8	A	5	A	10	A	5	A	10	A	No
31. Center Street / Oxford Street	8	A	8	A	12	В	10	В	13	В	11	В	No
36. Bancroft Way / Shattuck Avenue	9	A	13	В	10	A	17	В	11	В	22	С	No
37. Bancroft Way / Fulton Street	6	A	7	A	9	A	9	A	10	A	10	В	No
40. Bancroft Way / Telegraph Avenue	20	С	18	В	22	С	18	В	22	С	19	В	No
44. Durant Avenue / Shattuck Avenue	11	В	14	В	16	В	19	В	14	В	21	С	No
45. Durant Avenue / Fulton Street	7	A	7	A	10	A	10	A	11	В	10	A	No
46. Durant Avenue / Telegraph Avenue	11	В	13	В	11	В	13	В	12	В	13	В	No
47. Durant Avenue / College Avenue	9	A	13	В	13	В	14	В	14	В	14	В	No

TABLE F.3-3

2020 WITH PROJECT CONDITIONS STUDY INTERSECTION LEVELS OF SERVICE

		Exis	ting		:	2020 Witho	out Project						
	AM Peal		PM Pea	k Hour	AM Pea		PM Peal	s Hour	AM Pea		PM Peal	k Hour	Impact
Intersection	Delay	LOSª	Delay	LOSª	Delay	LOSª	Delay	LOSª	Delay	LOSª	Delay	LOSª	Significant?
49. Channing Way / Shattuck Avenue	5	A	6	A	6	A	9	A	7	A	10	A	No
51. Channing Way / Telegraph Avenue	9	A	13	В	12	В	16	В	12	В	16	В	No
52. Channing Way / College Avenue	16	В	10	В	22	С	16	В	22	С	16	В	No
53. Haste Street / Shattuck Avenue	51	D	10	A	43	D	15	В	44	D	19	В	No
54. Haste Street / Fulton Street	14	В	19	В	15	В	23	С	15	В	23	С	No
55. Haste Street / Telegraph Avenue	16	В	13	В	17	В	14	В	17	В	14	В	No
56. Haste Street / College Avenue	8	A	9	A	11	В	11	В	11	В	11	В	No
57. Dwight Way / MLK Way	14	В	18	В	21	С	24	С	22	С	29	С	No
58. Dwight Way / Shattuck Avenue	10	В	13	В	14	В	16	В	17	В	17	В	No
59. Dwight Way / Fulton Street	11	В	14	В	14	В	17	В	14	В	17	В	No
60. Dwight Way / Telegraph Avenue	16	В	20	С	18	В	30	С	18	В	32	С	No
61. Dwight Way / College Avenue	10	В	15	В	12	В	14	В	12	В	15	В	No
62. Dwight Way / Piedmont Avenue	9	A	13	В	11	В	13	В	11	В	14	В	No
64. Adeline Street / Shattuck Avenue	15	В	24	С	17	В	32	С	20	С	33	С	No
66. Derby Street / Claremont Boulevard	13	В	16	В	19	В	23	С	30	С	34	С	No
67. Ashby Avenue / Seventh Street	34	С	52	D	54	D	>80	F	54	D	>80	F	No

TABLE F.3-3

2020 WITH PROJECT CONDITIONS STUDY INTERSECTION LEVELS OF SERVICE

		Exis	ting		2	2020 Witho	out Project			_			
	AM Peal	k Hour	PM Peal	k Hour	AM Peal	. Hour	PM Peal	k Hour	AM Pea	k Hour	PM Peal	k Hour	Impact
Intersection	Delay	LOSª	Delay	LOSª	Delay	LOSª	Delay	LOSª	Delay	LOSª	Delay	LOSª	Significant?
68. Ashby Avenue / San Pablo Avenue	29	С	31	С	36	D	46	D	42	D	41	D	No
69. Ashby Avenue / Adeline Street	40	D	37	D	42	D	39	D	42	D	39	D	No
70. Ashby Avenue / Shattuck Avenue	15	В	30	С	16	В	37	D	17	В	43	D	No
71. Ashby Avenue / Telegraph Avenue	26	С	26	С	26	С	27	С	27	С	27	С	No
72. Ashby Avenue / College Avenue	31	С	29	С	36	D	37	D	36	D	39	D	No
73. Ashby Avenue / Claremont Avenue	22	С	22	В	24	С	25	С	27	С	27	С	No
74. Tunnel Road / Highway 13	16	В	14	В	16	В	15	В	17	В	16	В	No
				All-Way	Stop-Con	trolled In	itersection	ıs ^b					
10. Grizzly Peak Blvd / Centennial Drive / Golf Course Drive	8	В	18	С	11	В	23	С	11	В	25	D	No
32. Stadium Rim Road / Gayley Road	26	D	35	D	>50	F	>50	F	>50	F	>50	F	No
35. Stadium Rim Road / Centennial Drive	9	A	12	В	10	A	12	В	10	A	13	В	No
41. Bancroft Way / Bowditch Street	12	В	12	В	12	В	13	В	14	В	16	С	No
42. Bancroft Way / College Avenue	8	В	12	В	11	В	14	В	17	С	15	С	No
43.Bancroft Way / Piedmont Avenue ^c	>50	F	>50	F	>50	F	>50	F	>50	F	>50	F	Yes TRA-7
48. Durant Avenue / Piedmont Avenue	17	С	18	С	>26	D	27	D	>50	F	34	D	Yes TRA-6b
50. Channing Way / Fulton Street	12	В	18	С	15	В	27	D	15	В	28	D	No

UNIVERSITY OF CALIFORNIA, BERKELEY

2020 LRDP DRAFT EIR APPENDIX F.3: LEVEL OF SERVICE SUMMARIES

TABLE F.3-3
2020 WITH PROJECT CONDITIONS STUDY INTERSECTION LEVELS OF SERVICE

		Exis	sting		2	2020 With	out Project			_			
	AM Peal	k Hour	PM Peal	s Hour	AM Peal	s Hour	PM Peal	k Hour	AM Peal	k Hour	PM Peak	. Hour	Impact
Intersection	Delay	LOSª	Delay	LOSª	Delay	LOSª	Delay	LOSª	Delay	LOSª	Delay	LOSª	Significant?
65.Derby Street / Warring Street	>50	F	>50	F	>50	F	>50	F	>50	F	>50	F	Yes TRA-6c
				Side-Stre	et Stop-Co	ntrolled	Intersectio	ns ^d					
13. Hearst Avenue / Spruce Street	12 (SB)	В	16 (SB)	С	13(SB)	В	20 (SB)	С	13 (SB)	В	20 (SB)	С	No
14. Hearst Avenue / Arch Street / Le Conte Avenue	11 (SB)	В	14 (SB)	В	11 (SB)	В	18 (SB)	С	11 (SB)	В	18 (SB)	С	No
15. Hearst Avenue / Scenic Avenue	11 (SB)	В	12 (SB)	В	10 (SB)	A	13 (SB)	В	10 (SB)	В	13 (SB)	В	No
17. Hearst Avenue / Le Roy Avenue	12 (SB)	В	15 (SB)	С	13 (SB)	В	19 (SB)	С	14(SB)	В	19 (SB)	С	No
27. East Gate / Gayley Road	22 (EB)	С	20 (EB)	С	> 35 (EB)	E	27 (EB)	D	> 35 (EB)	E	22 (EB)	С	No
28. Addison Street / Oxford Street	10 (EB)	A	17 (EB)	С	11 (EB)	В	18 (EB)	С	35 (EB)	E	> 45 (EB)	E	Yes TRA-6d
33. Allston Way / Oxford Street	32 (EB)	D	30 (EB)	D	33 (EB)	D	36 (EB)	E	49 (EB)	E	45 (EB)	E	Yes TRA-6e
34. Kittredge Street / Oxford Street	20 (EB)	С	> 50 (EB)	F	23 (EB)	С	> 50 (EB)	F	> 50 (EB)	F	> 50 (EB)	F	Yes TRA-6f
38. Bancroft Way / Ellsworth Street	16 (NB)	С	13 (NB)	В	17 (NB)	С	28 (NB)	D	22 (NB)	С	39 (NB)	E	Yes TRA-6g
39. Bancroft Way / Dana Street	0	A	0	A	0	A	0	A	0	A	0	A	No
63. Dwight Way / Prospect Street	10 (SB)	В	12 (SB)	В	10 (SB)	В	12 (SB)	В	10 (SB)	В	12 (SB)	В	No

Notes:

Bold - Indicates an intersection operated at unacceptable LOS E or F.

^a Signalized intersection level of service based on average control delay per vehicle, according to the Highway Capacity Manual, Special Report 209, Transportation Research Board, 2000.

^b All-way stop-controlled intersection level of service based on average control delay per vehicle, according to the *Highway Capacity Manual*, *Special Report 209*, Transportation Research Board, 2000.

Source: Fehr & Peers Associates, January 2003.

^c Based on 2000 HCM methodology, the intersection operates at LOS D during the AM peak hour and LOS C during the PM peak hour under Existing Conditions and LOS D under both AM and PM peak hours under 2020 No Project Conditions. However, this does not take into account pedestrian volumes. Based on field observations, this intersection has a heavy pedestrian volume, resulting in major delays for vehicles under existing conditions. With the additional traffic at the intersection under 2020 no Project and 2020 with Project conditions, the intersection is estimated to continue operating at LOS F.

d Side-street stop-controlled intersection level of service based on worst approach control delay, according to the Highway Capacity Manual, Special Report 209, Transportation Research Board, 2000.

TABLE F.3-4
PROJECTED YEAR 2010 WITH PROJECT LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

					2010 W	ithout Pro	oject	2010	With Proje	ct	Percent Traffic
System ^a	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS	Added ^e
CMP	I-80	North of Gilman	EB	7,200	10,001	1.39	F	10,088	1.40	F	1%
			WB	7,200	8,900	1.24	F	8,912	1.24	F	0%
CMP	I-80	North of	EB	6,400	9,430	1.46	F	9,418	1.47	F	1%
		University	WB	6,400	8,270	1.29	F	8,281	1.29	F	0%
CMP	I-80	North of Ashby	EB	6,400	9,152	1.43	F	9,168	1.43	F	0%
			WB	6,400	8,159	1.27	F	8,240	1.29	F	1%
CMP	I-80	South of Ashby	EB	6,400	9,888	1.55	F	9,907	1.55	F	0%
			WB	6,400	9,516	1.49	F	9,642	1.51	F	1%
CMP	I-580	West of SR 24	EB	8,000	9,779	1.22	F	9,797	1.22	F	0%
			WB	8,000	7,907	0.99	E	7,910	0.99	E	0%
CMP	I-580	East of SR 24	EB	7,200	9,339	1.30	F	9,350	1.30	F	0%
			WB	7,200	5,633	0.78	С	5,635	0.78	С	0%
CMP	SR 24	East of SR 13	EB	6,600	9,937	1.51	F	9,948	1.51	F	0%
			WB	6,600	6,172	0.94	E	6,188	0.94	E	0%
CMP	SR 24	East of Broadway	EB	6,600	8,463	1.28	F	8,463	1.28	F	0%
			WB	6,600	4,444	0.67	В	4,444	0.67	В	0%
CMP	SR 24	East of Telegraph	EB	6,600	7,860	1.19	F	7,860	1.19	F	0%
			WB	6,600	4,041	0.61	В	4,041	0.61	В	0%
CMP	SR 24	West of Telegraph	EB	6,600	7,757	1.18	F	7,759	1.18	F	0%
			WB	6,600	4,847	0.73	С	4,857	0.74	С	0%
CMP	SR 13	South of SR 24	NB	3,300	4,036	1.22	F	4,047	1.23	F	0%
			SB	3,300	4,691	1.42	F	4,767	1.44	F	2%
CMP	SR 13	East of Claremont	EB	650	1,213	1.87	F	1,374	2.11	F	13%
			WB	650	900	1.38	F	925	1.42	F	3%
CMP	SR 13	East of College	EB	650	881	1.36	F	931	1.43	F	6%
	(Ashby)		WB	650	535	0.82	D	544	0.84	D	2%

TABLE F.3-4
PROJECTED YEAR 2010 WITH PROJECT LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

System ^a					2010 W	ithout Pro	bject	2010	With Proje	CT	Percent Traffic
- /	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS	Added ^e
CMP	SR 13 (Ashby)	East of Telegraph	EB	650	644	0.99	F	670	1.03	F	4%
			WB	650	366	0.56	A	369	0.57	A	1%
CMP	SR 13 (Ashby)	East of Shattuck	EB	650	761	1.17	F	788	1.21	F	4%
			WB	650	601	0.92	E	605	0.93	E	1%
CMP	SR 13	East of MLK	EB	650	862	1.33	F	887	1.36	F	3%
	(Ashby)		WB	650	<i>7</i> 56	1.16	F	824	1.27	F	9%
CMP	SR 13 (Ashby)	East of Sacramento	EB	650	836	1.29	F	869	1.34	F	4%
			WB	650	545	0.84	D	627	0.96	E	15%
CMP	SR 13	East of San Pablo	EB	650	1,290	1.98	F	1,323	2.04	F	3%
	(Ashby)		WB	650	710	1.09	\mathbf{F}	792	1.22	F	12%
CMP	SR 13 (Ashby)	East of Seventh	EB	1,300	1,280	0.98	Е	1,288	0.99	Е	1%
			WB	1,300	1,018	0.78	С	1,069	0.82	D	5%
CMP	SR 13 (Ashby)	West of Seventh	EB	1,300	1,183	0.91	Е	1,191	0.92	Е	1%
			WB	1,300	1,320	1.02	F	1,371	1.05	F	4%
CMP	University	East of MLK	EB	1,600	793	0.50	A	833	0.52	A	5%
			WB	1,600	1,118	0.70	В	1,403	0.88	D	25%
CMP	University	East of	EB	1,600	1,158	0.72	С	1,198	0.75	С	3%
		Sacramento	WB	1,600	1,552	0.97	E	1,834	1.15	F	18%
CMP	University	East of San Pablo	EB	1,600	1,162	0.73	С	1,203	0.75	С	4%
			WB	1,600	1,647	1.03	F	1,931	1.21	F	17%
CMP	University	East of Sixth	EB	1,600	832	0.51	A	855	0.53	A	4%
			WB	1,600	1,552	0.97	\mathbf{E}	1,775	1.11	\mathbf{F}	14%
CMP	University	West of Sixth	EB	1,600	890	0.56	A	921	0.58	A	3%
			WB	1,600	1,650	1.03	F	1,868	1.22	F	13%
CMP	San Pablo	North of Marin	NB	1,600	1,035	0.65	В	1,131	0.71	С	9%
			SB	1,600	494	0.31	Α	509	0.32	A	3%

TABLE F.3-4
PROJECTED YEAR 2010 WITH PROJECT LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

					2010 W	ithout Pro	oject	2010 V	With Proje	ct	Percent Traffic
System ^a	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS	Added ^e
CMP	San Pablo	North of Gilman	NB	1,600	1,521	0.95	E	1,620	1.01	F	7%
			SB	1,600	1,347	0.84	D	1,363	0.85	D	1%
CMP	San Pablo	North of Cedar	NB	1,600	2,078	1.30	F	2,177	1.36	F	5%
			SB	1,600	1,856	1.16	F	1,871	1.17	F	1%
CMP	San Pablo	North of	NB	1,600	2,212	1.39	F	2,292	1.43	F	3%
		University	SB	1,600	2,179	1.36	F	2,191	1.37	F	1%
CMP	San Pablo	North of Dwight	NB	1,600	2,128	1.33	F	2,149	1.34	F	1%
			SB	1,600	2,058	1.29	F	2,067	1.29	F	0%
CMP	San Pablo	North of Ashby	NB	1,600	1,969	1.23	F	1,994	1.25	F	1%
			SB	1,600	2,381	1.49	F	2,394	1.50	F	1%
CMP	San Pablo	South of Ashby	NB	1,600	1,523	0.95	Е	1,588	0.99	Е	4%
			SB	1,600	1,617	1.01	F	1,677	1.05	F	4%
CMP	Shattuck	South of University	NB	1,600	1,237	0.77	С	1,375	0.86	D	11%
			SB	1,600	821	0.51	A	879	0.55	A	7%
CMP	Shattuck	South of Dwight	NB	1,600	1,738	1.09	F	1,763	1.10	F	1%
			SB	1,600	2,216	1.39	\mathbf{F}	2,359	1.47	F	6%
CMP	Adeline	North of Ashby	NB	2,400	1,321	0.55	A	1,324	0.55	A	0%
			SB	2,400	2,032	0.85	D	2,048	0.92	E	1%
CMP	Adeline	South of Ashby	NB	2,400	1,359	0.57	A	1,361	0.57	A	0%
			SB	2,400	2,089	0.87	D	2,099	0.87	D	0%
CMP	MLK	South of Adeline	NB	2,400	1,539	0.64	В	1,555	0.65	В	1%
			SB	2,400	2,546	1.06	F	2,638	1.10	F	4%
MTS	Solano Ave	East of San Pablo	EB	550	364	0.66	В	366	0.67	В	1%
			WB	550	315	0.57	A	326	0.59	A	3%
MTS	Solano Ave	East of Colusa	EB	550	599	1.09	F	601	1.09	F	0%
			WB	550	590	1.07	F	601	1.09	F	2%

TABLE F.3-4

PROJECTED YEAR 2010 WITH PROJECT LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

					2010 W	ithout Pro	oject	2010	With Proje	ct	Percent Traffic
System ^a	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS	Added ^e
MTS	Sutter	East of the Alameda	EB	550	638	1.16	F	640	1.16	F	0%
			WB	550	478	0.87	D	489	0.89	D	2%
MTS	Henry	North of Rose	NB	550	1,141	2.07	F	1,152	2.09	F	1%
			SB	550	1,015	1.85	F	1,017	1.85	F	0%
MTS	Shattuck	North of Cedar	NB	1,600	1,673	1.05	F	1,680	1.05	F	0%
			SB	1,600	1,245	0.78	С	1,246	0.78	С	0%
MTS	Shattuck	North of Hearst	NB	1,600	1,798	1.12	F	1,804	1.13	F	0%
			SB	1,600	1,361	0.85	D	1,363	0.85	D	0%
MTS	Shattuck	North of	NB	1,600	1,902	1.19	F	1,914	1.20	F	1%
		University	SB	1,600	1,507	.94	E	1,595	1.00	E	6%
MTS	The Alameda	South of Solano	NB	1,100	434	0.39	A	434	0.39	A	0%
			SB	1,100	285	0.26	A	285	0.26	A	0%
MTS	The Alameda	South of Marin	NB	1,100	1,369	1.24	F	1,382	1.26	F	1%
			SB	1,100	932	0.84	D	929	0.84	D	0%
MTS	MLK	North of Cedar	NB	550	554	1.01	F	564	1.03	F	2%
			SB	550	303	0.55	A	305	0.55	A	1%
MTS	MLK	North of Hearst	NB	550	582	1.06	F	598	1.09	F	3%
			SB	550	505	0.92	E	508	0.92	E	1%
MTS	MLK	North of	NB	550	887	1.61	F	900	1.64	F	1%
		University	SB	550	776	1.41	F	780	1.42	F	1%
MTS	MLK	North of Dwight	NB	1,100	948	0.86	D	961	0.87	D	1%
			SB	1,100	1,576	1.43	F	1,618	1.47	F	3%
MTS	MLK	North of Ashby	NB	1,100	1,121	1.02	F	1,126	1.02	F	0%
			SB	1,100	1,471	1.34	F	1,490	1.35	F	1%
MTS	MLK	South of Ashby	NB	1,600	1,076	0.67	В	1,078	0.67	В	0%
			SB	1,600	1,616	1.01	F	1,626	1.02	F	1%

TABLE F.3-4
PROJECTED YEAR 2010 WITH PROJECT LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

					2010 W	ithout Pro	oject		With Proje	ct	Percent Traffic
System ^a	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS	Added ^e
MTS	Sacramento	North of Cedar	NB	1,600	1,025	0.64	В	1,025	0.64	В	0%
			SB	1,600	820	0.51	A	820	0.51	A	0%
MTS	Sacramento	North of Hearst	NB	1,600	1,695	1.06	F	1,695	1.06	F	0%
			SB	1,600	1,559	0.97	E	1,559	0.97	E	0%
MTS	Sacramento	North of	NB	1,600	1,762	1.10	F	1,762	1.10	F	0%
		University	SB	1,600	1,740	1.09	F	1,740	1.09	F	0%
MTS	Sacramento	North of Dwight	NB	1,600	2,017	1.26	F	2,017	1.26	F	0%
			SB	1,600	1,997	1.25	F	1,997	1.25	F	0%
MTS	Sacramento	North of Ashby	NB	1,600	2,003	1.25	F	2,003	1.25	F	0%
			SB	1,600	2,044	1.28	F	2,044	1.28	F	0%
MTS	Sixth	South of University	NB	550	791	1.44	F	796	1.45	F	1%
			SB	550	537	0.98	E	558	1.01	F	4%
MTS	Seventh	North of Ashby	NB	550	622	1.13	F	622	1.13	F	0%
			SB	550	721	1.31	F	721	1.31	F	0%
MTS	Telegraph	South of Bancroft	NB	1,600	1,235	0.77	С	1,238	0.77	С	0%
MTS	Telegraph	South of Dwight	NB	1,600	1,142	0.71	С	1,146	0.72	С	0%
			SB	1,600	1,220	0.76	С	1,247	0.78	С	2%
MTS	Telegraph	South of Ashby	NB	1,600	1,274	0.80	С	1,279	0.80	С	0%
			SB	1,600	1,540	0.96	E	1,568	0.98	E	2%
MTS	College	South of Bancroft	NB	550	63	0.11	A	83	0.15	A	32%
			SB	550	86	0.16	Α	89	0.16	A	2%
MTS	College	South of Dwight	NB	550	516	0.94	Е	519	0.94	Е	1%
			SB	550	848	1.54	F	871	1.58	F	3%
MTS	College	South of Ashby	NB	550	511	0.93	Е	511	0.93	Е	0%
	-	•	SB	550	666	1.21	F	666	1.21	F	0%

TABLE F.3-4
PROJECTED YEAR 2010 WITH PROJECT LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

		1			2010 W	ithout Pr	oject	2010	With Proje	ct	Percent Traffic
System ^a	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS	Added ^e
MTS	Gilman	West of Sixth	EB	1,100	379	0.34	Α	381	0.35	Α	1%
			WB	1,100	1,038	0.94	E	1,048	0.95	E	1%
MTS	Gilman	East of Sixth	EB	550	552	1.00	F	552	1.00	F	0%
			WB	550	638	1.16	F	639	1.16	F	0%
MTS	Gilman	East of San Pablo	EB	550	465	0.85	D	465	0.85	D	0%
			WB	550	477	0.87	D	478	0.87	D	0%
MTS	Hopkins	West of Sacramento	EB	500	572	1.14	F	573	1.15	F	0%
			WB	500	617	1.23	F	620	1.24	F	0%
MTS	Hopkins	East of Sacramento	EB	500	457	0.91	Е	458	0.92	Е	0%
			WB	500	323	0.65	В	326	0.65	В	1%
MTS	Dwight	East of Sixth	EB	550	528	0.96	Е	536	0.97	Е	2%
			WB	550	554	1.01	F	606	1.10	F	9%
MTS	Dwight	East of San Pablo	EB	550	760	1.38	F	767	1.39	F	1%
			WB	550	881	1.60	F	932	1.69	F	6%
MTS	Dwight	East of	EB	550	569	1.03	F	578	1.05	F	2%
		Sacramento	WB	550	497	0.90	\mathbf{E}	552	1.00	F	11%
MTS	Dwight	East of MLK	EB	1,600	544	0.34	A	549	0.34	A	1%
MTS	Dwight	East of Shattuck	EB	1,600	764	0.48	A	770	0.48	A	1%
MTS	Dwight	East of Telegraph	EB	1,600	909	0.57	A	927	0.58	A	2%
MTS	Bancroft	East of Shattuck	WB	1,600	530	0.33	A	705	0.44	A	33%
MTS	Bancroft	West of Telegraph	WB	1,600	931	0.58	A	1,086	0.68	В	17%
MTS	Bancroft	West of College	WB	1,600	124	0.08	Α	181	0.11	A	46%

Note:

Bold - Indicates segment with significant impact..

^ePercent increase in traffic caused by the project (i.e. project only traffic divided by without project traffic.

Source: The Countywide Travel Demand Model updated by Fehr & Peers in January 2004.

^a All CMP roadways are also part of MTS.

^b Capacity based on peak hour directional link volumes in the Countywide Travel Demand Model.

^c2010 PM peak hour volume as estimated by the Countywide Travel Demand Model.

^dEstimated project trips added to 2010 PM peak hour trips.

TABLE F.3-5

PROJECTED YEAR 2025 WITH PROJECT LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

					2025 W	ithout Pro	oject	2025	With Proje	ect	Percent Traffic
System ^a	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS	Added ^e
CMP	I-80	North of Gilman	EB	7,200	10,201	1.42	F	10,288	1.43	F	1%
			WB	7,200	9,720	1.35	F	9,732	1.35	F	0%
CMP	I-80	North of	EB	6,400	9,274	1.45	F	9,352	1.46	F	1%
		University	WB	6,400	8,261	1.29	F	8,272	1.29	F	0%
CMP	I-80	North of Ashby	EB	6,400	9,078	1.42	F	9,094	1.46	F	0%
			WB	6,400	8,285	1.29	F	8,366	1.31	F	1%
CMP	I-80	South of Ashby	EB	6,400	10,449	1.64	F	10,518	1.64	F	0%
			WB	6,400	9,119	1.42	F	9,245	1.44	F	1%
CMP	I-580	West of SR 24	EB	8,000	10,016	1.25	F	10,034	1.25	F	0%
			WB	8,000	8,410	1.05	F	8,413	1.05	F	0%
CMP	I-580	East of SR 24	EB	7,200	9,513	1.32	F	9,524	1.32	F	0%
			WB	7,200	6,011	0.83	D	6,013	0.84	D	0%
CMP	SR 24	East of SR 13	EB	6,600	10,294	1.56	F	10,305	1.56	F	0%
			WB	6,600	6,513	0.99	E	6,529	0.99	E	0%
CMP	SR 24	East of Broadway	EB	6,600	8,695	1.32	F	8,695	1.32	F	0%
			WB	6,600	4,707	0.71	С	4,707	0.71	С	0%
CMP	SR 24	East of Telegraph	EB	6,600	8,215	1.24	F	8,215	1.24	F	0%
			WB	6,600	4,332	0.66	В	4,332	0.66	В	0%
CMP	SR 24	West of Telegraph	EB	6,600	8,127	1.23	F	8,129	1.23	F	0%
			WB	6,600	5,126	0.78	С	5,136	0.78	С	0%
CMP	SR 13	South of SR 24	NB	3,300	4,208	1.28	F	4,219	1.28	F	0%
			SB	3,300	4,649	1.41	F	4,725	1.43	F	2%
CMP	SR 13	East of	EB	650	1,246	1.92	F	1,407	2.16	F	13%
		Claremont	WB	650	873	1.34	F	898	1.38	F	3%

TABLE F.3-5

PROJECTED YEAR 2025 WITH PROJECT LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

					2025 W	ithout Pro	ject	2025	With Proje	ect	Percent Traffic
System ^a	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS	Added ^e
CMP	SR 13 (Ashby)	East of College	EB	650	956	1.47	F	1,006	1.55	F	5%
			WB	650	547	0.84	D	556	0.86	D	2%
CMP	SR 13 (Ashby)	East of Telegraph	EB	650	697	1.07	F	723	1.11	F	4%
			WB	650	379	0.58	A	382	0.59	A	1%
CMP	SR 13 (Ashby)	East of Shattuck	EB	650	869	1.34	F	896	1.38	F	3%
			WB	650	694	1.07	F	698	1.07	F	1%
CMP	SR 13 (Ashby)	East of MLK	EB	650	942	1.45	F	967	1.49	F	3%
			WB	650	739	1.14	F	807	1.24	F	9%
CMP	SR 13 (Ashby)	East of	EB	650	984	1.51	F	1,017	1.56	F	3%
		Sacramento	WB	650	538	0.83	D	620	0.95	E	15%
CMP	SR 13 (Ashby)	East of San Pablo	EB	650	1,291	1.99	F	1,324	2.04	F	3%
			WB	650	577	.89	E	659	1.01	F	14%
CMP	SR 13 (Ashby)	East of Seventh	EB	1,300	1,299	1.00	F	1,307	1.01	F	1%
			WB	1,300	633	0.49	A	684	0.53	A	8%
CMP	SR 13 (Ashby)	West of Seventh	EB	1,300	900	0.69	В	908	0.70	В	1%
			WB	1,300	488	0.38	A	539	0.41	A	10%
CMP	University	East of MLK	EB	1,600	865	0.54	A	905	0.57	A	5%
			WB	1,600	1,086	0.68	С	1,371	0.86	D	26%
CMP	University	East of	EB	1,600	1,213	0.76	С	1,253	0.78	С	3%
		Sacramento	WB	1,600	1,481	.93	E	1763	1.10	F	19%
CMP	University	East of San Pablo	EB	1,600	1,282	0.80	D	1,323	0.78	D	3%
			WB	1,600	1,517	.95	E	1,801	1.13	F	19%
CMP	University	East of Sixth	EB	1,600	1,013	0.63	В	1,045	0.65	В	3%
			WB	1,600	1,499	0.94	E	1,722	1.08	F	15%

TABLE F.3-5

PROJECTED YEAR 2025 WITH PROJECT LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

					2025 W	ithout Pro	oject	2025	With Proje	ect	Percent Traffic
System ^a	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS	Added ^e
CMP	University	West of Sixth	EB	1,600	1056	0.66	В	1,087	0.68	В	3%
			WB	1,600	1,695	1.06	F	1,913	1.20	F	13%
CMP	San Pablo	North of Marin	NB	1,600	1,089	0.68	С	1,185	0.74	С	9%
			SB	1,600	668	0.42	A	683	0.43	A	2%
CMP	San Pablo	North of Gilman	NB	1,600	1,605	1.00	F	1,704	1.07	F	6%
			SB	1,600	1,464	0.92	E	1,480	0.93	E	1%
CMP	San Pablo	North of Cedar	NB	1,600	2,240	1.40	F	2,339	1.46	F	4%
			SB	1,600	2,021	1.26	F	2,036	1.27	F	1%
CMP	San Pablo	North of	NB	1,600	2,351	1.47	F	2,426	1.52	F	3%
		University	SB	1,600	2,303	1.44	F	2,315	1.45	F	1%
CMP	San Pablo	North of Dwight	NB	1,600	2,205	1.38	F	2,226	1.39	F	1%
			SB	1,600	2,133	1.33	F	2,142	1.34	F	0%
CMP	San Pablo	North of Ashby	NB	1,600	2,032	1.27	F	2,057	1.29	F	1%
			SB	1,600	2,374	1.48	F	2,387	1.49	F	1%
CMP	San Pablo	South of Ashby	NB	1,600	1,645	1.03	F	1,710	1.07	F	4%
			SB	1,600	1,939	1.21	F	1,999	1.25	F	3%
CMP	Shattuck	South of	NB	1,600	1,304	0.82	D	1,442	0.90	E	11%
		University	SB	1,600	1,041	0.65	В	1,099	0.69	В	6%
CMP	Shattuck	South of Dwight	NB	1,600	1,887	1.17	F	1,903	1.19	F	1%
			SB	1,600	2,295	1.43	\mathbf{F}	2,438	1.52	F	6%
CMP	Adeline	North of Ashby	NB	2,400	1,496	0.62	В	1,499	0.62	В	0%
			SB	2,400	2,116	0.88	D	2,132	0.89	D	1%
CMP	Adeline	South of Ashby	NB	2,400	1,587	0.66	В	1,591	0.66	В	0%
			SB	2,400	2,208	0.92	E	2,218	0.92	E	0%

TABLE F.3-5

PROJECTED YEAR 2025 WITH PROJECT LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

					2025 W	ithout Pro	ject	2025	With Proje	ect	Percent Traffic
System ^a	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS	Added ^e
CMP	MLK	South of Adeline	NB	2,400	1,746	0.73	С	1,762	0.73	С	1%
			SB	2,400	2,694	1.12	F	2,786	1.16	F	3%
MTS	Solano Ave	East of San Pablo	EB	550	444	0.81	D	446	0.81	D	0%
			WB	550	344	0.63	В	355	0.65	В	3%
MTS	Solano Ave	East of Colusa	EB	550	676	1.23	F	678	1.23	F	0%
			WB	550	649	1.18	F	660	1.20	F	2%
MTS	Sutter	East of the	EB	550	710	1.29	F	712	1.29	F	0%
		Alameda	WB	550	515	0.94	E	526	0.96	E	2%
MTS	Henry	North of Rose	NB	550	1,248	2.27	F	1,259	2.29	F	1%
			SB	550	1,059	1.93	F	1,061	1.93	F	0%
MTS	Shattuck	North of Cedar	NB	1,600	1,885	1.18	F	1,892	1.18	F	0%
			SB	1,600	1,370	0.86	D	1,371	0.86	D	0%
MTS	Shattuck	North of Hearst	NB	1,600	2,049	1.28	F	2,055	1.28	F	0%
			SB	1,600	1,550	.97	E	1,552	.97	E	0%
MTS	Shattuck	North of	NB	1,600	2,100	1.32	F	2,112	1.32	F	1%
		University	SB	1,600	1,723	1.08	\mathbf{F}	1,811	1.13	F	5%
MTS	The Alameda	South of Solano	NB	1,100	474	0.43	A	474	0.43	A	0%
			SB	1,100	310	0.28	A	310	0.28	A	0%
MTS	The Alameda	South of Marin	NB	1,100	1,438	1.31	F	1,451	1.32	F	1%
			SB	1,100	1,037	0.94	E	1,039	0.94	E	0%
MTS	MLK	North of Cedar	NB	550	607	1.10	F	617	1.12	F	2%
			SB	550	379	0.69	В	381	0.69	В	1%
MTS	MLK	North of Hearst	NB	550	634	1.15	F	650	1.18	F	3%
			SB	550	564	1.03	F	567	1.03	F	1%

TABLE F.3-5

PROJECTED YEAR 2025 WITH PROJECT LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

					2025 W	ithout Pro	oject	2025	With Proje	ect	Percent Traffic
System ^a	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS	Addede
MTS	MLK	North of	NB	550	929	1.69	F	942	1.71	F	1%
		University	SB	550	826	1.50	F	830	1.51	F	0%
MTS	MLK	North of Dwight	NB	1,100	1,087	0.99	Е	1,100	1.00	F	1%
			SB	1,100	1,658	1.51	F	1,700	1.55	F	3%
MTS	MLK	North of Ashby	NB	1,100	1,250	1.14	F	1,255	1.14	F	0%
			SB	1,100	1,564	1.42	F	1,583	1.44	F	1%
MTS	MLK	South of Ashby	NB	1,600	1,220	0.76	С	1,222	0.76	С	0%
			SB	1,600	1,779	1.11	F	1,789	1.12	F	1%
MTS	Sacramento	North of Cedar	NB	1,600	1,073	0.67	В	1,073	0.67	В	0%
			SB	1,600	873	0.55	A	873	0.55	A	0%
MTS	Sacramento	North of Hearst	NB	1,600	1,843	1.15	F	1,843	1.15	F	0%
			SB	1,600	1,656	1.04	F	1,656	1.04	F	0%
MTS	Sacramento	North of	NB	1,600	1,932	1.21	F	1,932	1.21	F	0%
		University	SB	1,600	1,840	1.15	F	1,840	1.15	F	0%
MTS	Sacramento	North of Dwight	NB	1,600	2,097	1.31	F	2,097	1.31	F	0%
			SB	1,600	2,105	1.32	F	2,105	1.32	F	0%
MTS	Sacramento	North of Ashby	NB	1,600	2,071	1.29	F	2,071	1.29	F	0%
			SB	1,600	2,216	1.39	F	2,216	1.39	F	0%
MTS	Sixth	South of	NB	550	786	1.43	F	791	1.44	F	1%
		University	SB	550	619	1.13	F	640	1.16	F	3%
MTS	Seventh	North of Ashby	NB	550	626	1.14	F	626	1.14	F	0%
			SB	550	751	1.37	F	751	1.37	F	0%
MTS	Telegraph	South of Bancroft	NB	1,600	1,257	0.79	С	1,260	0.79	С	0%
MTS	Telegraph	South of Dwight	NB	1,600	1,218	0.76	С	1,222	0.76	С	0%
		2	SB	1,600	1,297	0.81	D	1,324	0.83	D	2%

TABLE F.3-5

PROJECTED YEAR 2025 WITH PROJECT LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

					2025 W	ithout Pro	ject	2025	With Proje	ct	Percent Traffic
Systema	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS	- Added ^e
MTS	Telegraph	South of Ashby	NB	1,600	1,297	0.81	D	1,302	0.81	D	0%
			SB	1,600	1,602	1.00	F	1,630	1.02	F	2%
MTS	College	South of Bancroft	NB	550	63	0.11	A	83	0.15	A	32%
			SB	550	99	0.18	A	102	0.19	A	3%
MTS	College	South of Dwight	NB	550	564	1.03	F	567	1.03	F	1%
			SB	550	915	1.66	F	938	1.71	F	3%
MTS	College	South of Ashby	NB	550	528	0.96	Е	528	0.96	Е	0%
			SB	550	790	1.29	F	709	1.29	F	0%
MTS	Gilman	West of Sixth	EB	1,100	567	0.52	A	569	0.52	A	0%
			WB	1,100	991	0.90	E	1,001	0.91	E	1%
MTS	Gilman	East of Sixth	EB	550	727	1.32	F	727	1.32	F	0%
			WB	550	769	1.40	F	770	1.40	F	0%
MTS	Gilman	East of San Pablo	EB	550	508	0.92	E	508	0.92	E	0%
			WB	550	475	0.86	D	476	0.87	D	0%
MTS	Hopkins	West of	EB	500	666	1.33	F	667	1.33	F	0%
		Sacramento	WB	500	660	1.32	F	663	1.33	F	0%
MTS	Hopkins	East of	EB	500	499	1.00	Е	500	1.00	F	0%
		Sacramento	WB	500	359	0.72	С	362	0.72	С	1%
MTS	Dwight	East of Sixth	EB	550	443	0.81	D	451	0.82	D	2%
			WB	550	421	0.77	C	473	0.86	D	12%
MTS	Dwight	East of San Pablo	EB	550	792	1.44	F	799	1.45	F	1%
			WB	550	804	1.46	\mathbf{F}	855	1.55	F	6%
MTS	Dwight	East of	EB	550	571	1.04	F	580	1.05	F	2%
		Sacramento	WB	550	489	0.89	D	544	0.99	E	11%
MTS	Dwight	East of MLK	EB	1,600	543	0.34	A	548	0.34	A	1%

TABLE F.3-5

PROJECTED YEAR 2025 WITH PROJECT LEVEL OF SERVICE SUMMARY: CMP & MTS DESIGNATED SYSTEMS

					2025 W	ithout Pro	oject	2025	With Proje	ect	Percent Traffic
System ^a	Roadway	Segment	Direction	Capacity ^b	Volume ^c	V/C	LOS	Volume ^d	V/C	LOS	Added ^e
MTS	Dwight	East of Shattuck	EB	1,600	788	0.49	A	794	0.50	A	1%
MTS	Dwight	East of Telegraph	EB	1,600	885	0.55	A	903	0.56	A	2%
MTS	Bancroft	East of Shattuck	WB	1,600	518	0.32	A	693	0.43	A	34%
MTS	Bancroft	West of Telegraph	WB	1,600	951	0.59	В	1,106	0.69	В	16%
MTS	Bancroft	West of College	WB	1,600	130	0.08	A	187	0.12	A	44%

Notes:

Bold - Indicates segment with significant impact.

- ^a All CMP roadways are also part of MTS.
- b Capacity based on peak hour directional link volumes in the Countywide Travel Demand Model.
- c 2025 PM peak hour volume as estimated by the Countywide Travel Demand Model.
- Estimated project trips added to 2025 PM peak hour trips.
- e Percent increase in traffic caused by the project (i.e. project only traffic divided by without project traffic.

Source: The Countywide Travel Demand Model updated by Fehr & Peers in January 2004.

APPENDIX F.4

ALAMEDA COUNTY CMA COUNTYWIDE TRAVEL DEMAND MODEL

UNIVERSITY OF CALIFORNIA, BERKELEY
2020 LRDP DRAFT EIR
APPENDIX F.4: ALAMEDA COUNTY CMA COUNTYWIDE TRAVEL DEMAND MODEL

Table F.4-1
Alameda County CMA Countywide Travel Demand Model
City of Berkeley Land Use Summary¹

	20	005	20)10	20	25
	House	Total	House	Total	House	Total
TAZ	holds	Jobs	holds	Jobs	holds	Jobs
4	998	1,567	1,002	1,601	1,038	1,675
5	1,440	357	1,447	364	1,516	380
6	836	267	849	273	957	284
7	1,591	645	1,605	658	1,776	686
8	663	247	666	253	688	262
9	1,093	586	1,109	607	1,207	648
10	1,572	1,855	1,579	1,892	1,615	1,972
11	908	2,143	912	2,187	931	2,281
15	0	5	0	8	0	14
16	382	401	385	415	402	449
17	373	241	375	245	389	256
18	745	1,287	748	1,313	765	1,367
19	1,611	1,792	1,617	1,829	1,658	1,904
20	2,094	4,068	2,094	3,718	2,137	4,229
21	1,641	1,085	1,649	1,135	1,692	1,155
22	34	14,755	34	15,480	134	17,085
24	1,110	460	1,110	460	1,110	465
25	1,321	2,887	1,364	3,007	1,364	3,312
26	174	2,950	299	2,989	299	3,114
27	523	115	527	117	544	121
28	485	1,043	489	1,067	504	1,118
29	488	1,059	490	1,099	501	1,184
30	37	0	40	0	45	0
31	574	3,098	577	3,178	595	3,354
32	667	183	671	190	686	201
33	559	1,104	577	1,113	668	1,167
34	732	2,053	732	2,053	732	2,096
35	1,400	1,117	1,400	1,117	1,400	1,137
36	723	217	723	217	723	217
37	619	891	619	901	667	921
43	1,421	2,040	1,431	2,091	1,482	2,199
384	560	250	568	259	618	278
388	186	1,095	197	1,163	226	1,304
389	51	708	55	746	62	832
390	0	599	0	619	0	689
391	100	1,292	106	1,375	122	1,553
392	376	401	378	415	395	449
393	342	498	344	516	359	557
394	236	791	237	808	246	844
395	336	1,368	338	1,399	351	1,465
396	291	241 123	293	245 127	304 514	256
398 399	492 209	829	495 210	853	214	136 901
400	626	2,234	629	2,274	643	2,359
400	292	1,796	335	1,821	335	1,821
401	292	940	281	1,320	281	1,621
402	150	805	236	976	236	976
403	473	793	574	878	574	878
404	762	1,070	791	1,100	791	1,170
400	102	1,070	131	1,100	131	1,170

Table F.4-1
Alameda County CMA Countywide Travel Demand Model
City of Berkeley Land Use Summary¹

	20	05	20	10	20	25
	House	Total	House	Total	House	Total
TAZ	holds	Jobs	holds	Jobs	holds	Jobs
406	6	1,061	175	1,086	175	1,121
407	634	858	634	858	692	908
408	499	2	503	2	520	2
409	393	3	396	3	409	3
410	610	477	615	486	634	507
411	324	96	327	98	337	101
412	436	477	440	486	454	507
413	638	561	641	585	657	638
414	60	775	64	815	73	912
415	39	507	42	537	48	599
416	0	557	0	595	0	663
417	116	460	123	483	140	541
418	18	472	19	497	22	555
419	3	330	3	348	3	388
420	577	0	580	0	598	0
421	372	239	374	244	385	253
422	562	206	566	208	578	213
423	788	1,942	793	1,981	811	2,067
424	465	894	465	894	661	991
425	338	523	338	523	338	533
426	210	892	210	892	210	912
427	302	433	302	443	302	473
428	1,298	452	1,312	452	1,312	466
429	1,272	568	1,317	568	1,317	568
430	622	545	622	545	622	555
431	570	3,310	570	3,339	599	3,379
432	429	587	438	823	534	863
439	851	591	857	602	887	623
727	680	805	683	822	707	858
Total	45,646	84,974	46,596	87,686	48,521	93,540

Notes

1. Land uses as provided by Hausrath Economic Group and used in the Alameda County CMA Countywide Travel Demand Model.

Source: Fehr and Peers, 2004.

Traffic Analysis Zone in the City of Berkeley

---- City Limit Line

Lawrence Berkeley National Laboratory Boundary

FIGURE F.4-I
ALAMEDA COUNTY TRAVEL DEMAND MODEL
TRAFFIC ANALYSIS ZONES

APPENDIX F.5

LEVEL OF SERVICE CALCULATION SHEETS

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Scenario Report

Scenario: EXISTING AM

Command: EXISTING AM Volume: EXISTING AM

Geometry: EXISTING AM
Impact Fee: Default Impact Fee
Trip Generation: NO PROJECT
Trip Distribution: Cumulative Paths: Default Paths
Routes: Default Routes Configuration: EXISTING AM

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

> Turning Movement Report NO PROJECT

Volume Type			und Right			ound Right		stbou Thru				ınd Right	Total Volume
#1 Mar													
Base	102	363	59	106		15	38	672	235	147	768	90	3486
Added Total	0 102	0 363	0 59	0 106	0 891	0 15	0 38	0 672	0 235	0 147	0 768	0 90	0 3486
#2 Mar	in Ave	nue /	The A	lameda	a.								
Base	173	189	7	38	279	23	33	494	291	20	420	48	2015
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	173	189	7	38	279	23	33	494	291	20	420	48	2015
#3 Gil													
Base	122	24	56	11	45	28	21	416	114	47	430	20	1334
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	122	24	56	11	45	28	21	416	114	47	430	20	1334
#4 Gil			,										
Base	113	401	25		1055	125	75	189	96	62	318	42	2575
Added	0	0	0	0		0	0	0	0	0	0	0	0
Total	113	401	25	74	1055	125	75	189	96	62	318	42	2575
#5 Rose													
Base	55	191	11	174	961	28	28	174	40	32	185	40	1919
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	55	191	11	174	961	28	28	174	40	32	185	40	1919
						ing Way							
Base	33	292	44	35		26	14	276	62	58	248	30	
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	33	292	44	35	617	26	14	276	62	58	248	30	1735
#7 Ceda													
Base	48	256	41	127	933	52	44	257	86	94	268	56	2262
Added	0	0	0	0	0	0	0	0	0	0	0	0	
Total	48	256	41	127	933	52	44	257	86	94	268	56	2262
#8 Ceda													
Base	45	186	56	34		19	18	314	75	144	343	19	1784
Added Total	0 45	0 186	0 56	0 34	0 531	0 19	0 18	0 314	0 75	0 144	0 343	0 19	0 1784
#9 Ceda						1 41	F.0	1.40	115	0.0	000	^	1150
Base	30	85	29	23		141	50	143	117	28	209	8	1158
Added	0 30	0 85	0 29	0 23	0 295	0 141	0 50	0 143	0 117	0 28	0 209	0	0 1158
Total	30	85	29	23	295	141	50	143	ΤΤ /	∠8	209	8	1128

EXISTING AM Thu Jun 19, 2003 17:21:18 Page 3-2 EXISTING AM Thu Jun 19, 2003 17:21:18 Page 3-3

UC Berkeley LRDP EIR Existing Conditions

UC Berkeley LRDP EIR Existing Conditions

						4 Peak															M Peak							
Volume Type	No	rthbo	und	Sc	outhbou	und	Ea	stbou	nd	We	stbour	nd	Total Volume	Volum Type	.e	Northbeft Thru	ound		So	uthbo	und	Ea	stbou	nd	W∈	stbou	nd	Total
11 -			2 -			,			<i>y</i> -			,		21							, .			,			,	
#10 Gr:	izzlv	Peak	Blvd /	Cente	ennial	Drive								#19 B	erke	eley Way	7 / Os	rford	l Str	eet								
Base	31	13	13	25	52	4		165	143	169	90	16	727	Base	0111	39 717		10		1132	11	20	18	72	10	2	12	2103
Added	0	0	0	0	0	0	0	0	0	0	0	0	0	Added		0 0		0	0	0	0	0	0	0	0	0	0	0
Total	31	13	13	25	52	4	6	165	143	169	90	16	727	Total		39 717	1 4	10	30	1132	11	20	18	72	10	2	12	2103
#11 Hea	arst A	venue	/ Sha	ttuck	Avenue	9								#20 U	nive	ersity A	venue	e / S	Sixth	Stree	et							
Base	19	291	43	199	810	57	31	278	24	11	225	51	2039	Base	2	211 111	. 1	19	73	290	325	89	932	333	40	931	21	3375
Added	0	0	0	0	0	0	0	0	0	0	0	0	0	Added		0 0)	0	0	0	0	0	0	0	0	0	0	0
Total	19	291	43	199	810	57	31	278	24	11	225	51	2039	Total	2	211 111	. 1	19	73	290	325	89	932	333	40	931	21	3375
#12 Hea	arst A	venue	/ Oxf	ord Av	renue									#21 U	nive	ersity A	venue	e / S	San P	ablo A	Avenue	:						
Base	46	328	374	48	841	38	10	399	114	207	281	27	2713	Base	-	100 457	7	75	190	837	83	56	957	49	63	644	93	3604
Added	0	0	0	0		0	0	0	0	0	0	0	0	Added		0 0		0	0	0	0	0	0	0	0	0	0	0
Total	46	328	374	48	841	38	10	399	114	207	281	27	2713	Total	-	100 457	7	75	190	837	83	56	957	49	63	644	93	3604
#13 Hea	arst A	venue	/ Spr	uce St	reet									#22 U	nive	ersity A	venue	e / N	Marti	n Lutl	her Ki	ng Way	7					
Base	0	0	0	9	0	63		843	0	0	430	7	1363	Base		178 568		30	57	833	87		703	185		477	47	3337
Added	0	0	0	0	0	0	0	0	0	0	0	0	0	Added		0 0		0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	9	0	63	11	843	0	0	430	7	1363	Total	-	L78 568	8 8	30	57	833	87	81	703	185	41	477	47	3337
#14 Hea					eet / 1									#23 U		ersity A												
Base	0	0	0	2	0	130		566	0	0	307	4	1285	Base		100 98		21	6	203	63	37	656	137		406	15	1760
Added	0	0	0	0	0	0	0	0	0	0	0	0	0	Added		0 0		0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	2	0	130	276	566	0	0	307	4	1285	Total	-	100 98	3 2	21	6	203	63	37	656	137	18	406	15	1760
#15 Hea	arst A	venue	/ Sce	nic Av	renue									#24 U	nive	ersity A	venue	e / S	SB Sh	attuc!	k Aven	iue						
Base	0	0	0	0	0	37	0	531	0	0	290	55	913	Base		0 0)	0	49	767	105	115	401	162	26	356	314	2295
Added	0	0	0	0	0	0	0	0	0	0	0	0	0	Added		0 0		0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	37	0	531	0	0	290	55	913	Total		0 0)	0	49	767	105	115	401	162	26	356	314	2295
#16 Hea	arst A	venue	/ Euc	lid Av	renue									#25 U	nive	ersity A	venue	e / 1	NB Sh	attuc!	k Aven	iue						
Base	2	0	2	47	1	151		448	1	1	276	10	1014	Base	4	158 C			0	0	0	0	444	0	0	235	0	1305
Added	0	0	0	0	0	0	0	0	0	0	0	0	0	Added		0 0		0	0	0	0	0	0	0	0	0	0	0
Total	2	0	2	47	1	151	75	448	1	1	276	10	1014	Total	4	158 C) 16	58	0	0	0	0	444	0	0	235	0	1305
#17 Hea	arst A	venue	/ Le	Roy Av	renue									#26 U	nive	ersity A	venue	e / (xfor	d Str	eet							
Base	0	0	0	19	0	60	59	436	0	0	230	3	807	Base	-	147 487	,	4		1101	77	300	38	217	6	12	23	2453
Added	0	0	0	0	0	0	0	0	0	0	0	0	0	Added		0 0		0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	19	0	60	59	436	0	0	230	3	807	Total	-	L47 487	,	4	41	1101	77	300	38	217	6	12	23	2453
#18 Hea	arst A	venue	/ Gay	ley Ro	oad / 1	LaLoma	Avenu	ıe						#27 U	nive	eristy D			st Ga	te) ,	/ Gayl	ey Roa	ıd					
Base		212	95		274	21		161	304	21	33	5	1440	Base		69 476	ò	0	0	543	75	53	0	73	0	0	0	1289
Added	0	0	0	0	0	0	0	0	0	0	0	0	0	Added		0 0		0	0	0	0	0	0	0	0	0	0	0
Total	274	212	95	12	274	21	28	161	304	21	33	5	1440	Total		69 476	5	0	0	543	75	53	0	73	0	0	0	1289

EXISTING AM Thu Jun 19, 2003 17:21:18 Page 3-4 EXISTING AM Thu Jun 19, 2003 17:21:18 Page 3-5 ______

UC Berkeley LRDP EIR Existing Conditions

UC Berkeley LRDP EIR Existing Conditions

	Existing Conditions AM Peak Hour																				-	Conditi K Hour	ons					
Volum Type	ie	North	bound		Southbou ft Thru I	und	Ea	stbour	nd	We	stbou	nd	Total	Vol:			rthbou Thru F			uthbou Thru F		Ea	stbour	d	W∈	stbou	nd	Total Volume
#28 A	ddied	n Str	aa+ / C	vfor	d Street									#37	Ranc	roft	W > 17 /	′ Fulto	n Str	00+								
Base		ii 301	, -		0 1165	61	4	0	31	0	0	0	1962	Bas			146	0		1071	79	0	0	0	84	173	650	2216
Added			0 0		0 0	0	0	0	0	0	0	0	0	Add		0	0	0	0	0	0	0	0	0	0	0	0	0
Total		64	7 0		0 1165	61	4	0	31	0	0	0	1962	Tot	al	13	146	0	0	1071	79	0	0	0	84	173	650	2216
#29 C	enter	Stre	et / SB	Sha	ttuck Ave	enue								#38	Banc	roft	Way /	Ellsw	orth	Street	Ē							
Base			0 0		15 779	71	0	69	51	17	102	0	1104	Bas		241	60	0	0	0	11	0	0	0	0	674	39	1025
Added			0 0		0 0	0	0	0	0	0	0	0	0	Add		0	0	0	0	0	0	0	0	0	0	0	0	0
Total		0	0 0		15 779	71	0	69	51	17	102	0	1104	Tot	al	241	60	0	0	0	11	0	0	0	0	674	39	1025
#30 C			et / NB	Sha	ttuck Ave	enue								#39	Banc		Way /		Stree									
Base		2 61			0 0	0	26	56	0	0	77	26	894	Bas		0	0	0	0	0	0	0	0	0	145	721	0	866
Added			0 0		0 0	0	0	0	0	0	0	0	0	Add		0	0	0	0	0	0	0	0	0	0	0	0	0
Total	. 4	2 61	6 51		0 0	0	26	56	0	0	77	26	894	Tot	al	0	0	0	0	0	0	0	0	0	145	721	0	866
#31 C	enter	Stre	et / Ox	ford	Street									#40	Banc	roft	Way /	Telec	raph.	Avenue	Э							
Base		0 66			11 1145	39	26	10	43	19	6	8	2062	Bas		427	0	0	0	0	0	0	0	0	0	460	0	887
Added			0 0		0 0	0	0	0	0	0	0	0	0	Add		0	0	0	0	0	0	0	0	0	0	0	0	0
Total	. 5	0 66	3 42		11 1145	39	26	10	43	19	6	8	2062	Tot	al	427	0	0	0	0	0	0	0	0	0	460	0	887
	tadiu				ley Road												4	′ Bowdi										
Base		0 38			28 471	0	12	5	14	18	1	118	1172	Bas		191	0	0	0	0	0	0	0	0	99	494	0	784
Added			0 0		0 0	0	0	0	0	0	0	0	0	Add		0	0	0	0	0	0	0	0	0	0	0	0	0
Total		0 38	6 19) I:	28 471	0	12	5	14	18	1	118	1172	Tot	ΞŢ	191	0	0	0	0	0	0	0	0	99	494	0	784
#33 A	llsto	n Way	/ Oxfo	rd S	treet									#42	Banc	roft	Way /	′ Colle	ege Av	enue								
Base	1	.7 79			59 1111	34	16	0	33	0	0	0	2068	Bas	9	343	0	0	0	0	0	0	0	0	34	203	0	580
Added		-	0 0		0 0	0	0	0	0	0	0	0	0	Add		0	0	0	0	0	0	0	0	0	0	0	0	0
Total	. 1	.7 79	8 0		59 1111	34	16	0	33	0	0	0	2068	Tot	al	343	0	0	0	0	0	0	0	0	34	203	0	580
#34 K	ittri	.dge S	treet /	Oxf	ord Stree	et / Fi	ulton	Street	:					#43	Banc	roft	Way /	' Piedm	nont A	venue								
Base		.3 80			0 1122	18	6	0	23	0	0	0	1983	Bas			553	0	0	344	123	0	0	0	0	0	0	1151
Added			0 0		0 0	0	0	0	0	0	0	0	0	Add		0	0	0	0	0	0	0	0	0	0	0	0	0
Total	. 1	.3 80	1 0		0 1122	18	6	0	23	0	0	0	1983	Tot	al	131	553	0	0	344	123	0	0	0	0	0	0	1151
#35 S	tadiu	ım Rim	Road /	Cen	tennial I	Drive								#44	Dura	int A	venue	/ Shat	tuck	Avenue	e							
Base		0 7			94 22	0	0	0	0	114	0	71	531	Bas	€	55	943	136	67	886	8	9	70	35	0	0	0	2209
Added		-	0 0		0 0	0	0	0	0	0	0	0	0	Add		0	0	0	0	0	0	0	0	0	0	0	0	0
Total		0 7	0 160		94 22	0	0	0	0	114	0	71	531	Tot	al	55	943	136	67	886	8	9	70	35	0	0	0	2209
#36 B					k Avenue									#45	Dura			/ Fult										
Base		9 91			0 788	12	1	0	62	116	51	71	2042	Bas		0	0	0	459	656	0	123	262	27	0	0	0	1527
Added			0 0		0 0	0	0	0	0	0	0	0	0	Add		0	0	0	0	0	0	0	0	0	0	0	0	0
Total	. 2	9 91	2 0		0 788	12	1	0	62	116	51	71	2042	Tot	al	0	0	0	459	656	0	123	262	27	0	0	0	1527

EXISTING AM Thu Jun 19, 2003 17:21:18 Page 3-6 EXISTING AM Thu Jun 19, 2003 17:21:18 Page 3-7 ______

UC Berkeley LRDP EIR

UC Berkeley LRDP EIR Existing Conditions Existing Conditions

AM Peak Hour		AM Peak Hour
Volume Northbound Southbound Eastbour Type Left Thru Right Left Thru Right Left Thru F	ound Westbound Total Volume Northbound	Southbound Eastbound Westbound Total eft Thru Right Left Thru Right Volume
#46 Durant Avenue / Telegraph Avenue Base	0 0 0 0 0 Added 0 0	Taph Avenue 0 0 0 0 0 0 0 0 334 34 1104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#47 Durant Avenue / College Avenue Base 0 213 66 13 23 0 64 228 Added 0 0 0 0 0 0 0 0 0 Total 0 213 66 13 23 0 64 228	8 87 0 0 0 694 Base 167 267 0 0 0 0 0 Added 0 0	re Avenue 0 115 69 0 0 0 48 223 21 910 0 0 0 0 0 0 0 0 0 0 0 0 115 69 0 0 0 48 223 21 910
#48 Durant Avenue / Piedmont Avenue Base 0 489 0 0 345 0 158 0 Added 0 0 0 0 0 0 0 0 Total 0 489 0 0 345 0 158 0	0 0 0 0 0 0 Added 0 0	uther King Way 88 868 163 68 419 83 0 0 0 2507 0 0 0 0 0 0 0 0 0 0 0 0 88 868 163 68 419 83 0 0 0 2507
#49 Channing Way / Shattuck Avenue Base 42 1070 96 19 868 19 12 59 Added 0 0 0 0 0 0 0 0 Total 42 1070 96 19 868 19 12 59	0 0 0 0 0 0 Added 0 0 0	Avenue 95 989 0 66 420 151 0 0 0 2928 0 0 0 0 0 0 0 0 0 0 0 0 95 989 0 66 420 151 0 0 0 2928
#50 Channing Way / Fulton Street Base 0 0 0 86 543 51 0 132 Added 0 0 0 0 0 0 0 0 0 Total 0 0 0 86 543 51 0 132	0 0 0 0 0 0 Added 0 0	treet 449 0 0 0 620 6 0 0 0 1087 0 0 0 0 0 0 0 0 0 0 0 0 449 0 0 0 620 6 0 0 0 1087
#51 Channing Way / Telegraph Avenue Base 56 423 79 0 0 0 16 179 Added 0 0 0 0 0 0 0 0 Total 56 423 79 0 0 0 16 179	0 0 0 0 0 Added 0 0	th Avenue 0 0 0 66 479 565 0 0 0 1885 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 66 479 565 0 0 0 1885
#52 Channing Way / College Avenue Base 26 256 22 6 92 2 21 76 Added 0 0 0 0 0 0 0 0 Total 26 256 22 6 92 2 21 76	0 0 0 0 0 0 Added 0 0	Avenue 10 150
#53 Haste Street / Shattuck Avenue Base 66 1117 0 0 903 46 0 0 Added 0 0 0 0 0 0 0 0 0 Total 66 1117 0 0 903 46 0 0	0 0 0 0 0 0 Added 0 0	Avenue / Warring Street 8 324
#54 Haste Street / Fulton Street Base 0 0 0 0 433 145 0 0 Added 0 0 0 0 0 0 0 0 0 Total 0 0 0 0 433 145 0	0 0 23 380 0 981 Base 0 0 0 0 0 0 0 0 0 Added 0 0 0	ect Street 14 0 109 246 72 0 0 53 15 509 0 0 0 0 0 0 0 0 0 0 14 0 109 246 72 0 0 53 15 509

Thu Jun 19, 2003 17:21:18 Page 3-8 EXISTING AM Thu Jun 19, 2003 17:21:18 Page 3-9

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

						M Peak														Hour						
Volume	No	rthbo	und	S	outhbo	und	Ea	stbou	nd	We	stbou	nd	Total Volume	Volume	Northbo Left Thru	und	S	outhbou	nd	Ea	stbou	nd	We	stbou	nd	Total
#64 Ade	eline	Street	t / Wa	rd Ave	enue /	Shatt	uck Av	enue						#73 Ash	nby Avenue	/ Clar	emont	Avenue								
Base		784	3		736	546	723	0	4	0	0	0	2796	Base	35 288	153		272	59	43	504	13	90	637	429	2844
Added	0	0	0	0	0	0	0	0	0	0	0	0	0	Added	0 0	0	0	0	0	0	0	0	0	0	0	0
Total	0	784	3	0	736	546	723	0	4	0	0	0	2796	Total	35 288	153	321	272	59	43	504	13	90	637	429	2844
#65 De:	rby St	reet	/ Warr	ing S	treet									#74 Tur	nnel Road /	SR 13	3									
Base	0	0	0	650		31	14	20	0	0	34	779	1528	Base	0 1293	435	487		0	0	0	0	205	0	307	3335
Added	0	0	0	0		0	0	0	0	0	0	0	0	Added	0 0	0	0		0	0	0	0	0	0	0	0
Total	0	0	0	650	0	31	14	20	0	0	34	779	1528	Total	0 1293	435	487	608	0	0	0	0	205	0	307	3335
#66 De:		reet	/ Clar	emont	Blvd.																					
Base	5	0	64	0		0		665	12		813	0	1611													
Added	0	0	0	0		0	0	0	0	0	0	0	0													
Total	5	0	64	0	0	0	0	665	12	52	813	0	1611													
#67 Asl	hby Av	enue ,	/ Seve	nth S	treet																					
Base		162	54	54	193	224		915	306	111	663	25	3202													
Added		0	0	0		0	0	0	0	0	0	0	0													
Total	62	162	54	54	193	224	433	915	306	111	663	25	3202													
#68 Asl	hby Av	enue ,	/ San	Pablo	Avenu	e																				
Base	173	521	53	137	741	128		584	134		613	135	3354													
Added	0	0	0	0		0	0	0	0	0	0	0	0													
Total	173	521	53	137	741	128	84	584	134	51	613	135	3354													
#69 Asl	hby Av	enue ,	/ Adel	ine S	treet																					
Base	74	567	61	11	438	96	189	564	49	83	549	14	2695													
Added	0	0	0	0	0	0	0	0	0	0	0	0	0													
Total	74	567	61	11	438	96	189	564	49	83	549	14	2695													
#70 Asl	hby Av	enue ,	/ Shat	tuck A	Avenue	:																				
Base	77	590	26	124	450	35	33	557	31	40	550	182	2695													
Added	0	0	0		0	0	0	0	0	0	0	0	0													
Total	77	590	26	124	450	35	33	557	31	40	550	182	2695													
#71 Asl	hby Av	enue ,	/ Tele	graph	Avenu	e																				
Base		985		148		103	86	549	120	89	573	83	3589													
Added	0	0	0	0		0	0	0	0	0	0	0	0													
Total	150	985	80	148	623	103	86	549	120	89	573	83	3589													
#72 Asl	hby Av	enue ,	/ Coll	ege A	venue																					
Base		323		118		95	33	490	92	4	611	229	2332													
Added	0	0	0	0	0	0	0	0	0	0	0	0	0													
Total	79	323	26	118	232	95	33	490	92	4	611	229	2332													

Page 4-1

EXISTING AM

Existing Conditions

AM Peak Hour

Page 4-2

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Impact Analysis Report

Level Of Service

Intersection	Base Del/ V/	Future Del/ V/	Change in
# 1 Marin Avenue / San Pablo Avenu	LOS Veh C E 79.2 0.852	LOS Veh C E 79.2 0.852	+ 0.000 D/V
# 2 Marin Avenue / The Alameda	в 13.2 0.506	в 13.2 0.506	+ 0.000 D/V
# 3 Gilman Street / Sixth Street	в 11.5 0.578	в 11.5 0.578	+ 0.000 D/V
# 4 Gilman Street / San Pablo Aven	D 41.0 0.812	D 41.0 0.812	+ 0.000 D/V
# 5 Rose Street / Shattuck Avenue	A 7.1 0.505	A 7.1 0.505	+ 0.000 D/V
# 6 Cedar Street / Martin Luther K	в 17.2 0.694	B 17.2 0.694	+ 0.000 D/V
# 7 Cedar Street / Shattuck Avenue	A 9.7 0.567	A 9.7 0.567	+ 0.000 D/V
# 8 Cedar Street / Oxford Street	D 49.4 0.928	D 49.4 0.928	+ 0.000 D/V
# 9 Cedar Street / Euclid Avenue	B 13.1 0.570	B 13.1 0.570	+ 0.000 D/V
# 10 Grizzly Peak Blvd / Centennial	B 10.2 0.416	B 10.2 0.416	+ 0.000 V/C
# 11 Hearst Avenue / Shattuck Avenu	A 6.1 0.434	A 6.1 0.434	+ 0.000 D/V
# 12 Hearst Avenue / Oxford Avenue	A 10.0 0.487	A 10.0 0.487	+ 0.000 D/V
# 13 Hearst Avenue / Spruce Street	B 3.0 0.000	B 3.0 0.000	+ 0.000 V/C
# 14 Hearst Avenue / Arch Street /	B 2.4 0.000	B 2.4 0.000	+ 0.000 V/C
# 15 Hearst Avenue / Scenic Avenue	A 0.3 0.000	A 0.3 0.000	+ 0.000 V/C
# 16 Hearst Avenue / Euclid Avenue	B 15.4 0.471	B 15.4 0.471	+ 0.000 D/V
# 17 Hearst Avenue / Le Roy Avenue	в 3.3 0.000	B 3.3 0.000	+ 0.000 V/C
# 18 Hearst Avenue / Gayley Road /	C 22.4 0.924	C 22.4 0.924	+ 0.000 D/V
# 19 Berkeley Way / Oxford Street	A 4.7 0.486	A 4.7 0.486	+ 0.000 D/V
# 20 University Avenue / Sixth Stre	F 83.6 0.812	F 83.6 0.812	+ 0.000 D/V
# 21 University Avenue / San Pablo	F 115.4 0.822	F 115.4 0.822	+ 0.000 D/V
# 22 University Avenue / Martin Lut	C 20.7 0.789	C 20.7 0.789	+ 0.000 D/V
# 23 University Avenue / Milvia Str	в 10.8 0.502	B 10.8 0.502	+ 0.000 D/V

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

Intersection Base Future Change Del/ V/ Del/ V/ LOS Veh C LOS Veh C # 24 University Avenue / SB Shattuc B 19.7 0.459 B 19.7 0.459 + 0.000 D/V # 25 University Avenue / NB Shattuc B 15.7 0.335 B 15.7 0.335 + 0.000 D/V # 26 University Avenue / Oxford Str C 29.0 0.800 C 29.0 0.800 + 0.000 D/V # 27 Univeristy Drive (East Gate) C 1.9 0.000 C 1.9 0.000 + 0.000 V/C # 28 Addison Street / Oxford Street B 0.3 0.000 B 0.3 0.000 + 0.000 V/C # 29 Center Street / SB Shattuck Av B 14.9 0.348 B 14.9 0.348 + 0.000 D/V # 30 Center Street / NB Shattuck Av A 4.6 0.285 A 4.6 0.285 + 0.000 D/V # 31 Center Street / Oxford Street A 8.3 0.516 A 8.3 0.516 + 0.000 D/V # 32 Stadium Rim Road / Gayley Road D 26.2 0.911 D 26.2 0.911 + 0.000 V/C # 33 Allston Way / Oxford Street D 4.4 0.000 D 4.4 0.000 + 0.000 V/C # 34 Kittridge Street / Oxford Stre C 2.5 0.000 C 2.5 0.000 + 0.000 V/C # 35 Stadium Rim Road / Centennial A 9.2 0.325 A 9.2 0.325 + 0.000 V/C # 36 Bancroft Way / Shattuck Avenue A 8.6 0.457 A 8.6 0.457 + 0.000 D/V # 37 Bancroft Way / Fulton Street A 6.3 0.394 A 6.3 0.394 + 0.000 D/V # 38 Bancroft Way / Ellsworth Stree C 3.2 0.000 C 3.2 0.000 + 0.000 V/C # 39 Bancroft Way / Dana Street A 0.0 0.000 A 0.0 0.000 + 0.000 V/C # 40 Bancroft Way / Telegraph Avenu C 20.4 0.258 C 20.4 0.258 + 0.000 D/V # 41 Bancroft Way / Bowditch Street B 11.5 0.456 B 11.5 0.456 + 0.000 V/C # 42 Bancroft Way / College Avenue B 11.8 0.547 B 11.8 0.547 + 0.000 V/C # 43 Bancroft Way / Piedmont Avenue D 28.2 0.930 D 28.2 0.930 + 0.000 V/C # 44 Durant Avenue / Shattuck Avenu B 11.3 0.472 B 11.3 0.472 + 0.000 D/V # 45 Durant Avenue / Fulton Street A 7.3 0.352 A 7.3 0.352 + 0.000 D/V # 46 Durant Avenue / Telegraph Aven B 10.7 0.257 B 10.7 0.257 + 0.000 D/V # 47 Durant Avenue / College Avenue A 9.2 0.314 A 9.2 0.314 + 0.000 D/V

48 Durant Avenue / Piedmont Avenu C 17.4 0.761 C 17.4 0.761 + 0.000 V/C

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

EXISTING AM

UC Berkeley LRDP EIR

Existing Conditions

Thu Jun 19, 2003 17:21:30 Page 4-3 EXISTING AM Thu Jun 19, 2003 17:21:30 Page 4-4

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Intersection Base Future Change Del/ V/ Del/ V/ in
LOS Veh C LOS Veh C # 73 Ashby Avenue / Claremont Avenu C 22.0 0.717 C 22.0 0.717 + 0.000 D/V # 74 Tunnel Road / SR 13 B 15.9 0.792 B 15.9 0.792 + 0.000 D/V

AM	Pea	k Hour			
Intersection	LO	Base Del/ V/ DS Veh C	LC	Future Del/ V/ OS Veh C	Change in
# 49 Channing Way / Shattuck Avenue	A	4.8 0.489	A	4.8 0.489	+ 0.000 D
# 50 Channing Way / Fulton Street	В	12.3 0.528	В	12.3 0.528	+ 0.000 V
# 51 Channing Way / Telegraph Avenu	A	9.0 0.338	A	9.0 0.338	+ 0.000 D
# 52 Channing Way / College Avenue	В	16.2 0.474	В	16.2 0.474	+ 0.000 D
# 53 Haste Street / Shattuck Avenue	D	50.9 0.563	D	50.9 0.563	+ 0.000 D
# 54 Haste Street / Fulton Street	В	13.8 0.340	В	13.8 0.340	+ 0.000 D
# 55 Haste Street / Telegraph Avenu	В	15.9 0.381	В	15.9 0.381	+ 0.000 D
# 56 Haste Street / College Avenue	Α	8.3 0.467	A	8.3 0.467	+ 0.000 D
# 57 Dwight Way / Martin Luther Kin	В	14.2 0.716	В	14.2 0.716	+ 0.000 D
# 58 Dwight Way / Shattuck Avenue	В	10.3 0.740	В	10.3 0.740	+ 0.000 D
# 59 Dwight Way / Fulton Street	В	11.3 0.432	В	11.3 0.432	+ 0.000 D
# 60 Dwight Way / Telegraph Avenue	В	16.2 0.680	В	16.2 0.680	+ 0.000 D
# 61 Dwight Way / College Avenue	В	10.4 0.439	В	10.4 0.439	+ 0.000 D
# 62 Dwight Way / Piedmont Avenue /	Α	9.4 0.375	A	9.4 0.375	+ 0.000 D
# 63 Dwight Avenue / Prospect Stree	В	5.9 0.000	В	5.9 0.000	+ 0.000 V
# 64 Adeline Street / Ward Avenue /	В	14.9 0.738	В	14.9 0.738	+ 0.000 D
# 65 Derby Street / Warring Street	F	150.3 1.304	F	150.3 1.304	+ 0.000 V
# 66 Derby Street / Claremont Blvd.	В	13.4 0.584	В	13.4 0.584	+ 0.000 D
# 67 Ashby Avenue / Seventh Street	С	34.3 0.850	С	34.3 0.850	+ 0.000 D
# 68 Ashby Avenue / San Pablo Avenu	С	28.7 0.738	С	28.7 0.738	+ 0.000 D
# 69 Ashby Avenue / Adeline Street	D	40.1 0.539	D	40.1 0.539	+ 0.000 D
# 70 Ashby Avenue / Shattuck Avenue	В	14.9 0.483	В	14.9 0.483	+ 0.000 D
# 71 Ashby Avenue / Telegraph Avenu	С	26.3 0.745	С	26.3 0.745	+ 0.000 D
# 72 Ashby Avenue / College Avenue	С	30.6 1.016	С	30.6 1.016	+ 0.000 D

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service	Computation Report	
2000 HCM Operations Method	d (Base Volume Alternative)	
*********	*******	*****
Intersection #1 Marin Avenue / San Pabl		*****
Cycle (sec): 100	Critical Vol./Cap. (X):	0.852
Loss Time (sec): $16 (Y+R = 4 sec)$	Average Delay (sec/veh):	79.2
Optimal Cycle: 100	Level Of Service:	E
***********	********	*****
Approach: North Bound South E	Bound East Bound We	est Bound
Marraman+. I M D I M		m D

TIO VEHICITE.	ш		1		1/	ш		_		1/	ш		_		1/			_		11
Control:		Pro	tec	ted			Pro	tec	ted			Pro	tec	ted			Pro	tec	ted	1
Rights:		I	ncl	ude			I	ncl	ude			I	ncl	ude			I	ncl	ude	
Min. Green:		0	0		0		0	0		0		0	0		0		0	0		0
Lanes:	1	0	1	1	0	1	0	1	1	0	1	0	1	1	0	1	0	1	1	0
Volume Module		> C	Olln	+ D	a+ a •	5 T	200	200	2 /	< 7.0	\cap = 0	a • nn	ΔM							

1014110 110441	·	004110	Dace.	0 200			00 0.0					
Base Vol:	102	363	59	106	891	15	38	672	235	147	768	90
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	102	363	59	106	891	15	38	672	235	147	768	90
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
PHF Volume:	112	399	65	116	979	16	42	738	258	162	844	99
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	112	399	65	116	979	16	42	738	258	162	844	99
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	112	399	65	116	979	16	42	738	258	162	844	99

MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	112	399	65	116	979	16	42	738	258	162	844	99
Saturation F.	low Mc	dule:										
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.95	0.93	0.93	0.95	0.95	0.95	0.95	0.91	0.91	0.95	0.93	0.93
Lanes:	1.00	1.72	0.28	1.00	1.97	0.03	1.00	1.48	0.52	1.00	1.79	0.21
Final Sat.:	1805	3040	494	1805	3540	60	1805	2570	899	1805	3180	373
Capacity Ana	lysis	Module	:									
Vol/Sat:	0.06	0.13	0.13	0.06	0.28	0.28	0.02	0.29	0.29	0.09	0.27	0.27
Crit Moves:	****				***			****		****		
Green/Cycle:	0.12	0.36	0.36	0.12	0.36	0.36	0.17	0.21	0.21	0.15	0.35	0.35

Volume/Cap:	0 52 0 2	6 0 26	0 54 0 77	0 77	0 1 / 1	27 1 27	0 60 0 76	0.76
volume/cap:	0.32 0.3	0.30	0.34 0.77	0.77	0.14 1	.3/ 1.3/	0.00 0.70	0.76
Delay/Veh:	43.5 23.	8 23.8	44.1 31.2	31.2	35.5	214 213.9	43.3 31.5	31.5
User DelAdj:	1.00 1.0	0 1.00	1.00 1.00	1.00	1.00 1	.00 1.00	1.00 1.00	1.00
AdjDel/Veh:	43.5 23.	8 23.8	44.1 31.2	31.2	35.5	214 213.9	43.3 31.5	31.5
DesignQueue:	6 1	5 2	6 37	1	2	34 12	8 32	4

AM Peak Hour Level Of Service Computation Report

UC Berkeley LRDP EIR

Existing Conditions

2000 HCM Operations Method (Base Volume Alternative)

******	****	****	*****	****	*****	*****	****	****	*****	*****	****	*****		
Intersection	#2 Ma	arin A	venue *****	/ The	Alame	eda *****	****	****	*****	****	****	*****		
Cycle (sec):		65				ritica	1 Vol	/Cap	(X) ·		0.5	0.6		
Cycle (sec): Loss Time (sec) Optimal Cycle	ec) •	8	(Y+R	= 4	sec) Z	Merage	Dela	, (se	· (21) ·		13	2		
Ontimal Cycle	۵۰, ۰	56	(1111		т	Level O	f Seri	zice:	, v C11) .		B			
******	○• *****	****	*****	****	*****	*****	****	* * * * * * *	*****	*****	****	*****		
Approach:														
Movement:														
Control:														
Rights:	1	Tnalu	de		Tnalı	ıde		Tnalı	ıde	1	Incl	udo		
Min. Green:	25	25	25	25	25	25	23	711010	23					
Lanes:	. 0 1	. 0	1 0		1 0	1 0		1 0	T 0	1	L	1 0		
Volume Modul														
Base Vol:									291	20	120	48		
Growth Adj:														
Initial Bse:											420			
User Adj:														
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93				
PHF Volume: Reduct Vol:	186	203	8	41	300	25	35	531	313	22	452	52 0		
Reduct Vol: Reduced Vol:														
									313			52		
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00			1.00					
MLF Adj: Final Vol.:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Saturation F														
Sat/Lane:														
Adjustment:														
Lanes:	0.94	1.02	0.04	0.22	1.64	0.14	0.08	1.21	0.71	0.08	1.72	0.20		
Final Sat.:														
Capacity Ana														
Vol/Sat:			0.16	0.12	0.12	0.12	0.28		0.28	0.16	0.16	0.16		
Crit Moves:		****						****						
Green/Cycle:														
Volume/Cap:														
Delay/Veh:														
User DelAdj:														
AdjDel/Veh:														
DesignQueue:														
********	*****		*****	****	*****		****	*****		*****	. * * * *	******		

Existing Conditions

UC Berkeley LRDP EIR Existing Conditions

AM Peak Hour

2000 1	Level O: HCM Operation			tion Report		٥)	
**********							*****
Intersection #3 Gil							
******	*****	*****	*****	******	*****	******	*****
Cycle (sec):	65		Critica	ıl Vol./Cap.	(X):	0.57	
Loss Time (sec):	8 (Y+R =	= 4 sec)	Average	Delay (sec	:/veh):	11.	5
Optimal Cycle:	46		Level C	of Service:			В
Approach: North	tn Bound T - R					West Bo	
Movement: L -							
	ermitted					Permit	
Rights:	Include	Incl	ude	Inclu	ide	Inclu	
Min. Green: 19						19 19	
	1! 0 0			0 0 1!			
Volume Module: >> 0	Count Date:	5 Dec 200	2 << 7:	00-9:00 AM			
Base Vol: 122	24 56	11 45		21 416		47 430	20
Growth Adj: 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00
Initial Bse: 122	24 56	11 45	28	21 416	114	47 430	20
User Adj: 1.00		1.00 1.00				1.00 1.00	1.00
PHF Adj: 0.89 0	0.89 0.89	0.89 0.89	0.89	0.89 0.89	0.89	0.89 0.89	0.89
PHF Volume: 137	27 63	12 51		24 467	128	53 483	22
Reduct Vol: 0	0 0	0 0	-	0 0	0		0
Reduced Vol: 137	27 63	12 51		24 467			22
PCE Adj: 1.00		1.00 1.00					1.00
MLF Adj: 1.00		1.00 1.00		1.00 1.00			1.00
Final Vol.: 137		12 51		24 467		53 483	22
Saturation Flow Moo		1000 1000	1000	1000 1000	1000	1000 1000	1000
Sat/Lane: 1900 : Adjustment: 0.73		1900 1900 0.83 0.83					
Lanes: 0.60		0.83 0.83					0.91
Final Sat.: 842		412 1685		69 1359		163 1495	70
Capacity Analysis N			-	·			
Vol/Sat: 0.16		0.03 0.03	0.03	0.34 0.34	0.34	0.32 0.32	0.32
Crit Moves:			0.00	****	3.01	0.02	3.02
Green/Cycle: 0.32		0.32 0.32	0.32	0.62 0.62	0.62	0.62 0.62	0.62
Volume/Cap: 0.50		0.09 0.09					0.53
Delay/Veh: 21.8		15.5 15.5	15.5	9.4 9.4	9.4	9.0 9.0	9.0
II D-13-1- 1 00 1							1 00

	Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)											
*****	******************											
	Intersection #4 Gilman Street / San Pablo Avenue											
Cycle (sec):	Cycle (sec): 100 Critical Vol./Cap. (X): 0.812 Loss Time (sec): 12 (Y+R = 5 sec) Average Delay (sec/veh): 41.0											
Loss Time (se	ec):	12	(Y+R	= 5 :	sec) A	verage	Dela	y (sed	c/veh):		41.	. 0
Optimal Cycle	e:	82	2		I	evel 0	f Ser	vice:				

Approach:												
Movement:									- R		- T	
	 Protected Protected Permitted Permitted											
Rights:	Include Include Include Include											
Min. Green:	: 4 35 35 4 35 35 31 31 31 31 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0									31	31	
Lanes:			1 0									
Volume Module			Date: 25			125		189		60	210	40
	113				1055			1.00				42 1.00
Growth Adj: Initial Bse:		1.00	1.00		1.00	1.00 125	75	189	1.00	62	1.00	42
User Adj:			1.00		1.00	1.00		1.00			1.00	1.00
PHF Adj:			0.91		0.91	0.91		0.91			0.91	0.91
PHF Volume:	124	441	27		1159	137	82		105	68	349	46
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	124	441	27	81	1159	137	82	208	105	68	349	46
PCE Adj:			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:			1.00		1.00	1.00		1.00			1.00	1.00
Final Vol.:			27		1159	137		208	105	68		46
Saturation F												
		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:					0.93	0.93		0.63			0.87	
Lanes:			0.12			0.21		1.05			0.75	0.10
Final Sat.:			210			376		1252			1246	165
Capacity Ana												
Vol/Sat:	0.07	0.13	0.13	0.05	0.37	0.37	0.17	0.17	0.17	0.28	0.28	0.28
CIIC HOVED.		0 27	0 27	0 15	0.37	0.37	0 27	0.37	0.37	0 27	0.37	0.37
Green/Cycle: Volume/Cap:			0.37		0.37	0.37		0.37			0.37	0.37
Delay/Veh:			23.6		53.1	53.1		25.9			37.1	37.1
User DelAdi:			1.00		1.00	1.00		1.00			1.00	1.00
AdiDel/Veh:		23.6	23.6		53.1	53.1		25.9			37.1	37.1
DesignQueue:				4					4	3		2

AM Peak Hour

AdjDel/Veh: 21.8 21.8 21.8 15.5 15.5 15.5 9.4 9.4 9.0 9.0 9.0 DesignQueue: 3 1 2 0 1 1 0 7 2 1 7 0

AM Peak Hour

UC Berkeley LRDP EIR UC Berkeley LRDP EIR Existing Conditions Existing Conditions AM Peak Hour

	HCM Operation	Service Computation Report s Method (Base Volume Alternative) ************************************	****	Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ***********************************							
Intersection #5 Ro		hattuck Avenue ***********************************	*****			Martin Luther King Way	*****				
Cycle (sec):	65	Critical Vol./Cap. (X):	0.505	Cycle (sec):	65	Critical Vol./Cap. (X):	0.694				
Loss Time (sec):	8 (Y+R =	5 sec) Average Delay (sec/veh):	7.1	Loss Time (sec):	8 (Y+R =	5 sec) Average Delay (sec/veh):	17.2				
Optimal Cycle:	52	Level Of Service:	A	Optimal Cycle:	48	Level Of Service:	В				

Operation Operation of the state of the stat Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----| Permitted Permitted Permitted Include Include Include Rights: Min. Green: 17 17 17 17 17 17 27 27 27 27 27 27 27 Lanes: 1 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1! 0 0 -----| Volume Module: >> Count Date: 20 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 55 191 11 174 961 28 28 174 40 32 185 40 Initial Bse: 55 191 11 174 961 28 28 174 40 32 185 40 PHF Volume: 58 201 12 183 1012 29 29 183 42 34 195 42

Saturation Flow Module:

Capacity Analysis Module:

Final Vol.: 58 201 12 183 1012 29 29 183 42 34 195 42 -----| Adjustment: 0.25 0.94 0.94 0.61 0.95 0.95 0.94 0.94 0.85 0.93 0.93 Lanes: 1.00 1.89 0.11 1.00 1.94 0.06 0.14 0.86 1.00 0.12 0.72 0.16 Final Sat.: 479 3386 195 1161 3494 102 247 1534 1615 219 1267 274 -----| Vol/Sat: 0.12 0.06 0.06 0.16 0.29 0.29 0.12 0.12 0.03 0.15 0.15 Crit Moves: **** **** Green/Cycle: 0.50 0.50 0.50 0.50 0.50 0.50 0.42 0.42 0.42 0.42 0.42 0.42 Volume/Cap: 0.24 0.12 0.12 0.32 0.58 0.58 0.28 0.28 0.06 0.36 0.36 0.36 Delay/Veh: 5.5 3.0 3.0 4.6 5.2 5.2 13.2 13.2 11.3 14.2 14.2 14.2

Optimal Cycle: 48 Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____| Control: Permitted Permitted Permitted Rights: Include Include Include Include Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 1! 0 0 0 0 1! 0 0 _____| Volume Module: >> Count Date: 6 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 33 292 44 35 617 26 14 276 62 58 248 30 Initial Bse: 33 292 44 35 617 26 14 276 62 58 248 30 Final Vol.: 34 304 46 36 643 27 15 288 65 60 258 31 _____| Saturation Flow Module: Lanes: 0.09 0.79 0.12 0.05 0.91 0.04 0.04 0.78 0.18 0.17 0.74 0.09 Final Sat.: 153 1355 204 94 1665 70 72 1425 320 272 1162 141 -----| Capacity Analysis Module: Vol/Sat: 0.22 0.22 0.22 0.39 0.39 0.39 0.20 0.20 0.20 0.22 0.22 0.22 Crit Moves: **** **** Green/Cycle: 0.54 0.54 0.54 0.54 0.54 0.54 0.31 0.31 0.31 0.31 0.31 Volume/Cap: 0.42 0.42 0.42 0.72 0.72 0.72 0.66 0.66 0.66 0.72 0.72 0.72 Delay/Veh: 7.7 7.7 7.7 12.4 12.4 12.4 25.4 25.4 25.4 29.0 29.0 29.0 AdjDel/Veh: 7.7 7.7 7.7 12.4 12.4 12.4 25.4 25.4 25.4 29.0 29.0 29.0 DesignQueue: 1 5 1 1 12 0 0 7 2 2 7 1

AdjDel/Veh: 5.5 3.0 3.0 4.6 5.2 5.2 13.2 13.2 11.3 14.2 14.2 14.2

DesignQueue: 1 4 0 3 19 1 1 4 1 1 4 1

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Tever Or	. Service computation Report			
2000 HCM Operation	ons Method (Base Volume Alternative)			
********	**********	******		
Intersection #7 Cedar Street /	Shattuck Avenue			
*******	*********	*****		
Cycle (sec): 65	Critical Vol./Cap. (X):	0.567		
Loss Time (sec): 8 (Y+R =	5 sec) Average Delay (sec/veh):	9.7		
Optimal Cycle: 50	Level Of Service:	A		
********	*********	******		
Approach: North Bound	South Bound East Bound	West Bound		
Movement: L - T - R	L - T - R L - T - R	L - T - R		

-----| Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 20 20 20 20 20 20 22 22 22 22 22 22 Lanes: 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 _____| Volume Module: >> Count Date: 6 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 48 256 41 127 933 52 44 257 86 94 268 56

Initial Bse: 48 256 41 127 933 52 44 257 86 94 268 56 Final Vol.: 52 275 44 137 1003 56 47 276 92 101 288 60 -----|

Saturation Flow Module: Adjustment: 0.26 0.93 0.93 0.55 0.94 0.94 0.39 0.96 0.96 0.37 0.97 Lanes: 1.00 1.72 0.28 1.00 1.89 0.11 1.00 0.75 0.25 1.00 0.83 0.17 Final Sat.: 502 3046 488 1053 3392 189 743 1370 458 695 1531 320 _____| Capacity Analysis Module: Vol/Sat: 0.10 0.09 0.09 0.13 0.30 0.30 0.06 0.20 0.20 0.15 0.19 0.19 Crit Moves: ****

Volume/Cap: 0.19 0.17 0.17 0.24 0.56 0.56 0.19 0.60 0.60 0.43 0.56 0.56 Delay/Veh: 3.6 2.1 2.1 3.1 3.7 3.7 16.8 22.0 22.0 22.3 21.1 21.1 AdjDel/Veh: 3.6 2.1 2.1 3.1 3.7 3.7 16.8 22.0 22.0 22.3 21.1 21.1 DesignQueue: 1 5 1 2 18 1 1 7 2 2 7 1

Green/Cycle: 0.53 0.53 0.53 0.53 0.53 0.53 0.34 0.34 0.34 0.34 0.34

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)

Intersection #8 Cedar Street / Oxford Street ***************** 49.4 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 92 Level Of Service:

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Permitted Permitted Permitted Rights: Include Include Include Include

Min. Green: 16 16 16 16 16 16 16 16 16 16 16 16 16 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 _____| Volume Module: >> Count Date: 6 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 45 186 56 34 531 19 18 314 75 144 343 19 Initial Bse: 45 186 56 34 531 19 18 314 75 144 343 19 PHF Volume: 50 207 62 38 590 21 20 349 83 160 381 21 Final Vol.: 50 207 62 38 590 21 20 349 83 160 381 21 _____| Saturation Flow Module: Adjustment: 0.84 0.84 0.84 0.96 0.96 0.96 0.95 0.95 0.95 0.64 0.64 0.64

-----| Capacity Analysis Module: Vol/Sat: 0.20 0.20 0.20 0.35 0.35 0.35 0.25 0.25 0.25 0.46 0.46 0.46 Crit Moves: **** Green/Cycle: 0.49 0.49 0.49 0.49 0.49 0.49 0.38 0.38 0.38 0.38 0.38 0.38 Volume/Cap: 0.41 0.41 0.41 0.73 0.73 0.73 0.66 0.66 0.66 1.21 1.21 1.21

Lanes: 0.16 0.65 0.19 0.06 0.91 0.03 0.04 0.78 0.18 0.28 0.68 0.04

Final Sat.: 250 1031 311 107 1666 60 80 1391 332 348 829 46

Delay/Veh: 10.0 10.0 10.0 15.5 15.5 15.5 21.6 21.6 21.6 133.1 133 133.1 AdjDel/Veh: 10.0 10.0 10.0 15.5 15.5 15.5 21.6 21.6 21.6 133.1 133 133.1 DesignQueue: 1 4 1 1 12 0 0 8 2 4 9 1

EXISTING AM Thu Jun 19, 2003 17:21:30 Page 14-1

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

2000 HCM	Level Of Service Operations Metho			
******	******	******	*****	*****
<pre>Intersection #9 Cedar ************************************</pre>			*****	*****
Cycle (sec):	60	Critical Vol.	Cap. (X):	0.570
Loss Time (sec):	8 (Y+R = 5 sec)	Average Delay	(sec/veh):	13.1
Optimal Cycle:	42	Level Of Servi	ce:	В
******	* * * * * * * * * * * * * * * * *	*****	******	*****
Approach: North H	Bound South	Bound Eas	st Bound	West Bound
Movement: L - T	- R L - T	- R L -	T - R L	- T - R
Control: Perm:	itted Perm	itted Pe	ermitted	Permitted
m 1 1 1 1 m 1 1	lude Inc	lude 1	Include	Include
Rights: Inc.				
Min. Green: 17 1				
Min. Green: 17 1		7 17 17	17 17	17 17 17
Min. Green: 17 1	7 17 17 1 ! 0 0 0 0 1	7 17 17 ! 0 0 0 0	17 17 1! 0 0 0	17 17 17 0 1! 0 0
Min. Green: 17 17 Lanes: 0 0 1	7 17 17 1 ! 0 0 0 0 1 	7 17 17 ! 0 0 0 0 	17 17 1 1! 0 0 0	17 17 17 0 1! 0 0

Initial Bse: 30 85 29 23 295 141 50 143 117 28 209 8 PHF Volume: 33 94 32 26 328 157 56 159 130 31 232 9
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 33 94 32 26 328 157 56 159 130 31 232 9 Final Vol.: 33 94 32 26 328 157 56 159 130 31 232 9 -----| Saturation Flow Module:

Adjustment: 0.85 0.85 0.85 0.94 0.94 0.94 0.86 0.86 0.86 0.93 0.93 0.93 Lanes: 0.21 0.59 0.20 0.05 0.64 0.31 0.16 0.46 0.38 0.11 0.86 0.03

Final Sat.: 335 950 324 90 1151 550 265 758 620 202 1509 58 -----| Capacity Analysis Module: Vol/Sat: 0.10 0.10 0.10 0.28 0.28 0.28 0.21 0.21 0.21 0.15 0.15 0.15 Crit Moves: **** **** Green/Cycle: 0.50 0.50 0.50 0.50 0.50 0.50 0.37 0.37 0.37 0.37 0.37 Volume/Cap: 0.20 0.20 0.20 0.57 0.57 0.57 0.57 0.57 0.57 0.42 0.42 0.42 Delay/Veh: 8.5 8.5 8.5 11.4 11.4 11.4 16.5 16.5 16.5 14.6 14.6 14.6 AdjDel/Veh: 8.5 8.5 8.5 11.4 11.4 11.4 16.5 16.5 16.5 14.6 14.6 14.6

DesignQueue: 1 2 1 0 6 3 1 3 3 1 5 0

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative)

*******									*****		****	*****	
Intersection	#10 Gr	rizzlv	Peak	Blvd	/ Cen	tennia	1 Driv	ze.					
*****	*****	****	****	****	****	*****	****	*****					
Cycle (sec): Loss Time (sec)		100			С	ritica	l Vol	./Cap.	(X):		0.4	16	
Loss Time (s	ec):	0	(Y+R	= 4 s	sec) A	verage	Dela	v (sec	:/veh):		10	. 2	
Optimal Cycl	e:	0	`		Τ.	evel 0	f Serv	zice:	, - , -			В	
*****		****	****	****	*****	*****	****	****	*****	****	****	*****	
Approach:	Nort	h Bou	nd	Soi	outh Bound			East Bound L - T - R			West Bound		
Movement:	L -	т -	R	L -	- T	- R	L -	- T	- R	L ·	- Т	- R	
Control: Rights: Min. Green:	Sto	p Sig	n	St	top Si	gn	St	top Si	lgn	St	top S:	ign	
Rights:	I	nclud	.e		Inclu	de		Inclu	ıde		Incl	ıde	
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0	
Lanes:	0 0	1! 0	0	0 (0 1!	0 0	0 (1!	0 0	0 (1!	0 0	
Volume Modul													
Base Vol:	31	13	13	25	52	4	6	165	143	169	90	16	
Growth Adj:													
Initial Bse:	31	13	13	25	52	4	6	165	143	169	90	16	
User Adj:	1.00 1	.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	0.94 0	.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	
PHF Volume:	33	14	14	27	55	4	6	176	152	180	96	17	
Reduct Vol: Reduced Vol:	33	14	14	27	55	4	6	176	152	180	96	17	
PCE Adj:	1.00 1	.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
MLF Adj:	1.00 1	.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Final Vol.:	33	14	14	27	55	4	6	176	152	180	96	17	
Saturation F	low Mod	dule:											
Adjustment:													
Lanes:	0.54 0	.23	0.23	0.31	0.64	0.05	0.02	0.53	0.45	0.61	0.33	0.06	
Final Sat.:													
Capacity Ana													
Vol/Sat:													
Crit Moves:	*	***			***		****						
Delay/Veh:							10.3	10.3	10.3	10.7	10.7	10.7	
Delay Adj:	1.00 1	.00	1.00	1.00	1.00	1.00	1.00				1.00		
AdjDel/Veh:	8.9	8.9	8.9	9.2	9.2	9.2	10.3	10.3	10.3	10.7	10.7	10.7	
LOS by Move:	A	A	A	A	A	A	В	В	В	В	В	В	
ApproachDel:		8.9			9.2			10.3			10.7		
Delay Adj:	1	.00			1.00			1.00			1.00		
ApprAdjDel:		8.9			9.2			10.3			10.7		
ApproachDel: Delay Adj: ApprAdjDel: LOS by Appr:		A			A			В			В		
and the second second second second second													

_____ UC Berkeley LRDP EIR

Existing Conditions

AM Peak Hour

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

AN FEAR HOUL	Am reak flour							
Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ***********************************	Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ***********************************							
Intersection #11 Hearst Avenue / Shattuck Avenue	Intersection #12 Hearst Avenue / Oxford Avenue							
Cycle (sec): 65	Cycle (sec): 65							
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R							
Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 22 <	Control: Permitted Permitted Permitted Rights: Include Include Min. Green: 19 19 19 19 19 19 22 22 22 22 22 22 Lanes: 1 0 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0							
Volume Module: >> Count Date: 12 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 19 291 43 199 810 57 31 278 24 11 225 51 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 12 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 46 328 374 48 841 38 10 399 114 207 281 27 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							
Final Sat.: 574 3085 456 1011 3339 235 299 2683 232 126 2577 584	Final Sat.: 1900 1805 1805 187 3275 148 69 2754 787 2177 2955 284							
Capacity Analysis Module: Vol/Sat: 0.04 0.10 0.10 0.22 0.27 0.27 0.11 0.11 0.11 0.10 0.10 0.10 Crit Moves: ****	Capacity Analysis Module: Vol/Sat: 0.03 0.19 0.22 0.27 0.27 0.27 0.15 0.15 0.15 0.10 0.10 0.10 Crit Moves: ****							
Green/Cycle: 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.36 0.36 0.36 0.36 0.36 0.36 Volume/Cap: 0.06 0.18 0.18 0.38 0.47 0.47 0.32 0.32 0.32 0.27 0.27 Delay/Veh: 1.3 1.2 1.2 3.1 2.0 2.0 16.0 16.0 16.0 15.5 15.5 15.5 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Green/Cycle: 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.4							

2	2000					Computa (Base				e)		
******											****	*****
Intersection								****	*****	*****	*****	*****
Cycle (sec): Loss Time (sec Optimal Cycle	65 8 49 *****	(Y+R :	= 4 :	sec) <i>I</i> *****	Critica Average Level C	l Vol Delay f Serv	./Cap. y (sec vice:	(X): c/veh):	****	0.487 10.0 A		
Approach: Movement:	No:	rth Bo	und - R	Son L ·	uth Bo - T	ound - R	Ea L -	ast Bo - T	ound - R	We L -	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	19 1 (Permit Included 19	ted de 19	19	Permit Inclu 19 1 0	ited ide 19	22	Permit Inclu 22 1 0	ited ide 22 1 0	22 1 1	Permit Inclu 22 L 0	ited ide 22 1 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	: >> 46 1.00 46 1.00 0.94 49 0 49 1.00 1.00	Count 328 1.00 328 1.00 0.94 349 0 349 1.00 1.00 349	Date: 374 1.00 374 1.00 0.94 398 0 398 1.00 1.00 398	12 No 48 1.00 48 1.00 0.94 51 0 51 1.00 1.00	0v 200 841 1.00 841 1.00 0.94 895 0 895 1.00 1.00	02 << 7 38 1.00 38 1.00 0.94 40 0 40 1.00 1.00 40	:00 AM 10 1.00 10 1.00 1.00 11 1.00 1.00 1.00	4 - 9: 399 1.00 399 1.00 0.94 424 0 424 1.00 1.00 424	114 1.00 114 1.00 0.94 121 0 121 1.00 1.00	207 1.00 207 1.00 0.94 220 0 220 1.00 1.00	281 1.00 281 1.00 0.94 299 0 299 1.00 1.00 299	27 1.00 27 1.00 0.94 29 0 29 1.00
Saturation Flo Sat/Lane: Adjustment: Lanes: Final Sat.:	ow Mo 1900 1.00	dule: 1900 0.95 1.00	1900 0.95 1.00	1900 0.95 0.10	1900 0.95 1.82	1900 0.95 0.08	1900 0.95 0.04	1900 0.95 1.52	1900 0.95 0.44	1900 0.95 1.20	1900 0.95 1.64	1900 0.95
Capacity Analy Vol/Sat: (Crit Moves: Green/Cycle: (ysis 0.03	Module 0.19	e: 0.22	0.27	0.27	0.27	0.15	0.15	0.15	0.10	0.10	0.10

EXISTING AM Thu Jun 19, 2003 17:21:30 Page 17-1

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #13 Hearst Avenue / Spruce Street ***************** Average Delay (sec/veh): 3.0 Worst Case Level Of Service: B ***** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____| Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Rights: Include Includ -----| Volume Module: >> Count Date: 12 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 0 0 9 0 63 11 843 0 0 430 7 Initial Bse: 0 0 0 9 0 63 11 843 0 0 430 7 PHF Volume: 0 0 0 9 0 66 12 887 0 0 453 7 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 0 0 0 9 0 66 12 887 0 0 453 7 _____| Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.8 xxxx 6.9 4.1 xxxx xxxxx xxxx xxxx xxxxx FollowUpTim:xxxxx xxxx xxxxx 3.5 xxxx 3.3 2.2 xxxx xxxxx xxxxx xxxxx ______| Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 923 xxxx 230 460 xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxx xxxx 272 xxxx 779 1112 xxxx xxxx xxxx xxxx xxxx Move Cap.: xxxx xxxx xxxx 270 xxxx 779 1112 xxxx xxxxx xxxx xxxx xxxxx -----| Level Of Service Module: LOS by Move: * * * * * A * * * * Movement: LT - LTR - RT Shrd StpDel:xxxxx xxxxx xxxxx xxxxx 11.5 xxxxx 8.3 xxxx xxxxx xxxxx xxxxx xxxxx

EXISTING AM Thu Jun 19, 2003 17:21:30 Page 18-1 ______ UC Berkeley LRDP EIR Existing Conditions AM Peak Hour Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative)

Intersection #14 Hearst Avenue / Arch Street / Le Conte Avenue ******************** Average Delay (sec/veh): 2.4 Worst Case Level Of Service: B *********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R -----| -----|----|-----|------| Volume Module: >> Count Date: 12 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 0 0 2 0 130 276 566 0 0 307 4 Initial Bse: 0 0 0 2 0 130 276 566 0 0 307 4 PHF Volume: 0 0 0 2 0 138 294 602 0 0 327 4 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 0 0 0 2 0 138 294 602 0 0 327 4 -----|----|-----|------| Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.8 xxxx 6.9 4.1 xxxx xxxxx xxxxx xxxx xxxxx FollowUpTim:xxxxx xxxx xxxxx 3.5 xxxx 3.3 2.2 xxxx xxxxx xxxx xxxx xxxxx Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 1217 xxxx 165 331 xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxx xxxxx 176 xxxx 856 1240 xxxx xxxxx xxxx xxxx xxxxx Move Cap.: xxxx xxxx xxxxx 144 xxxx 856 1240 xxxx xxxxx xxxx xxxx xxxxx -----| Level Of Service Module: Stopped Del:xxxxx xxxx xxxxx xxxxx xxxxx xxxxx 8.8 xxxx xxxxx xxxxx xxxxx xxxxx LOS by Move: * * * * * A * * * * Movement: LT - LTR - RT Shared LOS: * * * * B * * * * * * * ApproachDel: xxxxx 10.5 xxxxx xxx ApproachLOS: * B * * *

Shared LOS: * * * * B * A * * * *

ApproachDel: xxxxx 11.5 xxxxx xxx ApproachLOS: * B * *

AM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #15 Hearst Avenue / Scenic Avenue ************************ Average Delay (sec/veh): 0.3 Worst Case Level Of Service: A ********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Rights: Include Include Include Include Lanes: 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 1 1 0 -----| Volume Module: >> Count Date: 5 Dec 2002 << 7:00-9:00 AM Base Vol: 0 0 0 0 0 37 0 531 0 0 290 55 Initial Bse: 0 0 0 0 0 37 0 531 0 0 290 55 PHF Volume: 0 0 0 0 0 40 0 571 0 0 312 59 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 0 0 0 0 0 40 0 571 0 0 312 59 Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx xxxxx xxxx 6.9 xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx -----|----|-----| Capacity Module: _____| Level Of Service Module: LOS by Move: * * * * * A * * * * * Movement: LT - LTR - RT ApproachDel: xxxxxx 9.5 xxxxxx xxxxx ApproachLOS: * A * *

EXISTING AM Thu Jun 19, 2003 17:21:30 Page 20-1

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report

*****	2000 HCM 0	perati	ons Met	hod	(Base *****	Volume	e Alte	rnativ	e) ****	****	*****
Intersection	*****	****	*****	****	****	****					
Cycle (sec): Loss Time (sec) Optimal Cycle	65 ec): 12 e: 58	(Y+R :	= 3 se	C ec) A L	ritica verage evel 0 *****	l Vol. Delay f Serv	./Cap. / (sec /ice:	(X): /veh): *****	****	0.47 15.	71 4 B
Approach: Movement:											
Control: Rights: Min. Green: Lanes:	Permit Inclu 0 0 0 0 1!	ted de 0	25 0 0	ermit Inclu 25 1!	ted de 25 0 0	Pro 5 1 (ot+Per Inclu 16	mit de 16	16 0 (Permit Inclu 16 0 1!	ted ide 16 0 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	e: >> Count 2	Date: 2 1.00 2 1.00 0.94 2 0 2 1.00 1.00 2	12 Nov 47 1.00 1 47 1.00 1 0.94 (50 0 50 1.00 1	7 200 1 1.00 1 1.00 0.94 1 0 1.00 1.00	2 << 7 151 1.00 151 1.00 0.94 161 0 161 1.00 1.00	:00-9: 75 1.00 75 1.00 0.94 80 0 80 1.00	1.00 AM 448 1.00 448 1.00 0.94 477 0 477 1.00 1.00	1 1.00 1 1.00 0.94 1 0 1.00 1.00	1 1.00 1 1.00 0.94 1 0 1.00 1.00	276 1.00 276 1.00 0.94 294 0 294 1.00 1.00 294	10 1.00 10 1.00 0.94 11 0 11 1.00 1.00
Saturation F. Sat/Lane: Adjustment: Lanes: Final Sat.:	low Module: 1900 1900 0.88 1.00 0.50 0.00 831 0	1900 0.88 0.50 831	1900 1 0.84 (0.23 (377	1900 0.84 0.01 8	1900 0.84 0.76 1212	1900 0.84 1.00 1605	1900 1.00 0.99 1896	1900 1.00 0.01 4	1900 1.00 0.01	1900 1.00 0.96 1818	1900 1.00 0.03 66
Capacity Ana. Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	0.00 0.00 0.40 0.40 0.01 0.00 11.7 0.0 1.00 1.00 11.7 0.0	0.00 0.40 0.01 11.7 1.00	0.40 (0.33 (14.9 11.00 114.9 1	0.40 0.33 14.9 1.00	0.40 0.33 14.9 1.00 14.9	**** 0.51 0.10 9.7 1.00 9.7	0.51 0.50 12.3 1.00 12.3	0.51 0.50 12.3 1.00 12.3	0.31 0.52 21.9 1.00 21.9	**** 0.31 0.52 21.9 1.00 21.9	0.31 0.52 21.9 1.00 21.9

AM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #17 Hearst Avenue / Le Roy Avenue ******************* Average Delay (sec/veh): 3.3 Worst Case Level Of Service: B ********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Rights: Include Include Include Include Lanes: 0 0 0 0 0 0 0 1! 0 0 0 1 0 0 0 0 1 0 -----| Volume Module: >> Count Date: 5 Dec 2002 << 7:00-9:00 AM Base Vol: 0 0 0 19 0 60 59 436 0 0 230 3 Initial Bse: 0 0 0 19 0 60 59 436 0 0 230 3 PHF Volume: 0 0 0 20 0 64 63 464 0 0 245 3 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 0 0 0 20 0 64 63 464 0 0 245 3 Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.4 xxxx 6.2 4.1 xxxx xxxxx xxxx xxxx xxxxx FollowUpTim:xxxxx xxxxx xxxxx 3.5 xxxx 3.3 2.2 xxxx xxxxx xxxxx xxxxx xxxxx ______| Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 739 xxxx 246 248 xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxx xxxx 353 xxxx 797 1330 xxxx xxxxx xxxx xxxx xxxxx Move Cap.: xxxx xxxx xxxx 340 xxxx 797 1330 xxxx xxxxx xxxx xxxx xxxxx _____| Level Of Service Module: LOS by Move: * * * * * A * * * * Movement: LT - LTR - RT Shrd StpDel:xxxxx xxxx xxxxx xxxxx 11.9 xxxxx 7.8 xxxx xxxxx xxxxx xxxxx xxxxx Shared LOS: * * * * B * A * * * * * ApproachDel: xxxxxx 11.9 xxxxxx xxxxx ApproachLOS: * B * * *

EXISTING AM Thu Jun 19, 2003 17:21:30 Page 22-1

UC Berkeley LRDP EIR
Existing Conditions
AM Peak Hour

Level Of Service Computation Report

	2000 HCM Operat		Volume Alternative	
Intersection	#18 Hearst Aven	ue / Gayley Road /		
Cycle (sec): Loss Time (s Optimal Cycl	65 ec): 8 (Y+R e: 91	= 4 sec) Average Level 0	al Vol./Cap. (X): e Delay (sec/veh):	0.924 22.4 C
Movement:	L - T - R	L - T - R	East Bound L - T - R	L - T - R
Control: Rights: Min. Green: Lanes:	Permitted Include 18 18 18 0 0 1! 0 0	Permitted Include 18 18 18 0 0 1! 0 0	Permitted Include 17 17 17 0 0 1! 0 0	Permitted Include 17 17 17 0 1 0 0 1
Volume Modul Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	e: >> Count Date 274 212 95 1.00 1.00 1.00 274 212 95 1.00 1.00 1.00 0.92 0.92 0.92 298 230 103 0 0 0 298 230 103 1.00 1.00 1.00 298 230 103	: 6 Nov 2002 << 7: 12 274 21 1.00 1.00 1.00 12 274 21 1.00 1.00 1.00 0.92 0.92 0.92 13 298 23 0 0 0 0 13 298 23 1.00 1.00 1.00 1.00 1.00 1.00 13 298 23	28 161 304 1.00 1.00 1.00 28 161 304 1.00 1.00 1.00 0.92 0.92 0.92 30 175 330 0 0 0 30 175 330 1.00 1.00 1.00 1.00 1.00 1.00	21 33 5 1.00 1.00 1.00 21 33 5 1.00 1.00 1.00 0.92 0.92 0.92 23 36 5 0 0 0 23 36 5 1.00 1.00 1.00 1.00 1.00 1.00 23 36 5
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	low Module: 1900 1900 1900 0.67 0.67 0.67 0.48 0.36 0.16 599 463 208	1900 1900 1900 0.97 0.97 0.97 0.04 0.89 0.07 72 1640 126	1900 1900 1900 0.90 0.90 0.90	1900 1900 1900 0.82 0.82 0.85 0.39 0.61 1.00 603 947 1615
Capacity Ana Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh:	lysis Module: 0.50 0.50 0.50 0.50 **** 0.55 0.55 0.55 0.90 0.90 0.90 29.5 29.5 29.5 1.00 1.00 1.00 29.5 29.5 29.5	0.18 0.18 0.18 0.55 0.55 0.55 0.33 0.33 0.33 8.8 8.8 8.8 1.00 1.00 1.00 8.8 8.8 8.8	0.31 0.31 0.31 ***** 0.40 0.40 0.40 0.78 0.78 0.78 23.9 23.9 23.9 1.00 1.00 1.00	0.04 0.04 0.00 0.40 0.40 0.40 0.09 0.09 0.01 11.2 11.2 10.5 1.00 1.00 1.00 11.2 11.2 10.5

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report	
2000 HCM Operations Method (Base Volume Alternative)	******
Intersection #19 Berkeley Way / Oxford Street	
Cycle (sec): 70 Critical Vol./Cap. (X): 0.	486 4.7 A
Approach: North Bound South Bound East Bound West: Movement: L - T - R L - T - R L - T - R L - T - T - T - T - T - T - T - T - T -	- R
Control: Permitted Permitted Permitted Permitted Permitted Permitted Permitted Include Include<	itted lude 0 20 1 0
Volume Module: Base Vol: 39 717 40 30 1132 11 20 18 72 10 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	2 12 0 1.00 2 12 0 1.00 9 0.89 2 13 0 0 0 2 13 0 1.00 0 1.00 2 13
Crit Moves:	3 0.03 1 17.1 0 1.00 1 17.1 0 0

______ UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

EXISTING AM Thu Jun 19, 2003 17:21:30

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)

Page 24-1

Intersection #20 University Avenue / Sixth Street *********************** Cycle (sec): 114 Critical Vol./Cap. (X): 0.812 83.6 Loss Time (sec): 16 (Y+R = 5 sec) Average Delay (sec/veh): Optimal Cycle: 114 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Prot+Permit Permitted Protected Protected Include Include Include Include Rights: Min. Green: 6 23 23 0 23 23 6 15 15 6 15 15 Lanes: 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 -----| Volume Module: >> Count Date: 5 Dec 2002 << 7:00-9:00 AM Base Vol: 211 111 19 73 290 325 89 932 333 40 931 21 Initial Bse: 211 111 19 73 290 325 89 932 333 40 931 21 Final Vol.: 224 118 20 78 309 346 95 991 354 43 990 22 _____| Saturation Flow Module: Adjustment: 0.95 1.00 0.85 0.68 1.00 0.85 0.95 0.91 0.91 0.95 0.95 Lanes: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.47 0.53 1.00 1.96 0.04 Final Sat.: 1805 1900 1615 1286 1900 1615 1805 2556 913 1805 3520 79 -----| Capacity Analysis Module: Vol/Sat: 0.12 0.06 0.01 0.06 0.16 0.21 0.05 0.39 0.39 0.02 0.28 0.28 Crit Moves: **** **** **** Green/Cycle: 0.41 0.41 0.41 0.27 0.27 0.27 0.10 0.32 0.32 0.05 0.32 0.32 $\label{eq:volume/cap: 0.30 0.15 0.03 0.22 0.60 0.79 0.54 1.23 1.23 0.45 0.89 0.89}$ Delay/Veh: 23.5 21.4 20.0 33.6 41.1 51.8 60.8 150 149.9 66.9 47.8 47.8 AdjDel/Veh: 23.5 21.4 20.0 33.6 41.1 51.8 60.8 150 149.9 66.9 47.8 47.8 DesignQueue: 9 4 1 4 15 17 5 46 17 3 45 1

EXISTING AM Thu Jun 19, 2003 17:21:31 Page 26-1

UC Berkeley LRDP EIR

Existing Conditions

AM Peak Hour

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

	2000					Computa			t ernative	-)		
*****											*****	*****
Intersection									*****	****	****	*****
Cycle (sec):		114				Critica	l Vol	./Cap	. (X):		0.82	22
Cycle (sec): Loss Time (sec) Optimal Cycle ************************************	ec): e: ****	16 97 ****	(Y+R	= 5 :	sec) <i>I</i> *****	Average Level O	Delay f Serv	y (se vice: ****	c/veh):	****	115.	. 4 F
Approach:	No	rth Bo	und	Soi	uth Bo	ound	Εa	ast B	ound	We	est Bo	ound
Movement:												
Control: Rights:	P:	rotect Inclu	ed ide	P	rotect Inclu	ed ide	Pi	rotec	ted ude	Pı	rotect Incl	ed ide
Min. Green: Lanes:	1	0 1	1 0	1 (0 1	1 0	1 () 1	1 0	1 (0 1	1 0
Volume Module												
			75						49	63	644	93
Growth Adj:									1.00		1.00	
Initial Bse:				190	837	83	56	957	49	63		93
User Adj:						1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:				0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
PHF Volume:				213						71	724	104
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	112	513	84		940				55		724	104
PCE Adi:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	112	513	84	213								
Saturation F				1000	1000	1000	1000	1000	1000	1000	1000	1000
Sat/Lane: Adjustment:												
Lanes:									0.94			
Final Sat.:									175			
Fillal Sat.:												
Capacity Ana	lysis	Modul	e:									
Vol/Sat:		0.17	0.17	0.12	0.29	0.29	0.03	0.32	0.32	0.04	0.23	0.23
Crit Moves:	****				****			****		***		
Green/Cycle:	0.17	0.31	0.31	0.17	0.31	0.31	0.05	0.22	0.22	0.06	0.22	0.22
Volume/Cap:	0.37	0.55	0.55	0.71	0.95	0.95	0.66	1.44	1.44	0.64	1.07	1.07
Delay/Veh:				58.2	55.4					77.2	95.9	95.9
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #22 University Avenue / Martin Luther King Way ***********************

Cycle (sec): Loss Time (s Optimal Cycl	ec): 1 e: 6	2 (Y+R	= 5 sec) A	verage	l Vol./Cap. Delay (sec	:/veh):	20.	. 7 . C
Approach: Movement:	North B L - T	ound - R	South Bo L - T	und - R	East Bo L - T	und - R	West Bo L - T	ound - R
Control: Rights: Min. Green: Lanes:	Prot+Pe Incl 5 23 1 0 1	rmit ude 23 1 0	Permit Inclu 23 23 1 0 1	ted ide 23 1 0	Permit Inclu 17 17 1 0 1	ted ide 17	Permit Inclu 17 17 1 0 1	ted ide 17 1 0
Volume Modul Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	e: >> Coun 178 568 1.00 1.00 178 568 1.00 1.00 0.00 1.00 0.93 0.93 191 611 0 0 191 611 1.00 1.00 1.00 1.00 191 611	t Date: 80 1.00 80 1.00 0.93 86 0 86 1.00 1.00 86	21 Nov 200 57 833 1.00 1.00 57 833 1.00 1.00 0.93 0.93 61 896 0 0 61 896 1.00 1.00 1.00 1.00 61 896	12 << 7 87 1.00 87 1.00 0.93 94 0 94 1.00 1.00	:00 AM - 9: 81 703 1.00 1.00 81 703 1.00 1.00 0.93 0.93 87 756 0 0 87 756 1.00 1.00 1.00 1.00 87 756	00 AM 185 1.00 185 1.00 0.93 199 0 199 1.00 1.00 1.99	41 477 1.00 1.00 41 477 1.00 1.00 0.93 0.93 44 513 0 0 44 513 1.00 1.00 1.00 1.00 44 513	47 1.00 47 1.00 0.93 51 0 51 1.00 1.00
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	low Module 1900 1900 0.35 0.93 1.00 1.75 658 3107	: 1900 0.93 0.25 438	1900 1900 0.32 0.94 1.00 1.81 599 3223	1900 0.94 0.19 337	1900 1900 0.36 0.92 1.00 1.58 676 2769	1900 0.92 0.42 729	1900 1900 0.17 0.94 1.00 1.82 331 3243	1900 0.94 0.18 320
Capacity Ana Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignOueue:	lysis Modu 0.29 0.20 **** 0.43 0.43 0.68 0.46 25.8 12.3 1.00 1.00 25.8 12.3	0.20 0.43 0.46 12.3 1.00 12.3	0.10 0.28 **** 0.34 0.34 0.30 0.82 18.9 25.1 1.00 1.00 18.9 25.1	0.28 0.34 0.82 25.1 1.00	0.13 0.27	0.27 0.35 0.77 23.4 1.00		0.16 0.35 0.45 17.3 1.00

AdjDel/Veh: 45.7 35.0 35.0 58.2 55.4 55.4 84.0 249 248.8 77.2 95.9 95.9 DesignQueue: 6 23 4 12 44 4 57 3 4 38 5

EXISTING AM Thu Jun 19, 2003 17:21:31 Page 28-1 UC Berkeley LRDP EIR

Existing Conditions

AM Peak Hour

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

				1A	M Peal	k Hour						
						Computa				-		
*****	2000	HCM C	perati	ons Me	ethod	(Base	VOLume	e Alte	ernativ	e)	++++-	
Intersection								****	. * * * * * *	****	*****	*****
********	#Z3 ****	*****	SILY A	.****	/ Mll. ****	LVIA SL ******	****	****	*****	****	****	*****
Cycle (sec): Loss Time (sec	ec).	9	(Y+R	= 4	sec) 1	liitica Averace	Dela	./cap.	(A).		10	8
Optimal Cycl	e.	49) (1117	_ 1,	1	Level O	f Ser	y (sec	., veii) .		10.	. O
******	****	****	****	****	****	*****	****	****	*****	****	****	*****
Approach:	No	rth Bo	und	Soi	uth Bo	ound	E	ast Bo	ound	We	est Bo	ound
Movement:												
Control:		Permit	ted	1	Permit	ted	1	Permit	ted		Permit	ted
Rights: Min. Green:		Inclu	ıde		Incl	ıde		Incl	ıde		Incl	ıde
Min. Green:	21	21	21	21	21	21	20	20	20	20	20	2.0
Lanes:	1	0 0	1 0	0 (0 1!	0 0	0 :	1 0	1 0	0	1 0	1 0
Volume Modul												
Base Vol:												
Growth Adj:												
Initial Bse:												
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj: PHF Volume:	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Reduct Vol:	109	107	23	/	221	68	40	/13	149	20	441	Τ (
Reduced Vol:												
PCE Adj:												
MLF Adj:	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
Final Vol.:												
Saturation F				1		'	'		'	'		
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.69	0.97	0.97	0.97	0.97	0.97	0.85	0.85	0.85	0.86	0.86	0.86
Lanes:												
Final Sat.:	1303	1524	327	40	1369	425	144	2559	534	134	3033	112
Capacity Ana												
Vol/Sat:	0.08	0.07	0.07				0.28			0.15	0.15	0.15
Crit Moves:					****			****				
Green/Cycle:												
Volume/Cap:												
Delay/Veh:												
User DelAdj:									1.00		1.00	1.00

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #24 University Avenue / SB Shattuck Avenue **************** Cycle (sec): 75 Critical Vol./Cap. (X): 0.459 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 19.7 Optimal Cycle: 40 Level Of Service: В Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Permitted Permitted Permitted Include Include Include Include Rights: Min. Green: 0 0 0 16 16 16 16 16 16 16 16 16 16 -----| Volume Module: >> Count Date: 12 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 0 0 49 767 105 115 401 162 26 356 314 Initial Bse: 0 0 0 49 767 105 115 401 162 26 356 314 PHF Volume: 0 0 0 52 816 112 122 427 172 28 379 334 Final Vol.: 0 0 0 52 816 112 122 427 172 28 379 334 -----| Saturation Flow Module: Adjustment: 1.00 1.00 1.00 0.79 0.79 0.79 0.45 0.82 0.82 0.72 0.72 0.72 Lanes: 0.00 0.00 0.00 0.16 2.50 0.34 1.00 1.42 0.58 0.11 1.54 1.35 Final Sat.: 0 0 0 240 3757 514 846 2215 895 154 2112 1863 -----| Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.22 0.22 0.22 0.14 0.19 0.19 0.18 0.18 0.18 Crit Moves: **** **** Volume/Cap: 0.00 0.00 0.00 0.60 0.60 0.60 0.48 0.64 0.64 0.60 0.34 0.34 Delay/Veh: 0.0 0.0 0.0 21.3 21.3 27.9 26.1 26.1 24.5 10.5 10.5

AdjDel/Veh: 14.4 13.8 13.8 16.5 16.5 16.5 9.6 9.6 9.6 7.7 7.7

DesignQueue: 2 2 1 0 5 2 1 12 2 0 7 0

AdjDel/Veh: 0.0 0.0 0.0 21.3 21.3 21.3 27.9 26.1 26.1 24.5 10.5 10.5 DesignQueue: 0 0 0 1 23 3 4 13 5 1 8 7

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #25 University Avenue / NB Shattuck Avenue **************** Cycle (sec): 75 Critical Vol./Cap. (X): 0.335 Loss Time (sec): 15 (Y+R = 4 sec) Average Delay (sec/veh): 15.7 Optimal Cycle: 47 Level Of Service: B ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 19 0 19 0 0 0 0 13 0 0 13 0 Lanes: 2 0 1! 0 1 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 -----| Volume Module: >> Count Date: 12 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 458 0 168 0 0 0 0 444 0 0 235 0 Initial Bse: 458 0 168 0 0 0 0 444 0 0 235 0 Final Vol.: 492 0 181 0 0 0 0 477 0 0 253 0 -----| Saturation Flow Module: Adjustment: 0.81 1.00 0.83 1.00 1.00 1.00 1.00 0.86 1.00 1.00 0.86 1.00 Lanes: 2.65 0.00 1.35 0.00 0.00 0.00 0.00 2.00 0.00 2.00 0.00 Final Sat.: 4075 0 2135 0 0 0 0 3249 0 0 3249 0 -----| Capacity Analysis Module: Vol/Sat: 0.12 0.00 0.08 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.08 0.00 Crit Moves: **** **** *** Green/Cycle: 0.36 0.00 0.36 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.44 0.00 Delay/Veh: 17.9 0.0 17.0 0.0 0.0 0.0 0.0 14.4 0.0 0.0 13.0 0.0

______ UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report

	2000 HCM Operati	ons Method (Base V	Volume Alternativ	e)
Intersection	#26 University A	venue / Oxford St	reet	
Cycle (sec): Loss Time (s Optimal Cycl	65 ec): 12 (Y+R e: 68	Critical = 4 sec) Average	l Vol./Cap. (X): Delay (sec/veh): f Service:	0.800 29.0 C
Movement:	L - T - R	South Bound L - T - R	L - T - R	L - T - R
<pre>Control: Rights: Min. Green: Lanes:</pre>	Prot+Permit Include 5 18 18 1 0 1 1 0	Permitted Include 5 18 18 1 0 1 1 0 0	Permitted Include 18 18 18 1 1 0 0 1	Permitted Include 18 18 18 0 0 1! 0 0
Volume Modul Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	e: >> Count Date: 147 487 4 1.00 1.00 1.00 147 487 4 1.00 1.00 1.00 0.91 0.91 0.91 162 535 4 0 0 0 162 535 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 535 4	21 Nov 2002 << 7 41 1101 77 1.00 1.00 1.00 41 1101 77 1.00 1.00 1.00 0.91 0.91 0.91 45 1210 85 0 0 0 45 1210 85 1.00 1.00 1.00 1.00 1.00 1.00	300 AM - 9:00 AM 300 38 217 1.00 1.00 1.00 300 38 217 1.00 1.00 1.00 0.91 0.91 0.91 330 42 238 0 0 0 330 42 238 1.00 1.00 1.00 1.00 1.00 1.00 330 42 238	6 12 23 1.00 1.00 1.00 6 12 23 1.00 1.00 1.00 0.91 0.91 0.91 7 13 25 0 0 0 7 13 25 1.00 1.00 1.00 1.00 1.00 7 13 25
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	low Module: 1900 1900 1900 0.86 0.85 0.85 1.00 1.98 0.02 1625 3219 26	1900 1900 1900 0.37 0.85 0.85 1.00 1.87 0.13	1900 1900 1900 0.65 0.65 0.77 1.78 0.22 1.00 2189 277 1454	1900 1900 1900 0.81 0.81 0.81 0.15 0.29 0.56 225 450 863
Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh:	**** 0.41 0.41 0.41 0.24 0.41 0.41 13.5 14.6 14.6 1.00 1.00 1.00 13.5 14.6 14.6	0.16 0.99 0.99	**** 0.30 0.30 0.30 0.50 0.50 0.55 21.2 21.2 23.9 1.00 1.00 1.00 21.2 21.2 23.9	0.30 0.30 0.30 0.10 0.10 0.10 16.8 16.8 16.8 1.00 1.00 1.00 16.8 16.8 16.8

AdjDel/Veh: 17.9 0.0 17.0 0.0 0.0 0.0 14.4 0.0 0.0 13.0 0.0

DesignOueue: 13 0 5 0 0 0 0 11 0 0 6 0

ApproachLOS: *

EXISTING AM Thu Jun 19, 2003 17:21:31 ______

Page 32-1

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

				m	1 1 6 6 1	1 HOUL						
	2000 1		Level (nsignal							ive)		
*****											****	*****
Intersection										*****	****	*****
Average Delay	y (se	c/veh)): *****	1.9	****	Wc	rst C	ase Le	evel Of	f Serv:	ice:	C *****
Approach: Movement:	L ·	- T	R	L -	- T	R	L ·	- T	R	L ·	- T	- R
Control: Rights:	Uno	contro Inclu 0 1	olled ude 0 0	Un (contro Inclu	olled ude 1 0	S-	top S: Inclu	ign ude 0 1	S t	top S: Incli) 1!	ign ude 0 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Final Vol.:	1.00 69 1.00 0.95 73 0	Count 476 1.00 476 1.00 0.95 501 0	Date: 0 1.00 0 1.00 0.95 0 0	1.00 0 1.00 0 1.00 0.95 0	2002 543 1.00 543 1.00 0.95 572 0 572	2 << 7: 75 1.00 75 1.00 0.95 79 0 79	53 1.00 53 1.00 0.95 56 0	00 AM 0 1.00 0 1.00 0.95 0	73 1.00 73 1.00 0.95 77 0	0 1.00 0 1.00 0.95 0	0 1.00 0 1.00 0.95 0	0 1.00 0 1.00 0.95 0
Critical Gap Critical Gp: FollowUpTim:	Modu: 4.1 2.2	le: xxxx xxxx	xxxxx	xxxxx	xxxx xxxx	xxxxx	6.4	xxxx xxxx	6.2 3.3	xxxxx	xxxx xxxx	xxxxx
Capacity Modu Cnflict Vol: Potent Cap.: Move Cap.:	11e: 651 945 945	XXXX XXXX	*****	xxxx xxxx	xxxx xxxx xxxx	xxxxx xxxxx	1257 191 179	XXXX XXXX	611 497 497	xxxx xxxx	XXXX XXXX	xxxxx xxxxx
Level Of Serv	/ice 1	Module	∍:									
Stopped Del: LOS by Move: Movement:	A LT -	* - LTR	* - RT	* LT -	* - LTR	* - RT	D LT ·	* - LTR	B - RT	* LT ·	* - LTR	* - RT
Shared Cap.: Shrd StpDel:: Shared LOS:	XXXX	XXXX	XXXXX	XXXXX	XXXX	XXXXX	xxxxx	XXXX	XXXXX	XXXXX	XXXX	******

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative)

Intersection #28 Addison Street / Oxford Street ******************** Average Delay (sec/veh): 0.3 Worst Case Level Of Service: B ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include
 Include

 Lanes:
 1 0 2 0 0 0 0 1 1 0 0 0 1! 0 0 0 0 0 0 0
 0 0 0 0 0 0
 -----| Volume Module: >> Count Date: 13 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 54 647 0 0 1165 61 4 0 31 0 0 Initial Bse: 54 647 0 0 1165 61 4 0 31 0 0 PHF Volume: 59 711 0 0 1280 67 4 0 34 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 59 711 0 0 1280 67 4 0 34 0 0 -----| Critical Gap Module: Critical Gp: 4.1 xxxx xxxxx xxxxx xxxx xxxx 6.8 xxxx 6.9 xxxxx xxxx xxxx -----|----|-----| Capacity Module: Cnflict Vol: 812 xxxx xxxxx xxxx xxxx xxxx 1392 xxxx 0 xxxx xxxx xxxxx -----| Level Of Service Module: LOS by Move: B * * * * * * * * * * * Movement: LT - LTR - RT Shared LoS: * * * * * * * A * * * * ApproachDel: xxxxxx xxxxx 9.5 xxxxxx

XXXXXX

ApproachDel: xxxxxx

ApproachLOS: *

22.1

С

XXXXXX

A

EXISTING AM Thu Jun 19, 2003 17:21:31 ______ UC Berkeley LRDP EIR

Page 34-1

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

*****	2000 HCM		ons Me	thod	(Base	Volume	e Ālte	ernativ		
Intersection	#29 Cente	r Stree	t / SB	Shat	tuck A	venue				
Cycle (sec): Loss Time (sec) Optimal Cycle	6 ec): 1 e: 6	5 2 (Y+R 5	= 9 s	c sec) A L	ritica verage	l Vol Delay	./Cap. y (sec vice:	(X): c/veh):	0.	348 4.9 B
Approach: Movement:	L - T	- R	L -	T	R		- T	 R 	ь - т	
Control: Rights: Min. Green: Lanes:	Permi Incl 0 0 0 0 0	tted ude 0	20 0 1	ermit Inclu 20 1	ted de 20	0 0	Permit Inclu 22) 0	ited ide 22 1 0	Perm Inc 33 3 0 1 0	nitted :lude :3 0
Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	e: >> Coun 0 0 1.00 1.00 0 0 1.00 1.00 0.93 0.93 0 0 0 0 1.00 1.00 1.00 1.00 0 0 0 0 1.00 1.00 0 0 0 0 1.00 1.00 1.00 1.00 0 0 0 0 0 0 1.00 1.00 0 0 1.00 1.00 0 0 1.00 1.00	t Date: 0 1.00 1.00 0.93 0 0 1.00 1.00 0 1.00 1.00 1.00 1.00 1.	19 No 15 1.00 0.93 16 0 16 1.00 1.00 16 1.00 1.00 0.80	779 1.00 779 1.00 0.93 838 0 838 1.00 1.00 838	2 << 7 71 1.00 71 1.00 0.93 76 0 76 1.00 1.00 76	1.00 AN 0 1.00 0 1.00 0 0 0 0 0 1.00 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0	4 - 9; 69 1.00 69 1.00 0.93 74 0 74 1.00 1.00 74	1.00 AM 51 1.00 51 1.00 0.93 55 0 55 1.00 1.00 55	17 10 1.00 1.0 17 10 1.00 1.0 0.93 0.9 18 11 0 1.8 11 1.00 1.0 1.00 1.0 1.00 1.0 18 11 1 1900 190 0.86 0.8	02 0 00 1.00 00 1.00 00 1.00 03 0.93 00 0 0 00 0 0 00 1.00 00 1.00 00 0 00 1.00 00 0 00
Lanes: Final Sat.:	0 0	0	79	4104	374	0	0.58 927	685	0.14 0.8	8 0
Capacity Ana. Vol/Sat: Crit Moves:	lysis Modu	le:	0.20				0.08		0.08 0.0	
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh:	0.00 0.00 0.0 0.0 1.00 1.00 0.0 0.0	0.00 0.0 1.00 0.0	0.66 16.3 1.00 16.3	0.66 16.3 1.00 16.3	0.66 16.3 1.00 16.3	0.00 0.0 1.00 0.0	0.34 0.24 16.5 1.00 16.5	0.24 16.5 1.00 16.5	0.51 0.5 0.15 0.1 3.1 3. 1.00 1.0 3.1 3.	5 0.00 1 0.0 0 1.00 1 0.0

Existing Conditions AM Peak Hour Level Of Service Computation Report

2000 HCM Operations Method (Base Volume Alternative) Intersection #30 Center Street / NB Shattuck Avenue ************************* Cycle (sec): 65 Critical Vol./Cap. (X): 0.285 4.6 Loss Time (sec): 8 (Y+R = 9 sec) Average Delay (sec/veh): Optimal Cycle: 60 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Permitted Permitted Permitted Include Include Include Include Rights: Min. Green: 30 30 30 0 0 0 22 22 0 0 22 22 Lanes: 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 -----| Volume Module: >> Count Date: 19 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 42 616 51 0 0 0 26 56 0 0 77 26 Initial Bse: 42 616 51 0 0 0 26 56 0 0 77 26 PHF Volume: 48 708 59 0 0 0 30 64 0 0 89 30 Ó Reduct Vol: 0 0 0 Reduced Vol: 48 708 59 0 0 0 0 0 0 0 0 30 64 Ω Ω 0 0 89 Final Vol.: 48 708 59 0 0 0 30 64 0 0 89 30 -----|----|-----|------| Saturation Flow Module: Lanes: 0.18 2.61 0.21 0.00 0.00 0.00 0.32 0.68 0.00 0.00 0.75 0.25 Final Sat.: 270 3967 328 0 0 0 479 1032 0 0 1235 417 _____| Capacity Analysis Module: Crit Moves: **** Volume/Cap: 0.33 0.33 0.33 0.00 0.00 0.00 0.18 0.18 0.00 0.00 0.21 0.21 Delay/Veh: 2.2 2.2 2.2 0.0 0.0 0.0 10.8 10.8 0.0 0.0 16.2 16.2 AdjDel/Veh: 2.2 2.2 2.2 0.0 0.0 0.0 10.8 10.8 0.0 0.0 16.2 16.2 DesignQueue: 1 12 1 0 0 0 1 2 0 0 2 1

DesignQueue: 0 0 0 0 22 2 0 2 1 0 2 0

EXISTING AM Thu Jun 19, 2003 17:21:31 Page 36-1 UC Berkeley LRDP EIR

Existing Conditions

AM Peak Hour

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Re	
2000 HCM Operations Method (Base Volume	Alternative)
Intersection #31 Center Street / Oxford Street	
**************************************	*****
Cycle (sec): 65 Critical Vol./	
Loss Time (sec): 8 (Y+R = 4 sec) Average Delay	
Optimal Cycle: 46 Level Of Servi	

Approach: North Bound South Bound Eas	
Movement: L - T - R L - T - R L -	T - R L - T - R
	ermitted Permitted
	include Include
Min. Green: 19 19 19 19 19 19 19	
	1! 0 0 0 0 1! 0 0
Volume Module: >> Count Date: 13 Nov 2002 << 7:00 AM	- 9:00 AM
Base Vol: 50 663 42 11 1145 39 26	10 43 19 6 8
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1	.00 1.00 1.00 1.00 1.00
Initial Bse: 50 663 42 11 1145 39 26	10 43 19 6 8
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1	
PHF Adj: 0.93 0.93 0.93 0.93 0.93 0.93 0	
PHF Volume: 54 713 45 12 1231 42 28	11 46 20 6 9
Reduct Vol: 0 0 0 0 0 0 0	0 0 0 0 0
Reduced Vol: 54 713 45 12 1231 42 28	11 46 20 6 9
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1	
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 Final Vol.: 54 713 45 12 1231 42 28	00 1.00 1.00 1.00 1.00 11 46 20 6 9
Saturation Flow Module:	
Sat/Lane: 1900 1900 1900 1900 1900 1900 1	900 1900 1900 1900 1900
Adjustment: 0.18 0.85 0.85 0.32 0.85 0.85 0.77 0	
Lanes: 1.00 1.88 0.12 1.00 1.93 0.07 0.33 0	0.13 0.54 0.58 0.18 0.24
Final Sat.: 340 3028 192 612 3126 106 479	184 793 826 261 348
Capacity Analysis Module:	
Vol/Sat: 0.16 0.24 0.24 0.02 0.39 0.39 0.06 0	
CIIC MOVES.	***
Green/Cycle: 0.63 0.63 0.63 0.63 0.63 0.63 0.31 0	
Volume/Cap: 0.25 0.37 0.37 0.03 0.62 0.62 0.19 0	
Delay/Veh: 8.0 6.3 6.3 4.7 8.8 8.8 17.5 1	
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1	
AdjDel/Veh: 8.0 6.3 6.3 4.7 8.8 8.8 17.5 1 DesignOueue: 1 10 1 0 18 1 1	7.5 17.5 16.3 16.3 16.3 0 1 1 0 0
DesignQueue: 1 10 1 0 18 1 1	

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) Intersection #32 Stadium Rim Road / Gayley Road ************************* 26.2 Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 0 Level Of Service: D Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Stop Sign Stop Sign Stop Sign Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 0 1 0 0 1 0 0 0 0 1! 0 0 0 0 1! 0 0 -----| Volume Module: >> Count Date: 20 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 386 19 128 471 0 12 5 14 18 1 118 Initial Bse: 0 386 19 128 471 0 12 5 14 18 1 118 PHF Volume: 0 415 20 138 506 0 13 5 15 19 1 127 Final Vol.: 0 415 20 138 506 0 13 5 15 19 1 127 -----| Saturation Flow Module: Lanes: 0.00 0.95 0.05 0.21 0.79 0.00 0.39 0.16 0.45 0.13 0.01 0.86 Final Sat.: 0 641 32 151 556 0 190 79 222 74 4 488 -----| Capacity Analysis Module: Vol/Sat: xxxx 0.65 0.65 0.91 0.91 xxxx 0.07 0.07 0.07 0.26 0.26 0.26 Crit Moves: **** **** **** Delay/Veh: 0.0 16.8 16.8 36.9 36.9 0.0 10.0 10.0 10.0 10.8 10.8 10.8 AdjDel/Veh: 0.0 16.8 16.8 36.9 36.9 0.0 10.0 10.0 10.0 10.8 10.8 10.8 LOS by Move: * C C E E * A A B B B ApproachDel: 16.8 36.9 10.0 10.8 Delay Adj: 1.00 1.00 1.00 1.00 ApprAdjDel: 16.8 36.9 10.0 10.8 LOS by Appr: C E A B

Existing Conditions

UC Berkeley LRDP EIR

AM Peak Hour

Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0

Capacity Module:
Cnflict Vol: 1129 xxxx xxxxx 858 xxxx xxxxx 1735 xxxx 480 xxxx xxxxx xxxxx
Potent Cap.: 594 xxxx xxxxx 791 xxxx xxxxx 76 xxxx 510 xxxx xxxx xxxxx
Move Cap.: 594 xxxx xxxxx 791 xxxx xxxxx 70 xxxx 510 xxxx xxxx xxxxx

EXISTING AM Thu Jun 19, 2003 17:21:31 Page 38-1

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative)

Intersection #34 Kittridge Street / Oxford Street / Fulton Street *********************** Average Delay (sec/veh): 2.5 Worst Case Level Of Service: C ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R -----|----|-----| Control: Uncontrolled Uncontrolled Stop Sign Stop Sign Rights: Include Include Include Include Rights: Include Include Include Lanes: 0 1 1 0 0 0 0 1 1 0 0 0 1! 0 0 0 0 0 0 -----|----|-----|------| Volume Module: >> Count Date: 13 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 13 801 0 0 1122 18 6 0 23 0 0 0 Initial Bse: 13 801 0 0 1122 18 6 0 23 0 0 PHF Volume: 14 861 0 0 1206 19 6 0 25 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 14 861 0 0 1206 19 6 0 25 0 0 -----| Critical Gap Module: Critical Gp: 4.1 xxxx xxxxx xxxxx xxxx xxxx 6.8 xxxx 6.9 xxxxx xxxx xxxx Capacity Module: Cnflict Vol: 1079 xxxx xxxxx xxxxx xxxx xxxxx 1565 xxxx 418 xxxx xxxx xxxxx Potent Cap.: 607 xxxx xxxxx xxxx xxxx xxxx 97 xxxx 547 xxxx xxxx xxxx Move Cap.: 607 xxxx xxxxx xxxx xxxx xxxx 95 xxxx 547 xxxx xxxx xxxx -----| Level Of Service Module: LOS by Move: B * * * * * * * * * * * Movement: LT - LTR - RT Shrd StpDel: 11.1 xxxx xxxxx xxxxx xxxx xxxxx xxxxx 19.7 xxxxx xxxxx xxxxx xxxxx Shared LoS: B * * * * * * C * * * * ApproachDel: xxxxxx xxxxx 19.7 xxxxxx ApproachLOS: * * C *

EXISTING AM Thu Jun 19, 2003 17:21:31 Page 40-1 UC Berkeley LRDP EIR

Existing Conditions

AM Peak Hour

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report	
2000 HCM 4-Way Stop Method (Base Volume Alternativ	
*********************	*****
Intersection	*****
Cycle (sec): 100 Critical Vol./Cap. (X):	
Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh):	9.2
Optimal Cycle: 0 Level Of Service:	A

Approach: North Bound South Bound East Bound	
Movement: $L - T - R L - T - R$	
Control: Stop Sign Stop Sign Stop Sign	
Rights: Include Include Include	Include
Min. Green: 0 0 0 0 0 0 0 0	0 0 0
Lanes: 0 0 0 1 0 0 1 0 0 0 0 0 0 0	
Volume Module: >> Count Date: 20 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 70 160 94 22 0 0 0 0	114 0 71
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
Initial Bse: 0 70 160 94 22 0 0 0 0	114 0 71
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
PHF Adj: 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85	0.85 0.85 0.85
PHF Volume: 0 82 188 111 26 0 0 0	134 0 84
Reduct Vol: 0 0 0 0 0 0 0 0	0 0 0
Reduced Vol: 0 82 188 111 26 0 0 0 0	134 0 84
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
Final Vol.: 0 82 188 111 26 0 0 0 0	134 0 84
Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00
Lanes: 0.00 0.30 0.70 0.81 0.19 0.00 0.00 0.00	0.61 0.01 0.38
Final Sat.: 0 253 579 575 135 0 0 0	452 0 282
Capacity Analysis Module:	
Vol/Sat: xxxx 0.33 0.33 0.19 0.19 xxxx xxxx xxxx xxxx	
Crit Moves: **** ****	***
Delay/Veh: 0.0 9.0 9.0 8.9 8.9 0.0 0.0 0.0 0.0	9.5 9.5 9.5
Delay Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00
AdjDel/Veh: 0.0 9.0 9.0 8.9 8.9 0.0 0.0 0.0 0.0	9.5 9.5 9.5
LOS by Move: * A A A A * * * *	A A A
ApproachDel: 9.0 8.9 xxxxxx	9.5
Delay Adj: 1.00 1.00 xxxxx	1.00
	9.5
ApprAdjDel: 9.0 8.9 xxxxxx LOS by Appr: A A *	9.3

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)

Intersection ******	****	****	*****	****	*****	****	****					
Cycle (sec): Loss Time (s Optimal Cycl ********	ec):	8	(Y+R :	= 4 s	sec) I	verage	Delay	/ (sec	/veh):		8	. 6
Approach: Movement:	L -	T	- R	L -	- T	- R	L -	- T	- R	L ·	- T	- R
Control: Rights: Min. Green:	18 1 0	Permit Inclu 18 2	ted de 0	0 0	Permit Inclu 18) 1	ted ide 18	0 0	Permit Inclu 0 1!	ted ide 0	16 1 (Permit Inclu 16 0 0	tted ude 16 10
Volume Modul	e: >>	Count 912 1.00 912 1.00 0.93 981 0 981 1.00 981	Date: 0 1.00 0 1.00 0.93 0 0 1.00 1.00 1.00 0	14 No 0 0 1.00 0 0.93 0 0 0 0 1.00 1.00	788 1.00 788 1.00 0.93 847 0 847 1.00 1.00 847	02 << 7 12 1.00 12 1.00 0.93 13 0 13 1.00 1.00 1.00	1.00 AN 1 1.00 1.00 0.93 1 0 1.00 1.00 1.00 1	4 - 9: 0 1.00 0 1.00 0 0.93 0 0 0 1.00 1.00	00 AM 62 1.00 62 1.00 0.93 67 0 67 1.00 1.00	116 1.00 116 1.00 0.93 125 0 125 1.00 1.00	51 1.00 51 1.00 0.93 55 0 55 1.00 1.00	71 1.00 71 1.00 0.93 76 0 76 1.00 1.00
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.: 	1900 0.29 1.00 559	1900 0.86 2.00 3249	1900 1.00 0.00 0	1.00	0.85 1.97 3194	0.85 0.03 49	0.78 0.02 24	1.00	0.78 0.98 1459	0.67 1.00 1264	0.82 0.42 653	0.58 909
Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue: **********************************	0.06 0.62 0.09 5.6 1.00 5.6	0.30 **** 0.62 0.49 7.7 1.00 7.7 14	0.00 0.00 0.00 0.0 1.00 0.0	0.00 0.00 0.0 1.00 0.0	0.62 0.43 7.2 1.00 7.2	0.62 0.43 7.2 1.00 7.2 0	0.00 xxxx 0.0 1.00 0.0	0.00 0.00 0.0 1.00 0.0	0.00 xxxx 0.0 1.00 0.0	**** 0.30 0.33 20.0 1.00 20.0	0.30 0.28 18.9 1.00 18.9	0.30 0.28 18.9 1.00 18.9

AM Peak Hour

UC Berkeley LRDP EIR Existing Conditions

Level Of Service Computation Report
2000 HCM Operations Method (Base Volume Alternative)

<pre>Intersection #37 Bancroft Way / Fulton Street **********************************</pre>

65 Critical Vol./Cap. (X): 0.394 Cycle (sec): Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 6.3 Optimal Cycle: 49 Level Of Service: A *******************

Approach: North Bound South Bound East Bound West Bound

L-T-R L-T-R L-T-R Movement: -----| Control: Permitted Permitted Permitted Rights: Include Include Include Ignore Min. Green: 17 17 0 0 17 17 0 0 0 24 24 24 Lanes: 0 1 1 0 0 0 0 2 1 0 0 0 0 0 0 1 1 0 1 -----| Volume Module: >> Count Date: 13 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 13 146 0 0 1071 79 0 0 0 84 173 650 Initial Bse: 13 146 0 0 1071 79 0 0 0 84 173 650 PHF Volume: 15 164 0 0 1203 89 0 0 0 94 194 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 15 164 0 0 1203 89 0 0 0 94 194 0 Reduct Vol: 0 0 0 0 0 0 0 Reduced Vol: 15 164 0 0 1203 89 Final Vol.: 15 164 0 0 1203 89 0 0 0 94 194 0

Adjustment: 0.82 0.82 1.00 1.00 0.90 0.90 1.00 1.00 1.00 0.81 0.81 1.00 Lanes: 0.16 1.84 0.00 0.00 2.79 0.21 0.00 0.00 0.00 0.65 1.35 1.00 Final Sat.: 256 2877 0 0 4782 353 0 0 0 1003 2066 1900 _____| Capacity Analysis Module: Vol/Sat: 0.06 0.06 0.00 0.00 0.25 0.25 0.00 0.00 0.00 0.09 0.09 0.00

Saturation Flow Module:

-----|

Crit Moves: **** Volume/Cap: 0.10 0.10 0.00 0.00 0.42 0.42 0.00 0.00 0.00 0.28 0.28 0.00 Delay/Veh: 3.3 3.3 0.0 0.0 4.4 4.4 0.0 0.0 0.0 16.4 16.4 0.0 AdjDel/Veh: 3.3 3.3 0.0 0.0 4.4 4.4 0.0 0.0 0.0 16.4 16.4 0.0

DesignOueue: 0 2 0 0 18 1 0 0 0 2 5 0

EXISTING AM Thu Jun 19, 2003 17:21:31 Page 41-1 EXISTING AM Thu Jun 19, 2003 17:21:31 Page 42-1 ______

> UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative)

Intersection #38 Bancroft Way / Ellsworth Street ***************** Average Delay (sec/veh): 3.2 Worst Case Level Of Service: C ***********************

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| -----|----|-----|------| Volume Module: >> Count Date: 13 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 241 60 0 0 0 11 0 0 0 674 39 Initial Bse: 241 60 0 0 0 11 0 0 0 674 39 PHF Volume: 265 66 0 0 0 12 0 0 0 741 43 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 265 66 0 0 0 12 0 0 0 741 43 -----|----|-----|------| Critical Gap Module:

FollowUpTim: 3.5 4.0 xxxxx xxxxx xxxx 3.3 xxxxx xxxx xxxxx xxxx xxxx xxxxx

Capacity Module:

Potent Cap.: 590 328 xxxxx xxxx xxxx 661 xxxx xxxx xxxxx xxxx xxxx xxxx Move Cap.: 579 328 xxxxx xxxx xxxx 661 xxxx xxxx xxxxx xxxx xxxx xxxx -----|

Level Of Service Module:

LOS by Move: B * * * B * * * * * Movement: LT - LTR - RT

ApproachDel: 16.4 10.5 xxxxxx xxxxx ApproachLOS: C B * *

Crit Moves: ****

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

	AM Peak Hour								
Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative)									
Intersection #39 Bancroft Way /		*****	*****						
Average Delay (sec/veh): 0	Average Delay (sec/veh): 0.0 Worst Case Level Of Service: A								
Approach: North Bound Movement: L - T - R	South Bound E	ast Bound 1	West Bound - T - R						
Control: Stop Sign Rights: Include Lanes: 0 0 0 0 0	Stop Sign Un Include 0 0 0 0 0	controlled U: Include 0 0 0 0 0	ncontrolled Include 1 2 0 0						
Initial Bse: 0 0 0 0 User Adj: 1.00 1.00 1.00 1 PHF Adj: 0.94 0.94 0.94 0 PHF Volume: 0 0 0 Reduct Vol: 0 0 0 Final Vol.: 0 0 0	3 Nov 2002 << 7:00 A 0 0 0 0 0 .00 1.00 1.00 1.00 0 0 0 0 0 .00 1.00 1	M - 9:00 AM 0 0 14 1.00 1.00 1.0 0 0 14 1.00 1.00 1.0 0.94 0.94 0.9 0 0 15 0 0 0 15	5 721 0 0 1.00 1.00 5 721 0 0 1.00 1.00 4 0.94 0.94 4 767 0 0 0 0 0 4 767 0						
Critical Gap Module: Critical Gp:xxxxx xxxx xxxx xx FollowUpTim:xxxxx xxxx xxxx xx	· · · · · · · · · · · · · · · · · · ·	xxxx xxxxx 2.	2 xxxx xxxxx						
Capacity Module: Cnflict Vol: xxxx xxxx xxxxx x Potent Cap.: xxxx xxxx xxxxx x Move Cap.: xxxx xxxx xxxxx x	(XX XXXX XXXX XXXX (XX XXXX XXXX XXXX	XXXX XXXXX	0 xxxx xxxxx 0 xxxx xxxxx 0 xxxx xxxxx						
Level Of Service Module: Stopped Del:xxxxx xxxx xxxx xx LOS by Move: * * * Movement: LT - LTR - RT Shared Cap.: xxxx xxxx xxxx x	XXX XXXX XXXXX XXXXX * * * * * -T - LTR - RT	* * * A - LTR - RT LT ***********************************	0 xxxx xxxxx * * - LTR - RT x xxxx xxxxx						
Shrd StpDel:xxxxx xxxx xxxx xx	XXX XXXX XXXXX XXXXX	xxxx xxxxx 0.	0 xxxx xxxxx						

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #40 Bancroft Way / Telegraph Avenue *********************** Cycle (sec): 65 Critical Vol./Cap. (X): 0.258 20.4 Loss Time (sec): 8 (Y+R = 23 sec) Average Delay (sec/veh): Optimal Cycle: 46 Level Of Service: C ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Protected Protected Protected Protected Rights: Include Include Include Include Include Min. Green: 15 0 0 0 0 0 0 0 0 23 0 -----| Volume Module: >> Count Date: 13 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 427 0 0 0 0 0 0 0 0 460 0 Initial Bse: 427 0 0 0 0 0 0 0 0 460 0 PHF Volume: $459 \quad 0 \quad 495 \quad 0$ 0 Reduct Vol: 0 0 0 0 0 0 0 Reduced Vol: 459 0 0 0 0 0 0 0 0 495 0 0 Ω Ω 0 0 0 Final Vol.: 459 0 0 0 0 0 0 0 0 495 0 -----| Saturation Flow Module: Final Sat.: 3502 0 0 0 0 0 0 0 0 5187 0 -----| Capacity Analysis Module:

UC Berkeley LRDP EIR

Existing Conditions

AM Peak Hour

XXXXXX

XXXXXX

ApproachDel: xxxxxx xxxxx

ApproachLOS: *

Delay/Veh: 25.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.4 0.0 AdjDel/Veh: 25.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.4 0.0 DesignOueue: 13 0 0 0 0 0 0 0 0 12 0 EXISTING AM

Thu Jun 19, 2003 17:21:31 Page 46-1 UC Berkeley LRDP EIR

Existing Conditions AM Peak Hour

UC Berkeley LRDP EIR Existing Conditions

			Al	4 Peal	k Hour						
		Level (
*****	2000 HCM									****	*****
Intersection											
*****							****	*****	****	****	*****
Cycle (sec):	1	0.0		(Critica	l Vol.	/Cap.	(X):		0.4	56
				sec) A	Average	Delay	(sec	c/veh):		11	.5
Loss Time (so Optimal Cycl	e:	0		I	Level O	f Serv	rice:				В
******	*****	******	****	****	*****	*****	****	*****	****	****	*****
Approach:											
Movement:											
Control: Rights:	Jr.C.	lude	51	Tncli	ıde	51	.op 3.	ıde	5	Incl	
Min. Green:	0 1) ()	0	0	0	0	0	0	0	0	0
Lanes:	1 0 0	0 0	0 (0 0	0 0	0 (0	0 0	0 .	1 1	0 0
Volume Modul											
Base Vol:											0
Growth Adj:											
Initial Bse:											0
User Adj:											1.00
PHF Adj:											0.95
PHF Volume:	201) 0	0	0	0	0	0	0	104		
Reduct Vol: Reduced Vol:	201) 0	0	0	0	0	0	0	104	520	
PCE Adi:											
MLF Adj:											
Final Vol.:	201) 1.00	1.00	1.00	1.00	1.00	0.00	1.00	104	520	1.00
Saturation F	low Modul	e:									
Adjustment:											
	1.00 0.0										
Final Sat.:											
Capacity Ana									0 46	0 45	
Vol/Sat: Crit Moves:		x xxxx	XXXX	XXXX	XXXX	XXXX	xxxx	XXXX	****	0.45	XXXX
Delay/Veh:		n n n	0 0	0 0	0 0	0 0	0 0	0 0		11 A	0 0
Delay Adj:											
AdjDel/Veh:											
LOS by Move:								*	В		*
ApproachDel:	1.0	6		,,,,,,			XXXX		_	11.8	
Delay Adj:	1.0)	2	xxxx			XXXX			1.00	
Delay Adj: ApprAdjDel: LOS by Appr:	10.	6	X	xxxxx			XXXX			11.8	
LOS by Appr:	В			*			*			В	

	2000	HCM 4	-Way St	top Me	ethod	Computa (Base	Volume	e Ālte	ernativ	re)		
******	****	*****	****	****	****	*****	*****	*****	*****	*****	****	****
Intersection								*****	*****	****	****	****
Cycle (sec): 100												
Approach: Movement:	No:	rth Bo - T	und - R	Soi L ·	uth B	ound - R	Ea L -	ast Bo - T	ound - R	We L -	st Bo T	und - R
Control: Rights:	0 1 (top Si Inclu 0	gn de 0	St 0	top S Incl 0 0	ign ude 0	St 0 0 (top Si Inclu 0	lgn ide 0	0 0 1	op Si Inclu 0 1	.gn ide 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	343 1.00 343 1.00 0.85 404 0 404 1.00 1.00	Count	Date: 0 1.00 0 1.00 0.85 0 0 1.00 1.00 1.00 0	13 No 0 1.00 0 1.00 0.85 0 0 1.00 1.00	0 20 20 0 1.00 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0	02 << 1.00 1.00 0.85 0 0.85 0 0 1.00 1.00	7:00 AN 0 1.00 0 1.00 0 0 0 0 0 0 0 1.00 0 0 0	M - 9: 0 1.00 0 1.00 0.85 0 0 0 1.00	1.00 AM 0 1.00 0 1.00 0.85 0 0 1.00 1.00	34 1.00 34 1.00 0.85 40 0 40 1.00 1.00	203 1.00 203 1.00 0.85 239 0 239 1.00 1.00 239	0 1.00 0 1.00 0.85 0 0 0 1.00 1.00
Saturation F. Adjustment: Lanes: Final Sat.:	1.00 1.00 1.00 738	0.00 0.00 0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 0.29 177	1.00 1.71 1073	1.00
Capacity Ana Vol/Sat: Crit Moves:	0.55			xxxx	xxxx	xxxx	xxxx	xxxx	xxxx	0.23	0.22	xxxx
Delay/Veh: Delay Adj: AdjDel/Veh: LOS by Move:	13.2 1.00 13.2 B	1.00	0.0 1.00 0.0 *	1.00	1.00	1.00	0.0	1.00	0.0 1.00 0.0 *		1.00 9.7 A	0.0 1.00 0.0 *
ApprAdjDel: LOS by Appr:		1.00 13.2 B		X	***** ****** *		X	***** *****			9.7 1.00 9.7 A	

0 0 0

0 0

UC Berkeley LRDP EIR

Existing Conditions AM Peak Hour

	Leve:	l Of	Service	Computa	ation R	eport	
2000	HCM 4-Way	y St	op Method	l (Base	Volume	Alternative)

Intersection #43 Bancroft Way / Piedmont Avenue **************** Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): 28.2
Optimal Cycle: 0 Level Of Service: D

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----| Control: Stop Sign Stop Sign Stop Sign Stop Sign Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 _____| Volume Module: >> Count Date: 13 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 131 553 0 0 344 123 0 0 0 0 0 Initial Bse: 131 553 0 0 344 123 0 0 0 0 0 PHF Volume: 144 608 0 0 378 135 0 0 0 0 0 0 Reduct Vol: 0 0 0 0 0 0 Ω Ω 0

Final Vol.: 144 608 0 0 378 135 0 0 0 0 0 -----| Saturation Flow Module: Lanes: 0.19 0.81 0.00 0.00 0.74 0.26 0.00 0.00 0.00 0.00 0.00 0.00 Final Sat.: 155 654 0 0 587 210 0 0 0 0 0

-----|----|-----|------| Capacity Analysis Module:

Reduced Vol: 144 608 0 0 378 135

Vol/Sat: 0.93 0.93 xxxx xxxx 0.64 0.64 xxxx xxxx xxxx xxxx xxxx xxxx Crit Moves: **** **** Delay/Veh: 37.2 37.2 0.0 0.0 15.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 AdjDel/Veh: 37.2 37.2 0.0 0.0 15.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0

Intersection #44 Durant Avenue / Shattuck Avenue

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report

2000 HCM Operations Method (Base Volume Alternative)

****************** Cycle (sec): 65 Critical Vol./Cap. (X): 0.472 11.3 Loss Time (sec): 12 (Y+R = 5 sec) Average Delay (sec/veh): Optimal Cycle: 53 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|

Control: Permitted Prot+Permit Permitted Permitted Rights: Include Include Include Include Min. Green: 19 19 19 5 19 19 17 17 17 0 0 0 -----| Volume Module: >> Count Date: 14 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 55 943 136 67 886 8 9 70 35 0 0 Initial Bse: 55 943 136 67 886 8 9 70 35 0 0 PHF Volume: 58 993 143 71 933 8 9 74 37 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 58 993 143 71 933 8 9 74 Ω Ω 37 Final Vol.: 58 993 143 71 933 8 9 74 37 0 0 -----| Saturation Flow Module:

Adjustment: 1.00 0.95 0.95 1.00 0.95 0.95 0.95 0.95 0.95 1.00 1.00 1.00 Lanes: 1.00 1.75 0.25 1.00 1.98 0.02 0.16 1.23 0.61 0.00 0.00 0.00 Final Sat.: 1900 3155 455 1900 3578 32 285 2217 1108 0 0 -----| Capacity Analysis Module: Vol/Sat: 0.03 0.31 0.31 0.04 0.26 0.26 0.03 0.03 0.03 0.00 0.00 0.00 Crit Moves: **** ****

Green/Cycle: 0.37 0.37 0.37 0.55 0.55 0.55 0.27 0.27 0.27 0.00 0.00 0.00 Volume/Cap: 0.08 0.85 0.85 0.07 0.48 0.48 0.12 0.12 0.12 0.00 0.00 0.00 Delay/Veh: 8.4 18.5 18.5 1.5 2.6 2.6 18.2 18.2 18.2 0.0 0.0 0.0 AdjDel/Veh: 8.4 18.5 18.5 1.5 2.6 2.6 18.2 18.2 18.2 0.0 0.0 0.0 DesignOueue: 1 24 3 1 16 0 0 2 1 0 0

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)												

Cycle (sec): 65												
Approach: Movement:	L	- T	- R	L	- T	- R	L	- T	- R	L -		- R
Control: Rights: Min. Green: Lanes:	0	Permit Inclu 0 0 0	ited ide 0	21	Permit Inclu 21 1 1	ted ide 0	22 1	Permit Inclu 22 0 1	ited ide 22 1 0	0 0 0	ermi Incl 0	tted ude 0
Base Vol:	0		0	459				262		0	0	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00		1.00
Initial Bse:	0	0	0	459	656	0	123	262	27	0	0	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:				0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume: Reduct Vol:	0	0	0	494	705	0	132	282		0	0	0
Reduct Vol:	0	0	0	0	0	0		0		0	0	0
Reduced Vol:	0	0	0	494	705	0	132	282	29	0	0	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00			
Final Vol.:										0		
Saturation F												
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	1.00	1.00	1.00	0.95	0.95	1.00	0.99	0.94	0.94	1.00	1.00	1.00
Lanes:	0.00	0.00	0.00	1.23	1.77	0.00	1.00	1.81	0.19	0.00	0.00	0.00
Final Sat.:										0		0
Capacity Ana												
Vol/Sat:	0.00	0.00	0.00	0.22			0.07		0.09	0.00	0.00	0.00
Crit Moves:					***			****				
Green/Cycle:								0.35	0.35	0.00		0.00
Volume/Cap:			0.00					0.25	0.25	0.00		0.00
Delay/Veh:			0.0					15.7		0.0		0.0
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

______ UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report

EXISTING AM Thu Jun 19, 2003 17:21:31 Page 50-1

2000 HCM Operations Method (Base Volume Alternative) Intersection #46 Durant Avenue / Telegraph Avenue ************************ Cycle (sec): 65 Critical Vol./Cap. (X): 0.257 10.7 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 43 Level Of Service: В Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Permitted Permitted Permitted Include Include Include Include Rights: Min. Green: 0 18 18 0 0 0 17 17 0 0 0 0 Lanes: 0 0 1 1 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 -----| Volume Module: >> Count Date: 19 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 362 86 0 0 0 73 387 0 0 0 Initial Bse: 0 362 86 0 0 0 73 387 0 0 0 Final Vol.: 0 377 90 0 0 0 76 403 0 0 0 -----| Saturation Flow Module: Lanes: 0.00 1.62 0.38 0.00 0.00 0.00 0.48 2.52 0.00 0.00 0.00 0.00 Final Sat.: 0 2832 673 0 0 0 823 4364 0 0 0 -----| Capacity Analysis Module: Crit Moves: **** Delay/Veh: 0.0 2.2 2.2 0.0 0.0 18.9 18.9 0.0 0.0 0.0 0.0 AdjDel/Veh: 0.0 2.2 2.2 0.0 0.0 0.0 18.9 18.9 0.0 0.0 0.0 0.0 DesignQueue: 0 5 1 0 0 0 2 11 0 0 0

AdjDel/Veh: 0.0 0.0 0.0 4.2 4.2 0.0 15.7 15.7 15.7 0.0 0.0 0.0 DesignQueue: 0 0 0 7 11 0 3 7 1 0 0

UC Berkeley LRDP EIR

Existing Conditions

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #47 Durant Avenue / College Avenue ************************ Cycle (sec): 65 Critical Vol./Cap. (X): 0.314 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 9.2
Optimal Cycle: 42 Level Of Service: A Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 18 18 0 0 0 16 16 16 0 0 0 Lanes: 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 -----| Volume Module: >> Count Date: 19 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 213 66 13 23 0 64 228 87 0 0 0 Initial Bse: 0 213 66 13 23 0 64 228 87 0 0 Final Vol.: 0 242 75 15 26 0 73 259 99 0 0 _____| Saturation Flow Module: Adjustment: 1.00 0.97 0.97 1.00 1.00 1.00 0.96 0.91 0.91 1.00 1.00 1.00 Lanes: 0.00 0.76 0.24 0.36 0.64 0.00 1.00 1.45 0.55 0.00 0.00 0.00 Final Sat.: 0 1404 435 686 1214 0 1822 2506 956 0 0 -----| Capacity Analysis Module: Vol/Sat: 0.00 0.17 0.17 0.02 0.02 0.00 0.04 0.10 0.10 0.00 0.00 0.00 Crit Moves: **** Green/Cycle: 0.00 0.52 0.52 0.52 0.00 0.43 0.43 0.43 0.00 0.00 0.00 Volume/Cap: 0.00 0.33 0.33 0.04 0.04 0.00 0.09 0.24 0.24 0.00 0.00 0.00 Delay/Veh: 0.0 7.6 7.6 7.7 7.7 0.0 9.9 10.7 10.7 0.0 0.0 0.0

AM Peak Hour Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative)

******	****	****	****	****	*****	****	****	****	*****	****	****	*****
Intersection	****	****	****	****	****	****	****					
Cycle (sec): Loss Time (sec) Optimal Cycle	Cycle (sec): 100											
Approach: Movement:	No	rth Bo	und	Soi	ıth Bo	ound	E	ast Bo	ound	W	est Bo	ound
Control: Rights: Min. Green: Lanes:	0 0	top Si Inclu 0 0	.gn ide 0	0 0	top Si Inclu 0	gn ide 0	0 1	top Si Inclu 0	ign ude 0 0 1	0	top S: Inclu 0	ign ide 0 0 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: Final Vol.:	0 1.00 0 1.00 0.94 0 0 0 1.00	Count 489 1.00 489 1.00 0.94 520 0 520 1.00	Date: 0 1.00 0 1.00 0.94 0 0 1.00 1.00	20 No 0 1.00 0 1.00 0.94 0 0 0	345 1.00 345 1.00 345 1.00 0.94 367 0 367 1.00	02 << 7 0 1.00 0 1.00 0.94 0 0 0 1.00 1.00	158 1.00 158 1.00 0.94 168 0 168 1.00	M - 99 0 1.00 0 1.00 0.94 0 0 0 1.00	:00 AM 86 1.00 86 1.00 0.94 91 1.00 1.00	0 1.00 0 1.00 0.94 0 0 0	0 1.00 0 1.00 0.94 0 0 0	0 1.00 0 1.00 0.94 0 0 0
Saturation F. Adjustment: Lanes: Final Sat.:	1.00 1.00 0.00	1.00 1.00 1.00 683	1.00	1.00	1.00 1.00 652	1.00	1.00 1.00 485	1.00	1.00 1.00 576	1.00	1.00 0.00 0	1.00
Capacity Ana. Vol/Sat: Crit Moves: Delay/Veh: Delay Adj: AdjDel/Veh: LOS by Move: ApproachDel: Delay Adj: ApprAdjDel: LOS by Appr: ***********************************	0.0 1.00 0.0 *	Modul 0.76 **** 22.1 1.00 22.1 C 22.1 1.00 22.1	0.0 1.00 0.0 *	0.0 1.00 0.0 *	0.56 **** 14.7 1.00 14.7 B 14.7 1.00 14.7	0.0 1.00 0.0 *	0.35 **** 13.1 1.00 13.1 B	0.0 1.00 0.0 * 11.9 1.00 11.9	0.16 9.5 1.00 9.5 A	0.0 1.00 0.0 *	0.0 1.00 0.0 ***************************	0.0 1.00 0.0 *

AdjDel/Veh: 0.0 7.6 7.6 7.7 7.7 0.0 9.9 10.7 10.7 0.0 0.0 0.0 DesignQueue: 0 4 1 0 0 0 2 5 2 0 0 0 UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report									
2000 HCM Operations Method (Base Volume Alternative)									

	1y / Shaccuck Avenue								
Cycle (sec): 65									
Loss Time (sec): 8 (Y+R	R = 4 sec) Average Delay (sec/veh): 4.8								
Optimal Cycle: 46	Level Of Service: A								

Approach: North Bound									
Movement: L - T - R	L - T - R L - T - R L - T - R								
	Permitted Permitted Permitted								
Rights: Include	Include Include Include								
Min. Green: 16 16 16									
Lanes: 1 0 1 1 0	1 0 1 1 0 0 0 1! 0 0 0 0 1! 0 0								
	-								
	e: 14 Nov 2002 << 7:00 AM - 9:00 AM								
Base Vol: 42 1070 96									
Growth Adj: 1.00 1.00 1.00									
Initial Bse: 42 1070 96									
User Adj: 1.00 1.00 1.00									
PHF Adj: 0.96 0.96 0.96 PHF Volume: 44 1115 100									
PHF Volume: 44 1115 100 Reduct Vol: 0 0									
Reduced Vol: 44 1115 100									
PCE Adj: 1.00 1.00 1.00									
MLF Adj: 1.00 1.00 1.00									
Final Vol.: 44 1115 100									
	-								
Saturation Flow Module:									
Sat/Lane: 1900 1900 1900									
Adjustment: 0.31 0.94 0.94									
Lanes: 1.00 1.84 0.16									
Final Sat.: 587 3273 294	4 407 3522 77 187 918 653 731 330 460								
Capacity Analysis Module:	.								
	4 0.05 0.26 0.26 0.07 0.07 0.07 0.09 0.09								
Crit Moves: ****	****								
Green/Cycle: 0.53 0.53 0.53	3 0.53 0.53 0.53 0.42 0.42 0.42 0.42 0.42 0.42								
Volume/Cap: 0.14 0.64 0.64									
Delay/Veh: 2.8 4.4 4.4									
User DelAdj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00								
AdjDel/Veh: 2.8 4.4 4.4									
	2 0 16 0 0 1 1 1 1 1								

AM Peak Hour Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative)

UC Berkeley LRDP EIR

Existing Conditions

******	****	*****	****	******************								*****
Intersection	Intersection #50 Channing Way / Fulton Street											
Cycle (sec).		100)		(ritica	1 Vol	/Can	(X) ·		0.51	2.8
Cycle (sec): Loss Time (sec) Optimal Cycle	٠ (٥ م	100) (V+D	= 1	eac) 1	Aversce	Dela	, (cap	· (21) ·		12	3
Ontimal Cual	o.) (1:17		3CC) 2	iourol O	of Corr	71.00.	c/ veii/ •		12	. J
******	 *****		, -+++++	****		******	*****	*****	*****	****	*****	*****
Approach:												
Movement:	. н.	- T	- K	ъ.	- T	- K	ъ.	- T	- R	ь.	- T	- K
~												
Control: Rights: Min. Green: Lanes:	S	top Si	.gn	Si	top S:	ıgn	Si	top S:	ıgn	S	top S:	ıgn
Rights:		Inclu	ide .		Incli	ıde		Incli	ude _		Incli	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	0	0 0	0 0	0 :	1 0	1 0	0 (0	1 0	0	1 0	0 0
Volume Modul												
Base Vol:												
Growth Adj:											1.00	
Initial Bse:												
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:												
PHF Volume: Reduct Vol:	0	0	0	91	572	54	0	139	21	7	76	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:												
PCE Adj: MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	0	0	0	91	572	54	0	139	21	7	76	0
Saturation F	low M	odule:										
Adjustment:												
Lanes:	0.00	0.00	0.00	0.25	1.60	0.15	0.00	0.87	0.13	0.09	0.91	0.00
Final Sat.:	0	0	0	171	1108	106	0	559	85	54	560	0
Capacity Ana												
Vol/Sat:	XXXX	XXXX	XXXX		0.52	0.51	XXXX	0.25				
Crit Moves:				****					****			
Delay/Veh: Delay Adj:	0.0	0.0	0.0	13.6	13.1	12.7	0.0	10.0	10.0	9.4	9.4	0.0
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	0.0	0.0	13.6	13.1	12.7	0.0	10.0	10.0	9.4	9.4	0.0
LOS by Move: ApproachDel: Delay Adj: ApprAdjDel: LOS by Appr:	*	*	*	B	В	В	*	В	B	A	A	*
ApproachDel:	X	XXXXX			13.1			10.0			9.4	
Delay Adj:		XXXXX			1.00			1.00			1.00	
ApprAdjDel:	X	XXXXX			13.1			10.0			9.4	
LOS by Appr:		*			В			В			A	
*****	****	*****	****	****	****	*****	****	****	*****	****	****	*****

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report									
2000 HCM Operations Method (Base Volume Alternative)									
Intersection #51 Channing Way / Telegraph Avenue									
Loss Time (sec): 8 (Y+R	Critical Vol./Cap. (X): 0.338 = 4 sec) Average Delay (sec/veh): 9.0 Level Of Service: A								
Optimal Cycle: 43	Level Of Service: A								

	South Bound East Bound West Bound								
Movement: L - T - R									
·									
Control: Permitted Rights: Include	Permitted Permitted Permitted Include Include Include								
Min. Green: 18 18 18									
Lanes: 0 1 0 1 0									
	: 19 Nov 2002 << 7:00-9:00 AM (WB thru adjusted due								
Base Vol: 56 423 79	0 0 0 16 179 0 0 98 9								
Growth Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00								
Initial Bse: 56 423 79 User Adj: 1.00 1.00 1.00	0 0 0 16 179 0 0 98 9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00								
PHF Adj: 0.90 0.90 0.90	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90								
PHF Volume: 62 470 88	0 0 0 18 199 0 0 109 10								
Reduct Vol: 0 0 0	0 0 0 0 0 0 0 0								
Reduced Vol: 62 470 88	0 0 0 18 199 0 0 109 10								
PCE Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00								
MLF Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00								
Final Vol.: 62 470 88	0 0 0 18 199 0 0 109 10								
Saturation Flow Module:									
Sat/Lane: 1900 1900 1900	1900 1900 1900 1900 1900 1900 1900 1900								
Adjustment: 0.91 0.91 0.91	1.00 1.00 1.00 0.98 0.98 1.00 1.00 0.99 0.99								
Lanes: 0.20 1.52 0.28	0.00 0.00 0.00 0.08 0.92 0.00 0.00 0.92 0.08								
Final Sat.: 347 2623 490	0 0 0 152 1702 0 0 1721 158								
Capacity Analysis Module: Vol/Sat: 0.18 0.18 0.18	0.00 0.00 0.00 0.12 0.12 0.00 0.00 0.06 0.06								
VOI/Sal: 0.18 0.18 0.18 Crit Moves: ****	****								
Green/Cycle: 0.55 0.55 0.55	0.00 0.00 0.00 0.35 0.35 0.00 0.00 0.35 0.35								
Volume/Cap: 0.33 0.33 0.33	0.00 0.00 0.00 0.33 0.33 0.00 0.00 0.18 0.18								
Delay/Veh: 5.6 5.6 5.6	0.0 0.0 0.0 15.9 15.9 0.0 0.0 14.8 14.8								
User DelAdj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00								
AdjDel/Veh: 5.6 5.6 5.6	0.0 0.0 0.0 15.9 15.9 0.0 0.0 14.8 14.8								
DesignQueue: 1 8 1	0 0 0 0 5 0 0 3 0								

Existing Conditions AM Peak Hour Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #52 Channing Way / College Avenue ****************** Cycle (sec): 65 Critical Vol./Cap. (X): 0.474 16.2 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 43 Level Of Service: В Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Permitted Permitted Permitted Include Include Include Include Rights: Min. Green: 18 18 18 18 18 18 0 0 0 17 17 17 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 -----| Volume Module: >> Count Date: 19 Nov 2002 << 7:00 AM - 9:00 AM (WB thru, NB righ Base Vol: 26 256 22 6 92 2 21 76 31 88 150 43 Initial Bse: 26 256 22 6 92 2 21 76 31 88 150 43 PHF Volume: 31 301 26 7 108 2 25 89 36 104 176 51 0 0 0 0 0 0 0 2 25 89 36 104 176 51 Reduct Vol: 0 0 0 0 0 0 Reduced Vol: 31 301 26 7 108 Final Vol.: 31 301 26 7 108 2 25 89 36 104 176 51 -----| Saturation Flow Module: Adjustment: 0.96 0.96 0.96 0.98 0.98 0.98 0.97 0.97 0.97 0.79 0.79 Lanes: 0.09 0.84 0.07 0.06 0.92 0.02 0.16 0.60 0.24 0.31 0.54 0.15 Final Sat.: 157 1543 133 112 1713 37 301 1091 445 470 801 230 _____| Capacity Analysis Module: Vol/Sat: 0.20 0.20 0.20 0.06 0.06 0.06 0.08 0.08 0.08 0.22 0.22 0.22 Crit Moves: ****

UC Berkeley LRDP EIR

Page 56-1

EXISTING AM Thu Jun 19, 2003 17:21:32

Green/Cycle: 0.65 0.65 0.65 0.65 0.65 0.65 0.28 0.28 0.28 0.28 0.28 0.28 Volume/Cap: 0.30 0.30 0.30 0.10 0.10 0.10 0.29 0.29 0.29 0.77 0.77 Delay/Veh: 2.8 2.8 2.8 2.0 2.0 19.5 19.5 19.5 34.1 34.1 34.1 AdjDel/Veh: 2.8 2.8 2.8 2.0 2.0 19.5 19.5 19.5 34.1 34.1 34.1

DesignOueue: 0 4 0 0 1 0 1 2 1 3 5 1

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #53 Haste Street / Shattuck Avenue ************************ Cycle (sec): 65 Critical Vol./Cap. (X): 0.563 Loss Time (sec): 8 (Y+R = 6 sec) Average Delay (sec/veh): 50.9
Optimal Cycle: 47 Level Of Service: D ******************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Permitted Permitted Permitted Include Include Include Rights: Min. Green: 21 21 0 0 21 21 0 0 0 18 18 18 Lanes: 1 0 2 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 _____| Volume Module: >> Count Date: 14 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 66 1117 0 0 903 46 0 0 185 276 75 Initial Bse: 66 1117 0 0 903 46 0 0 185 276 75 PHF Volume: 70 1188 0 0 961 49 0 0 0 197 294 80 Reduct Vol: 0 0 0 0 0 0 0 Reduced Vol: 70 1188 0 0 961 49 0 0 0 Ω 0 197 294 0 0 Final Vol.: 70 1188 0 0 961 49 0 0 0 197 294 80 Saturation Flow Module: Adjustment: 0.21 0.95 1.00 1.00 0.94 0.94 1.00 1.00 1.00 0.91 0.91 Final Sat.: 401 3610 0 0 3411 174 0 0 0 1194 1782 484 _____| Capacity Analysis Module: Vol/Sat: 0.18 0.33 0.00 0.00 0.28 0.28 0.00 0.00 0.00 0.16 0.16 0.16 Crit Moves: **** Volume/Cap: 0.60 1.13 0.00 0.00 0.96 0.96 0.00 0.00 0.00 0.25 0.25

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report

2000 HCM Operations Method (Base Volume Alternative) Intersection #54 Haste Street / Fulton Street ****************** 13.8 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 53 Level Of Service: В Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 25 25 0 0 0 20 20 0 Lanes: 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 -----| Volume Module: >> Count Date: 14 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 0 0 0 433 145 0 0 0 23 380 0 Initial Bse: 0 0 0 0 433 145 0 0 0 23 380 0 PHF Volume: 0 0 0 0 476 159 0 0 0 25 418 0 Reduct Vol: 0 0 0 0 0 0 0 Reduced Vol: 0 0 0 0 476 159 Ω Ω Ω 0 0 0 25 418 Final Vol.: 0 0 0 0 476 159 0 0 0 25 418 0 ______ Saturation Flow Module: Final Sat.: 0 0 0 0 2602 871 0 0 0 206 3404 0 -----| Capacity Analysis Module: Crit Moves: **** Delay/Veh: 0.0 0.0 0.0 0.0 5.1 5.1 0.0 0.0 0.0 26.5 26.5 0.0 AdjDel/Veh: 0.0 0.0 0.0 0.0 5.1 5.1 0.0 0.0 0.0 26.5 26.5 0.0

Delay/Veh: 34.9 85.9 0.0 0.0 36.7 36.7 0.0 0.0 0.0 4.9 4.9 4.9

AdjDel/Veh: 34.9 85.9 0.0 0.0 36.7 36.7 0.0 0.0 4.9 4.9 4.9

DesignOueue: 2 33 0 0 26 1 0 0 3 4 1

DesignOueue: 0 0 0 0 7 2 0 0 1 14 0

EXISTING AM Thu Jun 19, 2003 17:21:32 Page 60-1

UC Berkeley LRDP EIR UC Berkeley LRDP EIR Existing Conditions Existing Conditions AM Peak Hour AM Peak Hour

Level Of Service Computation Report	Level Of Service Computation Report						
2000 HCM Operations Method (Base Volume Alternative)	2000 HCM Operations Method (Base Volume Alternative)						

Intersection #55 Haste Street / Telegraph Avenue	Intersection #56 Haste Street / College Avenue ***********************************						
Cycle (sec): 65 Critical Vol./Cap. (X): 0.381	Cycle (sec): 65 Critical Vol./Cap. (X): 0.467						
Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 15.9	Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 8.3						
Optimal Cycle: 40 Level Of Service: B	Optimal Cycle: 40 Level Of Service: A						
Approach: North Bound South Bound East Bound West Bound	Approach: North Bound South Bound East Bound West Bound						
Movement: L - T - R L - T - R L - T - R	Movement: L - T - R L - T - R L - T - R						
	Control: Permitted Permitted Permitted Permitted						
Rights: Include Include Include Include	Rights: Include Include Include Include						
Min. Green: 16 16 0 0 0 0 0 0 0 16 16	Min. Green: 16 16 0 0 16 16 0 0 0 16 16 16						
Lanes: 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0	Lanes: 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0						
	 Volume Module: >> Count Date: 19 Nov 2002 << 7:00 AM - 9:00 AM						
Base Vol: 216 520 0 0 0 0 0 0 0 334 34	Base Vol: 167 267 0 0 115 69 0 0 0 48 223 21						
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						
Initial Bse: 216 520 0 0 0 0 0 0 0 334 34	Initial Bse: 167 267 0 0 115 69 0 0 0 48 223 21						
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						
PHF Adj: 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	PHF Adj: 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9						
PHF Volume: 235 565 0 0 0 0 0 0 0 363 37	PHF Volume: 186 297 0 0 128 77 0 0 0 53 248 23						
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0	Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0						
Reduced Vol: 235 565 0 0 0 0 0 0 0 363 37	Reduced Vol: 186 297 0 0 128 77 0 0 0 53 248 23						
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						
Final Vol.: 235 565 0 0 0 0 0 0 0 363 37	Final Vol.: 186 297 0 0 128 77 0 0 0 53 248 23						
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190						
Adjustment: 0.95 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.94	Adjustment: 0.80 0.80 1.00 1.00 0.95 0.95 1.00 1.00 1.00 0.93 0.93 0.93						
Lanes: 0.59 1.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Lanes: 0.38 0.62 0.00 0.00 0.62 0.38 0.00 0.00 0.00 0.33 1.53 0.14						
Final Sat.: 1059 2551 0 0 0 0 0 0 0 0 3231 329	Final Sat.: 585 935 0 0 1127 676 0 0 0 580 2697 254						
Capacity Analysis Module:	Capacity Analysis Module:						
Vol/Sat: 0.22 0.22 0.00 0.00 0.00 0.00 0.00 0.0	Vol/Sat: 0.32 0.32 0.00 0.00 0.11 0.11 0.00 0.00 0.00 0.0						
Crit Moves: ****	Crit Moves: ****						
Green/Cycle: 0.34 0.34 0.34 0.00 0.00 0.00 0.00 0.00	Green/Cycle: 0.68 0.68 0.00 0.00 0.68 0.68 0.00 0.00						
Volume/Cap: 0.65 0.65 0.00 0.00 0.00 0.00 0.00 0.00	Volume/Cap: 0.47 0.47 0.00 0.00 0.17 0.17 0.00 0.00 0.00 0.34 0.34 0.34						
Delay/Veh: 19.7 19.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.2 8.2	Delay/Veh: 3.3 3.3 0.0 0.0 1.6 1.6 0.0 0.0 0.0 20.1 20.1 20.1						
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						
AdjDel/Veh: 19.7 19.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.2 8.2	AdjDel/Veh: 3.3 3.3 0.0 0.0 1.6 1.6 0.0 0.0 0.0 20.1 20.1 20.1						
DesignQueue: 6 14 0 0 0 0 0 0 0 0 6 1	DesignQueue: 2 4 0 0 2 1 0 0 0 1 7 1						
*****************	*******************						

Existing Conditions

EXISTING AM Thu Jun 19, 2003 17:21:32 Page 62-1

Level Of Service Computation Report

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

AM	Peak	Hour

		Level Of Se	ervice C	 omputa	tion Rep	 ort		
*****		Operations						*****
Intersection	#57 Dwigh	t Way / Mai	rtin Lut	her Ki	ng Way			
Cycle (sec): Loss Time (sec) Optimal Cycle	7 ec): 1 e: 5	0 2 (Y+R = 4	C 1 sec) A L	ritica verage evel O	l Vol./C Delay (f Service	ap. (X): sec/veh): e:	0.7	16 .2 B
Approach: Movement:	L - T	- R L	South Bo - T	- R	L - '	Bound T - R	West B	- R
Control: Rights: Min. Green: Lanes:	Permi Incl 18 18 0 1 0	tted ude 18 1	Permit Inclu 18 18 1 0	ted de 18 1 0	Peri In 21 0 1	mitted clude 21 21 0 1 0	Permi: Incl: 0 0 0 0 0 0 0	tted ude 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	e: >> Coun 62 690 1.00 1.00 62 690 1.00 1.00 0.95 0.95 65 726 0 0 65 726 1.00 1.00 65 726	t Date: 5 I 66 8 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	Dec 2002 38 868 00 1.00 38 868 00 1.00 95 0.95 0	< <pre><< 7: 163 1.00 163 1.00 0.95 172 0 172 1.00 1.00 172</pre>	00-9:00 1 68 4 1.00 1. 68 4 1.00 1. 0.95 0. 72 4 0 72 4 1.00 1. 1.00 1. 72 4	AM 19 83 000 1.00 19 83 000 1.00 95 0.95 41 87 0 0 0 41 87 000 1.00 001 1.00 41 87	0 0 1.00 1.00 0 0 1.00 1.00 0.95 0.95 0 0 0 0 1.00 1.00 1.00 1.00 0 0 1	0 1.00 0 1.00 0.95 0 0 1.00 1.00
Lanes: Final Sat.:	0.15 1.69 207 2308	0.16 0.1 221 22	16 1.55 21 2177	0.29	0.24 1. 412 25	47 0.29 38 503	0.00 0.00	0.00
Capacity Anal Vol/Sat: Crit Moves: Green/Cycle:	lysis Modu 0.31 0.31	le: 0.31 0.4	12 0.42 ****	0.42	0.17 0	17 0.17 **	0.00 0.00	0.00
Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	0.71 0.71 17.0 17.0 1.00 1.00 17.0 17.0 1 17	0.71 0.7 17.0 9 1.00 1.0 17.0 9	72 0.72 .0 9.0 .0 1.00 .0 9.0 2 16	0.72 9.0 1.00 9.0	0.52 0. 20.3 20 1.00 1. 20.3 20	52 0.52 .3 20.3 00 1.00 .3 20.3 12 2	0.00 0.00 0.00 0.0 1.00 1.00 0.0 0.0 0 0	0.00 0.0 1.00 0.0

	2000	HCM	Operations	Method	(Base	Volume	Alternative)
*****	***	****	*****	*****	*****	*****	*****	***
ntersection	#58	Dwigh	nt Way / Sha	attuck A	Avenue			

Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e:	65 12 66 ****	(Y+R	= 5 s	sec) <i>I</i> *****	Critica Average Level C	l Vol	./Cap y (se vice: ****	. (X): c/veh):	****	0.74	40 .3 B *****
Approach: Movement:	No:	rth Bo - T	und - R	Sou L -	uth Bo - T	ound - R	Ea L -	ast Bo - T	ound - R	W.	est Bo - T	ound - R
Control: Rights: Min. Green:	0	Permit Inclu 17	ted de 17	Pro 20	ot+Per Inclu 20	rmit ide 0	17	Permi Incl 17	tted ude 17	0	Permit Inclu 0	tted ude 0
Lanes:												
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	0 1.00 0 1.00 0 0.96 0 0 0 1.00	Count 1094 1.00 1094 1.00 0.96 1140 0 1140 1.00	Date: 113 1.00 113 1.00 0.96 118 0 118 1.00 1.00	14 No 95 1.00 95 1.00 0.96 99 0 99	989 1.00 989 1.00 0.96 1030 0 1030 1.00	02 << 7 0 1.00 0 1.00 0.96 0 0 1.00 1.00	:00 AM 66 1.00 66 1.00 0.96 69 0	M - 9 420 1.00 420 1.00 0.96 438 0 438 1.00	151 1.00 151 1.00 0.96 157 0 157 1.00 1.00	0 1.00 0 1.00 0.96 0 0	0 1.00 0 1.00 0.96 0 0 0	0 1.00 0 1.00 0.96 0 0
Saturation Fl												
Sat/Lane: Adjustment: Lanes: Final Sat.:	1900 1.00 0.00 0	1900 0.94 1.81 3226	1900 0.94 0.19 333	0.95 1.00 1805	0.95 2.00 3610	0.95 0.00 0	0.88 0.21 348	0.88 1.32 2212	0.88 0.47 795	1.00 0.00 0		1.00
Capacity Anal Vol/Sat: Crit Moves:	Lysis 0.00	Modul 0.35	e: 0.35						0.20			
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignOueue:	0.00 0.0 1.00 0.0	0.75 9.1 1.00 9.1	0.75 9.1 1.00	0.08 4.3 1.00 4.3	0.44 0.6 1.00 0.6	0.00 0.0 1.00 0.0	28.5 1.00 28.5	0.76 28.5 1.00	0.76 28.5 1.00 28.5	0.00	0.0 1.00 0.0	0.00

Capacity Analysis Module:

Crit Moves: ****

EXISTING AM Thu Jun 19, 2003 17:21:32 Page 64-1

UC Berkeley LRDP EIR

Existing Conditions

AM Peak Hour

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

				1A	M Peal	K Hour						
						Computa						
*****	2000	HCM C	perati	ons Me	ethod	(Base	Volume	e Alte	ernativ	e) *****		
Intersection												
*******							****	*****	*****	****	*****	*****
Cycle (sec): Loss Time (s Optimal Cycl	ec).	, ((Y+R	= 4	sec) Z	lverace	Dela	./ Cap.	· (A) ·		11	3
Optimal Cycl	e·	4 5	, (111		JCC, 1 T	Level O	of Serv	zice:	., v C11 / •			B
*********	****	****	, :****	****	****	*****	****	****	*****	****	****	 :****
Approach:	No	rth Bo	und	Soi	uth Bo	ound	E	ast Bo	ound	We	est Bo	ound
Movement:												
	I											
Control:												
Rights: Min. Green:	0	0	21	21	0	0	0	16	16	0	0	0
Lanes:	0	0 0	0 1	2 (0 0	0 0	0) 1	1 0	0 (0 0	0 0
Volume Modul												
Base Vol:	0	0	12	449	0	0	0	620	6	0	0	0
Growth Adj:										1.00	1.00	1.00
Initial Bse:										0	0	0
Jser Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
PHF Adj:	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97		
PHF Volume:						0				-	-	0
Reduct Vol:										0		0
Reduced Vol:												
PCE Adj:												
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	0	0	12	463	0	0	0	639	6	0	0	0
Saturation F				1000	1000	1000	1000	1000	1000	1000	1000	1000
Sat/Lane:												
Adjustment:												
Lanes:												
Final Sat.:	. 0	U	1644	22/4	U	U	. 0	35/2	35	. 0	U	U
Capacity Ana												
Vol/Sat:				0.20	0 00	0 00	0 00	0 19	0 19	0 00	0 00	0 00
Crit Moves:	0.00	0.00	0.01	****	0.00	0.00	0.00	****	0.10	0.00	0.00	0.00
Green/Cycle:	0 00	0 00	0 37		0 00	0 00	0.00		0.58	0 00	0 00	0.00
Volume/Cap:												0.00
Delay/Veh:												
User DelAdj:									1.00		1.00	
Jain Jarah												

	2000		Level O							7e)		
*****											****	****
Intersection *******	#60 !	Dwight	Way /	Tele	graph ****	Avenue	****	****	*****	*****	****	*****
Cycle (sec):		65	5			Critica	l Vol	./Cap	. (X):		0.6	80
Loss Time (se	ec):	8	(Y+R :	= 4 :	sec) 1	Average	Dela	/ (se	c/veh):		16	. 2
Optimal Cycle	e:	43	3		I	Level 0	f Serv	/ice:				В
Approach:	No	rth Bo	ound	Soi	ath Bo	ound	Εa	ast B	ound	We	est B	ound
Movement:	L ·	- T	- R	L ·	- T	- R	L -	- T	- R	L -	- T	- R
Control:												
Rights:		Inclu	ıde		Incl	ıde		Incl	ude		Incl	ude
Min. Green:	0	15	15	0	0	0	17	17	17	0	0	0
Lanes:												
Volume Module												
Base Vol:			78									
Growth Adj:												
Initial Bse:						0						
User Adj:						1.00						
PHF Adj:	0.98	0.98	0.98			0.98						
PHF Volume:	0	711	80	0	0	0	67	489	577	0	0	0
Reduct Vol: Reduced Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	711	80	0	0	0	67	489	577	0	0	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:												
Saturation F												
Sat/Lane:												
Adjustment:									0.81			
Lanes:												
Final Sat.:												

AdjDel/Veh: 0.0 0.0 14.0 19.9 0.0 0.0 0.0 5.1 5.1 0.0 0.0 0.0 DesignQueue: 0 0 0 12 0 0 0 11 0 0 0

Vol/Sat: 0.00 0.22 0.22 0.00 0.00 0.00 0.36 0.36 0.37 0.00 0.00 0.00

Delay/Veh: 0.0 21.5 21.5 0.0 0.0 12.3 12.3 12.8 0.0 0.0 0.0

AdjDel/Veh: 0.0 21.5 21.5 0.0 0.0 0.0 12.3 12.3 12.8 0.0 0.0 0.0 DesignQueue: 0 18 2 0 0 0 1 8 10 0 0 Existing Conditions AM Peak Hour

EXISTING AM Thu Jun 19, 2003 17:21:32

Page 66-1

______ UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

	2000 HCM C				Computa (Base					
****										****
Intersection *******						****	****	*****	*****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle	65 ec): 8 e: 39	(Y+R	= 4 s	ec) A	Critica Average Level O	l Vol Delay f Serv	./Cap y (se vice:	(X): c/veh):	C	.439 10.4 B
Approach: Movement:	L - T	- R	L -	T	ound - R	L -	- T		L -	Bound T - R
Control: Rights: Min. Green: Lanes:	Permit Inclu 0 16 0 0 0	ted ide 16	16 0 1	ermit Inclu 16 0	ited ide 0 0 0	15 0 :	Perminus Inclu 15 1 0	tted ude 15 1 0	Per Ir 0 0 0	mitted clude 0 0 0 0
 Volume Module										
Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj:	0 365 1.00 1.00 0 365 1.00 1.00 0.96 0.96 0 380 0 0 0 380	51 1.00 51 1.00 0.96 53 0 53 1.00 1.00	1.00 10 1.00 0.96 10 0 1.00 1.00	150 1.00 0.96 156 0 156 1.00	1.00 0 1.00 0.96 0	68 1.00 0.96 71 0 71 1.00	352 1.00 352 1.00 0.96 367 0 367 1.00 1.00	85 1.00 85 1.00 0.96 89 0 89 1.00 1.00	0 1.00 1. 0 1.00 1. 0.96 0. 0 0 1.00 1.	0 0 00 1.00 96 0.96 0 0 0 0 0 0
									-	
Saturation F. Sat/Lane: Adjustment: Lanes: Final Sat.:	1900 1900 1.00 0.98 0.00 0.88 0 1639	1900 0.98 0.12 229	0.98 0.06 116	0.98 0.94 1737	1.00 0.00 0	0.90 0.27 462	1900 0.90 1.39 2392	0.90 0.34 578	-	00 1.00 00 0.00 0 0
Capacity Ana Vol/Sat: Crit Moves:	Lysis Modul	e:					0.15	0.15	0.00 0.	
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh:	0.00 0.60 0.00 0.39 0.0 4.9 1.00 1.00	0.60 0.39 4.9 1.00 4.9	0.15 3.6 1.00	0.15	0.00 0.00 0.0 1.00	0.45 17.2 1.00	0.34 0.45 17.2 1.00 17.2	0.34 0.45 17.2 1.00	0.00 0. 0.00 0. 0.0 0	00 0.00 .0 0.0 00 1.00

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #62 Dwight Way / Piedmont Avenue / Warring Street ******************** Cycle (sec): 65 Critical Vol./Cap. (X): 0.375 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 9.4 Optimal Cycle: 61 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Permitted Permitted Permitted Include Include Include Include Rights: Min. Green: 0 22 0 29 29 0 24 24 24 24 0 24 Lanes: 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1! 0 0 -----| Volume Module: 7:00 AM - 9:00 AM Base Vol: 0 583 0 8 324 0 91 143 238 42 0 48 Initial Bse: 0 583 0 8 324 0 91 143 238 42 0 48 PHF Volume: 0 620 0 9 345 0 97 152 253 45 0 51 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 0 620 0 9 345 0 97 152 253 0 45 0 51 Final Vol.: 0 620 0 9 345 0 97 152 253 45 0 51 -----| Saturation Flow Module: Adjustment: 1.00 0.95 0.95 0.89 0.89 1.00 0.73 1.00 0.85 0.79 1.00 0.79 Lanes: 0.00 2.00 0.00 0.05 1.95 0.00 1.00 1.00 1.00 0.47 0.00 0.53 Final Sat.: 0 3610 0 82 3319 0 1393 1900 1615 698 0 797 -----| Capacity Analysis Module: Vol/Sat: 0.00 0.17 0.00 0.10 0.10 0.00 0.07 0.08 0.16 0.06 0.00 0.06 Crit Moves: **** Volume/Cap: 0.00 0.34 0.00 0.21 0.21 0.00 0.16 0.18 0.35 0.14 0.00 0.14 Delay/Veh: 0.0 8.0 0.0 7.2 7.2 0.0 11.2 11.3 13.2 11.1 0.0 11.1

DesignQueue: 0 6 1 0 2 0 2 9 2 0 0

AdjDel/Veh: 0.0 8.0 0.0 7.2 7.2 0.0 11.2 11.3 13.2 11.1 0.0 11.1

DesignQueue: 0 12 0 0 6 0 2 3 5 1 0 1

AM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative)

Intersection #63 Dwight Avenue / Prospect Street ****************** Average Delay (sec/veh): 5.9 Worst Case Level Of Service: B ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Rights: Include Include Include Lanes: 0 0 0 0 0 0 0 1! 0 0 0 1 0 0 0 0 0 1 0

-----| Volume Module: >> Count Date: 20 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 0 0 14 0 109 246 72 0 0 53 15 Initial Bse: 0 0 0 14 0 109 246 72 0 0 53 15 PHF Volume: 0 0 0 15 0 114 256 75 0 0 55 16 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0

Final Vol.: 0 0 0 15 0 114 256 75 0 0 55 16 -----| Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.4 xxxx 6.2 4.1 xxxx xxxxx xxxx xxxx xxxxx ______|

Capacity Module:

Cnflict Vol: xxxx xxxx xxxxx 651 xxxx 63 71 xxxx xxxxx xxxx xxxx xxxx Potent Cap.: xxxx xxxx xxxx 437 xxxx 1007 1542 xxxx xxxxx xxxx xxxx xxxx Move Cap.: xxxx xxxxx xxxxx 372 xxxx 1007 1542 xxxx xxxxx xxxx xxxx xxxxx _____|

Level Of Service Module:

LOS by Move: * * * * * A * * * * Movement: LT - LTR - RT Shrd StpDel:xxxxx xxxx xxxxx xxxxx 10.0 xxxxx 7.8 xxxx xxxxx xxxxx xxxxx xxxxx Shared LOS: * * * B * A * * * *

EXISTING AM Thu Jun 19, 2003 17:21:32 Page 68-1

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report

Intersection #64 Adeline Street / Ward Avenue / Shattuck Avenue ************************* Cycle (sec): 65 Critical Vol./Cap. (X): 0.738

2000 HCM Operations Method (Base Volume Alternative)

Loss Time (sec): 8 (Y+R = 6 sec) Average Delay (sec/veh): 14.9Optimal Cycle: 52 Level Of Service: В Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Permitted Permitted Protected Permitted Rights: Include Include Include Include Min. Green: 0 25 25 0 25 25 19 0 19 0 0 Lanes: 0 0 0 1 0 0 0 2 0 1 2 0 0 0 1 0 0 0 0 -----| Volume Module: >> Count Date: 21 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 784 3 0 736 546 723 0 4 0 0 Initial Bse: 0 784 3 0 736 546 723 0 4 0 0 PHF Volume: 0 817 3 0 767 569 753 0 4 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 0 817 3 0 767 569 753 0 Ω Ω 4 Final Vol.: 0 817 3 0 767 569 753 0 4 0 0 -----| Saturation Flow Module: Adjustment: 1.00 1.00 1.00 1.00 0.95 0.85 0.92 1.00 0.85 1.00 1.00 1.00 Final Sat.: 0 1891 7 0 3610 1615 3502 0 1615 0 0 -----| Capacity Analysis Module: Vol/Sat: 0.00 0.43 0.43 0.00 0.21 0.35 0.22 0.00 0.00 0.00 0.00 0.00 Crit Moves: **** Green/Cycle: 0.00 0.58 0.58 0.00 0.58 0.29 0.00 0.29 0.00 0.00 0.00 Volume/Cap: 0.00 0.74 0.74 0.00 0.36 0.60 0.74 0.00 0.01 0.00 0.00 0.00 Delay/Veh: 0.0 14.3 14.3 0.0 7.6 11.5 25.4 0.0 16.4 0.0 0.0 0.0 AdjDel/Veh: 0.0 14.3 14.3 0.0 7.6 11.5 25.4 0.0 16.4 0.0 0.0 0.0 DesignOueue: 0 13 0 0 12 9 20 0 0 0 0

EXISTING AM

Thu Jun 19, 2003 17:21:32 UC Berkeley LRDP EIR

Existing Conditions AM Peak Hour

Page 70-1

UC Berkeley LRDP EIR Existing Conditions

				_	k Hour						
					Computa	tion I		 :			
******	2000 HCM										
							*****	*****	****	****	*****
Intersection ******									+++++	++++	+++++
	10									1.3	
Cycle (sec): Loss Time (s			- 1 -		Critica Average					150	
Optimal Cycl		0 (1+K	- 4 5		Average Level O					130	
******			*****						****	****	*****
Approach:	North B				ound					est B	
Movement:	L - T				- R			- R			- R
Control:	Stop S	ign	St	op S	ign .	St	top Si	ign	St	top S	ign
Rights:	Stop S Incl	ude			ude		Incl	_		Incl	_
Min. Green:	0 0		0	0	0	0	0	0	0	0	0
Lanes:	0 0 0	0 0	0 0	1!	0 0	0	1 0	0 0	0 (0 0	1 0
Volume Modul				ov 20				:00 AM			
Base Vol:	0 0	0	650	0	31	14	20	0	0	34	779
Growth Adj:	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:		0	650	0	31	14	20	0	0	34	779
User Adj:	1.00 1.00		1.00		1.00		1.00			1.00	
PHF Adj:	0.91 0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
PHF Volume:	0 0	0	714	0	34	15	22	0	0	37	
Reduct Vol:	0 0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0 0	0	714	0	34	15	22	0	0	37	
PCE Adj:	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00 1.00		1.00				1.00			1.00	
Final Vol.:	0 0	0	714	0	34	15		0	0	37	
Saturation F											
Adjustment:	1.00 1.00						1.00			1.00	
Lanes:	0.00 0.00				0.05						0.96
Final Sat.:	0 0	0	578	0	28		306	0	0	29	
Capacity Ana Vol/Sat:	4		1 24		1 24	0 07	0 07			1 20	1.30
. ,	xxxx xxxx	XXXX	1.24 ****	XXXX	1.∠4	0.07	0.07	XXXX	XXXX	1.30	1.30
Crit Moves: Delay/Veh:	0.0 0.0	0 0	139.9	0 0	120 0	10 5	10.5	0.0	0.0	165	164.8
	1.00 1.00		1.00				1.00	1.00		1.00	
4 2			139.9		139.9		10.5	0.0	0.0		164.8
AdjDel/Veh:	* *		139.9 F	*	139.9 F	10.5 B	10.5 B	U.U *	*		164.8 F
LOS by Move:			_	.39.9	1	В	10.5	^		164.8	_
ApproachDel: Delay Adj:	XXXXXX			1.00			1.00			1.00	
ApprAdjDel:	XXXXX			.39.9			10.5			164.8	
LOS by Appr:	*		J	.39.9 F			10.5 B			104.8 F	
TOS DA Wbbr:	^			Ľ			В			Ľ.	

AN FEAR HOUL												
Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ************************************												
<pre>Intersection #66 Derby Street / Claremont Blvd. ************************************</pre>												
Cycle (sec): 65												
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R												
Control: Split Phase Split Phase Permitted Permitted Rights: Include Include Include Include Min. Green: 18 0 18 0 0 0 35 35 35 0 Lanes: 0 0 1! 0												
Volume Module: >> Count Date: 20 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 5 0 64 0 0 0 0 0 665 12 52 813 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0												
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190												
Capacity Analysis Module: Vol/Sat: 0.04 0.00 0.04 0.00 0.00 0.00 0.00 0.37 0.37 0.47 0.47 0.00 Crit Moves: ****												
Green/Cycle: 0.28 0.00 0.28 0.00 0.00 0.00 0.00 0.00												

Existing Conditions AM Peak Hour

EXISTING AM Thu Jun 19, 2003 17:21:32

Page 72-1

______ UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)										

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R										
Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include Min. Green: 4 19 19 4 22 22 4 20 20 Lanes: 0 1 0 0										
Volume Module: >> Count Date: 5 Dec 2002 << 7:00-9:00 AM Base Vol: 62 162 54 54 193 224 433 915 306 111 663 25 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0										
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190										
Capacity Analysis Module: Vol/Sat: 0.13 0.13 0.13 0.18 0.18 0.18 0.25 0.37 0.37 0.06 0.20 0.20 Crit Moves: Green/Cycle: 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.44 0.44 0.44 0.24 0.24 0.24 Volume/Cap: 0.64 0.64 0.64 0.64 0.85 0.85 0.85 0.85 0.85 0.85 0.27 0.85 0.85 Delay/Veh: 39.2 39.2 39.2 49.5 49.5 49.5 19.3 26.4 26.4 32.4 45.6 45.6 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0										

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #68 Ashby Avenue / San Pablo Avenue ************************* Cycle (sec): 100 Critical Vol./Cap. (X): 0.738 28.7 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 54 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Protected Protected Permitted Permitted Include Include Include Include Rights: Min. Green: 4 17 17 4 19 19 18 18 18 18 18 18 -----| Volume Module: >> Count Date: 5 Dec 2002 << 7:00-9:00 AM Base Vol: 173 521 53 137 741 128 84 584 134 51 613 135 Initial Bse: 173 521 53 137 741 128 84 584 134 51 613 135 PHF Volume: 188 566 58 149 805 139 91 635 146 55 666 147 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 188 566 58 149 805 139 91 635 146 0 55 666 147 Final Vol.: 188 566 58 149 805 139 91 635 146 55 666 147 -----|----|-----|------| Saturation Flow Module: Adjustment: 0.95 0.94 0.94 0.95 0.93 0.93 0.19 0.92 0.92 0.74 0.74 0.74 Lanes: 1.00 1.82 0.18 1.00 1.71 0.29 1.00 1.63 0.37 0.13 1.53 0.34 Final Sat.: 1805 3231 329 1805 3011 520 352 2854 655 180 2166 477 _____| Capacity Analysis Module: Vol/Sat: 0.10 0.18 0.18 0.08 0.27 0.27 0.26 0.22 0.22 0.31 0.31 0.31 Crit Moves: **** Green/Cycle: 0.14 0.34 0.34 0.16 0.36 0.36 0.42 0.42 0.42 0.42 0.42 0.42 Volume/Cap: 0.74 0.51 0.51 0.51 0.74 0.74 0.62 0.53 0.53 0.74 0.74 0.74 Delay/Veh: 52.0 26.6 26.6 39.9 30.1 30.1 31.1 22.3 22.3 27.1 27.1 27.1 AdjDel/Veh: 52.0 26.6 26.6 39.9 30.1 30.1 31.1 22.3 22.3 27.1 27.1 27.1 DesignQueue: 9 21 2 7 30 5 3 22 5 2 23 5

DesignQueue: 3 8 3 3 9 11 15 33 11 5 31 1

Existing Conditions

AM Peak Hour

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #69 Ashby Avenue / Adeline Street ***************** Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): 40.1
Optimal Cycle: 96 Level Of Service: D ***************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----| Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 4 38 38 6 38 38 4 22 22 4 32 32 Lanes: 1 0 1 1 0 1 0 2 1 0 1 0 1 1 0 1 0 1 1 0 _____| Volume Module: >> Count Date: 21 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 74 567 61 11 438 96 189 564 49 83 549 14 Initial Bse: 74 567 61 11 438 96 189 564 49 83 549 14 Final Vol.: 80 610 66 12 471 103 203 606 53 89 590 15 Saturation Flow Module: Adjustment: 0.95 0.94 0.94 0.95 0.89 0.89 0.95 0.94 0.94 0.95 0.95 Lanes: 1.00 1.81 0.19 1.00 2.46 0.54 1.00 1.84 0.16 1.00 1.95 0.05 Final Sat.: 1805 3210 345 1805 4140 907 1805 3282 285 1805 3506 89 -----| Capacity Analysis Module: Vol/Sat: 0.04 0.19 0.19 0.01 0.11 0.11 0.18 0.18 0.05 0.17 0.17 Crit Moves: **** **** **** Green/Cycle: 0.11 0.34 0.34 0.04 0.27 0.27 0.20 0.40 0.40 0.11 0.30 0.30 Volume/Cap: 0.40 0.56 0.56 0.15 0.42 0.42 0.56 0.47 0.47 0.47 0.56 0.56 Delay/Veh: 59.1 38.2 38.2 65.5 42.1 42.1 54.9 28.3 28.3 66.8 41.1 41.1

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #70 Ashby Avenue / Shattuck Avenue ******************* Cycle (sec): 80 Critical Vol./Cap. (X): 0.483 14.9 Loss Time (sec): 12 (Y+R = 5 sec) Average Delay (sec/veh): Optimal Cycle: 53 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 21 21 21 6 21 21 20 20 20 20 20 20 _____| Volume Module: >> Count Date: 21 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 77 590 26 124 450 35 33 557 31 40 550 182 Initial Bse: 77 590 26 124 450 35 33 557 31 40 550 182 Final Vol.: 82 628 28 132 479 37 35 593 33 43 585 194 _____| Saturation Flow Module: Lanes: 0.22 1.70 0.08 0.41 1.48 0.11 0.11 1.79 0.10 0.10 1.43 0.47 Final Sat.: 422 3235 143 774 2808 218 202 3408 190 197 2707 896 -----| Capacity Analysis Module: Vol/Sat: 0.19 0.19 0.19 0.17 0.17 0.17 0.17 0.17 0.17 0.22 0.22 Crit Moves: **** Green/Cycle: 0.33 0.33 0.33 0.41 0.41 0.41 0.52 0.52 0.52 0.52 0.52 0.52 Volume/Cap: 0.60 0.60 0.60 0.42 0.42 0.42 0.33 0.33 0.33 0.41 0.41 0.41 Delay/Veh: 24.7 24.7 24.7 17.8 17.8 17.8 8.4 8.4 9.0 9.0 9.0 AdjDel/Veh: 24.7 24.7 24.7 17.8 17.8 17.8 8.4 8.4 9.0 9.0 9.0 DesignQueue: 3 20 1 4 13 1 1 13 1 1 13 4

AdjDel/Veh: 59.1 38.2 38.2 65.5 42.1 42.1 54.9 28.3 28.3 66.8 41.1 41.1

DesignQueue: 6 33 4 1 27 6 13 30 3 6 33 1

EXISTING AM Thu Jun 19, 2003 17:21:32 ______

Page 76-1

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report											
2000 HCM Operations Method (Base Volume Alternativ											
Intersection #71 Ashby Avenue / Telegraph Avenue											
**************************************	*****										
Cycle (sec): 80 Critical Vol./Cap. (X):	0.745										
Loss Time (sec): 12 (Y+R = 6 sec) Average Delay (sec/veh):	26.3										
<pre>Cycle (sec): 80</pre>	C										
Approach: North Bound South Bound East Bound											
Movement: L - T - R L - T - R	L - T - R										
Control: Permitted Prot+Permit Permitted Rights: Include Include Include	Include										
Min. Green: 21 21 21 0 21 21 25 25 25											
Lanes: 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1											
Volume Module: >> Count Date: 21 Nov 2002 << 7:00 AM - 9:00 AM	'										
	89 573 83										
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00										
Initial Bse: 150 985 80 148 623 103 86 549 120	89 573 83										
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00										
PHF Adj: 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	0.93 0.93 0.93										
PHF Volume: 161 1059 86 159 670 111 92 590 129	96 616 89										
Reduct Vol: 0 0 0 0 0 0 0 0	0 0 0										
Reduced Vol: 161 1059 86 159 670 111 92 590 129	96 616 89										
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00										
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00										
	96 616 89										
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	1000 1000 1000										
Adjustment: 0.25 0.94 0.94 0.95 0.93 0.93 0.25 0.92 0.92											
Lanes: 1.00 1.85 0.15 1.00 1.72 0.28 1.00 1.64 0.36											
Final Sat.: 483 3302 268 1805 3033 501 471 2882 630											
Capacity Analysis Module:	'										
Vol/Sat: 0.33 0.32 0.32 0.09 0.22 0.22 0.20 0.20 0.20	0.21 0.20 0.20										
Crit Moves: **** ****	***										
	0.33 0.33 0.33										
Volume/Cap: 0.89 0.86 0.86 0.18 0.46 0.46 0.60 0.63 0.63	0.65 0.61 0.61										
Delay/Veh: 66.7 30.2 30.2 12.3 14.7 14.7 38.3 24.8 24.8	42.3 24.4 24.4										
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00										

Existing Conditions AM Peak Hour Level Of Service Computation Report

UC Berkeley LRDP EIR

2000 HCM Operations Method (Base Volume Alternative) Intersection #72 Ashby Avenue / College Avenue ***************** Cycle (sec): 80 Critical Vol./Cap. (X): 1.016 30.6 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 167 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Permitted Permitted Permitted Include Include Include Include Rights: Min. Green: 18 18 18 18 18 18 30 30 30 30 30 30 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 -----| Volume Module: >> Count Date: 21 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 79 323 26 118 232 95 33 490 92 4 611 229 Initial Bse: 79 323 26 118 232 95 33 490 92 4 611 229 PHF Volume: 87 355 29 130 255 104 36 538 101 4 671 252 Final Vol.: 87 355 29 130 255 104 36 538 101 4 671 252 -----| Saturation Flow Module: Adjustment: 0.83 0.83 0.83 0.72 0.72 0.72 0.91 0.91 0.91 0.96 0.96 0.96 Lanes: 0.18 0.76 0.06 0.27 0.52 0.21 0.05 0.80 0.15 0.01 0.72 0.27 Final Sat.: 292 1193 96 365 718 294 93 1377 258 9 1322 495 -----| Capacity Analysis Module: Vol/Sat: 0.30 0.30 0.30 0.36 0.36 0.39 0.39 0.39 0.51 0.51 0.51 *** Crit Moves: Green/Cycle: 0.38 0.38 0.38 0.45 0.45 0.45 0.53 0.53 0.53 0.53 0.53 Volume/Cap: 0.79 0.79 0.79 0.79 0.79 0.79 0.74 0.74 0.74 0.97 0.97 Delay/Veh: 30.9 30.9 30.9 25.6 25.6 25.6 20.4 20.4 20.4 40.5 40.5 40.5 AdjDel/Veh: 30.9 30.9 30.9 25.6 25.6 25.6 20.4 20.4 20.4 40.5 40.5 40.5 DesignQueue: 3 10 1 3 7 3 1 12 2 0 16 6

AdjDel/Veh: 66.7 30.2 30.2 12.3 14.7 14.7 38.3 24.8 24.8 42.3 24.4 24.4

DesignQueue: 5 31 3 4 16 3 3 18 4 3 19 3

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

				tion Report							
2000	HCM Operati										
Intersection #73											
************					*****	*****	*****				
				al Vol./Cap.							
Loss Time (sec):	12 (Y+R	= 6 sec) A	Average	Delav (sec	(A):	22					
Loss Time (sec): Optimal Cycle: ************************************	72	0 000, I	Level (of Service:	,, (011)		C				
******	*****	*****	*****	*****	****	*****	*****				
Approach: No:	rth Bound	South Bo	ound	East Bo	und	West Bo	ound				
Movement: L	- T - R	L - T	- R	L - T	- R	L - T	- R				
Control: Sp.	lit Phase	Split Ph	nase	Permit	ted	Permi	tted				
Rights: Include Include Include Include Min. Green: 16 16 16 16 16 16 28 28 28 28 28 28											
						28 28	28				
	1 0 1 0			0 1 0							
Volume Module: >>						00 627	400				
	288 153	321 272	59	43 504		90 637					
Growth Adj: 1.00				1.00 1.00 43 504		1.00 1.00					
Initial Bse: 35 User Adj: 1.00		321 272 1.00 1.00				90 637 1.00 1.00	429 1.00				
PHF Adj: 1.00		0.94 0.94									
PHF Volume: 37		341 289				96 678	456				
Reduct Vol: 0	0 0	0 0	63 0	0 0	14 0	0 0	430				
Reduced Vol: 37		341 289	63	46 536		96 678					
PCE Adj: 1.00		1.00 1.00									
MLF Adj: 1.00		1.00 1.00	1.00				1.00				
Final Vol.: 37		341 289		46 536			456				
Saturation Flow Mo	odule:										
Sat/Lane: 1900	1900 1900	1900 1900	1900	1900 1900	1900	1900 1900	1900				
Adjustment: 0.95	0.95 0.95	0.95 0.95	0.95	0.95 0.95	0.95	0.95 0.95	0.95				
Lanes: 0.15	1.21 0.64	1.48 1.25	0.27	0.15 1.80	0.05	0.16 1.10	0.74				
Final Sat.: 265											
Capacity Analysis											
Vol/Sat: 0.14			0.13	0.17 0.17	0.17						
Crit Moves:						***					
Green/Cycle: 0.20											
Volume/Cap: 0.70				0.37 0.37							

UC Berkeley LRDP EIR Existing Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)

*******									ernativ		*****	*****
Intersection	#74 5	[unnel	Road	/ SR	13							
Cycle (sec): Loss Time (s Optimal Cycl												
Approach: Movement:	No:	rth Bo - T	und - R	Son L ·	uth Bo - T	ound - R	Ea L -	ast Bo - T	ound - R	We L -	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	P: 0 0	rotect Inclu 0 0 2	ted ide 0	0 2	rotect Inclu 0) 1	ted ide 0	Sp:	lit Ph Inclu 0 0	nase ide 0	Sp: 0	lit Ph Ovl 0	0 0 2
Volume Modul Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduct Vol: Reduced Vol: FCE Adj: MLF Adj: Final Vol.:	e: >> 0 1.00 0 1.00 0.88 0 0 0 1.00	Count 1293 1.00 1293 1.00 0.88 1469 0 1469 1.00 1.00	2 Date: 435 1.00 435 1.00 0.88 494 0 494 1.00 1.00	21 No 487 1.00 487 1.00 0.88 553 0 553 1.00 1.00	0v 200 608 1.00 608 1.00 0.88 691 0 691 1.00 1.00	02 << 7 0 1.00 0 1.00 0.88 0 0 0 1.00 1.00	1.00 AN 0 1.00 O 1.00 O 0 1.00 O 1.00 O 0 1.00 O 0 0 1.00 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M - 9: 0 1.00 1.00 0 1.00 0.88 0 0 0 1.00 1.00	00 AM 0 1.00 0 1.00 0.88 0 0 0 1.00 1.00	205 1.00 205 1.00 0.88 233 0 233 1.00 1.00 233	0 1.00 0 1.00 0.88 0 0 0 1.00	307 1.00 307 1.00 0.88 349 0 349 1.00 1.00 349
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	low Mo 1900 1.00 0.00	1900 0.95 2.00 3610	1900 0.85 1.00 1615	1900 0.92 2.00 3502	1900 1.00 1.00 1900	1900 1.00 0.00	1900 1.00 0.00	1900 1.00 0.00	1900 1.00 0.00	1900 0.95 1.00 1805	1900 1.00 0.00	1900 0.75 2.00 2842
Capacity Ana Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	0.00 0.00 0.00 0.00 0.0 1.00 0.0	Modul 0.41 **** 0.51 0.79 15.3 1.00 15.3	0.31 0.51 0.60 12.2 1.00 12.2	0.16 **** 0.20 0.79 30.9 1.00 30.9	0.36 1.00 0.36 0.1 1.00 0.1	0.00 0.00 0.00 0.0 1.00 0.0	0.00 0.00 0.00 0.0 1.00 0.0	0.00 0.00 0.00 0.0 1.00 0.0	0.00 0.00 0.00 0.0 1.00 0.0	0.13 **** 0.16 0.79 39.7 1.00 39.7	0.00 0.00 0.00 0.0 1.00 0.0	0.12 0.36 0.34 15.2 1.00 15.2

Delay/Veh: 32.9 32.9 32.9 30.7 30.7 30.7 12.3 12.3 12.3 17.4 17.4 17.4 AdjDel/Veh: 32.9 32.9 32.9 30.7 30.7 12.3 12.3 12.3 17.4 17.4 17.4 DesignQueue: 1 11 6 12 11 2 1 14 0 3 18 12

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

UC Berkeley LRDP EIR

Existing Conditions

PM Peak Hour

Scenario Report

Scenario: EXISTING PM

Command: EXISTING PM Volume: EXISTING PM

Geometry: EXISTING PM
Impact Fee: Default Impact Fee
Trip Generation: NO PROJECT
Trip Distribution: Cumulative Paths: Default Paths
Routes: Default Routes Configuration: EXISTING PM

Turning Movement Report NO PROJECT

Volume Type			und Right			ound Right			und Right			und Right	Total Volume
						-			_			_	
#1 Mar		,											
Base		1022	114	169	659	18	18	656	137	145	736	154	4055
Added	0		0	0	0	0	0	0	0	0	0	0	
Total	227	1022	114	169	659	18	18	656	137	145	736	154	4055
#2 Mar	in Ave	enue /	The A	lameda	a								
Base	316	322	1	43	178	77	50	534	193	17	480	69	2280
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	316	322	1	43	178	77	50	534	193	17	480	69	2280
#3 Gil:	man St	reet	/ Sixt	h Stre	eet								
Base	346	46	159	24	47	52	28	497	109	53	489	11	1861
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	346	46	159	24	47	52	28	497	109	53	489	11	1861
#4 Gil:	man St	reet	/ San	Pablo	Aveni	16							
Base		1057	87	126	830	112	174	345	155	40	233	82	3381
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total		1057	87	126	830	112	174	345	155	40	233	82	3381
#E D		/	Q1	. 1 . 7									
#5 Ros						0.0		0.50	4.0	0.0	014	000	0000
Base	159	641	14	112	444	26	69		49	29	214	228	
Added	1.50	0	0	0	0	0	0	0	0	0	0	0	0
Total	159	641	14	112	444	26	69	253	49	29	214	228	2238
						ing Way							
Base	53	614	65	30	541	12	20		57	68	296	65	2118
Added	0	0	0	0		0	0	0	0	0	0	0	0
Total	53	614	65	30	541	12	20	297	57	68	296	65	2118
#7 Ced	ar Sti	reet /	Shatt	uck Av	renue								
Base	138	795	56	144	619	72	86	275	67	59	341	150	2802
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	138	795	56	144	619	72	86	275	67	59	341	150	2802
#8 Ced	ar Sti	reet /	′ Oxfor	d Stre	eet								
Base	91	464	81	17	196	17	18	307	57	61	340	31	1680
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	91	464	81	17	196	17	18	307	57	61	340	31	1680
#9 Ced	ar Sti	reet. /	' Eucli	d Aver	nue								
Base	90	226	29	7	127	44	51	180	49	18	91	0	912
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	90	226	29	7	127	44	51	180	49	18	91	0	912
-0041	20			,	/		01	100		-0	21	0	7.2

EXISTING PM Thu Jun 19, 2003 17:22:49 Page 3-2 EXISTING PM Thu Jun 19, 2003 17:22:49 Page 3-3

UC Berkeley LRDP EIR Existing Conditions

UC Berkeley LRDP EIR Existing Conditions

	PM Peak Hour											PM Peak Hour																
Volume Type	No	rthbo	und	Sc	outhboo	und	Ea	stbou	nd	We	stbou	nd	Total Volume		lume	No	rthbou	ınd	S	outhb		Ea	stbou	nd	We	stbour	nd	Total
TAbe	петс	IIILU	KIGIIC	Leit	IIII u	xigiic	Terc	IIII u	KIGHC	Terc	IIII u	KIGIIC	vorume	т У	рe	тетс	IIILU F	(IGIIC	петс	. IIII u	KIGIIC	петс	IIII u	KIGIIC	петс	IIII u	xigiic	volume
#10 Gr:	-															_	Way /											
Base	162	65	250	33	30	8		159	45		111	25	913		se ,		1039	3		890		72	2	51	29	18	42	2220
Added Total	0 162	0 65	0 250	0 33	0 30	0 8	0	0 159	0 45	0 22	0 111	0 25	0 913		ded tal	0 48	0 1039	0 3	C 4	890		0 72	0 2	0 51	0 29	0 18	0 42	0 2220
#11 Hea	arst A	venue	/ Sha	ttuck	Avenue	е								#2	0 Uni	lversi	ty Ave	nue /	Sixt	h Str	eet							
Base	34	715	63	117		54		232	20		321	136	2418		se		353	48	101			163		212		1205	33	4031
Added	0	0	0	0	0	0	0	0	0	0	0	0	0		ded	0	0	0	C		-	0	0	0	0	0	0	0
Total	34	715	63	117	537	54	67	232	20	122	321	136	2418	To	tal	343	353	48	101	239	465	163	827	212	42	1205	33	4031
#12 Hea																					Avenue							
Base	80		315		458	25	23	267	115		478	52	2899		se ,		945	93		681		87	986	105	71	906	125	4457
Added Total	0 80	0 743	0 315	0 30	0 458	0 25	0 23	0 267	0 115	0 313	0 478	0 52	0 2899		ded tal	0 233	0 945	0 93	141	681		0 87	0 986	0 105	0 71	0 906	0 125	0 4457
#12 11-			/ 0	01										#0	0 11		 7	/	Manak	T	+h 77.	W	_					
#13 Hea	arst A	venue 0	/ spr 0	uce St 11	reet	48	3.1	579	0	0	792	13	1477		2 UN1 se		.ty Ave 902	nue / 78	Mart 46		ther Ki 77	ng way. 80	679	134	71	727	81	3859
Added	0	0	0	0	0	0	0	0	0	0	0	0	14//		ded	0	0	0				0	0/9	134	, ,	0	0	0
Total	0	0	0	11	0	48		579	0		792	13	1477		tal	282		78		702		80	679	134	-	727	81	3859
#14 Hea	arst A	venue	/ Arc	h Stre	eet / 1	Le Con	te Ave	nue						#2	3 Uni	versi	ty Ave	nue /	Milv	ia St	reet							
Base	0	0	0	6	0	135	146	439	0	0	668	6	1400	Ва	se	127	218	44	13	102		47	649	108		651	33	2088
Added	0	0	0	0	0	0	0	0	0	0	0	0	0		ded	0	0	0	C			0	0	0	0	0	0	0
Total	0	0	0	6	0	135	146	439	0	0	668	6	1400	To	tal	127	218	44	13	102	74	47	649	108	22	651	33	2088
#15 Hea	arst A	venue	/ Sce	nic Av	renue									#2	4 Uni	versi	ty Ave	nue /	SB S	hattu	ck Aven	ue						
Base	0	0	0	0	0	109		437	0	0	566	54	1166	Ва	se	0	0	0	55	576		131	374	254	74	642	640	2892
Added	0	0	0	0	0	0	0	0	0	0	0	0	0		ded	0	0	0	C			0	0	0	0	0	0	0
Total	0	0	0	0	0	109	0	437	0	0	566	54	1166	To	tal	0	0	0	55	576	146	131	374	254	74	642	640	2892
#16 Hea																					ck Aven							
Base	4	0	1	57	0	115	120	307	0		503	23	1132		se .	938	0	208	C			0	454	0		433	0	2033
Added Total	0 4	0	0 1	0 57	0	0 115	0 120	0 307	0	0 2	0 503	0 23	0 1132		ded tal	0 938	0	0 208	C			0	0 454	0	0	0 433	0	0 2033
#17 Hea	aret D	176n116	/ Le	Pou Au	701110									#2	6 IIni	versi	ty Ave	/ פוות	Ovfo	rd St	root							
Base	115U A	.venue) Le	12	7emue 0	56	38	355	0	0	523	21	1005		se		771	16	32			306	39	330	9	37	40	2799
Added	0	0	0	0	0	0	0	0	0	0	0	0	0		ded	2 / 0	0	0	0			0	0	0	0	0	0	2799
Total	0	0	0	12	0	56		355	0	-	523	21	1005		tal	278	-	16		835	-	306	39	330	9	37	40	2799
#18 Hea	arst A	venue	/ Gay	ley Ro	oad / 1	LaLoma	Avenu	.e						#2	7 Uni	lveris	ty Dri	ve (E	ast G	ate)	/ Gayl	ey Roa	ad					
Base	318	288	19	- 4	203	49	28	52	288	69	197	40	1555		se		552	0		505		41	0	81	0	0	0	1290
Added	0	0	0	0		0	0	0	0	0	0	0	0	Ad	ded	0	0	0	C			0	0	0	0	0	0	0
Total	318	288	19	4	203	49	28	52	288	69	197	40	1555	To	tal	59	552	0	C	505	52	41	0	81	0	0	0	1290

EXISTING PM Thu Jun 19, 2003 17:22:49 Page 3-4 EXISTING PM Thu Jun 19, 2003 17:22:49 Page 3-5 ______

UC Berkeley LRDP EIR Existing Conditions

UC Berkeley LRDP EIR Existing Conditions

PM Peak Hour																	M Peak					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Volume	Northbo Left Thru	ound	S	outhbo	und	Ea	stbou	nd	We	stbou	nd	Total	Volume	No	rthbou	ınd	S	outhbo	und	Ea	stbour	ıd	W∈	stbou	nd	Total						
Type	nerc initu	KIGHC	петс	IIII u	RIGIIC	петс	IIII u	KIGIIC	петс	IIILU	KIGIIC	vorune	Type	петс	IIILU F	(Igiic	петс	. IIII u	KIGIIC	Terc	IIII u r	.Igiic	петс	IIII u	KIGIIC	vorume						
#28 Add	dison Stree	et / 02	ford	Street									#37 Bai	ncroft	Way /	' Fult	on St	reet														
Base	32 1006	0		952	28	10	0	114	0	0	0	2142	Base		164	0		1066	165	0	0	0	12									
Added	0 0	0	0		0	0	0	0	0	0	0	0	Added	0	0	0	0		0	0	0	0	0			-						
Total	32 1006	0	U	952	28	10	0	114	0	0	0	2142	Total	18	164	0	U	1066	165	0	0	0	12	287	898	2610						
	nter Street												#38 Bar					Stree														
Base	0 0	0		790	126		104	179	29	160	0	1429	Base	348	11	0	0		100	0	0	0										
Added	0 0	0	0	0 790	126	0	0 104	0 179	0	0 160	0	1420	Added	0	0 11	0	0		0 100	0	0	0	-									
Total	0 0	U	41	790	126	U	104	1/9	29	160	U	1429	Total	348	11	U	U	U	100	U	U	U	U	8//	6	1342						
#30 Cen	ter Street	t / NB	Shatt	uck Av	enue								#39 Bar	ncroft	Way /	Dana	Stre	et														
Base	50 982	86	0		0	81	55	0	0	139	58	1451	Base	0	0	0	0		0	0	0	0	282									
Added	0 0	0	0		0	0	0	0	0	0	0	0	Added	0	0	0	0		0	0	0	0	0	0	0	0						
Total	50 982	86	0	0	0	81	55	0	0	139	58	1451	Total	0	0	0	0	0	0	0	0	0	282	873	0	1155						
#31 Cen	ter Street	t / Oxf	ord S	treet									#40 Bar	ncroft	Way /	Tele	graph	Avenu	е													
Base	87 998	24	19		67	33	6	84	37	9	16	2360	Base	495	0	0	0	•	0	0	0	0	0	675	0	1170						
Added	0 0	0	0		0	0	0 6	0	0	0	0	0	Added	0	0	0	0		0	0	0	0	0	0	0	0						
Total	87 998	24	19	980	67	33	6	84	37	9	16	2360	Total	495	0	0	0	0	U	U	0	0	0	675	0	1170						
#32 Sta	adium Rim I												#41 Bar																			
Base	0 359	19		459	0	20	7	15	47	0	232	1293	Base	191	0	0	0		0	0	0	0	99	494	0	784						
Added	0 0	0	125		0	0	0 7	0	0	0	0	0	Added	0	0	0	0		0	0	0	0	0	0	0	0						
Total	0 359	19	135	459	U	20	/	15	47	0	232	1293	Total	191	U	0	0	U	U	U	U	U	99	494	0	784						
#33 All	ston Way	/ Oxfor	d Str	eet									#42 Bar	ncroft	Way /	Coll	ege A	venue														
Base	46 1002	0		1082	75	23	0	110	0	0	0	2364	Base	371	0	0	0		0	0	0	0	83	226	0	680						
Added	0 0	0	0		0	0	0	0	0	0	0	0	Added	0	0	0	0		0	0	0	0	0	0	0	0						
Total	46 1002	0	26	1082	75	23	0	110	0	0	0	2364	Total	371	0	0	0	U	U	U	U	U	83	226	0	680						
#34 Kit	tridge St	reet /	Oxfor	d Stre	et / F	ulton	Stree	t					#43 Bar	ncroft	Way /	' Pied	mont	Avenue														
Base	45 995	0		1108	96	51	0	69	0	0	0	2364	Base	152	439	0	0		159	0	0	0	0	0	0	1107						
Added	0 0	0		0	0	0	0	0	0	0	0	0	Added	0	0	0	0		0	0	0	0	0	0	0	0						
Total	45 995	0	0	1108	96	51	0	69	0	0	0	2364	Total	152	439	0	0	357	159	0	0	0	0	0	0	1107						
#35 Sta	adium Rim I	Road /	Cente	nnial	Drive								#44 Du	rant A	venue	/ Sha	ttuck	Avenu	е													
Base	0 99	140	102		0	0	0	0	204	0	146	748	Base		1216	120		1099	51	9	72	55	0	0	0	2779						
Added	0 0	0	0		0	0	0	0	0	0	0	0	Added	0	0	0	0		0	0	0	0	0	0	0	0						
Total	0 99	140	102	57	0	0	0	0	204	0	146	748	Total	69	1216	120	88	1099	51	9	72	55	0	0	0	2779						
#36 Ban	ncroft Way	/ Shat	tuck .	Avenue									#45 Du	rant A	venue	/ Ful	ton S	treet														
Base	30 1186	0		949	23	1	0	38	258	97	111	2693	Base	0	0	0	527		0	137	219	33	0	0	0	1676						
Added	0 0	0	0		0	0	0	0	0	0	0	0	Added	0	0	0	0	-	0	0	0	0	0	0	0	0						
Total	30 1186	0	0	949	23	1	0	38	258	97	111	2693	Total	0	0	0	527	760	0	137	219	33	0	0	0	1676						

EXISTING PM Thu Jun 19, 2003 17:22:50 Page 3-6 EXISTING PM Thu Jun 19, 2003 17:22:50 Page 3-7

UC Berkeley LRDP EIR Existing Conditions

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

PM Peak Hour	PM Peak Hour
Volume Northbound Southbound Eastbound Westbound Total Type Left Thru Right Left Thru Right Left Thru Right Volume	Volume Northbound Southbound Eastbound Westbound Total Type Left Thru Right Left Thru Right Left Thru Right Volume
#46 Durant Avenue / Telegraph Avenue Base	#55 Haste Street / Telegraph Avenue Base 186 476 0 0 0 0 0 0 0 470 57 1189 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 186 476 0 0 0 0 0 0 0 0 470 57 1189
#47 Durant Avenue / College Avenue Base 0 189 62 16 56 0 127 268 202 0 0 0 920 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 0 189 62 16 56 0 127 268 202 0 0 0 920	#56 Haste Street / College Avenue Base 88 236 0 0 337 56 0 0 0 90 244 29 1080 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 88 236 0 0 337 56 0 0 0 90 244 29 1080
#48 Durant Avenue / Piedmont Avenue Base 0 398 0 0 427 0 179 0 197 0 0 0 1201 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 0 398 0 0 427 0 179 0 197 0 0 0 1201	#57 Dwight Way / Martin Luther King Way Base 71 821 60 113 860 272 49 444 111 0 0 2801 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 71 821 60 113 860 272 49 444 111 0 0 0 2801
#49 Channing Way / Shattuck Avenue Base 83 1279 94 19 1089 49 18 76 81 144 97 106 3135 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 83 1279 94 19 1089 49 18 76 81 144 97 106 3135	#58 Dwight Way / Shattuck Avenue Base 0 1273 123 133 1390 0 77 426 200 0 0 3622 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 0 1273 123 133 1390 0 77 426 200 0 0 0 3622
#50 Channing Way / Fulton Street Base 0 0 0 48 686 61 0 133 38 15 257 0 1238 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 0 0 0 48 686 61 0 133 38 15 257 0 1238	#59 Dwight Way / Fulton Street Base 0 0 62 631 0 0 0 664 15 0 0 0 1372 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#51 Channing Way / Telegraph Avenue Base 86 410 41 0 0 0 23 144 0 0 227 46 977 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 86 410 41 0 0 0 23 144 0 0 227 46 977	#60 Dwight Way / Telegraph Avenue Base 0 590 149 0 0 0 130 671 813 0 0 0 2353 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 0 590 149 0 0 0 130 671 813 0 0 0 2353
#52 Channing Way / College Avenue Base 31 189 41 7 206 24 5 95 58 124 141 47 968 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 31 189 41 7 206 24 5 95 58 124 141 47 968	#61 Dwight Way / College Avenue Base 0 294 52 49 374 0 34 483 129 0 0 0 1415 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 0 294 52 49 374 0 34 483 129 0 0 0 1415
#53 Haste Street / Shattuck Avenue Base 104 1277 0 0 1208 88 0 0 0 268 336 152 3433 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 104 1277 0 0 1208 88 0 0 0 268 336 152 3433	#62 Dwight Way / Piedmont Avenue / Warring Street Base
#54 Haste Street / Fulton Street Base	#63 Dwight Avenue / Prospect Street Base

Thu Jun 19, 2003 17:22:50

Page 3-8

EXISTING PM Thu Jun 19, 2003 17:22:50

Page 3-9 ______

IIC Dowled or I DDD EID

					Pl	M Peak	Hour						
Volume		rthbou							ınd				
Type	Left	Thru F	Right	Left	Thru 1	Right	Left	Thru	Right	Left	Thru	Right	Volume
#64 Ade	eline	Street	z / Wa	rd Ave	nue /	Shatt	uck Av	enue					
Base	0	690	5	0	957	825	903	0	2	0	0	0	3382
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	690	5	0	957	825	903	0	2	0	0	0	3382
#65 Dei	by St	reet /	/ Warr	ing St	reet								
Base	0	0	0	765	0	30	7	62	0	0	75	780	1719
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	765	0	30	7	62	0	0	75	780	1719
#66 Dei	by St	reet /	/ Clar	emont	Blvd.								
Base	4	0	225	0	0	0	0	872	11	31	741	0	1884
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	4	0	225	0	0	0	0	872	11	31	741	0	1884
#67 Ash	nby Av	enue /	/ Seve	nth St	reet								
Base	134	404	68	107	270	476	263	546	113	98	774	31	3284
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	134	404	68	107	270	476	263	546	113	98	774	31	3284
#68 Ash	nby Av	enue /	/ San	Pablo	Avenu	е							
Base	162	999	79	185	873	113	86	592	170	20	612	143	4034
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	162	999	79	185	873	113	86	592	170	20	612	143	4034
#69 Ash	nby Av	enue /	/ Adel	ine St	reet								
Base			85		700	169	135	491	39	68	547	39	3089
- 11 1		^					_		^			^	

	Existing Conditions PM Peak Hour													
Volume Northbound Type Left Thru Right	Southbound Left Thru Right			Total Volume										
#73 Ashby Avenue / Clar	emont Avenue													

UC Berkeley LRDP EIR

#73 Ash	by Avenue	/ Clare	emont	Avenue	:							
Base	45 373	189	432	285	49	47	592	5	66	504	232	2819
Added	0 0	0	0	0	0	0	0	0	0	0	0	0
Total	45 373	189	432	285	49	47	592	5	66	504	232	2819
#74 Tuni	nel Road /	SR 13										
Base	0 1130	256	534	1095	0	0	0	0	128	0	155	3298
Added	0 0	0	0	0	0	0	0	0	0	0	0	0
Total	0 1130	256	534	1095	0	0	0	0	128	0	155	3298

Added 0 0 0 0 0 0 0 0 0 0 0 0 Total 92 693 85 31 700 169 135 491 39 68 547 39 3089

Added 0 0 0 0 0 0 0 0 0 0 0 0 0

Base 210 675 75 176 902 63 68 531 184 148 642 99 3773

Total 210 675 75 176 902 63 68 531 184 148 642 99 3773

Total 75 293 68 159 279 58 15 683 87 10 466 151 2344

0

40

0 0 0 0 0 0

58 15 683 87

0 0 0

32 541 176 2837

32 541 176 2837

10 466 151 2344

0

0 0

0 0

0

#70 Ashby Avenue / Shattuck Avenue

#71 Ashby Avenue / Telegraph Avenue

Added 0 0 0 0 0

#72 Ashby Avenue / College Avenue Base 75 293 68 159 279

0 0 0

Added

Base 52 556 30 200 585 56 33 536

Total 52 556 30 200 585 56 33 536 40

0 0

EXISTING PM Thu Jun 19, 2003 17:23:23 Page 4-1 EXISTING PM Thu Jun 19, 2003 17:23:23 Page 4-2

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

PM 1	Peak Hour			PM Peak Hour								
Impact A	nalysis Report Of Service			Intersection	Base Del/ V/ LOS Veh C	Future Del/ V/ LOS Veh C	Change in					
Intersection	Base Del/ V/	Future Del/ V/	Change in	# 24 University Avenue / SB Shattuc			+ 0.000 D/V					
# 1 Marin Avenue / San Pablo Avenu	LOS Veh C D 50.3 0.940	LOS Veh C D 50.3 0.940	+ 0.000 D/V	# 25 University Avenue / NB Shattuc								
# 2 Marin Avenue / The Alameda	в 14.9 0.640	в 14.9 0.640	+ 0.000 D/V	# 26 University Avenue / Oxford Str		В 18.2 0.693						
# 3 Gilman Street / Sixth Street	E 74.8 0.934	E 74.8 0.934	+ 0.000 D/V	# 27 Univeristy Drive (East Gate)		C 1.6 0.000						
# 4 Gilman Street / San Pablo Aven	D 42.2 0.778	D 42.2 0.778	+ 0.000 D/V	# 28 Addison Street / Oxford Street			+ 0.000 V/C					
# 5 Rose Street / Shattuck Avenue	в 11.5 0.554	в 11.5 0.554	+ 0.000 D/V	# 29 Center Street / SB Shattuck Av		в 14.4 0.494						
# 6 Cedar Street / Martin Luther K	C 25.1 0.844	C 25.1 0.844	+ 0.000 D/V	# 30 Center Street / NB Shattuck Av								
# 7 Cedar Street / Shattuck Avenue	в 13.9 0.649	в 13.9 0.649	+ 0.000 D/V	# 31 Center Street / Oxford Street	A 7.5 0.441	A 7.5 0.441	+ 0.000 D/V					
# 8 Cedar Street / Oxford Street	C 21.8 0.791	C 21.8 0.791	+ 0.000 D/V	# 32 Stadium Rim Road / Gayley Road	D 34.7 0.986	D 34.7 0.986	+ 0.000 V/C					
# 9 Cedar Street / Euclid Avenue	в 11.8 0.479	в 11.8 0.479	+ 0.000 D/V	# 33 Allston Way / Oxford Street	D 5.0 0.000	D 5.0 0.000	+ 0.000 V/C					
# 10 Grizzly Peak Blvd / Centennial	C 17.7 0.796	C 17.7 0.796	+ 0.000 V/C	# 34 Kittridge Street / Oxford Stre	F 6.1 0.000	F 6.1 0.000	+ 0.000 V/C					
# 11 Hearst Avenue / Shattuck Avenu	в 14.5 0.555	в 14.5 0.555	+ 0.000 D/V	# 35 Stadium Rim Road / Centennial	в 12.2 0.579	в 12.2 0.579	+ 0.000 V/C					
# 12 Hearst Avenue / Oxford Avenue	D 52.8 0.973	D 52.8 0.973	+ 0.000 D/V	# 36 Bancroft Way / Shattuck Avenue	в 12.7 0.670	в 12.7 0.670	+ 0.000 D/V					
# 13 Hearst Avenue / Spruce Street	C 2.4 0.000	C 2.4 0.000	+ 0.000 V/C	# 37 Bancroft Way / Fulton Street	A 6.7 0.409	A 6.7 0.409	+ 0.000 D/V					
# 14 Hearst Avenue / Arch Street /	в 1.6 0.000	в 1.6 0.000	+ 0.000 V/C	# 38 Bancroft Way / Ellsworth Stree	C 4.0 0.000	C 4.0 0.000	+ 0.000 V/C					
# 15 Hearst Avenue / Scenic Avenue	в 0.7 0.000	в 0.7 0.000	+ 0.000 V/C	# 39 Bancroft Way / Dana Street	A 0.0 0.000	A 0.0 0.000	+ 0.000 V/C					
# 16 Hearst Avenue / Euclid Avenue	в 16.9 0.572	в 16.9 0.572	+ 0.000 D/V	# 40 Bancroft Way / Telegraph Avenu	в 17.8 0.344	B 17.8 0.344	+ 0.000 D/V					
# 17 Hearst Avenue / Le Roy Avenue		C 2.4 0.000	+ 0.000 V/C	# 41 Bancroft Way / Bowditch Street	в 11.5 0.456	в 11.5 0.456	+ 0.000 V/C					
_	C 24.3 0.871	C 24.3 0.871	+ 0.000 D/V	# 42 Bancroft Way / College Avenue	в 12.3 0.569	в 12.3 0.569	+ 0.000 V/C					
		A 7.4 0.447		# 43 Bancroft Way / Piedmont Avenue	C 20.9 0.825	C 20.9 0.825	+ 0.000 V/C					
# 20 University Avenue / Sixth Stre				# 44 Durant Avenue / Shattuck Avenu	B 14.0 0.643	B 14.0 0.643	+ 0.000 D/V					
# 21 University Avenue / San Pablo				# 45 Durant Avenue / Fulton Street	A 7.0 0.372	A 7.0 0.372	+ 0.000 D/V					
# 22 University Avenue / Martin Lut				# 46 Durant Avenue / Telegraph Aven	B 13.1 0.361	в 13.1 0.361	+ 0.000 D/V					
# 23 University Avenue / Milvia Str				# 47 Durant Avenue / College Avenue	в 13.4 0.335	в 13.4 0.335	+ 0.000 D/V					
# 25 Oniversity Avenue / Milvia Str	D 10.0 U.4/4	D 10.0 U.4/4	, 0.000 D/V	# 48 Durant Avenue / Piedmont Avenu	C 17.6 0.714	C 17.6 0.714	+ 0.000 V/C					
Traffix 7.5.0715 (c) 2002 Dowling 2	Assoc. Licensed	to FEHR & PEERS	, LAFAYETTE	Traffix 7.5.0715 (c) 2002 Dowling	Assoc. Licensed	to FEHR & PEERS	, LAFAYETTE					

Thu Jun 19, 2003 17:23:23 Page 4-3 EXISTING PM Thu Jun 19, 2003 17:23:23 Page 4-4

UC Berkeley LRDP EIR Existing Conditions

PM Peak Hour

Intersection	Base Del/ V/ LOS Veh C	Future Del/ V/ LOS Veh C	Change in
# 49 Channing Way / Shattuck Avenue	A 6.0 0.759	A 6.0 0.759	+ 0.000 D/V
# 50 Channing Way / Fulton Street	C 18.0 0.710	C 18.0 0.710	+ 0.000 V/C
# 51 Channing Way / Telegraph Avenu	B 12.7 0.384	в 12.7 0.384	+ 0.000 D/V
# 52 Channing Way / College Avenue	B 10.4 0.464	B 10.4 0.464	+ 0.000 D/V
# 53 Haste Street / Shattuck Avenue	A 10.0 0.704	A 10.0 0.704	+ 0.000 D/V
# 54 Haste Street / Fulton Street	B 18.9 0.494	B 18.9 0.494	+ 0.000 D/V
# 55 Haste Street / Telegraph Avenu	B 12.5 0.416	B 12.5 0.416	+ 0.000 D/V
# 56 Haste Street / College Avenue	A 9.3 0.405	A 9.3 0.405	+ 0.000 D/V
# 57 Dwight Way / Martin Luther Kin	в 17.6 0.871	в 17.6 0.871	+ 0.000 D/V
# 58 Dwight Way / Shattuck Avenue	B 12.9 0.841	B 12.9 0.841	+ 0.000 D/V
# 59 Dwight Way / Fulton Street	в 14.0 0.554	в 14.0 0.554	+ 0.000 D/V
# 60 Dwight Way / Telegraph Avenue	C 20.2 0.851	C 20.2 0.851	+ 0.000 D/V
# 61 Dwight Way / College Avenue	в 15.2 0.535	в 15.2 0.535	+ 0.000 D/V
# 62 Dwight Way / Piedmont Avenue /	B 13.1 0.417	в 13.1 0.417	+ 0.000 D/V
# 63 Dwight Avenue / Prospect Stree	в 5.7 0.000	в 5.7 0.000	+ 0.000 V/C
# 64 Adeline Street / Ward Avenue /	C 24.4 0.907	C 24.4 0.907	+ 0.000 D/V
# 65 Derby Street / Warring Street	F 185.8 1.399	F 185.8 1.399	+ 0.000 V/C
# 66 Derby Street / Claremont Blvd.	B 15.8 0.718	в 15.8 0.718	+ 0.000 D/V
# 67 Ashby Avenue / Seventh Street	D 51.8 0.958	D 51.8 0.958	+ 0.000 D/V
# 68 Ashby Avenue / San Pablo Avenu	C 31.4 0.739	C 31.4 0.739	+ 0.000 D/V
# 69 Ashby Avenue / Adeline Street	D 36.7 0.522	D 36.7 0.522	+ 0.000 D/V
# 70 Ashby Avenue / Shattuck Avenue	C 30.1 0.746	C 30.1 0.746	+ 0.000 D/V
# 71 Ashby Avenue / Telegraph Avenu	C 25.6 0.925	C 25.6 0.925	+ 0.000 D/V
# 72 Ashby Avenue / College Avenue	C 28.9 0.960	C 28.9 0.960	+ 0.000 D/V

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

Intersection Base Future Change Del/ V/ Del/ V/ in
LOS Veh C LOS Veh C # 73 Ashby Avenue / Claremont Avenu C 22.2 0.658 C 22.2 0.658 + 0.000 D/V # 74 Tunnel Road / SR 13 B 13.6 0.785 B 13.6 0.785 + 0.000 D/V

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

*****	Level Of 2000 HCM Operation		omputation Re (Base Volume ******	-	*****							
Intersection #1 Marin Avenue / San Pablo Avenue												
Cycle (sec): Loss Time (se Optimal Cycle **********	,	4 sec) A	evel Of Servi	(sec/veh):	0.940 50.3 D							
Approach: Movement:	North Bound L - T - R	L - T	- R L -	T - R L	- T - R							
Control:	Protected	Protect	ed Pro	tected	Protected							

Movement:	ш	_	T	_	R	Ш	_	T	_	R	ш	_	T	_	R	ш	_	T	_	R
Control:		Pro	tec	ted			Pro	otec	ted	l		Pro	tec	ted			Pro	tec	ted	
Rights:		I	ncl	ude]	Incl	ude	:		I	ncl	ude			I	ncl	ude	
Min. Green:		0	0		0		0	0		0		0	0		0		0	0		0
Lanes:	1	0	1	1	0	1	0	1	1	0	1	0	1	1	0	1	0	1	1	0
Volume Module	: >	>> C	oun	t D	ate:	5 1	Dec	200	2 <	< 4:	00-	6:00	PM							

Base Vol: 227 1022 114 169 659 18 18 656 137 145 736 154

Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	227	1022	114	169	659	18	18	656	137	145	736	154
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93		0.93		0.93	0.93	0.93	0.93
PHF Volume:	244	1099	123	182	709	19	19	705	147	156	791	166
Reduct Vol:	0	0	0	0	0		0	0	0	0	0	0
Reduced Vol:	244	1099	123	182	709	19	19	705	147	156	791	166
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	244	1099	123	182	709	19	19	705	147	156	791	166
									1			

Saturation F	low Mo	odule:										
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.95	0.94	0.94	0.95	0.95	0.95	0.95	0.93	0.93	0.95	0.93	0.93
Lanes:	1.00	1.80	0.20	1.00	1.95	0.05	1.00	1.65	0.35	1.00	1.65	0.35
Final Sat.:	1805	3199	357	1805	3500	96	1805	2909	607	1805	2908	608
Capacity Ana	lysis	Modul	e:									

Capacity Anal	ysis	Modul	∋:								
Vol/Sat:	0.14	0.34	0.34	0.10	0.20	0.20	0.01	0.24	0.24	0.09 0.27	0.27
Crit Moves:		****		***				***		***	
Green/Cycle:	0.17	0.33	0.33	0.09	0.33	0.33	0.10	0.30	0.30	0.10 0.30	0.30
Volume/Cap:	0.80	1.04	1.04	1.09	0.61	0.61	0.11	0.81	0.81	0.86 0.91	0.91
Delay/Veh:	49.8	67.7	67.7	137.2	26.3	26.3	37.1	33.8	33.8	72.3 41.5	41.5
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
AdjDel/Veh:	49.8	67.7	67.7	137.2	26.3	26.3	37.1	33.8	33.8	72.3 41.5	41.5

DesignQueue: 10 39 4 8 25 1 1 26 5 7 29 6

Existing Conditions PM Peak Hour

Intersection #2 Marin Avenue / The Alameda

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ***************

*****	*****	*****	*****	*****	*****
Cycle (sec):	70		Critical Vol./	Cap. (X):	0.640
Loss Time (sec):	8 (Y	Y+R = 4 sec)	Average Delay	(sec/veh):	14.9
Optimal Cycle:	56		Level Of Servi	.ce:	В
*******	*****	*****	******	************	*****

UC Berkeley LRDP EIR

Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e: ****	70 8 56 ****	(Y+R	= 4 s	sec) 1	Critica Average Level O	l Vol Delay f Serv	./Cap y (sec vice:	(X): c/veh):	****	0.64	40 .9 B
Approach: Movement:	No:	rth Bo - T	und - R	Sou L -	ith Bo - T	ound - R	Ea L -	ast Bo	ound - R	We L -	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	25 0	Permit Inclu 25 1 0	ted de 25 1 0	25 0 1	Permit Inclu 25 L 0	ited ide 25 1 0	23	Permit Inclu 23 1 0	ited ide 23 1 0	23	Permit Inclu 23 1 0	tted ude 23 1 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: MLF Adj: Final Vol.:	e: >> 316 1.00 316 1.00 0.91 347 0 347 1.00 1.00	Count 322 1.00 322 1.00 0.91 354 0 354 1.00 1.00	Date: 1 1.00 1 1.00 0.91 1 0 1.00 1.00 1.00	19 No 43 1.00 43 1.00 0.91 47 0 47 1.00 1.00	178 1.00 178 1.00 0.91 196 0 196 1.00 1.00	02 << 4 77 1.00 77 1.00 0.91 85 0 85 1.00 1.00	:00 - 50 1.00 50 1.00 0.91 55 0 55 1.00 1.00	6:00 534 1.00 534 1.00 0.91 587 0 587 1.00 1.00 587	PM 193 1.00 193 1.00 0.91 212 0 212 1.00 1.00 212	17 1.00 17 1.00 0.91 19 0 19 1.00 1.00	480 1.00 480 1.00 0.91 527 0 527 1.00 1.00 527	69 1.00 69 1.00 0.91 76 0 76 1.00 1.00
Saturation F. Sat/Lane: Adjustment: Lanes: Final Sat.:	low Mo 1900 0.64 0.99 1205	1900 0.64 1.00 1228	1900 0.64 0.01 4	1900 0.74 0.29 408	1900 0.74 1.19 1689	1900 0.74 0.52 731	1900 0.81 0.13 197	1900 0.81 1.37 2103	1900 0.81 0.50 760	1900 0.86 0.06 98	1900 0.86 1.70 2772	1900 0.86 0.24 398
Capacity Ana Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	0.29 0.42 0.68 20.2 1.00 20.2	Modul 0.29 **** 0.42 0.68 20.2 1.00 20.2 8	e: 0.29 0.42 0.68 20.2 1.00 20.2	0.12 0.42 0.27 13.8 1.00 13.8	0.12 0.42 0.27 13.8 1.00 13.8 4	0.12 0.42 0.27 13.8 1.00 13.8	0.28 0.50 0.56 13.6 1.00 13.6	0.28 **** 0.50 0.56 13.6 1.00 13.6	0.28 0.50 0.56 13.6 1.00	0.19 0.50 0.38 11.5 1.00 11.5	0.19 0.50 0.38 11.5 1.00 11.5	0.19 0.50 0.38 11.5 1.00 11.5

PM Peak Hour

Level	Of	Service	Computation	Report

Optimal Cycle: 99 Level Of Service:

Rights:

Intersection #3 Gil		/ Sixth Street	*****
<pre>Cycle (sec): Loss Time (sec):</pre>	70 8 (Y+R =	Critical Vol./Cap. (X): 4 sec) Average Delay (sec/veh):	0.934 74.8

2000 HCM Operations Method (Base Volume Alternative)

************************ Approach: North Bound South Bound East Bound West Bound L - T - R L - T - R L - T - R Movement: -----|-----|------|------| Permitted Permitted Permitted Include Include Include

Min. Green: 19 19 19 19 19 19 19 19 19 19 19 19 19 Lanes: 0 0 1! 0 0 0 1 0 1 0 0 0 1! 0 0 0 1! 0 0 ______ Volume Module: >> Count Date: 5 Dec 2002 << 4:00-6:00 PM Base Vol: 346 46 159 24 47 52 28 497 109 53 489 11 Initial Bse: 346 46 159 24 47 52 28 497 109 53 489 11 PHF Volume: 372 49 171 26 51 56 30 534 117 57 526 12

Final Vol.: 372 49 171 26 51 56 30 534 117 57 526 12 -----| Saturation Flow Module: Adjustment: 0.70 0.70 0.70 0.78 0.78 0.78 0.94 0.94 0.94 0.90 0.90 0.90

Lanes: 0.63 0.08 0.29 0.39 0.76 0.85 0.04 0.79 0.17 0.10 0.88 0.02 Final Sat.: 832 111 383 575 1126 1246 79 1406 308 164 1509 34

_____| Capacity Analysis Module: Vol/Sat: 0.45 0.45 0.45 0.04 0.04 0.04 0.38 0.38 0.38 0.35 0.35 Crit Moves: **** Green/Cycle: 0.31 0.31 0.31 0.31 0.31 0.63 0.63 0.63 0.63 0.63 0.63 Volume/Cap: 1.42 1.42 1.42 0.14 0.14 0.14 0.60 0.60 0.60 0.55 0.55

Delay/Veh: 227.5 228 227.5 17.6 17.6 17.6 10.2 10.2 10.2 9.5 9.5 AdjDel/Veh: 227.5 228 227.5 17.6 17.6 17.6 10.2 10.2 10.2 9.5 9.5 9.5 DesignQueue: 11 1 5 1 1 2 0 8 2 1 8 0

Intersection #4 Gilman Street / San Pablo Avenue

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

Level Of Service Computation Report

2000 HCM Operations Method (Base Volume Alternative)

************************ 42.2 Loss Time (sec): 12 (Y+R = 5 sec) Average Delay (sec/veh): Optimal Cycle: 82 Level Of Service:

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Protected Protected Permitted Rights: Include Include Include Include Min. Green: 4 35 35 4 35 35 31 31 31 31 31 Lanes: 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 0 0 1! 0 0 -----| Volume Module: >> Count Date: 5 Dec 2002 << 4:00-6:00 PM Base Vol: 140 1057 87 126 830 112 174 345 155 40 233 82 Initial Bse: 140 1057 87 126 830 112 174 345 155 40 233 82 PHF Volume: 149 1124 93 134 883 119 185 367 165 43 248 87 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 149 1124 93 134 883 119 185 367 165 43 248 87 Final Vol.: 149 1124 93 134 883 119 185 367 165 43 248 87 _____| Saturation Flow Module: Adjustment: 0.95 0.94 0.94 0.95 0.93 0.93 0.59 0.59 0.59 0.80 0.80 0.80

Final Sat.: 1805 3299 272 1805 3124 421 580 1150 516 172 999 352 -----| Capacity Analysis Module: Vol/Sat: 0.08 0.34 0.34 0.07 0.28 0.28 0.32 0.32 0.32 0.25 0.25 Volume/Cap: 0.55 0.97 0.97 0.50 0.77 0.77 0.87 0.87 0.87 0.68 0.68 0.68 Delay/Veh: 47.2 52.0 52.0 45.4 32.7 32.7 42.2 42.2 42.2 33.4 33.4 33.4

Lanes: 1.00 1.85 0.15 1.00 1.76 0.24 0.52 1.02 0.46 0.11 0.66 0.23

AdjDel/Veh: 47.2 52.0 52.0 45.4 32.7 32.7 42.2 42.2 42.2 33.4 33.4 33.4 DesignQueue: 7 44 4 6 33 4 7 13 6 2 9 3

Existing Conditions

PM Peak Hour

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

	0000					Computa				-)		
****						(Base '					****	*****
Intersection							****	****	****	****	****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e:	8 52	(Y+R	= 4 s	sec)	Average Level O:	Delay f Serv	y (se vice:	c/veh):		11	.5 B
Approach: Movement:	L -	- T	- R	L -	- Т	- R	L -	- T	- R	L -	- T	- R
Control:		Permit	ted	·	Permi	tted		Permi	tted		Permit	tted
Rights:		Inclu	de		Incl	ude		Incl	ude		Incl	ıde
Rights: Min. Green:	17	17	17	17	17	17	27	27	27	27	27	27
Lanes:	1 (0 1	1 0	1 () 1	1 0	0 :	1 0	0 1	0 (1!	0 0
Volume Module												
Base Vol:						26				29	214	228
Growth Adj:	1.00	1.00	1.00						1.00		1.00	1.00
Initial Bse:				112				253		29		228
User Adj:									1.00		1.00	
PHF Adj:												
PHF Volume:	171	689	15	120	477		74			31		245
Reduct Vol:				0	0					0		0
Reduced Vol:					477		74					
PCE Adj:											1.00	
MLF Adj:	1 00	1 00	1 00	1.00	1 00	1.00	1.00	1 00	1.00			
Final Vol.:				120			74			31		
Saturation Fi			- 1	1		1	1		1	1		ı
Sat/Lane:			1000	1 9 0 0	1 9 0 0	1900	1 9 0 0	1 9 0 0	1 0 0 0	1000	1900	1900
Adjustment:												
Lanes:												
Final Sat.:												831
rinai sat.:	000	3322	//	0.02	3303	190						
Capacity Anal				1-3						1-3		
Vol/Sat:				0 10	0 14	0 14	0 22	0 23	0 03	0 30	0 30	0.30
Crit Moves:			0.20	0.10	0.14	0.14	0.23	0.23	0.03	0.30	****	
Green/Cycle:			0.50	0 50	0 50	0.50	0 42	0 42	0.42	0 42		
Volume/Cap:								0.42			0.42	
vorume/cap:	U.JJ	0.04	0.04	0.02	0.24	0.24	0.04	0.04	0.00	0.70	0.70	0.70

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #6 Cedar Street / Martin Luther King Way **************** Cycle (sec): 65 Critical Vol./Cap. (X): 0.844 25.1 Loss Time (sec): 8 (Y+R = 5 sec) Average Delay (sec/veh): Optimal Cycle: 66 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Permitted Permitted Permitted Include Include Include Include Rights: Min. Green: 20 20 20 20 20 20 20 20 20 20 20 20 20 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 -----| Volume Module: >> Count Date: 6 Nov 2002 << 4:00 - 6:00 PM Base Vol: 53 614 65 30 541 12 20 297 57 68 296 65 Initial Bse: 53 614 65 30 541 12 20 297 57 68 296 65 PHF Volume: 56 646 68 32 569 13 21 313 60 72 312 68 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 56 646 68 32 569 13 21 313 60 72 312 68 Final Vol.: 56 646 68 32 569 13 21 313 60 72 312 68 -----| Saturation Flow Module: Adjustment: 0.92 0.92 0.92 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.80 0.80 Lanes: 0.07 0.84 0.09 0.05 0.93 0.02 0.05 0.80 0.15 0.16 0.69 0.15 Final Sat.: 126 1464 155 92 1663 37 96 1425 274 240 1043 229 -----| Capacity Analysis Module: Vol/Sat: 0.44 0.44 0.44 0.34 0.34 0.34 0.22 0.22 0.22 0.30 0.30 0.30 Crit Moves: **** Green/Cycle: 0.54 0.54 0.54 0.54 0.54 0.54 0.31 0.31 0.31 0.31 0.31 Volume/Cap: 0.82 0.82 0.82 0.64 0.64 0.64 0.71 0.71 0.71 0.97 0.97 0.97 Delay/Veh: 16.6 16.6 16.6 10.6 10.6 10.6 27.6 27.6 27.6 57.2 57.2 57.2 AdjDel/Veh: 16.6 16.6 16.6 10.6 10.6 27.6 27.6 27.6 57.2 57.2 57.2 DesignQueue: 1 12 1 1 10 0 1 8 2 2 8 2

Delay/Veh: 8.2 7.8 7.8 8.1 7.3 7.3 16.0 16.0 12.2 19.7 19.7 19.7

AdjDel/Veh: 8.2 7.8 7.8 8.1 7.3 7.3 16.0 16.0 12.2 19.7 19.7 19.7 DesignQueue: 3 12 0 2 8 0 2 6 1 1 5 6

Intersection #8 Cedar Street / Oxford Street

UC Berkeley LRDP EIR

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

		Level Of Service Computation Report	
2000 но	CM	Operations Method (Base Volume Alternative)	
******	* * *	*****************	

Intersection #7 Cedar Street / Shattuck Avenue ************************ Cycle (sec): 65 Critical Vol./Cap. (X): 0.649 Loss Time (sec): 8 (Y+R = 5 sec) Average Delay (sec/veh): 13.9
Optimal Cycle: 50 Level Of Service: B

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Permitted Permitted Permitted Include Include Include Rights: Min. Green: 20 20 20 20 20 20 22 22 22 22 22 22 Lanes: 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 ______ Volume Module: >> Count Date: 6 Nov 2002 << 4:00 - 6:00 PM

Base Vol: 138 795 56 144 619 72 86 275 67 59 341 150 Initial Bse: 138 795 56 144 619 72 86 275 67 59 341 150 Final Vol.: 152 874 62 158 680 79 95 302 74 65 375 165

Saturation Flow Module: Adjustment: 0.36 0.94 0.94 0.31 0.93 0.93 0.18 0.97 0.97 0.36 0.95 0.95 Lanes: 1.00 1.87 0.13 1.00 1.79 0.21 1.00 0.80 0.20 1.00 0.69 0.31 Final Sat.: 678 3339 235 583 3182 370 346 1483 361 678 1259 554 -----| Capacity Analysis Module:

-----|

Vol/Sat: 0.22 0.26 0.26 0.27 0.21 0.21 0.27 0.20 0.20 0.10 0.30 0.30 Crit Moves: **** Green/Cycle: 0.53 0.53 0.53 0.53 0.53 0.34 0.34 0.34 0.34 0.34 0.34 Volume/Cap: 0.42 0.49 0.49 0.51 0.40 0.40 0.81 0.60 0.60 0.28 0.88 0.88 Delay/Veh: 5.9 3.3 3.3 8.3 2.9 2.9 62.6 22.1 22.1 18.8 36.7 36.7 AdjDel/Veh: 5.9 3.3 3.3 8.3 2.9 2.9 62.6 22.1 22.1 18.8 36.7 36.7

DesignOueue: 3 16 1 3 12 1 2 8 2 2 10 4

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)

Existing Conditions

PM Peak Hour

****************** 21.8 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh):
Optimal Cycle: 56 Level Of Service:

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 16 16 16 16 16 16 16 16 16 16 16 16 16 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 1! 0 0 0 1! 0 0 0 1! 0 0 -----| Volume Module: >> Count Date: 6 Nov 2002 << 4:00 - 6:00 PM Base Vol: 91 464 81 17 196 17 18 307 57 61 340 31 Initial Bse: 91 464 81 17 196 17 18 307 57 61 340 31 Final Vol.: 100 510 89 19 215 19 20 337 63 67 374 34 _____| Saturation Flow Module: Adjustment: 0.90 0.90 0.90 0.93 0.93 0.95 0.95 0.95 0.88 0.88 0.88

Final Sat.: 244 1244 217 131 1513 131 85 1453 270 236 1318 120 -----| Capacity Analysis Module: Vol/Sat: 0.41 0.41 0.14 0.14 0.14 0.23 0.23 0.23 0.28 0.28 0.28 Crit Moves: **** Green/Cycle: 0.49 0.49 0.49 0.49 0.49 0.49 0.38 0.38 0.38 0.38 0.38 Volume/Cap: 0.84 0.84 0.84 0.29 0.29 0.29 0.61 0.61 0.61 0.75 0.75 Delay/Veh: 24.5 24.5 24.5 10.8 10.8 10.8 20.3 20.3 20.3 25.2 25.2 25.2

Lanes: 0.14 0.73 0.13 0.07 0.86 0.07 0.05 0.80 0.15 0.14 0.79 0.07

AdjDel/Veh: 24.5 24.5 24.5 10.8 10.8 10.8 20.3 20.3 20.3 25.2 25.2 25.2 DesignQueue: 2 10 2 0 4 0 0 8 1 2 9 1

EXISTING PM Thu Jun 19, 2003 17:23:23 Page 14-1 UC Berkeley LRDP EIR

Existing Conditions

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ***********************************												
Intersection #9 Cedar Street / Euclid Avenue												
Cycle (sec): 60												
Approach:	North Bound	South Bound	East Bound	West Bound								
Movement:	L - T - R	L - T - R	L - T - R	L - T - R								
Control:	Permitted	Permitted	Permitted	Permitted								
Rights:	Include	Include	Include	Include								
Min. Green:	17 17 17	17 17 17	17 17 17	17 17 0								
Lanes:	0 0 1! 0 0	0 0 1! 0 0	0 0 1! 0 0	0 1 0 0 0								

Volume Module: >> Count Date: 6 Nov 2002 << 4:00 - 6:00 PM Base Vol: 90 226 29 7 127 44 51 180 49 18 91 0 Initial Bse: 90 226 29 7 127 44 51 180 49 18 91 0 PHF Volume: 100 251 32 8 141 49 57 200 54 20 101 0

Final Vol.: 100 251 32 8 141 49 57 200 54 20 101 0 -----|

Saturation Flow Module:

Adjustment: 0.86 0.86 0.86 0.95 0.95 0.95 0.90 0.90 0.90 0.93 0.93 1.00 Lanes: 0.26 0.66 0.08 0.04 0.71 0.25 0.18 0.65 0.17 0.17 0.83 0.00 Final Sat.: 427 1072 138 71 1291 447 313 1105 301 291 1470 0 -----| Capacity Analysis Module: Vol/Sat: 0.23 0.23 0.23 0.11 0.11 0.11 0.18 0.18 0.18 0.07 0.07 0.00 Crit Moves: **** Green/Cycle: 0.49 0.49 0.49 0.49 0.49 0.49 0.38 0.38 0.38 0.38 0.00 Volume/Cap: 0.48 0.48 0.48 0.22 0.22 0.22 0.48 0.48 0.48 0.18 0.18 0.00 Delay/Veh: 10.7 10.7 10.7 8.9 8.9 8.9 14.7 14.7 14.7 12.6 12.6 0.0

AdjDel/Veh: 10.7 10.7 10.7 8.9 8.9 8.9 14.7 14.7 14.7 12.6 12.6 0.0 DesignQueue: 2 4 1 0 2 1 1 4 1 0 2 0

PM Peak Hour Level Of Service Computation Report

2000 HCM 4-Way Stop Method (Base Volume Alternative)

Intersection										+++++	****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle	ec):	100	(Y+R	= 4 :	sec) A	ritica verage	l Vol	./Cap.	(X):		0.79	96 .7
Approach: Movement:	Nor	th Bo	und – R	Son L	ith Bo - T	und - R	Ea L -	ast Bo - T	ound - R	We L -	st Bo	ound - R
Control: Rights: Min. Green: Lanes:	. St 0 0 0	op Si Inclu 0 1!	gn de 0	0 0	top Si Inclu 0 1!	.gn ide 0	0 0 (top Si Inclu 0 0 1!	ign ide 0	0 0 0 0	op Si Inclu 0 1!	.gn ide 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	162 1.00 162 1.00 0.85 191 0 191 1.00 1.00	Count 65 1.00 65 1.00 0.85 76 0 76 1.00 1.00 76	Date: 250 1.00 250 1.00 0.85 294 0 294 1.00 1.00	4 Dec 33 1.00 33 1.00 0.85 39 0 39 1.00 1.00 39	2 2002 30 1.00 30 1.00 0.85 35 0 35 1.00 1.00	1.00 8 1.00 0.85 9 0 9 1.00 1.00	00-6:(3 1.00 3 1.00 0.85 4 0 4 1.00 1.00	00 PM 159 1.00 159 1.00 0.85 187 0 187 1.00 1.00	45 1.00 45 1.00 0.85 53 0 53 1.00 1.00	22 1.00 22 1.00 0.85 26 0 26 1.00 1.00	111 1.00 111 1.00 0.85 131 0 131 1.00 1.00	25 1.00 25 1.00 0.85 29 0 29 1.00 1.00
Saturation F. Adjustment: Lanes: Final Sat.:	low Mc 1.00 0.34 239	dule: 1.00 0.14 96	1.00 0.52 370	1.00 0.47 248	1.00 0.42 226	1.00 0.11 60	1.00	1.00 0.77 445	1.00 0.22 126	1.00 0.14 77	1.00 0.70 389	1.00 0.16 88
Capacity Ana. Vol/Sat: Crit Moves: Delay/Veh: Delay Adj: AdjDel/Veh: LOS by Move: ApproachDel: Delay Adj: ApprAdjDel: LOS by Appr: ***********************************	lysis 0.80 23.3 1.00 23.3 C	Modul 0.80 23.3 1.00 23.3 C 23.3 1.00 23.3 C	e: 0.80 **** 23.3 1.00 23.3 C	0.16 **** 9.9 1.00 9.9 A	0.16 9.9 1.00 9.9 A 9.9 1.00 9.9	0.16 9.9 1.00 9.9 A	0.42 **** 12.3 1.00 12.3 B	0.42 12.3 1.00 12.3 B 12.3 1.00 12.3 B	0.42 12.3 1.00 12.3 B	0.34 11.5 1.00 11.5 B	0.34 11.5 1.00 11.5 B 11.5 1.00 11.5 B	0.34 **** 11.5 1.00 11.5 B

Existing Conditions

EXISTING PM Thu Jun 19, 2003 17:23:23

Page 16-1

______ UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)	Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)								
Intersection #11 Hearst Avenue / Shattuck Avenue	Intersection #12 Hearst Avenue / Oxford Avenue								
Cycle (sec): 75	Cycle (sec): 75								
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R								
Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Min. Green: 22	Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Min. Green: 19 19 19 19 22 22 22 22 22 22 Lanes: 1 0 0 1 0 1 0 0 1 0 0 1 0 <								
Volume Module: >> Count Date: 12 Nov 2002 << 4:00 - 6:00 PM Base Vol: 34 715 63 117 537 54 67 232 20 122 321 136 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 12 Nov 2002 << 4:00 - 6:00 PM Base Vol: 80 743 315 30 458 25 23 267 115 313 478 52 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0								
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190								
Capacity Analysis Module: Vol/Sat: 0.05 0.24 0.24 0.26 0.18 0.18 0.13 0.13 0.13 0.24 0.24 0.24 Crit Moves: **** Green/Cycle: 0.41 0.41 0.41 0.41 0.41 0.41 0.39 0.39 0.39 0.39 0.39	Capacity Analysis Module: Vol/Sat: 0.12 0.33 0.33 0.21 0.21 0.21 0.14 0.14 0.14 0.54 0.54 0.54 Crit Moves: **** Green/Cycle: 0.35 0.35 0.35 0.35 0.35 0.35 0.46 0.46 0.46 0.46 0.46 0.46								
Volume/Cap: 0.13 0.59 0.59 0.64 0.45 0.45 0.34 0.34 0.34 0.61 0.61 0.61 Delay/Veh: 8.5 11.1 11.1 23.9 9.7 9.7 17.1 17.1 17.1 21.1 21.1 21.1 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume/Cap: 0.34 0.93 0.93 0.60 0.60 0.60 0.30 0.30 0.30 1.18 1.18 1.18 Delay/Veh: 20.7 36.3 36.3 21.9 21.9 21.9 13.2 13.2 13.2 114.4 114 114.4 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0								
Designqueue: 1 20 2 3 15 2 2 / 1 4 9 4	DesignQueue: 2 25 10 1 14 1 1 / 5 6 12 1								

Existing Conditions

UC Berkeley LRDP EIR

PM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #13 Hearst Avenue / Spruce Street ***************** Average Delay (sec/veh): 2.4 Worst Case Level Of Service: C *********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____| Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Rights: Include Includ -----| Volume Module: >> Count Date: 12 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 0 0 11 0 48 34 579 0 0 792 13 Initial Bse: 0 0 0 11 0 48 34 579 0 0 792 13 PHF Volume: 0 0 0 12 0 51 36 616 0 0 843 14 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 0 0 0 12 0 51 36 616 0 0 843 14 -----| Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.8 xxxx 6.9 4.1 xxxx xxxxx xxxx xxxx xxxxx FollowUpTim:xxxxx xxxx xxxxx 3.5 xxxx 3.3 2.2 xxxx xxxxx xxxxx xxxxx ______| Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 1230 xxxx 428 856 xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxx xxxxx 173 xxxx 581 793 xxxx xxxxx xxxx xxxx xxxx Move Cap.: xxxx xxxx xxxx 167 xxxx 581 793 xxxx xxxxx xxxx xxxx xxxxx -----| Level Of Service Module: LOS by Move: * * * * * A * * * * Movement: LT - LTR - RT Shrd StpDel:xxxxx xxxxx xxxxx xxxxx 15.8 xxxxx 9.8 xxxx xxxxx xxxxx xxxxx xxxxx Shared LOS: * * * * C * A * * * *

EXISTING PM Thu Jun 19, 2003 17:23:23 Page 18-1

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

Level Of Service Computation Report

2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #14 Hearst Avenue / Arch Street / Le Conte Avenue ******************** Average Delay (sec/veh): 1.6 Worst Case Level Of Service: B *********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R -----| -----|----|-----|------| Volume Module: >> Count Date: 12 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 0 0 6 0 135 146 439 0 0 668 6 Initial Bse: 0 0 0 6 0 135 146 439 0 0 668 6 PHF Volume: 0 0 0 6 0 145 157 472 0 0 718 6 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 0 0 0 6 0 145 157 472 0 0 718 6 -----|----|-----|------| Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.8 xxxx 6.9 4.1 xxxx xxxxx xxxxx xxxx xxxxx FollowUpTim:xxxxx xxxx xxxxx 3.5 xxxx 3.3 2.2 xxxx xxxxx xxxx xxxx xxxxx Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 1272 xxxx 362 725 xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxx xxxxx 162 xxxx 640 887 xxxx xxxxx xxxx xxxx xxxxx Move Cap.: xxxx xxxx xxxxx 140 xxxx 640 887 xxxx xxxxx xxxx xxxx xxxxx -----| Level Of Service Module: Stopped Del:xxxxx xxxx xxxxx xxxxx xxxxx xxxxx 9.9 xxxx xxxxx xxxxx xxxxx xxxxx LOS by Move: * * * * * A * * * * Movement: LT - LTR - RT Shared LOS: * * * * B * * * * * * * ApproachDel: xxxxx 13.9 xxxxx xxxx ApproachLOS: * B * * *

ApproachDel: xxxxx 15.8 xxxxx xxxx ApproachLOS: * C * *

Existing Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #15 Hearst Avenue / Scenic Avenue ******************** Average Delay (sec/veh): 0.7 Worst Case Level Of Service: B *********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Rights: Include Include Include Include Lanes: 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 1 1 0 -----| Volume Module: >> Count Date: 12 Nov 2002 << 4:00-6:00 PM Base Vol: 0 0 0 0 109 0 437 0 0 566 54 Initial Bse: 0 0 0 0 109 0 437 0 0 566 54 PHF Volume: 0 0 0 0 0 117 0 470 0 0 609 58 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 0 0 0 0 0 117 0 470 0 0 609 58 -----|-----|------| Critical Gap Module: -----|----|-----| Capacity Module: Cnflict Vol: xxxx xxxx xxxxx xxxx xxxx 333 xxxx xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxxx xxxxx xxxx xxxx 668 xxxx xxxx xxxxx xxxx xxxx xxxx xxxxx _____| Level Of Service Module: LOS by Move: * * * * * B * * * * * * Movement: LT - LTR - RT

EXISTING PM Thu Jun 19, 2003 17:23:23 Page 20-1

UC Berkeley LRDP EIR
Existing Conditions
PM Peak Hour

Level Of Service Computation Report

Level Or Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ***********************************										
Intersection #16 Hearst Avenue / Euclid Avenue										
Cycle (sec): 70										
Approach: North Bound South Bound Movement: L - T - R L - T -	R L $ T$ $ R$ L $ T$ $ R$									
Control: Permitted Permitted Rights: Include Include Min. Green: 0 0 0 25 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0	Prot+Permit Permitted Include Include 25 5 16 0 16 16 16 0 1 0 1 0 0 0 0 1! 0 0									
Initial Bse: 4 0 1 57 0 1 User Adj: 1.00 1.00 1.00 1.00 1.00 1. PHF Adj: 0.96 0.96 0.96 0.96 0.96 0. PHF Volume: 4 0 1 59 0 1 Reduct Vol: 0 0 0 0 0 0 Reduced Vol: 4 0 1 59 0 1 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.01 MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.	4:00-6:00 PM 115 120 307 0 2 503 23 100 1.00 1.00 1.00 1.00 1.00 115 120 307 0 2 503 23 100 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00 96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 20 125 320 0 2 524 24 00 1.00 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00 20 125 320 0 2 524 24 00 1.00 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00 20 2 524 24 24 24 2524 24									
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 19 Adjustment: 0.88 1.00 0.88 0.83 1.00 0. Lanes: 0.80 0.00 0.20 0.33 0.00 0.	800 1900 1900 1900 1900 1900 1900 83 0.95 1.00 1.00 0.99 0.99 0.99 67 1.00 1.00 0.00 0.01 0.95 0.04 955 1805 1900 0 7 1799 82									
Capacity Analysis Module:	11 0.07 0.17 0.00 0.29 0.29 0.29									
Volume/Cap: 0.01 0.00 0.01 0.28 0.00 0. Delay/Veh: 12.2 0.0 12.2 14.8 0.0 14 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1. AdjDel/Veh: 12.2 0.0 12.2 14.8 0.0 14	41 0.54 0.54 0.40 0.40 0.40 28 0.13 0.31 0.00 0.73 0.73 0.73 1.8 8.2 9.7 0.0 23.9 23.9 23.9 00 1.00 1.00 1.00 1.00 1.00 1.8 8.2 9.7 0.0 23.9 23.9 23.9 3 2 6 0 0 13 1									

Existing Conditions

PM Peak Hour

Intersection #17 Hearst Avenue / Le Roy Avenue ****************** Average Delay (sec/veh): 2.4 Worst Case Level Of Service: C ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Rights: Include Include Include Include Lanes: 0 0 0 0 0 0 0 1! 0 0 0 1 0 0 0 0 1 0 -----| Volume Module: >> Count Date: 5 Dec 2002 << 4:00-6:00 PM Base Vol: 0 0 0 12 0 56 38 355 0 0 523 21 Initial Bse: 0 0 0 12 0 56 38 355 0 0 523 21 PHF Volume: 0 0 0 13 0 61 41 386 0 0 568 23 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 0 0 0 13 0 61 41 386 0 0 568 23 -----|-----|------| Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.4 xxxx 6.2 4.1 xxxx xxxxx xxxx xxxx xxxxx FollowUpTim:xxxxx xxxxx xxxxx 3.5 xxxx 3.3 2.2 xxxx xxxxx xxxxx xxxxx xxxxx ______| Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 1048 xxxx 580 591 xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxx xxxx 254 xxxx 518 994 xxxx xxxxx xxxx xxxx xxxx Move Cap.: xxxx xxxx xxxx 246 xxxx 518 994 xxxx xxxxx xxxx xxxx xxxxx _____| Level Of Service Module: Stopped Del:xxxxx xxxx xxxxx xxxxx xxxxx xxxxx 8.8 xxxx xxxxx xxxxx xxxxx xxxxx LOS by Move: * * * * * A * * * * Movement: LT - LTR - RT Shrd StpDel:xxxxx xxxxx xxxxx xxxxx 15.0 xxxxx 8.8 xxxx xxxxx xxxxx xxxxx xxxxx Shared LOS: * * * * C * A * * * * *

EXISTING PM Thu Jun 19, 2003 17:23:23 Page 22-1

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

Level Of Service Computation Report

2000 H			/olume Alternativ	
Intersection #18 He	earst Avenue /	Gayley Road /	LaLoma Avenue	
Cycle (sec): Loss Time (sec): Optimal Cycle: ************************************	8 (Y+R = 4)	sec) Average	Vol./Cap. (X): Delay (sec/veh): Service:	24.3
Approach: Nort	h Bound S T - R L	South Bound - T - R	East Bound L - T - R	West Bound L - T - R
Control: Pe Rights: I Min. Green: 18 Lanes: 0 0	ermitted include 18 18 1 1! 0 0 0	Permitted Include .8 18 18 0 1! 0 0	Permitted Include 17 17 17 0 0 1! 0 0	Permitted Include 17 17 17 0 1 0 0 1
Volume Module: >> C Base Vol: 318 Growth Adj: 1.00 1 Initial Bse: 318 User Adj: 1.00 1 PHF Adj: 0.91 0 PHF Volume: 349 Reduct Vol: 0 Reduced Vol: 349 PCE Adj: 1.00 1 MLF Adj: 1.00 1 Final Vol.: 349	Count Date: 5 D 288 19 .00 1.00 1.0 288 19 .00 1.00 1.0 .91 0.91 0.9 316 21 .00 1.00 1.0 .00 1.00 1.0 316 21	Dec 2002 << 4:0 4 203 49 10 1.00 1.00 4 203 49 10 1.00 1.00 1 0.91 0.91 4 223 54 0 0 0 0 1.00 1.00 1 0.01 0.01 0 1.00 1.0	00-6:00 PM 28 52 288 1.00 1.00 1.00 28 52 288 1.00 1.00 1.00 0.91 0.91 0.91 31 57 316 0 0 0 31 57 316 1.00 1.00 1.00 1.00 1.00 31 57 316	69 197 40 1.00 1.00 1.00 69 197 40 1.00 1.00 1.00 0.91 0.91 0.91 76 216 44 0 0 0 76 216 44 1.00 1.00 1.00 1.00 1.00 76 216 44
Saturation Flow Mod Sat/Lane: 1900 1 Adjustment: 0.69 0 Lanes: 0.51 0 Final Sat.: 667	Rule: .900 1900 190 0.69 0.69 0.9 0.46 0.03 0.0 604 40 2	00 1900 1900 07 0.97 0.97 02 0.79 0.19 19 1457 352	1900 1900 1900 0.86 0.86 0.86 0.08 0.14 0.78 124 231 1277	1900 1900 1900 0.82 0.82 0.85 0.26 0.74 1.00 403 1151 1615
Capacity Analysis M Vol/Sat: 0.52 0 Crit Moves: *	Module: 0.52 0.52 0.1	5 0.15 0.15	0.25 0.25 0.25	0.19 0.19 0.03
Green/Cycle: 0.54 0 Volume/Cap: 0.97 0 Delay/Veh: 42.8 4 User DelAdj: 1.00 1 AdjDel/Veh: 42.8 4 DesignQueue: 7	0.97 0.97 0.2 22.8 42.8 9. 00 1.00 1.0 42.8 42.8 9.	88 0.28 0.28 5 9.5 9.5 00 1.00 1.00 5 9.5 9.5 0 4 1	$\begin{array}{ccccc} 0.54 & 0.54 & 0.54 \\ 13.9 & 13.9 & 13.9 \\ 1.00 & 1.00 & 1.00 \\ 13.9 & 13.9 & 13.9 \\ & 1 & 1 & 7 \end{array}$	12.1 12.1 8.8 1.00 1.00 1.00 12.1 12.1 8.8 2 5 1

UC Berkeley LRDP EIR

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #19 Berkeley Way / Oxford Street ******************* Cycle (sec): 75 Critical Vol./Cap. (X): 0.447 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 7.4
Optimal Cycle: 46 Level Of Service: A Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Min. Green: 18 18 18 18 18 18 20 20 20 20 20 20 Lanes: 1 0 1 1 0 1 0 1 1 0 0 0 1! 0 0 1 0 0 1 0 -----| Base Vol: 48 1039 3 4 890 22 72 2 51 29 18 42

Control: Permitted Permitted Permitted Rights: Include Include Include Include Volume Module: >> Count Date: 12 Nov 2002 << 4:00 - 6:00 PM Initial Bse: 48 1039 3 4 890 22 72 2 51 29 18 42 PHF Volume: 51 1105 3 4 947 23 77 2 54 31 19 45

Final Vol.: 51 1105 3 4 947 23 77 2 54 31 19 45 -----| Saturation Flow Module: Adjustment: 0.26 0.95 0.95 0.22 0.95 0.95 0.76 0.76 0.76 0.78 0.90 0.90 Lanes: 1.00 1.99 0.01 1.00 1.95 0.05 0.57 0.02 0.41 1.00 0.30 0.70 Final Sat.: 496 3600 10 410 3509 87 833 23 590 1482 510 1190

-----| Capacity Analysis Module: Vol/Sat: 0.10 0.31 0.31 0.01 0.27 0.27 0.09 0.09 0.09 0.02 0.04 0.04 Crit Moves: **** Green/Cycle: 0.67 0.67 0.67 0.67 0.67 0.67 0.29 0.29 0.29 0.29 0.29 Volume/Cap: 0.15 0.46 0.46 0.02 0.40 0.40 0.32 0.32 0.32 0.07 0.13 0.13 Delay/Veh: 4.9 6.2 6.2 4.2 5.8 5.8 21.5 21.5 21.5 19.6 19.9 19.9 AdjDel/Veh: 4.9 6.2 6.2 4.2 5.8 5.8 21.5 21.5 21.5 19.6 19.9 19.9

DesignOueue: 1 16 0 0 14 0 2 0 2 1 1 1

Existing Conditions PM Peak Hour

Level Of Service Computation Report

2000 HCM Operations Method (Base Volume Alternative) ******************

± . 1 1	1100 77			/ 0:									
Intersection							****	*****	****	****	*****		
Cycle (sec):	12	8		(Critica	al Vol	./Cap	(X):		1.0	72		
Loss Time (s	ec): 1	6 (Y+R	= 5 :	sec) i	Average	e Dela	y (se	c/veh):		91.2			
Optimal Cycl	e: 18	0		1	Level (of Ser	vice:		F				
******	*****									*****			
Approach:					ound - R			ound - R					
Movement:													
Control:	Prot+Pe									rotect			
Rights:	Incl	ude		Incl	ıde		Incl	ıde		Incl			
	6 23	23	0	23	23	6	15	15	6	15	15		
Lanes:	1 0 1	0 1	1 (0 1	0 1	1	0 1	1 0	1 (0 1	1 0		
Volume Modul	e: >> Coun	t Date:	: 4 De		2 << 4	:00-6:	00 PM						
Base Vol:	343 353	48	101	239	465	163	827		42	1205	33		
Growth Adj:		1.00	1.00	1.00	1.00		1.00		1.00	1.00			
Initial Bse:			101	239	465	163	827	212		1205	33		
User Adj:				1.00	1.00		1.00	1.00		1.00			
PHF Adj:				0.96	0.96		0.96	0.96		0.96	0.96		
PHF Volume:	357 368		105	249	484	170	861	221		1255	34		
Reduct Vol:	0 0		0	0	0	0	0	0	0	0	-		
Reduced Vol:			105	249	484	170	861	221		1255	34		
PCE Adj: MLF Adi:	1.00 1.00			1.00	1.00		1.00			1.00			
MLF Adj: Final Vol.:	357 368		1.00	1.00	484		861	221		1255	1.00		
Final VOI.:													
Saturation F			1 1			1 1		'	1		'		
Sat/Lane:			1900	1900	1900	1900	1900	1900	1900	1900	1900		
Adjustment:	0.95 1.00	0.85	0.19	1.00	0.85	0.95	0.92	0.92	0.95	0.95	0.95		
Lanes:	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.59	0.41	1.00	1.95	0.05		
Final Sat.:				1900	1615		2784	714		3500	96		
Capacity Ana													
Vol/Sat:		0.03	0.29	0.13			0.31	0.31	0.02	0.36			
Crit Moves:		0 05	0 01	0 01	****		0 04	0 04	0 05	****			
Green/Cycle:				0.21			0.34	0.34		0.34			
Volume/Cap:				0.62	1.42		0.90	0.90 50.8		1.04	1.04 79.6		
Delay/Veh: User DelAdj:				1.00	256.8		1.00	1.00		1.00	1.00		
AdjDel/Veh:					256.8			50.8		79.6	79.6		
DesignOueue:			2/3.9	14	230.8	138.3	4.3	11	3	63	19.6		

Existing Conditions

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

PM Peak Hour

	rm reak nour											
Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)												
Intersection #21 University Avenue / San Pablo Avenue												
Cycle (sec): 128 Loss Time (sec): 16 (Y+R optimal Cycle: 124	Critical Vol./Cap. (X): 0.880 = 4 sec) Average Delay (sec/veh): 152.6 Level Of Service: F											
Approach: North Bound Movement: L - T - R	South Bound											
Control: Protected Rights: Include Min. Green: 5 21 21 Lanes: 1 0 1 1 0	Protected Protected Protected											
Volume Module: >> Count Date: Base Vol: 233 945 93 Growth Adj: 1.00 1.00 1.00 Initial Bse: 233 945 93 User Adj: 1.00 1.00 1.00 PHF Adj: 0.92 0.92 0.92 PHF Volume: 253 1027 101 Reduct Vol: 0 0 0 Reduced Vol: 253 1027 101 PCE Adj: 1.00 1.00 1.00 Final Vol.: 253 1027 101												
Saturation Flow Module: Sat/Lane: 1900 1900 1900 Adjustment: 0.95 0.94 0.94 Lanes: 1.00 1.82 0.18 Final Sat.: 1805 3244 319												
Capacity Analysis Module: Vol/Sat: 0.14 0.32 0.32 Crit Moves: **** Green/Cycle: 0.09 0.34 0.34 Volume/Cap: 1.50 0.94 0.94 Delay/Veh: 309.6 56.8 56.8 User DelAdj: 1.00 1.00 1.00 AdjDel/Veh: 309.6 56.8 56.8 DesignQueue: 17 52 5	0.08 0.23 0.23 0.05 0.33 0.33 0.04 0.32 0.32 **** **** 0.09 0.34 0.34 0.12 0.23 0.23 0.05 0.23 0.23 0.91 0.70 0.70 0.45 1.42 1.42 0.91 1.35 1.35 105.3 40.2 40.2 59.3 246 245.6 136.3 214 213.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.											

Level Of Service Computation Report												
2000 HCM Operations Method (Base Volume Alternative)												

Intersection #22 University Avenue / Martin Luther King Way												
Cycle (sec):												
Loss Time (se												
Optimal Cycle	e: 66 Level Of Service: C											

Approach: Movement:	North Bound South Bound East Bound West Bound L - T - R L - T - R L - T - F											
Control:												
Rights:	Include Include Include Include Include											
Min. Green:	-	23	23		23	23		17	17	17	17	17
Lanes:		0 1			0 1				1 0			
Volume Module												
Base Vol:	282	902	78	21 N		77	80	679		71	727	81
Growth Adi:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Initial Bse:		902	78	46	702	77	80	679	134	71	727	81
User Adj:		1.00	1.00		1.00	1.00		1.00			1.00	1.00
PHF Adj:		0.96	0.96	0.96	0.96	0.96		0.96			0.96	0.96
PHF Volume:	294	940	81	48	731	80	83	707	140	74	757	84
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:		940	81	48	731	80	83	707		74	757	84
PCE Adj:	1.00		1.00		1.00	1.00		1.00			1.00	1.00
_	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00
Final Vol.:			81	48		80	. 83		140		757	84
Saturation Fl												
Saturation F.		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
	0.95		0.94		0.94	0.94		0.93			0.94	0.94
-	1.00		0.16		1.80	0.20		1.67			1.80	0.20
Final Sat.:	1805	3283	284	397	3204	351		2940	580		3199	356
Capacity Anal	-											
Vol/Sat:		0.29	0.29	0.12	0.23	0.23		0.24	0.24	0.23	0.24	0.24
0110 110 100.	****				****		****					
Green/Cycle:			0.52		0.39	0.39		0.33			0.33	0.33
Volume/Cap:			0.55		0.59	0.59		0.72			0.71	0.71
Delay/Veh: 1 User DelAdj:			10.1		18.5	18.5 1.00		25.8	25.8 1.00		25.5	25.5 1.00
AdjDel/Veh:			10.1		18.5	18.5		25.8	25.8		25.5	25.5
DesignOueue:			2	19.0		2	2	23.0	4		23.3	23.3
besignqueue.									_			_

PM Peak Hour

UC Berkeley LRDP EIR

Existing Conditions

PM Peak Hour

UC Berkeley LRDP EIR Existing Conditions

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #23 University Avenue / Milvia Street ***************** Cycle (sec): 75 Critical Vol./Cap. (X): 0.474 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 16.6 Optimal Cycle: 49 Level Of Service: B ****************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|-----|------|------| Permitted Permitted Permitted Include Include Include Rights: Min. Green: 21 21 21 21 21 21 20 20 20 20 20 20 -----| Volume Module: >> Count Date: 21 Nov 2002 << 4:00 - 6:00 PM Base Vol: 127 218 44 13 102 74 47 649 108 22 651 33 Initial Bse: 127 218 44 13 102 74 47 649 108 22 651 33 Final Vol.: 134 229 46 14 107 78 49 683 114 23 685 35 -----| Saturation Flow Module: Adjustment: 0.70 0.98 0.98 0.92 0.92 0.92 0.81 0.81 0.81 0.87 0.87 Lanes: 1.00 0.83 0.17 0.07 0.54 0.39 0.12 1.61 0.27 0.06 1.85 0.09 Final Sat.: 1334 1541 311 120 945 685 180 2490 414 103 3034 154 _____| Capacity Analysis Module: Vol/Sat: 0.10 0.15 0.15 0.11 0.11 0.11 0.27 0.27 0.27 0.23 0.23 0.23 Crit Moves: **** Green/Cycle: 0.35 0.35 0.35 0.35 0.35 0.47 0.47 0.47 0.47 0.47

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #24 University Avenue / SB Shattuck Avenue **************** 18.2 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh):
Optimal Cycle: 56 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Permitted Permitted Protected Permitted Rights: Include Include Include Include Min. Green: 0 0 0 16 16 16 16 16 16 16 16 16 Lanes: 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 1 -----| Volume Module: >> Count Date: 12 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 0 0 55 576 146 131 374 254 74 642 640 Initial Bse: 0 0 0 55 576 146 131 374 254 74 642 640 PHF Volume: 0 0 0 58 606 154 138 394 267 78 676 674 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 0 0 0 58 606 154 138 394 267 0 Final Vol.: 0 0 0 58 606 154 138 394 267 78 676 674 _____| Saturation Flow Module: Adjustment: 1.00 1.00 1.00 0.77 0.77 0.77 0.86 0.80 0.80 0.69 0.69 0.69 Lanes: 0.00 0.00 0.00 0.21 2.23 0.56 1.00 1.19 0.81 0.16 1.42 1.42 Final Sat.: 0 0 0 312 3270 829 1625 1817 1234 213 1852 1846 -----| Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.19 0.19 0.19 0.08 0.22 0.22 0.36 0.36 0.36 Crit Moves: **** **** **** Green/Cycle: 0.00 0.00 0.00 0.23 0.23 0.23 0.36 0.36 0.36 0.67 0.67 0.67 Volume/Cap: 0.00 0.00 0.00 0.81 0.81 0.81 0.24 0.60 0.60 0.54 0.54 0.54 Delay/Veh: 0.0 0.0 0.0 34.1 34.1 34.1 17.7 22.1 22.1 7.2 7.2 AdjDel/Veh: 0.0 0.0 0.0 34.1 34.1 34.1 17.7 22.1 22.1 7.2 7.2 DesignOueue: 0 0 0 2 20 5 4 11 7 1 10 10

Volume/Cap: 0.29 0.43 0.43 0.33 0.33 0.58 0.58 0.58 0.48 0.48 0.48

Delay/Veh: 19.4 20.9 20.9 19.5 19.5 19.5 16.0 16.0 16.0 14.5 14.5 14.5

AdjDel/Veh: 19.4 20.9 20.9 19.5 19.5 19.5 16.0 16.0 16.0 14.5 14.5 14.5

DesignQueue: 4 6 1 0 3 2 1 16 3 1 16 1

EXISTING PM Thu Jun 19, 2003 17:23:24 Page 30-1 UC Berkeley LRDP EIR

Existing Conditions PM Peak Hour

UC Berkeley LRDP EIR Existing Conditions

						K Hour	ons					
	2000					Computa (Base			 t ernativ	۰		
*****											****	****
Intersection									*****	****	****	*****
Cycle (sec): Loss Time (se Optimal Cycle	ec): e:	15 47	7	= 4 s	sec) 1	Average Level O	Delay	/ (sed			17	.1 B

Approach: Movement:	L	- T	- R	L -	- T	- R	L ·	- T	- R	L ·	- T	- R
Control: Rights:	P	rotect	ed ide	Pi	rotect	ted ide	P	rotect	ted ide	P:	rotec	ted ude
Min. Green: Lanes:	19 2	0 1!	19 0 1	0 (0	0 0 0	0 (13) 2	0 0	0 (13	0 0
Volume Module										'		
Base Vol:	938	0	208	0	0	0	0	454	0	0	433	0
Growth Adj:				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:						0			0		433	0
User Adj:									1.00			
PHF Adj:									0.94			
PHF Volume:						0						0
Reduct Vol:												
Reduced Vol:												
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:												
Saturation F.				1			1			1		
Sat/Lane:				1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.82	1.00	0.84	1.00	1.00	1.00	1.00	0.86	1.00	1.00	0.86	1.00
Lanes:	2.76	0.00	1.24	0.00	0.00	0.00	0.00	2.00	0.00	0.00	2.00	0.00
Final Sat.:	4275	0	1989	0	0	0	0	3249	0	0	3249	0

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #26 University Avenue / Oxford Street **************** Cycle (sec): 75 Critical Vol./Cap. (X): 0.693 18.2 Loss Time (sec): 4 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 58 Level Of Service: В Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Prot+Permit Permitted Permitted Permitted Include Include Include Rights: Min. Green: 18 18 18 18 18 18 18 18 18 18 18 18 18 Lanes: 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 0 0 1! 0 0 -----| Volume Module: >> Count Date: 12 Nov 2002 << 4:00 - 6:00 PM Base Vol: 278 771 16 32 835 106 306 39 330 9 37 40 Initial Bse: 278 771 16 32 835 106 306 39 330 9 37 40 PHF Volume: 296 820 17 34 888 113 326 41 351 10 39 43 Final Vol.: 296 820 17 34 888 113 326 41 351 10 39 43 -----|----|-----|------| Saturation Flow Module: Adjustment: 0.86 0.85 0.85 0.27 0.84 0.84 0.60 0.60 0.77 0.83 0.83 0.83 Lanes: 1.00 1.96 0.04 1.00 1.77 0.23 1.77 0.23 1.00 0.10 0.43 0.47 Final Sat.: 1625 3173 66 520 2834 360 2029 259 1454 164 676 730 _____| Capacity Analysis Module: Vol/Sat: 0.18 0.26 0.26 0.07 0.31 0.31 0.16 0.16 0.24 0.06 0.06 0.06 Crit Moves: **** **** Green/Cycle: 0.64 0.64 0.64 0.45 0.45 0.45 0.29 0.29 0.29 0.29 0.29 0.29 Volume/Cap: 0.28 0.40 0.40 0.14 0.69 0.69 0.56 0.56 0.84 0.20 0.20 0.20 Delay/Veh: 6.6 7.1 7.1 13.3 19.1 19.1 26.2 26.2 43.5 21.3 21.3 21.3

Green/Cycle: 0.48 0.00 0.48 0.00 0.00 0.00 0.00 0.32 0.00 0.00 0.32 0.00 Volume/Cap: 0.49 0.00 0.23 0.00 0.00 0.00 0.06 0.00 0.00 0.44 0.00

Delay/Veh: 13.9 0.0 11.5 0.0 0.0 0.0 0.0 21.9 0.0 0.0 21.6 0.0

AdjDel/Veh: 13.9 0.0 11.5 0.0 0.0 0.0 0.0 21.9 0.0 0.0 21.6 0.0 DesignOueue: 23 0 5 0 0 0 0 14 0 0 13 0

**** ***

Capacity Analysis Module:

Crit Moves: ****

AdjDel/Veh: 6.6 7.1 7.1 13.3 19.1 19.1 26.2 26.2 43.5 21.3 21.3 21.3 DesignQueue: 5 13 0 1 21 3 10 1 11 0 1 1

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #27 Univeristy Drive (East Gate) / Gayley Road ******************* Average Delay (sec/veh): 1.6 Worst Case Level Of Service: C ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Uncontrolled Uncontrolled Stop Sign Stop Sign Rights: Include Include Include Include -----| Volume Module: >> Count Date: 5 Dec 2002 << 4:00-6:00 PM Base Vol: 59 552 0 0 505 52 41 0 81 0 0 Initial Bse: 59 552 0 0 505 52 41 0 81 0 0 PHF Volume: 63 587 0 0 537 55 44 0 86 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 63 587 0 0 537 55 44 0 86 0 0 -----| Critical Gap Module: Critical Gp: 4.1 xxxx xxxxx xxxxx xxxx xxxxx 6.4 xxxx 6.2 xxxxx xxxx xxxxx ______| Capacity Module: Cnflict Vol: 593 xxxx xxxxx xxxx xxxx xxxx 1278 xxxx 565 xxxx xxxx xxxxx Potent Cap.: 993 xxxx xxxxx xxxx xxxx xxxx 185 xxxx 528 xxxx xxxx xxxx Move Cap.: 993 xxxx xxxxx xxxx xxxx xxxx 176 xxxx 528 xxxx xxxx xxxx -----| Level Of Service Module: Stopped Del: 8.9 xxxx xxxxx xxxxx xxxxx xxxxx 32.0 xxxx 13.1 xxxxx xxxx xxxxx LOS by Move: A * * * * * D * B * * * Movement: LT - LTR - RT Shared LOS: * * * * * * * * * * * * ApproachDel: xxxxxx xxxxx 19.5 xxxxxx ApproachLOS: * * C *

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #28 Addison Street / Oxford Street ******************** Average Delay (sec/veh): 0.8 Worst Case Level Of Service: C ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------|
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include
 Include

 Lanes:
 1 0 2 0 0 0 0 1 1 0 0 0 1! 0 0 0 0 0 0
 0 0 0 0 0 0
 -----|----|-----|------| Volume Module: >> Count Date: 13 Nov 2002 << 4:00 - 6:00 PM Base Vol: 32 1006 0 0 952 28 10 0 114 0 0 Initial Bse: 32 1006 0 0 952 28 10 0 114 0 0 PHF Volume: 34 1070 0 0 1013 30 11 0 121 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 34 1070 0 0 1013 30 11 0 121 0 0 -----| Critical Gap Module: Critical Gp: 4.1 xxxx xxxxx xxxxx xxxx xxxx 6.8 xxxx 6.9 xxxxx xxxx xxxx Capacity Module: Cnflict Vol: 890 xxxx xxxxx xxxx xxxx xxxx 1497 xxxx 325 xxxx xxxx xxxxx Potent Cap.: 709 xxxx xxxxx xxxx xxxx xxxx 106 xxxx 624 xxxx xxxx xxxx Move Cap.: 709 xxxx xxxxx xxxx xxxx xxxx 103 xxxx 624 xxxx xxxx xxxx -----| Level Of Service Module:

EXISTING PM Thu Jun 19, 2003 17:23:24 Page 32-1 ______

LOS by Move: B * * * * * * * * * * *

Movement: LT - LTR - RT Shared Cap.: xxxx xxxx xxxxx xxxx xxxx xxxx 443 xxxxx xxxx xxxx xxxx

Shrd StpDel:xxxxx xxxx xxxxx xxxxx xxxxx xxxxx 16.6 xxxxx xxxxx xxxxx xxxxx

Shared LOS: * * * * * * * C * * * * ApproachDel: xxxxx x xxxx 16.6 xxxxxx ApproachLOS: * * C *

UC Berkeley LRDP EIR Existing Conditions

					_	Hour						
*****	2000 H	СМ Оре	erati	ons Me	ethod	Computa (Base	ation E Volume	Report	: ernativ	e)	****	*****
Intersection								*****	*****	****	****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e:	75 12 (67	(Y+R	= 10 s	sec) A	Critica Level (al Vol. e Delay Of Serv	./Cap. / (sec	(X): c/veh):	*****	0.49	94 . 4 B
Approach: Movement:	Nort L -	h Bour	nd R	Sou L -	uth Bo - T	und - R	Ea L -	ast Bo - T	ound - R	We L -	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	Pe I 0	rmitte nclude 0	ed e	30	Permit Inclu 30	ted ide 30	0	Permit Inclu 17	ted ide 17	25	Permit Inclu 25	ted ide 0
Volume Module	 e: >> C	ount I	 Date:		 7 2002	· 2 << 4:	 :00 - 6	6:00 E	 PM			
Base Vol:												
Growth Adj:	1.00 1	.00 1	00	1.00	700	1.00	1.00	1.00	1.00	1.00	1.00	1.00
<pre>Initial Bse: User Adj:</pre>	1 00 1	0 1	0	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
PHF Adj:												0.95
PHF Volume:												
Reduct Vol:												
Reduced Vol:												
PCE Adj:	1.00 1	.00 1	.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00 1	.00 1	.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	0	0	0	43	832	133	0	109	188	31	168	0
Saturation Fi Sat/Lane:				1000	1000	1000	1000	1000	1000	1000	1000	1000
Sat/Lane:	TA00 I	900 1	900	T 900	T 900	1900	T 900	T 900	1900	T 300	T 3 0 0	1900

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)

UC Berkeley LRDP EIR

Existing Conditions PM Peak Hour

Intersection #30 Center Street / NB Shattuck Avenue ******************** Cycle (sec): 75 Critical Vol./Cap. (X): 0.440 7.6 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 65 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Permitted Permitted Permitted Include Include Include Rights: Min. Green: 40 40 40 0 0 0 17 17 0 0 17 17 Lanes: 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 -----| Volume Module: >> Count Date: 6 Nov 2002 << 4:00 - 6:00 PM Base Vol: 50 982 86 0 0 0 81 55 0 0 139 58 Initial Bse: 50 982 86 0 0 0 81 55 0 0 139 58 PHF Volume: 54 1056 92 0 0 0 87 59 0 0 149 62 Reduct Vol: 0 0 0 Reduced Vol: 54 1056 92 0 0 0 0 0 0 0 87 59 Ω Ω 0 149 0 Final Vol.: 54 1056 92 0 0 0 87 59 0 0 149 62 -----| Saturation Flow Module: Adjustment: 0.80 0.80 0.80 1.00 1.00 1.00 0.71 0.71 1.00 1.00 0.86 0.86 Lanes: 0.13 2.64 0.23 0.00 0.00 0.00 0.60 0.40 0.00 0.00 0.71 0.29 Final Sat.: 204 4003 351 0 0 0 804 546 0 0 1158 483 _____| Capacity Analysis Module: Crit Moves: **** Volume/Cap: 0.49 0.49 0.49 0.00 0.00 0.00 0.37 0.37 0.00 0.00 0.44 0.44 Delay/Veh: 3.4 3.4 3.4 0.0 0.0 0.0 17.8 17.8 0.0 0.0 24.4 24.4 AdjDel/Veh: 3.4 3.4 3.4 0.0 0.0 17.8 17.8 0.0 0.0 24.4 24.4 DesignQueue: 1 21 2 0 0 0 3 2 0 0 5 2

Adjustment: 1.00 1.00 1.00 0.79 0.79 0.79 1.00 0.82 0.82 0.82 1.00

Lanes: 0.00 0.00 0.00 0.13 2.48 0.39 0.00 0.37 0.63 0.15 0.85 0.00

Final Sat.: 0 0 0 192 3701 590 0 575 990 239 1320 0

_____|

Vol/Sat: 0.00 0.00 0.00 0.22 0.22 0.22 0.00 0.19 0.19 0.13 0.13 0.00

Green/Cycle: 0.00 0.00 0.00 0.40 0.40 0.40 0.00 0.29 0.29 0.43 0.43 0.00

DesignOueue: 0 0 0 1 22 3 0 3 6 1 4 0

Crit Moves: **** ****

Capacity Analysis Module:

______ UC Berkeley LRDP EIR

Existing Conditions

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

Level Of Service Computation Report
2000 HCM Operations Method (Base Volume Alternative)

Intersection #31 Center Street / Oxford Street

Cycle (sec): 75 Critical Vol./Cap. (X): 0.441 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 7.5
Optimal Cycle: 46 Level Of Service: A

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 19 19 19 19 19 19 19 19 19 19 19 19 Lanes: 1 0 1 1 0 1 0 1 1 0 0 0 1! 0 0 0 0 1! 0 0 -----| Volume Module: >> Count Date: 13 Nov 2000 << 4:00 - 6:00 PM

Base Vol: 87 998 24 19 980 67 33 6 84 37 9 16 Initial Bse: 87 998 24 19 980 67 33 6 84 37 9 16 Final Vol.: 93 1062 26 20 1043 71 35 6 89 39 10 17

-----|-----|------| Saturation Flow Module: Adjustment: 0.26 0.95 0.95 0.26 0.94 0.94 0.83 0.83 0.83 0.78 0.78 0.78 Lanes: 1.00 1.95 0.05 1.00 1.87 0.13 0.27 0.05 0.68 0.60 0.14 0.26 Final Sat.: 486 3515 85 500 3345 229 424 77 1080 884 215 382 -----| Capacity Analysis Module:

Vol/Sat: 0.19 0.30 0.30 0.04 0.31 0.31 0.08 0.08 0.08 0.04 0.04 0.04 Crit Moves: **** **** Green/Cycle: 0.68 0.68 0.68 0.68 0.68 0.68 0.27 0.27 0.27 0.27 0.27 Volume/Cap: 0.28 0.44 0.44 0.06 0.46 0.46 0.31 0.31 0.31 0.17 0.17 Delay/Veh: 6.8 6.1 6.1 4.3 6.2 6.2 23.9 23.9 23.9 22.0 22.0 22.0 AdjDel/Veh: 6.8 6.1 6.1 4.3 6.2 6.2 23.9 23.9 23.9 22.0 22.0 22.0

DesignQueue: 1 15 0 0 15 1 1 0 3 1 0 1

PM Peak Hour

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative)

Intersection #32 Stadium Rim Road / Gayley Road *******************

Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 0 Level Of Service: 34.7

optimal cycle:		*****	****	レ ******	+							
Approach:	North Bo	ound	Soi	uth Bo	ound	E	ast Bo	ound	₩e	st Bo	ound	
Movement: L												
Control:												
Rights:	Inclu	ıde		Inclu	ıde		Incl	ıde		Incl	ıde	
Min. Green:	0 0	0	0	0	0	0	0	0	0	0	0	
Lanes: 0	0 0	1 0	0 :	1 0	0 0	0 (1!	0 0	0 0	1!	0 0	
												I
Volume Module: Base Vol:									47	0	222	
Growth Adj: 1.												
Initial Bse:				459				1.00				
User Adj: 1.								1.00				
PHF Adj: 0.								0.95				
PHF Volume:	0.93	20										
Reduct Vol:	0 370	2 U	142	403	0	21	,	10	4.9	0	244	
Reduced Vol:												
PCE Adj: 1.												
MLF Adj: 1.												
Final Vol.:												
Saturation Flow	Module:											
Adjustment: 1.	00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lanes: 0.	00 0.95	0.05	0.23	0.77	0.00	0.47	0.17	0.36	0.17	0.00	0.83	
Final Sat.:												
Capacity Analys												
Vol/Sat: xx	xx 0.67	0.67	0.99	0.99	XXXX	0.10	0.10	0.10			0.52	
Crit Moves:									****			
Delay/Veh: 0	.0 19.4	19.4	55.3	55.3	0.0	11.0	11.0	11.0	15.2	0.0	15.2	

AdjDel/Veh: 0.0 19.4 19.4 55.3 55.3 0.0 11.0 11.0 15.2 0.0 15.2

LOS by Move: * C C F F * B B B C * C

ApproachDel: 19.4 55.3 11.0 15.2 Delay Adj: 1.00 1.00 1.00 ApprAdjDel: 19.4 55.3 11.0 15.2 LOS by Appr: C F B C

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #33 Allston Way / Oxford Street **************** Average Delay (sec/veh): 5.0 Worst Case Level Of Service: D ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Uncontrolled Uncontrolled Stop Sign Stop Sign Rights: Include Include Include Include -----| Volume Module: >> Count Date: 13 Nov 2002 << 4:00 - 6:00 PM Base Vol: 46 1002 0 26 1082 75 23 0 110 0 0 Initial Bse: 46 1002 0 26 1082 75 23 0 110 0 0 PHF Volume: 48 1044 0 27 1127 78 24 0 115 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 48 1044 0 27 1127 78 24 0 115 0 0 _____| Critical Gap Module: Critical Gp: 4.1 xxxx xxxxx 4.1 xxxx xxxxx 6.8 xxxx 6.9 xxxxx xxxx xxxxx ______| Capacity Module: Cnflict Vol: 1205 xxxx xxxxx 1044 xxxx xxxxx 1838 xxxx 603 xxxx xxxx xxxxx Potent Cap.: 586 xxxx xxxxx 674 xxxx xxxxx 69 xxxx 447 xxxx xxxx xxxxx Move Cap.: 586 xxxx xxxxx 674 xxxx xxxxx 62 xxxx 447 xxxx xxxx xxxxx -----| Level Of Service Module: Stopped Del: 11.7 xxxx xxxxx 10.6 xxxx xxxxx 95.5 xxxx 15.8 xxxxx xxxx xxxxx LOS by Move: B * * B * * F * C * * * Movement: LT - LTR - RT Shared LOS: B * * B * * * * * * * * * * ApproachDel: xxxxxx xxxxx 29.6 xxxxxx ApproachLOS: * * D *

______ UC Berkeley LRDP EIR Existing Conditions PM Peak Hour Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #34 Kittridge Street / Oxford Street / Fulton Street *********************** Average Delay (sec/veh): 6.1 Worst Case Level Of Service: F ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R -----|----|-----|------| -----|----|-----|------| Volume Module: >> Count Date: 13 Nov 2002 << 4:00 - 6:00 PM Base Vol: 45 995 0 0 1108 96 51 0 69 0 0 Initial Bse: 45 995 0 0 1108 96 51 0 69 0 0 PHF Volume: 46 1026 0 0 1142 99 53 0 71 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 46 1026 0 0 1142 99 53 0 71 0 0 -----| Critical Gap Module: Critical Gp: 4.1 xxxx xxxxx xxxxx xxxx xxxx 6.8 xxxx 6.9 xxxxx xxxx xxxx Capacity Module: Cnflict Vol: 1241 xxxx xxxxx xxxx xxxx xxxxx 1797 xxxx 621 xxxx xxxx xxxxx Potent Cap.: 568 xxxx xxxxx xxxx xxxx xxxx 73 xxxx 435 xxxx xxxx xxxx Move Cap.: 568 xxxx xxxxx xxxx xxxx xxxx 68 xxxx 435 xxxx xxxx xxxx -----| Level Of Service Module: LOS by Move: B * * * * * * * * * * * Movement: LT - LTR - RT Shrd StpDel: 11.9 xxxx xxxxx xxxxx xxxxx xxxxx xxxxx 125 xxxxx xxxxx xxxxx xxxxx Shared Los: B * * * * * * F * * * *

EXISTING PM Thu Jun 19, 2003 17:23:24 Page 38-1

ApproachDel: xxxxx xxxx 124.9 xxxxxx ApproachLOS: * * F *

EXISTING PM Thu Jun 19, 2003 17:23:24 UC Berkeley LRDP EIR

Existing Conditions

Page 40-1

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

		PM Peak Hou	r	
	000 HCM 4-Way St		e Volume Alternativ	
			******	******
	35	*****	******	
Cycle (sec):	100	Criti	cal Vol./Cap. (X):	0.579
Loss Time (sec)): 0 (Y+R =	= 4 sec) Avera	cal Vol./Cap. (X): ge Delay (sec/veh):	12.2
Optimal Cycle:	U	rever	Of Service: ********	В
			East Bound	
			L - T - R	
			-	
Rights:	Include	Include	Stop Sign Include 0 0 0 0	Include
Min. Green:	0 0 0	0 0	0 0 0 0	0 0 0
Lanes: (0 0 1 0	0 1 0 0 0	0 0 0 0 0	0 0 1! 0 0
			-	
			4:00 - 6:00 PM	004 0 146
	0 99 140			204 0 146
			0 1.00 1.00 1.00	
Initial Bse:			0 0 0 0 0 1.00 1.00 1.00	
	.85 0.85 0.85			
PHF Volume:			0 0 0 0	240 0 172
Reduct Vol:	0 0 0	0 0		0 0 0
Reduced Vol:			0 0 0 0	
			0 1.00 1.00 1.00	
MLF Adj: 1.	.00 1.00 1.00	1.00 1.00 1.0	0 1.00 1.00 1.00	1.00 1.00 1.00
			0 0 0 0	
			-	
Saturation Flow				
			0 1.00 1.00 1.00	
			0.00 0.00 0.00	
			0 0 0 0 0	
Capacity Analys			-	
		0.30 0.30 xxx	x xxxx xxxx xxxx	0.58 xxxx 0.58
Crit Moves:		***		***
		10.5 10.5 0.	0.0 0.0 0.0	13.9 0.0 13.9
	.00 1.00 1.00			
	0.0 10.8 10.8		0.0 0.0 0.0	13.9 0.0 13.9
	* B B		* * *	в * в
ApproachDel:		10.5	XXXXXX	13.9
Delay Adj:	1.00	1.00	XXXXX	1.00
ApprAdjDel:	1.00 10.8 B	10.5	xxxxx	13.9
			* *******	В

PM Peak Hour Level Of Service Computation Report

2000 HCM Operations Method (Base Volume Alternative) Intersection #36 Bancroft Way / Shattuck Avenue ******************** Cycle (sec): 75 Critical Vol./Cap. (X): 0.670 12.7 Loss Time (sec): 8 (Y+R = 5 sec) Average Delay (sec/veh): Optimal Cycle: 43 Level Of Service: В Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Permitted Permitted Permitted Include Include Include Include Rights: Min. Green: 18 18 0 0 18 18 0 0 0 16 16 16 Lanes: 1 0 2 0 0 0 0 1 1 0 0 0 1! 0 0 1 0 0 1 0 -----| Volume Module: >> Count Date: 14 Nov 2002 << 4:00 - 6:00 PM Base Vol: 30 1186 0 0 949 23 1 0 38 258 97 111 Initial Bse: 30 1186 0 0 949 23 1 0 38 258 97 111 PHF Volume: 32 1248 0 0 999 24 1 0 40 272 102 117 Final Vol.: 32 1248 0 0 999 24 1 0 40 272 102 117 -----| Saturation Flow Module: Adjustment: 0.25 0.86 1.00 1.00 0.85 0.85 0.78 1.00 0.78 0.67 0.83 0.83 Lanes: 1.00 2.00 0.00 0.00 1.95 0.05 0.03 0.00 0.97 1.00 0.47 0.53 Final Sat.: 479 3249 0 0 3159 77 38 0 1448 1265 734 840 -----| Capacity Analysis Module: Vol/Sat: 0.07 0.38 0.00 0.00 0.32 0.32 0.03 0.00 0.03 0.21 0.14 0.14 Crit Moves: **** Volume/Cap: 0.10 0.58 0.00 0.00 0.47 0.47 xxxx 0.00 xxxx 0.83 0.54 0.54 Delay/Veh: 5.1 7.9 0.0 0.0 6.8 6.8 0.0 0.0 0.0 46.7 28.8 28.8 AdjDel/Veh: 5.1 7.9 0.0 0.0 6.8 6.8 0.0 0.0 0.0 46.7 28.8 28.8 DesignOueue: 0 19 0 0 15 0 0 0 2 9 3 4

UC Berkeley LRDP EIR Existing Conditions

Level Of Service Computation Report

PM Peak Hour

2000 HCM Operations Method (Base Volume Alternative)												
Intersection #37 Bancroft Way	**************************************											

Cycle (sec): 75	Critical Vol./Cap. (X): 0.409 = 4 sec) Average Delay (sec/veh): 6.7 Level Of Service: A											
Loss Time (sec): 8 (Y+R =	= 4 sec) Average Delay (sec/veh): 6.7											
Optimal Cycle: 49	Level UI Service: A											
	South Bound East Bound West Bound											
	L - T - R L - T - R L - T - R											
	Permitted Permitted Permitted											
	Include Include Ignore											
Min. Green: 17 17 0	0 17 17 0 0 0 24 24 24											
Lanes: 0 1 1 0 0	0 0 2 1 0 0 0 0 0 0 0 1 1 0 1											
	13 Nov 2002 << 4:00 - 6:00 PM											
	0 1066 165 0 0 0 12 287 898											
	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00											
	0 1066 165 0 0 0 12 287 898											
	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00											
PHF Adj: 0.93 0.93 0.93												
PHF VOLUME: 19 1/6 U	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
Reduced Vol: 19 176 0	0 1146 177 0 0 0 13 309 0											
	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00											
MLF Adi: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00											
	0 1146 177 0 0 0 13 309 0											
Saturation Flow Module:												
	1900 1900 1900 1900 1900 1900 1900 1900											
	1.00 0.89 0.89 1.00 1.00 1.00 0.81 0.81 1.00											
	0.00 2.60 0.40 0.00 0.00 0.00 0.08 1.92 1.00											
	0 4402 681 0 0 0 123 2945 1900											
Capacity Analysis Module:	0.00 0.26 0.26 0.00 0.00 0.00 0.10 0.10 0.00											
Crit Moves:	**** ****											
	0.00 0.63 0.63 0.00 0.00 0.00 0.32 0.32 0.32											
-	0.00 0.42 0.42 0.00 0.00 0.00 0.32 0.32 0.00											
	0.0 4.0 4.0 0.0 0.0 0.0 20.3 20.3 0.0											
	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00											
	0.0 4.0 4.0 0.0 0.0 0.0 20.3 20.3 0.0											
DesignQueue: 0 3 0	0 19 3 0 0 0 0 9 0											

EXISTING PM Thu Jun 19, 2003 17:23:24 Page 41-1 EXISTING PM Thu Jun 19, 2003 17:23:24 Page 42-1 UC Berkeley LRDP EIR

Existing Conditions PM Peak Hour

Level Of Service Computation Report

*****	2000 !	HCM Ur	nsigna:	lized M	Metho	d (Base	e Volum	me Al:	ternat:	ive)	****	*****
Intersection	#38 1	Bancro	oft Wa	v / El:	lswor	th Stre	eet					
Average Dela	y (se	c/veh)	:	4.0	****	W	orst C	ase L	evel 0:	f Serv:	ice:	C *****
Approach: Movement:	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R
Control: Rights:	S ·	top Si Incli 1 0	ign ide 0 0	0 (top S: Incl 0 0	ign ude 0 1	Un O	contro Incl 0 0	olled ude 0 0	Un (contro Incl 1	olled ude 1 0
Volume Module	348 1.00 348 1.00 0.95 366 0 366 Modu 7.1 3.5	Count 11 1.00 11 1.00 0.95 12 0 12 1e: 6.5 4.0	2 Date 0 1.00 0 1.00 0.95 0 0	: 13 NN 0 1.00 0 1.00 0.95 0 0	0 1.00 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0	02 << 100 1.00 1.00 1.00 0.95 105 0 105	4:00 - 0 1.00 0 1.00 0.95 0 0 0	6:00 0 1.00 0 1.00 0.95 0 0	PM 0 1.00 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0	0 1.00 0 1.00 0.95 0 0	877 1.00 877 1.00 0.95 923 0 923	6 1.00 6 1.00 0.95 6 0 6
Capacity Mode Cnflict Vol: Potent Cap.: Move Cap.:	ule: 462 514 424	929 269 269	***** *****	xxxx xxxx	XXXX XXXX XXXX	465 602 602	xxxx xxxx	XXXX XXXX XXXX	xxxxx xxxxx	xxxx xxxx	XXXX XXXX XXXX	xxxxx xxxxx
Level Of Ser Stopped Del: LOS by Move: Movement: Shared Cap.: Shrd StpDel: Shared LOS: ApproachDel: ApproachLOS:	Vice I 19.8 C LT 410 21.5	Module xxxx * - LTR xxxx xxxx	xxxxx * - RT xxxxx xxxxx	XXXXX * LT · XXXX	XXXX * - LTR XXXX XXXX	12.2 B - RT xxxxx xxxxx	XXXXX * LT · XXXX	XXXX * - LTR XXXX XXXX	**************************************	XXXXX * LT · XXXX	XXXX * - LTR XXXX XXXX	xxxxx * - RT xxxxx xxxxx

	FM Feak nout												
	Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative)												

Intersection #39 Bancroft Way / Dana Street													
Average Dela													
Approach:	No	rth Bo	ound	Soi	uth Bo	ound	E	ast B	ound	W	est B	ound	
Movement:	L -	- T	- R	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R	
Control:	St	top Si	ign	St	top S	ign	Un	contr	olled	Un	contr	olled	
Rights: Lanes:		Inclu	ıde		Incl	ıde		Incl	ude		Incl	ude	
Lanes:	0 (0 0	0 0	0 (0 0	0 0	0	0 0	0 0	0	1 2	0 0	
Volume Module													
Base Vol:									-	282		-	
Growth Adj:													
Initial Bse: User Adj:													
PHF Adj:													
PHF Adj: PHF Volume:													
Reduct Vol:	0	0	0	0	0	0	0	0	0	300	929	0	
Final Vol.:	0	0	0	0	0	0	0	0	0	300	929	0	
Critical Gap Module:													
Critical Gp:			xxxxx	xxxxx	xxxx	xxxxx	xxxxx	xxxx	xxxxx	4.1	xxxx	xxxxx	
FollowUpTim:													

-----|

-----|

Movement: LT - LTR - RT ApproachDel: xxxxx xxxx xxxxx xxxxx xxxxx ApproachLOS: * * * * *

Capacity Module:

Level Of Service Module:

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

Level Of Service Computation Report

	2000 HCM Operat	or Service Computations Method (Base	Volume Alternativ	
Intersection	#40 Bancroft Wa	ay / Telegraph Aven	ue	
Cycle (sec): Loss Time (s Optimal Cycl	70 ec): 8 (Y+F e: 58	Critica R = 22 sec) Average Level C	<pre>l Vol./Cap. (X): Delay (sec/veh): f Service:</pre>	0.344 17.8 B
Movement:	L - T - R	South Bound L - T - R	L - T - R	L - T - R
Control: Rights: Min. Green: Lanes:	Protected Include 29 0 0 2 0 0 0 0	Protected Include 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Protected Include 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Protected Include 0 21 0 0 0 3 0 0
Volume Modul Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	e: >> Count Date 495	e: 13 Nov 2002 << 4 0 0 0 0 0 1.00 1.00 1.00 0 1.00 1.00 1.	:00 - 6:00 PM 0 0 0 0 1.00 1.00 1.00 0 0 0 1.00 1.00 1.00 0.89 0.89 0.89 0 0 0 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 0 0 0	0 675 0 1.00 1.00 1.00 0 675 0 1.00 1.00 1.00 0.89 0.89 0.89 0 758 0 0 0 0 0 758 0 1.00 1.00 1.00 1.00 1.00 1.00 0 758 0
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	low Module: 1900 1900 1900 0.92 1.00 1.00 2.00 0.00 0.00 3502 0 0) 1900 1900 1900) 1.00 1.00 1.00) 0.00 0.00 0.00) 0 0 0 0	1900 1900 1900 1.00 1.00 1.00 0.00 0.00 0.00 0 0 0	1900 1900 1900 1.00 0.91 1.00 0.00 3.00 0.00 0 5187 0
Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	**** 0.42 0.00 0.00 0.38 0.00 0.00 13.1 0.0 0.0 1.00 1.00 1.00 13.1 0.0 0.0 13.1 0.0 0.0	1.00 1.00 1.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.	**** 0.00 0.30 0.00 0.00 0.49 0.00 0.0 21.2 0.0 1.00 1.00 1.00 0.0 21.2 0.0 0 21 0

				19 	M Peal	k Hour						
	2000					Computa (Base				e)		
*****	****	****	****	****	****	*****	****	****	*****	****	****	****
Intersection	#41 1	Bancro	oft Way	/ Bot	wditch	n Stree	t ****	****	*****	****	****	*****
Cycle (sec):		100)		(Critica	l Vol	./Cap	(X):		0.4	56
Cycle (sec): Loss Time (se	ec):	C	(Y+R	= 4 :	sec) A	Average	Delay	y (sed	c/veh):		11	. 5
Optimal Cycle	e:	()]	Level O	f Serv	vice:				В

Approach:											est B	
Movement:	ь.	- T	- R	т.	- T	- R	ъ.	- T	- R	ъ.	– T	- R
Control:	9+	ton Si	an	1	ton S	i an	91	-on S		Q-	ton S	i an
Control: Rights: Min. Green:		Incli	ide		Incli	ıde		Incli	ide	U	Incl	nde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1 (0 0	0 0	0 (0 0	0 0	0 (0 0	0 0	0	1 1	0 0
Volume Module	e: >>	Count	Date:	13 No	ov 200	02 << 4			PM			
Base Vol:		-	-			0	0		-			
Growth Adj:								1.00	1.00			
Initial Bse:	191	0	0	0		0	0		0			
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
PHF Volume:				0	0	0	0	0	0			
Reduct Vol:			0							0		
Reduced Vol:						0						
PCE Adj: MLF Adj:												
Final Vol.:												
	ZUI			1			1		1	104	JZU	
Saturation F				1		1	1		1	1		
Adjustment:				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.33	1.67	0.00
Final Sat.:												
Capacity Ana												
Vol/Sat:			XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX			XXXX
Crit Moves:			0 0		0 0	0.0	0 0	0 0	0 0	****		
Delay/Veh:												
Delay Adj: AdjDel/Veh:	1.00	1.00	1.00	1.00	1.00	1.00						
AUJUEI/VEN:	TU.6	U.U *	U.U *	U.U	U.U *	0.0 *	0.U *		0.0	12.1 B		0.0
LOS by Move: ApproachDel:	В	10 6	^		xxxxx			.xxxx		В	11.8	^
				Χ.	~~~~~			XXXXX			1.00	
Delay Adj: ApprAdjDel:		10 6			~~~~~			XXXXX			11.8	
LOS by Appr:		±0.0		Α.	*		^-	*			В	
LOS DY APPI.												

PM Peak Hour
Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Base Volume Alternative)

Intersection #42 Bancroft Way / College Avenue
Cycle (sec): 100
Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): 12.3
Optimal Cycle: 0 Level Of Service: B

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Stop Sign Stop Sign Stop Sign Stop Sign Rights: Include Include Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Volume Module: >> Count Date: 13 Nov 2002 << 4:00 - 6:00 PM
Base Vol: 371 0 0 0 0 0 0 0 83 226 0
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Initial Bse: 371 0 0 0 0 0 0 0 83 226 0
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
PHF Adj: 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
PHF Volume: 408 0 0 0 0 0 0 0 91 248 0
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Final Vol.: 408 0 0 0 0 0 0 0 0 91 248 0
Saturation Flow Module:
Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Lanes: 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Final Sat.: 716 0 0 0 0 0 0 0 324 911 0
Capacity Analysis Module:
Vol/Sat: 0.57 xxxx xxxx xxxx xxxx xxxx xxxx xxxx x
Crit Moves: ****
Delay/Veh: 14.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.6 10.3 0.0
Delay Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
AdjDel/Veh: 14.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.6 10.3 0.0
LOS by Move: B * * * * * * * B B *
ApproachDel: 14.0 xxxxxx xxxxxx 10.4
Delay Adj: 1.00 xxxxx xxxxx 1.00 ApprAdjDel: 14.0 xxxxxx xxxxx 10.4
LOS by Appr: B * * B

UC Berkeley LRDP EIR

Existing Conditions

PM Peak Hour

· 	Level	Of Service Computa	tion Report	
	2000 HCM 4-Way	Stop Method (Base	Volume Alternativ	e)
		******		******
Intersection ******	#43 Bancroft Wa	y / Piedmont Avenu *******	le ********	*****
		Critica		
Loss Time (s	ec): 0 (Y+R	= 4 sec) Average	Delay (sec/veh):	20.9
Optimal Cycl		Level C	of Service:	C
*****	******	* * * * * * * * * * * * * * * * * *	*****	******
Approach:	North Bound	South Bound	East Bound	West Bound
Movement:	L - T - R		L - T - R	L - T - R
Control:	Stop Sign	Stop Sign	Stop Sign	Stop Sign
Rights:	Include	Include	Include	Include
Min. Green:	0 0 0		0 0 0	
Lanes:	0 1 0 0 0	0 0 0 1 0	0 0 0 0 0	0 0 0 0 0
Volume Modul	e: >> Count Date	: 13 Nov 2002 << 4	:00 - 6:00 PM	
Base Vol:	152 439 0	0 357 159	0 0 0	0 0 0
Growth Adi:	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00
Initial Bse:	152 439 0	0 357 159	0 0 0	0 0 0
User Adi:	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00
PHF Adj:			0.90 0.90 0.90	0.90 0.90 0.90
PHF Volume:		0 397 177	0 0 0	0 0 0
Reduct Vol:		0 0 0	0 0 0	0 0 0
Reduced Vol:	169 488 0	0 397 177	0 0 0	0 0 0
PCE Adj:		1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00
MLF Adj:			1.00 1.00 1.00	1.00 1.00 1.00
Final Vol.:			0 0 0	0 0 0
			11	
Saturation F	•			
Adiustment:	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00
		0.00 0.69 0.31		
Final Sat.:			0 0 0	0 0 0
	lysis Module:			
		xxxx 0.70 0.70	xxxx xxxx xxxx	xxxx xxxx xxxx
Crit Moves:		****		
Delay/Veh:		0.0 16.7 16.7	0.0 0.0 0.0	0.0 0.0 0.0
Delay Adj:		1.00 1.00 1.00		1.00 1.00 1.00
AdiDel/Veh:		0.0 16.7 16.7	0.0 0.0 0.0	0.0 0.0 0.0
LOS by Move:			* * *	* * *
ApproachDel:		16.7	xxxxxx	xxxxxx
Delay Adj:	1.00	1.00	XXXXX	XXXXX
	24 6		XXXXXX	XXXXXX
LOS by Appr.	24.6 C	C C	*	*
TOO NY TIPPE.				

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)

UC Berkeley LRDP EIR

Existing Conditions

PM Peak Hour

******	****	*****	*****	****	*****	*****	****	*****	*****	****	****	*****
Intersection	#44	Durant *****	Avenu	e / Sl	nattuo *****	ck Avenu	ue ****	****	*****	****	****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle ************************************	ec): e: ****	12 67 ****	(Y+R *****	= 4 : ****	sec) <i>I</i> I *****	Level 0:	Delay f Serv	/ (sed /ice: *****	c/veh): *****	****	14	.0 B *****
Approach: Movement:	L ·	- T	- R	L ·	- T	- R	L -	- T	- R	L -	- T	- R
Control: Rights: Min. Green: Lanes:	19	Permit Inclu 19 0 1	ted de 19	Pro 19	ot+Per Inclu 19 0 1	rmit ide 19	17 0 :	Permit Inclu 17 L 0	ited ide 17 1 0	0 0	Permit Inclu 0 0	tted ude 0 0 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	6: >> 69 1.00 69 1.00 0.96 72 0 72 1.00 1.00 72	Count 1216 1.00 1216 1.00 0.96 1267 0 1267 1.00 1.00 1.267	Date: 120 1.00 120 1.00 0.96 125 0 125 1.00 1.00 1.00 1.00	14 No 88 1.00 88 1.00 0.96 92 0 92 1.00 1.00 92	1099 1.00 1099 1.00 0.96 1145 0 1145 1.00 1.00	02 << 4 51 1.00 51 1.00 0.96 53 0 53 1.00 1.00 53	1.00 - 9 1.00 9 1.00 0.96 9 0 9 1.00 1.00 9	6:00 72 1.00 72 1.00 0.96 75 0 75 1.00 1.00	55 1.00 55 1.00 0.96 57 0 57 1.00 1.00	0 1.00 0 1.00 0.96 0 0 1.00 1.00	0 1.00 0 1.00 0.96 0 0 0 1.00 1.00	0 1.00 0 1.00 0.96 0 0 0 1.00 1.00
Adjustment: Lanes: Final Sat.:	0.21 1.00 402	0.84 1.82 2919	0.84 0.18 288	0.86 1.00 1625	0.85 1.91 3083	0.85 0.09 143	0.75 0.13 190	0.75 1.06 1517	0.75 0.81 1159	1.00 0.00 0	1.00 0.00 0	1.00 0.00 0
Capacity Ana. Vol/Sat: Crit Moves:	lysis 0.18	Modul 0.43	e: 0.43	0.06	0.37							
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue: **********************************	0.45 0.39 12.4 1.00 12.4 2	0.45 0.96 24.3 1.00 24.3	0.45 0.96 24.3 1.00 24.3	0.60 0.09 6.6 1.00 6.6 2	0.60 0.62 1.5 1.00 1.5 20	0.62 1.5 1.00 1.5	0.21 23.9 1.00 23.9 0	0.21 23.9 1.00 23.9 2	0.21 23.9 1.00 23.9	0.00 0.0 1.00 0.0	0.00 0.0 1.00 0.0 0	0.00 0.0 1.00 0.0

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #45 Durant Avenue / Fulton Street ******************** Cycle (sec): 75 Critical Vol./Cap. (X): 0.372 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 7.0 Optimal Cycle: 51 Level Of Service: A Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 21 21 0 22 22 22 0 0 0 Lanes: 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 0 -----| Volume Module: >> Count Date: 14 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 0 0 527 760 0 137 219 33 0 0 Initial Bse: 0 0 0 527 760 0 137 219 33 0 0 Final Vol.: 0 0 0 567 817 0 147 235 35 0 0 ------Saturation Flow Module: Adjustment: 1.00 1.00 1.00 0.95 0.95 1.00 0.98 0.93 0.93 1.00 1.00 1.00 Lanes: 0.00 0.00 0.00 1.23 1.77 0.00 1.00 1.74 0.26 0.00 0.00 0.00 Final Sat.: 0 0 0 2217 3198 0 1862 3075 463 0 0 _____| Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.26 0.26 0.00 0.08 0.08 0.08 0.00 0.00 0.00 Crit Moves: **** Green/Cycle: 0.00 0.00 0.00 0.65 0.65 0.00 0.30 0.30 0.30 0.00 0.00 0.00 Volume/Cap: 0.00 0.00 0.00 0.39 0.39 0.00 0.26 0.26 0.26 0.00 0.00 0.00 Delay/Veh: 0.0 0.0 0.0 2.9 2.9 0.0 21.1 20.5 20.5 0.0 0.0

______ UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Page Volume Alternative)

EXISTING PM Thu Jun 19, 2003 17:23:24 Page 50-1

******									ernativ *****			+++++
Intersection	#46 D	urant	Avenu	e / Te	elegra	ph Ave	nue					
Cycle (sec): Loss Time (s Optimal Cycl	ec): e: *****	70 8 43 ****	(Y+R	= 4 :	(sec) <i>I</i> ******	Critica Level C	l Vol Delag	./Cap y (sec vice:	. (X): c/veh):	****	0.36 13. *****	51 .1 B
Approach: Movement:	Nor	th Bo T	und - R	Soi L ·	uth Bo - T	und - R	Ea L -	ast Bo - T	ound - R	W.	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	0 0 0	ermit Inclu 18 1	ted de 18	0 0	Permit Inclu 0 0	ted ide 0	17	Permit Inclu 17 1 2	tted ide 0 0 0	0	Permit Inclu 0 0	ited ide 0
Volume Modul	0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Count 362 1.00 362 1.00 0.97 373 0 373 1.00 1.00	Date: 119 1.00 119 1.00 0.97 123 0 123 1.00 1.00	19 No 0 1.00 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0	0 200 0 1.00 0 1.00 0 0.97 0 0 0 1.00 1.00	02 << 4 0 1.00 0 1.00 0.97 0 0 1.00 1.00	1.00 - 202 1.00 202 1.00 0.97 208 0 208 1.00 1.00 208	6:00 690 1.00 690 1.00 0.97 711 0 711 1.00 1.00 711	PM 0 1.00 0 1.00 0 0.97 0 0 0 1.00 1.00 0	0 1.00 0 1.00 0.97 0 0 0 1.00	0 1.00 0 1.00 0.97 0 0 0 1.00	0 1.00 0 1.00 0.97 0 0 0 1.00 1.00
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	1900 1 1900 1 0.00 1	dule: 1900 0.91 1.51 2616	1900 0.91 0.49 860	1900 1.00 0.00	1900 1.00 0.00	1900 1.00 0.00	1900 0.91 0.68 1175	1900 0.91 2.32 4012	1900 1.00 0.00	1900 1.00 0.00	1900 1.00 0.00	1900 1.00 0.00
Capacity Ana Vol/Sat: Crit Moves:	lysis 1	Modul 0.14	e:						0.00			
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	0.00 0.00 0.0 1.00 0.0	0.56 0.25 5.5 1.00 5.5	0.25 5.5 1.00 5.5 2	0.00 0.0 1.00 0.0 0	0.00 0.0 1.00 0.0 0	0.00 0.0 1.00 0.0	0.47 17.2 1.00 17.2	0.47 17.2 1.00 17.2	0.00 0.0 1.00 0.0	0.00 0.0 1.00 0.0	0.0 1.00 0.0 0	0.00 0.0 1.00 0.0

AdjDel/Veh: 0.0 0.0 0.0 2.9 2.9 0.0 21.1 20.5 20.5 0.0 0.0 0.0 DesignQueue: 0 0 0 9 12 0 4 7 1 0 0 0

Level of Service Computation Report
2000 HCM Operations Method (Base Volume Alternative)

Intersection #47 Durant Avenue / College Avenue

70 Critical Vol./Cap. (X): 0.335 Cycle (sec): Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 13.4 Optimal Cycle: 42 Level Of Service: ************************

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|-----|------| Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 18 18 0 0 0 16 16 16 0 0 0 Lanes: 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 _____| Volume Module: >> Count Date: 19 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 189 62 16 56 0 127 268 202 0 0 Initial Bse: 0 189 62 16 56 0 127 268 202 0 0 0 0 Final Vol.: 0 203 67 17 60 0 137 288 217 0 0 _____| Saturation Flow Module: Adjustment: 1.00 0.97 0.97 0.93 0.93 1.00 0.94 0.89 0.89 1.00 1.00 1.00 Lanes: 0.00 0.75 0.25 0.22 0.78 0.00 1.00 1.14 0.86 0.00 0.00 0.00

Final Sat.: 0 1383 454 391 1367 0 1778 1927 1452 0 0 -----|

Vol/Sat: 0.00 0.15 0.15 0.04 0.04 0.00 0.08 0.15 0.15 0.00 0.00 0.00

Green/Cycle: 0.00 0.46 0.46 0.46 0.00 0.43 0.43 0.43 0.00 0.00 0.00 Volume/Cap: 0.00 0.32 0.32 0.10 0.10 0.00 0.18 0.35 0.35 0.00 0.00 0.00 Delay/Veh: 0.0 13.1 13.1 11.0 11.0 0.0 12.9 14.1 14.1 0.0 0.0 0.0 AdjDel/Veh: 0.0 13.1 13.1 11.0 11.0 0.0 12.9 14.1 14.1 0.0 0.0 0.0 DesignQueue: 0 4 1 0 1 0 3 7 5 0 0 0

Crit Moves: ****

Capacity Analysis Module:

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

Level Of Service Computation Report

2000 HCM 4-Way Stop Method (Base Volume Alternative)

Intersection								****	*****	****	****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle	201.	100	(V+D	= 4	(200)	Critica	l Vol	./Cap	(X):		0.7	14
Approach: Movement:	No:	rth Bo - T	und - R	Son L ·	uth Bo - T	ound - R	Ea L -	ast Bo - T	ound - R	We L -	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	St 0	top Si Inclu 0	.gn .de 0	S :	top Si Incli 0	ign ude 0	0 1	top S: Inclu 0	ign ude 0	0 0	top S: Incli 0	ign ude 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	1.00 1.00 0 1.00 0.95 0 0 1.00	Count 398 1.00 398 1.00 0.95 419 0 419 1.00 1.00 419	Date: 0 1.00 0 1.00 0.95 0 0 1.00 1.00 0 1.00 0	20 No 0 1.00 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0	200 427 1.00 427 1.00 0.95 449 0 449 1.00 1.00	02 << 4 0 1.00 0 1.00 0.95 0 0 1.00 1.00 0 1.00 0	:00 - 179 1.00 179 1.00 0.95 188 0 188 1.00 1.00	6:00 0 1.00 0 1.00 0.95 0 0 0 1.00	PM 197 1.00 197 1.00 0.95 207 0 207 1.00 1.00 207	0 1.00 0 1.00 0.95 0 0 0 1.00	0 1.00 0 1.00 0.95 0 0 0 1.00	0 1.00 0 1.00 0.95 0 0 0 1.00 1.00
Saturation Fi Adjustment: Lanes: Final Sat.:	low Mo 1.00 0.00	1.00 1.00 1.00 622	1.00	1.00	1.00 1.00 629	1.00	1.00 1.00 488	1.00 0.00 0	1.00 1.00 580	1.00	1.00 0.00 0	1.00
Capacity Anal Vol/Sat: Crit Moves: Delay/Veh: Delay Adj: AdjDel/Veh: LOS by Move: ApproachDel: Delay Adj: ApprAdjDel: LOS by Appr:	0.0 1.00 0.0	Modul 0.67 **** 18.9 1.00 18.9 C 18.9 1.00	0.0 1.00 0.0 *	0.0 1.00 0.0 *	0.71 **** 20.8 1.00 20.8 C	0.0 1.00 0.0 *	0.39 **** 13.9 1.00 13.9	0.0 1.00 0.0 * 12.7	0.36 11.6 1.00 11.6 B	0.0 1.00 0.0 *	0.0 1.00 0.0 *	0.0 1.00 0.0 *

Existing Conditions

EXISTING PM Thu Jun 19, 2003 17:23:24 Page 54-1

______ UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)													
*****	*******	******	*****	******	*****	:/ :*****	****						
Intersection	#49 Channing	Way / Shattud	ck Avenu	e *******	*****	******	****						
Cycle (sec):	75		Critica	1 Vol./Cap.	(X):	0.75	59						
	ec): 8 (Y+R = 4 sec)	Average	Delay (sec			. 0						
Optimal Cycle	e: 53 ******			f Service:			A						
	North Bound		Bound			West Bo							
Movement:	L - T -	R L - T	- R	L - T		L - T							
				'									
Control:	Permitted			Permit Inclu		Permit							
Rights: Min. Green:	Include 16 16		Lude		1ae 22	Inclu 22 22	1ae 22						
Lanes:	1 0 1 1												
	e: >> Count Da												
Base Vol:	83 1279	94 19 1089		18 76	81	144 97	106						
Growth Adj:		.00 1.00 1.00		1.00 1.00	1.00	1.00 1.00	1.00						
Initial Bse: User Adj:		94 19 1089 .00 1.00 1.00		18 76 1.00 1.00	81 1.00	144 97 1.00 1.00	106 1.00						
PHF Adj:		.93 0.93 0.93		0.93 0.93	0.93	0.93 0.93	0.93						
PHF Volume:		101 20 1171		19 82	87	155 104	114						
Reduct Vol:	0 0	0 0 0	0 0	0 0	0	0 0	0						
Reduced Vol:	89 1375	101 20 1171		19 82	87	155 104	114						
PCE Adj:		.00 1.00 1.00		1.00 1.00	1.00	1.00 1.00	1.00						
MLF Adj: Final Vol.:		.00 1.00 1.00 101 20 1171		1.00 1.00 19 82	1.00	1.00 1.00 155 104	1.00 114						
	89 13/5												
Saturation F	•	11	'	1	1 1		'						
Sat/Lane:		900 1900 1900		1900 1900	1900	1900 1900	1900						
Adjustment:		.94 0.18 0.94		0.89 0.89	0.89	0.74 0.74							
Lanes:		.14 1.00 1.91		0.10 0.43		0.41 0.28							
	435 3329 2	245 338 3434		174 733	781	584 393	430						
	lysis Module:	11	'	1	1 1		1						
Vol/Sat:	0.21 0.41 0	.41 0.06 0.34	1 0.34	0.11 0.11	0.11	0.27 0.27	0.27						
Crit Moves:	***					***							
Green/Cycle:		.59 0.59 0.59		0.36 0.36		0.36 0.36							
Volume/Cap:		.70 0.10 0.57		0.31 0.31	0.31	0.74 0.74							
Delay/Veh: User DelAdj:		2.2 1.2 1.4 .00 1.00 1.00		18.6 18.6 1.00 1.00	18.6 1.00	30.1 30.1 1.00 1.00	30.1						
AdjDel/Veh:		2.2 1.2 1.4		18.6 18.6	18.6	30.1 30.1	30.1						
DesignQueue:		2 0 21		1 2	2	4 3	3						

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) Intersection #50 Channing Way / Fulton Street ****************** Cycle (sec): 100 Critical Vol./Cap. (X): 0.710 18.0 Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 0 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Stop Sign Stop Sign Stop Sign Include Include Include Rights: Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 -----| Volume Module: >> Count Date: 14 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 0 0 48 686 61 0 133 38 15 257 0 Initial Bse: 0 0 0 48 686 61 0 133 38 15 257 0 PHF Volume: 0 0 0 52 746 66 0 145 41 16 279 0 0 Ω Final Vol.: 0 0 0 52 746 66 0 145 41 16 279 0 -----| Saturation Flow Module: Lanes: 0.00 0.00 0.00 0.12 1.73 0.15 0.00 0.78 0.22 0.06 0.94 0.00 Final Sat.: 0 0 0 73 1065 96 0 454 130 33 562 0 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: xxxx xxxx xxxx 0.71 0.70 0.69 xxxx 0.32 0.32 0.50 0.50 xxxx Crit Moves: Delay/Veh: 0.0 0.0 0.0 21.4 20.6 19.9 0.0 11.6 11.6 14.4 14.4 0.0 AdjDel/Veh: 0.0 0.0 0.0 21.4 20.6 19.9 0.0 11.6 11.6 14.4 14.4 0.0 LOS by Move: * * * C C C * B B B ApproachDel: xxxxxx 20.6 11.6 14.4 Delay Adj: xxxxx 1.00 1.00 1.00 ApprAdjDel: xxxxxx 20.6 11.6 14.4 LOS by Appr: * C B B

Existing Conditions PM Peak Hour

EXISTING PM Thu Jun 19, 2003 17:23:24 Page 56-1

______ UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

*****	2000 HCM		ons Me	thod	(Base	Volume	e Ālte	ernativ			
Intersection	#51 Chan	ning Way	/ Tel	.egrap	h Aven	ue					
Cycle (sec): Loss Time (s Optimal Cycl	ec):	70 8 (Y+R 43	= 4 s	sec) A	Critica Average Level C	l Vol Delay	./Cap / (sed	(X): c/veh):		0.3	84 .7 B
Approach: Movement:	North L - T	Bound - R	Sou L -	th Bo	ound - R	Ea L -	ast Bo	ound - R	We	est B	ound - R
Control: Rights: Min. Green: Lanes:	Perm Inc 18 1 0 1 0	itted lude 8 18 1 0	0 0 0 0	ermit Inclu 0	ted ide 0	17	Permit Inclu 17 L 0	tted ide 0 0 0	0 0	Permi Incl 17	tted ude 17 1 0
Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.: Saturation F	e: >> Cou 86 41 1.00 1.0 86 41 1.00 1.0 0.88 0.8 98 46 0 98 46 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0	nt Date: 0 41 0 1.00 0 41 0 1.00 0 41 0 0.88 0 88 6 47 0 0 1.00 0 1.00 0 1.00 6 47	1 Sep 0 1.00 0 1.00 0.88 0 0 0 1.00 1.00 0	1.00 1.00 0 1.00 0.88 0 0 1.00 1.00	7 << 4: 0 1.00 0 1.00 0.88 0 0 0 1.00 0	1.00 23 1.00 23 1.00 0.88 26 0 26 1.00 1.00 26	5:00 1 144 1.00 144 1.00 0.88 164 0 164 1.00 1.00	0 1.00 0 1.00 0.88 0 0 0 1.00 1.00	0 1.00 0 1.00 0.88 0 0 0 1.00 1.00	227 1.00 227 1.00 0.88 258 0 258 1.00 1.00 258	46 1.00 46 1.00 0.88 52 0 52 1.00 1.00 52
Sat/Lane: Adjustment: Lanes: Final Sat.:	0.93 0.9 0.32 1.5 565 269	3 0.93 3 0.15 6 270	1.00 0.00 0	1.00	1.00	0.93 0.14 244	0.93 0.86 1527		0.00	0.98 0.83 1544	0.98 0.17 313
Capacity Ana Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	lysis Mod 0.17 0.1 *** 0.56 0.5 0.31 0.3 5.8 5. 1.00 1.0 5.8 5.	ule: 7 0.17 * 6 0.56 1 0.31 8 5.8 0 1.00 8 5.8 8 1	0.00 0.00 0.00 0.0 1.00 0.0	0.00 0.00 0.00 0.0 1.00 0.0	0.00 0.00 0.00 0.0 1.00 0.0	0.11 0.33 0.33 19.4 1.00 19.4	0.11 0.33 0.33 19.4 1.00 19.4 4	0.00 0.00 0.00 0.0 1.00 0.0	0.00 0.00 0.00 0.0 1.00 0.0	0.17 **** 0.33 0.51 22.3 1.00 22.3	0.17 0.33 0.51 22.3 1.00 22.3

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #52 Channing Way / College Avenue ****************** Cycle (sec): 65 Critical Vol./Cap. (X): 0.464 10.4 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 43 Level Of Service: В Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Permitted Permitted Permitted Include Include Include Include Rights: Min. Green: 18 18 18 18 18 18 17 17 17 17 17 17 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 -----| Volume Module: >> Count Date: 19 Nov 2002 << 4:00 - 6:00 PM Base Vol: 31 189 41 7 206 24 5 95 58 124 141 47 Initial Bse: 31 189 41 7 206 24 5 95 58 124 141 47 PHF Volume: 36 217 47 8 237 28 6 109 67 143 162 54 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 8 237 28 6 109 67 143 162 Ω Reduced Vol: 36 217 47 Final Vol.: 36 217 47 8 237 28 6 109 67 143 162 54 _____| Saturation Flow Module: Adjustment: 0.93 0.93 0.93 0.98 0.98 0.98 0.94 0.94 0.94 0.80 0.80 0.80 Lanes: 0.12 0.72 0.16 0.03 0.87 0.10 0.03 0.60 0.37 0.40 0.45 0.15 Final Sat.: 209 1276 277 55 1614 188 56 1073 655 602 684 228 -----| Capacity Analysis Module: Vol/Sat: 0.17 0.17 0.17 0.15 0.15 0.15 0.10 0.10 0.10 0.24 0.24 0.24 Crit Moves: **** Green/Cycle: 0.60 0.60 0.60 0.60 0.60 0.60 0.41 0.41 0.41 0.41 0.41 Volume/Cap: 0.28 0.28 0.28 0.24 0.24 0.24 0.25 0.25 0.25 0.58 0.58 0.58 Delay/Veh: 4.1 4.1 4.1 3.9 3.9 3.9 13.5 13.5 13.5 18.9 18.9 18.9 AdjDel/Veh: 4.1 4.1 4.1 3.9 3.9 3.9 13.5 13.5 13.5 18.9 18.9 18.9 DesignQueue: 1 3 1 0 3 0 0 2 1 3 4 1

Existing Conditions

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

PM Peak Hour

	2000					Computa			t ernativ	- \		
*****											****	*****
Intersection								****	******	*****	****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle ************************************	ec):	, 3	(Y+R :	= 4 9	sec) A	Average	Delay	v (sed	. (21). c/veh):		10	. 0
Optimal Cycle	e:	57	(, .	Level O	f Serv	/ice:	-,, .			A
*****	****	****	*****	****	****	*****	****	****	*****	*****	****	*****
Approach:												
Movement:	L -	- T	- R	L -	- Т	- R	L -	- T	- R	L -	- Т	- R
Control:	1	Permit	ted	1	Permit	ted	I	Permit	tted	E	Permit	ted
Rights: Min. Green:		Inclu	ide		Incl	ıde		Incl	ıde		Incl	ıde
Min. Green:	22	22	0	0	22	22	0	0	0			
Lanes:	1 (0 0			
Volume Module												
Base Vol:											336	
Growth Adj:						1.00				1.00		1.00
Initial Bse:						88	0	0	0	268	336	152
User Adj:										1.00		1.00
PHF Adj:				0.93					0.93	0.93		0.93
PHF Volume: Reduct Vol:							0	0	0	288	361 0	163
Reduced Vol:	110	1272		0		-	0			0 288	361	0 163
PCE Adi:										1.00		1.00
MLF Adj:						1.00		1.00	1.00	1.00		1.00
Final Vol.:				0.00			1.00	0.00	0	288	361	163
							-	-	-			
Saturation Fl				1		1	1		'	1		'
			1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:						0.94			1.00	0.89		0.89
Lanes:				0.00	1.86	0.14	0.00	0.00	0.00	0.71	0.89	0.40
Final Sat.:	306	3610	0	0	3331	243	0	0	0	1204	1510	683
Capacity Anal	Lysis	Modul	e:									
Vol/Sat:	0.37	0.38	0.00	0.00		0.39	0.00	0.00	0.00	0.24		0.24
Crit Moves:					***						****	
Green/Cycle:								0.00	0.00	0.36		0.36
Volume/Cap:						0.73		0.00	0.00	0.66		0.66
Delay/Veh:	24.0	5.4	0.0	0.0	5.7	5.7	0.0	0.0	0.0	23.1	23.1	23.1

*****		HCM (ons Me	ethod	(Base	Volume	e Alt	ernativ		****	****
Intersection												
**************************************	ec):	80 8 53) 3 (Y+R :	= 4 s	sec) A	Critica Average Level C	l Vol Dela	./Cap y (se vice:	. (X): c/veh):		0.4	94 .9 B
Approach:	No:	cth Bo	ound - R	Sou L -	ith Bo	ound - R	E d	ast B	ound - R	We	est B	ound - R
Control: Rights: Min. Green: Lanes:	0 0	Permit Inclu 0 0	ited ide 0 0 0	0 0	Permit Inclu 25) 1	ited ide 25 1 0	0	Permi Incl 0 0 0	tted ude 0	20	Permi Incl 20 1 1	tted ude 0 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	0 1.00 0 1.00 0.88 0 0 0 1.00	Count	Date:	14 No 0 1.00 0 1.00 0.88 0 0 0 1.00 1.00	580 1.00 580 1.00 0.88 659 0 659 1.00 1.00	154 1.00 154 1.00 0.88 175 0 175 1.00 1.00	1.00 - 0 1.00 0 1.00 0 0.88 0 0 0 1.00 1.00	6:00 0 1.00 0 1.00 0.88 0 0 0	PM 0 1.00 0 1.00 0.88 0 0 0 1.00 1.00 1.00	50 1.00 50 1.00 0.88 57 0 57 1.00 1.00	604 1.00 604 1.00 0.88 686 0 686 1.00 1.00	1.0 1.0 0.8
Saturation F: Sat/Lane: Adjustment: Lanes: Final Sat.:	low Mo 1900 1.00 0.00	1900 1.00 0.00	1900 1.00 0.00	1900 1.00 0.00	1900 0.92 1.58 2764	1900 0.92 0.42 734	1900 1.00 0.00	1900 1.00 0.00	1900 1.00 0.00	1900 0.95 0.15 276	1900 0.95 1.85 3334	190 1.0 0.0
Capacity Anal Vol/Sat: Crit Moves:	lysis	Modul	Le:			0.24			·			0.0
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue: **********************************	0.00 0.0 1.00 0.0 0	0.00 0.0 1.00 0.0 0	0.00 0.0 1.00 0.0	0.00 0.0 1.00 0.0 0	0.35 5.5 1.00 5.5 10	0.35 5.5 1.00 5.5 3	0.00 0.0 1.00 0.0	0.00 0.0 1.00 0.0 0	0.00 0.0 1.00 0.0	0.78 33.9 1.00 33.9 2	0.78 33.9 1.00 33.9 23	0.0 0. 1.0 0.

AdjDel/Veh: 24.0 5.4 0.0 0.0 5.7 5.7 0.0 0.0 0.0 23.1 23.1 DesignQueue: 2 29 0 0 27 2 0 0 0 8 10 5

EXISTING PM Thu Jun 19, 2003 17:23:25 Page 60-1

UC Berkeley LRDP EIR

Existing Conditions

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

Level Of Service 2000 HCM Operations Method	Computation Report d (Base Volume Alternative)
*******	******	*****
<pre>Intersection #55 Haste Street / Telegra ************************************</pre>		*****
Cycle (sec): 70	Critical Vol./Cap. (X):	0.416
Loss Time (sec): $8 (Y+R = 4 sec)$		
Optimal Cycle: 40	Level Of Service:	В
*********		*****
Approach: North Bound South B	Bound East Bound	West Bound
Movement: $L - T - R L - T$	- R L - T - R	L - T - R
Control: Permitted Permi	tted Permitted	Permitted
Rights: Include Incl	ude Include	Include
Min. Green: 16 16 0 0 0	0 0 0 0	0 16 16
Lanes: 0 1 1 0 0 0 0 0		
Volume Module: >> Count Date: 19 Nov 20	002 << 4:00 - 6:00 PM	
Base Vol: 186 476 0 0	0 0 0 0	0 470 57
Growth Adj: 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00
Initial Bse: 186 476 0 0 (0 0 0 0	0 470 57

PHF Volume: 207 529 0 0 0 0 0 0 0 522 63 0 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 Ω Reduced Vol: 207 529 0 0 0 522

Final Vol.: 207 529 0 0 0 0 0 0 0 522 63 -----| Saturation Flow Module: Adjustment: 0.95 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.93 Final Sat.: 1014 2596 0 0 0 0 0 0 0 3168 384 _____| Capacity Analysis Module: Crit Moves: ****

Delay/Veh: 15.4 15.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.9 8.9

AdjDel/Veh: 15.4 15.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.9 8.9

DesignOueue: 5 13 0 0 0 0 0 0 0 9 1

PM Peak Hour Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)

Intersection #56 Haste Street / College Avenue **************** 9.3 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 40 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Permitted Permitted Permitted Rights: Include Include Include Include Rights: Min. Green: 16 16 0 0 16 16 0 0 16 16 16 Lanes: 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 -----| Volume Module: >> Count Date: 19 Nov 2002 << 4:00 - 6:00 PM Base Vol: 88 236 0 0 337 56 0 0 0 90 244 29 Initial Bse: 88 236 0 0 337 56 0 0 90 244 29 PHF Volume: 100 268 0 0 383 64 0 0 102 277 33 0 0 0 64 0 0 Reduct Vol: 0 0 0 0 0 0 0 Reduced Vol: 100 268 0 0 383 64 0 0 0 0 102 277 33 Final Vol.: 100 268 0 0 383 64 0 0 0 102 277 33 _____| Saturation Flow Module: Adjustment: 0.80 0.80 1.00 1.00 0.98 0.98 1.00 1.00 1.00 0.93 0.93 Lanes: 0.27 0.73 0.00 0.00 0.86 0.14 0.00 0.00 0.00 0.50 1.34 0.16 Final Sat.: 413 1109 0 0 1598 266 0 0 0 874 2369 282 -----| Capacity Analysis Module: Crit Moves: **** Volume/Cap: 0.35 0.35 0.00 0.00 0.34 0.34 0.00 0.00 0.00 0.47 0.47 Delay/Veh: 2.0 2.0 0.0 0.0 1.8 1.8 0.0 0.0 0.0 24.1 24.1 24.1 AdjDel/Veh: 2.0 2.0 0.0 0.0 1.8 1.8 0.0 0.0 0.0 24.1 24.1 24.1

DesignOueue: 1 3 0 0 5 1 0 0 0 3 8 1

EXISTING PM Thu Jun 19, 2003 17:23:25 Page 62-1 UC Berkeley LRDP EIR

> Existing Conditions PM Peak Hour

UC Berkeley LRDP EIR Existing Conditions

PM Peak Hour															
Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)															
******											****	*****			
Intersection	#57 Dv	wight	. Way /	Mart	in Lut	her Ki	ng Way	y							

Cycle (sec): Loss Time (sec) Optimal Cycle	ec):	12	(Y+R	= 4 :	sec) I	verage	Dela	v (se	. (A). c/veh):		17	. 6			
Optimal Cycl	e:	85	`		I	evel 0	f Serv	vice:				В			
******	**************************************														
Movement:															
	Pe	ermit	ted								Permit	ted			
Rights:	Permitted Permitted Permitted Permitted Include Include Include Include 18 18 18 18 21 21 21 0 0 0														
Min. Green:	18	18	18	21	0	0	0								
Lanes:															
Volume Modul															
Base Vol:									111	0	0	0			
Growth Adj:	1.00 1	1.00	1.00	1.00	1.00	1.00			1.00						
Initial Bse:									111						
User Adj:	1.00 1	1.00	1.00			1.00		1.00				1.00			
PHF Adj:						0.94	0.94					0.94			
PHF Volume:						289			118						
Reduct Vol:									0						
Reduced Vol:						289			118						
PCE Adj:	1.00 1	1.00	1.00			1.00		1.00				1.00			
MLF Adj: Final Vol.:	1.00	072	1.00			1.00	52	1.00				1.00			
FINAL VOI.:												-			
Saturation F				1		'	1		'	'		'			
Sat/Lane:	1900 1	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Adjustment:									0.90						
Lanes:	0.15 1	1.72	0.13	0.18	1.38	0.44			0.37						
Final Sat.:															
Capacity Ana							1			1					
Vol/Sat:				0.54	0.54	0.54	0.19	0.19	0.19	0.00	0.00	0.00			

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) Intersection #58 Dwight Way / Shattuck Avenue ****************** Cycle (sec): 75 Critical Vol./Cap. (X): 0.841 12.9 Loss Time (sec): 12 (Y+R = 5 sec) Average Delay (sec/veh): Optimal Cycle: 78 Level Of Service: В Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Permitted Prot+Permit Permitted Permitted Include Include Include Include Rights: Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 -----| Volume Module: >> Count Date: 14 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 1273 123 133 1390 0 77 426 200 0 0 Initial Bse: 0 1273 123 133 1390 0 77 426 200 0 0 PHF Volume: 0 1326 128 139 1448 0 80 444 208 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 0 1326 128 139 1448 0 80 444 208 Ω Final Vol.: 0 1326 128 139 1448 0 80 444 208 0 0 -----| Saturation Flow Module: Adjustment: 1.00 0.94 0.94 0.24 0.95 0.95 0.87 0.87 0.87 1.00 1.00 1.00 Lanes: 0.00 1.82 0.18 1.00 2.00 0.00 0.22 1.21 0.57 0.00 0.00 0.00 Final Sat.: 0 3249 314 462 3610 0 362 2003 941 0 0 -----| Capacity Analysis Module: Crit Moves: **** ****

Green/Cycle: 0.49 0.49 0.49 0.61 0.61 0.61 0.31 0.31 0.31 0.00 0.00 0.00

Volume/Cap: 0.78 0.78 0.78 0.89 0.89 0.89 0.60 0.60 0.60 0.00 0.00 0.00

Delay/Veh: 17.0 17.0 17.0 14.8 14.8 14.8 24.3 24.3 24.3 0.0 0.0 0.0

AdjDel/Veh: 17.0 17.0 17.0 14.8 14.8 14.8 24.3 24.3 24.3 0.0 0.0 0.0

DesignQueue: 2 20 1 2 16 5 2 14 4 0 0 0

Crit Moves: **** ****

Green/Cycle: 0.00 0.49 0.49 0.58 0.58 0.00 0.26 0.26 0.26 0.00 0.00 0.00

Volume/Cap: 0.00 0.84 0.84 0.52 0.70 0.00 0.84 0.84 0.84 0.00 0.00 0.00

Delay/Veh: 0.0 11.4 11.4 10.9 3.0 0.0 35.8 35.8 35.8 0.0 0.0 0.0

AdjDel/Veh: 0.0 11.4 11.4 10.9 3.0 0.0 35.8 35.8 35.8 0.0 0.0 0.0

DesignQueue: 0 31 3 5 28 0 3 14 7 0 0

				P.	M Pea	k Hour						
****	2000	HCM C	perati	ons M	ethod	Computa (Base '	Volum	e Alte	ernativ	e)	****	*****
Intersection							****	****	*****	****	****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e:	75 8 45 ****) (Y+R - *****	= 4	sec) .	Critica Average Level O *****	l Vol Dela f Ser	./Cap y (se vice: ****	. (X): c/veh): *****	****	0.5 14	54 .0 B *****
Approach: Movement:	No:	rth Bo - T	und - R	So.	uth B - T	ound - R	E.	ast Bo	ound - R	We L -	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	0	Permit Inclu 0 0 0	ited ide 21 0 1	21	Permi Incl 0 0 0	tted ude 0	0	Perminus Include 16 0 1	tted ude 16	0 0	Perminological Permin	tted ude 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol:	0 1.00 0 1.00 0.95 0 0 1.00	Count	Date: 62 1.00 62 1.00 0.95 65 0 65 1.00 1.00 65	14 N 631 1.00 631 1.00 0.95 664 0 664 1.00 1.00	ov 20 0 1.00 0 1.00 0.95 0 0 1.00	02 << 4 0 1.00 0 1.00 0.95 0 0 1.00 1.00 0	1.00 - 0 1.00 0 1.00 0.95 0 0 0 1.00 1.00 0	6:00 664 1.00 664 1.00 0.95 699 0 699 1.00 1.00	PM 15 1.00 15 1.00 0.95 16 0 16 1.00 16	0 1.00 0 1.00 0.95 0 0 0 1.00	0 1.00 0 1.00 0.95 0 0 0 1.00 1.00	0 1.00 0 1.00 0.95 0 0 0 1.00 1.00
Saturation F: Sat/Lane: Adjustment: Lanes: Final Sat.:	10w M 1900 1.00 0.00	0dule: 1900 1.00 0.00	1900 0.87 1.00 1644	1900 0.59 2.00 2241	1900 1.00 0.00	1900 1.00 0.00	1900 1.00 0.00	1900 0.95 1.96 3520	1900 0.95 0.04 80	1900 1.00 0.00	1900 1.00 0.00 0	1900 1.00 0.00
Capacity Anal Vol/Sat: Crit Moves: Green/Cycle:	lysis 0.00	Modul 0.00	0.04	0.30	0.00	0.00	0.00	0.20	0.20	0.00	0.00	0.00

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)

EXISTING PM Thu Jun 19, 2003 17:23:25 Page 64-1

*******			ons Method					*****
Intersection	#60 Dwigh	t Way /	Telegraph	Avenue				
Cycle (sec): Loss Time (s Optimal Cycl								
Approach: Movement:	North B L - T	ound - R	South Bo	ound - R	East E	Bound - R	West B	ound - R
Control: Rights: Min. Green: Lanes:	Permi Incl 0 15 0 0 1	tted ude 15 1 0	Permit Inclu 0 0 0 0 0	ted ide 0	Permi Incl 17 17 0 1 0	tted ude 7 17 1 0	Permi Incl 0 0 0 0 0	tted ude 0
Volume Modul Base Vol: Growth Adj: Initial Bse:	e: >> Coun 0 590 1.00 1.00 0 590	t Date: 149 1.00 149	19 Nov 200 0 0 1.00 1.00 0 0	02 << 4 0 1.00 0	:00 - 6:00 130 671 1.00 1.00 130 671	9 PM 813 1.00 813	0 0 1.00 1.00 0 0	0
User Adj: PHF Adj: PHF Volume: Reduct Vol:	0.98 0.98 0 602	0.98 152	0.98 0.98	0.98	1.00 1.00 0.98 0.98 133 685 0 0	0.98 830	1.00 1.00 0.98 0.98 0 0	0.98
Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	1.00 1.00 1.00 1.00 0 602	1.00 1.00 152	1.00 1.00 1.00 1.00 0 0	0 1.00 1.00 0	133 685 1.00 1.00 1.00 1.00 133 685	830 1.00 1.00 830	1.00 1.00 1.00 1.00 0 0	1.00 1.00 0
Saturation F								
Sat/Lane: Adjustment: Lanes: Final Sat.:	1.00 0.92 0.00 1.60 0 2796	0.92 0.40 706	1.00 1.00 0.00 0.00 0 0	1.00	0.81 0.81 0.16 0.84 250 1291	0.81 1.00 1541	1.00 1.00 0.00 0.00 0 0	1.00 0.00 0
Capacity Ana Vol/Sat:	lysis Modu	le:						
Crit Moves: Green/Cycle:	***				0.63 0.63	****		
Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh:	0.00 0.85 0.0 35.5 1.00 1.00 0.0 35.5	0.56 17.0 1.00 17.0	0.00 0.00 0.0 0.0 1.00 1.00 0.0 0.0	0.00 0.0 1.00 0.0	0.84 0.84 14.5 14.5 1.00 1.00 14.5 14.5	0.85 5 15.2 1.00 5 15.2	0.00 0.00 0.0 0.0 1.00 1.00 0.0 0.0	0.00 0.0 1.00 0.0
DesignQueue:								

Delay/Veh: 0.0 0.0 8.2 12.7 0.0 0.0 15.8 15.8 0.0 0.0 0.0 AdjDel/Veh: 0.0 0.0 8.2 12.7 0.0 0.0 15.8 15.8 0.0 0.0 0.0 DesignQueue: 0 0 1 13 0 0 0 18 0 0 0

EXISTING PM Thu Jun 19, 2003 17:23:25 Page 66-1 UC Berkeley LRDP EIR

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

	Level Of Serv	ice Computation Report	
2000	HCM Operations Me	thod (Base Volume Alternative)
******	*****	* * * * * * * * * * * * * * * * * * * *	*****
	Dwight Way / Colle	ge Avenue ***********	****
Cycle (sec):	70	Critical Vol./Cap. (X):	0.535
Loss Time (sec):	8 (Y+R = 4 s)	ec) Average Delay (sec/veh):	15.2
Optimal Cycle:	39	Level Of Service:	В

*****	****	***	***	***	***	***	* * *	* * *	***	* *	* * *	* * *	* * *	* * *	***	***	***	* * *	* * *	***		
Approach:	Nor	th E	oun	d	South Bound						East Bound						West Bound					
Movement:	L - T - R			R	L	-	T	-	R		L - T - R				R	L - T - R						
				1	1					11					1					1		

Control:	P	ermit	ted]	Permit	ted	1	Permit	ted	F	ermit	ted
Rights:		Inclu	de		Inclu			Incl	ıde		Incl	ıde
Min. Green:	0	16	16	16	16	0	15		15	0	0	0
Lanes:	0 0	0 :	L 0	0 3	1 0	0 0	0	1 0	1 0	0 0	0	0 0
Volume Module	: >>	Count	Date:	19 No	ov 200	2 << 4	:00 -	6:00	PM			
Base Vol:	0	294	52	49	374	0	34	483	129	0	0	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	294	52	49	374	0	34	483	129	0	0	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
PHF Volume:	0	323	57	54	411	0	37	531	142	0	0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	323	57	54	411	0	37	531	142	0	0	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	0	323	57	54	411	0	37	531	142	0	0	0

Adjustment: 1.00 0.98 0.98 0.93 0.93 1.00 0.89 0.89 0.89 1.00 1.00 1.00

Lanes: 0.00 0.85 0.15 0.12 0.88 0.00 0.10 1.50 0.40 0.00 0.00 0.00

Final Sat.: 0 1582 280 204 1554 0 179 2540 678 0 0

-----|

Vol/Sat: 0.00 0.20 0.20 0.26 0.26 0.00 0.21 0.21 0.21 0.00 0.00 0.00

Green/Cycle: 0.00 0.59 0.59 0.59 0.00 0.29 0.29 0.29 0.00 0.00 0.00

Volume/Cap: 0.00 0.34 0.34 0.45 0.45 0.00 0.72 0.72 0.72 0.00 0.00 0.00

Delay/Veh: 0.0 5.1 5.1 6.0 6.0 0.0 26.6 26.6 26.6 0.0 0.0 0.0

AdjDel/Veh: 0.0 5.1 5.1 6.0 6.0 0.0 26.6 26.6 26.6 0.0 0.0 0.0

DesignQueue: 0 5 1 1 7 0 1 15 4 0 0 0

Crit Moves: ****

Saturation Flow Module:

Capacity Analysis Module:

Existing Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)

Volume Module: >> Count Date: 20 Nov 2002 << 4:00 - 6:00 PM

Intersection #62 Dwight Way / Piedmont Avenue / Warring Street ****************** Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 13.1 Optimal Cycle: 61 Level Of Service: B

Approach:	North Bound						South Bound					East Bound					West Bound				
Movement:	L	-	T	-	R	L	-	T	-	R	L	-	T	-	R	I	-	T	-	R	
Control:		Pe	rmi	tte	ed		P∈	ermi	tte	ed		P∈	ermi	tte	:d		Pe	ermi	tte	d	
Rights:	Include						Include					Include						Incl	ude		
Min. Green:	0 29 29			2	29 29 0					24 24			24		24	0		24			
Lanes:	0 0 1 1 0			0	0 1 1 0 0			1	1 0 1 0		1	0	0	1!	0	0					
						-															

Base Vol:	0	527	1	8	353	0	132	162	307	53	0	112
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	527	1	8	353	0	132	162	307	53	0	112
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
PHF Volume:	0	579	1	9	388	0	145	178	337	58	0	123
Reduct Vol:	0		0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	579	1	9	388	0	145	178	337	58	0	123
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	0	579	1	9	388	0	145	178	337	58	0	123

Saturation Fl	ow Mo	odule:										
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	1.00	0.95	0.95	0.90	0.90	1.00	0.68	1.00	0.85	0.79	1.00	0.79
Lanes:	0.00	1.99	0.01	0.04	1.96	0.00	1.00	1.00	1.00	0.32	0.00	0.68
Final Sat.:	0	3603	7	75	3329	0	1288	1900	1615	482	0	1018
Capacity Analysis Module:												

Capacity Ana.	TASTS	MOduli	=:									
Vol/Sat:	0.00	0.16	0.16	0.12	0.12	0.00	0.11	0.09	0.21	0.12	0.00	0.12
Crit Moves:		****							****			
Green/Cycle:	0.00	0.46	0.46	0.46	0.46	0.00	0.41	0.41	0.41	0.41	0.00	0.41
Volume/Cap:	0.00	0.35	0.35	0.25	0.25	0.00	0.27	0.23	0.50	0.29	0.00	0.29
Delay/Veh:	0.0	12.1	12.1	11.5	11.5	0.0	13.8	13.4	15.8	13.9	0.0	13.9
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

UC Berkeley LRDP EIR Existing Conditions

PM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #63 Dwight Avenue / Prospect Street ****************** Average Delay (sec/veh): 5.7 Worst Case Level Of Service: B *********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Rights: Include Include Include Include Lanes: 0 0 0 0 0 0 0 1! 0 0 0 1 0 0 0 0 1 0 -----| Volume Module: >> Count Date: 20 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 0 0 27 0 165 187 128 0 0 93 16 Initial Bse: 0 0 0 27 0 165 187 128 0 0 93 16 PHF Volume: 0 0 0 32 0 194 220 151 0 0 109 19 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 0 0 0 32 0 194 220 151 0 0 109 19 Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.4 xxxx 6.2 4.1 xxxx xxxxx xxxx xxxx xxxxx FollowUpTim:xxxxx xxxxx xxxxx 3.5 xxxx 3.3 2.2 xxxx xxxxx xxxxx xxxxx xxxxx ______| Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 709 xxxx 119 128 xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxx xxxx 403 xxxx 938 1470 xxxx xxxxx xxxx xxxx xxxxx Move Cap.: xxxx xxxx xxxx 351 xxxx 938 1470 xxxx xxxxx xxxx xxxx xxxxx _____| Level Of Service Module: LOS by Move: * * * * * A * * * * Movement: LT - LTR - RT Shrd StpDel:xxxxx xxxx xxxxx xxxxx 11.7 xxxxx 7.9 xxxx xxxxx xxxxx xxxxx xxxxx Shared LOS: * * * * B * A * * * * * ApproachDel: xxxxx 11.7 xxxxxx ApproachLOS: * B * *

EXISTING PM Thu Jun 19, 2003 17:23:25 Page 68-1

UC Berkeley LRDP EIR
Existing Conditions
PM Peak Hour

Level Of Service Computation Report

	Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ***********************************							
Intersection	#64 Adeline :	************** Street / Ward <i>I</i> *******	Avenue / S	Shattuck A	venue			
Cycle (sec): Loss Time (s Optimal Cycl	90 ec): 8 ('e: 99	Y+R = 6 sec) 1 ********	Critical N Average De Level Of S	Vol./Cap. elay (sec/ Service:	(X): veh):	0.907 24.4 C		
Movement:	L - T -	d South Bo R L - T	- R 1	L - т -	R L	est Bound - T - R		
Control: Rights: Min. Green: Lanes:	Permitted Include 0 25 0 0 0 1	d Permit Inclu 25 0 25 0 0 0 2	tted ude 25 0 1 2	Protected Include 19 0 2 0 0 0	d e 19 0	Permitted Include 0 0 0 0 1		
Volume Modul Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	e: >> Count Day	ate: 21 Nov 200 5 0 957 .00 1.00 1.00 5 0 957 .00 1.00 1.00 .93 0.93 0.93 5 0 1029 0 0 0 0 5 0 1029 .00 1.00 1.00 .00 1.00 1.00 5 0 1029	02 << 4:00 825 9 1.00 1 825 9 1.00 2 1.00 3 0.93 0 887 9 1.00 1 1.00 1 887 9	0 - 6:00 PM 903 0 0 00 1.00 903 0 00 1.00 903 0 00 1.00 93 0.93 971 0 0 0 971 0 00 1.00 00 1.00 971 0	M 2 0 1.00 1.00 2 0 1.00 1.00 0.93 0.93 2 0 0 0 2 0 1.00 1.00 1.00 1.00 2 0	0 0 1.00 1.00 0 1.00 1.00 1.00 1.00 0 0 0		
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	low Module: 1900 1900 1: 1.00 1.00 1 0.00 0.99 0 0 1884	900 1900 1900 .00 1.00 0.95 .01 0.00 2.00 14 0 3610	1900 19 0.85 0 1.00 2 1615 39	900 1900 .92 1.00 .00 0.00 502 0	1900 1900 0.85 1.00 1.00 0.00 1615 0	1900 1900 1.00 1.00 0.00 1.00 0 1900		
Vol/Sat: Crit Moves:		.39 0.00 0.29	****	* * *		0.00 0.00		
Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	0.00 0.65 0 0.0 14.4 1. 1.00 1.00 1 0.0 14.4 1. 0 16	.61 0.00 0.61 .65 0.00 0.47 4.4 0.0 10.5 .00 1.00 1.00 4.4 0.0 10.5 0 0 22	0.91 0. 29.1 42 1.00 1. 29.1 42	.91 0.00 2.7 0.0 .00 1.00 2.7 0.0 36 0	0.00 0.00 21.7 0.0 1.00 1.00 21.7 0.0 0 0	1.00 1.00 0.0 0.0 0 0		

19, 2003 17:23:25 Page 69-1 EXISTING PM Thu Jun 19, 2003 17:23:25

UC Berkeley LRDP EIR
Existing Conditions
PM Peak Hour

**************************************	2000 HCM 4 ******* #65 Derby	-Way S ***** Street	******* / Warr	hod **** ing	(Base V	/olume	e Alte	ernative	****		
<pre>*********** Cycle (sec): Loss Time (se Optimal Cycle ************************************</pre>	100 ec): 0	(Y+R :	= 4 se	c) A	ritical verage evel 0:	l Vol. Delay f Serv	./Cap. / (sec /ice:	(X): c/veh):		1.39 185.	9 .8 F
Approach: Movement:	North Bo L - T	und – R	Sout	h Bo T	und - R	Ea L -	ast Bo	ound - R	We	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	Stop Si Inclu 0 0 0 0 0	gn de 0	Stoj 0 0	p Si nclu 0 1!	.gn ide 0	. St 0 0 1	top Si Inclu 0 L 0	.gn ide 0	0 0	top Si Inclu 0	ign ide 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	e: >> Count	Date: 0 1.00 0 1.00 0.95 0 0 1.00 1.00 1.00 0	20 Nov 765 1.00 1 765 1.00 1 0.95 0 805 0 805 1.00 1 1.00 1	200 0 .00 .00 .95 0 0 .00 .00	12 << 4 30 1.00 30 1.00 0.95 32 0 32 1.00 1.00 32	1.00 - 7 1.00 7 1.00 0.95 7 0 7 1.00 1.00 7	6:00 62 1.00 62 1.00 0.95 65 0 65 1.00 1.00		0 1.00 0 1.00 0.95 0 0 0 1.00 1.00	75 1.00 75 1.00 0.95 79 0 79 1.00 1.00	780 1.00 780 1.00 0.95 821 0
Saturation Fi Adjustment: Lanes:	low Module: 1.00 1.00 0.00 0.00 0 0	1.00	1.00 1 0.96 0 576	.00	1.00 0.04 23	1.00 0.10 53	0.90 471	1.00	0.00	59	0.91
Capacity Anal Vol/Sat: Crit Moves: Delay/Veh: Delay Adj: AdjDel/Veh: LOS by Move: ApproachDel: Delay Adj:	ysis Modul xxxx xxxx 0.0 0.0 1.00 1.00 0.0 0.0 * *	e: xxxx	1.40 x: **** 207.6 1.00 1 207.6 F	0.0 .00 0.0 * 7.6	1.40 207.6 1.00 207.6 F	0.14 11.0 1.00 11.0 B	0.14 **** 11.0 1.00	0.0 1.00 0.0 *	0.0 1.00 0.0 *	1.34 **** 180 1.00 180	1.34 179.7 1.00 179.7 F

UC Berkeley LRDP EIR
Existing Conditions
PM Peak Hour
Level Of Service Computation Report

Page 70-1

2000 HCM Operations Method (Base Volume Alternative) Intersection #66 Derby Street / Claremont Blvd. **************** Cycle (sec): 65 Critical Vol./Cap. (X): 0.718 15.8 Loss Time (sec): 8 (Y+R = 5 sec) Average Delay (sec/veh): Optimal Cycle: 61 Level Of Service: В Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 18 0 18 0 0 0 0 35 35 35 0 Lanes: 0 0 1! 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 -----| Volume Module: >> Count Date: 21 Nov 2002 << 4:00 - 6:00 PM Base Vol: 4 0 225 0 0 0 0 872 11 31 741 0 Initial Bse: 4 0 225 0 0 0 0 872 11 31 741 0 PHF Volume: $4 \ 0 \ 234 \ 0 \ 0 \ 0 \ 0 \ 908 \ 11 \ 32 \ 772 \ 0$ 0 Reduct Vol: 0 0 0 Reduced Vol: 4 0 234 0 0 0 0 0 0 0 0 0 0 0 0 908 11 32 772 Ω MLF Adi: Final Vol.: 4 0 234 0 0 0 0 908 11 32 772 0 -----| Saturation Flow Module: Lanes: 0.02 0.00 0.98 0.00 0.00 0.00 0.00 0.99 0.01 0.04 0.96 0.00 Final Sat.: 29 0 1618 0 0 0 0 1873 24 76 1824 0 -----| Capacity Analysis Module: Vol/Sat: 0.14 0.00 0.14 0.00 0.00 0.00 0.00 0.49 0.49 0.42 0.42 0.00 Crit Moves: **** Delay/Veh: 24.1 0.0 24.1 0.0 0.0 0.0 16.3 16.3 12.7 12.7 0.0 AdjDel/Veh: 24.1 0.0 24.1 0.0 0.0 0.0 16.3 16.3 12.7 12.7 0.0 DesignQueue: 0 0 6 0 0 0 0 15 0 1 12 0

11.0 B 179.7

F

xxxxxx 207.6 * F

ApprAdjDel:

LOS by Appr:

Existing Conditions

PM Peak Hour

UC Berkeley LRDP EIR

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative))) ******	Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)						
Intersection #67 Ashby Avenue / Seventh Street	*****	Intersection #68 Ashby Avenue / San Pablo Avenue						
Cycle (sec): 110 Critical Vol./Cap. (X): Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 155 Level Of Service:	0.958 51.8 D	Cycle (sec): 110						
Approach: North Bound South Bound East Bound	West Bound L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R						
Control: Permitted Permitted Split Phase Rights: Include Include Include Min. Green: 19 19 19 19 19 22 22 22	Split Phase Include 20 20 20 1 0 1 1 0	Control: Protected Protected Permitted Permitted Rights: Include Include Include Include Min. Green: 4 17 17 4 19 19 18 18 18 18 18 18 Lanes: 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1						
Volume Module: >> Count Date: 4 Dec 2002 << 4:00-6:00 PM Base Vol: 134 404 68 107 270 476 263 546 113 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	98 774 31 1.00 1.00 1.00 98 774 31 1.00 1.00 1.00 0.96 0.96 0.96 102 806 32 0 0 0 102 806 32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 32	Volume Module: >> Count Date: 4 Dec 2002 << 4:00-6:00 PM Base Vol: 162 999 79 185 873 113 86 592 170 20 612 143 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	1900 1900 1900 0.95 0.94 0.94 1.00 1.92 0.08 1805 3450 138	Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190						
Capacity Analysis Module: Vol/Sat: 0.33 0.33 0.33 0.34 0.34 0.42 0.15 0.20 0.20 0 Crit Moves: **** **** Green/Cycle: 0.44 0.44 0.44 0.44 0.44 0.44 0.20 0.20	0.06 0.23 0.23 ***** 0.24 0.24 0.24 0.23 0.96 0.96 35.4 63.8 63.8 1.00 1.00 1.00 35.4 63.8 63.8	Capacity Analysis Module: Vol/Sat: 0.10 0.32 0.32 0.11 0.30 0.30 0.25 0.23 0.23 0.25 0.25 0.25 Crit Moves: **** **** Green/Cycle: 0.14 0.43 0.43 0.15 0.44 0.44 0.34 0.34 0.34 0.34 0.34 0.34						
August / Value 10 11 11 12 13 14 15 15 15 15 16 17 18 14 19 6 17 18 14 19 18 14 19 19 19 19 19 19 19	5 39 2	DesignQueue: 9 39 3 10 34 4 4 26 8 1 27 6						

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)												

Intersection #68 Ashby Avenue / San Pablo Avenue												
Cycle (sec):		110	ı			ritica	l Vol	./Cap	. (X):		0.73	39
	Cycle (sec): 110											
Optimal Cvcl	e:	5.5			I	evel 0	f Ser	vice:				C
*****	****	****	*****	****	****	****	****	****	*****	****	****	*****
Approach:	Approach: North Bound South Bound East Bound West Bound											
Movement:			- R						- R		- T	
Control:	P	rotect	.ed	P:	rotect	ed		Permit	tted]	Permit	ted
Rights:		Inclu	ıde		Inclu	ıde		Incl	ıde		Incli	ıde
Min. Green:												
Lanes:									1 0			
Volume Modul												
Base Vol:		999	79		873			592			612	143
Growth Adj:		1.00	1.00		1.00	1.00		1.00			1.00	
Initial Bse:			79		873	113		592	170		612	143
User Adj: PHF Adj:	1.00	1.00	1.00		1.00	1.00		1.00			1.00	
					0.94						0.94	
PHF Volume:				197		120		630				152
Reduct Vol:				0		0			0		0	0
Reduced Vol:				197					181		651	152
PCE Adj:					1.00	1.00		1.00			1.00	
MLF Adj:				1.00		1.00		1.00			1.00	
Final Vol.:			84		929	120		630	181		651	152
Saturation F												
Sat/Lane:				1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:					0.93				0.92		0.85	
Lanes:					1.77				0.45		1.58	
Final Sat.:					3142				779		2555	597
Capacity Ana				1		1	1		1	1		'
Vol/Sat:				0 11	0.30	0.30	0.25	0.23	0.23	0.25	0.25	0.25
Crit Moves:	3.10	****	3.02	****	3.00	0.00	0.20	3.23	0.20	0.20	****	
Green/Cycle:						0.44	0.34	0.34	0.34	0.34	0.34	0.34
Volume/Cap:						0.67		0.67			0.74	
Delay/Veh:				55.3		25.6		30.7			32.7	
Dolay, von.												

UC Berkeley LRDP EIR

Existing Conditions

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

Level 0	Of Service Computation Report							
2000 HCM Operations Method (Base Volume Alternative)								
Intersection #69 Ashby Avenue		**						
	**************************************	**						
Cycle (sec): 140	Critical Vol./Cap. (X): 0.522							
Loss Time (sec): 8 (Y+R	= 4 sec) Average Delay (sec/veh): 36.7							
Optimal Cycle: 86	Level Of Service: D							
	**************************************	**						
Approach: North Bound Movement: L - T - R	South Bound East Bound West Bound L - T - R L - T - R							
Control: Protected								
Rights: Include	Include Include Include							
Min. Green: 4 32 32		2						
Lanes: 1 0 1 1 0								
		-						
Volume Module: >> Count Date: Base Vol: 92 693 85	: 21 Nov 2002 << 4:00 - 6:00 PM 31 700 169 135 491 39 68 547 39	0						
Growth Adi: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00							
Initial Bse: 92 693 85								
User Adj: 1.00 1.00 1.00		-						
PHF Adj: 0.94 0.94 0.94	0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94							
PHF Volume: 98 737 90	33 745 180 144 522 41 72 582 41	1						
Reduct Vol: 0 0 0	0 0 0 0 0 0 0 0	C						
Reduced Vol: 98 737 90	33 745 180 144 522 41 72 582 41	1						
PCE Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	С						
MLF Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00							
Final Vol.: 98 737 90	33 745 180 144 522 41 72 582 41							
Saturation Flow Module:		-						
Sat/Lane: 1900 1900 1900	1900 1900 1900 1900 1900 1900 1900 1900	n						
Adjustment: 0.95 0.93 0.93								
Lanes: 1.00 1.78 0.22								
Final Sat.: 1805 3164 388	1805 4057 979 1805 3308 263 1805 3336 238							
		-						
Capacity Analysis Module:								
Vol/Sat: 0.05 0.23 0.23		7						
Crit Moves: ****	**** **** ****	_						
Green/Cycle: 0.10 0.41 0.41								
Volume/Cap: 0.52 0.56 0.56		_						
Delay/Veh: 62.1 32.0 32.0	69.1 36.3 36.3 60.8 28.4 28.4 67.2 36.4 36.4	4						

	PM Peak Hour
]	Level Of Service Computation Report
2000 HCM (Operations Method (Base Volume Alternative)

Intersection #70 Ashby Avenue / Shattuck Avenue **************** Cycle (sec): 80 Critical Vol./Cap. (X): 0.746 30.1 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 62 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Permitted Permitted Permitted Include Include Include Include Rights: Min. Green: 21 21 21 6 21 21 20 20 20 20 20 20 -----| Volume Module: >> Count Date: 21 Nov 2002 << 4:00 - 6:00 PM Base Vol: 52 556 30 200 585 56 33 536 40 32 541 176 Initial Bse: 52 556 30 200 585 56 33 536 40 32 541 176 PHF Volume: 54 579 31 208 609 58 34 558 42 33 564 183 0 Final Vol.: 54 579 31 208 609 58 34 558 42 33 564 183 -----| Saturation Flow Module: Adjustment: 0.68 0.68 0.68 0.58 0.58 0.58 0.90 0.90 0.90 0.88 0.88 0.88 Lanes: 0.16 1.75 0.09 0.48 1.39 0.13 0.11 1.76 0.13 0.09 1.44 0.47 Final Sat.: 211 2256 122 521 1524 146 185 3004 224 142 2403 782 -----| Capacity Analysis Module: Vol/Sat: 0.26 0.26 0.26 0.40 0.40 0.40 0.19 0.19 0.19 0.23 0.23 0.23 **** Crit Moves: Volume/Cap: 0.79 0.79 0.79 0.98 0.98 0.98 0.42 0.42 0.42 0.53 0.53 0.53 Delay/Veh: 32.0 32.0 32.0 50.1 50.1 50.1 16.1 16.1 16.1 17.5 17.5 17.5 AdjDel/Veh: 32.0 32.0 32.0 50.1 50.1 50.1 16.1 16.1 16.1 17.5 17.5 17.5 DesignQueue: 2 18 1 6 17 2 1 14 1 1 15 5

AdjDel/Veh: 62.1 32.0 32.0 69.1 36.3 36.3 60.8 28.4 28.4 67.2 36.4 36.4

DesignQueue: 7 35 4 2 39 9 10 26 2 5 31 2

EXISTING PM Thu Jun 19, 2003 17:23:25 Page 76-1 UC Berkeley LRDP EIR

Existing Conditions

PM Peak Hour

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative) ***********************************
Intersection #72 Ashby Avenue / College Avenue
Cycle (sec): 80
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 18 18 18 18 18 18 30 30 30 30 30 30 30 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 0 1! 0 0
Volume Module: >> Count Date: 21 Nov 2002 << 4:00 - 6:00 PM Base Vol: 75 293 68 159 279 58 15 683 87 10 466 151 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Capacity Analysis Module: Vol/Sat: 0.29 0.29 0.29 0.42 0.42 0.42 0.44 0.44 0.44 0.36 0.36 0.36 Crit Moves: Green/Cycle: 0.38 0.38 0.38 0.45 0.45 0.45 0.53 0.53 0.53 0.53 0.53 Volume/Cap: 0.78 0.78 0.78 0.93 0.93 0.93 0.84 0.84 0.84 0.69 0.69 0.69 Delay/Veh: 31.7 31.7 31.7 46.0 46.0 46.0 25.1 25.1 25.1 18.1 18.1 18.1 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0

200		ons Mothod (Pass	ation Report Volume Alternativ	· · · · · · · · · · · · · · · · · · ·

Intersection #72	Ashby Avenue	e / College Avenue	2	*****
Cycle (sec): Loss Time (sec): Optimal Cycle: ************************************	80 8 (Y+R 126 ******	Critica = 4 sec) Average Level (al Vol./Cap. (X): e Delay (sec/veh): Df Service:	0.960 28.9 C
Approach: No Movement: L	orth Bound - T - R	South Bound L - T - R	East Bound L - T - R	West Bound L - T - R
Control: Rights: Min. Green: 18 Lanes: 0	Permitted Include 8 18 18 0 1! 0 0	Permitted Include 18 18 18 0 0 1! 0 0	Permitted Include 30 30 30 0 1! 0 0	Permitted Include 30 30 30 0 0 1! 0 0
Volume Module: >: Base Vol: 7: Growth Adj: 1.00 Initial Bse: 7: User Adj: 1.00 PHF Adj: 0.90 PHF Volume: 7: Reduct Vol: (Reduced Vol: 7: PCE Adj: 1.00 Final Vol.: 7:	> Count Date: 5 293 68 0 1.00 1.00 6 0.96 0.96 8 305 71 0 0 0 8 305 71 0 1.00 1.00 0 1.00 1.00 0 1.00 1.00	21 Nov 2002 << 2 159 279 58 1.00 1.00 1.00 159 279 58 1.00 1.00 1.00 0.96 0.96 0.96 0.96 166 291 60 0 0 0 166 291 60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	15 683 87 1.00 1.00 1.00 15 683 87 1.00 1.00 1.00 0.96 0.96 0.96 16 711 91 0 0 0 16 711 91 1.00 1.00 1.00 1.00 1.00 1.00 16 711 91	10 466 151 1.00 1.00 1.00 10 466 151 1.00 1.00 1.00 0.96 0.96 0.96 10 485 157 0 0 0 10 485 157 1.00 1.00 1.00 1.00 1.00 1.00 485 157
Saturation Flow N Sat/Lane: 1900 Adjustment: 0.82 Lanes: 0.1 Final Sat.: 26	Module: 0 1900 1900 2 0.82 0.82 7 0.67 0.16 9 1050 244	1900 1900 1900 0.65 0.65 0.65 0.32 0.56 0.12 394 691 144	1900 1900 1900 0.97 0.97 0.97 0.02 0.87 0.11 35 1606 205	1900 1900 1900 0.95 0.95 0.95 0.02 0.74 0.24 29 1348 437
Capacity Analysis Vol/Sat: 0.29 Crit Moves: Green/Cycle: 0.38	s Module: 9 0.29 0.29 8 0.38 0.38	0.42 0.42 0.42 **** 0.45 0.45 0.45	0.44 0.44 0.44	0.36 0.36 0.36 0.53 0.53 0.53

Existing Conditions

UC Berkeley LRDP EIR

PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Base Volume Alternative)

Intersection #73 Ashby Avenue / Claremont Avenue **************** Loss Time (sec): 12 (Y+R = 12 sec) Average Delay (sec/veh): 22.2
Optimal Cycle: 72 Level Of Service: C ****************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|-----|------|------|

Split Phase Split Phase Permitted Permitted Include Include Include Rights: Min. Green: 16 16 16 16 16 16 28 28 28 28 28 28 -----| Volume Module: >> Count Date: 20 Nov 2002 << 4:00 - 6:00 PM Base Vol: 45 373 189 432 285 49 47 592 5 66 504 232 Initial Bse: 45 373 189 432 285 49 47 592 5 66 504 232 PHF Volume: 46 385 195 445 294 51 48 610 5 68 520 239

Final Vol.: 46 385 195 445 294 51 48 610 5 68 520 239

-----| Saturation Flow Module: Lanes: 0.15 1.23 0.62 1.69 1.12 0.19 0.15 1.84 0.01 0.16 1.26 0.58 Final Sat.: 268 2218 1124 3054 2015 346 263 3319 28 297 2269 1044 _____| Capacity Analysis Module: Vol/Sat: 0.17 0.17 0.17 0.15 0.15 0.15 0.18 0.18 0.18 0.23 0.23 0.23 Crit Moves: **** Green/Cycle: 0.22 0.22 0.22 0.22 0.22 0.39 0.39 0.39 0.39 0.39 0.39 Volume/Cap: 0.78 0.78 0.78 0.66 0.66 0.66 0.47 0.47 0.47 0.59 0.59 Delay/Veh: 31.3 31.3 31.3 26.8 26.8 26.8 15.2 15.2 15.2 16.5 16.5 16.5 AdjDel/Veh: 31.3 31.3 31.3 26.8 26.8 26.8 15.2 15.2 15.2 16.5 16.5 16.5

MLF Adi:

Saturation Flow Module:

UC Berkeley LRDP EIR Existing Conditions PM Peak Hour

Level Of Service Computation Report

2000 HCM Operations Method (Base Volume Alternative) Intersection #74 Tunnel Road / SR 13 ****************** 13.6 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh):
Optimal Cycle: 55 Level Of Service: В Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Protected Protected Split Phase Rights: Include Include Include Ovl Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 2 0 1 2 0 1 0 0 0 0 0 0 1 0 0 0 2 -----|----|-----|------| Volume Module: >> Count Date: 21 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 1130 256 534 1095 0 0 0 128 0 155 Initial Bse: 0 1130 256 534 1095 0 0 0 128 0 155 PHF Volume: 0 1202 272 568 1165 0 0 0 0 136 0 165 Ω Ω 0 136 0 165

-----| Capacity Analysis Module: Vol/Sat: 0.00 0.33 0.17 0.16 0.61 0.00 0.00 0.00 0.00 0.08 0.00 0.06 Crit Moves: **** **** Green/Cycle: 0.00 0.43 0.43 0.23 1.00 0.00 0.00 0.00 0.00 0.23 0.23 0.23 Volume/Cap: 0.00 0.78 0.39 0.71 0.61 0.00 0.00 0.00 0.00 0.33 0.00 0.25 Delay/Veh: 0.0 18.5 13.1 26.1 0.6 0.0 0.0 0.0 0.0 21.4 0.0 20.7

Final Vol.: 0 1202 272 568 1165 0 0 0 136 0 165

Adjustment: 1.00 0.95 0.85 0.92 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.75

Final Sat.: 0 3610 1615 3502 1900 0 0 0 1805 0 2842

_____|

AdjDel/Veh: 0.0 18.5 13.1 26.1 0.6 0.0 0.0 0.0 0.0 21.4 0.0 20.7 DesignOueue: 0 27 6 16 0 0 0 0 4 0 5

DesignQueue: 1 12 6 14 9 2 1 15 0 2 13 6

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:03 Page

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:03 Page 2-1 UC Berkeley LRDP EIR

UC Berkeley LRDP EIR

2020 No Project Conditions AM Peak Hour

Trip Generation Report

Scenario Report

Scenario: CUMULATIVE + LAB AM

Command: CUMULATIVE AM Volume: CUMULATIVE AM Geometry: CUMULATIVE AM
Impact Fee: Default Impact Fee
Trip Generation: AM LAB 2020
Trip Distribution: Cumulative With Lab AM

Paths: Default Paths
Routes: Default Routes Configuration: CUMULATIVE LAB AM Forecast for APPROVED AM

2020 No Project Conditions

AM Peak Hour

Zone # Su	bzone	Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	
3		1.00	Negative Parking	0.00	0.00	0	0	0	0.0
13 Lo	wer Hearst Zone 13		Approved			44 44	4 4	48 48	9.9 9.9
14 Un	derhill Zone 14		Approved			276 276	28 28	304 304	62.9 62.9
TOTAL .				 		320	32	352	72.9

Trip Distribution Report

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

Trip Generation Report

			Forecast for	AM LAB	2020							Pe	rcent (Of Tri	ips CUM	ULATIV	E AM W	ITH LA	ıΒ		
Zone #	Subzone	Amount	Units	Rate In	Rate Out	Trips In	_	Total Trips		Zone	1	2	3	4	5	Gates 6	7	8	9	10	11
										Zone											
										1	13.4	4.5	7.0	5.4	10.2	13.0	8.1	11.1	12.9	14.4	0.0
101			LBNL Blackberr			64			13.3	2	13.4	4.5	7.0	5.4	10.2				12.9		0.0
	Zone 10	1 Subtot	al			64	0	64	13.3	3	13.4	4.5	7.0		10.2				12.9		0.0
102	Dlaakbarry O	1 00	LBNL Blackberr	0 00	11 00	0	11	1.1	2.3	4 5	13.4 13.4	4.5 4.5	7.0 7.0	5.4	10.2				12.9		0.0
102	_		al			0			2.3	6	13.4	4.5	7.0	5.4					12.9 12.9	14.4	0.0
	Z011e 10.	2 30000	.dl			U	11	TT	2.3	7	13.4	4.5	7.0		10.2				12.9		0.0
103	Strawberry I	1.00	LBNL Strawberr	19.00	0.00	19	0	19	3.9	8	13.4	4.5	7.0		10.2				12.9		0.0
100			al						3.9	9	13.4	4.5	7.0		10.2				12.9		0.0
										10	13.4	4.5	7.0		10.2				12.9		0.0
104	Strawberry O	1.00	LBNL Strawberr	0.00	3.00	0	3	3	0.6	11	13.4	4.5	7.0	5.4	10.2	13.0	8.1	11.1	12.9	14.4	0.0
	Zone 10	4 Subtot	al			0	3	3	0.6	12	13.4	4.5	7.0	5.4	10.2	13.0	8.1	11.1	12.9	14.4	0.0
										13	13.4	4.5	7.0	5.4	10.2	13.0	8.1	11.1	12.9	14.4	0.0
105	Grizzly IN		LBNL Grizzly I			32			6.6	14	13.4	4.5	7.0					11.1		14.4	0.0
	Zone 10	5 Subtot	al			32	0	32	6.6	101	5.6	0.0	5.6			11.6				0.0	3.0
100		1 00		0 00	0 00		_		0 4	102	6.0		14.0	0.0		10.0				0.0	2.0
106			LBNL Grizzly O			0			0.4	103	5.7	0.0	8.9			11.1				0.0	2.2
	Zone 10	6 Suptot	al			U	2	2	0.4	104 105	9.1 5.3		27.2 14.7	0.0		9.1 10.0				0.0	0.0
										106			11.1							0.0	0.0
TOTAI	L		• • • • • • • • • • • • • • • • • • • •			. 115	16	131	27.1		1.0		To Gate		1.0	17					
										Zone	12		14	15	16	17					
										1	0.0	0.0	0.0	0.0	0.0	0.0					
										2	0.0	0.0	0.0	0.0	0.0	0.0					
										3	0.0	0.0	0.0	0.0	0.0	0.0					
										4 5	0.0	0.0	0.0	0.0	0.0	0.0					
										5 6	0.0	0.0	0.0	0.0	0.0	0.0					
										7	0.0	0.0	0.0	0.0	0.0	0.0					
										8	0.0	0.0	0.0	0.0	0.0	0.0					
										9	0.0	0.0	0.0	0.0	0.0	0.0					
										10	0.0	0.0	0.0	0.0	0.0	0.0					
										11	0.0	0.0	0.0	0.0	0.0	0.0					
										12	0.0	0.0	0.0	0.0	0.0	0.0					
										13	0.0	0.0	0.0	0.0	0.0	0.0					
										14	0.0	0.0	0.0	0.0	0.0	0.0					
										101	3.0	1.3	1.3	2.3	1.0	1.1					
										102	2.0	2.0	2.0	2.0	2.0	2.0					
										103	2.2	1.1	1.1	2.2	1.1	1.1					
										104 105	0.0 2.0	0.0	0.0 1.3	0.0	0.0	0.0					
										100	2.0	1.0	1.5	2.0	1.0	T • 4					

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:03 Page 4-2 _____

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:03 Page 5-1

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

To Gates 12 13 14 15 16 17 Zone ----- -----106 0.0 0.0 0.0 0.0 0.0 0.0 AM Peak Hour

UC Berkeley LRDP EIR

2020 No Project Conditions

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:03 Page 5-2 CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:03 Page 5-3

UC Berkeley LRDP EIR 2020 No Project Conditions

UC Berkeley LRDP EIR 2020 No Project Conditions

					Al	M Peak	Hour													M Peak	Hour						
Volume Type		rthbo			uthbo Thru			astbou:		W∈	stbou	nd	Total Volume	Volume Type	N	orthbo		S	outhbo			stbou	nd	We	estbour Thru	nd	Total
#8 Ceda	ar Str	eet /	Oxfor	d Stre	a+									#16 Hea	aret	Avenue	/ Euc	lid A	venue								
Base		186	56	34	531	19	18	314	75	144	343	19	1784	Base	2		. , <u>Lac</u> 2	47	1	151	75	448	1	1	276	10	1014
Added	0	0	0	0	0	0	0	3	1	0	0	0	4	Added	0	0	0	0	0	3	0	51	0	0	20	0	74
Future	30	20	10	10	10	0	10	40	30	10	120	0	290	Future	0		0	10	0	50	10	90	0	0	70	0	230
Total	75	206	66	44	541	19	28	357	106	154	463	19	2078	Total	2	0	2	57	1	204	85	589	1	1	366	10	1318
#9 Ceda	ar Str	eet /	Eucli	d Aver	nue									#17 Hea	arst	Avenue		Roy A	venue								
Base	30	85	29	23	295	141	50		117	28	209	8	1158	Base	0	-	0	19	0	60	59	436	0	0	230	3	807
Added	0	0	0	0	3	3	0	0	0	0	0	0	6	Added	0		0	0	0	0	0	51	0	0	20	0	71
Future	20	0	0	0	10	40	10	30	20	20	80	0	230	Future	0		0	0		10	10	90	0	0	70	0	180
Total	50	85	29	23	308	184	60	173	137	48	289	8	1394	Total	0	0	0	19	0	70	69	577	0	0	320	3	1058
#10 Gri	-					Drive								#18 Hea					oad / 1								
Base	31	13 0	13 2	25 0	52 0	4	6	165 0	143	169 18	90	16	727	Base	274		95	12		21	28	161	304	21	33 9	5	1440
Added Future	0 30	0	10	0	0	0	0	20	5 10	20	0 10	0	25 100	Added Future	11 70	4 10	32 20	0		0	0	32 80	19 0	20	20	0	146 340
Total	61	13	25	25	52	4	6		158	207	100	16	852	Total	355		147	12		21	28	273	323	43	62	5	1926
IOCAI	01	10	25	23	52	7	O	100	150	201	100	10	032	iocai	555	220	11/	12	431	21	20	215	323	43	02	5	1320
#11 Hea					Avenu									#19 Be:				rd St									
Base	19	291	43	199	810	57		278	24	11	225	51	2039	Base	39		40		1132	11	20	18	72	10	2	12	2103
Added	0	0	1	1	0	0	0	13	0	6	2	0	23	Added	0		0	0		0	0	0	0	0	0	0	60
Future Total	10 29	90 381	20 64	50 250	160 970	20 77	30 61	30 321	30 54	10 27	20 247	70 121	540 2602	Future Total	10 49		10 50		100 1237	11	0 20	0 18	20 92	0 10	2	0 12	250 2413
IOCAI	23	301	01	250	370	, ,	01	321	54	21	211	121	2002	iocai	1,7	002	30	50	1237		20	10	22	10	2	12	2410
#12 Hea				ord Av										#20 Uni					h Stree								
Base	46	328	374	48	841	38	10		114	207	281	27	2713	Base	211		19	73		325	89	932	333	40	931	21	3375
Added Future	0 20	0 50	55 40	1 10	0 30	0 20	0	15 80	0 30	5 30	8 70	0 10	84 390	Added	0 150	-	6 10	0 10		1 80	6 10	47 60	0 40	0 10	6 150	0 10	66 600
Total	66	378	469	59	871	58	10		144	242	359	37	3187	Future Total	361		35	83		406		1039	373		1087	31	4041
#13 Hea			/ 0	04										#01 11-			/	0	D=1-1-	7							
Base	O 0	venue 0	/ Spr	uce St 9	0	63	11	843	0	0	430	7	1363	#21 Uni Base	100		75	190	Pablo <i>i</i> 837	83	56	957	49	63	644	93	3604
Added	0	0	0	4	0	0	0	71	0	0	13	1	89	Added	0		1	11	28	0	0	53	0	0	6	3	102
Future	Ō	Ō	0	0	0	20	Ō		Ō		110	0	260	Future	50	200	40	60		20	10	60	10	10	120	100	710
Total	0	0	0	13	0	83	11	1044	0	0	553	8	1712	Total	150	657	116	261	895	103	66	1070	59	73	770	196	4416
#14 Hea	arst A	venue	/ Arc	h Stre	et / :	Le Con	ite Ave	enue						#22 Uni	ivers	ity Av	renue /	Mart	in Lutl	her Ki	ng Way						
Base	0	0	0	2	0	130	276	566	0	0	307	4	1285	Base	178		80	57		87		703	185	41	477	47	3337
Added	0	0	0	0	0	0	24	51	0	0	14	0	89	Added	2	1	1	0	0	0	0	69	0	0	7	0	80
Future	0	0	0	0	0	40	30	100	0	0	90	0	260	Future	70		0	0		30	10	130	20	20	160	80	750
Total	0	0	0	2	0	170	330	717	0	0	411	4	1634	Total	250	569	81	57	1063	117	91	902	205	61	644	127	4167
#15 Hea	arst A	venue	/ Sce	nic Av	enue									#23 Uni	ivers	ity Av	renue /	Milv	ia Str	eet							
Base	0	0	0	0	0	37	0	531	0	0	290	55	913	Base	100	98	21	6	203	63	37	656	137	18	406	15	1760
Added	0	0	0	0	0	1	0	0	0	0	13	2	16	Added	0	-	0	0		0	0	69	0	0	7	0	76
Future	0	0	0	0	0	20	0		0	0	90	10	220	Future	10		10	10		10	20	80	20	20	240	20	460
Total	0	0	0	0	0	58	0	631	0	0	393	67	1149	Total	110	108	31	16	213	73	57	805	157	38	653	35	2296

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:03 Page 5-5

UC Berkeley LRDP EIR 2020 No Project Conditions

UC Berkeley LRDP EIR 2020 No Project Conditions

AM Peal	c Hour	AM Peak Hour
Volume Northbound Southbound	Eastbound Westbound Total Left Thru Right Left Thru Right Volume	Volume Northbound Southbound Eastbound Westbound Total Type Left Thru Right Left Thru Right Left Thru Right Volume
#24 University Avenue / SB Shattuck Avenue Base 0 0 0 49 767 105 Added 0 0 0 0 6 6 0 Future 0 0 0 10 120 60 Total 0 0 0 59 893 165	115 401 162 26 356 314 2295 1 69 0 0 7 0 83 20 50 10 10 200 90 570 136 520 172 36 563 404 2948	#32 Stadium Rim Road / Gayley Road Base 0 386 19 128 471 0 12 5 14 18 1 118 1172 Added 0 43 16 19 38 0 0 0 0 8 0 3 127 Future 0 60 10 20 100 0 0 0 10 0 20 220 Total 0 489 45 167 609 0 12 5 14 36 1 141 1519
#25 University Avenue / NB Shattuck Avenue Base 458 0 168 0 0 0 0 Added 3 0 18 0 0 0 0 Future 220 0 20 0 0 0 Total 681 0 206 0 0 0	0 444 0 0 235 0 1305 0 69 0 0 4 0 94 0 0 0 0 80 0 320 0 513 0 0 319 0 1719	#33 Allston Way / Oxford Street Base 17 798 0 59 1111 34 16 0 33 0 0 0 2068 Added 0 0 0 0 32 0 0 0 0 0 0 32 Future 10 130 0 10 80 10 0 0 30 0 0 0 270 Total 27 928 0 69 1223 44 16 0 63 0 0 0 2370
#26 University Avenue / Oxford Street Base 147 487 4 41 1101 77 Added 0 0 0 0 1 4 Future 50 90 0 10 80 30 Total 197 577 4 51 1182 111	300 38 217 6 12 23 2453 55 0 32 0 0 0 92 20 10 20 0 10 10 330 375 48 269 6 22 33 2875	#34 Kittridge Street / Oxford Street / Fulton Street Base 13 801 0 0 1122 18 6 0 23 0 0 0 1983 Added 0 0 0 0 32 0 0 0 0 0 0 32 Future 0 120 0 0 70 30 10 0 10 0 0 0 240 Total 13 921 0 0 1224 48 16 0 33 0 0 0 2255
#27 Univeristy Drive (East Gate) / Gay: Base 69 476 0 0 543 75 Added 0 46 0 0 57 0 Future 20 70 0 0 110 10 Total 89 592 0 0 710 85	Ley Road 53	#35 Stadium Rim Road / Centennial Drive Base 0 70 160 94 22 0 0 0 0 114 0 71 531 Added 0 0 0 35 0 0 0 0 0 0 0 11 46 Future 0 20 20 20 10 0 0 0 0 20 0 10 100 Total 0 90 180 149 32 0 0 0 0 134 0 92 677
#28 Addison Street / Oxford Street Base 54 647 0 0 1165 61 Added 0 0 0 0 32 0 Future 20 140 0 0 90 10 Total 74 787 0 0 1287 71	4 0 31 0 0 0 1962 0 0 0 0 0 0 0 32 0 0 10 0 0 0 270 4 0 41 0 0 0 2264	#36 Bancroft Way / Shattuck Avenue Base 29 912 0 0 788 12 1 0 62 116 51 71 2042 Added 0 21 0 0 6 0 0 0 1 0 0 28 Future 10 280 0 0 190 10 0 0 0 30 10 10 540 Total 39 1213 0 0 984 22 1 0 62 147 61 81 2610
#29 Center Street / SB Shattuck Avenue Base 0 0 0 15 779 71 Added 0 0 0 0 6 0 Future 0 0 0 0 130 20 Total 0 0 0 15 915 91	0 69 51 17 102 0 1104 0 0 0 0 0 0 0 6 0 50 30 30 40 0 300 0 119 81 47 142 0 1410	#37 Bancroft Way / Fulton Street Base 13 146 0 0 1071 79 0 0 0 84 173 650 2216 Added 0 0 0 0 32 1 0 0 0 0 0 33 Future 10 10 0 0 60 10 0 0 0 10 20 110 230 Total 23 156 0 0 1163 90 0 0 0 94 193 760 2479
#30 Center Street / NB Shattuck Avenue Base 42 616 51 0 0 0 Added 0 21 0 0 0 0 Future 30 200 60 0 0 0 Total 72 837 111 0 0 0	26 56 0 0 77 26 894 0 0 0 0 0 0 0 21 10 40 0 0 40 30 410 36 96 0 0 117 56 1325	#38 Bancroft Way / Ellsworth Street Base 241 60 0 0 0 11 0 0 0 674 39 1025 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Future 10 0 0 0 0 0 0 0 0 0 0 130 0 140 Total 251 60 0 0 0 11 0 0 0 0 804 39 1165
#31 Center Street / Oxford Street Base 50 663 42 11 1145 39 Added 0 0 0 0 32 0 Future 30 90 10 0 70 30 Total 80 753 52 11 1247 69	26 10 43 19 6 8 2062 0 0 0 0 0 0 0 32 60 0 30 0 0 0 320 86 10 73 19 6 8 2414	#39 Bancroft Way / Dana Street Base 0 0 0 0 0 0 0 0 0 145 721 0 866 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Future 0 0 0 0 0 0 0 0 0 0 50 130 0 180 Total 0 0 0 0 0 0 0 0 195 851 0 1046

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:03 Page 5-6 CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:03 Page 5-7

2020 No Project Conditions

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

______ UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 No Project Conditions

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

AM Peak Hour		AM Peak Hour
Volume Northbound Southbound Eastbound Type Left Thru Right Left Thru Right	Westbound Total Volume Northbound ht Left Thru Right Volume Type Left Thru Right	Southbound Eastbound Westbound Total Left Thru Right Left Thru Right Volume
Added 0 0 0 0 0 0 0 0 0 0 0 Future 100 0 0 0 0 0 0 0 0	#48 Durant Avenue / Pic 0 0 460 0 887 Base 0 489 0 0 0 0 0 0 Added 0 27 0 0 0 70 0 170 Future 0 50 0	0 345 0 158 0 86 0 0 0 1078 0 44 0 32 0 0 0 0 0 103 0 40 0 30 0 60 0 0 0 180
#41 Bancroft Way / Bowditch Street Base 191 0 0 0 0 0 0 0 Added 0 0 0 0 0 0 0	0 0 530 0 1057 Total 0 566 0 #49 Channing Way / Shat 0 99 494 0 784 Base 42 1070 96 0 0 0 0 0 Added 0 20 44 0 20 60 0 90 Future 20 130 20	0 429 0 220 0 146 0 0 0 1361 Stuck Avenue 19 868 19 12 59 42 62 28 39 2356 0 7 0 0 0 0 3 0 3 77 40 90 70 30 40 20 30 10 10 510
#42 Bancroft Way / College Avenue Base 343 0 0 0 0 0 0 0 Added 0 0 0 0 0 0 0 Future 10 0 0 0 0 0 0	0 119 554 0 874 Total 62 1220 160 #50 Channing Way / Fult 0 34 203 0 580 Base 0 0 0 0 1 0 0 0 1 Added 0 0 0 0 20 60 0 90 Future 0 0 0 0 55 263 0 671 Total 0 0 0	59 965 89 42 99 62 95 38 52 2943 con Street 86 543 51 0 132 20 7 72 0 911 32 0 0 0 44 0 0 6 0 82 0 30 0 0 90 0 10 40 0 170 118 573 51 0 266 20 17 118 0 1163
Added 0 59 0 0 44 1 0 0 Future 10 60 0 0 40 60 0 0	#51 Channing Way / Tele 0 0 0 0 1151 Base 56 423 79 0 0 0 0 104 Added 0 0 68 0 0 0 0 170 Future 10 40 30 0 0 0 1425 Total 66 463 177	egraph Avenue 0 0 0 16 179 0 0 98 9 860 0 0 0 0 75 0 0 6 0 149 0 0 0 60 30 0 0 30 50 250 0 0 0 76 284 0 0 134 59 1259
Added 0 21 2 0 7 0 0 0 Future 10 90 70 40 180 10 200 40	#52 Channing Way / Col: 35	Avenue 6 92 2 21 76 31 88 150 43 813 0 1 0 0 9 2 0 77 0 141 0 60 10 10 40 30 70 40 30 380 6 153 12 31 125 63 158 267 73 1334
Added 0 0 0 0 32 0 0 2 Future 0 0 0 30 40 0 20 90 3	#53 Haste Street / Shate 27 0 0 0 1527 Base 66 1117 0 0 0 0 0 34 Added 0 64 0 30 0 0 210 Future 10 130 0 57 0 0 0 1771 Total 76 1311 0	tuck Avenue 0 903 46 0 0 0 185 276 75 2668 0 8 2 0 0 0 4 8 0 86 0 110 20 0 0 0 30 110 20 430 0 1021 68 0 0 0 219 394 95 3184
Added 0 0 0 0 0 0 0 2 Future 0 110 40 0 0 0 0 130	#54 Haste Street / Fult 0 0 0 0 0 908 Base 0 0 0 0 0 0 0 2 Added 0 0 0 0 0 280 Future 0 0 0 0 0 1190 Total 0 0	con Street 0 433 145 0 0 0 23 380 0 981 0 0 0 0 0 0 0 11 0 11 0 50 20 0 0 0 0 140 0 210 0 483 165 0 0 0 23 531 0 1202
Added 0 0 27 0 1 0 0 5	87 0 0 0 694 Base 216 520 0 0 0 0 33 Added 0 68 0 40 0 0 270 Future 20 50 0	graph Avenue 0 0 0 0 0 0 0 0 334 34 1104 0 0 0 0 0 0 0 0 11 0 79 0 0 0 0 0 0 0 0 90 30 190 0 0 0 0 0 0 0 435 64 1373

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:03 Page 5-8

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:03 Page 5-9 ______

UC Berkeley LRDP EIR UC Berkeley LRDP EIR 2020 No Project Conditions 2020 No Project Conditions AM Peak Hour AM Peak Hour Volume Northbound Southbound Eastbound Westbound Total Volume Northbound Southbound Eastbound Westbound Total Type Left Thru Right Left Thru Right Left Thru Right Left Thru Right Volume Type Left Thru Right Left Thru Right Left Thru Right Left Thru Right Volume #64 Adeline Street / Ward Avenue / Shattuck Avenue #56 Haste Street / College Avenue Base 167 267 0 0 115 69 0 0 48 223 21 910 Base 0 784 3 0 736 546 723 0 4 0 0 0 2796 0 0 3 0 0 0 0 0 12 0 87 0 0 90 60 0 0 0 30 30 40 320 0 0 208 129 0 0 0 78 265 61 1317 Added 0 28 0 0 5 5 34 0 0 0 0 0 0 0 Future 0 50 0 0 40 70 100 0 0 0 0 0 0 0 Total 0 862 3 0 781 621 857 0 4 0 0 0 Added 19 53 72 Future 30 40 2.60 Total 216 360 3128 #57 Dwight Way / Martin Luther King Way #65 Derby Street / Warring Street Base 62 690 66 88 868 163 0 0 0 2507 Base 0 0 0 650 0 31 0 34 779 68 419 83 14 20 0 1528 0 0 1 6 0 78 0 0 0 0 86 0 8 0 0 0 0 69 77 Added 0 1 Added 0 0 0 0 0 Future 20 30 10 10 200 50 10 50 10 0 0 390 Future 0 0 0 90 0 10 0 10 0 0 90 200 Total 82 721 76 98 1069 219 78 547 93 0 0 0 2983 Total 0 0 0 748 0 41 14 30 0 0 34 938 1805 #66 Derby Street / Claremont Blvd. #58 Dwight Way / Shattuck Avenue Base 0 1094 113 95 989 0 66 420 151 0 2928 Base 5 0 64 0 0 0 665 12 52 813 0 1611 0 62 0 1 10 0 2 76 0 0 0 0 151 Added 0 0 0 0 69 0 77 0 0 0 0 8 0 Future 0 130 30 10 110 0 20 50 10 0 0 0 360 Future 0 0 0 0 0 0 0 100 0 90 0 190 Total 0 1286 143 106 1109 0 88 546 161 0 3439 Total 5 0 64 0 0 0 0 773 12 52 972 0 0 0 1878 #59 Dwight Way / Fulton Street #67 Ashby Avenue / Seventh Street Base 62 162 54 54 193 224 433 915 306 111 663 0 0 620 0 0 78 0 0 70 Base 0 0 12 449 0 6 0 0 0 1087 25 3202 0 0 0 0 0 0 0 10 30 0 0 0 0 78 Added 0 0 0 0 0 0 38 5 0 Added Ω 0 0 Ω 43 20 60 20 30 Future 100 70 0 0 0 140 50 60 40 50 30 590 Future 30 0 0 768 Total 0 0 22 479 0 36 0 0 1305 Total 162 232 74 114 213 254 483 1013 346 161 728 3835 #60 Dwight Way / Telegraph Avenue #68 Ashby Avenue / San Pablo Avenue Base 0 697 78 0 0 0 66 479 565 0 0 0 1885 Base 173 521 53 137 741 128 84 584 134 51 613 135 3354 0 Added 0 9 Added 0 0 0 0 0 68 10 0 0 0 0 78 9 0 0 2 0 38 Λ 2 3 0 63 Future 0 60 10 0 0 10 60 40 0 0 0 180 Future 20 220 20 20 320 30 20 120 10 20 80 50 930 Total 0 757 88 0 0 0 144 549 605 0 2143 Total 193 750 82 157 1061 160 104 742 144 73 696 185 4347 #61 Dwight Way / College Avenue #69 Ashby Avenue / Adeline Street Base 0 365 51 10 150 0 68 352 0 0 0 1081 Base 74 567 61 11 438 96 189 564 83 549 14 2695 0 0 3 0 7 2 0 0 0 76 Added 0 6 0 0 1 4 28 18 0 0 0 0 57 Added 0 64 Future 0 50 10 20 90 Ω 0 20 20 10 0 0 0 220 Future 30 50 10 10 10 50 50 110 20 10 190 540 0 95 374 95 0 0 Total 0 479 61 30 243 0 1377 Total 104 623 71 21 449 150 267 692 69 93 739 1.4 3292 #62 Dwight Way / Piedmont Avenue / Warring Street #70 Ashby Avenue / Shattuck Avenue Base 77 590 26 124 450 35 Base 0 583 0 8 324 0 91 143 238 42 0 48 1477 33 557 31 40 550 182 2695 0 7 0 1 0 1 0 10 10 30 0 0 0 10 0 10 0 27 0 18 10 110 Added 0 69 0 78 Added 0 2 3 0 10 20 10 10 0 10 0 0 0 50 10 10 40 Future 30 20 Future 0 70 200 10 150 1.0 400 0 722 10 18 371 0 102 153 269 Total 107 637 36 146 463 45 52 0 58 1755 Total 43 685 41 50 700 192 3145 #63 Dwight Avenue / Prospect Street #71 Ashby Avenue / Telegraph Avenue Base 0 0 0 14 0 109 246 72 0 0 53 15 509 Base 150 985 80 148 623 103 86 549 120 89 573 83 3589 0 0 Added 0 0 Added 0 0 0 0 0 0 0 20 0 0 0 0 20 Future 0 0 0 0 0 20 30 0 0 0 20 0 70 Future 50 40 10 10 60 30 20 90 20 10 80 10 430 Total 0 0 0 14 0 129 276 72 Total 200 1025 90 158 683 133 106 659 140 99 653 93 4039 0 0 73 15 579

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

Volume Northbound Southbound Eastbound Westbound Total

UC Berkeley LRDP EIR

2020 No Project Conditions

AM Peak Hour

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:03 Page 5-10 CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 6-1

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Impact	An	alysis	s Repor
T.evre	٦]	Of Sei	rvice

Volume Northbound Southbound Type Left Thru Right Left Thru Right	Eastbound Westbound Total t Left Thru Right Left Thru Right Volume	Impact Analysis Report Level Of Service
#72 Ashby Avenue / College Avenue		Intersection Base Future Change $ \hspace{1cm} \text{Del}/\hspace{0.2cm} V/\hspace{0.2cm} \text{Del}/\hspace{0.2cm} V/\hspace{0.2cm} \text{in} $
Base 79 323 26 118 232 95		LOS Veh C LOS Veh C
Added 0 24 0 1 2 0		# 1 Marin Avenue / San Pablo Avenu E 64.3 0.775 F 89.1 0.974 +24.825 D/V
Future 20 20 10 20 20 60		
Total 99 367 36 139 254 155	5 71 572 102 14 631 280 2720	# 2 Marin Avenue / The Alameda B 12.8 0.467 B 15.3 0.655 + 2.494 D/V
#73 Ashby Avenue / Claremont Avenue		# 3 Gilman Street / Sixth Street B 10.6 0.511 B 16.4 0.686 + 5.786 D/V
Base 35 288 153 321 272 59		
Added 0 0 0 8 0 0 Future 20 10 30 40 50 10		# 4 Gilman Street / San Pablo Aven C 34.0 0.736 D 42.7 0.859 + 8.754 D/V
Future 20 10 30 40 50 10 Total 55 298 183 369 322 69		# 5 Rose Street / Shattuck Avenue A 6.9 0.480 A 9.8 0.571 + 2.952 D/V
#74 Tunnel Road / SR 13		# 6 Cedar Street / Martin Luther K B 16.4 0.661 C 31.0 0.966 +14.646 D/V
Base 0 1293 435 487 608 0		
Added 0 90 0 5 5 0 Future 0 80 0 60 70 0		# 7 Cedar Street / Shattuck Avenue A 9.3 0.528 B 10.3 0.621 + 1.052 D/V
Total 0 1463 435 552 683 0	0 0 0 205 0 327 3665	# 8 Cedar Street / Oxford Street
#1004		# 9 Cedar Street / Euclid Avenue B 12.4 0.512 B 13.7 0.595 + 1.282 D/V
Base 0 0 0 0 0 0		
Added 0 0 0 1 0 2 Total 0 0 0 1 0 2		# 10 Grizzly Peak Blvd / Centennial A 9.8 0.386 B 10.9 0.453 + 0.066 V/C
#1005		# 11 Hearst Avenue / Shattuck Avenu A 6.0 0.394 A 7.9 0.501 + 1.932 D/V
Base 0 0 0 0 0 0		# 12 Hearst Avenue / Oxford Avenue A 9.8 0.458 B 11.6 0.517 + 1.852 D/V
Added 0 0 0 1 0 1		
Total 0 0 0 1 0 1	1 22 2 0 0 14 10 50	# 13 Hearst Avenue / Spruce Street B 3.0 0.000 B 3.1 0.000 + 0.000 V/C
#1101 I-880 South/ I-80 West CHECK		# 14 Hearst Avenue / Arch Street / B 2.4 0.000 B 2.5 0.000 + 0.000 V/C
Base 0 0 0 0 0 0	0 0 0 0 0 0	
Added 0 49 0 0 5 0		# 15 Hearst Avenue / Scenic Avenue A 0.3 0.000 A 0.4 0.000 + 0.000 V/C
Total 0 49 0 0 5 0	0 0 0 0 0 0 54	# 16 Hearst Avenue / Euclid Avenue B 16.3 0.442 B 17.7 0.582 + 1.449 D/V
#1121 Highland Place/Heart Avenue/Cyclo	otron	# 10 Redist Avenue / Euclid Avenue
Base 0 0 0 0 0 0		# 17 Hearst Avenue / Le Roy Avenue B 3.2 0.000 B 3.3 0.000 + 0.000 V/C
Added 0 0 0 0 0 0		
Total 0 0 0 0 0 0	0 0 64 0 0 11 0 75	# 18 Hearst Avenue / Gayley Road / C 20.2 0.829 E 56.6 1.151 +36.470 D/V
#1122 Stadium Rim Road/ Canyon Road		# 19 Berkeley Way / Oxford Street A 4.4 0.432 A 6.5 0.479 + 2.134 D/V
Base 0 0 0 0 0 0		
Added 0 0 0 0 0 0 0 Total 0 0 0 0 0 0		# 20 University Avenue / Sixth Stre E 70.5 0.763 F 95.5 0.923 +25.016 D/V
Total 0 0 0 0 0 0		# 21 University Avenue / San Pablo
		# 22 University Avenue / Martin Lut B 19.4 0.742 C 30.1 0.964 +10.732 D/V
		# 23 University Avenue / Milvia Str B 10.4 0.460 B 12.5 0.566 + 2.072 D/V

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

·------

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Intersection		Base Del/ V/		Future Del/ V/		Change in
# 24 University Avenue / SB Shattuc			C	OS Veh C 21.5 0.553	+	2.330 D/V
# 25 University Avenue / NB Shattuc	В	15.5 0.311	В	16.3 0.402	+	0.809 D/V
# 26 University Avenue / Oxford Str	С	22.4 0.728	С	29.0 0.856	+	6.618 D/V
# 27 Univeristy Drive (East Gate)	С	1.7 0.000	Ε	2.7 0.000	+	0.000 V/C
# 28 Addison Street / Oxford Street	В	0.3 0.000	В	0.4 0.000	+	0.000 V/C
# 29 Center Street / SB Shattuck Av	В	14.3 0.324	В	15.7 0.428	+	1.432 D/V
# 30 Center Street / NB Shattuck Av	A	4.5 0.248	A	5.4 0.378	+	0.875 D/V
# 31 Center Street / Oxford Street	A	7.9 0.479	В	11.5 0.609	+	3.521 D/V
# 32 Stadium Rim Road / Gayley Road	С	20.1 0.831	F	66.0 1.158	+	0.327 V/C
# 33 Allston Way / Oxford Street	D	4.4 0.000	D	4.8 0.000	+	0.000 V/C
# 34 Kittridge Street / Oxford Stre	С	2.3 0.000	С	2.5 0.000	+	0.000 V/C
# 35 Stadium Rim Road / Centennial	A	8.6 0.268	A	9.5 0.333	+	0.066 V/C
# 36 Bancroft Way / Shattuck Avenue	A	8.4 0.425	A	10.0 0.562	+	1.636 D/V
# 37 Bancroft Way / Fulton Street	A	6.1 0.351	A	9.3 0.385	+	3.293 D/V
# 38 Bancroft Way / Ellsworth Stree	В	2.9 0.000	С	3.0 0.000	+	0.000 V/C
# 39 Bancroft Way / Dana Street	A	0.0 0.000	A	0.0 0.000	+	0.000 V/C
# 40 Bancroft Way / Telegraph Avenu	В	20.0 0.240	С	21.5 0.288	+	1.496 D/V
# 41 Bancroft Way / Bowditch Street	В	11.2 0.431	В	12.1 0.493	+	0.062 V/C
# 42 Bancroft Way / College Avenue	В	10.5 0.455	В	11.1 0.488	+	0.033 V/C
# 43 Bancroft Way / Piedmont Avenue	С	20.3 0.836	Ε	42.8 1.026	+	0.189 V/C
# 44 Durant Avenue / Shattuck Avenu	В	10.3 0.449	В	15.7 0.640	+	5.405 D/V
# 45 Durant Avenue / Fulton Street	A	7.2 0.327	A	9.8 0.389	+	2.689 D/V
# 46 Durant Avenue / Telegraph Aven	В	10.6 0.247	В	11.4 0.325	+	0.774 D/V
# 47 Durant Avenue / College Avenue	A	9.0 0.277	В	12.5 0.408	+	3.553 D/V
# 48 Durant Avenue / Piedmont Avenu	С	15.4 0.703	D	26.2 0.897	+	0.194 V/C
Traffix 7.5.0715 (c) 2002 Dowling	Ass	oc. Licensed	to	FEHR & PEERS	,	LAFAYETTE

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Intersection	Base Del/ V/	Future Del/ V/	Change in
	LOS Veh C	LOS Veh C	
# 49 Channing Way / Shattuck Avenue	A 4.6 0.469	A 6.1 0.590	+ 1.529 D/V
# 50 Channing Way / Fulton Street	B 11.8 0.498	B 14.6 0.603	+ 0.104 V/C
# 51 Channing Way / Telegraph Avenu	A 8.9 0.304	B 12.0 0.481	+ 3.073 D/V
# 52 Channing Way / College Avenue	в 13.3 0.390	C 21.7 0.597	+ 8.410 D/V
# 53 Haste Street / Shattuck Avenue	D 37.6 0.530	D 42.8 0.647	+ 5.193 D/V
# 54 Haste Street / Fulton Street	в 13.5 0.309	в 15.2 0.378	+ 1.620 D/V
# 55 Haste Street / Telegraph Avenu	в 15.3 0.350	B 16.5 0.437	+ 1.203 D/V
# 56 Haste Street / College Avenue	A 8.0 0.415	B 11.1 0.600	+ 3.059 D/V
# 57 Dwight Way / Martin Luther Kin	B 13.4 0.676	C 20.6 0.846	+ 7.264 D/V
# 58 Dwight Way / Shattuck Avenue	B 10.1 0.713	B 13.7 0.852	+ 3.563 D/V
# 59 Dwight Way / Fulton Street	B 11.2 0.419	B 13.6 0.493	+ 2.463 D/V
# 60 Dwight Way / Telegraph Avenue	в 15.9 0.667	в 17.7 0.745	+ 1.760 D/V
# 61 Dwight Way / College Avenue	B 10.4 0.439	в 12.3 0.538	+ 1.866 D/V
# 62 Dwight Way / Piedmont Avenue /	A 9.3 0.352	B 11.1 0.422	+ 1.830 D/V
# 63 Dwight Avenue / Prospect Stree	A 5.8 0.000	в 5.8 0.000	+ 0.000 V/C
# 64 Adeline Street / Ward Avenue /	в 14.3 0.708	в 16.9 0.798	+ 2.601 D/V
# 65 Derby Street / Warring Street	F 106.2 1.185	F 189.0 1.421	+ 0.236 V/C
# 66 Derby Street / Claremont Blvd.	B 12.8 0.567	в 18.5 0.662	+ 5.669 D/V
# 67 Ashby Avenue / Seventh Street	C 32.0 0.804	D 54.2 0.993	+22.288 D/V
# 68 Ashby Avenue / San Pablo Avenu	C 33.3 0.668	D 35.8 0.905	+ 2.505 D/V
# 69 Ashby Avenue / Adeline Street	D 39.5 0.501	D 41.8 0.604	+ 2.305 D/V
# 70 Ashby Avenue / Shattuck Avenue	B 14.6 0.454	в 16.2 0.533	+ 1.612 D/V
# 71 Ashby Avenue / Telegraph Avenu	C 23.7 0.671	C 26.1 0.893	+ 2.463 D/V
# 72 Ashby Avenue / College Avenue	C 33.7 0.929	D 36.5 1.085	+ 2.865 D/V
Traffix 7.5.0715 (c) 2002 Dowling	Assoc. Licensed	to FEHR & PEERS	LAFAYETTE

CUMULATIVE + LAB AM

UC Berkeley LRDP EIR

2020 No Project Conditions

73 Ashby Avenue / Claremont Avenu C 21.3 0.674 C 23.5 0.778 + 2.229 D/V

74 Tunnel Road / SR 13 B 13.9 0.697 B 15.8 0.771 + 1.849 D/V

Del/ V/ Del/ V/ LOS Veh C LOS Veh C

AM Peak Hour

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 6-4 CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 7-1 ______

Cycle (sec):

Capacity Analysis Module:

Crit Moves: ****

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative)

Intersection #1 Marin Avenue / San Pablo Avenue

89.1 Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 156 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|

Control: Protected Protected Protected Protected Rights: Include Include Include Include

Include

100 Critical Vol./Cap. (X):

0.974

Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 -----| Volume Module: >> Count Date: 5 Dec 2002 << 7:00-9:00 AM Base Vol: 102 363 59 106 891 15 38 672 235 147 768 90 Initial Bse: 102 363 59 106 891 15 38 672 235 147 768 90 Added Vol: 0 3 0 1 43 0 0 3 0 0 2 Future: 120 120 64 20 131 14 14 67 30 34 267 10 Initial Fut: 222 486 123 127 1065 29 52 742 265 181 1035 102 PHF Volume: 222 486 123 127 1065 29 52 742 265 181 1035 102 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 222 486 123 127 1065 29 52 742 265 181 1035 102 Final Vol.: 222 486 123 127 1065 29 52 742 265 181 1035 102 _____| Saturation Flow Module:

Adjustment: 0.95 0.92 0.92 0.95 0.95 0.95 0.95 0.91 0.91 0.95 0.94 0.94 Lanes: 1.00 1.60 0.40 1.00 1.95 0.05 1.00 1.47 0.53 1.00 1.82 0.18 Final Sat.: 1805 2794 707 1805 3500 95 1805 2556 913 1805 3243 320 -----|----|-----|

Vol/Sat: 0.12 0.17 0.17 0.07 0.30 0.30 0.03 0.29 0.29 0.10 0.32 0.32

Green/Cycle: 0.12 0.36 0.36 0.12 0.36 0.36 0.17 0.21 0.21 0.15 0.31 0.31 Volume/Cap: 1.02 0.48 0.48 0.59 0.85 0.85 0.17 1.38 1.38 0.67 1.03 1.03 Delay/Veh: 111.8 25.1 25.1 45.8 34.7 34.7 35.7 220 220.0 46.4 69.4 69.4 AdjDel/Veh: 111.8 25.1 25.1 45.8 34.7 34.7 35.7 220 220.0 46.4 69.4 69.4 DesignQueue: 11 18 5 6 41 1 2 35 12 9 43 4

**** *** ***

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report												
2000 HCM Operations Method (Future Volume Alternative)												

Intersection							****	****	*****	****	****	*****
Cycle (sec):		65				ritica					0.65	55
Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 15.3												
Optimal Cycle		56				evel 0						В

Approach:												
Movement:						- R					- T	
Control: Rights:	1	Inclu	tea	1	rermit Inclu	ted		rermıı Inclı	tea	1	rermit Incli	itea ide
Min. Green:	25		25	25		25	23		23	23		23
Lanes:		1 0				1 0			1 0			
Volume Module										'		'
Base Vol:	173	189	7	38	279	23	33	494	291	20	420	48
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	173	189	7	38	279	23	33	494	291	20	420	48
Added Vol:	1	1	0	0	4	0	0	4	0	0	0	0
Future:	110	0	10	10		20	0	70	50	10	170	10
Initial Fut:		190	17	48		43	33	568	341	30	590	58
User Adj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
- 5 -		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Volume: Reduct Vol:	284	190 0	17 0	48	473 0	43	33	568 0	341	30 0	590 0	58 0
Reduct Vol:		190	17	48		43	33		341	30	-	58
PCE Adi:			1.00		1.00	1.00		1.00			1.00	
		1.00	1.00		1.00	1.00		1.00			1.00	1.00
Final Vol.:		190			473	43		568	341	30		58
Saturation Fl	ow Mo	odule:										
Sat/Lane:		1900				1900		1900	1900		1900	1900
Adjustment:						0.83					0.84	0.84
Lanes:						0.15			0.72		1.74	0.17
Final Sat.:		953				240			1134		2775	
Capacity Anal												
Vol/Sat:		0.20	0.20	0.18	0.18	0.18	0.30	0.30	0.30	0.21	0.21	0.21
Crit Moves:	****							* * * *				
Green/Cycle:						0.42		0.46			0.46	0.46
Volume/Cap:				0.43		0.43		0.66			0.46	0.46
Delay/Veh:			15.4		14.4	14.4		15.9			13.1	13.1
User DelAdj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
AdjDel/Veh:			15.4		14.4	14.4		15.9	15.9		13.1	13.1
DesignQueue:			0		10			12			12	

______ UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************											
************* Intersection							*****	*****	*****	*****	*****

Cycle (sec): Loss Time (sec	,	65			, -	ritica	al Vol.	./Cap.	(X):	0.	686
Loss Time (so	ec):	8	(Y+R	= 4 :	sec) A	verage	e Delay	/ (sec	:/ven):	11	o.4 B
*******	∪. *****	*****	*****	****	⊥ *****	****	*****	/±ce:	*****	*****	
Approach: Movement:	L -	- T	- R	L ·	- T	- R	L -	- T	- R	L - T	- R
Control: Rights:	F	Permit	ted	1	Permit	ted	I	Permit	ted	Perm	itted
Rights: Min. Green:	1.0	Inclu	de 10	1.0	Inclu	ide 10	1.0	Inclu	ide 10	19 1:	Lude
Lanes:	U (1	U U	U .	1 0	1 0	U (19 11	0 0	0 0 1	1 0 0
	1	, <u>.</u> .	1	1		·I	1	, <u> </u>	1	1	
Volume Modul											
Base Vol:										47 43	20
Growth Adj:		1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00
<pre>Initial Bse:</pre>	122	24	56	11	45	28	21	416	114		
Added Vol: Future:	0	0	0	0	0	0	0	0	3		
Future:	70	0	28	0	30					48 6	
<pre>Initial Fut: User Adj:</pre>											
PHF Adj:									1.00		
PHF Volume:										95 49	
										0	
Reduct Vol: Reduced Vol:	192	24	84	11	75	28	21	453	127	95 49	7 20
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
MLF Adj:											
Final Vol.:											
Saturation F. Sat/Lane:				1000	1000	1000	1000	1000	1000	1000 100	1900
Adjustment:											
Lanes:											
Final Sat.:											
Capacity Ana											
Vol/Sat:				0.04	0.04	0.04	0.33	0.33	0.33		
Crit Moves:	0 00	****	0 00	0 00	0 00	0 00	0 ==	0 55	0 55	***	
Green/Cycle:											
Volume/Cap: Delay/Veh:											
User DelAdj:											
AdiDel/Veh:											
DesignQueue:											

Page 10-1

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 ______

> UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Page 11-1

2020 No Project Conditions AM Peak Hour

UC Berkeley LRDP EIR

Level Of Service Computation Report												
2000 HCM Operations Method (Future Volume Alternative)												

Cycle (sec): 100 Critical Vol./Cap. (X): 0.859 Loss Time (sec): 12 (Y+R = 5 sec) Average Delay (sec/veh): 42.7 Optimal Cycle: 93 Level Of Service: D												
Optimal Cycle									*****	****	****	_
Approach: Movement:	L	- T	- R	L ·	- T	- R	L ·	- T	- R	L -	- T	- R
Control:												
_	Rights: Include Include Include Include											ıde
Min. Green:			35						31			31
Lanes:			1 0			1 0			1 0		1!	
Volume Module												
Base Vol:		401	25		1055		75	189		62	318	42
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:			25	74	1055	125	75	189	96	62	318	42
Added Vol:	0	3	0	0	43	0	0	0	0	0	0	0
Future:	30	305	60	60	70	20	35	20	10	10	40	32
Initial Fut:	143	709	85	134	1168	145	110	209	106	72	358	74
_		1.00	1.00		1.00			1.00	1.00		1.00	1.00
		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
	143		85		1168	145	110	209	106	72	358	74
Reduct Vol:		0	0	-	0	-	0	-	0	0	0	0
Reduced Vol:			85		1168		110				358	74
_		1.00	1.00		1.00			1.00			1.00	
- 5 -		1.00	1.00		1.00	1.00		1.00	1.00		1.00 358	1.00
Final Vol.:												
Saturation Fi							1			1		
Sat/Lane:		1900		1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:						0.93		0.56			0.86	
Lanes:					1.78			0.98			0.71	
Final Sat.:					3160						1167	241
			,									
Capacity Anal												
Vol/Sat:		0.22	0.22	0.07	0.37	0.37	0.20	0.20	0.20	0.31	0.31	0.31
Crit Moves: Green/Cycle:		0 27	0 27	0 15	0.37	0.37	0 27	0.37	0.37	0 27	0.37	0.37
Volume/Cap:			0.60		1.00			0.57			0.84	
Delay/Veh:			27.6		56.1	56.1		28.0	28.0	42.5		42.5
Deray, ven.												

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) Intersection #5 Rose Street / Shattuck Avenue ************************** Cycle (sec): 65 Critical Vol./Cap. (X): 0.571 9.8 Loss Time (sec): 8 (Y+R = 5 sec) Average Delay (sec/veh): Optimal Cycle: 52 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Control: Permitted Permitted Permitted Rights: Include Include Include Include Rights: Min. Green: 17 17 17 17 17 27 27 27 27 27 27 27 Lanes: 1 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1! 0 0 -----| Volume Module: >> Count Date: 20 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 55 191 11 174 961 28 28 174 40 32 185 40 Initial Bse: 55 191 11 174 961 28 28 174 40 32 185 40 Future: 40 140 20 10 170 10 10 10 20 20 10 10 Initial Fut: 95 331 31 184 1132 38 38 184 60 52 195 50 PHF Volume: 95 331 31 184 1132 38 38 184 60 52 195 50 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 95 331 31 184 1132 38 38 184 60 52 195 50 Final Vol.: 95 331 31 184 1132 38 38 184 60 52 195 50 -----| Saturation Flow Module: Adjustment: 0.18 0.94 0.94 0.53 0.95 0.95 0.91 0.91 0.85 0.89 0.89 1.00 1.83 0.17 1.00 1.94 0.06 0.17 0.83 1.00 0.17 0.66 0.17 Final Sat.: 338 3258 305 1015 3475 117 297 1438 1615 297 1114 286 -----|----|-----| Capacity Analysis Module: Vol/Sat: 0.28 0.10 0.10 0.18 0.33 0.33 0.13 0.13 0.04 0.18 0.18 0.18 **** Crit Moves: Green/Cycle: 0.46 0.46 0.46 0.46 0.46 0.46 0.42 0.42 0.42 0.42 0.42 0.42 Volume/Cap: 0.61 0.22 0.22 0.39 0.71 0.71 0.31 0.31 0.09 0.42 0.42 0.42 Delay/Veh: 22.0 4.8 4.8 7.4 8.5 8.5 13.8 13.8 11.8 15.3 15.3 15.3 AdjDel/Veh: 22.0 4.8 4.8 7.4 8.5 8.5 13.8 13.8 11.8 15.3 15.3 15.3

AdjDel/Veh: 46.4 27.6 27.6 45.4 56.1 56.1 28.0 28.0 28.0 42.5 42.5

DesignQueue: 7 26 3 6 45 6 4 8 4 3 14 3

DesignOueue: 2 7 1 4 24 1 1 4 1 1 4 1

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

	Level Of Service Computation Report											
2000 HCM Operations Method (Future Volume Alternative)												

Intersection #6 Cedar Street / Martin Luther King Way												
Cycle (sec): 65 Critical Vol./Cap. (X): 0.966												
Loss Time (sec): 8 (Y+R = 5 sec) Average Delay (sec/veh): 31.0												
Optimal Cycle			(1.1.			Level O			, voii, .			C
******									*****	****	****	*****
Approach:	No	rth Bo	und	Soi	uth Bo	ound	Εa	ast Bo	ound	We	st Bo	und
Movement:		- T			- T			- T			Т	- R
Control:		Permit	ted		Permit	ted		Permit	ted	P	ermit	ted
Rights:		Inclu			Inclu			Inclu			Inclu	ide
Min. Green:	20	20	20	20	20	20	20	20	20	20	20	20
Lanes:	0	0 1!	0 0	0 (0 1!	0 0	0 (0 1!	0 0	0 0	1!	0 0
Volume Module	e: >>	Count	Date:	6 No	v 2002	2 << 7:	00 AM	- 9:0	00 AM			
Base Vol:	33	292	44	35	617	26	14	276	62	58	248	30
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	33	292	44	35	617	26	14	276	62	58	248	30
Added Vol:	0	2	0	0	4	0	0	4	0	0	0	0
Future:	10	40	20	20	220	10	10	50	30	30	90	20
Initial Fut:	43	334	64	55	841	36	24	330	92	88	338	50
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	43	334	64	55	841	36	24	330	92	88	338	50
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	43	334	64	55	841	36	24	330	92	88	338	50
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	43	334	64	55	841	36	24	330	92	88	338	50
Saturation F	low M	odule:										
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.86	0.86	0.86	0.95	0.95	0.95	0.94	0.94	0.94	0.76	0.76	0.76
Lanes:	0.10	0.76	0.14	0.06	0.90	0.04	0.05	0.74	0.21	0.18	0.71	0.11
Final Sat.:	158	1231	236	106	1627	70	96	1320	368	267	1024	152
Capacity Anal	lysis	Modul	e:									
Vol/Sat:	0.27	0.27	0.27	0.52	0.52	0.52	0.25	0.25	0.25	0.33	0.33	0.33
Crit Moves:					***						***	
Green/Cycle:	0.54	0.54	0.54	0.54	0.54	0.54	0.34	0.34	0.34	0.34	0.34	0.34
Volume/Cap:			0.51	0.97	0.97	0.97	0.73	0.73	0.73	0.97	0.97	0.97
Delay/Veh:			8.9	32.1	32.1	32.1	26.3	26.3	26.3	53.9	53.9	53.9
User DelAdj:			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)

2000 HCM Operations Method (Future Volume Alternative)									
Intersection #7 Cedar Street /									

Cycle (sec): 65 Loss Time (sec): 8 (Y+R =	Critical Vol./Cap. (X): 0.621 5 sec) Average Delay (sec/veh): 10.3								
Optimal Cycle: 50									

Approach: North Bound	South Bound East Bound West Bou	ind							
Movement: L - T - R	L - T - R L - T - R L - T -								
	Permitted Permitted Permitt								
Rights: Include Min. Green: 20 20 20	Include Include Include Include 20 20 20 22 22 22 22 22	1e 22							
Lanes: 1 0 1 1 0	1 0 1 1 0 1 0 0 1 0 1 0 0 1								
Volume Module: >> Count Date:	6 Nov 2002 << 7:00 AM - 9:00 AM								
Base Vol: 48 256 41	127 933 52 44 257 86 94 268	56							
	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00							
Initial Bse: 48 256 41	127 933 52 44 257 86 94 268	56							
Added Vol: 0 0 0 Future: 20 140 20	0 1 0 0 4 0 0 0 10 150 10 10 30 10 40 70	0 20							
Future: 20 140 20 Initial Fut: 68 396 61	137 1084 62 54 291 96 134 338	20 76							
	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00							
2	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00							
PHF Volume: 68 396 61	137 1084 62 54 291 96 134 338	76							
Reduct Vol: 0 0 0	0 0 0 0 0 0 0	0							
Reduced Vol: 68 396 61	137 1084 62 54 291 96 134 338	76							
	1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00							
MLF Adj: 1.00 1.00 1.00 Final Vol.: 68 396 61	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00							
	137 1084 62 54 291 96 134 338								
Saturation Flow Module:		'							
	1900 1900 1900 1900 1900 1900 1900	1900							
Adjustment: 0.23 0.93 0.93	0.49 0.94 0.94 0.33 0.96 0.96 0.37 0.97	0.97							
	1.00 1.89 0.11 1.00 0.75 0.25 1.00 0.82	0.18							
	922 3387 194 633 1376 454 694 1508	339							
Capacity Analysis Module: Vol/Sat: 0.16 0.13 0.13	0.15 0.32 0.32 0.09 0.21 0.21 0.19 0.22	0.22							
Crit Moves:	****	0.22							
	0.52 0.52 0.52 0.36 0.36 0.36 0.36 0.36	0.36							
. 1	0.29 0.62 0.62 0.24 0.59 0.59 0.53 0.62	0.62							
Delay/Veh: 6.2 2.9 2.9	4.1 4.8 4.8 16.9 20.6 20.6 24.4 21.4	21.4							
	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00							
AdjDel/Veh: 6.2 2.9 2.9	4.1 4.8 4.8 16.9 20.6 20.6 24.4 21.4	21.4							
DesignQueue: 1 7 1	2 21 1 1 7 2 3 8	2							

AdjDel/Veh: 8.9 8.9 8.9 32.1 32.1 32.1 26.3 26.3 26.3 53.9 53.9 DesignQueue: 1 6 1 1 16 1 1 8 2 2 9 1

CUMULATIVE + LAB AM

Capacity Analysis Module:

Crit Moves:

Thu Mar 18, 2004 11:38:09 ______

UC Berkeley LRDP EIR

2020 No Project Conditions

AM Peak Hour Level Of Service Computation Report Page 15-1

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)												

Cycle (sec): 65												
Approach: Movement:	L ·	- T		L ·	- T		L ·	ast Bo	- R	L ·		- R
Control: Rights: Min. Green: Lanes:	16	Permit Inclu 16 0 1!	ted de 16 0 0	16	Permit Inclu 16 0 1!	ted ide 16 0 0	16	Permit Inclu 16 0 1!	ted ide 16 0 0	16 0 (Permit Inclu 16 0 1!	tted ude 16 0 0
Volume Modul												
Base Vol: Growth Adj: Initial Bse: Added Vol:	45 1.00 45 0	186 1.00 186 0	56 1.00 56 0	34 1.00 34 0	531 1.00 531 0	19 1.00 19 0	18 1.00 18 0	314 1.00 314 3	75 1.00 75 1	144	343 1.00 343 0	19 1.00 19 0
Future: Initial Fut: User Adj:		20 206 1.00	10 66 1.00	10 44 1.00	10 541 1.00	0 19 1.00	10 28 1.00	40 357 1.00	30 106 1.00	10 154 1.00	120 463 1.00	0 19 1.00
PHF Adj: PHF Volume: Reduct Vol:	1.00 75 0	1.00 206 0	1.00 66 0	1.00 44 0	1.00 541 0	1.00 19 0	1.00 28	1.00 357 0	1.00 106 0	1.00 154 0	1.00 463 0	1.00 19 0
Reduced Vol: PCE Adj: MLF Adj:	75 1.00	206 1.00 1.00	66 1.00 1.00	44 1.00	541 1.00 1.00	19 1.00 1.00		357 1.00 1.00	106 1.00 1.00		463 1.00 1.00	19 1.00 1.00
Final Vol.:	75	206	66	44	541	19	28	357	106	154	463	19
Saturation F												
Sat/Lane: Adjustment: Lanes: Final Sat.:		1900 0.79 0.59 890	1900 0.79 0.19 285	0.95 0.07	1900 0.95 0.90 1620	1900 0.95 0.03 57	0.93 0.06	1900 0.93 0.73 1284	1900 0.93 0.21 381	0.67	1900 0.67 0.73 931	1900 0.67 0.03 38
Capacity Ana Vol/Sat: Crit Moves:	-	0.23	e: 0.23	0.33	0.33	0.33	0.28	0.28	0.28	0.50	0.50	0.50
<pre>Green/Cycle: Volume/Cap: Delay/Veh:</pre>	0.46		0.49 0.47 10.8	0.67	0.50 0.67 13.2	0.50 0.67 13.2	0.70	0.39 0.72 23.6	0.39 0.72 23.6		0.40 1.26 151	0.40 1.26 151.4
User DelAdj: AdjDel/Veh:		1.00	1.00		1.00	1.00		1.00	1.00	1.00 151.4	1.00	1.00 151.4

2000 HCM Operations Method (Future Volume Alternative) Intersection #9 Cedar Street / Euclid Avenue ******************* Cycle (sec): 60 Critical Vol./Cap. (X): 0.595 13.7 Loss Time (sec): 8 (Y+R = 5 sec) Average Delay (sec/veh): Optimal Cycle: 42 Level Of Service: В Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Control: Permitted Permitted Permitted Rights: Include Include Include Include Rights: Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 -----| Volume Module: >> Count Date: 6 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 30 85 29 23 295 141 50 143 117 28 209 8 Initial Bse: 30 85 29 23 295 141 50 143 117 28 209 8 Added Vol: 0 0 0 0 3 3 0 0 0 0 Ω Future. 20 0 0 0 10 40 10 30 20 20 80 Ω Initial Fut: 50 85 29 23 308 184 60 173 137 48 289 8 PHF Volume: 50 85 29 23 308 184 60 173 137 48 289 8 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 50 85 29 23 308 184 60 173 137 48 289 8 Final Vol.: 50 85 29 23 308 184 60 173 137 48 289 8 -----| Saturation Flow Module: Adjustment: 0.78 0.78 0.78 0.94 0.94 0.94 0.86 0.86 0.86 0.91 0.91 0.91 Lanes: 0.30 0.52 0.18 0.04 0.60 0.36 0.16 0.47 0.37 0.14 0.84 0.02

DesignQueue: 1 4 1 1 11 0 1 9 3 4 11 0

Final Sat.: 453 770 263 80 1066 637 265 765 606 242 1455 40 _____|

Vol/Sat: 0.11 0.11 0.11 0.29 0.29 0.29 0.23 0.23 0.23 0.20 0.20 0.20

AdjDel/Veh: 9.1 9.1 9.1 12.3 12.3 12.3 16.4 16.4 16.4 15.1 15.1 15.1

DesignQueue: 1 1 1 0 6 3 1 4 3 1 6 0

*** Green/Cycle: 0.49 0.49 0.49 0.49 0.49 0.49 0.38 0.38 0.38 0.38 0.38 Volume/Cap: 0.23 0.23 0.23 0.59 0.59 0.59 0.59 0.59 0.59 0.52 0.52 0.52 Delay/Veh: 9.1 9.1 9.1 12.3 12.3 12.3 16.4 16.4 16.4 15.1 15.1 15.1

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 16-1 CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 17-1

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative)											

Intersection #10 Grizzly Peak Blvd / Centennial Drive											
Cycle (sec): 100 Cri	tical Vol./Cap. (X): 0.453										
Loss Time (sec): $0 \text{ (Y+R = 4 sec) Ave}$	rage Delay (sec/veh): 10.9										
Optimal Cycle: 0 Level Of Service: B											
**********	*********										
Approach: North Bound South Bour	d East Bound West Bound										
Movement: L - T - R L - T -	R L - T - R L - T - R										
Control: Stop Sign Stop Sigr	Stop Sign Stop Sign										
Rights: Include Include	Include Include										
Min. Green: 0 0 0 0	0 0 0 0 0 0 0										
Lanes: 0 0 1! 0 0 0 1! 0	0 0 0 1! 0 0 0 0 1! 0 0										
Volume Module: >> Count Date: 4 Dec 2002 <											
Base Vol: 31 13 13 25 52	4 6 165 143 169 90 16										
2	.00 1.00 1.00 1.00 1.00 1.00										
Initial Bse: 31 13 13 25 52	4 6 165 143 169 90 16										
Added Vol: 0 0 2 0 0	0 0 0 5 18 0 0										
Future: 30 0 10 0 0	0 0 20 10 20 10 0										
Initial Fut: 61 13 25 25 52	4 6 185 158 207 100 16										
	.00 1.00 1.00 1.00 1.00 1.00										
	.00 1.00 1.00 1.00 1.00 1.00										
PHF Volume: 61 13 25 25 52	4 6 185 158 207 100 16										
Reduct Vol: 0 0 0 0 0	0 0 0 0 0 0										
Reduced Vol: 61 13 25 25 52	4 6 185 158 207 100 16										
	00 1.00 1.00 1.00 1.00 1.00										
	00 1.00 1.00 1.00 1.00 1.00										
Final Vol.: 61 13 25 25 52	4 6 185 158 207 100 16										
Saturation Flow Module:	00 1 00 1 00 1 00 1 00 1 00										
	.00 1.00 1.00 1.00 1.00 1.00										
	0.05 0.02 0.53 0.45 0.64 0.31 0.05										
Final Sat.: 362 77 148 177 369	28 13 409 349 457 221 35										
Consider Application Madella											
Capacity Analysis Module: Vol/Sat: 0.17 0.17 0.17 0.14 0.14 0	.14 0.45 0.45 0.45 0.45 0.45 0.45										
	**** ****										
CIIC HOVES.											
Delay/Veh: 9.5 9.5 9.4 9.4	9.4 11.0 11.0 11.0 11.7 11.7 11.7										
1 2	00 1.00 1.00 1.00 1.00 1.00										
AdjDel/Veh: 9.5 9.5 9.5 9.4 9.4	9.4 11.0 11.0 11.0 11.7 11.7 11.7										
LOS by Move: A A A A A	A B B B B B B										
ApproachDel: 9.5 9.4 Delay Adi: 1.00 1.00	11.0 11.7 1.00 1.00										
2	11.0 11.7										
11 -5	11.0 11./ B B										
LOS by Appr: A A											

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)											

Intersection #11 Hearst Avenue / Shattuck Avenue											
Cycle (sec): 65 Critical Vol./Cap. (X): 0.501											
Loss Time (sec): 8 (Y+R = 6 sec) Average Delay (sec/veh): 7.9											
Optimal Cvcle:		52		I	Level O	f Ser	vice:				A
******	****	*****	****	****	****	****	****	*****	*****	****	****
Approach:											
Movement:	L -	T - R	L	- T	- R	L ·	- T	- R	L -	- T	- R
-											
Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 22 22 22 22 22 22 22 22 22 22 22 22 22											
Rights:	In	clude		Inclu	ıde		Incl	ıde		Inclu	ıde
Lanes:	1 0	1 1 0	. 1	0 1	1 0	. 0 :	1 0	1 0	0 1	. 0	1 0
Volume Module: >> Count Date: 12 Nov 2002 << 7:00 AM - 9:00 AM											
Base Vol:	19 2	91 43	199	810	57	31	278	24	11	225	51
Growth Adj: 1	.00 1.	00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:			199	810	57	31	278	24	11	225	51
Added Vol:	0	0 1 90 20	1	0	0	0	13	0 30 54	6	2	0
Future:	10	90 20	50	160	20	30	30	30	10	20	70
Initial Fut:			250	970	77	61	321	54	27	247	121
User Adj: 1				1.00	1.00	1.00	1.00	1.00	1.00		1.00
PHF Adj: 1				1.00	1.00		1.00		1.00		1.00
PHF Volume:				970	77		321	54		247	121
Reduct Vol:			0		0			0	0		0
Reduced Vol:			250		77						121
PCE Adj: 1			1.00		1.00		1.00			1.00	
MLF Adj: 1				1.00	1.00		1.00		1.00		1.00
Final Vol.:			250					54			121
- Saturation Flo											
Sat/Lane: 1			1000	1000	1000	1000	1000	1000	1900	1000	1900
Adjustment: 0					0.94			0.78		0.82	
Lanes: 1								0.76		1.25	
Final Sat.:								369			
Capacity Analysis Module:											
Vol/Sat: 0			0.27	0.29	0.29	0.15	0.15	0.15	0.13	0.13	0.13
Crit Moves:							****				
Green/Cycle: 0	.54 0.	54 0.54	0.54	0.54	0.54	0.34	0.34	0.34	0.34	0.34	0.34

UC Berkeley LRDP EIR

2020 No Project Conditions

AM Peak Hour

Volume/Cap: 0.10 0.23 0.23 0.50 0.54 0.54 0.43 0.43 0.43 0.37 0.37 Delay/Veh: 2.4 2.0 2.0 5.6 3.3 3.3 18.0 18.0 18.0 17.3 17.3 17.3 AdjDel/Veh: 2.4 2.0 2.0 5.6 3.3 3.3 18.0 18.0 18.0 17.3 17.3 17.3 DesignQueue: 0 7 1 4 17 1 2 8 1 1 6 3

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 18-1 CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 19-1

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

	Level Of Service Computation Report											
	2000 F					Future				ve)		
*****	*****	*****	****	****	*****	****	****	****	*****	****	*****	*****
	Intersection #12 Hearst Avenue / Oxford Avenue											
Cvcle (sec):		65			C	ritica	l Vol	./Cap.	(X):		0.51	.7
Loss Time (s	ec):	8	(Y+R	= 4 :	sec) A	verage	Dela	y (sec	c/veh):		11.	. 6
Optimal Cycl				****		evel 0				****	*****	B *****
Approach:	Noi	rth Bo	und	Soi	uth Bo	und	E	ast Bo	ound	We	est Bo	ound
Movement:						- R					- T	
Control:	F	Permit	ted	1	Permit	ted	1	Permit	ted	1	Permit	ted
				Permitted Permitted Include Include 19 19 19 22 22 22								
Min. Green: Lanes:			19 1 0			1 0			22		22 1 0	22
Lanes:	1											
Volume Modul										1		1
Base Vol:		328	374		841	38	10		114	207	281	27
Growth Adj:	1.00	1.00		1.00	1.00	1.00			1.00		1.00	1.00
Initial Bse:	46	328		48		38	10	399	114	207	281	27
Added Vol:	0	0	55	1	0	0	0	15	0	5	8	0
Future:	20		40	10	30	20	0	80	30	30	70	10
Initial Fut:			469	59		58	10			242		37
User Adj:			1.00	1.00		1.00		1.00			1.00	1.00
PHF Adj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Volume:		378	469	59	871	58	10		144	242	359	37
Reduct Vol:			0	0	0	0	0		0	0	0	0
Reduced Vol:		378	469	59	871	58	10	494		242	359 1.00	37 1.00
PCE Adj: MLF Adj:			1.00	1.00		1.00		1.00			1.00	1.00
Final Vol.:				59		58		494		242		37
Saturation F				'		1	1		'	'		1
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	1.00	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Lanes:	1.00	1.00	1.00	0.12	1.76	0.12	0.03	1.53	0.44	1.14	1.69	0.17
Final Sat.:									802		3047	314
Capacity Ana							0	0	0 - 0	0.75	0 - 0	0 10
Vol/Sat:	0.03	0.21	0.26	0.27	0.27 ****	0.27	0.18	0.18	0.18	0.12	0.12	0.12
Crit Moves:	0 50	0 = 2	0 52	0 50		0 50	0 25		0.25	0 25	0 25	0.25
Green/Cycle:				0.53		0.53		0.35	0.35		0.35	0.35
Volume/Cap: Delay/Veh:				8.1		8.1		18.4			16.2	16.2
User DelAdi:				1.00		1.00		1.00			1.00	1.00
AdiDel/Veh:					8.1	8.1		18.4			16.2	16.2
DesignQueue:				1			10.4		4		9	10.2
besignQueue.									-			_

UC Berkeley LRDP EIR
2020 No Project Conditions
AM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)

Intersection #13 Hearst Avenue / Spruce Street												
Average Dela						Wc						B *****
Approach: Movement:	L ·	- т	- R	L -	- Т	- R	L	- Т	- R	L ·	- т	- R
Control: Rights: Lanes:	0 (top S: Incli 0 0	ign ide 00	St 0 (top S: Incli	ign ude 00	Un 0	control Incl 1 1	olled ude 0 0	Un O	contro Incl 0 1	olled ude 1 0
Volume Module Base Vol: Growth Adj:	e: >> 0 1.00	Count 0 1.00	Date: 0 1.00	: 12 No 9 1.00	0 200 0 1.00	02 << 7 63 1.00	11 1.00	M - 9 843 1.00	:00 AM 0 1.00	0	430	7
Initial Bse: Added Vol: Future: Initial Fut:	0	0	0	9 4 0 13	0	0	11 0 0 11	71	0	0 0 0	13 110	1 0
User Adj: PHF Adj: PHF Volume:	1.00 1.00 0	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00 1044 0	1.00	1.00 1.00 0	1.00 1.00 553	1.00
Reduct Vol: Final Vol.: Critical Gap Critical Gp:	0 Modu	0 le:	0	13	0	83	11	1044	0	0	553	8
FollowUpTim: Capacity Mod	 ule:											
<pre>Cnflict Vol: Potent Cap.: Move Cap.:</pre>	XXXX	XXXX	xxxxx xxxxx	209 208	xxxx xxxx	723 723	1020 1020	XXXX	xxxxx xxxxx	XXXX	XXXX	XXXXX
Level Of Service Stopped Del:	vice M	Module xxxx	e: xxxxx		xxxx		8.6	xxxx	xxxxx	xxxxx		
Movement: Shared Cap.: Shrd StpDel:: Shared LOS:	LT ·	- LTR xxxx	- RT xxxxx	XXXX	541	XXXXX	XXXX	xxxx	XXXXX	XXXX	xxxx	XXXXX
ApproachLOS: ApproachLOS:	X			*	13.1 B			* * *			* * *	*

UC Berkeley LRDP EIR 2020 No Project Conditions

AM Peak Hour Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) Intersection #14 Hearst Avenue / Arch Street / Le Conte Avenue ************************ Average Delay (sec/veh): 2.5 Worst Case Level Of Service: B ***** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Stop Sign Stop Sign Uncontrolled Uncontrolled Include Include Control: Stop Sign Rights: Include Includ -----|----|-----|------| Volume Module: >> Count Date: 12 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 0 0 2 0 130 276 566 0 0 307 4 Initial Bse: 0 0 0 2 0 130 276 566 0 0 307 4 Added Vol: 0 0 0 0 0 0 24 51 0 0 14 0 0 0 0 0 40 30 100 0 90 0 Future: Initial Fut: 0 0 0 2 0 170 330 717 0 0 411 4 PHF Volume: 0 0 0 2 0 170 330 717 0 0 411 4 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 0 0 0 0 2 0 170 330 717 0 0 411 Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.8 xxxx 6.9 4.1 xxxx xxxxx xxxx xxxx xxxxx -----| Cnflict Vol: xxxx xxxx xxxxx 1432 xxxx 208 415 xxxx xxxxx xxxx xxxx xxxx Potent Cap.: xxxx xxxx xxxx 128 xxxx 805 1155 xxxx xxxxx xxxx xxxx xxxxx Move Cap.: xxxx xxxx xxxxx 99 xxxx 805 1155 xxxx xxxxx xxxx xxxx xxxxx -----| Level Of Service Module: LOS by Move: * * * * * A * * * * Movement: LT - LTR - RT Shared LOS: * * * * B * * * * * * * ApproachDel: xxxxxx 11.3 xxxxxx xxxxx ApproachLOS: * B * *

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 21-1 ______

> UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) Intersection #15 Hearst Avenue / Scenic Avenue ******************** Average Delay (sec/veh): 0.4 Worst Case Level Of Service: A *********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| -----| Volume Module: >> Count Date: 5 Dec 2002 << 7:00-9:00 AM Base Vol: 0 0 0 0 0 37 0 531 0 0 290 55 Initial Bse: 0 0 0 0 0 37 0 531 0 0 290 55 Added Vol: 0 0 0 0 0 1 0 0 0 13 2 Future: 0 0 0 0 0 20 0 100 0 90 10 Initial Fut: 0 0 0 0 58 0 631 0 0 393 67 PHF Volume: 0 0 0 0 0 58 0 631 0 0 393 Critical Gap Module: FollowUpTim:xxxxx xxxx xxxxx xxxx xxxx 3.3 xxxxx xxxx xxxxx xxxx xxxx xxxx Capacity Module: Potent Cap.: xxxx xxxx xxxxx xxxx xxxx 779 xxxx xxxx xxxxx xxxx xxxx xxxx Move Cap.: xxxx xxxx xxxxx xxxx xxxx 779 xxxx xxxx xxxxx xxxx xxxx xxxx ______|___|___| Level Of Service Module: Movement: LT - LTR - RT Shared LOS: * * * * * * * * * * * * * * ApproachDel: xxxxxx 10.0 xxxxxx xxxxx ApproachLOS: * A * *

UC Berkeley LRDP EIR

2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)										

Cycle (sec): 65 Critical Vol./Cap. (X): 0.582 Loss Time (sec): 12 (Y+R = 3 sec) Average Delay (sec/veh): 17.7 Optimal Cycle: 53 Level Of Service: B										
Movement: L - T - R	South Bound East Bound L - T - R L - T -	R L - T - R								
Control: Permitted Rights: Include Min. Green: 0 0 0 Lanes: 0 0 1! 0 0	Permitted Permitted Include Include 25 25 25 5 16 0 0 1 0 0 1	d Permitted Include 16 16 16 16 16 0 0 0 1! 0 0								
Volume Module: >> Count Date: Base Vol: 2 0 2 Growth Adj: 1.00 1.00 1.00 Initial Bse: 2 0 2 Added Vol: 0 0 0 Future: 0 0 0 0 Initial Fut: 2 0 2 User Adj: 1.00 1.00 1.00 PHF Adj: 1.00 1.00 1.00 PHF Volume: 2 0 2 Reduct Vol: 0 0 0 0 Reduced Vol: 2 0 2 PCE Adj: 1.00 1.00 1.00 MLF Adj: 1.00 1.00 1.00 MLF Adj: 1.00 1.00 1.00 MLF Adj: 1.00 1.00 1.00 Saturation Flow Module: Sat/Lane: 1900 1900 1900 Adjustment: 0.87 1.00 0.87 Lanes: 0.50 0.00 0.50	47 1 151 75 448 1.00 1.00 1.00 1.00 1.00 1 47 1 151 75 448 0 0 0 3 0 51 10 0 50 10 90 57 1 204 85 589 1.00 1.00 1.00 1.00 1.00 1 1.00 1.00 1.	1 1 276 10 .00 1.00 1.00 1.00 1 1 276 10 0 0 20 0 0 70 0 1 1 366 10 .00 1.00 1.00 1.00 1 1 366 10 .00 1.00 1.00 1.00 1 1 366 10 0 0 0 0 1 1 366 10 0 0 1.00 1.00 1.00 1 1 366 10 0 0 1.00 1.00 1.00 1 1 366 10								
Final Sat.: 826 0 826	347 6 1241 1199 1897	3 5 1837 50								
Vol/Sat: 0.00 0.00 0.00 Crit Moves: Green/Cycle: 0.38 0.00 0.38 Volume/Cap: 0.01 0.00 0.01 Delay/Veh: 12.4 0.0 12.4 User DelAdj: 1.00 1.00 1.00 AdjDel/Veh: 12.4 0.0 12.4 DesignQueue: 0 0 0 0 0 ***************************	**** 0.38 0.38 0.43 0.43 0 0.43 0.43 0.43 0.16 0.72 0 16.9 16.9 16.9 12.0 20.7 2 1.00 1.00 1.00 1.00 1.00 1	.31 0.20 0.20 0.20 .43 0.43 0.43 0.43 .72 0.46 0.46 0.46 0.7 15.0 15.0 15.0 .00 1.00 1.00 1.00 0 0 8 *****************************								

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 23-1 _____

> UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report

******	000 HCM Un	signal:	ized Metho	d (Futu	re Volume	e Alterna†	tive)	*****
Intersection	#17 Hears	t Aveni	ue / Le Ro	y Avenu	е			
Average Dela	y (sec/veh): *****	3.3	W *****	orst Case	e Level 0:	f Service:	B *****
Approach: Movement:	L - T	- R	L - T	- R	L -	T - R	L - T	- R
Control: Rights: Lanes:	Stop S Incl	ign ude 0 0	Stop Inc	Sign lude ! 0 0	Uncor Ir 0 1	ntrolled nclude 0 0 0	Uncontrol Incl.	olled ude 1 0
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Final Vol.: Critical Gap Critical Gp: FollowUpTim:	e: >> Coun 0 0 1.00 1.00 0 0 0 0 0 0 1.00 1.00 1.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	t Date: 0 1.00 0 0 0 0 0 1.00 1.00 1.00 0 0 0 0	: 5 Dec 20 19 1.00 1.0 19 0 0 19 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0	02 << 7 0 60 0 1.00 0 60 0 0 0 1.00 0 70 0 1.00 0 1.00 0 70 0 70 0 70 0 3.3	1.00 -9:00 59 4 1.00 1 59 4 0 10 69 5 1.00 1 1.00 1 1.00 1 69 5 4.1 xx 2.2 xx	AM 436 0 1.00 436 0 51 0 99 0 0577 0 1.00 1.00 577 0 0 0577 0 0 0577 0 0 0 0577 0 0 0 0	0 230 1.00 1.00 0 230 0 20 0 70 0 320 1.00 1.00 0 320 0 0 0 320 0 320 0 320 0 320	3 1.00 3 0 0 3 1.00 1.00 3 0 3
Capacity Mode Cnflict Vol: Potent Cap.: Move Cap.: Level Of Ser Stopped Del: LOS by Move:	ule: xxxx xxxx xxxx xxxx xxxx xxxx vice Modul xxxxx xxxx	xxxxx xxxxx xxxxx e: xxxxx	780 xxx 274 xxx 262 xxx 	x 322 x 724 x 724 	323 xx 1248 xx 1248 xx 1148 xx	*** **** *** *****	xxxx xxxx xxxx xxxx 	*****
Movement: Shared Cap.: Shrd StpDel: Shared LOS: ApproachDel: ApproachLOS:	LT - LTR XXXX XXXX XXXXX XXXX * *	- RT xxxxx xxxxx	LT - LT xxxx 52 xxxxx 13.	R - RT 6 xxxxx 2 xxxxx *	LT - 1 xxxx xx 8.1 xx	LTR - RT XXX XXXX XXX XXXX * *	LT - LTR xxxx xxxx xxxxx xxxx	- RT xxxxx xxxxx *

Mon Mar 22, 2004 15:50:59 Page 24-1 CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 25-1 ______

UC Berkeley LRDP EIR

2020 No Project Conditions AM Peak Hour

AM Peak Hour

UC Berkeley LRDP EIR

2020 No Project Conditions

			Level 0									
******	2000 1	HCM Or	peration	ns Met	thod (Future	Volu	me Ali	ternati	ve)		
Intersection	#18 1	Hearst	. Avenu	e / Ga	ayley	Road /	LaLo	na Ave	enue			
Cvcle (sec):	****	75		****		ritica					1.1	
Loss Time (se	ec):		3 (Y+R :	= 4 :							56	
Optimal Cycle		180				evel 0:						E
******											****	*****
Approach:											est B	
Movement:												- R
Control:												
Rights:		Incli	ted ide		Inclu			Incl			Incl	
-	18		18		18	18		17	17	17		17
Lanes:	0 (0 1!	0 0		0 1!				0 0		1 0	0 1
Volume Module												
Base Vol:	274	212	95	12	274	21	28		304		33	
_	1.00		1.00		1.00	1.00		1.00	1.00		1.00	
Initial Bse: Added Vol:	274 11	212 4	95 32	12	274 37	21 0	28 0	161 32	304 19	21 2	33 9	5 0
Future:	70	10	20	0	120	0	0	80	19	20	20	0
Initial Fut:		226	147	12	431	21	28	273	323	43	62	5
	1.00		1.00		1.00	1.00		1.00			1.00	
_	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Volume:	355	226	147	12	431	21	28	273	323	43	62	5
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	355	226	147	12	431	21	28	273	323	43	62	5
PCE Adj:			1.00		1.00	1.00		1.00			1.00	
MLF Adj:			1.00		1.00	1.00		1.00			1.00	1.00
Final Vol.:			147	12		21		273			62	5
Saturation Fl												
Saturation F.				1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:						0.98		0.92			0.76	
Lanes:						0.04			0.52		0.59	
Final Sat.:	530	337	219	48	1721	84	78	761	900	587	847	1615
Capacity Anal												
Vol/Sat:	0.67		0.67	0.25	0.25	0.25	0.36	0.36	0.36	0.07	0.07	0.00
Crit Moves:	0 55	****	0 55	0 55	0 55	0 55	0 40	****	0 00	0 40	0 40	0.40
Green/Cycle:			1.21		0.55	0.55		0.40			0.40	0.40
Volume/Cap: Delay/Veh:					11.4	11.4		35.5	0.0		13.7	12.1
User DelAdi:					1.00	1.00		1.00	1.00		1.00	1.00
AdiDel/Veh:							35.5		0.0			

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)		Level Of Service Comput 2000 HCM Operations Method (Futur	e Volume Alternativ	
Intersection #18 Hearst Avenue / Gayley Road / LaLoma Avenue	Intersection	n #19 Berkeley Way / Oxford Street		
Cycle (sec): 75	1.151 Cycle (sec): 56.6 Loss Time (s E Optimal Cycl	70 Critic sec): 8 (Y+R = 4 sec) Averag	al Vol./Cap. (X): e Delay (sec/veh): Of Service:	0.479 6.5 A
11 11 11 11 11 11 11 11 11 11 11 11 11	est Bound Approach: - T - R Movement:	North Bound South Bound L - T - R L - T - R	East Bound L - T - R	West Bound L - T - R
Rights: Include Include Include Min. Green: 18 18 18 18 18 18 17 17 17 17 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0	Permitted Control: Include Rights: 17 17 Min. Green: 1 0 0 1 Lanes:	Permitted Permitted	0 0 1! 0 0	Permitted Include 20 20 20 1 0 0 1 0
Initial Bse: 274 212 95 12 274 21 28 161 304 21 Added Vol: 11 4 32 0 37 0 0 32 19 2 Future: 70 10 20 0 120 0 0 80 0 20 Initial Fut: 355 226 147 12 431 21 28 273 323 43 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Modul 33 5 Base Vol: 1.00 1.00 Growth Adj: 33 5 Initial Bse: 9 0 Added Vol: 20 0 Future: 62 5 Initial Fut: 1.00 1.00 User Adj: 1.00 1.00 PHF Adj:	.e: 39 717 40 30 1132 11 1.00 1.00 1.00 1.00 1.00 1.00 39 717 40 30 1132 11 0 55 0 0 5 0 10 110 10 0 100 0 49 882 50 30 1237 11 1.00 1.00 1.00 1.00 1.00 1.00 1.00	20 18 72 1.00 1.00 1.00 20 18 72 0 0 0 0 0 20 20 18 92 1.00 1.00 1.00 1.00 1.00 1.00	10 2 12 1.00 1.00 1.00 10 2 12 0 0 0 0 0 0 10 2 12 1.00 1.00 1.00 1.00 1.00 1.00
	0 0 Reduct Vol: 62 5 Reduced Vol: 1.00 1.00 PCE Adj: 1.00 1.00 MLF Adj: 62 5 Final Vol.:	49 882 50 30 1237 11 0 0 0 0 0 0 0 0 1 49 882 50 30 1237 11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	20 18 92 1.00 1.00 1.00 1.00 1.00 1.00 20 18 92	10 2 12 0 0 0 0 10 2 12 1.00 1.00 1.00 1.00 1.00 1.00 10 2 12
Lanes: 0.49 0.31 0.20 0.03 0.93 0.04 0.04 0.44 0.52 0.41	0.76 0.85 Adjustment: 0.59 1.00 Lanes: 847 1615 Final Sat.:	1900 1900 1900 1900 1900 1900	0.87 0.87 0.87 0.15 0.14 0.71 255 230 1174	1625 236 1418
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	0.07 0.00 Vol/Sat: Crit Moves: 0.40 0.40 Green/Cycle: 0.18 0.01 Volume/Cap: 13.7 12.1 Delay/Veh: 1.00 1.00 User DelAdj:	6.1 5.0 5.0 3.9 6.1 6.1 1.00 1.00 1.00 1.00 1.00 1.00	**** 0.29 0.29 0.29 0.27 0.27 0.27 20.8 20.8 20.8 1.00 1.00 1.00	0.29 0.29 0.29 0.02 0.03 0.03 18.1 18.1 18.1 1.00 1.00 1.00
AdjDel/Veh: 125.8 126 125.8 11.4 11.4 11.4 35.5 35.5 0.0 13.7 DesignQueue: 7 5 3 0 9 0 1 7 15 1	2 0 DesignQueue:		1 1 3	18.1 18.1 18.1 0 0 0 ********************************

2020 No Project Conditions

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) *************** Intersection #20 University Avenue / Sixth Street ********************** Loss Time (sec): 16 (Y+R = 5 sec) Average Delay (sec/veh): 95.5 Optimal Cycle: 180 Level Of Service: F ************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Prot+Permit Permitted Protected Protected Rights: Include Include Include Include Min. Green: 6 23 23 0 23 23 6 15 15 6 15 15 Lanes: 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 -----| Volume Module: >> Count Date: 5 Dec 2002 << 7:00-9:00 AM Base Vol: 211 111 19 73 290 325 89 932 333 40 931 21 Initial Bse: 211 111 19 73 290 325 89 932 333 40 931 21 Added Vol: 0 0 6 0 0 1 6 47 0 0 6 Future: 150 60 10 10 10 80 10 60 40 10 150 Initial Fut: 361 171 35 83 300 406 105 1039 373 50 1087 Reduced Vol: 361 171 35 83 300 406 105 1039 373 50 1087 31 Final Vol.: 361 171 35 83 300 406 105 1039 373 50 1087 31 -----|-----||-------| Saturation Flow Module: Adjustment: 0.95 1.00 0.85 0.61 1.00 0.85 0.95 0.91 0.91 0.95 0.95 0.95 Lanes: 1.00 1.00 1.00 1.00 1.00 1.00 1.47 0.53 1.00 1.94 0.06 Final Sat.: 1805 1900 1615 1159 1900 1615 1805 2550 915 1805 3496 100 -----| Capacity Analysis Module: Vol/Sat: 0.20 0.09 0.02 0.07 0.16 0.25 0.06 0.41 0.41 0.03 0.31 0.31 Crit Moves: **** **** **** Green/Cycle: 0.41 0.41 0.41 0.27 0.27 0.27 0.10 0.32 0.32 0.05 0.32 0.32 Volume/Cap: 0.49 0.22 0.05 0.26 0.58 0.92 0.60 1.29 1.29 0.53 0.98 0.98 Delay/Veh: 26.9 22.3 20.3 34.6 40.7 68.0 63.9 177 176.5 72.0 62.0 62.0 AdjDel/Veh: 26.9 22.3 20.3 34.6 40.7 68.0 63.9 177 176.5 72.0 62.0 62.0 DesignQueue: 14 7 1 4 14 20 6 50 18 3 51 1

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 26-1 CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 27-1 ______

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report

2000 HCM Ope	erations Method (Future Volume Al	Lternative)	
**************************************			*****	*****
******	******	*****		
Cycle (sec): 114 Loss Time (sec): 16 Optimal Cycle: 101 ***********************************	(Y+R = 5 sec) A	ritical Vol./Cap verage Delay (se evel Of Service: *******	<pre>D. (X): ec/veh): : **********************************</pre>	0.837 128.0 F
Approach: North Bou Movement: L - T -	ind South Boi	und East F - R L - T	Bound W - R L	est Bound - T - R
Control: Protecte Rights: Includ Min. Green: 5 21 Lanes: 1 0 1 1	ed Protecte le Includ 21 5 21 . 0 1 0 1	ed Protected Incl. 21 5 22 1 0 1 0 1	ted P Lude 2 22 5	rotected Include 22 22 0 1 1 0
Volume Module: >> Count Base Vol: 100 457 Growth Adj: 1.00 1.00 Initial Bse: 100 457 Added Vol: 0 0 Future: 50 200 Initial Fut: 150 657 User Adj: 1.00 1.00 PHF Adj: 1.00 1.00 PHF Volume: 150 657 Reduct Vol: 0 0 Reduced Vol: 150 657 PCE Adj: 1.00 1.00 MLF Adj: 1.00 1.00 Final Vol:: 150 657	Date: 5 Dec 2002 75 190 837 1.00 1.00 1.00 75 190 837 1 11 28 40 60 30 116 261 895 1.00 1.00 1.00 116 261 895 0 0 0 116 261 895 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	<pre><< 7:00-9:00 AN 83 56 95' 1.00 1.00 1.00 83 56 95' 0 0 53 20 10 60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.03 66 10770 0 0 0 103 66 10770 1.00 1.00 1.00 1.03 66 10770 1.00 1.00 1.00 1.01 1.00 1.00 1.02 1.00 1.00 1.03 66 10770 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00</pre>	47	644 93 1.00 1.00 644 93 6 3 120 100 770 196 1.00 1.00 1.00 1.00 770 196 0 0 770 196 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Adjustment: 0.95 0.93 Lanes: 1.00 1.70 Final Sat.: 1805 3001	0.30 1.00 1.79 530 1805 3189	0.21 1.00 1.90 367 1805 3394	0.10 1.00 1 187 1805	1.59 0.41 2791 710
Capacity Analysis Module Vol/Sat: 0.08 0.22 Crit Moves: ****	0.22 0.14 0.28		2 0.32 0.04	
Green/Cycle: 0.17 0.31 Volume/Cap: 0.50 0.71 Delay/Veh: 49.0 39.1 User DelAdj: 1.00 1.00 AdjDel/Veh: 49.0 39.1 DesignQueue: 8 30 **********************************	0.31 0.17 0.31 0.71 0.87 0.91 39.1 73.2 51.2 1.00 1.00 1.00 39.1 73.2 51.2 5 14 42	0.31 0.05 0.22 0.91 0.70 1.44 51.2 87.6 249 1.00 1.00 1.00 51.2 87.6 249 5 4 5	2 0.22 0.06 4 1.44 0.66 9 248.7 79.0 0 1.00 1.00 9 248.7 79.0 7 4	1.26 1.26 171 171.1 1.00 1.00 171 171.1 41 10

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

		L	evel 0	f Serv	ice (Computa	tion E	Report				
2	2000 1	нсм Ор	eratio	ns Met	hod	(Future	Volur	ne Alt	ernati	ve)		
*******	****	****	****	****	****	****	****	*****	*****	*****	*****	****
Intersection										****	*****	****
Cvcle (sec):		65				Critica						
Loss Time (sec).	201.			= 5	200) 7	lvarada	Dolat	./cap.	· (21) ·		30	1
Loss Time (se Optimal Cycle		106	(111/	- 5.	JCC) 7	orrol 0	f Com	, (360	J/ V C11 / •		50.	<u>-</u>
*******	::	100	+++++	++++	1	ever O	T 26T/	/ICE:		+++++		. + + + + +
Approach:												
Movement:												
Control:]	Permit	ted	I	Permit	ted			
Rights:		Inclu	de			ıde			ıde		Inclu	
Min. Green:	5	23	23	23	23	23	17	17	17	17	17	17
Lanes:	1 (0 1	1 0	1 () 1	1 0	1 () 1	1 0	1 () 1	1 0
Volume Module	e: >>	Count	Date:	21 No	ov 200)2 << 7	:00 AM	4 - 9:	:00 AM			
Base Vol:	178	568	80	57	833	87	81	703	185	41	477	47
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:				57			81			41	477	47
			1	0		0	0	69	0	0	7	0
Future:		0		0						20		80
Initial Fut:		569	81		1063		91			61		127
User Adj:			1.00		1.00			1.00			1.00	1.00
	1.00		1.00		1.00	1.00		1.00		1.00		1.00
					1063	117	91		205	61	644	127
PHF Volume:		209	81 0									
Reduct Vol:			81		0				0		0	0
Reduced Vol:					1063		91		205	61		127
PCE Adj:			1.00	1.00				1.00			1.00	1.00
MLF Adj:			1.00		1.00			1.00			1.00	1.00
Final Vol.:										61		127
 Saturation Fl												
Sat/Lane:				1 9 0 0	1900	1900	1 9 0 0	1900	1900	1900	1900	1900
Adjustment:				0.37				0.92			0.93	
Lanes:						0.20			0.37		1.67	
												580
Final Sat.:				703						365		
 Capacity Anal												
Vol/Sat:	-			0.08	0.33	0.33	0 24	0.32	0.32	0.17	0.22	0.22
Crit Moves:			3.13	3.00	****	0.00	3.21	****	0.02	J. ± /		J
Green/Cycle:		0 49	0 49	0.35		0.35	0.32	0.32	0.32	0.32	0.32	0.32
Volume/Cap:			0.43		0.94			0.98			0.68	0.68
Delay/Veh:			8.5		33.4	33.4		45.1	45.1		22.6	22.6
			1.00									1.00
User DelAdj:					1.00			1.00			1.00	
AdjDel/Veh:			8.5	16.0		33.4		45.1	45.1	33.6		22.6

______ UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)
Intersection #22 University Avenue / Martin Luther King Way	Intersection #23 University Avenue / Milvia Street
Cycle (sec): 65	Cycle (sec): 65
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Prot+Permit Permitted Permitted Permitted Rights: Include Include Include Min. Green: 5 23 23 23 23 23 27 17 17 17 17 17 17 17 17 17 17 17 17 17	Control: Permitted Permitted Permitted Permitted Permitted Permitted Permitted Include Include<
Volume Module: >> Count Date: 21 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 178 568 80 57 833 87 81 703 185 41 477 47 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 21 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 100 98 21 6 203 63 37 656 137 18 406 15 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Added Vol: 2 1 1 0 0 0 69 0 0 7 0 Future: 70 0 0 0 230 30 10 130 20 20 160 80 Initial Fut: 250 569 81 57 1063 117 91 902 205 61 644 127 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Added Vol: 0 0 0 0 0 0 0 69 0 0 7 0 Future: 10 10 10 10 10 10 20 80 20 20 240 20 Initial Fut: 110 108 31 16 213 73 57 805 157 38 653 35 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
PHF Volume: 250 569 81 57 1063 117 91 902 205 61 644 127 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 250 569 81 57 1063 117 91 902 205 61 644 127 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PHF Volume: 110 108 31 16 213 73 57 805 157 38 653 35 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Final Vol.: 250 569 81 57 1063 117 91 902 205 61 644 127	Final Vol.: 110 108 31 16 213 73 57 805 157 38 653 35 Saturation Flow Module:
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Capacity Analysis Module: Vol/Sat: 0.33 0.18 0.18 0.08 0.33 0.33 0.24 0.32 0.32 0.17 0.22 0.22 Crit Moves: **** ****	Capacity Analysis Module: Vol/Sat: 0.08 0.08 0.08 0.17 0.17 0.17 0.33 0.33 0.33 0.23 0.23 0.23 Crit Moves: ****
Green/Cycle: 0.49 0.49 0.49 0.35 0.35 0.35 0.32 0.32 0.32 0.32 0.32 0.32 Volume/Cap: 0.67 0.37 0.37 0.23 0.94 0.94 0.74 0.98 0.98 0.52 0.68 0.68 Delay/Veh: 22.1 8.5 8.5 16.0 33.4 33.4 51.6 45.1 45.1 33.6 22.6 22.6 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Green/Cycle: 0.32 0.32 0.32 0.32 0.32 0.32 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5
AdjDel/Veh: 22.1 8.5 8.5 16.0 33.4 33.4 51.6 45.1 45.1 33.6 22.6 22.6 DesignQueue: 8 11 2 1 27 3 2 24 5 2 17 3	AdjDel/Veh: 17.5 17.0 17.0 21.1 21.1 21.1 11.2 11.2 11.2 9.2 9.2 9.2 DesignQueue: 3 3 1 0 5 2 1 14 3 1 11 1

CUMULATIVE + LAB AM

Thu Mar 18, 2004 11:38:09 Page 31-1 ______ UC Berkeley LRDP EIR

2020 No Project Conditions

AM Peak Hour

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************
Intersection #24 University Avenue / SB Shattuck Avenue	Intersection #25 University Avenue / NB Shattuck Avenue
Cycle (sec): 75	Cycle (sec): 75
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 16	Control: Protected Protected Protected Protected Protected Protected Rights: Include Include Include Include Include Min. Green: 19 0 19 0 0 0 13 0 0 13 0 Lanes: 2 0 1! 0
Volume Module: >> Count Date: 12 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 0 0 49 767 105 115 401 162 26 356 314 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 12 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 458 0 168 0 0 0 0 0 444 0 0 0 235 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Lanes: 0.00 0.00 0.00 0.16 2.40 0.44 1.00 1.50 0.50 0.11 1.68 1.21 Final Sat.: 0 0 0 236 3570 660 609 2351 778 147 2307 1655	Lanes: 2.69 0.00 1.31 0.00 0.00 0.00 0.00 2.00 0.00 0.00 2.00 0.00 Final Sat.: 4153 0 2075 0 0 0 0 3249 0 0 3249 0
Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.25 0.25 0.25 0.22 0.22	Capacity Analysis Module: Vol/Sat: 0.16 0.00 0.10 0.00 0.00 0.00 0.16 0.00 0.00
Green/Cycle: 0.00 0.00 0.00 0.36 0.36 0.36 0.30 0.30	Green/Cycle: 0.41 0.00 0.41 0.00 0.00 0.00 0.00 0.39 0.00 0.00 0.39 0.00 Volume/Cap: 0.40 0.00 0.24 0.00 0.00 0.00 0.00 0.40 0.00 0.0

Capacity Analysis Module:

Crit Moves: ****

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09

AM Peak Hour

UC Berkeley LRDP EIR

2020 No Project Conditions

Page 33-1

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

	Level Of Servi	ce Computation Report	
2000 H	CM Operations Metho	od (Future Volume Alternative)	
******	****	******	******
Intersection #26 Un		Oxford Street	*****
Cycle (sec):	65	Critical Vol./Cap. (X):	0.856
Loss Time (sec):	12 $(Y+R = 4 sec$	c) Average Delay (sec/veh):	29.0
Optimal Cycle:	78	Level Of Service:	C

Approach:	North Bound South Bound East Bound Wes								st Bo	ound		
Movement:												
Control:												
Rights: Min. Green:		Inclu	de		Inclu	ıde		Inclu	ıde	I	inclu	ıde
Min. Green:	5	18	18	5	18	18	18	18	18	18	18	18
Lanes:	1	0 1	1 0	1 (0 1	1 0	1	1 0	0 1	0 0	1!	0 0
Volume Module	e: >>	Count	Date:	21 No	ov 200)2 << 7	:00 A	M - 9:	00 AM			
Base Vol:	147	487	4	41	1101	77	300	38	217	6	12	23
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	.00	1.00
Initial Bse:												
Added Vol:												
Future:	50	90	0	10	80	30	20	10	20	0	10	10
Initial Fut:	197	577	4	51	1182	111	375	48	269	6	22	33
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	.00	1.00
PHF Volume:	197	577	4	51	1182	111	375	48	269	6	22	33
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	197	577	4	51	1182	111	375	48	269	6	22	33
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	.00	1.00
Final Vol.:	197	577	4	51	1182	111	375	48	269	6	22	33
Saturation F	low M	odule:										
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900 1	900	1900
Adjustment:	0.86	0.85	0.85	0.35	0.84	0.84	0.64	0.64	0.77	0.82 0	.82	0.82

Lanes: 1.00 1.99 0.01 1.00 1.83 0.17 1.77 0.23 1.00 0.10 0.36 0.54

Final Sat.: 1625 3223 22 663 2931 275 2165 277 1454 153 561 842 _____|

Vol/Sat: 0.12 0.18 0.18 0.08 0.40 0.40 0.17 0.17 0.19 0.04 0.04 0.04

Green/Cycle: 0.41 0.41 0.41 0.41 0.41 0.41 0.30 0.30 0.30 0.30 0.30 0.30

Volume/Cap: 0.30 0.44 0.44 0.19 0.99 0.99 0.58 0.58 0.62 0.13 0.13 0.13 Delay/Veh: 14.1 14.9 14.9 13.9 41.5 41.5 22.6 22.6 26.0 17.2 17.2 17.2 AdjDel/Veh: 14.1 14.9 14.9 13.9 41.5 41.5 22.6 22.6 26.0 17.2 17.2 17.2 DesignQueue: 4 13 0 1 28 3 10 1 7 0 1 1 Level Of Service Computation Report

2000 HCM Unsignalized Method (Future Volume Alternative)

Intersection #27 Univeristy Drive (East Gate) / Gayley Road ******************** Average Delay (sec/veh): 2.7 Worst Case Level Of Service: E ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Uncontrolled Uncontrolled Stop Sign Stop Sign Rights: Include Include Include Include Rights: Include Include Include Include Lanes: 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1! 0 0 -----| Volume Module: >> Count Date: 5 Dec 2002 << 7:00-9:00 AM Base Vol: 69 476 0 0 543 75 53 0 73 0 0 Initial Bse: 69 476 0 0 543 75 53 0 73 0 0 Added Vol: 0 46 0 0 57 0 0 0 0 0 0 Future: 20 70 0 0 110 10 10 0 20 0 0 Initial Fut: 89 592 0 0 710 85 63 0 93 0 0 Critical Gap Module: Critical Gp: 4.1 xxxx xxxxx xxxxx xxxx xxxx 6.4 xxxx 6.2 xxxxx xxxx xxxxx Capacity Module: Cnflict Vol: 795 xxxx xxxxx xxxx xxxx xxxx 1523 xxxx 753 xxxx xxxx xxxx Potent Cap.: 835 xxxx xxxxx xxxxx xxxxx xxxxx 132 xxxx 413 xxxx xxxxx xxxxx Move Cap.: 835 xxxx xxxxx xxxx xxxx xxxx 121 xxxx 413 xxxx xxxx xxxx ______|___|___| Level Of Service Module: Stopped Del: 9.8 xxxx xxxxx xxxxx xxxxx 63.4 xxxx 16.2 xxxxx xxxx xxxxx LOS by Move: A * * * * * F * C * * * Movement: LT - LTR - RT ApproachDel: xxxxx xxxx 35.3 xxxxxx ApproachLOS: * * E *

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

21	000 H		Level (signal:							Fival		
******											****	*****
Intersection				,				****	*****	****	****	*****
Average Dela				0.4	****	W	orst C	ase L	evel 0:	f Serv	ice: ****	B *****
Approach:	No	rth B	ound	So	uth B	ound	Εć	ast B	ound	W	est B	ound
Movement:			- R			- R					- T	
Control:												
Rights:			ude			ude			ude		Incl	
Lanes:			0 0			1 0			0 0			
Volume Module												
Base Vol:	54		0		1165		_	0	31	0	-	
Growth Adj:						1.00		1.00				1.00
Initial Bse:	54	647	0	0	1165	61	4		31	0	0	0
Added Vol:	0	0	0	0	32	-	0		0	0	0	0
Future:	20	140	0	0	90	10	0	0	10	0	0	0
Initial Fut:	74	787	0	0	1287	71	4	0	41	0	0	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
PHF Volume:	81	865	0	0	1414	78	4	0	45	0	0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Final Vol.:	81	865	0	0	1414	78	4	0	45	0	0	0
Critical Gap	Modu	le:										
Critical Gp:	4.1	XXXX	XXXXX	xxxxx	xxxx	xxxxx	6.8	xxxx	6.9	xxxxx	xxxx	xxxxx
FollowUpTim:								xxxx		xxxxx	xxxx	xxxxx
Capacity Mod	ule:											
Cnflict Vol:	905	XXXX	XXXXX	XXXX	xxxx	xxxxx	1675	xxxx	0	XXXX	xxxx	xxxxx
Potent Cap.:	540	xxxx	xxxxx	xxxx	xxxx	xxxxx	62	xxxx	0	xxxx	xxxx	XXXXX
Move Cap.:						XXXXX		XXXX		XXXX		
Level Of Serv												
Stopped Del:	12.8	XXXX	XXXXX	xxxxx	xxxx	xxxxx	xxxxx	xxxx	xxxxx	xxxxx	xxxx	xxxxx
LOS by Move:		*	*			*			*			
Movement:		- LTR	- RT						- RT	LT	- LTR	- RT
Shared Cap.:											xxxx	XXXXX
Shrd StpDel:												
Shared LOS:						*			*			*

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report

*****	2000 1	HCM Or	eratio	ns Me	thod	Computa (Future	Volur	ne Alt	ernati	.ve)		
************* Intersection									*****	*****	****	****
*****									*****	****	****	****
Cycle (sec): Loss Time (so Optimal Cycle ************************************	ec): e: ****	65 12 65 ****	(Y+R	= 9	sec) <i>I</i> sec) I *****	Critica Average Level O	l Vol Delay f Serv	./Cap. y (sec vice: *****	(X): c/veh):	****	0.42 15. ****	8 7 B *****
Approach: Movement:	No:	rth Bo	und - R	So:	uth Bo	ound - R	E d	ast Bo	ound - R	We L -	st Bo T	und - R
Control: Rights: Min. Green: Lanes:	0 0	Permit Inclu 0 0	ited ide 0	20	Permit Inclu 20 1 1	ited ide 20 1 0	0 0	Permit Inclu 22) 0	ited ide 22 1 0	33 0 1	ermit Inclu 33 0	ted ide 0
Volume Modul												'
Base Vol:	0	0	0	15	779	71	0	69	51	17	102	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	15	779	71	0	69	51	17	102	0
Added Vol: Future:	0	0	0	0	6	0	0	0	0	0	0	0
Future:	0	0	0	0	130	20	0	50	30	30	40	0
Initial Fut:						91					142	
User Adj:												
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00		1.00
PHF Volume:	0	0	0	15	915	91	0	119	81	47	142	0
Reduct Vol: Reduced Vol:	0	0	0	15	015	0.1	0	110	01	47	1/12	0
PCE Adj:	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1.00		
MLF Adj:												
Final Vol.:										47		0
Saturation F	low Mo	odule:										
Sat/Lane:												
Adjustment:												
Lanes:												
Final Sat.:												
Capacity Ana Vol/Sat:				0 22	0 22	0 22	0 00	0 12	0 12	0 12	0 12	0.00
Crit Moves:	0.00	0.00	0.00	0.22	****	0.22	0.00	0.12	0.12		****	
Green/Cycle:	0.00	0.00	0.00	0.31		0.31	0 00	0 34	0.34	0.51		
Volume/Cap:												
Delay/Veh:										3.6		
User DelAdj:										1.00		
AdjDel/Veh:	0.0	0.0	0.0	17.5	17.5	17.5						0.0
DesignQueue:												0

ApproachDel: xxxxxx xxxxx 11.3 xxxxxx ApproachLOS: * * B *

______ UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

*****						(Future					****	*****	
ntersection	#30 (Center	Stree	t / NE	Sha	ttuck A	venue						

Cycle (sec): Loss Time (s		65				Critica Average						/8 . 4	
Optimal Cvcl			(ITK	– 9 S		Level C			:/veii);			. 4 A	
******				****					*****	*****			
Approach:	No	rth Bo	und	Sot	th B	ound	Ea	st Bo	ound	W∈	est Bo	ound	
Movement:						- R							
Control:			ted	I	ermi	tted ude	F	ermit	ted	E	Permit		
Rights: Min. Green:		Inclu	ide 30			uae 0			1de 0	0	Inclu	1de 22	
Min. Green: Lanes:			1 0			0 0				-		1 0	
Volume Modul													
Base Vol:	42	616	51	0	0	0	26	56	0	0	77	26	
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Initial Bse:	42	616	51	0	0	0	26	56	0	0	77	26	
Added Vol:	0	21	0	0	0	0	0	0	0	0	0	0	
Future:		200	60	0	0	-	10	40	0	0	40	30	
Initial Fut:			111	0	0		36	96	0	0	117	56	
User Adj:		1.00				1.00				1.00			
PHF Adj:		1.00				1.00			1.00			1.00	
PHF Volume:		837	111	0	0		36	96	0	0	117	56	
Reduct Vol:	0	0	0	0	0		0	0	0	0	0	0	
Reduced Vol:		837	111	1 00	1 00		36	96	1 00	1 00	117	56	
PCE Adj: MLF Adj:						1.00			1.00			1.00	
Final Vol.:						0		96	0.11		117		
										-			
Saturation F				'		'	'		'	'		'	
Sat/Lane:				1900	1900	1900	1900	1900	1900	1900	1900	1900	
Adjustment:													
Lanes:	0.21	2.46	0.33	0.00	0.00	0.00	0.27	0.73	0.00	0.00	0.68	0.32	
Final Sat.:		3709				0		1096	0		1106		
Capacity Ana	-			0 00		0 00	0 00	0 00	0 00	0 00	0 11	0 11	
Vol/Sat:	0.23	0.23	0.23	0.00	U.U0	0.00	0.09	0.09	0.00	0.00	0.11		
Crit Moves:	0 54		0.54	0 00	0 00	0 00	0 24	0 24	0 00	0 00		0.34	
Green/Cycle: Volume/Cap:						0.00						0.34	
Delay/Veh:			2.5			0.0			0.00			17.4	
User DelAdj:													
AdiDel/Veh:				0.0			11.5		0.0			17.4	
DesignQueue:			2.3								3		

2020	_	ect Condition ak Hour	ns	
 Level Of	Service	Computation	Report	

Intersection #31 Center Street / Oxford Street Cycle (sec): 65	2000 HCM Opera	ations Method (Future	2000 HCM Operations Method (Future Volume Alternative)										
Cycle (sec): 65													
Approach: North Bound	*******************												
Approach: North Bound	Cycle (sec): 65	Critica	1 Vol./Cap. (X):	0.609									
Approach: North Bound	Loss Time (sec): 8 (Y	(+R = 4 sec) Average	Delay (sec/veh):	11.5									
Approach: North Bound	****************)	D ******									
Control: Permitted Permitted Permitted Rights: Include Include	Approach: North Bound	l South Bound	East Bound	West Bound									
Control:													
Lanes: 1 0 1 1 0 1 0 1 1 0 0 0 0 1! 0 0 0 1! 0 0 0 1! 0 0 0 1! 0 0 0 0	Control Promitted		D	D									
Lanes: 1 0 1 1 0 1 0 1 1 0 0 0 0 1! 0 0 0 1! 0 0 0 1! 0 0 0 1! 0 0 0 0	Rights: Include	i Permitted	Include	Include									
Lanes: 1 0 1 1 0 1 0 1 1 0 0 0 0 1! 0 0 0 1! 0 0 0 1! 0 0 0 1! 0 0 0 0	Min. Green: 19 19	19 19 19 19	19 19 19	19 19 19									
Volume Module: >> Count Date: 13 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 50 663 42 11 1145 39 26 10 43 19 6 8 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Lanes: 1 0 1 1	0 1 0 1 1 0	0 0 1! 0 0	0 0 1! 0 0									
Base Vol: 50 663 42 11 1145 39 26 10 43 19 6 8 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Initial Bse: 50 663 42 11 1145 39 26 10 43 19 6 8 Added Vol: 0 0 0 0 32 0 0 0 0 0 0 0 0 0 Future: 30 90 10 0 70 30 60 0 30 0 0 0 Initial Fut: 80 753 52 11 1247 69 86 10 73 19 6 8 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Future: 30 90 10 0 70 30 60 0 30 0 0 0 0 Initial Fut: 80 753 52 11 1247 69 86 10 73 19 6 8 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Tritial Ree: 50 663	42 11 1145 39	26 10 43	19 6 8									
Future: 30 90 10 0 70 30 60 0 30 0 0 0 0 Initial Fut: 80 753 52 11 1247 69 86 10 73 19 6 8 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Added Vol: 0 0	0 0 32 0	0 0 0	0 0 0									
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Future: 30 90	10 0 70 30	60 0 30	0 0 0									
PHF Volume: 80 753 52 11 1247 69 86 10 73 19 6 8 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Initial Fut: 80 753	52 11 1247 69	86 10 73	19 6 8									
PHF Volume: 80 753 52 11 1247 69 86 10 73 19 6 8 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	User Adj: 1.00 1.00 1.	00 1.00 1.00 1.00	1.00 1.00 1.00										
Reduced Vol: 80 753 52 11 1247 69 86 10 73 19 6 8 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Reduced Vol: 80 753 52 11 1247 69 86 10 73 19 6 8 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PHF Volume: 80 753	52 11 1247 69	86 10 73	19 6 8									
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Reduct Vol: U U	52 11 1247 69	96 10 73	10 6 9									
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Final Vol.: 80 753 52 11 1247 69 86 10 73 19 6 8													
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Final Vol.: 80 753	52 11 1247 69	86 10 73	19 6 8									
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190													
Adjustment: 0.15 0.85 0.85 0.30 0.85 0.85 0.71 0.71 0.71 0.74 0.74 0.74 Lanes: 1.00 1.87 0.13 1.00 1.90 0.10 0.51 0.06 0.43 0.58 0.18 0.24 Final Sat.: 289 3009 208 571 3054 169 684 79 580 804 254 339		1 1 1	1000 1000 1000	1000 1000 1000									
Lanes: 1.00 1.87 0.13 1.00 1.90 0.10 0.51 0.06 0.43 0.58 0.18 0.24 Final Sat.: 289 3009 208 571 3054 169 684 79 580 804 254 339													
Final Sat.: 289 3009 208 571 3054 169 684 79 580 804 254 339													
Capacity Analysis Module: Vol/Sat: 0.28 0.25 0.25 0.02 0.41 0.41 0.13 0.13 0.13 0.02 0.02 0.02 Crit Moves: **** Green/Cycle: 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.29 0.29 0.29 0.29 0.29 0.29 Volume/Cap: 0.47 0.43 0.43 0.03 0.70 0.70 0.43 0.43 0.43 0.08 0.08 Delay/Veh: 17.0 8.2 8.2 5.9 11.7 11.7 22.0 22.0 22.0 17.1 17.1 17.1 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Vol/Sat: 0.28 0.25 0.25 0.02 0.41 0.41 0.13 0.13 0.13 0.02 0.02 0.02 Crit Moves: **** *** **** **** **** **** **** **													
Crit Moves:													
Green/Cycle: 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.29 0.29 0.29 0.29 0.29 Volume/Cap: 0.47 0.43 0.43 0.03 0.70 0.70 0.43 0.43 0.43 0.08 0.08 Delay/Veh: 17.0 8.2 8.2 5.9 11.7 11.7 22.0 22.0 22.0 17.1 17.1 17.1 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0				0.02 0.02 0.02									
Volume/Cap: 0.47 0.43 0.43 0.03 0.70 0.70 0.43 0.43 0.43 0.08 0.08 0.08 Delay/Veh: 17.0 8.2 8.2 5.9 11.7 11.7 22.0 22.0 22.0 17.1 17.1 17.1 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0				n 29 n 29 n 29									
Delay/Veh: 17.0 8.2 8.2 5.9 11.7 11.7 22.0 22.0 22.0 17.1 17.1 17.1 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
DesignOueue: 1 12 1 0 21 1 2 0 2 0 0 0	User DelAdj: 1.00 1.00 1.	00 1.00 1.00 1.00	1.00 1.00 1.00										
DesignQueue: 1 12 1 0 21 1 2 0 2 0 0 0													
	DesignQueue: 1 12	1 0 21 1	2 0 2	0 0 0									

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 38-1 CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 39-1

UC Berkeley LRDP EIR 2020 No Project Conditions

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative)										

Intersection #32 Stadium Rim Road / Gayley Road										
Cycle (sec): 100										
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R	- 1									
Control: Stop Sign Stop Sign Stop Sign Stop Sign Rights: Include Include Include Include	0									
Volume Module: >> Count Date: 20 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 386 19 128 471 0 12 5 14 18 1 116 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	88 00 88 33 00 11 00 00 11 10 00 01 11									
Lanes: 0.00 0.92 0.08 0.22 0.78 0.00 0.39 0.16 0.45 0.20 0.01 0.79 Final Sat.: 0 601 55 144 526 0 183 76 213 110 3 433	2									
Capacity Analysis Module: Vol/Sat: xxxx 0.81 0.81 1.16 1.16 xxxx 0.07 0.07 0.07 0.33 0.33 0.33										
Crit Moves:	0 2									

AM Peak Hour
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)

******	*****	*****	****	****	****	****	****	****	****	****	*****
Intersection						****	****	*****	****	****	*****
Average Dela											D *****
Approach: Movement:	L - T	- R	L -	- T	- R	L	- T	- R	L ·	- T	- R
Control: Rights: Lanes:	Uncontr Incl 0 1 1	olled ude 0 0	Und 0	contro Incli 1 0	olled ude 1 0	S 1	top Si Incli 0 0	ign ude 0 1	0	top Si Incli	ign ude 0 0
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Final Vol.: Critical Gap Critical Ggp: FollowUpTim: Capacity Mod: Cnflict Vol: Potent Cap.:	e: >> Coun 17 798 1.00 1.00 17 798 0 0 10 130 27 928 1.00 1.00 0.93 0.93 29 998 0 0 29 998 Module: 4.1 xxxx 2.2 xxxxx 	t Date: 0 1.00 0 0 0 1.00 0 1.00 0 0 1.00 0 0 xxxxx xxxxx	13 No 59 1.00 59 0 10 69 1.00 0.93 74 0 74 4.1 2.2 1	0v 200 1111 1.00 1111 32 80 1223 1.00 0.93 1315 0 1315	02 << '34	7:00 A 16 1.00 16 0 0 16 1.00 0.93 17 6.8 3.5 	M - 9 0 1.00 0 0 0 0 0 0 0.09 0 0 0 0 0 0 0 0 0 0	:00 AM 33 1.00 33 0 0 30 63 1.00 0.93 68 0 68 6.9 3.3	0 1.00 0 0 0 0 1.00 0.93 0 0 0 0 0 0 0 xxxxx xxxxx	0 1.00 0 0 0 0 1.00 0.93 0 0 0	1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Move Cap.:	562 xxxx	XXXXX	702	xxxx	xxxxx	48	xxxx	626	XXXX	XXXX	XXXXX
Level Of Ser Stopped Del: LOS by Move: Movement: Shared Cap.: Shrd StpDel: Shared LOS: ApproachDel: ApproachLOS:	vice Modul 11.8 xxxx B * LT - LTR xxxx xxxx 11.8 xxxx B *	e:	10.7 B LT - xxxx 10.7 B	XXXX * - LTR XXXX XXXX	XXXXX	116.5 F LT xxxx	XXXX * - LTR XXXX	11.4 B - RT XXXXX XXXXX	XXXXX * LT XXXX XXXX	XXXX * - LTR XXXX XXXX	xxxxx * - RT xxxxx

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 40-1 CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 41-1 UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

	Level Of Service Computation Report												
2000 HCM Unsignalized Method (Future Volume Alternative)													
Intersection #34 Kittridge Street / Oxford Street / Fulton Street													
Average Delay (sec/veh): 2.5 Worst Case Level Of Service: C													
Approach: Movement:	L ·	- T	- R	L	- T	- R	L ·	- T	- R	L ·		- R	
	Un:	contro Incli 1 1	olled ude 0 0	Un 0	contro Incl 0 1	olled ude 1 0	S- 0	top S: Incl 0 1!	ign ude 00	S:	top S: Incli 0 0	ign ude 0 0	
Volume Modul Base Vol:		Count		13 N		02 << '		M - 9		0		0	
Growth Adj: Initial Bse:	1.00		1.00	1.00	1.00	1.00	-	1.00	1.00	-	-	1.00	
Added Vol: Future:	0	0 120	0	0				0	0 10	0	0	0	
<pre>Initial Fut: User Adj:</pre>	1.00	1.00	1.00	1.00		1.00		1.00	33	1.00		1.00	
PHF Adj: PHF Volume: Reduct Vol:	1.00	1.00 921 0	1.00	0	1.00 1224 0	48	16	1.00	1.00 33 0	1.00	1.00	1.00	
Final Vol.: Critical Gap	13	921	0	0	-	-	-	-	33	0	0	0	
Critical Gp: FollowUpTim:	4.1	XXXX	XXXXX	xxxxx	xxxx	xxxxx	3.5	xxxx	3.3	xxxxx	xxxx	XXXXX	
Capacity Mod	ule:			'								·	
<pre>Cnflict Vol: Potent Cap.: Move Cap.:</pre>	653	xxxx		xxxx	xxxx	xxxxx	105		845	XXXX	xxxx	XXXXX	
Level Of Ser													
Stopped Del: LOS by Move:	10.6	xxxx						xxxx *	xxxxx *	*****	xxxx *	xxxxx *	
Movement: Shared Cap.:	XXXX	XXXX		XXXX	XXXX	xxxxx	XXXX	252	xxxxx	XXXX		XXXXX	
Shrd StpDel: Shared LOS: ApproachDel: ApproachLOS:	B x:	*	*	*			*	22.7 C 22.7 C	*	*	****** ******* *	*	

		AM Pe	ak Hour			
Level	Of	Service	Comput	ation	Report	

2020 No Project Conditions

2000 HCM 4-Way Stop Method (Future Volume Alternative)										
Intersection #35 Stadium Rim Road / Centennial Drive										
Cycle (sec): 100										
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R										
Control: Stop Sign Stop Sign Stop Sign Stop Sign Rights: Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Volume Module: >> Count Date: 20 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 70 160 94 22 0 0 0 0 114 0 71 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0										
Saturation Flow Module: Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0										
Capacity Analysis Module: Vol/Sat: xxxx 0.33 0.33 0.26 0.26 xxxx xxxx xxxx xxxx 0.32 xxxx 0.32 Crit Moves: **** **** Delay/Veh: 0.0 9.3 9.3 9.5 9.5 0.0 0.0 0.0 0.0 9.7 0.0 9.7 Delay Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0										

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 42-1 CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 43-1

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

		Level C	of coru	i co C	omputa	tion D	oport			
	2000 HCM O								ve)	
*****										*****
Intersection							****	*****	*****	******
Cycle (sec):										562
Loss Time (s										10.0
Optimal Cycl	e· 4	2		00, I	evel O	f Serv	ice.	, . 011, .	=	A
******	*****	_ *****	*****	_ ****	*****	*****	****	****	*****	
Approach:	North B	ound	Sou	th Bo	und	Ea	st Bo	und	West	Bound
Movement:	L - T	- R	т. –	T	- R	т. –	- т	- R	T 7	r – R
Control:	Permi	tted	P	ermit	ted	P	ermit	ted	Perr	nitted
Rights:	Incl	ude		Inclu	.de		Inclu			clude
Min. Green:					18		0	0	16 1	16
Lanes:								0 0		
Volume Modul										
Base Vol:	29 912			788	12	1	0	62		51 71
Growth Adj:			1.00						1.00 1.0	
Initial Bse:				788	12	1	0	62		51 71
Added Vol:	0 21			6	0	0	0	0	1	0 0
Future:	10 280		0			0	0	0		10
Initial Fut:				984		1	0			51 81
User Adj:					1.00		1.00			
PHF Adj:	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.0	00 1.00
PHF Volume:	39 1213	0	0	984	22	1	0	62	147	51 81
Reduct Vol:	0 0	0	0	0	0	0	0	0	0	0 0
Reduced Vol:	39 1213	0	0	984	22	1	0	62	147 6	51 81
PCE Adj:					1.00		1.00			
MLF Adj:	1.00 1.00				1.00	1.00	1.00		1.00 1.0	00 1.00
Final Vol.:				984			0			51 81
 Saturation F										
Saturation r Sat/Lane:			1900	1900	1900	1900	1900	1900	1900 190	00 1900
Adjustment:									0.65 0.8	
Lanes:							0.00		1.00 0.4	
Final Sat.:					71		0	1453	1228 67	72 893
Capacity Ana	lysis Modu	le:								
Vol/Sat:			0.00	0.31	0.31	0.04	0.00	0.04	0.12 0.0	0.09
Crit Moves:	***								***	
Green/Cycle:							0.00			
Volume/Cap:			0.00				0.00			
Delay/Veh:			0.0		7.3		0.0			
User DelAdj:			1.00				1.00			
AdjDel/Veh:			0.0		7.3		0.0	20.3		
DesignQueue:	1 18		0			0		2		

2		Project AM Peal	ct Condition K Hour	ıs	
Level	Of Se	rvice (Computation	Report	

UC Berkeley LRDP EIR

2000 HCM Operations Method (Future Volume Alternative)										
Intersection #37 Bancroft Way / Fulton Street										
Cycle (sec): 65	(Critical Vol	L./Cap. (X):	0.385						
Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 9.3										
Optimal Cycle: 49 Level Of Service: A										
Approach: North Bou			East Bound	West Bound						
Movement: L - T -			- T - R							
	ed Permi									
Rights: Includ Min. Green: 17 17			Include 0	Ignore 24 24 24						
Lanes: 0 1 1 0			0 0 0 0							
Volume Module: >> Count										
Base Vol: 13 146	0 0 1071		0 0	84 173 650						
	1.00 1.00 1.00		1.00 1.00	1.00 1.00 1.00						
Initial Bse: 13 146	0 0 1071			84 173 650						
Added Vol: 0 0 Future: 10 10	0 0 32	1 (0 0 0 10 20 110						
Initial Fut: 23 156	0 0 1163	90 (94 193 760						
	1.00 1.00 1.00		1.00 1.00	1.00 1.00 0.00						
	1.00 1.00 1.00		1.00 1.00	1.00 1.00 0.00						
PHF Volume: 23 156	0 0 1163	90 (0 0	94 193 0						
Reduct Vol: 0 0	0 0 0	0 (0 0	0 0 0						
Reduced Vol: 23 156	0 0 1163	90 (0 0	94 193 0						
	1.00 1.00 1.00		1.00 1.00	1.00 1.00 0.00						
	1.00 1.00 1.00		1.00 1.00	1.00 1.00 0.00						
Final Vol.: 23 156	0 0 1163		0 0	94 193 0						
Saturation Flow Module:										
	1900 1900 1900	1900 1900	1900 1900	1900 1900 1900						
	1.00 1.00 0.90		1.00 1.00	0.81 0.81 1.00						
	0.00 0.00 2.78	0.22 0.00	0.00 0.00	0.66 1.34 1.00						
	0 0 4761		0 0	1005 2063 1900						
Capacity Analysis Module		0 04 0 0		0 00 0 00 0 00						
Vol/Sat: 0.06 0.06 Crit Moves:	0.00 0.00 0.24	0.24 0.00	0.00 0.00	0.09 0.09 0.00						
Green/Cycle: 0.51 0.51		0.51 0.00	0.00 0.00	0.37 0.37 0.00						
. 2	0.00 0.00 0.31		0.00 0.00	0.25 0.25 0.00						
	0.0 0.0 8.5	8.5 0.0		14.8 14.8 0.0						
	1.00 1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00 1.00						
AdjDel/Veh: 6.5 6.5	0.0 0.0 8.5	8.5 0.0		14.8 14.8 0.0						
DesignQueue: 0 3	0 0 22	2 (2 4 0						
******	******	*****	*********	***********						

UC Berkeley LRDP EIR 2020 No Project Conditions

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) **************** Intersection #38 Bancroft Way / Ellsworth Street ***************** Average Delay (sec/veh): 3.0 Worst Case Level Of Service: C ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Rights: Include Includ -----| Volume Module: >> Count Date: 13 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 241 60 0 0 0 11 0 0 0 674 39 Initial Bse: 241 60 0 0 0 11 0 0 0 674 39 Added Vol: 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 130 0 Future: Initial Fut: 251 60 0 0 0 11 0 0 0 804 39 Critical Gap Module: FollowUpTim: 3.5 4.0 xxxxx xxxxx xxxx 3.3 xxxxx xxxx xxxxx xxxx xxxxx xxxxx _____| Capacity Module: Cnflict Vol: 402 843 xxxxx xxxx xxxx 422 xxxx xxxx xxxxx xxxx xxxx xxxxx _____| Level Of Service Module: Stopped Del: 13.4 xxxx xxxxx xxxxx xxxx 10.8 xxxxx xxxx xxxxx xxxxx xxxxx xxxxx LOS by Move: B * * * * * * * * * Movement: LT - LTR - RT Shared LOS: C * * * * * * * * * * * * * * ApproachDel: 16.9 10.8 xxxxx xxxxx ApproachLOS: C B * *

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 44-1 CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 45-1 ______

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report

	2000 HCM Unsignalized Method (Future Volume Alternative)											
	Intersection #39 Bancroft Way / Dana Street											
Average Dela	y (se	c/veh)): *****	0.0	****	W	orst C	ase L	evel Of	Serv:	ice:	A
Approach: Movement:	L ·	- T	- R	L	- T	- R	L ·	- T	- R	L ·	- T	- R
Control: Rights: Lanes:	. St	top Si Inclu 0 0	ign 1de 00	s	top S. Incl 0 0	ign ude 00	Un (contro Incl	olled ude 0 0	Und	contro Incli 1 2	olled ude 0 0
Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Final Vol.: Critical Gap: FollowUpTim::	0: >> 0 1.00 0 0 0 0 1.00 1.00 0 0 0 Modu	Count	1.00 1.00 0 0 0 0 1.00 1.00 0 0	: 13 N 0 1.00 0 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0	ov 200 0 1.00 0 0 0 0 1.00 1.00 0 0 0 0	02 << '0	7:00 AI 0 1.00 0 0 0 0 1.00 0 0 1.00 0 0 0 0 0	M - 9 0 1.00 0 0 0 1.00 1.00 0 0	:00 AM 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	145 1.00 145 0 50 195 1.00 1.00 195 0 195	721 1.00 721 0 130 851 1.00 1.00 851 0 851 xxxx	0 1.00 0 0 0 0 1.00 1.00 0 0 0
Capacity Modi Cnflict Vol: Potent Cap.: Move Cap.: Level Of Ser Stopped Del:	xxxx xxxx xxxx xxxx 	xxxx xxxx xxxx 	xxxxx xxxxx xxxxx	xxxx xxxx xxxx	xxxx xxxx 	***** *****	xxxx xxxx xxxx	XXXX XXXX XXXX	***** *****	0 0	XXXX XXXX XXXX	***** *****
LOS by Move: Movement: Shared Cap.: Shrd StpDel: Shared LOS: ApproachDel:	LT · XXXX XXXXX	* - LTR XXXX XXXX	* - RT XXXXX XXXXX	* LT XXXX XXXXX	* - LTR XXXX XXXX	* - RT XXXXX XXXXX	LT · xxxx xxxxx	* - LTR xxxx xxxx	* - RT xxxxx xxxxx	A LT · XXXX 0.0 A	* - LTR xxxx	* - RT XXXXX

ApproachLOS: *

CUMULATIVE + LAB AM

Thu Mar 18, 2004 11:38:09

UC Berkeley LRDP EIR

2020 No Project Conditions

AM Peak Hour

Page 47-1

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)	Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative)					
**************************************	**************************************					
Intersection #40 Bancroft Way / Telegraph Avenue	Intersection #41 Bancroft Way / Bowditch Street					
Cycle (sec): 65	Cycle (sec): 100					
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R					
Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 15 0 0 0 0 0 0 0 0 0 0 23 0 Lanes: 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control: Stop Sign Stop Sign Stop Sign Stop Sign Rights: Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
Volume Module: >> Count Date: 13 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 427 0 0 0 0 0 0 0 0 0 460 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 13 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 191 0 0 0 0 0 0 0 0 99 494 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					
Added Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Added Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					
	Saturation Flow Module:					
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					
Lanes: 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Capacity Analysis Module: Vol/Sat: 0.31 xxxx xxxx xxxx xxxx xxxx xxxx xxxx 0.49 0.48 xxxx					
Capacity Analysis Module: Vol/Sat: 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Crit Moves: **** Delay/Veh: 10.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.8 12.4 0.0					
Crit Moves: **** Green/Cycle: 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Delay Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					
Delay/Veh: 27.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.5 0.0 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	ApproachDel: 10.7 xxxxxx xxxxxx 12.5 Delay Adj: 1.00 xxxxx xxxxx 1.00 ApprAdjDel: 10.7 xxxxxx xxxxx 12.5					
DesignQueue: 15 0 0 0 0 0 0 0 0 13 0	LOS by Appr: B * * B					

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 48-1 CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 49-1 UC Berkeley LRDP EIR

2020 No Project Conditions

AM Peak Hour

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative)												

Intersection #42 Bancroft Way / College Avenue												
Cycle (sec): Loss Time (se		100	1			Critica	l Vol	./Cap	. (X):		0.48	38
Loss Time (se	ec):	0	(Y+R	= 4 s	sec) A	Average	Dela	y (sed	c/veh):		11.	. 1
Optimal Cvcle	e:	0	1		1	Level O	f Ser	vice:				В

Approach:												
Movement:									- R			
Control: Rights:	S.	top Si	.gn	St	top Si	.gn	S	top S:	ign	S.	top Si	ign
Rights:		Inclu	ide		Incl	ıde		Incl	ıde		Incl	ıde
Min. Green:									0		0	
Lanes:												
Volume Module											000	0
	343		0	0					0		203	0
Growth Adj:						1.00			1.00		1.00	1.00
Initial Bse:			0	0		0	0	-	0	34		0
Added Vol:	0		0	0	0	0	0	0	0	1		0
Future:	10		0	0	0	0	0	0		20 55		0
Initial Fut:			-	-	-	-	1 00	-	-			-
User Adj:					1.00			1.00			1.00	1.00
PHF Adj:	353		1.00	1.00		1.00	1.00	1.00	1.00	55	1.00	1.00
PHF Volume: Reduct Vol:			0	0	0	0	0	0	0	0	263 0	0
Reduced Vol:			0	0	0		0	0		55	-	0
PCE Adi:				-	1.00			1.00			1.00	-
MLF Adj:						1.00					1.00	
Final Vol.:							0.00				263	0
Saturation F				1						1		
Adjustment:				1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
Lanes:												
Final Sat.:												
Capacity Anal				'		'	'		'	'		'
Vol/Sat:	-			xxxx	xxxx	xxxx	xxxx	xxxx	xxxx	0.25	0.25	xxxx
Crit Moves:										***		
Delay/Veh:			0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.0	9.8	0.0
Delay Adj:			1.00		1.00				1.00		1.00	1.00
AdjDel/Veh:			0.0			0.0					9.8	0.0
LOS by Move:					*		*				A	*
ApproachDel:		12.2		X	XXXXX		X	xxxxx			9.9	
Delav Adi:		1.00		,	xxxx			xxxxx			1.00	
ApprAdjDel: LOS by Appr:		12.2		X	XXXXX			xxxxx			9.9	
LOS by Appr:		В			*			*			A	

		Level	L Of	Service	Computat	tion	Rep	ort
2000	HCM	4-Wav	Ston	Method	(Future	Vola	ıme	Alternative)

*****	2000 HCM 4-W ******							*****
Intersection	#43 Bancrof	t Way / Pi	edmont A	venue	*****	*****	*****	****
Cycle (sec): Loss Time (sec) Optimal Cycle ************************************	100 ec): 0 e: 0	(Y+R = 4	Cri sec) Ave Lev	tical Volerage Dela rel Of Se	l./Cap. ay (sec/ rvice:	(X): veh):	1.02 42.	6 8 E
Approach: Movement:	L - T -	R L	- T -	R L	- T -	R :	L - T	- R
	Stop Sig Includ 0 0 0 1 0 0	n S e 0 0	top Sigr Include 0 0 0 1		Stop Sig Includ 0 0 0	n le 0	Stop Si Inclu 0 0 0 0	.gn ide 0
Volume Modul- Base Vol: Growth Add: Initial Bse: Added Vol: Future: Initial Fut: User Add: PHF Add: PHF Volume: Reduct Vol: Reduced Vol: PCE Add: MLF Add: Final Vol.:	e: >> Count 131 553 1.00 1.00 131 553 0 59 10 60 141 672 1.00 1.00 1.00 1.00 141 672 0 0 141 672 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Date: 13 N 0 C 1.00 1.00 0 C 0 C 0 C 1.00 1.00 1.00 1.00 1.00 1.00 0 C 1.00 1.00 1.00 1.00 0 C 1.00 1.00 0 C 1.00 1.00 0 C 1.00 1.00	Tov 2002 344 1.00 1 344 44 40 428 1.00 1 428 0 428 1.00 1 428 1.00 1 428 1.00 1 428	<< 7:00 1 123	AM - 9:0 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 1.00 0	0 AM 0 1 .00 1 0 0 0 1 .00 1 1 .00 1 1 .00 1 1 .00 1 0 0 0 1 .00 1 0 0 0 0	0 0 .00 1.00 0 0 0 0 0 0 0 0 0 .00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1.00 0 0 0 0 1.00 1.00 0 0 0 1.00 1.0
Saturation F Adjustment: Lanes: Final Sat.:	low Module: 1.00 1.00 0.17 0.83 137 655	1.00 1.00 0.00 0.00 0 0	1.00 1 0.70 0	00 1.00 0.30 0.00 240	0 1.00	1.00 1	.00 1.00	1.00
Capacity Ana Vol/Sat: Crit Moves: Delay/Veh: Delay Adj: AdjDel/Veh: LOS by Move:	1.03 1.03 **** 59.5 59.5 1.00 1.00 59.5 59.5 F	0.0 0.0 1.00 1.00 0.0 0.0	**** 20.7 2 1.00 1 20.7 2	20.7 0.0 00 1.00 20.7 0.0	0.0	0.0 1.00 1 0.0	0.0 0.0 .00 1.00 0.0 0.0	0.0 1.00 0.0 *
ApproachDel: Delay Adj: ApprAdjDel: LOS by Appr:	1.00 59.5		1.00 20.7 C	2	<pre> </pre> </pre> <pre> <pre< td=""><td></td><td>*******</td><td>****</td></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>		*******	****

Thu Mar 18, 2004 11:38:09 Page 50-1 CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 51-1 ______

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report											
2000 HCM Operations Method (Future Volume Alternative)											
*****	****	****	*****	****	****	*****	****	****	*****	*****	*****
	Intersection #44 Durant Avenue / Shattuck Avenue										
Cycle (sec):		65			(Critica	l Vol	./Cap	. (X):	0.6	40
Loss Time (sec).	ec):	12	(Y+R	= 5 :	sec) 1	Average	Dela	y (se	c/veh):	15	.7
Optimal Cycl						Level C					В
*****	**************************************										
Approach:	No	rth Bo	und	Soi	uth Bo	ound	Εā	ast B	ound	West B	ound
Movement:	L	- T	- R	L ·	- T	- R	L -	- T	- R	L - T	- R
Control:		Permit	ted	Pro	ot+Pe	mit		Permi	tted	Permi	tted
Rights:		Inclu	de		Incl	ıde		Incl	ude	Incl	
Min. Green:	19	19	19	5	19	19	17	17	17	0 0	0
Lanes:	1	0 1	1 0	1 (0 1	1 0			1 0	0 0 0	0 0
Volume Modul	e: >>	Count	Date:	14 No	ov 200)2 << 7	:00 A	M - 9	:00 AM		
Base Vol:	55	943	136	67	886	8	9	70	35	0 0	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
Initial Bse:		943	136	67	886	8	9	70	35	0 0	0
Added Vol:	0	21	2	0	7	0	0	0	0	0 0	0
Future:	1.0	90	70	40	180	10	200	40	0	0 0	0
Initial Fut:	6.5	1054	208	107	1073	1.8	209	110	35	0 0	0
	1.00		1.00		1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
PHF Volume:		1054	208	107	1073	18	209	110	35	0 0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0 0	0
Reduced Vol:			208		1073		209	110	35	0 0	
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00 1.00	1.00
_	1.00		1.00		1.00	1.00		1.00	1.00	1.00 1.00	
Final Vol.:		1054	208		1073	18	209	110	35	0 0	
Saturation F			'	'		'	'		'	1	
Sat/Lane:		1900	1900	1900	1900	1900	1900	1900	1900	1900 1900	1900
Adjustment:			0.95		0.95			0.95			
Lanes:			0.33		1.97			0.76			
Final Sat.:		3015	595		3550			1369		0 0	
										1	
Capacity Ana				'		1	'		'		'
Vol/Sat:	_	0.35		0 06	0.30	0.30	0.12	0.08	0.08	0.00 0.00	0.00
Crit Moves:		****	3.33	****	3.30	0.50	****	3.00	0.00	0.00 0.00	0.00
Green/Cycle:			0.37		0.55	0.55		0.27	0.27	0.00 0.00	0.00
Volume/Cap:			0.95		0.55			0.30	0.30	0.00 0.00	
Delay/Veh:			27.0	1.6	3.0	3.0		19.5	19.5	0.0 0.0	
User DelAdj:			1.00		1.00	1.00		1.00	1.00	1.00 1.00	
AdiDel/Veh:			27.0		3.0	3.0		19.5	19.5	0.0 0.0	
DesignOueue:			5		19	0		19.3	19.3	0.0 0.0	

2		Project C MM Peak Ho	onditions ur		
Level	. Of Ser	vice Comp	utation Re	 eport	

UC Berkeley LRDP EIR

2000 HCM Operations Method (Future Volume Alternative)												
Intersection	#45	Durant	Avenu	e / F	ulton	Street						
Cycle (sec): Loss Time (sec) Optimal Cycle ************************************	ec): e:	8 51	(Y+R	= 3	sec) A	Level 0	Delay f Serv	y (se vice:	c/veh):		9	.8 A
Approach: Movement:						ound - R					est B	
Movement:	L ·	- T	- R	L	- T	- R	L ·	- T	- R	L -		- R
Control: Rights: Min. Green:		Permit Inclu	ted de	:	Permit Inclu	ted ide]	Permi: Incl	tted	Ι	Permi Incl	tted
Lanes:						0 0						
Volume Modul Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduct Vol: Reduced Vol: Final Vol.:	0: >> 0 1.00 0 0 0 0 1.00 1.00 0 0 1.00 1.00	Count 0 1.00 0 0 0 1.00 1.00 1.00 0 1.00 1.0	Date: 0 1.00 0 0 0 0 1.00 1.00 1.00 1.00 0 0 0	14 No 459 1.00 459 0 30 489 1.00 1.00 489 1.00 1.00 489	0v 200 656 1.00 656 32 40 728 1.00 1.00 728 1.00 1.00 728	02 << 7 0 1.00 0 0 0 0 1.00 0 0 1.00 1.00 1.00	:00 AN 123 1.00 123 0 20 143 1.00 143 1.00 1.00 1.43 1.00 1.00 1.43 1.00 1.00 1.43	4 - 9 262 1.00 262 2 90 354 1.00 1.00 354 1.00 1.00 354	:00 AM 27 1.00 27 0 30 57 1.00 57 1.00 57 1.00 57 1.00 57 1.00 57	1.00 0 0 0 0 1.00 1.00 0 0 0 1.00	1.00 0 0 0 0 1.00 1.00 0 0 1.00 0	0 1.00 0 0 0 0 1.00 1.00 0 0 0 1.00
Sat/Lane: Adjustment: Lanes: Final Sat.:	1900 1.00 0.00 0	1900 1.00 0.00 0	1900 1.00 0.00	0.95 1.21 2176	0.95 1.79 3239	1.00 0.00 0	0.98 1.00 1860	0.93 1.72 3044	0.93 0.28 490	1.00 0.00 0	1.00 0.00 0	0.00
Capacity Ana												
Vol/Sat: Crit Moves:					***		0.08	0.12		0.00	0.00	0.00
Green/Cycle:	0.00	0.00	0.00	0.54	0.54	0.00	0.34	0.34	0.34	0.00	0.00	0.00
Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	0.0 1.00 0.0 0	0.0 1.00 0.0 0	0.0 1.00 0.0 0	6.7 1.00 6.7 9	6.7 1.00 6.7 13	0.0 1.00 0.0 0	16.2 1.00 16.2 3	16.9 1.00 16.9 9	16.9	0.0 1.00 0.0 0	0.0 1.00 0.0 0	1.00

CUMULATIVE + LAB AM

Thu Mar 18, 2004 11:38:09 ______ UC Berkeley LRDP EIR

2020 No Project Conditions

AM Peak Hour

Page 53-1

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report												
2000 HCM Operations Method (Future Volume Alternative)												
								****	*****	****	****	*****
Intersection								****	*****	****	****	*****
Cycle (sec):		6.	5		(Critica	al Vol	./Cap	. (X):		0.3	25
Loss Time (se	ec):					Average	Dela	y (se	c/veh):		11	. 4
	Optimal Cycle: 43 Level Of Service: B											

Approach:		rth Bo				ound		ast B			est B	
Movement:			- R			- R			- R	L	_	- R
Control:			 tted			 tted		 Permi			Permi	,
Rights:		Incl			Incl			Incl			Incl	
Min. Green:	0	18	18	0		uae O	17			0		uae 0
Lanes:	-	0 1				0 0	0 1		0 0	v	0 0	-
										-		
Volume Module										'		1
Base Vol:	0	362	86	0	0	0	73	387	0	0	0	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	362	86	0	0	0	73	387	0	0	0	0
Added Vol:	0	0	0	0	0	0	0	2	0	0	0	0
Future:	0	110	40	0	0	0	0	130	0	0	0	0
Initial Fut:	0	472	126	0	0	0	73	519	0	0	0	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	0	472	126	0	0	0	73	519	0	0	0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	472	126	0	0	0	73	519	0	0	-	0
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Final Vol.:	0	472	126	0	0	0	73	519	0	0	0	0
			'									
Saturation F.				1000	1000	1000	1000	1000	1000	1000	1000	1000
Sat/Lane: Adiustment:		1900			1900			1900			1900	1900 1.00
Adjustment: Lanes:		1.58			0.00	0.00		2.63			0.00	0.00
Final Sat.:		2758	736		0.00			4547		0.00		0.00
rinai sat.:										-		
Capacity Ana				1		'	1		1	1		ı
Vol/Sat:	-	0.17	0.17	0.00	0.00	0.00	0.11	0.11	0.00	0.00	0.00	0.00
Crit Moves:	3.00	****	0.1	0.00	3.00	0.00	V	****	0.00	3.30	0.00	0.00
Green/Cycle:	0.00	0.53	0.53	0.00	0.00	0.00	0.35	0.35	0.00	0.00	0.00	0.00
Volume/Cap:			0.33		0.00	0.00		0.33	0.00		0.00	0.00
			6.9	0.0	0.0	0.0		15.9	0.0	0.0		0.0
User DelAdj:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:			6.9	0.0	0.0	0.0	15.9	15.9	0.0	0.0	0.0	0.0

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) Intersection #47 Durant Avenue / College Avenue ******************** Cycle (sec): 65 Critical Vol./Cap. (X): 0.408 12.5 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 42 Level Of Service: В Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Permitted Permitted Permitted Include Include Include Include Rights: Min. Green: 0 18 18 0 0 0 16 16 16 0 0 0 Lanes: 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 -----| Volume Module: >> Count Date: 19 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 213 66 13 23 0 64 228 87 0 0 Initial Bse: 0 213 66 13 23 0 64 228 87 0 0 Added Vol: 0 0 27 0 1 0 0 5 0 0 0 0 0 10 90 0 20 0 20 90 40 0 0 Future. Ω Initial Fut: 0 223 183 13 44 0 84 323 127 0 0 0 0 Final Vol.: 0 223 183 13 44 0 84 323 127 0 0 0 -----| Saturation Flow Module: Adjustment: 1.00 0.94 0.94 0.92 0.92 1.00 0.96 0.91 0.91 1.00 1.00 1.00 Lanes: 0.00 0.55 0.45 0.23 0.77 0.00 1.00 1.44 0.56 0.00 0.00 0.00 Final Sat.: 0 980 804 398 1348 0 1820 2482 976 0 0 -----| Capacity Analysis Module: Vol/Sat: 0.00 0.23 0.23 0.03 0.03 0.00 0.05 0.13 0.13 0.00 0.00 0.00 Crit Moves: **** Green/Cycle: 0.00 0.56 0.56 0.56 0.00 0.32 0.32 0.32 0.00 0.00 0.00 Volume/Cap: 0.00 0.41 0.41 0.06 0.06 0.00 0.14 0.41 0.41 0.00 0.00 0.00 Delay/Veh: 0.0 6.7 6.7 6.7 6.7 0.0 15.9 17.9 17.9 0.0 0.0 0.0 AdjDel/Veh: 0.0 6.7 6.7 6.7 0.0 15.9 17.9 17.9 0.0 0.0

DesignQueue: 0 8 2 0 0 0 2 13 0 0 0

DesignQueue: 0 4 3 0 1 0 2 8 3 0 0 0

Page 54-1

CUMULATIVE + LAB AM

UC Berkeley LRDP EIR

2020 No Project Conditions

AM Peak Hour

Thu Mar 18, 2004 11:38:09 Page 55-1

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative)	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)
**************************************	**************************************
Cycle (sec): 100	**************************************
**************************************	Optimal Cycle: 46 Level Of Service: A
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Stop Sign Stop Sign Stop Sign Stop Sign Rights: Include Include Include Min. Green: 0	Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 16 16 16 16 16 16 16 22 22 22 22 22 22 Lanes: 1 0 1 1 0 1 0 1 0 1 0 0 0 1! 0 0 0 0 1! 0 0
Volume Module: >> Count Date: 20 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 489 0 0 345 0 158 0 86 0 0 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 14 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 42 1070 96 19 868 19 12 59 42 62 28 39
Initial Bse: 0 489 0 0 345 0 158 0 86 0 0 0 Added Vol: 0 27 0 0 44 0 32 0 0 0 0 0 Future: 0 50 0 0 40 0 30 0 60 0 0	Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Initial Fut: 0 566 0 0 429 0 220 0 146 0 0 0 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Future: 20 130 20 40 90 70 30 40 20 30 10 10 Initial Fut: 62 1220 160 59 965 89 42 99 62 95 38 52 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
PHF Volume: 0 566 0 0 429 0 220 0 146 0 0	PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PHF Volume: 62 1220 160 59 965 89 42 99 62 95 38 52 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 0 566 0 0 429 0 220 0 146 0 0 0 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 62 1220 160 59 965 89 42 99 62 95 38 52
MLF Adi: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Final Vol.: 0 566 0 0 429 0 220 0 146 0 0 0	MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Saturation Flow Module:	
Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Saturation Flow Module:
Lanes: 0.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00	Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Final Sat.: 0 631 0 0 603 0 471 0 557 0 0 0	Adjustment: 0.27 0.93 0.93 0.17 0.94 0.94 0.88 0.88 0.88 0.76 0.76 0.76
	Lanes: 1.00 1.77 0.23 1.00 1.83 0.17 0.21 0.49 0.30 0.51 0.21 0.28 Final Sat.: 513 3137 411 327 3262 301 345 812 509 741 296 405
Vol/Sat: xxxx 0.90 xxxx xxxx 0.71 xxxx 0.47 xxxx 0.26 xxxx xxxx xxxx	
Crit Moves: **** ****	Capacity Analysis Module:
Delay/Veh: 0.0 37.7 0.0 0.0 21.2 0.0 16.0 0.0 11.0 0.0 0.0 0.0	Vol/sat: 0.12 0.39 0.39 0.18 0.30 0.30 0.12 0.12 0.12 0.13 0.13 0.13
Delay Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Crit Moves: ****
AdjDel/Veh: 0.0 37.7 0.0 0.0 21.2 0.0 16.0 0.0 11.0 0.0 0.0 0.0 1.0S by Move: * F * C * C * B * * * *	Green/Cycle: 0.54 0.54 0.54 0.54 0.54 0.54 0.34 0.34 0.34 0.34 0.34 0.34
too by nove.	Volume/Cap: 0.22 0.72 0.72 0.34 0.55 0.55 0.36 0.36 0.36 0.38 0.38 0.38
ApproachDel: 37.7 21.2 14.0 xxxxxx	Delay/Veh: 3.6 4.9 4.9 7.0 3.3 3.3 18.0 18.0 18.0 18.5 18.5 18.5
Delay Adj: 1.00 1.00 1.00 xxxxx	User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
ApprAdjDel: 37.7 21.2 14.0 xxxxxx LOS by Appr: E C B *	AdjDel/Veh: 3.6 4.9 4.9 7.0 3.3 3.3 18.0 18.0 18.0 18.5 18.5 18.5 DesignOueue: 1 22 3 1 17 2 1 2 2 2 1 1
LOS by Appr: E C B *	DesignQueue: 1 22 3 1 17 2 1 2 2 2 1 1

CUMULATIVE + LAB AM

Thu Mar 18, 2004 11:38:09 Page 57-1 ______

UC Berkeley LRDP EIR

2020 No Project Conditions

AM Peak Hour

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative)	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)					
Intersection #50 Channing Way / Fulton Street	Intersection #51 Channing Way / Telegraph Avenue					
Cycle (sec): 100	<pre>Cycle (sec): 65</pre>					
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R					
Control: Stop Sign Stop Sign Stop Sign Stop Sign Rights: Include Include Include Include Min. Green: 0	Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Min. Green: 18 18 18 0 0 0 17 17 0 0 17 17					
Lanes: 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0	Lanes: 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0					
Volume Module: >> Count Date: 14 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 0 0 86 543 51 0 132 20 7 72 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 19 Nov 2002 << 7:00-9:00 AM (WB thru adjusted due Base Vol: 56 423 79 0 0 0 16 179 0 0 98 9 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					
Final Sat.: 0 0 0 196 975 88 0 579 44 73 509 0	Final Sat.: 312 2191 838 0 0 0 361 1349 0 0 1265 557					
Capacity Analysis Module: Vol/Sat: xxxx xxxx xxxx 0.60 0.59 0.58 xxxx 0.46 0.46 0.23 0.23 xxxx Crit Moves: **** **** ****	Capacity Analysis Module: Vol/Sat: 0.21 0.21 0.21 0.00 0.00 0.21 0.21 0.00 0.00					
Delay/Veh: 0.0 0.0 0.0 16.7 15.9 15.3 0.0 13.1 13.1 10.6 10.6 0.0 Delay Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Green/Cycle: 0.44 0.44 0.44 0.00 0.00 0.00 0.44 0.44 0.00 0.00 0.44 0.44 Volume/Cap: 0.48 0.48 0.48 0.00 0.00 0.00 0.48 0.48					
ApprAdjDel: xxxxxx 16.0 13.1 10.6 LOS by Appr: * C B B	***************************************					

Thu Mar 18, 2004 11:38:09 Page 58-1 CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 59-1

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

*************************	**
Cycle (sec): 65	
LOSS TIME (Sec). 0 (Trk = 4 Sec) Average Detay (Sec/Ven). 21.7	
Optimal Cycle: 43 Level Of Service: C	
***********************	**
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R - T - R	:
Control: Permitted Permitted Permitted Rights: Include Include Include Include	-1
Rights: Include Include Include Include	
Min. Green: 18 18 18 18 18 18 0 0 0 17 17 1	
Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0	
Volume Module: >> Count Date: 19 Nov 2002 << 7:00 AM - 9:00 AM (WB thru, NB rice	
Base Vol: 26 256 22 6 92 2 21 76 31 88 150 4	-
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	0
Initial Bse: 26 256 22 6 92 2 21 76 31 88 150 4	3
Added Vol: 25 27 0 0 1 0 0 9 2 0 77	-
Future: 20 50 20 0 60 10 10 40 30 70 40 3	
Initial Fut: 71 333 42 6 153 12 31 125 63 158 267 7	
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
PHF Volume: 71 333 42 6 153 12 31 125 63 158 267 7	
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0	
Reduced Vol: 71 333 42 6 153 12 31 125 63 158 267 7	
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	0
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	0
Final Vol.: 71 333 42 6 153 12 31 125 63 158 267 7	
	-
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	
Adjustment: 0.92 0.92 0.92 0.99 0.99 0.99 0.96 0.96 0.96 0.98 0.98 0.98	
Lanes: 0.16 0.75 0.09 0.04 0.89 0.07 0.14 0.57 0.29 0.32 0.53 0.1	
Final Sat.: 278 1302 164 66 1685 132 258 1042 525 591 998 27	-
	-
Capacity Analysis Module:	_
Vol/Sat: 0.26 0.26 0.26 0.09 0.09 0.09 0.12 0.12 0.12 0.27 0.27 0.2	. 7
Crit Moves: **** Green/Cycle: 0.58 0.58 0.58 0.58 0.58 0.58 0.30 0.30 0.30 0.30 0.30 0.30	. ()
Volume/Cap: 0.44 0.44 0.44 0.16 0.16 0.16 0.40 0.40 0.40 0.90 0.90 0.90	
Delay/Veh: 6.2 6.2 6.2 4.2 4.2 4.2 20.5 20.5 20.5 42.2 42.2 42.2	
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	0
AdjDel/Veh: 6.2 6.2 6.2 4.2 4.2 4.2 20.5 20.5 20.5 42.2 42.2 42.2	2
DesignQueue: 1 5 1 0 2 0 1 3 2 4 7	2

UC Berkeley LRDP EIR
2020 No Project Conditions
AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)

******	****	****	****	****	****	*****	****	****	*****	*****	****	*****
Intersection ******								****	*****	****	***	*****
Cycle (sec): Loss Time (sec) Optimal Cycle ************************************		65	5		(Critica	l Vol	./Cap.	(X):		0.6	47
Loss Time (s	ec):	8	(Y+R	= 6	sec) A	Average	Dela	y (sed	c/veh):		42	. 8
Optimal Cycl	e:	47	7		I	Level 0	f Ser	vice:				D
*********** Approach:	****	*****	*****	****	*****	*****	****	*****	*****	*****	****	*****
Movement:												
Control:		Permit	ted		Permit	ted		Permit	ted	· F	ermit	tted
Rights: Min. Green:		Inclu	ıde		Inclu	ıde		Incl	ıde		Incl	ıde
Min. Green:	21	21	0	0	21	21	0	0	0	18	18	18
Lanes:												
Volume Modul	 	Count	 Date:			 2 << 7	.00 M	vr – 9	 M4 00			
Base Vol:	66	1117	0	. 11 10	903	46	0	0	.00 1111	185	276	75
Growth Adj:	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
Initial Bse:	66	1117	0	0	903	46	0	0	0	185	276	75
Initial Bse: Added Vol: Future:	0	64	0	0	8	2	0	0	0	4	- 8	0
Future:	10	130	0	0	110	20	0	0	0	30	110	20
Initial Fut:	76	1311	0	0	1021	68	0	0	0	219	394	95
User Adj:							1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	76	1311	0	0	1021	68	0	0	0	219	394	95
Reduct Vol:												
Reduced Vol:												
PCE Adj:												
MLF Adj:												
Final Vol.:	. 76	1311	0	. 0	1021	68	. 0	0	0	219	394	95
Saturation F												
Sat/Lane:				1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:												
Lanes:												
Final Sat.:												465
Capacity Ana												
Vol/Sat:				0 00	0 30	0 30	0 00	0 00	0 00	0.20	0 20	0.20
Crit Moves:			0.00	0.00	0.30	0.30	0.00	0.00	0.00	0.20	****	
Green/Cycle:			0.00	0.00	0.33	0.33	0.00	0.00	0.00	0.55	0.55	0.55
Volume/Cap:						0.93	0.00	0.00	0.00	0.37	0.37	0.37
Delay/Veh:							0.0	0.0	0.0	8.9	8.9	8.9
User DelAdj:									1.00			
AdjDel/Veh:												
${\tt DesignQueue:}$	2	35	0	0	27		0					
*****	****	*****	*****	****	****	*****	****	****	*****	*****	****	* * * * * * *

CUMULATIVE + LAB AM

Thu Mar 18, 2004 11:38:09 ______

UC Berkeley LRDP EIR

2020 No Project Conditions

AM Peak Hour

Page 61-1

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

		I	Level 0	f Serv	vice (Computa	tion I	Report	t			
									ternati			
*****	****	*****	*****	****	****	*****	****	****	*****	****	****	*****
Intersection ********							****	****	****	****	****	*****
Cycle (sec):		80)		(Critica	l Vol	./Cap	. (X):		0.3	78
Loss Time (se	ec):	8	3 (Y+R	= 4 s	sec) i	Average	Delay	y (sed	c/veh):		15	.2
Optimal Cycle		53				Level 0						В
*****	****	*****	*****	****	****	*****	****	****	*****	****	****	*****
Approach:	Noi	rth Bo	ound			ound	Εa	ast Bo	ound	W	est B	ound
Movement:		- T				- R		- T				- R
Control:	I		ted			tted		Permit			Permi	
Rights:	^	Inclu			Incl			Incl		0.0	Incl	
Min. Green:	0	0	0	0		25	0	-	0	20		0
Lanes:		0 0		0 (0 0	0 :		0 0
Volume Module												
Base Vol:	0	0	. Date.	14 14	433	145	.00 A	-1 - 3	.00 AM	23	380	0
Growth Adj:	-	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Initial Bse:	0	0	0	0	433	145	0	0	0	23	380	0
Added Vol:	0	0	0	0	0	0	0	0	0	0	11	0
Future:	0	0	0	0	50	20	0	0	0	0	140	0
Initial Fut:	0	0	0	0	483	165	0	0	0	23	531	0
User Adj:	1.00		1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Volume:	0	0	0	0	483	165	0	0	0	23	531	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	0	0	0	483	165	0	0	0	23	531	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	0	0	0	0	483	165	0	0	0	23	531	0
Saturation F	low Mo	odule:										
Sat/Lane:		1900	1900		1900	1900		1900	1900		1900	1900
Adjustment:		1.00	1.00		0.91	0.91		1.00	1.00		0.95	1.00
Lanes:	0.00		0.00		1.49			0.00	0.00		1.92	0.00
Final Sat.:	-	0	0		2589	884	0	0	0		3460	0
Capacity Ana												
Vol/Sat:	0.00	0.00	0.00	0.00	0.19	0.19	0.00	0.00	0.00	0.15	0.15	0.00
Crit Moves:	0 00	0 00	0 00	0 00	****	0 40	0 00	0 00	0 00	0 41	****	0 00
Green/Cycle:			0.00		0.49	0.49		0.00	0.00		0.41	0.00
Volume/Cap:		0.00	0.00		0.38	0.38		0.00	0.00		0.38	0.00
Delay/Veh:	0.0	0.0	0.0		13.2	13.2	0.0	0.0	0.0		17.4	0.0
User DelAdj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
AdjDel/Veh:	0.0	0.0	0.0	0.0	13.2	13.2	0.0	0.0	0.0	17.4	17.4	0.0

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) Intersection #55 Haste Street / Telegraph Avenue ************************* Cycle (sec): 65 Critical Vol./Cap. (X): 0.437 16.5 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 40 Level Of Service: В Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Permitted Permitted Permitted Include Include Include Include Rights: Min. Green: 16 16 0 0 0 0 0 0 0 16 16 Lanes: 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 -----| Volume Module: >> Count Date: 19 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 216 520 0 0 0 0 0 0 0 334 34 Initial Bse: 216 520 0 0 0 0 0 0 0 334 34 Added Vol: 0 68 0 0 0 0 0 0 0 0 11 0 0 90 30 Future. 20 50 0 0 0 0 0 0 Initial Fut: 236 638 0 0 0 0 0 0 0 0 435 64 PHF Volume: 236 638 0 0 0 0 0 0 0 435 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 236 638 0 0 0 0 435 0 0 0 0 Final Vol.: 236 638 0 0 0 0 0 0 0 435 64 -----| Saturation Flow Module: Adjustment: 0.95 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.93 Lanes: 0.54 1.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.74 0.26 Final Sat.: 975 2635 0 0 0 0 0 0 0 3087 454 -----| Capacity Analysis Module: Crit Moves: Delay/Veh: 21.0 21.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.6 8.6 AdjDel/Veh: 21.0 21.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.6 8.6

DesignQueue: 0 0 0 0 11 4 0 0 0 1 15 0

DesignQueue: 6 16 0 0 0 0 0 0 0 0 8 1

UC Berkeley LRDP EIR

2020 No Project Conditions

AM Peak Hour

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 63-1

______ UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report	Level Of Service Computation Report						
2000 HCM Operations Method (Future Volume Alternative)	2000 HCM Operations Method (Future Volume Alternative)						
********************	***************************************						
Intersection #56 Haste Street / College Avenue	Intersection #57 Dwight Way / Martin Luther King Way						
Cycle (sec): 65	Cycle (sec): 70						
Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 11.1	Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 20.6						
Optimal Cycle: 40 Level Of Service: B	Optimal Cycle: 76 Level Of Service: C						
*******************	*******************						
Approach: North Bound South Bound East Bound West Bound	Approach: North Bound South Bound East Bound West Bound						
Movement: L - T - R L - T - R L - T - R	Movement: L - T - R L - T - R L - T - R L - T - R						
Control: Permitted Permitted Permitted Permitted	Control: Permitted Permitted Permitted Permitted						
Rights: Include Include Include Include	Rights: Include Include Include Include						
Min. Green: 16 16 0 0 16 16 0 0 0 16 16 16	Min. Green: 18 18 18 18 18 18 21 21 21 0 0 0						
Lanes: 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0	Lanes: 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0						
Volume Module: >> Count Date: 19 Nov 2002 << 7:00 AM - 9:00 AM	Volume Module: >> Count Date: 5 Dec 2002 << 7:00-9:00 AM						
Base Vol: 167 267 0 0 115 69 0 0 0 48 223 21	Base Vol: 62 690 66 88 868 163 68 419 83 0 0 0						
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						
Initial Bse: 167 267 0 0 115 69 0 0 0 48 223 21 Added Vol: 19 53 0 0 3 0 0 0 0 12 0	Initial Bse: 62 690 66 88 868 163 68 419 83 0 0 0 Added Vol: 0 1 0 0 1 6 0 78 0 0 0						
Future: 30 40 0 0 90 60 0 0 30 30 40 Initial Fut: 216 360 0 0 208 129 0 0 0 78 265 61	Future: 20 30 10 10 200 50 10 50 10 0 0 0 Initial Fut: 82 721 76 98 1069 219 78 547 93 0 0						
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						
PHF Volume: 216 360 0 0 208 129 0 0 0 78 265 61	PHF Volume: 82 721 76 98 1069 219 78 547 93 0 0 0						
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0	Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0						
Reduced Vol: 216 360 0 0 208 129 0 0 0 78 265 61	Reduced Vol: 82 721 76 98 1069 219 78 547 93 0 0 0						
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						
MLF Adi: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						
Final Vol.: 216 360 0 0 208 129 0 0 0 78 265 61	Final Vol.: 82 721 76 98 1069 219 78 547 93 0 0 0						
Saturation Flow Module:	Saturation Flow Module:						
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190						
Adjustment: 0.74 0.74 1.00 1.00 0.95 0.95 1.00 1.00 1.00 0.91 0.91 0.91	Adjustment: 0.61 0.61 0.61 0.74 0.74 0.74 0.91 0.91 0.91 1.00 1.00 1.00						
Lanes: 0.37 0.63 0.00 0.00 0.62 0.38 0.00 0.00 0.00 0.39 1.31 0.30	Lanes: 0.19 1.64 0.17 0.14 1.54 0.32 0.22 1.52 0.26 0.00 0.00 0.00						
Final Sat.: 529 881 0 0 1112 689 0 0 0 665 2260 520	Final Sat.: 218 1914 202 198 2163 443 377 2647 450 0 0 0						
Capacity Analysis Module:	Capacity Analysis Module:						
Vol/Sat: 0.41 0.41 0.00 0.00 0.19 0.19 0.00 0.00 0.00 0.12 0.12 0.12	Vol/Sat: 0.38 0.38 0.38 0.49 0.49 0.49 0.21 0.21 0.21 0.00 0.00 0.00						
Crit Moves: ****	Crit Moves: **** ****						
Green/Cycle: 0.63 0.63 0.00 0.00 0.63 0.63 0.00 0.00	Green/Cycle: 0.53 0.53 0.53 0.53 0.53 0.53 0.30 0.30						
Volume/Cap: 0.65 0.65 0.00 0.00 0.30 0.30 0.00 0.00 0.00 0.48 0.48 0.48	Volume/Cap: 0.71 0.71 0.71 0.93 0.93 0.93 0.69 0.69 0.00 0.00 0.00						
Delay/Veh: 7.3 7.3 0.0 0.0 3.4 3.4 0.0 0.0 0.0 22.8 22.8 22.8	Delay/Veh: 12.5 12.5 12.5 23.4 23.4 23.4 25.3 25.3 25.3 0.0 0.0 0.0						
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						
AdjDel/Veh: 7.3 7.3 0.0 0.0 3.4 3.4 0.0 0.0 0.0 22.8 22.8 22.8	AdjDel/Veh: 12.5 12.5 12.5 23.4 23.4 23.4 25.3 25.3 25.3 0.0 0.0 0.0						
DesignQueue: 3 5 0 0 3 2 0 0 0 2 7 2	DesignQueue: 2 14 1 2 22 4 2 16 3 0 0 0						
********************	************************************						

CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 ______

UC Berkelev LRDP EIR

Page 65-1

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

				Al	M Peak	Hour						
			1 0	£ 0								
,	2000		evel 0							\		
*******	2000 . *****	нсм ор	eratio	ns Me	tnoa (.ruture	* * * * * *	me Alt	ernat1	ve)	****	****
Intersection												
*********							****	*****	*****	*****	***	****
Cycle (sec):		65			C	ritica	al Vol	./Cap.	(X):		0.85	2
Loss Time (se	ec):	12	(Y+R	= 5	sec) A	verage	e Dela	y (sec	:/veh):		13.	7
Optimal Cycle		7.5	i		I	evel (of Ser	vice:				В
*******											***	****
Approach:									und		t Bo	
Movement:									- R			- R
				Pr						Pe		
Rights:		Inclu		0		ıde		Inclu			nclu	
Min. Green:			0			0		0		0 0		0
Lanes:			1 0						1 0			
Volume Module												
Base Vol:		1094	113	95		0		420	151	0	0	0
Growth Adj:			1.00		1.00	1.00		1.00	1.00	1.00 1		1.00
Initial Bse:		1094	113		989	0	66		151	0	0	0
Added Vol:		62	0	1		0	2	76	0	0	0	0
Future:		130	30	10		0	20	50	10	0	0	Ö
Initial Fut:	0	1286	143	106	1109	0	88	546	161	0	0	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	.00	1.00
PHF Volume:	0	1286	143	106	1109	0	88	546	161	0	0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	1286	143	106	1109	0	88	546	161	0	0	0
PCE Adj:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	.00	1.00
MLF Adj:	1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00 1	.00	1.00
Final Vol.:			143		1109	0		546	161		0	0
Saturation Fl												
Sat/Lane:			1900		1900			1900		1900 1		1900
Adjustment:						0.95		0.89		1.00 1		1.00
Lanes:					2.00			1.37				0.00
Final Sat.:										0		0
Capacity Anal												
Vol/Sat:			0.40	0.24	0.31	0.00	0 23	0.23	0.23	0.00 0	00	0.00
Crit Moves:		****	0.40	****		0.00	0.23	****	0.23	0.00 0	.00	0.00
Green/Cycle:			0.47		0.54	0.00	0.27	0.27	0.27	0.00 0	0.0	0.00
Volume/Cap:			0.85		0.57	0.00		0.85	0.85	0.00 0		0.00
Delay/Veh:			11.8	10.0		0.0		32.0	32.0		0.0	0.0
User DelAdj:			1.00		1.00			1.00	1.00	1.00 1		1.00
AdjDel/Veh:			11.8		3.3	0.0		32.0	32.0		0.0	0.0
					0.0	0.0	02.0	22.0	22.0	٠.٠	- • •	0.0

2020	No	Pr	oject	Conditions	
	I	MA	Peak	Hour	

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) Intersection #59 Dwight Way / Fulton Street ******************** 13.6 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 45 Level Of Service: В Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Permitted Permitted Permitted Include Include Include Include Rights: Min. Green: $0 \quad 0 \quad 21 \quad 21 \quad 0 \quad 0 \quad 16 \quad 16 \quad 0 \quad 0 \quad 0$ Lanes: 0 0 0 0 1 2 0 0 0 0 0 1 1 0 0 0 0 0 -----| Volume Module: >> Count Date: 14 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 0 12 449 0 0 0 620 6 0 0 Initial Bse: 0 0 12 449 0 0 0 620 6 0 0 Added Vol: 0 0 0 0 0 0 78 0 0 0 0 Future: 0 0 10 30 0 0 70 30 0 0 Ω Initial Fut: 0 0 22 479 0 0 0 768 36 0 0 0 PHF Volume: 0 0 22 479 0 0 0 768 36 0 0 0 0 0 0 Reduct Vol: 0 0 0 0 0 0 Ω Reduced Vol: 0 0 22 479 0 0 0 768 36 0 0 0 Final Vol.: 0 0 22 479 0 0 0 768 36 0 0 -----| Saturation Flow Module: Adjustment: 1.00 1.00 0.87 0.59 1.00 1.00 1.00 0.94 0.94 1.00 1.00 1.00 Final Sat.: 0 0 1644 2260 0 0 0 3424 161 0 0 -----| Capacity Analysis Module: Crit Moves: *** Delay/Veh: 0.0 0.0 11.6 16.2 0.0 0.0 12.2 12.2 0.0 0.0 0.0 AdjDel/Veh: 0.0 0.0 11.6 16.2 0.0 0.0 0.0 12.2 12.2 0.0 0.0 0.0 DesignQueue: 0 0 0 11 0 0 0 17 1 0 0 0

DesignQueue: 0 27 3 4 20 0 2 15 4 0 0 0

CUMULATIVE + LAB AM

Thu Mar 18, 2004 11:38:09 ______ UC Berkeley LRDP EIR

2020 No Project Conditions

AM Peak Hour

Page 67-1

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

	Level Of Service Computation Report											
									ternati			
*******	*****	*****	*****	****	****	*****	****	****	*****	****	****	*****
Intersection	****	*****	*****	****	****	****	****					
Cycle (sec): Loss Time (sec) Optimal Cycle		65			С	ritica	l Vol	./Cap	. (X):		0.74	15
Loss Time (se	ec):	8	(Y+R	= 4 5	sec) A	verage	Delay	y (sed	c/veh):		17.	. 7
Optimal Cycle	e:	50			I	evel 0	f Serv	vice:				В
******	*****	*****	*****	****	****	*****	****	****	*****	****	****	*****
Approach:	Nort	th Bot	ınd	Sot	ıth Bo	und	Εā	ast Bo	ound	We	est Bo	ound
Movement:												
Control:												
Rights:	I	Includ	de		Inclu	.de		Incl	ıde		Incl	ıde
Min. Green:	0	15	15	0	0	0	17	17	17	0	0	0
Lanes:									1 0			
Volume Module												
Base Vol:		697	78		0					0	0	0
Growth Adj:							1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:								479		0	0	0
Added Vol:			0				68			0	0	0
Future:	0	60	10	0	0	0	10	60	40	0	0	0
Initial Fut:	Ü	151	88	0	U	-	144			0	0	0
User Adj:			1.00		1.00			1.00	1.00		1.00	
PHF Adj:			1.00		1.00	1.00	1.00		1.00		1.00	
PHF Volume:			88	-	0	0	144		605	0	0	0
Reduct Vol:			0	0	0	0	0			0	0	0
Reduced Vol:				0	-	-	144		605	0	-	-
PCE Adj:					1.00		1.00				1.00	
MLF Adj:					1.00		1.00				1.00	
Final Vol.:				0			144					0
Saturation Fl												
Sat/Lane:											1900	
Adjustment:												1.00
Lanes:									0.93			0.00
Final Sat.:										0		0
Capacity Anal				0 00	0 00	0 00	0 40	0 40	0 40	0 00	0 00	0.00
Vol/Sat: Crit Moves:			∪.∠4	0.00	0.00	0.00	0.42	****	0.42	0.00	0.00	0.00
			0 22	0 00	0.00	0 00	0.56		0.56	0 00	0.00	0.00
Green/Cycle: Volume/Cap:					0.00	0.00		0.36	0.36		0.00	0.00
vorume/cap:	0.00 0		0.75	0.00	0.00	0.00	0.75	0.75	0.75	0.00	0.00	0.00

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) Intersection #61 Dwight Way / College Avenue ******************* Cycle (sec): 65 Critical Vol./Cap. (X): 0.538 12.3 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 39 Level Of Service: В Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Permitted Permitted Permitted Include Include Include Include Rights: Min. Green: 0 16 16 16 16 0 15 15 15 0 0 0 Lanes: 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 -----| Base Vol: 0 365 51 10 150 0 68 352 85 0 0 Initial Bse: 0 365 51 10 150 0 68 352 85 0 0 Added Vol: 0 64 0 0 3 0 7 2 0 0 0 Future: 0 50 10 20 90 0 20 20 10 0 0 Ω Ω Initial Fut: 0 479 61 30 243 0 95 374 95 0 0 Ω Final Vol.: 0 499 64 31 253 0 99 390 99 0 0 -----| Saturation Flow Module: Adjustment: 1.00 0.99 0.99 0.92 0.92 1.00 0.90 0.90 0.90 1.00 1.00 1.00 Lanes: 0.00 0.89 0.11 0.11 0.89 0.00 0.34 1.32 0.34 0.00 0.00 0.00 Final Sat.: 0 1660 211 193 1563 0 578 2276 578 0 0 -----| Capacity Analysis Module: Vol/Sat: 0.00 0.30 0.30 0.16 0.16 0.00 0.17 0.17 0.17 0.00 0.00 0.00 Crit Moves: **** Green/Cycle: 0.00 0.56 0.56 0.56 0.00 0.32 0.32 0.32 0.00 0.00 0.00 Volume/Cap: 0.00 0.54 0.54 0.29 0.29 0.00 0.54 0.54 0.54 0.00 0.00 0.00 Delay/Veh: 0.0 8.0 8.0 5.8 5.8 0.0 19.6 19.6 19.6 0.0 0.0 0.0 AdjDel/Veh: 0.0 8.0 8.0 5.8 5.8 0.0 19.6 19.6 19.6 0.0 0.0 0.0

Delay/Veh: 0.0 23.7 23.7 0.0 0.0 13.8 13.8 13.8 0.0 0.0 0.0

AdjDel/Veh: 0.0 23.7 23.7 0.0 0.0 13.8 13.8 13.8 0.0 0.0 0.0

DesignQueue: 0 20 2 0 0 0 3 10 11 0 0

DesignQueue: 0 9 1 1 4 0 3 10 3 0 0

______ UC Berkeley LRDP EIR

2020 No Project Conditions

AM Peak Hour

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report	Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)	2000 HCM Unsignalized Method (Future Volume Al

Intersection #62 Dwight Way / Piedmont Avenue / Warring Street ******************** Cycle (sec): 65 Critical Vol./Cap. (X): 0.422 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 11.1
Optimal Cycle: 61 Level Of Service: B ******************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 22 0 29 29 0 24 24 24 24 0 24 Lanes: 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1! 0 0 -----| Volume Module: 7:00 AM - 9:00 AM Base Vol: 0 583 0 8 324 0 91 143 238 42 0 48 Initial Bse: 0 583 0 8 324 0 91 143 238 42 0 48 Added Vol: 0 69 0 0 7 0 1 0 1 0 0 0 Future: 0 70 10 10 40 0 10 30 10 0 10 Initial Fut: 0 722 10 18 371 0 102 153 269 52 0 58 Final Vol.: 0 722 10 18 371 0 102 153 269 52 0 58 -----| Saturation Flow Module: Adjustment: 1.00 0.95 0.95 0.87 0.87 1.00 0.71 1.00 0.85 0.78 1.00 0.78 Lanes: 0.00 1.97 0.03 0.09 1.91 0.00 1.00 1.00 0.47 0.00 0.53 Final Sat.: 0 3554 49 153 3157 0 1357 1900 1615 698 0 778 -----|----|-----| Capacity Analysis Module: Vol/Sat: 0.00 0.20 0.20 0.12 0.12 0.00 0.08 0.08 0.17 0.07 0.00 0.07 Crit Moves: **** Volume/Cap: 0.00 0.42 0.42 0.24 0.24 0.00 0.19 0.20 0.42 0.19 0.00 0.19 Delay/Veh: 0.0 9.4 9.4 8.2 8.2 0.0 13.6 13.5 16.3 13.6 0.0 13.6 AdjDel/Veh: 0.0 9.4 9.4 8.2 8.2 0.0 13.6 13.5 16.3 13.6 0.0 13.6

Intersection #63 Dwight Avenue / Prospect Street ***************** Average Delay (sec/veh): 5.8 Worst Case Level Of Service: B Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R T - M T - ************************ L-T-R L-T-R L-T-R -----|
 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Rights:
 Include
 Include
 Include
 Include

 Lanes:
 0 0 0 0 0 0 0 0 1! 0 0 0 1 0 0 0 0 0 1 0
 0 0 0 0 1 0
 0 0 0 0 0 0 0
 -----|----|-----| Volume Module: >> Count Date: 20 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 0 0 14 0 109 246 72 0 0 53 15 Initial Bse: 0 0 0 14 0 109 246 72 0 0 53 15 Added Vol: 0 0 0 0 0 0 0 0 0 0 0 Future: 0 0 0 0 20 30 0 0 20 0 Initial Fut: 0 0 0 14 0 129 276 72 0 0 73 15 Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.4 xxxx 6.2 4.1 xxxx xxxxx xxxx xxxx xxxxx FollowUpTim:xxxxx xxxx xxxx 3.5 xxxx 3.3 2.2 xxxx xxxxx xxxx xxxx xxxx -----| Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 705 xxxx 81 88 xxxx xxxxx xxxx xxxx xxxx Potent Cap.: xxxx xxxx xxxxx 406 xxxx 985 1520 xxxx xxxxx xxxx xxxx xxxxx Move Cap.: xxxx xxxx xxxxx 339 xxxx 985 1520 xxxx xxxxx xxxx xxxx xxxxx -----| Level Of Service Module: LOS by Move: * * * * * A * * * * * Movement: LT - LTR - RT Shrd StpDel:xxxxx xxxx xxxxx xxxxx 10.2 xxxxx 7.9 xxxx xxxxx xxxxx xxxxx xxxxx Shared LOS: * * * * B * A * * * * * ApproachDel: xxxxx 10.2 xxxxx xxx ApproachLOS: * B * *

DesignQueue: 0 14 0 0 7 0 2 3 6 1 0 1

Thu Mar 18, 2004 11:38:09 Page 70-1 CUMULATIVE + LAB AM Thu Mar 18, 2004 11:38:09 Page 71-1 _____ UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

			evel 0								
	2000 1	нсм ор	eratio	ns Me	thod	(Future	volui	me Al	ternati	ve)	
******											*****
Intersection ******											*****
Cycle (sec):		65			(Critica	al Vol	./Cap	. (X):	0.	798
Loss Time (s	ec):	8	(Y+R	= 6	sec) 1	Average	Dela	y (se	c/veh):	1	.6.9
Optimal Cycl						Level (В

Approach:		rth Bo - T	und			ound - R	E		ound - R		Bound ' - R
Movement:											
Control:		Permit				ted	P:				nitted
Rights:		Inclu			Incl			Incl			:lude
Min. Green:	0	25	25		25	25	19	0	19		0 0
Lanes:	0			0		0 1			0 1		0 0
Volume Modul											
Base Vol:	0	784	3	0	736	546	723	0	4	0	0 0
Growth Adj:		1.00	1.00	1.00	1.00 736	1.00 546	723	1.00	1.00	1.00 1.0	0 1.00
Initial Bse: Added Vol:	0	784 28	0	0	736	546	34	0	0	0	0 0
Future:	0	50	0	0	40	70	100	0	0	0	0 0
Initial Fut:	0	862	3	0	781	621	857	0	4	0	0 0
User Adj:	-		1.00	-	1.00	1.00		1.00	1.00	1.00 1.0	
PHF Adj:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.0	0 1.00
PHF Volume:	0	862	3	0	781	621	857	0	4	0	0 0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0 0
Reduced Vol:		862	3	0	781	621	857	0	4	0	0 0
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00 1.0	
MLF Adj:		1.00	1.00	1.00	1.00 781	1.00	1.00	1.00	1.00	1.00 1.0	
Final Vol.:	-	862	-	-				-	4 l	-	0 0
Saturation F							1				
Sat/Lane:		1900	1900	1900	1900	1900	1900	1900	1900	1900 190	0 1900
Adjustment:	1.00	1.00	1.00	1.00	0.95	0.85	0.92	1.00	0.85	1.00 1.0	0 1.00
Lanes:	0.00	0.99	0.01		2.00	1.00	2.00	0.00	1.00	0.00 0.0	0.00
Final Sat.:		1893	7		3610	1615	3502	0	1615	0	0 0
Capacity Ana				0 00	0 00	0 20	0 0 4	0 00	0 00	0 00 0 0	0 00
Vol/Sat: Crit Moves:	0.00	0.46	0.46	0.00	0.22	0.38	0.24 ****	0.00	0.00	0.00 0.0	0.00
Green/Cycle:	0 00		0.57	0 00	0.57	0.57		0.00	0.31	0.00 0.0	0.00
Volume/Cap:		0.80	0.80		0.37	0.67		0.00	0.01	0.00 0.0	
Delay/Veh:			17.2	0.0	8.2	13.7	26.9	0.0	15.7	0.00 0.0	
User DelAdj:			1.00		1.00	1.00		1.00	1.00	1.00 1.0	
AdjDel/Veh:	0.0	17.2	17.2	0.0	8.2	13.7	26.9	0.0	15.7	0.0 0.	0.0
DesignQueue:			0	0	13	11	23	0	0	0	0 0

	2	_	ect Conditions ak Hour	
200			Computation Repo	

2000 HCM 4-Way Stop Method (Future Volume Alternative)											
Intersection	#65 Der	by Street	t / Wai	rring	Street						
Cycle (sec):		100			Critica					1.42	
Loss Time (s Optimal Cycl	e:	0			Level O	f Serv	ice:			189	F
Approach: Movement:	L -	T - R	L -	- T	- R	L -	- T	- R	L -	T	- R
Control: Rights: Min. Green: Lanes:	Stop In 0	Sign nclude 0 0	S1 0	top Si Inclu 0		S1	op Si Inclu	ign ide 0	st 0	op S: Incli 0	ign ude 0
Valuma Madul											
Volume Modul Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	0 1.00 1. 0 0 0 1.00 1. 1.00 1. 0 0 1.00 1. 1.00 1. 0 0 1.00 1. 1.00 1. 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	650 1.00 650 8 90 748 1.00 1.00 748 1.00 1.00 748 1.00 1.00 0.95	1.00 0 0 0 0 1.00 1.00 0 0 1.00 1.00 0 1.00 0	31 1.00 31 0 0 41 1.00 41 1.00 41 1.00 41 1.00 1.00	14 1.00 14 0 0 14 1.00 1.4 0 1.4 1.00 1.4 1.00 1.00	20 1.00 20 0 10 30 1.00 30 0 30 1.00 1.00 30 1.00 1.0	1.00 0 0 0 0 1.00 1.00 0 0 1.00 1.00 0 1.00 0	1.00	34 0 0 34 1.00 1.00 34 1.00 1.00 34 	1.00
Final Sat.:			574			166		0	0		660
Capacity Ana	lysis Mc	dule:									
Vol/Sat: Crit Moves:	XXXX XX	XXX XXXX	1.30	XXXX	1.30	0.08	0.08	XXXX	XXXX	1.42	1.42
Delay/Veh: Delay Adj: AdjDel/Veh: LOS by Move: ApproachDel: Delay Adj: ApprAdjDel:	1.00 1. 0.0 0 * * ****************************	0.0 0.0 * * xxx xxx	1.00 167.7 F	1.00 0.0 * 167.7 1.00 167.7	1.00 167.7 F		1.00 10.5 B 10.5 1.00 10.5		* 2	1.00 214 F 214.3 1.00 214.3	214.3 1.00 214.3 F
LOS by Appr:			*****	F ****	****	****	B ****	*****	*****	F ****	*****

CUMULATIVE + LAB AM

Thu Mar 18, 2004 11:38:09 Page 73-1 UC Berkeley LRDP EIR

2020 No Project Conditions AM Peak Hour

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)
Intersection #66 Derby Street / Claremont Blvd.	Intersection #67 Ashby Avenue / Seventh Street
Cycle (sec): 65	Cycle (sec): 100
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Split Phase Split Phase Permitted Rights: Include Include Include Min. Green: 18 0 18 0 0 0 0 35 35 35 35 0 Lanes: 0 0 1! 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0	Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Min. Green: 4 19 19 4 19 19 4 22 22 4 20 20 Lanes: 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Volume Module: >> Count Date: 20 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 5 0 64 0 0 0 0 065 12 52 813 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 5 Dec 2002 << 7:00-9:00 AM Base Vol: 62 162 54 54 193 224 433 915 306 111 663 25 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Capacity Analysis Module: Vol/Sat: 0.04 0.00 0.04 0.00 0.00 0.00 0.41 0.41	Capacity Analysis Module: Vol/Sat: 0.24 0.24 0.24 0.26 0.26 0.26 0.27 0.39 0.39 0.09 0.22 0.22 Crit Moves: **** ****
Green/Cycle: 0.28 0.00 0.28 0.00 0.00 0.00 0.00 0.60 0.60 0.60 0.6	Green/Cycle: 0.27 0.27 0.27 0.27 0.27 0.27 0.39 0.39 0.39 0.22 0.22 0.22 Volume/Cap: 0.90 0.90 0.90 0.99 0.99 0.99 0.68 0.99 0.99 0.40 0.99 0.99 Delay/Veh: 54.1 54.1 54.1 72.0 72.0 72.0 25.2 49.8 49.8 35.4 70.7 70.7 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
AdjDel/Veh: 18.3 0.0 18.3 0.0 0.0 0.0 0.0 12.5 12.5 23.1 23.1 0.0 DesignQueue: 0 0 2 0 0 0 0 13 0 1 16 0	AdjDel/Veh: 54.1 54.1 54.1 72.0 72.0 72.0 25.2 49.8 49.8 35.4 70.7 70.7 DesignQueue: 7 10 3 5 9 11 17 38 13 7 33 3

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report												
			eratio									
*******								*****	*****	****	*****	****
Intersection								*****	****	****	****	*****
Cycle (sec):		100)		C	ritica	l Vol	./Cap.	(X):		0.90	5
Loss Time (s	ec):	8	(Y+R	= 4	sec) A	verage	Dela	y (sec	:/veh):		35.	
Optimal Cycl	e:	103	3		I	evel 0	f Ser	vice:				
*****	****	*****										
Approach:	No	rth Bo	und	So	uth Bo	und	E	ast Bo	und	We	est Bo	und
Movement:	L .	- T	- R	. L .	- T	- R	. L .	- T	- R	L -	- T	- R
Control: Rights:	P	Theli	.ea	P.	Theli	.ea		Tral	.cea	1	Trali	do
Min Green:	4	17	17	4	19	19	1.8	18	18	1.8	18	18
Min. Green: Lanes:	1	0 1	1 0	1	0 1	1 0	1	0 1	1 0	0 -	1 0	1 0
Volume Modul												'
	173		53		741	128	84		134	51	613	135
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	173	521	53	137	741	128	84	584	134	51	613	135
Added Vol:	0				0	2			0	2	3	0
Future:	20	220	20	20	320	30	20	120	10	20	80	50
Initial Fut:	193		82	157	1061	160	104	742	144	73	696	185
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	193	750	82	157	1061	160	104	742	144	73	696	185
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:			82	157	1061	160	104	742	144	73	696	185
PCE Adj:	1.00	1.00			1.00	1.00		1.00			1.00	1.00
MLF Adj:			1.00						1.00		1.00	1.00
Final Vol.:					1061				144	73		185
Saturation F												
Sat/Lane:						1900		1900			1900	
Adjustment:						0.93		0.93			0.66	0.66
Lanes:						0.26			0.33		1.46	0.39
Final Sat.:			350			464			573	192		486
Capacity Ana				0 00	0 25	0 25	0 25	0 05	0 05	0 20	0 20	0 20
Vol/Sat:			0.23	0.09	0.35 ****	0.35	0.35	0.25	0.25	0.38	0.38	0.38
Crit Moves:			0.36	0 14		0 20	0 40	0 40	0 42	0 40		0.42
Green/Cycle: Volume/Cap:					0.38	0.38		0.42			0.42	0.42
Volume/Cap: Delay/Veh:			27.5		38.2	38.2		23.1	23.1		38.1	38.1
User DelAdj:			1.00		1.00	1.00		1.00			1.00	1.00
AdjDel/Veh:			27.5		38.2	38.2		23.1			38.1	38.1
DesignOueue:			27.3			38.2			23.1	38.1		38.1
DesignQueue;												

UC Berkeley LRDP EIR 2020 No Project Conditions

CUMULATIVE + LAB AM

AM Peak Hour
-----Level Of Service Computation Report

Thu Mar 18, 2004 11:38:09

Page 75-1

2000 HCM Operations Method (Future Volume Alternative) Intersection #69 Ashby Avenue / Adeline Street *************** 41.8 Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 96 Level Of Service: D Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Protected Protected Protected Protected Include Include Include Include Rights: Min. Green: 4 38 38 6 38 38 4 22 22 4 32 32 Lanes: 1 0 1 1 0 1 0 2 1 0 1 0 1 1 0 1 0 1 0 -----| Volume Module: >> Count Date: 21 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 74 567 61 11 438 96 189 564 49 83 549 14 Initial Bse: 74 567 61 11 438 96 189 564 49 83 549 14 Added Vol: 0 6 0 0 1 4 28 18 0 0 0 0 Future. 30 50 10 10 10 50 50 110 20 10 190 0 Initial Fut: 104 623 71 21 449 150 267 692 69 93 739 14 PHF Volume: 104 623 71 21 449 150 267 692 69 93 739 14 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 104 623 71 21 449 150 267 692 69 93 739 14 Final Vol.: 104 623 71 21 449 150 267 692 69 93 739 14 -----| Saturation Flow Module: Adjustment: 0.95 0.94 0.94 0.95 0.88 0.88 0.95 0.94 0.94 0.95 0.95 Lanes: 1.00 1.80 0.20 1.00 2.25 0.75 1.00 1.82 0.18 1.00 1.96 0.04 Final Sat.: 1805 3192 364 1805 3744 1251 1805 3237 323 1805 3532 67 _____| Capacity Analysis Module: Vol/Sat: 0.06 0.20 0.20 0.01 0.12 0.12 0.15 0.21 0.21 0.05 0.21 0.21 Crit Moves: **** *** *** Green/Cycle: 0.09 0.31 0.31 0.05 0.27 0.27 0.22 0.43 0.43 0.10 0.31 0.31 Volume/Cap: 0.68 0.63 0.63 0.24 0.44 0.44 0.68 0.50 0.50 0.50 0.68 0.68 Delay/Veh: 73.4 42.9 42.9 65.5 42.5 42.5 56.8 25.6 25.6 67.9 42.9 42.9 AdjDel/Veh: 73.4 42.9 42.9 65.5 42.5 42.5 56.8 25.6 25.6 67.9 42.9 42.9 DesignQueue: 8 35 4 2 26 9 17 33 3 7 42 1

Page 76-1 CUMULATIVE + LAB AM ______

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report													
2000		ns Method (F											
Intersection #70	Ashby Avenue	/ Shattuck 2	Avenue										
Cycle (sec): 80													
Approach: No Movement: L	und - R	West Bound L - T - R											
Rights: Min. Green: 21	Permitted Include 21 21 1 0 1 0		ed e 21	Permit Inclu 20 20 0 1 0	ted de 20	Permit Inclu 20 20 0 1 0	ted de 20						
Initial Bse: 77 Added Vol: 0 Future: 30 Initial Fut: 107 User Adj: 1.00 PHF Adj: 1.00 PHF Volume: 107 Reduct Vol: 0 Reduced Vol: 107 PCE Adj: 1.00 MLF Adj: 1.00 Final Vol.: 107	Count Date: 590 26 1.00 1.00 590 26 27 0 20 10 637 36 1.00 1.00 637 36 0 0 637 36 1.00 1.00 1.00 1.00 637 36 1.00 1.00 1.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	21 Nov 2002 124 450 1.00 1.00 124 450 2 3 20 10 146 463 1.00 1.00 1.00 1.00 146 463 0 0 146 463 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	< 7: 35 1.00 35 0 10 45 1.00 1.00 45 1.00 45 1.00 45 1.00 45	00 AM - 9: 33 557 1.00 1.00 33 557 0 18 10 110 43 685 1.00 1.00 1.00 1.00 43 685 0 0 43 685 1.00 1.00 1.00 1.00 43 685	00 AM 31 1.00 31 0 10 41 1.00 41 1.00 41 1.00 41 1.00 41 41 41 41 41 41 41 41 41 41 41 41 41	40 550 1.00 1.00 40 550 0 0 10 150 50 700 1.00 1.00 50 700 0 0 50 700 0 0 50 700 1.00 1.00 1.00 1.00 50 700 1.00 1.00 1.00 1.00 50 700 700 1.00 1.00 1.00 1.00	182 1.00 182 0 10 192 1.00 1.00 192 0 192 1.00 1.00						
Adjustment: 1.00 Lanes: 0.27 Final Sat.: 521	odule: 1900 1900 1.00 1.00 1.64 0.09 3103 175	1900 1900 1.00 1.00 1.00 1.45 1.41 848 2690	1900 1.00 0.14 261	1900 1900 1.00 1.00 0.11 1.78 212 3385	1900 1.00 0.11 203	1900 1900 1.00 1.00 0.10 1.49 202 2824	1900 1.00 0.41 775						
Capacity Analysis Vol/Sat: 0.21 Crit Moves: Green/Cycle: 0.39 Volume/Cap: 0.53 Delay/Veh: 20.4 User DelAdj: 1.00	0.21 0.21 **** 0.39 0.39 0.53 0.53 20.4 20.4 1.00 1.00	0.45 0.45 19.3 19.3 1.00 1.00	0.39 0.45 19.3 1.00	0.20 0.20 0.46 0.46 0.44 0.44 12.5 12.5 1.00 1.00	0.46 0.44 12.5 1.00	0.25 0.25 **** 0.46 0.46 0.53 0.53 13.6 13.6 1.00 1.00	0.25 0.46 0.53 13.6 1.00						

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) Intersection #71 Ashby Avenue / Telegraph Avenue ****************** Cycle (sec): 80 Critical Vol./Cap. (X): 0.893 26.1 Loss Time (sec): 12 (Y+R = 6 sec) Average Delay (sec/veh): Optimal Cycle: 95 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Control: Permitted Prot+Permit Permitted Permitted Rights: Include Include Include Include Min. Green: 21 21 21 0 21 21 25 25 25 25 25 25 -----| Volume Module: >> Count Date: 21 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 150 985 80 148 623 103 86 549 120 89 573 83 Initial Bse: 150 985 80 148 623 103 86 549 120 89 573 83 Added Vol: 0 0 0 0 0 0 0 20 0 0 0 0 0 Future: 50 40 10 10 60 30 20 90 20 10 80 10 Initial Fut: 200 1025 90 158 683 133 106 659 140 99 653 93 PHF Volume: 200 1025 90 158 683 133 106 659 140 99 653 93 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 200 1025 90 158 683 133 106 659 140 99 653 93 Final Vol.: 200 1025 90 158 683 133 106 659 140 99 653 93 -----| Saturation Flow Module: Adjustment: 0.26 0.94 0.94 0.27 0.93 0.93 0.22 0.93 0.93 0.19 0.93 0.93 Lanes: 1.00 1.84 0.16 1.00 1.67 0.33 1.00 1.65 0.35 1.00 1.75 0.25 Final Sat.: 496 3279 288 521 2949 574 426 2900 616 369 3100 441 -----|----|-----| Capacity Analysis Module: Vol/Sat: 0.40 0.31 0.31 0.30 0.23 0.23 0.25 0.23 0.23 0.27 0.21 0.21 Crit Moves: **** ***

Thu Mar 18, 2004 11:38:09

UC Berkeley LRDP EIR

2020 No Project Conditions

AM Peak Hour

Page 77-1

AdjDel/Veh: 20.4 20.4 20.4 19.3 19.3 19.3 12.5 12.5 12.5 13.6 13.6 13.6

DesignQueue: 3 18 1 4 13 1 1 17 1 18 5

Green/Cycle: 0.43 0.43 0.43 0.52 0.52 0.52 0.33 0.33 0.33 0.33 0.33 0.33 Volume/Cap: 0.95 0.73 0.73 0.58 0.44 0.44 0.77 0.70 0.70 0.83 0.65 0.65 Delay/Veh: 71.5 22.3 22.3 22.6 12.5 12.5 56.0 26.3 26.3 69.3 25.1 25.1

AdjDel/Veh: 71.5 22.3 22.3 22.6 12.5 12.5 56.0 26.3 26.3 69.3 25.1 25.1

DesignQueue: 5 28 2 6 15 3 3 21 4 3 21 3

_____ UC Berkeley LRDP EIR

2020 No Project Conditions

AM Peak Hour

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

		evel 0	f Servi	ce C	omputa	tion F	 Report	 -			
2	2000 HCM Or	eratio	ns Meth	od (Future	Volur	ne Alt	ernati	.ve)		
*****							*****	*****	****	****	*****
Intersection	#72 Ashby ******	Avenue	/ Coll	.ege .	Avenue *****	****	****	*****	****	****	*****
Cycle (sec):	80)		С	ritica	l Vol.	./Cap.	(X):		1.08	35
Loss Time (se	ec): 12	2 (Y+R	= 4 se	ec) A	verage	Delay	/ (sec	c/veh):		36	. 5
Optimal Cycle	e: 180)		L	evel 0	f Serv	/ice:				D

Approach:	North Bo	ound	Sout	h Bo	und	Εā	ast Bo	ound	We	est Bo	ound
Movement:	L - T	R	L -	T	– R	L -	- T	R	L -	- T	R
Control:											
Control: Rights:	Incli	ıde	T	nclu	de		Incli	ıde		Incli	ıde
Min. Green:	18 18	18	18	18	18	30	30	30	30	30	30
Lanes:	0 0 1!	0 0	0 0	1!	0 0	0 (1!	0 0	0 (1!	0 0
Volume Module											
	79 323		118		95		490		4		
Growth Adj:											
Initial Bse:					95			92		611	
	0 24	0	1	2	0			0		0	21
Future:	20 20		20			20			10		30
Initial Fut:			139		155						
User Adj: PHF Adj:	1.00 1.00	1.00	1.00 1	.00				1.00		1.00	
								1.00		1.00	
PHF Volume:		36	139		155	71	572	102	14		280
Reduct Vol: Reduced Vol:			120		0 155			100	0 14		
PCE Adi:								102			1.00
MLF Adj:											1.00
Final Vol.:											280
Saturation F											
Sat/Lane:											
Adjustment:	0.80 0.80	0.80	0.71 0	.71	0.71	0.82	0.82	0.82	0.95	0.95	0.95
Lanes:	0.20 0.73	0.07	0.25 0	.47	0.28	0.09	0.77	0.14	0.02	0.68	0.30
Final Sat.:	299 1108	109	341	623	380	149	1200	214	27	1227	544
Capacity Ana											
Vol/Sat:	0.33 0.33	0.33			0.41	0.48	U.48	0.48	0.51		
Crit Moves:	0 20 0 20	0 20		***	0 45	0 50	0 50	0 50	0 50	****	
Green/Cycle:											
Volume/Cap: Delay/Veh:											0.98 43.4
Delay/ven: User DelAdi:										1.00	
User DelAdj:											

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)												
Intersection #73 Ashby Avenue / Claremont Avenue	Intersection #73 Ashby Avenue / Claremont Avenue											
Cycle (sec): 80												
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F	R											
Control: Split Phase Split Phase Permitted Permitted Rights: Include Include Include Include Min. Green: 16 16 16 16 28 28 28 28 28 Lanes: 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0	28											
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	29 00 29 69 50 48 00 48 00 48											
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	00 95 81 70											
Capacity Analysis Module: Vol/Sat: 0.15 0.15 0.15 0.14 0.14 0.14 0.18 0.18 0.18 0.37 0.37 0.37 Crit Moves: **** ****												
Green/Cycle: 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.45 0.45 0.45 0.45 0.45 Volume/Cap: 0.74 0.74 0.74 0.70 0.70 0.70 0.70 0.41 0.41 0.41 0.83 0.83 0.80 Delay/Veh: 34.2 34.2 34.2 31.9 31.9 31.9 12.6 12.6 12.6 12.6 12.8 19.8 19.8 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	83 .8 00 .8											

AdjDel/Veh: 39.3 39.3 39.3 0.0 36.8 36.8 32.9 32.9 32.9 43.4 43.4 43.4 DesignQueue: 3 11 1 7 7 4 2 13 2 0 15 7

UC Berkeley LRDP EIR 2020 No Project Conditions AM Peak Hour

Level Of Service Computation Report

2000	HCM	Operations	Method	(Future	Volume	Alternative)
*****	****	*****	*****	*****	*****	*****	*****

*****						(Future					****	*****
Intersection	#74	Tunnel	Road	/ SR	13							
Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e:	65 8 53	(Y+R	= 4 :	sec) i	Critica Average Level O	l Vol Delay f Serv	./Cap / (sed	. (X): c/veh):		0.7 15	71 .8 B
Approach: Movement:	No.	rth Bo - T	und - R	Son L	uth Bo	ound - R	Ea L -	ast Bo	ound - R	We	est B - T	ound - R
Control: Rights: Min. Green: Lanes:	P. 0	rotect Inclu 0 0 2	ed de 0	0 2	rotect Incli 0 0 1	ted ude 0	Sp:	lit Pl Inclu 0) 0	nase ude 0	Sp:	Ovl 0 0	0 0 2
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.: Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	e: >> 0 1.000 0 0 0 0 1.000 1.000 1.000 0 1.000 1.000 1.000 1.000 0 1.000 0 0 0	Count 1293 1.00 1293 80 1463 1.00 1463 0 1463 1.00 1463 1.00 1463 1.00 1.00 1.00 1.00	Date: 435 1.00 435 0 0 435 1.00 1.00 435 1.00 1.00 435 1.00 1.00 435	21 No 487 1.00 487 5 60 552 1.00 552 1.00 552 1.00 552 1.00 0.552	0v 200 608 1.00 608 5 70 683 1.00 683 1.00 683 1.00 683	02 << 7 0 1.00 0 0 0 0 1.00 0 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00	1.00 AP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 - 9 0 1.00 0 0 0 1.00 1.00 0 0 1.00 0	:00 AM 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	205 1.00 205 0 205 1.00 205 1.00 205 1.00 205 1.00	1.00 0 0 0 0 1.00 1.00 0 1.00 1.00 1.00	307 1.00 307 0 20 327 1.00 1.00 327 0 327 1.00 1.00 327
Capacity Ana Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	lysis 0.00 0.00 0.00 0.0 1.00	Modul 0.41 **** 0.53 0.77 14.3 1.00 14.3	 e: 0.27		0.36 0.73 0.49 4.0		0.00		0.00	0.11 **** 0.15 0.77 39.7	0.00	0.12 0.35 0.33 15.6

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

CUMULATIVE + LAB PM Thu Mar 18, 2004 11:36:26 Page 1-1

> UC Berkeley LRDP EIR 2020 No Project Conditions

PM Peak Hour

Scenario Report

Scenario: CUMULATIVE + LAB PM

Command:

Volume:
CUMULATIVE PM

Geometry:
CUMULATIVE PM

Impact Fee:
Default Impact Fee

Trip Generation:
Trip Distribution:
Cumulative With Lab PM

Paths:
Default Paths

Paths: Default Paths
Routes: Default Routes
Configuration: CUMULATIVE LAB PM

> UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Trip Generation Report

Forecast for APPROVED PM

Zone # Subzone Amount Units	Rate Rate In Out	Trips In	Trips Out	Total % Trips T	
13 Lower Hearst 1.00 Approved Par Zone 13 Subtotal		6 6	39 39	45 45	9.7 9.7
14 Underhill 1.00 Approved Par Zone 14 Subtotal		35 35	242 242	277 277	60.0
TOTAL		. 41	 281	322	69.7

______ UC Berkeley LRDP EIR UC Berkeley LRDP EIR 2020 No Project Conditions 2020 No Project Conditions PM Peak Hour PM Peak Hour Trip Distribution Report Trip Generation Report Percent Of Trips CUMULATIVE PM WITH LAB Forecast for PM LAB 2020 Zone. Rate Rate Trips Trips Total % Of To Gates 1 2 3 4 5 6 7 8 9 10 11 # Subzone Amount Units In Out In Out Trips Total 7.one 13.4 4.5 7.0 5.4 10.2 13.0 8.1 11.1 12.9 14.4 0.0 0.0 0.0 7 13.4 4.5 7.0 5.4 10.2 13.0 8.1 11.1 12.9 14.4 0.0 8 13.4 4.5 7.0 5.4 10.2 13.0 8.1 11.1 12.9 14.4 11 13.4 4.5 7.0 5.4 10.2 13.0 8.1 11.1 12.9 14.4 0.0 14 13.4 4.5 7.0 5.4 10.2 13.0 8.1 11.1 12.9 14.4 0.0 To Gates 12 13 14 15 16 17 7.one 0.0 5 6 0.0 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 0.0 9 0.0 0.0 0.0 0.0 0.0 0.0 10 0.0 0.0 0.0 0.0 0.0 0.0 11 0.0 0.0 0.0 0.0 0.0 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 0 0 0.0 0.0 0.0 0.0 0.0 14 0 0 1.7 1.7 1.7 1.7 1.7 101 102 2.6 1.5 1.5 2.1 1.1 1.1 103 0.0 0.0 0.0 0.0 0.0 0.0 2.0 1.0 1.0 2.0 1.0 1.0 104 0.0 0.0 0.0 0.0 0.0 0.0 Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

To Gates 12 13 14 15 16 17

2.8 1.4 1.4 1.9 0.9 1.0

Zone

106

CUMULATIVE + LAB PM

Thu Mar 18, 2004 11:36:26 Page 5-1 ______ UC Berkeley LRDP EIR

APPROVED PM + PM LAB 2020

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

2020 No Project Conditions PM Peak Hour

Turning Movement Report

CUMULATIVE + LAB PM

Thu Mar 18, 2004 11:36:26 Page 5-2 CUMULATIVE + LAB PM Thu Mar 18, 2004 11:36:26 Page 5-3

_____ UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 No Project Conditions

2020 No Project Conditions PM Peak Hour		2020 No Project Conditions PM Peak Hour						
Volume Northbound Southbound Eastbound Type Left Thru Right Left Thru Right	Westbound Total Volume Northbound	Southbound Eastbound Westbound Total Left Thru Right Left Thru Right Volume						
#8 Cedar Street / Oxford Street Base 91 464 81 17 196 17 18 307 57 Added 1 0 0 0 0 0 0 0 0 0 future 40 80 20 10 10 0 20 120 40 Total 132 544 101 27 206 17 38 427 97	0 0 0 0 1 Added 0 0 0 0 0 50 100 10 500 Future 0 0	Lid Avenue 57						
#9 Cedar Street / Euclid Avenue Base 90 226 29 7 127 44 51 180 49 Added 0 0 0 0 0 0 0 3 0 0 Future 50 30 0 0 10 20 40 100 40 Total 140 256 29 7 137 64 94 280 89	9 18 91 0 912 Base 0 0 0 0 0 0 0 10 70 0 370 Future 0 0	Roy Avenue 12 0 56 38 355 0 0 523 21 1005 0 0 0 0 7 0 0 76 0 83 0 0 10 20 90 0 0 140 10 270 12 0 66 58 452 0 0 739 31 1358						
#10 Grizzly Peak Blvd / Centennial Drive Base 162 65 250 33 30 8 3 159 49 Added 7 0 20 0 0 0 0 0 0 Future 10 0 30 0 0 0 0 20 20 Total 179 65 300 33 30 8 3 179 69	0 2 0 0 29 Added 26 31 7 0 10 10 0 100 Future 90 30 10	Ley Road / LaLoma Avenue 4 203 49 28 52 288 69 197 40 1555 0 12 0 0 6 1 8 50 0 141 0 0 20 20 30 60 10 60 10 340 4 215 69 48 88 349 87 307 50 2036						
#11 Hearst Avenue / Shattuck Avenue Base 34 715 63 117 537 54 67 232 20 Added 0 0 0 0 0 0 0 0 0 2 00 Future 20 160 30 60 240 40 50 20 20 Total 54 875 93 177 777 94 117 254 40	0 122 321 136 2418 Base 48 1039 3 0 35 17 2 56 Added 0 7 0 0 50 20 90 800 Future 20 160 0	rd Street 4 890 22 72 2 51 29 18 42 2220 0 39 0 0 0 0 0 0 0 0 46 0 170 0 10 0 10 20 0 10 400 4 1099 22 82 2 61 49 18 52 2666						
#12 Hearst Avenue / Oxford Avenue Base 80 743 315 30 458 25 23 267 119 Added 0 0 7 0 0 0 0 2 0 Future 30 110 40 10 70 20 0 80 40 Total 110 853 362 40 528 45 23 349 153	0 39 55 1 104 Added 0 0 1 0 40 1120 10 1570 Future 10 70 40	Sixth Street 101 239 465 163 827 212 42 1205 33 4031 0 3 8 1 6 0 0 46 0 65 100 130 100 20 200 20 20 120 10 840 201 372 573 184 1033 232 62 1371 43 4936						
Added 0 0 0 1 0 0 10 0 10 0 Future 0 0 0 0 0 20 0 130	#21 University Avenue / 0 0 792 13 1477 Base 233 945 93 0 0 95 3 109 Added 0 0 0 0 0 170 0 320 Future 50 90 10 0 0 1057 16 1906 Total 283 1035 103	San Pablo Avenue 141 681 84 87 986 105 71 906 125 4457 2 4 0 0 6 0 1 46 24 83 20 220 60 90 190 80 10 60 20 900 163 905 144 177 1182 185 82 1012 169 5440						
Added 0 0 0 0 0 0 3 7 0 Future 0 0 0 0 0 40 50 100	#22 University Avenue / 0 0 668 6 1400 Base 282 902 78 0 0 98 0 108 Added 14 12 0 0 0 150 0 340 Future 30 200 20 0 0 916 6 1848 Total 326 1114 98	Martin Luther King Way 46 702 77 80 679 134 71 727 81 3859 0 0 0 0 0 9 0 1 60 0 96 30 60 10 30 170 40 10 70 10 680 76 762 87 110 858 174 82 857 91 4635						
Added 0 0 0 0 0 11 0 0 (Future 0 0 0 0 0 30 0 100 (#23 University Avenue / 0 0 566 54 1166 Base 127 218 44 0 0 86 0 97 Added 0 0 0 0 0 140 10 280 Future 10 10 10 0 0 792 64 1543 Total 137 228 54	Milvia Street 13 102 74 47 649 108 22 651 33 2088 0 0 0 0 0 9 0 0 60 0 69 10 10 10 20 180 20 10 80 20 390 23 112 84 67 838 128 32 791 53 2547						

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

UC Berkeley LRDP EIR UC Berkeley LRDP EIR 2020 No Project Conditions 2020 No Project Conditions PM Peak Hour PM Peak Hour Volume Northbound Southbound Eastbound Westbound Total Volume Northbound Southbound Eastbound Westbound Total Type Left Thru Right Left Thru Right Left Thru Right Left Thru Right Volume Type Left Thru Right Left Thru Right Left Thru Right Volume #24 University Avenue / SB Shattuck Avenue #32 Stadium Rim Road / Gayley Road Base 0 359 19 135 459 0 20 7 15 47 0 232 1293 Added 0 39 7 2 19 0 0 0 0 21 0 25 113 Future 0 90 10 20 50 0 0 0 0 10 0 30 210 Total 0 488 36 157 528 0 20 7 15 78 0 287 1616 Base 0 0 0 55 576 146 131 374 254 74 642 640 2892 0 0 0 0 34 2 0 9 0 2 58 0 105 0 0 0 30 230 30 40 100 50 10 80 130 700 0 0 0 85 840 178 171 483 304 86 780 770 3697 Added Future Total #25 University Avenue / NB Shattuck Avenue #33 Allston Way / Oxford Street Base 46 1002 0 26 1082 Base 938 0 208 0 0 0 0 454 0 0 433 0 2033 75 23 0 110 0 0 0 2364 Added 26 0 2 0 0 9 0 0 34 0 71 Added 0 0 0 0 9 0 0 0 0 0 0 0 0 0 9 Future 150 0 40 0 0 0 0 0 0 70 0 260 Future 0 190 0 10 160 10 0 0 30 0 0 400 Total 1114 0 250 0 0 0 0 463 0 0 537 0 2364 Total 46 1192 0 36 1251 85 23 0 140 0 0 0 2773 #26 University Avenue / Oxford Street #34 Kittridge Street / Oxford Street / Fulton Street Base 45 995 0 0 1108 96 51 0 69 0 0 0 2364 Base 278 771 16 32 835 106 306 39 330 9 37 40 2799 0 0 5 34 7 0 4 0 0 0 50 Added 0 0 0 0 9 0 0 0 0 0 0 9 Added 0 0 Future 20 180 0 0 150 30 10 0 20 0 0 0 410 Future 50 130 0 10 160 30 20 10 20 0 10 10 450 Total 328 901 16 42 1000 170 333 49 354 9 47 50 3299 Total 65 1175 0 0 1267 126 61 0 89 0 0 0 2783 #27 Univeristy Drive (East Gate) / Gayley Road #35 Stadium Rim Road / Centennial Drive #2/ University Directions (Edst. Sate), (Say2), (Say2) Base 0 99 140 102 57 0 0 0 0 1290 0 0 0 204 0 146 748 0 0 0 85 Added 0 0 0 8 0 0 0 20 20 20 10 0 0 0 0 0 0 46 54 Added 0 64 0 0 21 0 0 0 0 0 Future 20 110 0 0 60 10 10 0 20 Total 79 726 0 0 586 62 51 0 101 0 20 230 Future 0 0 10 0 100 Total 0 119 160 130 67 0 0 0 1605 0 0 0 0 0 212 214 902 #28 Addison Street / Oxford Street #36 Bancroft Way / Shattuck Avenue Base 32 1006 0 0 952 28 10 0 114 0 0 0 2142 Base 30 1186 0 0 949 23 1 0 38 258 97 111 2693 0 0 9 0 0 0 0 0 0 0 9 Added 0 0 Added 0 29 0 0 35 0 0 0 0 9 0 0 7.3 Future 10 180 0 0 170 10 0 0 10 0 0 380 Future 10 150 0 0 290 10 0 0 30 20 20 530 Total 42 1186 0 0 1131 38 10 0 124 0 2531 Total 40 1365 0 0 1274 33 1 0 38 297 117 131 3296 #29 Center Street / SB Shattuck Avenue #37 Bancroft Way / Fulton Street Base 0 0 0 41 790 126 0 104 179 29 160 0 1429 Base 18 164 0 0 1066 165 0 0 0 12 287 898 Added 0 0 0 0 35 0 0 0 0 0 0 35 Added 0 0 0 0 4 5 0 0 0 0 4 0 13 Future 0 0 0 10 230 40 0 50 30 30 40 0 430 Future 10 10 0 0 130 20 0 0 10 30 170 380 0 0 0 22 321 1068 Total 0 0 0 51 1055 166 0 154 209 59 200 0 1894 Total 28 174 0 0 1200 190 3003 #30 Center Street / NB Shattuck Avenue #38 Bancroft Way / Ellsworth Street 0 0 139 58 1451 0 0 0 0 29 0 0 40 60 340 Base 50 982 86 0 0 0 81 55 0 0 0 0 0 877 Base 348 11 0 0 0 100 6 1342 Ő Added 0 29 0 0 0 0 0 0 0 0 Future 30 110 30 0 0 0 30 40 Total 80 1121 116 0 0 0 111 95 Added 0 0 0 0 0 0 0 0 0 Future 50 0 0 0 0 0 0 0 0 Total 398 11 0 0 0 100 0 0 0 0 0 4 4 0 230 0 280 0 179 118 1820 0 0 0 0 0 1111 6 1626 #39 Bancroft Way / Dana Street #31 Center Street / Oxford Street

Future 40 150 10 0 150 30 30 0 30 0 0 0 440

Total 127 1148 34 19 1139 97 63 6 114 37 9 16 2809

84

0 0 9 0 0 0 0 0 0 9

37 9

16 2360

Base 87 998 24 19 980 67 33 6

Added 0 0

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

Total 0 0 0 0 0 0 0 0 332 1107 0 1439

Added 0 0 0 0 0 0 0 0 0 4

Future 0 0 0 0 0 0 0 0 50 230

0 0

0 282 873

0 1155

0 280

4

0

Base 0 0 0 0 0 0

UC Berkeley LRDP EIR

UC Berkeley LRDP EIR

2020 No Project Conditions 2020 No Project Conditions PM Peak Hour PM Peak Hour Volume Northbound Southbound Eastbound Westbound Total Volume Northbound Southbound Eastbound Westbound Total Type Left Thru Right Left Thru Right Left Thru Right Left Thru Right Volume Type Left Thru Right Left Thru Right Left Thru Right Left Thru Right Volume #40 Bancroft Way / Telegraph Avenue #48 Durant Avenue / Piedmont Avenue Base 495 0 0 0 0 0 0 0 0 0 675 0 1170 Base 0 398 0 0 427 0 179 0 197 0 0 0 1201 Added 0 0 0 0 0 0 0 0 0 0 0 4
Future 130 0 0 0 0 0 0 0 0 0 140
Total 625 0 0 0 0 0 0 0 0 0 0 819 Added 0 41 0 0 22 0 5 0 0 Future 0 70 0 0 50 0 40 0 40 Total 0 509 0 0 499 0 224 0 237 0 0 0 68 0 0 0 200 0 0 0 1469 0 4 0 270 0 1444 #41 Bancroft Way / Bowditch Street #49 Channing Way / Shattuck Avenue 0 99 494 Base 191 0 0 0 0 784 Base 83 1279 94 19 1089 49 18 76 81 144 97 106 3135 0 0 0 0 24 0 0 0 0 0 0 0 4 Added 0 3 0 44 0 0 0 2.6 Added 0 0 Ω 0 4 6 0 0 103 Future 30 0 0 0 0 0 0 0 20 110 Future 10 180 20 50 110 90 30 80 20 30 20 0 160 30 670 Total 221 0 0 0 0 0 0 0 0 119 608 0 948 Total 93 1462 120 69 1243 139 48 156 101 198 117 162 3908 #42 Bancroft Way / College Avenue #50 Channing Way / Fulton Street Base 371 0 0 0 0 0 0 0 83 226 Ω 680 Base 0 0 0 48 686 61 0 133 38 15 257 0 1238 0 15 4 0 0 0 0 0 0 Added 0 Added 0 0 0 19 0 0 4 0 0 0 6 0 0 50 0 60 Future 100 0 0 0 0 0 0 0 0 20 Future 0 0 0 10 100 0 0 110 30 10 70 0 330 0 120 Total 0 0 0 62 786 61 0 249 68 25 377 Total 471 0 0 0 0 0 0 0 98 250 Λ 0 819 0 1628 #43 Bancroft Way / Piedmont Avenue #51 Channing Way / Telegraph Avenue 0 0 357 159 0 0 0 0 22 19 0 0 0 0 40 10 0 0 Base 86 410 41 0 0 Base 152 439 0 0 357 159 0 0 0 0 1107 0 23 144 0 0 227 46 977 0 46 0 0 0 87 Added 0 0 9 0 0 Future 10 40 30 0 0 Total 96 450 80 0 0 0 0 10 0 2 71 Added Ω 0 50 0 0 30 80 0 Future 10 90 0 0 0 150 40 30 0 260 Total 162 575 0 0 419 188 0 0 0 23 184 0 0 1344 80 40 307 1308 0 48 #52 Channing Way / College Avenue #44 Durant Avenue / Shattuck Avenue Base 31 189 41 7 206 24 5 95 Base 69 1216 120 88 1099 51 9 72 55 0 0 0 2779 58 124 141 47 968 0 29 0 0 44 0 0 0 0 0 0 0 73 Added 3 4 Added 0 0 15 0 0 78 16 1 12 0 129 Future 10 170 60 60 260 10 0 40 10 0 0 620 Future 30 60 30 0 40 10 30 40 40 40 20 30 370 Total 79 1415 180 148 1403 61 9 112 65 0 0 0 3472 Total 64 253 71 7 261 34 35 213 114 165 173 77 1467 #53 Haste Street / Shattuck Avenue #45 Durant Avenue / Fulton Street Base 0 0 0 527 760 0 137 219 33 0 0 0 1676 Base 104 1277 0 0 1208 88 0 0 0 268 336 152 3433 0 0 0 0 0 0 0 4 Added 0 8 0 0 51 17 0 0 0 32 67 0 Added 0 0 0 0 4 175 Future 0 0 0 70 90 0 20 110 30 0 0 0 320 Future 30 160 0 0 130 20 0 0 40 80 40 500 0 0 0 340 483 192 4108 Total 0 0 0 597 854 0 157 329 63 0 0 0 2000 Total 134 1445 0 0 1389 125 #46 Durant Avenue / Telegraph Avenue #54 Haste Street / Fulton Street Base 0 362 119 0 0 0 202 690 0 0 0 0 1373 Base 0 0 0 0 580 154 0 0 0 50 604 0 1388 0 0 0 0 0 2 0 0 0 0 320 0 0 0 0 1695 0 Added 0 0 2 0 0 0 0 0 0 Future 0 110 30 0 0 0 0 20 160 Total 0 472 151 0 0 0 222 850 Added 0 0 0 0 0 0 0 Future 0 0 0 0 0 70 80 Total 0 0 0 0 650 234 0 0 0 0 0 99 0 99 30 60 0 240 0 0 0 80 763 0 1727 #47 Durant Avenue / College Avenue #55 Haste Street / Telegraph Avenue Base 0 189 62 16 56 0 127 268 202 0 0 920 Base 186 476 0 0 0 0 0 0 0 470 57 1189 0 0 1 0 0 0 0 20 0 Added 0 0 4 0 15 Added 0 9 0 0 0 0 0 0 99 0 108 Future 0 40 20 0 0 0 60 70 40 0 0 0 230 Future 50 100 0 0 0 0 0 0 50 30 2.30 Total 0 229 86 16 71 0 187 339 242 0 0 0 1170 Total 236 585 0 0 0 0 0 0 0 0 619 87 1527

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

UC Berkeley LRDP EIR

2020 No Project Conditions

CUMULATIVE + LAB PM

Thu Mar 18, 2004 11:36:26 Page 5-9

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

			20		PM Peal	k Hour	11 01011	5																	
 Volume	Northk						stbou			stbou		Total	Volume Nor Type Left T	thbour			uthbo			stbou			stbou		Total
	Left Thru												Type Left I	iiru Ki	igiic	тетс	IIILU .	KIGIIC	Terc	IIII u	KIGIIC	Terc	IIII u	xigiic	vorume
													#64 Adeline S	treet	/ War	d Ave	nue /	Shatt	uck Av	enue					
#56 Hast	te Street	/ Col	leae A	venue									Base 0	690	5	0	957	825	903	0	2	0	0	0	3382
Base	88 236		0		56	0	0	0	90	244	29	1080	Added 0	4	0	0	38	36	4	0	0	0	0	0	82
Added	2 7	0	0	32	0	0	0	0	0	2	0	43	Future 0	50	0	0	50	110	130	0	0	0	0	0	340
Future	30 70	0	0	80	30	0	0	0	30	30	40	310	Total 0		5	0	1045	971	1037	0	2	0	0	0	3804
Total	120 313	0	0	449	86	0	0	0	120	276	69	1433													
#E7 D	W	/ Manabi	. TL.	7/:									#65 Derby Str Base 0	eet / 0	Warri 0	ng St. 765	reet 0	30	7	62	0	0	75	780	1719
-	ght Way /					4.0	111	111	0	0	0	2001					-				0	0	0		
Base	71 821		113		272	49	444	111	0	0	0	2801		0	0	60	0	0	0	0	-	0	0	10	70
Added	0 (-	0		51	0	10	0	-	-		68		0	0	110	0	10	0 7	0	0			120	240
Future Total	10 220 81 1041		122	90 957	10 333	20 69	50 504	10 121	0	0	0	440 3309	Total 0	0	0	935	0	40	/	62	0	0	75	910	2029
IOLAI	01 1041	. 70	133	931	333	09	304	121	U	U	U	3309	#66 Derby Str	eet /	Clare	emont	Blvd								
#58 Dwic	ght Way /	Shattı	ick Av	enile									Base 4	0	225	0	0	0	0	872	11	31	741	0	1884
Base	0 1273			1390	0	77	426	200	0	0	0	3622	Added 0	0	0	0	0	0	0	60	0	0	10	0	70
Added	0 12 / 3		6		0	0	10	0	0	0	0	101	PassBy 0	0	0	0	0	0		120	0	0	120	0	240
Future	0 160			140	0	10	50	10	0	0	0	410	Total 4	0	225	0	0	0		1052	11		871	0	2194
Total	0 1441			1607	0	87	486	210	0	0	0	4133	10041 1	Ü	225	Ü	Ü	· ·	0	1002		91	071	O	2171
10001	0 1111	. 100		100,	Ŭ	0 /	100	210	Ü	Ü	Ü	1100	#67 Ashby Ave	nue /	Seven	th St	reet								
#59 Dwic	ght Way /	' Fulto	n Stre	et										404	68	107	270	476	263	546	113	98	774	31	3284
Base	0 0		631		0	0	664	15	0	0	0	1372	Added 0	0	0	0	0	0	0	5	0	0	39	0	44
Added	0 0		0		0	0	15	0	0	0	0	15	Future 60	60	10	90	30	0	30	60	60	20	60	70	550
Future	0 0	20	100	0	0	0	60	30	0	0	0	210	Total 194	464	78	197	300	476	293	611	173	118	873	101	3878
Total	0 0	82	731	0	0	0	739	45	0	0	0	1597													
													#68 Ashby Ave			Pablo									
	ght Way /													999	79		873	113	86	592	170	20	612	143	4034
Base	0 590		0		0	130	671	813	0	0	0	2353	Added 0	1	1	0	1	16	0	5	0	15	23	0	62
Added	0 0		0		0	9	7	0	0	0	0	16	Future 20		90	20	320	30	20	90	50	40	90	30	990
Future	0 120		0		0	10	60	100	0	0	0	300	Total 182 1	190	170	205	1194	159	106	687	220	75	725	173	5086
Total	0 710	159	0	0	0	149	738	913	0	0	0	2669		,											
		. ~	_										#69 Ashby Ave			ne St		1.00	105	401	2.0		- 4-	2.0	2000
-	ght Way /		_		^	2.4	400	100	_	_	_	1 4 1 5		693	85	31	700	169	135	491	39	68	547	39	3089
Base	0 294			374	0	34	483	129	0	0	0	1415	Added 0	1	0	-	6	30	4	1.00	0	0	0	0	43
Added Future	0 9	-	0 20		0	1 30	6 0	0 10	0	0	0	48 250		70 764	10 95	10	10 716	80 279	50 189	160 653	20 59	10 78	50 597	10 49	540 3672
Total	0 353			486	0	65	489	139	0	0	0	1713	Total 152	/04	93	41	110	219	109	033	39	70	391	49	3012
IOCAI	0 33.) 112	03	400	U	0.5	403	133	U	U	U	1/13	#70 Ashby Ave	niie /	Shatt	uck A	wenne								
#62 Dwic	ght Way /	Piedmo	ont Av	enile /	/ Warri	ina Str	reet						Base 52		30	200	585	56	33	536	40	32	541	176	2837
Base	0 527		9 N 311C		0	132	162	307	53	0	112	1655	Added 0	3	0	10	26	0	0	2	0	0	0	0	41
Added	0 10		0		0	0	0	6	0	0	0	70		10	10	20	20	10	10	_	20	10	60	20	370
Future	0 80		10		0	20	10	40	30	0	10	250	Total 62		40	230		66	43		60	42	601	196	3248
Total	0 617		18		0		172	353	83	0	122	1975	10001 01	003	10	200	001	0.0	10	, 00	0.0		001	130	0210
							_			-	-		#71 Ashby Ave	nue /	Telea	graph	Avenu	е							
#63 Dwic	ght Avenu	e / Pro	spect	Stree	et									675	75	176	902	63	68	531	184	148	642	99	3773
Base	0 (27		165	187	128	0	0	93	16	616	Added 0	0	0	0	0	0	0	12	0	0	0	0	12
Added	0 0		0		0	0	0	0	0	0	0	0	Future 30	80	10	10	60	10	30	110	50	20	50	20	480
Future	0 0		10		20	20	20	0	0	20	0	90		755	85	186	962	73	98	653	234	168	692	119	4265
Total	0 0		37		185		148	0	0	113	16	706													
Traffix	7.5.0715	(c) 20	002 Do	wling	Assoc.	. Licer	sed t	o FEHR	& PEE	RS,	LAFAYE	TTE	Traffix 7.5	.0715	(c) 2	2002 D	owlin	g Asso	c. Lic	ensed	to FE	HR & P	EERS,	LAFA	YETTE

CUMULATIVE + LAB PM Thu Mar 18, 2004 11:36:26 Page 5-10

PM Peak Hour

UC Berkeley LRDP EIR

2020 No Project Conditions

CUMULATIVE + LAB PM

Thu Mar 18, 2004 11:36:31

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour Impact Analysis Report

Page 6-1

Level Of Service Intersection Base Future Change Del/ V/ Del/ V/ in LOS Veh C LOS Veh C # 1 Marin Avenue / San Pablo Avenu D 41.6 0.874 F 85.0 1.130 +43.352 D/V # 2 Marin Avenue / The Alameda B 14.1 0.574 C 21.7 0.855 + 7.589 D/V # 3 Gilman Street / Sixth Street E 60.6 0.864 F 125.7 1.260 +65.025 D/V # 4 Gilman Street / San Pablo Aven D 37.3 0.724 E 62.4 1.036 +25.151 D/V # 5 Rose Street / Shattuck Avenue B 11.0 0.514 B 16.1 0.755 + 5.119 D/V # 6 Cedar Street / Martin Luther K C 21.3 0.792 D 47.0 1.065 +25.708 D/V # 7 Cedar Street / Shattuck Avenue B 11.5 0.580 B 16.0 0.755 + 4.521 D/V # 8 Cedar Street / Oxford Street B 19.0 0.711 D 40.9 1.002 +21.963 D/V # 9 Cedar Street / Euclid Avenue B 11.5 0.428 B 13.9 0.635 + 2.431 D/V # 10 Grizzly Peak Blvd / Centennial C 15.4 0.738 C 22.7 0.875 + 0.137 V/C # 11 Hearst Avenue / Shattuck Avenu B 13.5 0.478 C 22.2 0.858 + 8.671 D/V # 12 Hearst Avenue / Oxford Avenue D 36.1 0.883 D 52.2 0.929 +16.049 D/V # 13 Hearst Avenue / Spruce Street B 2.4 0.000 C 2.6 0.000 + 0.000 V/C # 14 Hearst Avenue / Arch Street / B 1.6 0.000 C 2.0 0.000 + 0.000 V/C # 15 Hearst Avenue / Scenic Avenue B 0.7 0.000 B 0.9 0.000 + 0.000 V/C # 16 Hearst Avenue / Euclid Avenue B 18.4 0.458 B 17.2 0.631 -1.256 D/V # 17 Hearst Avenue / Le Roy Avenue B 2.3 0.000 C 2.5 0.000 + 0.000 V/C # 18 Hearst Avenue / Gayley Road / B 17.5 0.778 E 67.1 1.108 +49.606 D/V # 19 Berkeley Way / Oxford Street A 7.2 0.419 A 9.3 0.488 + 2.084 D/V # 20 University Avenue / Sixth Stre F 81.2 0.993 F 99.2 1.183 +18.002 D/V # 21 University Avenue / San Pablo F 124.2 0.817 F 171.5 1.012 +47.307 D/V # 22 University Avenue / Martin Lut C 29.5 0.722 D 40.6 0.930 +11.116 D/V # 23 University Avenue / Milvia Str B 16.3 0.448 B 18.8 0.572 + 2.537 D/V

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Intersection	Base Del/ V/ LOS Veh C	Future Del/ V/ LOS Veh C	Change	Intersection	Base Del/ V/ LOS Veh C	Future Del/ V/ LOS Veh C	Change in
# 24 University Avenue / SB Shattuc			-0.467 D/V	# 49 Channing Way / Shattuck Avenue	A 5 3 0 699		+ 3 854 D/V
# 25 University Avenue / NB Shattuc	B 16.8 0.449	в 17.5 0.533	+ 0.714 D/V	# 50 Channing Way / Fulton Street			
# 26 University Avenue / Oxford Str	в 17.2 0.650	C 22.9 0.783	+ 5.632 D/V				
# 27 Univeristy Drive (East Gate)	C 1.5 0.000	D 2.2 0.000	+ 0.000 V/C	# 51 Channing Way / Telegraph Avenu			
# 28 Addison Street / Oxford Street	C 0.8 0.000	C 0.8 0.000	+ 0.000 V/C	# 52 Channing Way / College Avenue			
# 29 Center Street / SB Shattuck Av	в 14.0 0.469	в 17.0 0.612	+ 3.054 D/V	# 53 Haste Street / Shattuck Avenue	A 9.0 0.655	в 14.7 0.950	+ 5.701 D/V
# 30 Center Street / NB Shattuck Av	A 7.3 0.409	A 9.6 0.530	+ 2.306 D/V	# 54 Haste Street / Fulton Street	в 17.2 0.434	C 22.8 0.543	+ 5.515 D/V
# 31 Center Street / Oxford Street				# 55 Haste Street / Telegraph Avenu	в 12.1 0.375	B 14.4 0.482	+ 2.290 D/V
# 32 Stadium Rim Road / Gayley Road				# 56 Haste Street / College Avenue	A 9.0 0.354	в 11.4 0.489	+ 2.418 D/V
				# 57 Dwight Way / Martin Luther Kin	в 14.8 0.793	C 23.7 0.961	+ 8.957 D/V
# 33 Allston Way / Oxford Street		E 5.5 0.000		# 58 Dwight Way / Shattuck Avenue	D 43.3 0.807	в 15.7 0.912	-27.589 D/V
# 34 Kittridge Street / Oxford Stre				# 59 Dwight Way / Fulton Street	в 13.7 0.526	в 17.1 0.610	+ 3.466 D/V
# 35 Stadium Rim Road / Centennial	В 10.5 0.474	В 12.4 0.595	+ 0.121 V/C	# 60 Dwight Way / Telegraph Avenue	в 19.4 0.834	C 29.6 0.948	+10.227 D/V
# 36 Bancroft Way / Shattuck Avenue	в 12.1 0.637	в 16.7 0.734	+ 4.594 D/V	# 61 Dwight Way / College Avenue	B 14.3 0.484	в 14.2 0.596	-0.080 D/V
# 37 Bancroft Way / Fulton Street	A 6.6 0.380	A 8.8 0.432	+ 2.258 D/V	# 62 Dwight Way / Piedmont Avenue /	B 12.8 0.380	B 13.4 0.447	+ 0.515 D/V
# 38 Bancroft Way / Ellsworth Stree	C 3.7 0.000	D 4.9 0.000	+ 0.000 V/C	# 63 Dwight Avenue / Prospect Stree			
# 39 Bancroft Way / Dana Street	A 0.0 0.000	A 0.0 0.000	+ 0.000 V/C	# 64 Adeline Street / Ward Avenue /			
# 40 Bancroft Way / Telegraph Avenu	в 17.3 0.307	в 18.2 0.380	+ 0.878 D/V				
# 41 Bancroft Way / Bowditch Street	B 11.2 0.431	в 12.9 0.537	+ 0.106 V/C	# 65 Derby Street / Warring Street			
# 42 Bancroft Way / College Avenue	в 11.4 0.511	в 14.2 0.660	+ 0.149 V/C	# 66 Derby Street / Claremont Blvd.	B 14.8 0.690	C 22.8 0.798	+ 8.002 D/V
# 43 Bancroft Way / Piedmont Avenue	C 16.3 0.733	D 29.6 0.931	+ 0.198 V/C	# 67 Ashby Avenue / Seventh Street	D 46.8 0.911	F 88.2 1.109	+41.437 D/V
# 44 Durant Avenue / Shattuck Avenu	в 11.6 0.617	в 18.8 0.779	+ 7.286 D/V	# 68 Ashby Avenue / San Pablo Avenu	C 30.1 0.694	D 46.1 0.961	+15.969 D/V
# 45 Durant Avenue / Fulton Street	A 6.9 0.346	A 9.8 0.424	+ 2.866 D/V	# 69 Ashby Avenue / Adeline Street	D 46.4 0.490	D 39.2 0.605	-7.212 D/V
# 46 Durant Avenue / Telegraph Aven				# 70 Ashby Avenue / Shattuck Avenue	C 26.3 0.709	D 36.5 0.723	+10.185 D/V
				# 71 Ashby Avenue / Telegraph Avenu	C 24.9 0.869	C 26.8 0.989	+ 1.818 D/V
# 47 Durant Avenue / College Avenue				# 72 Ashby Avenue / College Avenue	C 25.8 0.912	D 37.1 0.963	+11.374 D/V
# 48 Durant Avenue / Piedmont Avenu							
Traffix 7.5.0715 (c) 2002 Dowling	Assoc. Licensed	to FEHR & PEERS	, LAFAYETTE	Traffix 7.5.0715 (c) 2002 Dowling	Assoc. Licensed	to FEHR & PEERS	, LAFAYETTE

UC Berkeley LRDP EIR
2020 No Project Conditions
PM Peak Hour

Intersection	Base Del/ V/ LOS Veh C	Future Del/ V/ LOS Veh C	Change in
# 49 Channing Way / Shattuck Avenue	A 5.3 0.699	A 9.2 0.791	+ 3.854 D/V
# 50 Channing Way / Fulton Street	C 15.6 0.642	D 26.6 0.828	+ 0.186 V/C
# 51 Channing Way / Telegraph Avenu	B 12.2 0.338	B 16.4 XXXXX	+ 4.166 D/V
# 52 Channing Way / College Avenue	A 9.7 0.402	в 15.8 0.615	+ 6.153 D/V
# 53 Haste Street / Shattuck Avenue	A 9.0 0.655	в 14.7 0.950	+ 5.701 D/V
# 54 Haste Street / Fulton Street	B 17.2 0.434	C 22.8 0.543	+ 5.515 D/V
# 55 Haste Street / Telegraph Avenu	B 12.1 0.375	B 14.4 0.482	+ 2.290 D/V
# 56 Haste Street / College Avenue	A 9.0 0.354	в 11.4 0.489	+ 2.418 D/V
# 57 Dwight Way / Martin Luther Kin	B 14.8 0.793	C 23.7 0.961	+ 8.957 D/V
# 58 Dwight Way / Shattuck Avenue	D 43.3 0.807	в 15.7 0.912	-27.589 D/V
# 59 Dwight Way / Fulton Street	B 13.7 0.526	в 17.1 0.610	+ 3.466 D/V
# 60 Dwight Way / Telegraph Avenue	B 19.4 0.834	C 29.6 0.948	+10.227 D/V
# 61 Dwight Way / College Avenue	B 14.3 0.484	в 14.2 0.596	-0.080 D/V
# 62 Dwight Way / Piedmont Avenue /	B 12.8 0.380	в 13.4 0.447	+ 0.515 D/V
# 63 Dwight Avenue / Prospect Stree	B 5.4 0.000	в 5.6 0.000	+ 0.000 V/C
# 64 Adeline Street / Ward Avenue /	C 21.3 0.844	C 31.6 0.985	+10.329 D/V
# 65 Derby Street / Warring Street	F 157.8 1.327	F 259.9 1.627	+ 0.300 V/C
# 66 Derby Street / Claremont Blvd.	B 14.8 0.690	C 22.8 0.798	+ 8.002 D/V
# 67 Ashby Avenue / Seventh Street	D 46.8 0.911	F 88.2 1.109	+41.437 D/V
# 68 Ashby Avenue / San Pablo Avenu	C 30.1 0.694	D 46.1 0.961	+15.969 D/V
# 69 Ashby Avenue / Adeline Street	D 46.4 0.490	D 39.2 0.605	-7.212 D/V
# 70 Ashby Avenue / Shattuck Avenue	C 26.3 0.709	D 36.5 0.723	+10.185 D/V
# 71 Ashby Avenue / Telegraph Avenu	C 24.9 0.869	C 26.8 0.989	+ 1.818 D/V
# 72 Ashby Avenue / College Avenue	C 25.8 0.912	D 37.1 0.963	+11.374 D/V

CUMULATIVE + LAB PM

CUMULATIVE + LAB PM Thu Mar 18, 2004 11:36:31 Page 6-4

CUMULATIVE + LAB PM ______

Thu Mar 18, 2004 11:36:31 Page 7-1 UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Del/ V/ Del/ V/ LOS Veh C LOS Veh C # 73 Ashby Avenue / Claremont Avenu C 21.8 0.638 C 24.8 0.744 + 3.001 D/V # 74 Tunnel Road / SR 13 B 12.9 0.738 B 14.6 0.849 + 1.693 D/V

2020 No Project Conditions PM Peak Hour Level Of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative) Intersection #1 Marin Avenue / San Pablo Avenue ********************** Cycle (sec): 90 Critical Vol./Cap. (X): 1.130 85.0 Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 180 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Protected Protected Protected Protected Rights: Include Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 -----| Volume Module: >> Count Date: 5 Dec 2002 << 4:00-6:00 PM Base Vol: 227 1022 114 169 659 18 18 656 137 145 736 154 Initial Bse: 227 1022 114 169 659 18 18 656 137 145 736 154 Added Vol: 0 27 0 0 6 0 0 0 0 0 2 13 Future: 30 209 50 90 221 28 27 181 10 47 163 90 Initial Fut: 257 1258 164 259 886 46 45 837 147 192 901 257 PHF Volume: 257 1258 164 259 886 46 45 837 147 192 901 257 0 0 0 Final Vol.: 257 1258 164 259 886 46 45 837 147 192 901 257 -----| Saturation Flow Module: Adjustment: 0.95 0.93 0.93 0.95 0.94 0.94 0.95 0.93 0.93 0.95 0.92 0.92 Lanes: 1.00 1.77 0.23 1.00 1.90 0.10 1.00 1.70 0.30 1.00 1.56 0.44 Final Sat.: 1805 3139 409 1805 3408 177 1805 3003 527 1805 2716 775 -----|----|-----| Capacity Analysis Module: Vol/Sat: 0.14 0.40 0.40 0.14 0.26 0.26 0.02 0.28 0.28 0.11 0.33 0.33 Crit Moves: *** *** *** Green/Cycle: 0.17 0.35 0.35 0.13 0.31 0.31 0.02 0.25 0.25 0.09 0.32 0.32 Volume/Cap: 0.84 1.13 1.13 1.13 0.84 0.84 1.05 1.13 1.13 1.13 1.05 1.05 Delay/Veh: 53.8 98.2 98.2 138.3 34.5 34.5 195.3 107 106.9 149.1 70.9 70.9 AdjDel/Veh: 53.8 98.2 98.2 138.3 34.5 34.5 195.3 107 106.9 149.1 70.9 70.9 DesignQueue: 11 45 6 12 33 2 2 34 6 9 33 10

CUMULATIVE + LAB PM ______

Thu Mar 18, 2004 11:36:31 Page 9-1

UC Berkeley LRDP EIR

2020 No Project Conditions

PM Peak Hour

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)
Intersection #2 Marin Avenue / The Alameda	<pre>Intersection #3 Gilman Street / Sixth Street **********************************</pre>
Cycle (sec): 70	Cycle (sec): 70
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Permitted Rights: Include Inclu	Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 19 19 19 19 19 19 19 19 19 19 19 19 19
Volume Module: >> Count Date: 19 Nov 2002 << 4:00 - 6:00 PM Base Vol: 316 322 1 43 178 77 50 534 193 17 480 69 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 5 Dec 2002 << 4:00-6:00 PM Base Vol: 346 46 159 24 47 52 28 497 109 53 489 11 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Capacity Analysis Module: Vol/Sat: 0.40 0.39 0.39 0.15 0.15 0.15 0.36 0.36 0.36 0.22 0.22 0.22 Crit Moves: **** Green/Cycle: 0.46 0.46 0.46 0.46 0.46 0.46 0.42 0.42 0.42 0.42 0.42 0.42 Volume/Cap: 0.85 0.83 0.83 0.33 0.33 0.33 0.85 0.85 0.85 0.51 0.51 0.51 Delay/Veh: 25.5 23.8 23.8 12.5 12.5 12.5 25.9 25.9 25.9 16.4 16.4 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Capacity Analysis Module: Vol/Sat: 0.50 0.50 0.50 0.08 0.08 0.08 0.57 0.57 0.57 0.62 0.62 0.62 Crit Moves: **** Green/Cycle: 0.27 0.27 0.31 0.31 0.31 0.31 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
AdjDel/Veh: 25.5 23.8 23.8 12.5 12.5 12.5 25.9 25.9 25.9 16.4 16.4 16.4 DesignQueue: 10 10 0 1 4 3 2 18 7 1 13 2	AdjDel/Veh: 409.8 410 296.2 18.5 18.5 18.5 22.7 22.7 22.7 42.1 42.1 DesignQueue: 15 1 7 1 4 1 0 12 5 3 9 0

CUMULATIVE + LAB PM Thu Mar 18, 2004 11:36:31 Page 10-1 CUMULATIVE + LAB PM Thu Mar 18, 2004 11:36:31 Page 11-1

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************	*****
Intersection #4 Gilman Street / San Pablo Avenue	Interse
Cycle (sec): 100 Critical Vol./Cap. (X): 1.036 Loss Time (sec): 12 (Y+R = 5 sec) Average Delay (sec/veh): 62.4 Optimal Cycle: 180 Level Of Service: E ***********************************	Cycle Loss Ti Optimal ****** Approac
Movement: L - T - R L - T - R L - T - R L - T - R	Movemer
Control: Protected Protected Permitted Permitted Rights: Include Include Include Include Min. Green: 4 35 35 4 35 35 31 31 31 31 31 31 31 31 31 31 31 Lanes: 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1 0	Control Rights: Min. Gr Lanes:
Volume Module: >> Count Date: 5 Dec 2002 << 4:00-6:00 PM Base Vol: 140 1057 87 126 830 112 174 345 155 40 233 82 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Base Vo Growth Initial Added V Future: Initial User Ad PHF Ad PHF Vol Reduct Reduct Reduct Redict FIT Ad Final V
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Saturat Sat/Lan Adjustm Lanes: Final S
Capacity Analysis Module: Vol/Sat: 0.11 0.39 0.39 0.08 0.33 0.33 0.44 0.44 0.44 0.33 0.33 0.33	Capacit Vol/Sat Crit Mc Green/C Volume/ Delay/V User De
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	AdjDel/ DesignQ *****

PM Peak Hour Level Of Service Computation Report

UC Berkeley LRDP EIR

2000 HCM Operations Method (Future Volume Alternative)

2020 No Project Conditions

ZUDU HCM Operations Method (Future volume Alternative)										
Intersection #5 Rose Street / Shattuck Avenue	Intersection #5 Rose Street / Shattuck Avenue									
Cycle (sec): 70	0.755 16.1 B									
Approach: North Bound South Bound East Bound W	Jest Bound - T - R									
Control: Permitted Permitted Permitted Rights: Include Include Include Min. Green: 17 17 17 17 27 27 27 27 Lanes: 1 0 1 0 1 0 1 0 0 1 0 0 1 0	Permitted Include 27 27 0 1! 0 0									
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	214 228 1.00 1.00 214 228 0 0 110 10 224 238 1.00 1.00 1.00 1.00 224 238 0 0 0 224 238 1.00 1.00 0 224 238 1.00 1.00 0 224 238 1.00 1.00 0 224 238									
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	1900 1900 3 0.88 0.88 0.44 0.46 731 777									
Crit Moves: **** Green/Cycle: 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.41 0.41 0.41 0.41 Volume/Cap: 0.76 0.53 0.53 0.59 0.41 0.41 0.58 0.58 0.12 0.76 Delay/Veh: 25.6 13.0 13.0 17.5 11.9 11.9 17.5 17.5 13.1 22.7 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	0.31 0.31 **** 0.41 0.41 60.76 0.76 22.7 22.7 1.00 1.00 22.7 22.7									
DesignQueue: 5 19 1 3 14 1 2 6 2 1	. 6 6									

UC Berkeley LRDP EIR 2020 No Project Conditions

PM Peak Hour

Level Of Service Computation Report	Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)	2000 HCM Operations Method (Future Volume Alternative)
**********************	************************
Intersection #6 Cedar Street / Martin Luther King Way	Intersection #7 Cedar Street / Shattuck Avenue
Cycle (sec): 65 Critical Vol./Cap. (X): 1.065 Loss Time (sec): 8 (Y+R = 5 sec) Average Delay (sec/yeh): 47.0	Cycle (sec): 65
Optimal Cycle: 180 Level Of Service: D	Optimal Cycle: 51 Level Of Service: B
Approach: North Bound South Bound East Bound West Bound	Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R
MOVEMENT: L - I - K L - I - K L - I - K	MOVEMENT: E - I - K E - I - K E - I - K
Control: Permitted Permitted Permitted Permitted	Control: Permitted Permitted Permitted Permitted
Rights: Include Include Include Include	Rights: Include Include Include Include
Min. Green: 20 20 20 20 20 20 20 20 20 20 20 20 20	Min. Green: 20 20 20 20 20 20 22 22 22 22 22 22
Man. dredit. 20 20 20 20 20 20 20 20 20 20 20 20 20	Tanes: 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0
Volume Module: >> Count Date: 6 Nov 2002 << 4:00 - 6:00 PM	Volume Module: >> Count Date: 6 Nov 2002 << 4:00 - 6:00 PM
Base Vol: 53 614 65 30 541 12 20 297 57 68 296 65	Base Vol: 138 795 56 144 619 72 86 275 67 59 341 150
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Growth Adi: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Initial Bse: 53 614 65 30 541 12 20 297 57 68 296 65	Initial Bse: 138 795 56 144 619 72 86 275 67 59 341 150
Added Vol: 0 16 0 0 1 0 0 1 0 0 1 0	Added Vol: 0 2 0 0 0 0 0 1 0 0 1 0
Future: 20 210 30 20 80 10 10 110 10 30 10	Future: 20 230 40 20 210 10 10 80 40 60 20 40
Initial Fut: 73 840 95 50 622 22 30 408 67 78 327 75	Initial Fut: 158 1027 96 164 829 82 96 356 107 119 362 190
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
PHF Volume: 73 840 95 50 622 22 30 408 67 78 327 75	PHF Volume: 158 1027 96 164 829 82 96 356 107 119 362 190
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0	Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 73 840 95 50 622 22 30 408 67 78 327 75	Reduced Vol: 158 1027 96 164 829 82 96 356 107 119 362 190
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Final Vol.: 73 840 95 50 622 22 30 408 67 78 327 75	Final Vol.: 158 1027 96 164 829 82 96 356 107 119 362 190
Saturation Flow Module:	Saturation Flow Module:
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Adjustment: 0.90 0.90 0.90 0.89 0.89 0.89 0.93 0.93 0.93 0.73 0.73	Adjustment: 0.31 0.94 0.94 0.24 0.94 0.94 0.18 0.97 0.97 0.25 0.95 0.95
Lanes: 0.07 0.84 0.09 0.07 0.90 0.03 0.06 0.81 0.13 0.16 0.68 0.16	Lanes: 1.00 1.83 0.17 1.00 1.82 0.18 1.00 0.77 0.23 1.00 0.66 0.34
Final Sat.: 124 1427 161 121 1508 53 106 1435 236 226 947 217	Final Sat.: 595 3258 305 462 3242 321 346 1410 424 473 1181 620
Capacity Analysis Module:	Capacity Analysis Module:
Vol/Sat: 0.59 0.59 0.59 0.41 0.41 0.41 0.28 0.28 0.28 0.35 0.35 0.35	Vol/Sat: 0.27 0.32 0.32 0.36 0.26 0.26 0.28 0.25 0.25 0.25 0.31 0.31
CIIC MOVES.	CIIC MOVES.
Green/Cycle: 0.55 0.55 0.55 0.55 0.55 0.32 0.32 0.32 0.32 0.32 0.32	Green/Cycle: 0.54 0.53 0.53 0.53 0.53 0.53 0.34 0.34 0.34 0.34 0.34
Volume/Cap: 1.07 1.07 1.07 0.75 0.75 0.88 0.88 1.07 1.07 1.07	Volume/Cap: 0.49 0.59 0.59 0.67 0.48 0.48 0.82 0.75 0.75 0.74 0.91 0.91
Delay/Veh: 58.1 58.1 58.1 12.9 12.9 12.9 37.7 37.7 37.7 82.8 82.8 82.8	Delay/Veh: 7.5 3.9 3.9 16.3 3.2 3.2 64.7 27.0 27.0 45.5 39.9 39.9
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
AdjDel/Veh: 58.1 58.1 58.1 12.9 12.9 12.9 37.7 37.7 82.8 82.8 82.8	AdjDel/Veh: 7.5 3.9 3.9 16.3 3.2 3.2 64.7 27.0 27.0 45.5 39.9 39.9
DesignQueue: 1 16 2 1 11 0 1 11 2 2 9 2	DesignQueue: 3 19 2 3 15 1 2 9 3 3 9 5
**********************	**********************

_____ UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)												
*****											*****	*****
Intersection								*****	*****	****	*****	*****
Cycle (sec):		65			С	ritica	l Vol	./Cap.	(X):		0.75	55
Loss Time (s	ec):	8	(Y+R =	= 5 s	sec) A	verage	Delay	y (sec	c/veh):		16.	. 0
Optimal Cycl	e:	51			L	evel C)f Serv	/ice:				В
Approach: Movement:	T	т -	R	T	- Т	– R	Т	- Т	- R	Τ	- Т	- R
Control:	Per	rmitte	ed	1	Permit	ted		Permit	ted	1	Permit	ted
Rights:	II	nclude	9		Inclu	de		Inclu	ıde		Inclu	ıde
Min. Green: Lanes:	20	20	20	20	20	20	2.2	22	2.2	22	22	22
Lanes:	1 0	1 1	0 .	1 () 1	1 0	1 (0 0	1 0	1 (0 0	1 0
Volume Modul												
Base Vol:									67	59	341	150
Growth Adj:												
Initial Bse:												
												0
Added Vol: Future:	20 2	230	40	20	210	10	10	80	40	60	2.0	4.0
Initial Fut:	158 10	027	96	164	829	82	96	356	107	119		
User Adj: PHF Adj:	1.00 1	.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
						1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	158 10	027	96	164	829	82	96	356		119		190
Reduct Vol: Reduced Vol:	150 17	0	0	1.0	0	0	0	250	107	110	2.0	100
PCE Adj:	1 00 1)/_/ 	96	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
MLF Adj:	1 00 1	00 .	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
Final Vol.:									107			
Saturation F												
Sat/Lane:	1900 19	900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:												
Lanes:												
Final Sat.:												
Capacity Ana							1					
Vol/Sat:				0.36	0.26	0.26	0.28	0.25	0.25	0.25	0.31	0.31
Crit Moves:		'		****			0	3			****	
Green/Cycle:												
Volume/Cap:												
Delay/Veh:												
User DelAdj:											1.00	
AdiDel/Veh:	7.5	3.9	3.9	16.3	3.2	3.2	64.7	27.0	27.0	45.5	39.9	39.9

CUMULATIVE + LAB PM Thu Mar 18, 2004 11:36:31 Page 14-1 CUMULATIVE + LAB PM Thu Mar 18, 2004 11:36:31 Page 15-1 UC Berkeley LRDP EIR

2020 No Project Conditions

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)												

******			****	****	****	****				****	****	*****
Cycle (sec): 65												
						ound_					est_B	
Movement:			- R						- R		- T	
Control: Rights: Min. Green:		Permit Inclu	ted .	. 1	Permit Inclu			Permi Incl	tted ude	. 1	Permit Incl	tted ude
Lanes:			0 0			0 0		0 1!				0 0
Volume Modul Base Vol: Growth Adj: Initial Bse: Added Vol: future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	e: >> 91 1.00 91 40 132 1.00 1.00 132 1.00	Count 464 1.00 464 0 80 544 1.00 544 1.00 544 1.00 1.00 544	Date: 81 1.00 81 0 20 101 1.00 1.00 101 0 1.00 1.00 1.0	6 Nov 17 1.00 17 0 10 27 1.00 27 0 27 1.00	V 2002 196 1.00 196 0 10 206 1.00 206 1.00 206 1.00	2 << 4: 17 1.00 17 0 0 17 1.00 17 1.00 17 1.00 17 0 17	1.00 18 1.00 18 0 20 38 1.00 1.00 38 1.00	6:00 307 1.00 307 0 120 427 1.00 427 0 427 1.00 1.00 427	57 1.00 57 0 40 97 1.00 1.00 97 1.00	61 1.00 61 0 50 111 1.00 1.00 111 1.00	340 1.00 340 0 100 440 1.00 440 0 440 1.00	31 1.00 31 0 10 41 1.00 1.00 41 1.00
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	low M 1900 0.88 0.17 284	odule: 1900 0.88 0.70 1170	1900 0.88 0.13 217	1900 0.90 0.11 185	1900 0.90 0.82 1412	1900 0.90 0.07 117	1900 0.93 0.07 119	1900 0.93 0.76 1337	1900 0.93 0.17 304	1900 0.75 0.19 268	1900 0.75 0.74 1062	0.75 0.07 99
Capacity Ana Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj:	1ysis 0.46 0.46 1.00 50.3	Modul 0.46 **** 0.46 1.00 50.3	e: 0.46 0.46 1.00	0.15 0.46 0.31 12.0	0.15 0.46 0.31		0.32 0.41 0.77 24.3		0.32 0.41 0.77	0.41 0.41 1.00 56.7	0.41 **** 0.41 1.00 56.7	0.41
oser perad;	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

				PM Pea	ık Hour			
 		Level	Of	Service	Computat	tion Rep	port	
2000	HCM	Operati	ions	Method	(Future	Volume	Alternative)	

<pre>Intersection #9 Cedar Street / Euclid Avenue ***********************************</pre>											
Cycle (sec): Loss Time (sec	60)		С	ritica	1 Vol	/Cap.	(X):		0.63	3.5
Loss Time (s	ec). 8	Y+R	= 5 se	-c) A	verage	Dela	, (sec	/veh) •		13	9
Ontimal Cycle	e: 42	, (111	5 50	JC, 11	avel 0	of Sart	7 (DCC	, v C11) .		10.	B
Optimal Cycl	· * * * * * * * * * * * * * * * * * * *	:*****	*****	_ ****	****	*****	/ ± C C •	*****	****	*****	⊥ k*****
Approach: Movement:	NOI LII BC	ouna D	50u1	m DO	una	T.	ast DC	Julia	T VV 6	est DC	Julia
Movement:	ь – т I	- K	ь -	т	- K	ь .	- T	- K	ь .	- T	- K
Control: Rights:	Permit	ted	Pe	ermit	ted	' 1	Permit	ted	' 1	Permit	ted
Rights:	Inclu	ıde		Inclu	ide		Inclu	ıde		Inclu	ıde
Min. Green: Lanes:	17 17	17	17	17	17	17	17	17	17	17	0
Lanes:	0 0 1!	0 0	0 0	1.1	0 0	0 (1 1	0 0	0 .	1 0	0 0
		1			1	1					
Volume Modul											
Base Vol:	90 226	29	7	127	44	51	180	49	18	91	0
Growth Adj:	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:											
Added Vol:	0 0	0	0	0	0	3	0	0	0	0	0
Added Vol: Future:	50 30	0	0	1.0	20	40	100	40	10	70	0
Initial Fut:	140 256	29	7	137	64	94	280	89	28	161	0
User Adj:										1.00	
PHF Adj:						1.00				1.00	
PHF Volume:											
Reduct Vol:	0 0	2.5	,	107	04	74	200				
Reduced Vol:								89			
PCE Adj:	1 00 1 00	1 00	1 00	1 00	1 00	1 00	1 00				
MLF Adj:	1 00 1 00	1 00	1 00 1	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1.00
Final Vol.:	140 256	2.00	7.00	127	1.00	1.00	200	1.00	2.00	1.00	1.00
FINAL VOI.:											
Saturation F			1		1	1		1	1		1
Sat/Lane:			1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:											
Lanes:											
Final Sat .	516 944	107	60	1181	552	337	1004	319	256	1473	0.00
Final Sat.:					1						
Capacity Ana					·						
Vol/Sat:	0.27 0.27	0.27	0.12 (0.12	0.12	0.28	0.28	0.28	0.11	0.11	0.00
Crit Moves:							****				
Green/Cycle:	0.43 0.43	0.43	0.43 (0.43	0.43	0.44	0.44	0.44	0.44	0.44	0.00
Volume/Cap:	0.63 0.63	0.63	0.27 (27	0.27	0.63	0.63	0.63	0.25	0.25	0.00
Delay/Veh:											0.0
User DelAdj:											1.00
AdjDel/Veh:											0.0
DesignQueue:											

AdjDel/Veh: 50.3 50.3 50.3 12.0 12.0 12.0 24.3 24.3 24.3 56.7 56.7 56.7 DesignQueue: 3 12 2 1 4 0 1 10 2 3 10 1

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report											
	2000								t ternati	110)	
******											*****
Intersection											
******									*****	*****	******
Cycle (sec):		100			(Critica	l Vol	./Cap	. (X):	C	.875
Loss Time (s	ec):	0	(Y+R	= 4	sec) 1	Average	Dela	v (se	c/veh):		22.7
Optimal Cycl						Level C					C
*****			****	****	****	*****	****	****	*****	*****	******
Approach:	No	rth Bo	und	So	uth Bo	ound	E	ast B	ound	West	Bound
Movement:		- T				- R			- R		T - R
Control:	S	top Si	gn	S.	top S:	ign	S	top S	ign	Stop	Sign
Rights:		Inclu				ıde			ude	In	nclude
Min. Green:		0				0			0	0	
Lanes:			0 0			0 0			0 0		1! 0 0
Volume Modul											
Base Vol:	162	65	250	33	30	8	3		45		.11 25
Growth Adj:			1.00		1.00	1.00		1.00		1.00 1.	
Initial Bse:		65	250	33	30	8	3		45		.11 25
Added Vol:	7	-	20	0	0	0	0	0	0	2	0 0
Future:	10	0	30	0	0	0	0	20	20	10	10 0
Initial Fut:			300	33	30	8	3				.21 25
User Adj:		1.00	1.00		1.00	1.00		1.00		1.00 1.	
PHF Adj:		0.90	0.90		0.90	0.90		0.90		0.90 0.	
PHF Volume:	199	72	333	37	33	9	3		72		.34 28
Reduct Vol: Reduced Vol:	0 199	0 72	0 333	0 37	0 33	0 9	0	0 199	0 72	0 38 1	0 0
PCE Adi:		1.00	1.00		1.00			1.00		1.00 1.	
MLF Adj:		1.00	1.00		1.00	1.00		1.00		1.00 1.	
Final Vol.:		72	333	37		9		199		38 1	
Saturation F				1		1	1		1	1	1
Adjustment:				1 00	1.00	1.00	1.00	1 00	1.00	1.00 1.	00 1.00
_		0.12	0.55		0.42			0.73			
Final Sat.:	227	82	381	239	217	58	7	414	150	103 3	367 76
Capacity Ana	lysis	Modul	e:								
Vol/Sat:	0.88	0.88	0.88	0.15	0.15	0.15	0.48	0.48	0.48	0.37 0.	37 0.37
Crit Moves:	****			***				****		**	**
Delay/Veh:	31.8	31.8	31.8	10.3	10.3	10.3		13.7	13.7	12.3 12	
Delay Adj:			1.00		1.00	1.00		1.00	1.00	1.00 1.	
AdjDel/Veh:			31.8		10.3	10.3		13.7	13.7	12.3 12	
LOS by Move:		_	D	В	В	B	В	В	В		ВВ
ApproachDel:		31.8			10.3			13.7			2.3
Delay Adj:		1.00			1.00			1.00			.00
ApprAdjDel:		31.8			10.3			13.7		12	2.3
LOS by Appr:		D			В			В			В

	PM Pea	ak Hour	
		~	
	Level Of Service		
2000 HCM (Operations Method	(Future Volume	Alternative)

UC Berkeley LRDP EIR

2020 No Project Conditions

************ Intersection ********** Cycle (sec): Loss Time (se	#11	Hearst										
			*****					****	******			
Optimal Cycle	:	75 8 74	(Y+R	= 4 s	sec) A	Critica Average Level O	l Vol Delay f Serv	./Cap y (sed vice:	. (X): c/veh):	:	0.8	58 .2 C
**************************************											***** est B	
Movement:	L ·	- T	- R	L -	- T	- R	L -	- T	- R	L -	- T	- R
Control: Rights: Min. Green:	:	Permit Inclu	ted de	. 1	Permit Inclu	ted ide	. 1	Permit Incl	tted ide	1	Permi Incl	tted ude
Lanes:		0 1				1 0						
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	2: >> 34 1.00 34 0 20 54 1.00 54 0 54 1.00 54 1.00	Count 715 1.00 715 0 160 875 1.00 1.00 875 0 875 1.00 1.00 875	Date: 63 1.00 63 0 30 93 1.00 1.00 93 1.00 93	12 No 117 1.00 117 0 60 177 1.00 1.77 0 177 1.00	0v 200 537 1.00 537 0 240 777 1.00 1.00 777 1.00 1.00 777	02 << 4 54 1.00 54 0 40 94 1.00 1.00 94 1.00 1.00 94	:00 - 67 1.00 67 0 50 117 1.00 1.00 117 1.00 1.00	6:00 232 1.00 232 2 20 254 1.00 1.00 254 1.00 1.00 254	PM 20 1.00 20 0 20 40 1.00 40 40 1.00 40 40	122 1.00 122 35 50 207 1.00 1.00 207 0 207 1.00 207 207 207	321 1.00 321 17 20 358 1.00 1.00 358 1.00 1.00 358	136 1.00 136 2 90 228 1.00 1.00 228 1.00 228 1.00 228
Saturation Fl Sat/Lane: Adjustment: Lanes: Final Sat.:	0.00 Me 1900 0.25 1.00 481	0dule: 1900 0.94 1.81 3217	1900 0.94 0.19 342	1900 0.21 1.00 401	1900 0.93 1.78 3169	1900 0.93 0.22 383	1900 0.55 0.57 591	1900 0.55 1.24 1283	1900 0.55 0.19 202	1900 0.64 0.52 637	1900 0.64 0.90 1101	1900 0.64 0.58 701
Capacity Anal Vol/Sat: Crit Moves:				0.44	0.25	0.25	0.20	0.20	0.20	0.33	0.33	
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignOueue:	0.28 11.5 1.00 11.5	0.67 12.2 1.00 12.2	0.67 12.2 1.00 12.2	1.08 106.0 1.00 106.0	0.60 11.3 1.00 11.3	0.60 11.3 1.00 11.3	0.51 19.8 1.00 19.8	0.51 19.8 1.00 19.8	19.8 1.00 19.8	0.84 29.6 1.00 29.6	0.84 29.6 1.00 29.6	0.84 29.6 1.00

Page 18-1

Thu Mar 18, 2004 11:36:31 CUMULATIVE + LAB PM ______

Page 19-1

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Intersection #12 Hearst Avenue / Oxford Avenue Oxford Aven	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)												
Cycle (sec): 75								****	*****	*****	****	*****	
Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 52.2								****	*****	****	****	*****	
Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 52.2	Cycle (sec):	7	5		(Critica	l Vol	./Cap	. (X):		0.9	29	
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R	Loss Time (sec):		8 (Y+R	= 4	sec) i	Average	Dela	y (se	c/veh):	:	52		
Approach: North Bound	Optimal Cycle:	10	1		1	Level 0	f Ser	vice:				D	
Novement: L - T - R L L													
Control: Permitted Rights: Include Min. Green: 19 19 19 19 19 19 19 22 22 22 22 22 22 Lanes: 1 0 1 1 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 Volume Module: >> Count Date: 12 Nov 2002 << 4:00 - 6:00 PM Base Vol: 80 743 315 30 458 25 23 267 115 313 478 52 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Control:													
Rights: Include													
Min. Green: 19 19 19 19 19 19 19 22 22 22 22 22 22 22 22 22 22 10 1 0 1]			
Lanes: 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1													
Volume Module: >> Count Date: 12 Nov 2002 << 4:00 - 6:00 PM Base Vol: 80 743 315 30 458 25 23 267 115 313 478 52 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Volume Module: >> Count Date: 12 Nov 2002 << 4:00 - 6:00 PM Base Vol: 80 743 315 30 458 25 23 267 115 313 478 52 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Base Vol: 80 743 315 30 458 25 23 267 115 313 478 52 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Initial Bse: 80 743 315 30 458 25 23 267 115 313 478 52 Added Vol: 0 0 7 0 0 0 0 2 0 39 55 1 Future: 30 110 40 10 70 20 0 80 40 40 1120 10 Initial Fut: 110 853 362 40 528 45 23 349 155 392 1653 63 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Added Vol: 0 0 7 0 0 0 0 0 2 0 39 55 1 Future: 30 110 40 10 70 20 0 80 40 40 1120 10 Initial Fut: 110 853 362 40 528 45 23 349 155 392 1653 63 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	_												
Future: 30 110 40 10 70 20 0 80 40 40 1120 10 Initial Fut: 110 853 362 40 528 45 23 349 155 392 1653 63 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Initial Fut: 110 853 362 40 528 45 23 349 155 392 1653 63 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							-						
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
PHF Volume: 110 853 362 40 528 45 23 349 155 392 1653 63 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-												
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-												
Reduced Vol: 110 853 362 40 528 45 23 349 155 392 1653 63 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0			-	-		-	-	-	-	-	-	-	
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Final Vol.: 110 853 362 40 528 45 23 349 155 392 1653 63													
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190													
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190													
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	· ·												
Adjustment: 0.19 0.91 0.91 0.90 0.90 0.90 0.87 0.87 0.87 0.95 0.95 0.95 Lanes: 1.00 1.40 0.60 0.13 1.72 0.15 0.09 1.32 0.59 1.00 1.93 0.07 Final Sat.: 357 2420 1027 222 2937 250 144 2183 969 1798 3464 132				1 0 0 0	1000	1000	1000	1000	1000	1000	1000	1000	
Lanes: 1.00 1.40 0.60 0.13 1.72 0.15 0.09 1.32 0.59 1.00 1.93 0.07 Final Sat.: 357 2420 1027 222 2937 250 144 2183 969 1798 3464 132													
Final Sat.: 357 2420 1027 222 2937 250 144 2183 969 1798 3464 132													
Capacity Analysis Module: Vol/Sat: 0.31 0.35 0.35 0.18 0.18 0.18 0.16 0.16 0.16 0.22 0.48 0.48 Crit Moves: **** Green/Cycle: 0.28 0.28 0.28 0.28 0.28 0.28 0.61 0.61 0.61 0.61 0.61 0.61 Volume/Cap: 1.09 1.25 1.25 0.64 0.64 0.64 0.26 0.26 0.26 0.36 0.78 0.78 Delay/Veh: 142.2 146 145.9 26.7 26.7 26.7 7.1 7.1 7.1 7.5 13.2 13.2 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Capacity Analysis Module: Vol/Sat: 0.31 0.35 0.35 0.18 0.18 0.18 0.18 0.16 0.16 0.16 0.22 0.48 0.48 Crit Moves: **** Green/Cycle: 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.61 0.61 0.61 0.61 0.61 0.61 Volume/Cap: 1.09 1.25 1.25 0.64 0.64 0.64 0.26 0.26 0.26 0.36 0.78 0.78 Delay/Veh: 142.2 146 145.9 26.7 26.7 26.7 7.1 7.1 7.1 7.5 13.2 13.2 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Crit Moves: **** Green/Cycle: 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	· ·												
Green/Cycle: 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.61 0.61 0.61 0.61 0.61 0.61 Volume/Cap: 1.09 1.25 1.25 0.64 0.64 0.64 0.26 0.26 0.26 0.36 0.78 0.78 Delay/Veh: 142.2 146 145.9 26.7 26.7 26.7 7.1 7.1 7.1 7.5 13.2 13.2 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Vol/Sat: 0.3	0.35	0.35	0.18	0.18	0.18	0.16	0.16	0.16	0.22	0.48	0.48	
Volume/Cap: 1.09 1.25 1.25 0.64 0.64 0.64 0.26 0.26 0.26 0.36 0.78 0.78 Delay/Veh: 142.2 146 145.9 26.7 26.7 26.7 7.1 7.1 7.1 7.5 13.2 13.2 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Crit Moves:	****									****		
Delay/Veh: 142.2 146 145.9 26.7 26.7 26.7 7.1 7.1 7.5 13.2 13.2 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Green/Cycle: 0.2	0.28	0.28	0.28	0.28	0.28	0.61	0.61	0.61	0.61	0.61	0.61	
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume/Cap: 1.0	1.25	1.25	0.64	0.64	0.64	0.26	0.26	0.26	0.36	0.78	0.78	
	Delay/Veh: 142.	146	145.9	26.7	26.7	26.7	7.1	7.1	7.1	7.5	13.2	13.2	
AdiDel/Veh: 142 2 146 145 9 26 7 26 7 26 7 7 1 7 1 7 1 7 5 13 2 13 2	User DelAdj: 1.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
110 1010 110 110 110 110 110 110 110 11	AdjDel/Veh: 142.	146	145.9	26.7	26.7	26.7	7.1	7.1	7.1	7.5	13.2	13.2	
DesignQueue: 3 28 12 1 16 1 0 6 3 7 30 1													

PM Peak Hour Level Of Service Computation Report

UC Berkeley LRDP EIR

2020 No Project Conditions

2000 HCM Unsignalized Method (Future Volume Alternative)

Intersection #13 Hearst Avenue / Spruce Street ****************** Average Delay (sec/veh): 2.6 Worst Case Level Of Service: C ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include -----|----|-----|------| Volume Module: >> Count Date: 12 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 0 0 11 0 48 34 579 0 0 792 13 Initial Bse: 0 0 0 11 0 48 34 579 0 0 792 13 Added Vol: 0 0 0 1 0 0 0 10 0 95 3 0 0 0 0 0 20 0 130 0 0 170 0 Future: Initial Fut: 0 0 0 12 0 68 34 719 0 0 1057 16 Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.8 xxxx 6.9 4.1 xxxx xxxxx xxxx xxxx xxxxx FollowUpTim:xxxxx xxxx xxxxx 3.5 xxxx 3.3 2.2 xxxx xxxxx xxxx xxxxx xxxxx ______|___| Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 1493 xxxx 537 1073 xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxx xxxxx 116 xxxx 494 657 xxxx xxxxx xxxx xxxx xxxxx Move Cap.: xxxx xxxx xxxxx 112 xxxx 494 657 xxxx xxxxx xxxx xxxx xxxx ______|___| Level Of Service Module: Stopped Del:xxxxx xxxx xxxxx xxxxx xxxxx 10.8 xxxx xxxxx xxxxx xxxxx xxxxx LOS by Move: * * * * * B * * * * Movement: LT - LTR - RT Shrd StpDel:xxxxx xxxx xxxxx xxxxx 19.6 xxxxx 10.8 xxxx xxxxx xxxxx xxxxx xxxxx ApproachLOS:

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report

2000 HCM Unsignalized Method (Future Volume Alternative)

Intersection #14 Hearst Avenue / Arch Street / Le Conte Avenue

Average Delay (sec/yeh): 2 0 Worst Case Level Of Service: C

North Bound South Bound East Bound West Bound L - T - R L - T - R Approach: _____| Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include -----| Volume Module: >> Count Date: 12 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 0 0 6 0 135 146 439 0 0 668 6 Initial Bse: 0 0 0 6 0 135 146 439 0 0 668 6 Added Vol: 0 0 0 0 0 0 3 7 0 0 98 0 Future: 0 0 0 0 0 40 50 100 0 0 150 0 Initial Fut: 0 0 0 6 0 175 199 546 0 0 916 6 PHF Volume: 0 0 0 6 0 175 199 546 0 0 916 6 0 0 0 0 0 0 0 0 0 0 0 6 0 175 199 546 0 0 916 Reduct Vol: Ω 0 0 0 Final Vol.: Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.8 xxxx 6.9 4.1 xxxx xxxxx xxxx xxxx xxxxx FollowUpTim:xxxxx xxxx xxxxx 3.5 xxxx 3.3 2.2 xxxx xxxxx xxxxx xxxxx xxxxx Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 1590 xxxx 461 922 xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxx xxxxx 100 xxxx 553 749 xxxx xxxxx xxxx xxxx xxxxx Move Cap.: xxxx xxxx xxxxx 80 xxxx 553 749 xxxx xxxxx xxxx xxxx xxxx ______|___|___| Level Of Service Module: LOS by Move: * * * * * B * * * * * Movement: LT - LTR - RT
UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)

Intersection #15 Hearst Avenue / Scenic Avenue ************************ Average Delay (sec/veh): 0.9 Worst Case Level Of Service: B ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R -----|
 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Rights:
 Include
 Include
 Include
 Include

 Lanes:
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 1 1 0
 0 0 0 0 0 0 1 1 0
 0 0 0 0 0 0 1 1 0
 -----|----|-----|------| Volume Module: >> Count Date: 12 Nov 2002 << 4:00-6:00 PM Base Vol: 0 0 0 0 109 0 437 0 0 566 54 Initial Bse: 0 0 0 0 109 0 437 0 0 566 54 Added Vol: 0 0 0 0 11 0 0 0 86 0 Future: 0 0 0 0 0 30 0 100 0 140 10 Initial Fut: 0 0 0 0 150 0 537 0 0 792 PHF Volume: 0 0 0 0 150 0 537 0 0 792 64 Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx xxxxx xxxx 6.9 xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx FollowUpTim:xxxxx xxxx xxxxx xxxx xxxx 3.3 xxxxx xxxx xxxxx xxxx xxxx xxxx -----| Capacity Module: ______|___| Level Of Service Module: LOS by Move: * * * * * B * * * * * Movement: LT - LTR - RT

Shared LOS: * * * * C * * * * * * *

ApproachDel: xxxxx 17.7 xxxxxx xxxx ApproachLOS: * C * *

ApproachDel: xxxxxx 13.3 xxxxxx xxxxx ApproachLOS: * B * *

Level Of Service Computation Report

Intersection #16 Hearst Avenue / Euclid Avenue

Saturation Flow Module:

Capacity Analysis Module:

Crit Moves: ****

UC Berkeley LRDP EIR

2020 No Project Conditions

2000 HCM Operations Method (Future Volume Alternative) *****************

************************ Cycle (sec): 80 Critical Vol./Cap. (X): 0.631

Loss Time (sec): 12 (Y+R = 3 sec) Average Delay (sec/veh): 17.2
Optimal Cycle: 53 Level Of Service: B *************************

Approach: North Bound South Bound East Bound West Bound

Movement: L - T - R L - T - R L - T - R -----| Control: Permitted Permitted Permitted Rights: Include Include Include Include

Min. Green: 0 0 0 25 0 25 5 16 0 16 16 16

Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 1 0 0 0 0 1! 0 0

-----|

Base Vol: 4 0 1 57 0 115 120 307 0 2 503 23

Initial Bse: 4 0 1 57 0 115 120 307 0 2 503 23

PHF Volume: 4 0 1 67 0 155 160 394 0 2 709 33 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0

Reduced Vol: 4 0 1 67 0 155 160 394 0 2 709 33

Final Vol.: 4 0 1 67 0 155 160 394 0 2 709 33

-----|

Adjustment: 0.86 1.00 0.86 0.82 1.00 0.82 0.56 1.00 1.00 0.99 0.99

Lanes: 0.80 0.00 0.20 0.30 0.00 0.70 1.00 1.00 0.00 0.01 0.95 0.04

Final Sat.: 1307 0 327 470 0 1088 1058 1900 0 5 1800 84

Vol/Sat: 0.00 0.00 0.00 0.14 0.00 0.14 0.15 0.21 0.00 0.39 0.39

Green/Cycle: 0.31 0.00 0.31 0.31 0.00 0.31 0.54 0.54 0.00 0.54 0.54 Volume/Cap: 0.01 0.00 0.01 0.46 0.00 0.46 0.28 0.39 0.00 0.73 0.73 0.73 Delay/Veh: 19.0 0.0 19.0 25.1 0.0 25.1 11.3 11.9 0.0 18.8 18.8 18.8 AdjDel/Veh: 19.0 0.0 19.0 25.1 0.0 25.1 11.3 11.9 0.0 18.8 18.8 18.8 DesignQueue: 0 0 0 2 0 5 3 9 0 0 16 1

-----|

Added Vol: 0 0 0 0 0 0 0 7 0 0 76
Future: 0 0 0 10 0 40 40 80 0 0 130
Initial Fut: 4 0 1 67 0 155 160 394 0 2 709

Volume Module: >> Count Date: 5 Dec 2002 << 4:00-6:00 PM

Λ

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report

2000	HCM	Unsignalized	Method (Futur	e Volume	Alternative)

Intersection #17 Hearst Avenue / Le Rov Avenue ******************* Average Delay (sec/veh): 2.5 Worst Case Level Of Service: C ***** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|
 Control:
 Stop Sign
 Stop Sign
 Uncontrolled
 Uncontrolled

 Rights:
 Include
 Include
 Include
 Include

 Lanes:
 0 0 0 0 0 0 0 0 1! 0 0 0 1 0 0 0 0 0 1 0
 0 0 0 0 1 0 0
 0 0 0 0 0 0 0
 -----|----|-----|------| Volume Module: >> Count Date: 5 Dec 2002 << 4:00-6:00 PM Base Vol: 0 0 0 12 0 56 38 355 0 0 523 21 Initial Bse: 0 0 0 12 0 56 38 355 0 0 523 21 Added Vol: 0 0 0 0 0 0 0 7 0 0 76 0 Future: 0 0 0 0 0 10 20 90 0 0 140 10 Initial Fut: 0 0 0 12 0 66 58 452 0 0 739 31 Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.4 xxxx 6.2 4.1 xxxx xxxxx xxxx xxxx xxxxx FollowUpTim:xxxxx xxxx xxxxx 3.5 xxxx 3.3 2.2 xxxx xxxxx xxxx xxxxx xxxxx ______ Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 1313 xxxx 755 770 xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxx xxxxx 169 xxxx 412 854 xxxx xxxxx xxxx xxxx xxxxx Move Cap.: xxxx xxxx xxxxx 160 xxxx 412 854 xxxx xxxxx xxxx xxxx xxxxx Level Of Service Module: LOS by Move: * * * * * * A * * * * Movement: LT - LTR - RT Shrd StpDel:xxxxx xxxx xxxxx xxxxx 19.2 xxxxx 9.5 xxxx xxxxx xxxxx xxxxx xxxxx Shared LOS: * * * * C * A * * * * ApproachDel: xxxxx 19.2 xxxxx xxx ApproachLOS: * C * * *

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

_____ UC Berkeley LRDP EIR

2020 No Project Conditions

PM Peak Hour

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

		I	Level O	f Serv	ice (Computa	tion Rep	ort		
	2000 E						: Volume .		ive)	
******										*****
Intersection									******	*****
Cycle (sec):		70					l Vol./C			
	۰.۱			= 1 0						
Loss Time (se Optimal Cycle	٥٠, ٠	180) (111	- 1.	лес, _г	average	of Service	300/ Ven).	. 07	. ±
*******										*****
Approach:										
Movement:										
									Permi	
			ide			ide			Incl	
Rights:		18				18		clude 17 17		
Min. Green:			18							17
Lanes:		1!							0 1 0	
77. 1 26. 1 1										
Volume Module									60 107	4.0
Base Vol:	318	288	19	4		49		52 288	69 197	40
Growth Adj:	1.00		1.00		1.00				1.00 1.00	1.00
Initial Bse:			19	4		49		52 288	69 197	40
Added Vol:	26	31	7	0	12	0		6 1	8 50	0
Future:	90		10	0	0	20		30 60	10 60	10
Initial Fut:			36	4	215	69		88 349	87 307	50
User Adj:	1.00	1.00	1.00		1.00		1.00 1.		1.00 1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.	00 1.00	1.00 1.00	1.00
PHF Volume:	434	349	36	4	215	69	48	88 349	87 307	50
Reduct Vol:	0	0	0	0	0	0	0	0 0	0 0	0
Reduced Vol:	434	349	36	4	215	69	48	88 349	87 307	50
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.	00 1.00	1.00 1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.	00 1.00	1.00 1.00	1.00
Final Vol.:	434	349	36	4	215	69	48	88 349	87 307	50
Saturation F	low Mo	dule:								
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900 19	00 1900	1900 1900	1900
Adjustment:	0.68	0.68	0.68	0.96	0.96	0.96	0.73 0.	73 0.73	0.73 0.73	0.85
Lanes:	0.53	0.43	0.04	0.01	0.75	0.24	0.10 0.	18 0.72	0.22 0.78	1.00
Final Sat.:	687	552	57	25	1362	437	137 2	52 999	307 1084	1615
Capacity Ana	lysis	Modul	e:							
Vol/Sat:	0.63	0.63	0.63	0.16	0.16	0.16	0.35 0.	35 0.35	0.28 0.28	0.03
Crit Moves:		****					**			
Green/Cycle:	0.57	0.57	0.57	0.57	0.57	0.57	0.32 0.	32 0.32	0.32 0.32	0.32
Volume/Cap:			1.11		0.28		1.11 1.		0.90 0.90	0.10
Delay/Veh:				8.3		8.3	99.1 99		46.2 46.2	16.9
User DelAdj:			1.00		1.00	1.00	1.00 1.		1.00 1.00	1.00
Adinal /Wah:									16 2 46 2	

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)
***************	*****************
Intersection #18 Hearst Avenue / Gayley Road / LaLoma Avenue	Intersection #19 Berkeley Way / Oxford Street
Cycle (sec): 70 Critical Vol./Cap. (X): 1.108 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 67.1 Optimal Cycle: 180 Level Of Service: E	Cycle (sec): 75 Critical Vol./Cap. (X): 0.488 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 9.3 Optimal Cycle: 46 Level Of Service: A
Approach: North Bound South Bound East Bound West Bound	Approach: North Bound South Bound East Bound West Bound
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R	Movement: L - T - R L - T - R L - T - R
MOVEMENC: L - I - K L - I - K L - I - K L - I - K	MOVEMENT: L - 1 - K L - 1 - K L - 1 - K
Control: Permitted Permitted Permitted Permitted	Control: Permitted Permitted Permitted Permitted
Rights: Include Include Include Include	Rights: Include Include Include Include
Min. Green: 18 18 18 18 18 17 17 17 17 17	Min. Green: 18 18 18 18 18 18 20 20 20 20 20 20 20
Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 1! 0 0 0 1 0 0 1	Lanes: 1 0 1 1 0 1 0 1 1 0 0 0 1! 0 0 1 0 0 1 0
Volume Module: >> Count Date: 5 Dec 2002 << 4:00-6:00 PM	Volume Module: >> Count Date: 12 Nov 2002 << 4:00 - 6:00 PM
Base Vol: 318 288 19 4 203 49 28 52 288 69 197 40	Base Vol: 48 1039 3 4 890 22 72 2 51 29 18 42
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Initial Bse: 318 288 19 4 203 49 28 52 288 69 197 40	Initial Bse: 48 1039 3 4 890 22 72 2 51 29 18 42
Added Vol: 26 31 7 0 12 0 0 6 1 8 50 0	Added Vol: 0 7 0 0 39 0 0 0 0 0 0
Future: 90 30 10 0 0 20 20 30 60 10 60 10	Future: 20 160 0 0 170 0 10 0 10 20 0 10
Initial Fut: 434 349 36 4 215 69 48 88 349 87 307 50	Initial Fut: 68 1206 3 4 1099 22 82 2 61 49 18 52
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
PHF Volume: 434 349 36 4 215 69 48 88 349 87 307 50	PHF Volume: 68 1206 3 4 1099 22 82 2 61 49 18 52
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0	Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 434 349 36 4 215 69 48 88 349 87 307 50	Reduced Vol: 68 1206 3 4 1099 22 82 2 61 49 18 52
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Final Vol.: 434 349 36 4 215 69 48 88 349 87 307 50	Final Vol.: 68 1206 3 4 1099 22 82 2 61 49 18 52
Saturation Flow Module:	Saturation Flow Module:
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Adjustment: 0.68 0.68 0.68 0.96 0.96 0.96 0.73 0.73 0.73 0.73 0.85	Adjustment: 0.20 0.95 0.95 0.18 0.95 0.95 0.75 0.75 0.75 0.73 0.89 0.89
Lanes: 0.53 0.43 0.04 0.01 0.75 0.24 0.10 0.18 0.72 0.22 0.78 1.00	Lanes: 1.00 1.99 0.01 1.00 1.96 0.04 0.57 0.01 0.42 1.00 0.26 0.74
Final Sat.: 687 552 57 25 1362 437 137 252 999 307 1084 1615	Final Sat.: 384 3601 9 336 3529 71 810 20 602 1391 434 1255
Capacity Analysis Module:	Capacity Analysis Module:
Vol/Sat: 0.63 0.63 0.63 0.16 0.16 0.16 0.35 0.35 0.35 0.28 0.28 0.03	Vol/Sat: 0.18 0.33 0.33 0.01 0.31 0.31 0.10 0.10 0.10
Crit Moves: ****	Crit Moves: ****
Green/Cycle: 0.57 0.57 0.57 0.57 0.57 0.57 0.32 0.32 0.32 0.32 0.32	Green/Cycle: 0.63 0.63 0.63 0.63 0.63 0.63 0.27 0.27 0.27 0.27 0.27
Volume/Cap: 1.11 1.11 1.11 0.28 0.28 0.28 1.11 1.11 1.11 0.90 0.90 0.10	Volume/Cap: 0.28 0.53 0.53 0.02 0.50 0.50 0.38 0.38 0.38 0.13 0.16 0.16
Delay/Veh: 81.9 81.9 81.9 8.3 8.3 8.3 99.1 99.1 99.1 46.2 46.2 16.9	Delay/Veh: 7.0 8.1 8.1 5.3 7.8 7.8 23.1 23.1 23.1 21.2 21.2
User DelAdi: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	User DelAdi: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Adipel/Veh: 81.9 81.9 81.9 8.3 8.3 8.3 8.3 99.1 99.1 99.1 46.2 46.2 16.9	Adjpel/Veh: 7.0 8.1 8.1 5.3 7.8 7.8 23.1 23.1 23.1 21.1 21.2 21.2
DesignOueue: 8 7 1 0 4 1 1 3 10 2 9 1	DesignOueue: 1 20 0 0 19 0 3 0 2 2 1 2

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

			PM	I Peak	Hour						
200	00 HCM Ope	evel Of eratior	ns Met	hod (Future	Volur	ne Alt	ernati	ve)		+++++
Intersection #2	20 Univer	sity Av	zenue	/ Six	th Str	eet					
Cycle (sec): Loss Time (sec) Optimal Cycle:): 16	(Y+R =	= 5 s	sec) A	verage	Delay	/ (sec	:/veh):		99.	2
Approach: Movement: I	North Bo	und - R	Sou L -	th Bo	und – R	Ea L -	ast Bo - T	und - R	Wes	st Bo T	und - R
Control:	Prot+Pen Include 6 23 1 0 1	mit de 23 0 1	0 1 0	Permit Inclu 23	ted de 23 0 1	6 1 (rotect Inclu 15) 1	ed ide 15	Pro 6 1 0	otect Inclu 15 1	ed ide 15
Volume Module: Base Vol: Growth Adj: 1. Initial Bse: Added Vol: Future: Initial Fut: 3 User Adj: 1. PHF Adj: 1. PHF Volume: Reduct Vol: Reduced Vol: Reduced Vol: 3 PCE Adj: 1. MLF Adj: 1. Final Vol.: 3	>> Count 343 353 .00 1.00 343 353 0 0 70 353 423 .00 1.00 353 423 0 0 0 353 423 .00 1.00 353 423 .00 1.00 353 423	Date: 48 1.00 48 1 40 89 1.00 1.00 89 0 1.00 89	4 Dec 101 1.00 101 0 100 201 1.00 201 1.00 201 1.00 201	2002 239 1.00 239 3 130 372 1.00 1.00 372 1.00 372 1.00 372	< 4: 465 1.00 465 8 100 573 1.00 573 1.00 573 1.00 573	00-6:(163 1.00 163 1 20 184 1.00 1.00 184 1.00 1.00 184 1.00	00 PM 827 1.00 827 6 200 1033 1.00 1033 1.00 1.03 1.00 1.03 1.00 1.03 1.00 1.03 1.00 1.00	212 1.00 212 0 20 232 1.00 1.00 232 0 232 1.00 1.00	42 1 1.00 1 42 1 0 20 62 1 1.00 1 62 1 1.00 1 1.00 1 1.00 1	1205 1.00 1205 46 120 1371 1.00 1.371 0 1.371 1.00 1.371	33 1.00 33 0 10 43 1.00 1.00 43 0 43 1.00 1.00 43
Saturation Flow Sat/Lane: 19 Adjustment: 0. Lanes: 1. Final Sat.: 8	W Module: 900 1900 .47 1.00 .00 1.00 894 1900	1900 0.85 1.00 1615	1900 0.28 1.00 534	1900 1.00 1.00 1900	1900 0.85 1.00 1615	1900 0.95 1.00 1805	1900 0.92 1.63 2868	1900 0.92 0.37 644	1900 1 0.95 (1.00 1 1805 3	L900).95 L.94	1900 0.95 0.06 109
Capacity Analys Vol/Sat: 0. Crit Moves: ** Green/Cycle: 0. Volume/Cap: 0.	sis Module .39 0.22 *** .46 0.46	0.06 0.46	0.38 **** 0.30	0.20	0.35	0.10 **** 0.09	0.36	0.36	0.03 ().39 ****	0.39

PM Peak Hour Level Of Service Computation Report

UC Berkeley LRDP EIR

2020 No Project Conditions

******									ternati			++++++
Intersection	#21 t	Jniver	sity A	Avenue	/ San	Pablo	Aveni	ıe				
Cycle (sec): Loss Time (sec) Optimal Cycle	ec):	128 16 180) (Y+R	= 4 :	c sec) A L	ritica verage evel 0	al Vol e Delay Of Serv	./Cap y (sed	. (X): c/veh):		1.01 171	12 .5 F
Approach: Movement:	No:	rth Bo - T	ound - R	Son L	uth Bo - T	und - R	Ea L -	ast Bo	ound - R	We	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	Include 5 21 21		5 1 (Protected Include 5 21		Protected Include 5 22 22 1 0 1 1 0		P: 5	Protect Inclu 5 22 1 0 1			
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	233 1.00 233 0 50 283 1.00 1.00 283 1.00 283 1.00 283	Count 945 1.00 945 0 90 1035 1.00 1.00 1035 1.00 1035 1.00 1.00 1.00	2. Date 93 1.00 93 0 10 103 1.00 1.00 103 1.00 1.00 1.00	141 1.00 141 2 20 163 1.00 1.00 163 1.00 163 1.00 1.00	2 2002 681 1.00 681 4 220 905 1.00 905 1.00 905 1.00 905	<< 4: 84 1.00 84 0 60 144 1.00 1.00 144 1.00 144 1.00 1.44 1.00 1.44	00-6: 87 1.00 87 0 90 177 1.00 177 1.00 177 1.00	00 PM 986 1.00 986 6 190 1182 1.00 1.00 1182 1.00 1.182	105 1.00 105 0 80 185 1.00 1.00 185 0 185 1.00	71 1.00 71 1 10 82 1.00 1.00 82 0 82 1.00 1.00	906 1.00 906 46 60 1012 1.00 1.00 1012 0 1012 1.00 1.00 1	125 1.00 125 24 20 169 1.00 1.00 169 0 1.00 1.00
Saturation F: Sat/Lane: Adjustment: Lanes: Final Sat.: Capacity Anal Vol/Sat: Crit Moves:	low Mo 1900 0.95 1.00 1805 	1900 0.94 1.82 3237 Modul	1900 0.94 0.18 322	1900 0.95 1.00 1805	1900 0.93 1.73 3049	1900 0.93 0.27 485	1900 0.95 1.00 1805	1900 0.93 1.73 3059	1900 0.93 0.27 479 	1900 0.95 1.00 1805	1900 0.93 1.71 3028	1900 0.93 0.29 506
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	1.67 384.7 1.00 384.7	0.95 58.3 1.00 58.3 53	0.95 58.3 1.00 58.3	0.96 117.8 1.00 117.8 11	0.88 49.9 1.00 49.9 46	0.88 49.9 1.00 49.9	0.84 86.0 1.00 86.0	1.43 247 1.00 247 68	246.8 1.00 246.8 11	0.26 47.6 1.00 47.6	1.00 279 61	1.50 279.5 1.00 279.5

Delay/Veh: 46.4 25.9 20.0 205.9 45.3 151.7 193.1 60.7 60.7 103.1 139 139.2 AdjDel/Veh: 46.4 25.9 20.0 205.9 45.3 151.7 193.1 60.7 60.7 103.1 139 139.2 DesignQueue: 22 17 3 10 20 31 12 51 11 4 73 2

CUMULATIVE + LAB PM

Thu Mar 18, 2004 11:36:31 Page 29-1 UC Berkeley LRDP EIR

2020 No Project Conditions

PM Peak Hour

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)					
**************************************	**************************************					
Cycle (sec): 75	Cycle (sec): 75 Critical Vol./Cap. (X): 0.572 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 18.8 Optimal Cycle: 49 Level Of Service: B					
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R					
Control: Protected Permitted Permitted Permitted Rights: Include Include Include Min. Green: 5 23 23 23 23 23 17 17 17 17 17 17 Lanes: 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0	Control: Permitted Permitted Permitted Rights: Include Include Include Min. Green: 21 21 21 21 21 21 20 20 20 20 20 20 Lanes: 1 0 0 1 0 0 0 1! 0 0 0 1 0 1 0 0 0 1 0 1					
Volume Module: >> Count Date: 21 Nov 2002 << 4:00 - 6:00 PM Base Vol: 282 902 78 46 702 77 80 679 134 71 727 81 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 21 Nov 2002 << 4:00 - 6:00 PM Base Vol: 127 218 44 13 102 74 47 649 108 22 651 33 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					
Lanes: 1.00 1.84 0.16 1.00 1.80 0.20 1.00 1.66 0.34 1.00 1.81 0.19 Final Sat.: 1805 3278 288 266 3191 364 304 2926 593 304 3218 342	Lanes: 1.00 0.81 0.19 0.11 0.51 0.38 0.13 1.62 0.25 0.07 1.81 0.12 Final Sat.: 1336 1492 353 180 875 656 187 2339 357 116 2878 193					
Capacity Analysis Module: Vol/Sat: 0.18 0.34 0.34 0.29 0.24 0.24 0.36 0.29 0.29 0.27 0.27 0.27 Crit Moves: **** ****	Capacity Analysis Module: Vol/Sat: 0.10 0.15 0.15 0.13 0.13 0.36 0.36 0.36 0.27 0.27 0.27 Crit Moves: ****					
Green/Cycle: 0.13 0.52 0.52 0.39 0.39 0.39 0.33 0.33 0.33 0.33 0.33	Green/Cycle: 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.47 0.47 0.47 0.47 0.47 Volume/Cap: 0.30 0.44 0.44 0.37 0.37 0.37 0.76 0.76 0.76 0.58 0.58 0.58 Delay/Veh: 19.5 21.1 21.1 20.1 20.1 20.1 20.2 20.2 20.2					

UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

					n real							
		Т	Level O	f Ser	vice (Computa	tion I	Repor	t.			
2	2000 HCM Operations Method (Future Volume Alternative)											

	Intersection #24 University Avenue / SB Shattuck Avenue											
Cycle (sec):		75							. (X):			
Loss Time (se	ac) •			= 4	sec) 1	lverace	nela:	./ Cap	· (A) · ~/weh) ·		17	7
Optimal Cycle		53	} (111		1	average	of Sart	7 (5C)	c/ veii/.		Ι/.	. / B
********										****	*****	*****
Approach:											est Bo	
Movement:											- T	
Control:												
Rights:		Inclu				ıde			ude		Incli	
Min. Green:				16		16			16			16
Lanes:			0 0						1 0		1 0	
Volume Module										1		1
Base Vol:	0	0	0	55		146		374	254	74	642	640
Growth Adj:			1.00		1.00			1.00	1.00		1.00	1.00
Initial Bse:		0	0	55	576	146	131	374	254		642	640
Added Vol:	0	-	-	0	34	2	0	9	234	2	58	0
Future:	0		Λ	30	230		40	100	50	10	80	130
Initial Fut:			0	85	840		171	483	304	86	780	770
User Adj:			1.00		1.00			1.00	1.00		1.00	1.00
PHF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Volume:	0	0	0	85	840	178	171	483	304	86	780	770
Reduct Vol:	0	0	0	0	040	1/0	1/1	400	0	0	780	0
Reduced Vol:	-	0	0	85	-	-	171	483	304	86	780	770
PCE Adi:			1.00		1.00			1.00			1.00	1.00
MLF Adj:			1.00		1.00			1.00	1.00		1.00	1.00
MLF AQJ:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	0		0			178		483		86		770
Saturation F												
Sat/Lane:		1900			1900			1900			1900	1900
Adjustment:			1.00		0.78			0.81			0.67	0.67
Lanes:						0.48			0.77		1.43	1.41
Final Sat.:			0								1818	
Capacity Ana	-											
Vol/Sat:	0.00	0.00	0.00	0.25	0.25	0.25	0.37	0.26	0.26	0.43	0.43	0.43
Crit Moves:					****			. =-	. =-		****	
Green/Cycle:			0.00		0.33			0.57			0.57	0.57
Volume/Cap:			0.00		0.76	0.76		0.45	0.45		0.76	0.76
Delay/Veh:			0.0		26.3	26.3		10.4	10.4		14.9	14.9
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

20	20 N	o Proj	ect Condition	ns
		PM Pe	ak Hour	
Level	of S	ervice	Computation	Report

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)
2000 ncm Operations method (rutte vormme Arternative)
Intersection #25 University Avenue / NB Shattuck Avenue

Cycle (sec): 75
Loss Time (sec): 15 (Y+R = 4 sec) Average Delay (sec/veh): 17.5
Optimal Cycle: 47 Level Of Service: B
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R
Control: Protected Protected Protected Protected
Rights: Include Include Include Include Min. Green: 19 0 19 0 0 0 13 0 0 13 0
Lanes: 2 0 1! 0 1 0 0 0 0 0 0 2 0 0 0 2 0 0
Volume Module: >> Count Date: 12 Nov 2002 << 4:00 - 6:00 PM
Base Vol: 938 0 208 0 0 0 0 454 0 0 433 0
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Initial Bse: 938 0 208 0 0 0 0 454 0 0 433 0
Added Vol: 26 0 2 0 0 0 0 9 0 0 34 0
Future: 150 0 40 0 0 0 0 0 0 70 0
Initial Fut: 1114
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
PHF Volume: 1114 0 250 0 0 0 463 0 0 537 0
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 1114 0 250 0 0 0 0 463 0 0 537 0
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Final Vol.: 1114 0 250 0 0 0 0 463 0 0 537 0
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Lanes: 2.75 0.00 1.25 0.00 0.00 0.00 0.00 2.00 0.00 2.00 0.00 Final Sat.: 4271 0 1993 0 0 0 0 3249 0 0 3249 0
Capacity Analysis Module:
Vol/Sat: 0.26 0.00 0.13 0.00 0.00 0.00 0.14 0.00 0.00 0.17 0.00
Crit Moves: **** **** ****
Green/Cycle: 0.49 0.00 0.49 0.00 0.00 0.00 0.31 0.00 0.00 0.31 0.00
Volume/Cap: 0.53 0.00 0.26 0.00 0.00 0.00 0.00 0.46 0.00 0.53 0.00
Delay/Veh: 14.0 0.0 11.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
AdjDel/Veh: 14.0 0.0 11.3 0.0 0.0 0.0 0.0 22.3 0.0 0.0 23.4 0.0
DesignQueue: 25 0 5 0 0 0 0 14 0 0 16 0
Designede: 23 0 0 0 14 0 0 10 0 10 0 14 10 0 10 10 10 10 10 10 10 10 10 10 10 1

AdjDeJ/Veh: 0.0 0.0 0.0 26.3 26.3 26.3 23.1 10.4 10.4 14.9 14.9 14.9 DesignQueue: 0 0 0 3 25 5 3 9 6 2 15 15

______ UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)												

Cycle (sec): Loss Time (sec Optimal Cycle:	4 s	**************************************					0.783 22.9 C					
Approach: Movement:	North Bo	und - R	Sou L -	th Bo	und - R	Ea L -	ast Bo	ound - R	We	est Bo - T	ound - R	
Control: Rights:	 Prot+Permit Include			Permitted Include			Permit Inclu	ted ide	Permitted Include			
Min. Green: Lanes:	1 0 1	1 0	1 () 1	1 0	1 1	L 0	0 1	0 (1!	18	
Volume Module: Base Vol: Growth Adj: 1 Initial Bse: Added Vol: Future: Initial Fut: User Adj: 1 PHF Adj: 1 PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: 1 MLF Adj: 1 Final Vol:	: >> Count 278 771 .00 1.00 278 771 0 0 50 130 328 901 .00 1.00 328 901 0 0 328 901 .00 1.00 328 901 .00 1.00 328 901 .00 1.00 328 901 .00 1.00 328 901	Date: 16 1.00 16 0 16 1.00 16 1.00 16 1.00 16 0 16	12 No 32 1.00 32 0 10 42 1.00 1.00 42 0 42 1.00 1.00	0V 200 835 1.00 835 5 160 1000 1.00 1.00 1.00 1.00 1.00 1.00	12 << 4 106 1.00 106 34 30 170 1.00 1.00 170 0 170 1.00 1.00 1.00 1.00	:00 - 306 1.00 306 7 20 333 1.00 1.00 333 1.00 1.00 333	6:00 39 1.00 39 0 10 49 1.00 1.00 49 1.00 1.00 49	PM 330 1.00 330 4 20 354 1.00 354 1.00 354 1.00 354 1.00 354 1.00 354 1.00 354	9 1.00 9 0 0 9 1.00 1.00 9 1.00 9	37 1.00 37 0 10 47 1.00 1.00 47 1.00 1.00 47	40 1.00 40 0 10 50 1.00 1.00 50 0 50 1.00 1.00 50	
Saturation Flo Sat/Lane: 1 Adjustment: 0 Lanes: 1 Final Sat.:	Dw Module: 1900 1900 0.38 0.85 1.00 1.97 723 3183	1900 0.85 0.03 57	1900 0.26 1.00 489	1900 0.84 1.71 2716	1900 0.84 0.29 462	1900 0.59 1.74 1950	1900 0.59 0.26 287	1900 0.77 1.00 1454	1900 0.83 0.08 134	1900 0.83 0.44 698	1900 0.83 0.48 742	
Capacity Analy		e:										

2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)

Intersection #27 Univeristy Drive (East Gate) / Gayley Road												
Average Delay (sec/veh): 2.2 Worst Case Level Of Service: D												
Approach: Movement:	North Bound L - T - R		South Bound L - T - R			E d	ast Bo	ound - R				
Control: Rights: Lanes:	Uncontrolled Include 1 0 1 0 0		Uncontrolled Include 0 0 0 1 0			Stop Sign Include 1 0 0 0 1			Stop Sign Include 0 0 0 0 0			
Volume Module Base Vol:	59	552	0	0	505	52	41	0	81	0	0	0
Growth Adj: Initial Bse:	59	552	0	0	505	52	41	0	81	0	0	
Added Vol: Future:	0 20	64 110	0	0	21 60	0 10	0 10	0	0 20	0	0	0
Future: Initial Fut: User Adj:											0	0
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume: Reduct Vol: Final Vol.:	0	720	0	0	0	0	0	0	0	0	0	0
Critical Gap			0	U	200	02	JI	U	101	U	U	U
Critical Gp: FollowUpTim:	4.1	xxxx										
Capacity Modu							1 5 0 1		617			
Cnflict Vol:												
Potent Cap.: Move Cap.:												
Stopped Del:												
LOS by Move: Movement:	A	*	ъm *	* T m	* T mp	ъm *	F	*	В	* T m	* T mp	*
Shared Cap.:												
Shrd StpDel:	xxxxx	xxxx	XXXXX	XXXXX	xxxx	xxxxx	xxxxx	xxxx	XXXXX	XXXXX	xxxx	XXXXX
Shared LOS: ApproachDel: ApproachLOS:	X	xxxxx		* XX	xxxx		*			*		*

Vol/Sat: 0.45 0.28 0.28 0.09 0.37 0.37 0.17 0.17 0.24 0.07 0.07

Green/Cycle: 0.67 0.67 0.67 0.43 0.43 0.43 0.28 0.28 0.28 0.28 0.28 0.28

Volume/Cap: 0.68 0.43 0.43 0.20 0.87 0.87 0.61 0.61 0.87 0.24 0.24 0.24 Delay/Veh: 22.9 6.5 6.5 15.7 27.2 27.2 27.7 27.7 46.7 22.0 22.0 22.0 AdjDel/Veh: 22.9 6.5 6.5 15.7 27.2 27.2 27.7 27.7 46.7 22.0 22.0 22.0 DesignQueue: 11 13 0 1 26 4 10 2 11 0 1 2

Crit Moves: ****

UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)										

Intersection #28 Addison Street / Oxford Street										
Average Delay (sec/veh): 0.8 Worst Case Level Of Service: C										
Approach: North Bound South Bound East Bound West Bound										
Movement: L										
Control: Ur	ncontrolled	Uncontr	olled	Stop S	ign					
Lanes: 1	0 2 0 0	0 0 1	1 0	0 0 1!	0 0	0 0 0	0 0			
Volume Module: >>	Count Date	: 13 Nov 20	02 << 4	4:00 - 6:00	PM					
Base Vol: 32	2 1006 0	0 952	28	10 0	114	0 0	0			
Growth Adj: 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00			
Initial Bse: 32	2 1006 0	0 952	28	10 0	114	0 0	0			
Added Vol: 0	0 0	n 9	0		0	0 0	0			
Future: 10	180 0	0 170	10	0 0	10	0 0	0			
Initial Fut: 42		0 1131	38	10 0	124	0 0	0			
User Adj: 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00			
	0.94 0.94		0.94	0.94 0.94	0.94	0.94 0.94	0.94			
PHF Volume: 45	1262 0	0 1203	40	11 0	132	0 0	0			
Reduct Vol: 0	0 0	0 0	0	0 0	0	0 0	0			
Final Vol.: 45	1262 0	0 1203	40	11 0	132	0 0	0			
Critical Gap Modu	ıle:									
Critical Gp: 4.1	XXXX XXXXX	xxxxx xxxx	XXXXX	6.8 xxxx	6.9	xxxxx xxxx	XXXXX			
FollowUpTim: 2.2										
Capacity Module:										
Cnflict Vol: 919										
Potent Cap.: 615	XXXX XXXXX	XXXX XXXX	XXXXX	74 xxxx	707	XXXX XXXX	XXXXX			
	XXXX XXXXX									
Level Of Service										
Stopped Del: 11.3	XXXX XXXXX	XXXXX XXXX	XXXXX	XXXXX XXXX	XXXXX	XXXXX XXXX	XXXXX			
LOS by Move: B	* *	* *	*	* *	*	* *	*			
Movement: LT										
Shared Cap.: xxxx										
Shrd StpDel:xxxxx							XXXXX			
Shared LOS: *						* *	*			
ApproachDel: x	XXXXX	xxxxxx		17.8		xxxxxx				
ApproachLOS:	*	*		C		*				

2020 No Project Conditions	
PM Peak Hour	
Level Of Service Computation Report	

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)

Intersection #29 Center Street / SB Shattuck Avenue
Cycle (sec): 75 Critical Vol./Cap. (X): 0.612 Loss Time (sec): 12 (Y+R = 10 sec) Average Delay (sec/veh): 17.0 Optimal Cycle: 67 Level Of Service: B ***********************************
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Min. Green: 0 0 0 30 30 0 17 17 25 25 0 Lanes: 0 0 0 1 1 1 0 0 0 1 0 0
Volume Module: >> Count Date: 6 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 0 0 41 790 126 0 104 179 29 160 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.28 0.28 0.28 0.00 0.23 0.23 0.17 0.17 0.00 Crit Moves: **** Green/Cycle: 0.00 0.00 0.00 0.40 0.40 0.40 0.00 0.29 0.29 0.43 0.43 0.00 Volume/Cap: 0.00 0.00 0.00 0.71 0.71 0.71 0.00 0.78 0.78 0.41 0.41 0.00 Delay/Veh: 0.0 0.0 0.0 12.9 12.9 12.9 0.0 36.9 36.9 9.5 9.5 0.0 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0

UC Berkeley LRDP EIR

CUMULATIVE + LAB PM

______ UC Berkeley LRDP EIR 2020 No Project Conditions

Thu Mar 18, 2004 11:36:31 Page 37-1

2020 No Project Conditions

PM Peak Hour	PM Peak Hour						
Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)						
Intersection #30 Center Street / NB Shattuck Avenue	Intersection #31 Center Street / Oxford Street						
<pre>Cycle (sec): 75</pre>	<pre>Cycle (sec): 75</pre>						
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R						
Control: Permitted Permitted Permitted Rights: Include Include Include Include Include Min. Green: 40 40 40 0 0 0 17 17 0 0 17 17 Lanes: 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0	Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 19 19 19 19 19 19 19 19 19 19 19 10 0 0 1! 0 0 0 1! 0 0 0 1! 0 0 0 0 1! 0 0 0 0 0 1! 0						
Volume Module: >> Count Date: 6 Nov 2002 << 4:00 - 6:00 PM Base Vol: 50 982 86 0 0 0 81 55 0 0 139 58 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 13 Nov 2000 << 4:00 - 6:00 PM Base Vol: 87 998 24 19 980 67 33 6 84 37 9 16 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190						
Capacity Analysis Module: Vol/Sat: 0.29 0.29 0.29 0.00 0.00 0.00 0.15 0.15 0.00 0.00 0.18 0.18 Crit Moves: **** Green/Cycle: 0.53 0.53 0.53 0.00 0.00 0.00 0.29 0.29 0.00 0.00 0.29 0.29	Capacity Analysis Module: Vol/Sat: 0.32 0.33 0.33 0.04 0.35 0.35 0.12 0.12 0.12 0.04 0.04 0.04 Crit Moves: **** Green/Cycle: 0.64 0.64 0.64 0.64 0.64 0.64 0.25 0.25 0.25 0.25 0.25 0.25 Volume/Cap: 0.50 0.51 0.51 0.07 0.54 0.54 0.47 0.47 0.47 0.17 0.17 0.17 Delay/Veh: 14.0 8.1 8.1 5.6 8.4 8.4 27.9 27.9 27.9 22.8 22.8 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						

Thu Mar 18, 2004 11:36:31 Page 38-1

_____ UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report

2000 HCM 4-Way Stop Method (Future Volume Alternative)												
Intersection #32 Stadium Rim Road / Gayley Road												
Cycle (sec): 100												
Approach: Movement:	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R
Control: Rights: Min. Green: Lanes:	St	top Si Inclu 0	.gn .de 0	S t	top Si Inclu 0	ign ide 0	S - 0	top S: Inclu	ign ide 0	S t	top Si Inclu 0	.gn .de 0
Volume Module	e: >>	Count	Date	20 No	ov 200)2 << 4	:00 -	6:00	PM			
Base Vol: Growth Adj: Initial Bse: Added Vol:	0	1.00	19 1.00 19 7	1.00	19	1.00	1.00	7	1.00		0 1.00 0 0	232 1.00 232 25
Future: Initial Fut: User Adj:	0 0 1.00	90 488 1.00	10 36 1.00	157 1.00	50 528 1.00	0 1.00	20 1.00	0 7 1.00	0 15 1.00		0 0 1.00	30 287 1.00
PHF Adj: PHF Volume: Reduct Vol: Reduced Vol:	0	488 0	1.00 36 0	157 0	1.00 528 0 528	0 0	20 0	1.00 7 0 7	15 0	1.00 78 0 78	1.00	1.00 287 0 287
PCE Adj: MLF Adj: Final Vol.:	1.00 1.00 0	1.00 1.00 488	1.00 1.00 36	1.00 1.00 157	1.00 1.00 528	1.00	1.00 1.00 20	1.00 1.00 7	1.00 1.00 15	1.00 1.00 78	1.00 1.00 0	1.00 1.00 287
Saturation F												
Adjustment: Lanes: Final Sat.:	0.00	0.93 530	0.07 39	0.23 131	0.77	0.00	0.47 196	0.17	0.36 147	0.21	0.00	0.79 425
Capacity Anal Vol/Sat: Crit Moves:	lysis xxxx	Modul 0.92 ****	e: 0.92	1.20	1.20	xxxx			0.10			0.67
Delay/Veh: Delay Adj: AdjDel/Veh: LOS by Move:	0.0 1.00 0.0	44.6 1.00 44.6	1.00 44.6	1.00 126.2 F	1.00 126 F	1.00	1.00 11.9	11.9 1.00 11.9 B	1.00	1.00	0.0 1.00 0.0 *	21.4 1.00 21.4 C
ApproachDel: Delay Adj: ApprAdjDel: LOS by Appr:		44.6 1.00 44.6 E		:	126.2 1.00 126.2 F			11.9 1.00 11.9 B			21.4 1.00 21.4 C	

	Level Of Service Computation Report	
2000 HCM	Unsignalized Method (Future Volume Alternative)	

2020 No Project Conditions

PM Peak Hour

******	****	****	*****	****	****	****	*****	****	****	****	****	*****	
Intersection							****	****	*****	*****	****	*****	
Average Dela	y (se	c/veh;): *****	5.5	****	W(orst C	ase L	evel 0 *****	f Serv	ice: ****	E *****	
Approach: Movement:	L ·	- т	- R	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R	
	Uncontrolled Include			Un	contro Incl	olled ude	S	Stop Sign Include					
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Final Vol.: Critical Gap Critical Gpr	e: >> 46 1.00 46 0 46 1.00 1.00 46 0 46 Modu	Count 1002 1.00 1002 0 190 1192 1.00 1.00 1192 0 1192 le:	Date: 0 1.00 0 0 0 0 1.00 1.00 0 0 0 0 0 0 0	13 No 26 1.00 26 0 10 36 1.00 1.00 36 0 36	1082 1.00 1082 9 160 1251 1.00 1.251 0 1251	75 1.00 75 0 10 85 1.00 85 0 85 85	4:00 - 23 1.00 23 0 0 23 1.00 1.00 23 0 23	6:00 0 1.00 0 0 0 1.00 1.00 0 0	PM 1100 1.000 1100 0 300 1400 1.000 1440 0 1440	1.00 0 0 0 0 1.00 1.00 0	0 1.00 0 0 0 1.00 1.00 0	0 1.00 0 0 0 0 1.00 1.00	
FollowUpTim:	2.2	xxxx	XXXXX	2.2	xxxx	xxxxx	3.5	xxxx	3.3	xxxxx	xxxx	XXXXX	
Capacity Mode Cnflict Vol: Potent Cap.: Move Cap.:	ule: 1271 536 536	XXXX XXXX	XXXXX XXXXX	1192 593 593	XXXX XXXX	xxxxx xxxxx	2016 50 45	XXXX XXXX	580 447 447	xxxx xxxx xxxx	XXXX XXXX	XXXXX XXXXX	
Level Of Ser Stopped Del: LOS by Move: Movement: Shared Cap.: Shrd StpDel: Shared LOS: ApproachDel:	vice I 12.4 B LT xxxx 12.4 B	Module XXXX * - LTR XXXX XXXX	**************************************	11.5 B LT xxxx 11.5 B	XXXX * - LTR XXXX XXXX	**************************************	151.2 F LT xxxx xxxxx	XXXX * - LTR XXXX XXXX	16.7 C - RT xxxxx xxxxx	XXXXX * LT XXXX XXXX	XXXX * - LTR XXXX XXXX	XXXXX * - RT XXXXX XXXXX	
ApproachLOS:	Α.	*		Λ.	*			E		Α.	*		

CUMULATIVE + LAB PM Thu Mar 18, 2004 11:36:31 Page 40-1 CUMULATIVE + LAB PM Thu Mar 18, 2004 11:36:31 Page 41-1

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

20	חחת שו		Level (signali							- i 170		
********											****	*****
Intersection											****	*****
Average Delay										f Servi		F *****
Approach: Movement:	L ·	- T	- R	L ·	- T	ound - R	L ·	- T	- R	L -	est Bo - T	- R
Control: Rights: Lanes:	Un		olled ide	Un	contr		S.	top Si	ign ıde	St	top Si	ign ude
Volume Module Base Vol:				13 No						0		
Growth Adj: Initial Bse:			-	1.00	1.00			1.00	1.00	-	-	1.00
Added Vol: Future:	20	180	0	0	150	30	10	0	20	0	0	0
Initial Fut: User Adj: PHF Adj:	1.00	1175 1.00 1.00	0 1.00 1.00	1.00	1267 1.00 1.00	126 1.00 1.00		0 1.00 1.00	89 1.00 1.00		1.00	0 1.00 1.00
PHF Volume: Reduct Vol:	65	1175	0		1267	126	61	0	89	0	0	0
Final Vol.: Critical Gap	Modu.		0		1267	126	61		0.5	0	0	0
Critical Gp: FollowUpTim:	2.2	xxxx	XXXXX	xxxxx	xxxx	xxxxx	3.5	xxxx	3.3	XXXXX	xxxx	XXXXX
Capacity Modu	ıle:									xxxx		
Potent Cap.: Move Cap.:	507	xxxx	xxxxx	xxxx	xxxx	xxxxx	51		422	xxxx	xxxx	
Level Of Serv Stopped Del:				xxxxx	xxxx	xxxxx	xxxxx	xxxx	xxxxx	xxxxx	xxxx	xxxxx
LOS by Move: Movement:		* - LTR	* - RT			* - RT		* - LTR	* - RT	* LT -	* - LTR	* - RT
Shared Cap.: Shrd StpDel:										XXXX		
Shared LOS: ApproachDel:	В	* *	*	*	*		*	F 369.8	*	*	*	*
ApproachLOS:	X	*		X	*		•	509.8 F		X2	*	

2020	_	ect Condition ak Hour	ns	
 Level Of	Service	Computation	Report	

2000 HCM 4-Way Stop Method (Future Volume Alternative)

UC Berkeley LRDP EIR

*****	*******************												
Intersection #35 Stadium Rim Road / Centennial Drive													
Cycle (sec): Loss Time (sec) Optimal Cycle	<pre>Cycle (sec): 100</pre>									++++	0.595 12.4 B		
Approach: Movement:													
Movement:													
Control:	St	top Si	.gn	St	top Si	.gn	St	top S	ign	Stop Sign Include 0 0 0			
Rights:		Inclu	ide		Inclu	ıde		Inclu	ıde		Inclu	ıde	
Min. Green:	0	0	0	0	. 0	0	0	0	0	0	0	0	
Lanes:	. 0 () ()	1 0	0 :	1 0	0 0	0 () ()	0 0	. 0) 1!	0 0	
Volume Module	e: >>	Count	Date:	20 No	ov 200)2 << 4	:00 -	6:00	PM				
Base Vol:	0	99	140	102	57	0	0	0	0	204	0	146	
Growth Adj:			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Initial Bse: Added Vol:	0	99	140	102	57	0	0	0	0	204	0	146	
Added Vol:	0	0	0	8	0	0	0	0	0 0 0 0	0	0	46	
Future: Initial Fut:	0	20	20	20	10	0	0	0	0	10	0	20	
Initial Fut:	0	119	160	130	67	0	0	0	0	214	0	212	
User Adj:					1.00				1.00		1.00		
PHF Adj:					1.00	1.00			1.00		1.00		
PHF Volume:			160	130	67	0	0	0	0	214	0	212	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:									0				
PCE Adj: MLF Adj:	1.00	1.00	1.00						1.00				
									1.00				
Final Vol.:	0	119	160	130	67	0	0	0	0	214	0		
Saturation Fl													
Adjustment:				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lanes:													
Final Sat .	0	296	398	410	211	0	0	0	0	360	0	356	
Capacity Anal													
Vol/Sat:	XXXX	0.40	0.40	0.32	0.32	XXXX	XXXX	XXXX	XXXX	0.59		0.59	
Crit Moves: Delay/Veh:		****			****					***			
Delay/Veh:	0.0	10.9	10.9								0.0		
Delay Adj:									1.00		1.00		
AdjDel/Veh:									0.0			14.1	
LOS by Move:	*	В	В	В	В	*	*	*	*	В	*	В	
ApproachDel:		10.9			10.8		X	KXXXX			14.1		
Delay Adj:		1.00			1.00		2	XXXXX			1.00		
ApproachDel: Delay Adj: ApprAdjDel: LOS by Appr:		10.9			10.8		X	KXXXX			14.1		
LOS by Appr:		В			В			*			В		
	x x x :			~ * * * * *			~ * * * * * *			~ × × × ×			

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)

Intersection #36 Bancroft Way / Shattuck Avenue

Approach:	North Bo	ound	Soi	uth Bo	und	E	ast Bo	ound	West Bound		
Movement:	L - T	- R	L ·	- т	- R	L ·	- т	- R	L ·	- т	- R
			Permitted								
Pighte:	Incl	Ingludo				Incli	100	Include			
Rights: Min. Green:	10 10	1ac	0	10	10	0	11101	n	16	16	16
Lanes:	1 0 10	0 0	0	1 1	1 0	^ ′	0 11	0	1 /	7 0	1 0
Lanes:	1 0 2	0 0	, 0 1	J	1 0	, 0 '	0 1:	0 0	, I () 0	1 0
Volume Module											
		Date:							0.50	0.7	
Base Vol:	30 1186	-	0		20	1	-				
Growth Adj:											1.00
Initial Bse:	30 1186	0			23	1	0	38	258	97	111
Added Vol:						0					0
	10 150	0							30		20
Initial Fut:		0	0	1274	33	1	0	38	297	117	131
User Adj:	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	40 1365		0	1274	33	1	0	38	297	117	131
Reduct Vol:	0 0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	40 1365	0	0	1274						117	
PCE Adj:	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:			1.00		1.00			1.00		1.00	
Final Vol.:	40 1365	0									
Saturation F			1		1	1		'	1		1
Sat/Lane:			1900	1900	1900	1900	1 9 0 0	1900	1900	1900	1900
Adjustment:			1.00		0.85		1.00			0.83	
Lanes:					0.05						0.53
Final Sat.:	261 2240	0.00								743	
Fillal Sat.:											
	•										
Capacity Ana				0 40	0 10	0 00		0 00	0 04	0 16	0 16
Vol/Sat:		0.00	0.00	0.40	0.40	0.03	0.00	0.03	****	0.16	0.16
Crit Moves:											
Green/Cycle:					0.57		0.00			0.32	
Volume/Cap:					0.71		0.00			0.49	
Delay/Veh:			0.0		13.8	18.1	0.0			23.9	
User DelAdj:					1.00		1.00			1.00	
AdjDel/Veh:							0.0			23.9	
DesignQueue:										3	
*****	****	*****	****	*****	****	****	****	*****	****	****	*****

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative)											
Intersection	#37 Band	roft Way	/ Fu	lton S	Street						
Cycle (sec): 75											
Approach: Movement:	North L - 1	Bound ' - R	Son L ·	uth Bo - T	ound - R	Ea L -	ast Bo	ound - R	We L	est B	ound - R
Control: Rights: Min. Green: Lanes:	Perm Inc 17 1 0 1 1	nitted clude .7 0	0	Permit Inclu 17 0 2	ited ide 17 1 0	0 0	Perminon Include 0 0 0	tted ude 0	24	Permi Igno: 24 1 1	tted re 24 0 1
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	e: >> Cou 18 16 1.00 1.0 18 16 0 10 1 28 17 1.00 1.0 28 17 0 28 17 1.00 1.0 28 17 1.00 1.0 28 17	nnt Date: 44	13 No 0 1.00 0 0 0 1.00 0 0 0 1.00 0 0 0	DV 200 1066 1.00 1066 4 130 1200 1.00 1.00 1200 0 1200 1.00 1.00	02 << 4 165 1.00 165 5 20 190 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6:00 0 1.00 0 0 0 1.00 1.00 0 0 1.00 1.00	PM 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 1.00 12 0 10 22 1.00 1.00 22 0 22 1.00 1.00	287 1.00 287 4 30 321 1.00 1.00 321 1.00 321 1.00 321	898 1.00 898 0 170 1068 0.00 0.00 0 0 0 0.00 0.00 0.00
Sat/Lane: Adjustment:	1900 190 0.75 0.7 0.28 1.7 393 244	1900 15 1.00 12 0.00	0.00	0.89 2.59 4384	0.89 0.41 694	1.00	1900 1.00 0.00 0	1.00	0.81 0.13 197	1900 0.81 1.87 2872	1.00 1.00 1900
Capacity Anal Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue: **********************************	0.07 0.0 0.57 0.5 0.12 0.1 4.8 4. 1.00 1.0 4.8 4.	dule: 07 0.00 67 0.00 8 0.0 8 0.0 9 1.00 8 0.0 3 0	0.00 0.00 0.00 0.0 1.00 0.0	0.27 **** 0.57 0.48 6.5 1.00 6.5 23	0.27 0.57 0.48 6.5 1.00 6.5	0.00 0.00 0.00 0.0 1.00 0.0	0.00 0.00 0.00 0.0 1.00 0.0	0.00 0.00 0.00 0.0 1.00 0.0	0.11 0.32 0.35 20.5 1.00 20.5	0.11 **** 0.32 0.35 20.5 1.00 20.5	0.00 0.00 0.00 0.0 1.00 0.0

2020 No Project Conditions PM Peak Hour

UC Berkeley LRDP EIR

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)												

Average Delay (sec/veh): 4.9 Worst Case Level Of Service: D												
Approach: Movement:	L ·	- T	ound - R	L	- T	- R	L ·		- R	L -	est Bo	- R
Control: Rights:			ign	S.		ign	Un		olled	Uno		olled
Lanes:		1 0				0 1	-		0 0		0 1	
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Critical Gap Critical Gp: FollowUpTim:	348 1.00 348 0 50 398 1.00 1.00 398 0 398 Modu	Count 11 1.00 11 0 0 11 1.00 1.00 1.00 11 0 11 0 6.5		13 NN 0 1.00 0 0 0 0 1.00 1.00 0 0 0 0 0 0 0 0	0 200 0 1.00 0 0 0 0 0 0 1.00 1.00 0 0	02 << 100 1.00 1.00 0 0 100 0 100 1.00 1.00 1	4:00 - 0 1.00 0 0 0 1.00 1.00 0 0 0 0 0 0 0 0	6:00 0 1.00 0 0 0 0 1.00 1.00 0 0	PM 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1.00 0 0 0 1.00 1.00 0	877 1.00 877 4 230 1111 1.00 1.00 1111 0 1111 xxxx	6 1.00 6 0 0 6 1.00 1.00 6 0 6
Capacity Modu												
Potent Cap.: Move Cap.:	445 362	209 209	xxxxx	XXXX	xxxx	533 533	XXXX	xxxx	xxxxx	XXXX	xxxx xxxx	xxxxx
Level Of Serv	Level Of Service Module: Stopped Del: 26.5 xxxx xxxxx xxxx xxxx xxxx xxxx xxxx											
LOS by Move: Movement:	D LT - 348	* - LTR xxxx	* - RT xxxxx	LT XXXX	* - LTR xxxx	B - RT xxxxx	LT · xxxx xxxxx	* - LTR xxxx	* - RT xxxxx	* LT - XXXX XXXXX	* - LTR xxxx	* - RT xxxxx

CUMULATIVE + LAB PM Thu Mar 18, 2004 11:36:31 Page 44-1 CUMULATIVE + LAB PM Thu Mar 18, 2004 11:36:31 Page 45-1 _____

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report

20									lternat			++++++
Intersection	#39 1	Bancr	oft Wa	y / Da:	na St	reet						
Average Dela												

Approach:	No	rth B	ound	So	uth Bo	ound	Εć	ast B	ound	W∈	est Bo	ound
Movement:	L ·	- T	- R	L	- T	- R	L ·	- T	- R	L -		
Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include											olled	
Rights:					Incl	ude						
Lanes:			0 0						0 0			
Volume Module												
Base Vol:			0			0				282	873	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Initial Bse:	0	0	0	0	0	0	0	0	0	282	873	0
Added Vol:	0	0	0	0	0	0	0	0	0	0	4	0
Future:	0	0	0	0	0	0	0	0	0	50	230	0
Initial Fut:	0	0	0	0	0	0	0	0	0	332	1107	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	0	0		0		0	0	0	0	332	1107	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Final Vol.:	0	0	0	0	0	0	0	0	0	332	1107	0
Critical Gap												
Critical Gp:												
FollowUpTim:												XXXXX
Capacity Mod										0		
Cnflict Vol:												XXXXX
Potent Cap.:												
Move Cap.:												XXXXX
Level Of Serv												
Stopped Del:				VVVVV	~~~~	VVVVV	VVVVV	VVVV	VVVVV	0 0	VVVV	xxxxx
LOS by Move:									*			
Movement:									- RT			- RT
Shared Cap.:												XXXXX
Shrd StpDel:												
Shared LOS:									*		*	
ApproachDel:	X	xxxxx		X.	xxxxx		X	xxxxx		XX	XXXX	
ApproachLOS:		*			*			*			*	

Capacity Analysis Module:

Crit Moves: ****

UC Berkeley LRDP EIR

2020 No Project Conditions

PM Peak Hour

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report	Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)	2000 HCM 4-Way Stop Method (Future Volume Alternative)
*******************	********************
stion #40 Pangraft Way / Malagraph Ayanya	Interposition #41 Paramett Way / Payditch Street

Lanes: 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2000 !	нсм ор	eratio	ns Me	thod	Computa (Future	Volu	me Al	ternati	ve)		
Cycle (sec): 70	*****	****	****	*****	****	****	****	****	****	*****	****	****	*****
Loss Time (sec): 8 (Y+R = 22 sec) Average Delay (sec/veh): 18.2									****	*****	****	****	*****
Movement: L - T - R L T - T - R L T - T R L T - T R L T R T T R L T T T R L T T T T R L T T T T	Loss Time (so	ec): e:	8 58	(Y+R	= 22 :	sec)	Average Level O	Dela f Ser	y (se vice:	c/veh):		18	.2 B
Control: Protected Rights: Include Include Include Include Min. Green: 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 Lanes: 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0	Movement:	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R
Min. Green: 29 0 0 0 0 0 0 0 0 0 0 0 0 21 Lanes: 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 Lanes: 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 Volume Module: >> Count Date: 13 Nov 2002 << 4:00 - 6:00 PM Base Vol: 495 0 0 0 0 0 0 0 0 0 0 0 0 0 0 675 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Control:							'					
Lanes: 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Rights:		Inclu	de								Incl	ude
Volume Module: >> Count Date: 13 Nov 2002 << 4:00 - 6:00 PM Base Vol: 495 0 0 0 0 0 0 0 0 0 0 0 0 675 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Min. Green:	29	0	0	0	0	0	0	0	0	0	21	0
Volume Module: >> Count Date: 13 Nov 2002 << 4:00 - 6:00 PM Base Vol: 495 0 0 0 0 0 0 0 0 0 0 0 0 0 675 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Base Vol: 495 0 0 0 0 0 0 0 0 0 0 0 0 675 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											0	675	0
Initial Bse: 495 0 0 0 0 0 0 0 0 0 0 0 0 0 675 Added Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 Future: 130 0 0 0 0 0 0 0 0 0 0 0 0 140 Initial Fut: 625 0 0 0 0 0 0 0 0 0 0 0 0 819 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0			1.00		1.00			1.00	1.00				
Added Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 Future: 130 0 0 0 0 0 0 0 0 0 0 0 0 0 140 Initial Fut: 625 0 0 0 0 0 0 0 0 0 0 0 0 819 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													0
Future: 130 0 0 0 0 0 0 0 0 0 0 0 140 Initial Fut: 625 0 0 0 0 0 0 0 0 0 0 0 0 819 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0				0	0	0	0	0	0	0	0	4	0
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0				0	0	0	0	0	0	0	0	140	0
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Initial Fut:	625	0	0	0	0	0	0	0	0	0	819	0
PHF Volume: 625 0 0 0 0 0 0 0 0 0 0 0 819 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Reduced Vol: 625 0 0 0 0 0 0 0 0 0 0 0 819 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PHF Volume:	625	0	0	0	0	0	0	0	0	0	819	0
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Reduced Vol:	625	0	0	0	0	0	0	0	0	0	819	0
Final Vol.: 625 0 0 0 0 0 0 0 0 0 0 819	PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	MLF Adj:	1.00	1.00										
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190													-
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190													
Adjustment: 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					1900	1900	1900	1900	1900	1900	1900	1900	1900
Lanes: 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
Final Sat.: 3502 0 0 0 0 0 0 0 0 0 5187													

2000 HCM 4-way Stop Method (Future volume Alternative)										
Intersection #41 Bancroft Way / Bowditch Street										

Cycle (sec): 100										
Loss Time (sec): $0 \text{ (Y+R = 4 sec) Average Delay (sec/veh):}$ 12.9										
Optimal Cycle: 0 Level Of Service: B										
*************************	* *									
Approach: North Bound South Bound East Bound West Bound										
Movement: L - T - R L - T - R L - T - R										
	-									
Control: Stop Sign Stop Sign Stop Sign Stop Sign										
Rights: Include Include Include Include										
	0									
Lanes: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0										
	-									
Volume Module: >> Count Date: 13 Nov 2002 << 4:00 - 6:00 PM										
Base Vol: 191 0 0 0 0 0 0 0 99 494	0									
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0)									
Initial Bse: 191 0 0 0 0 0 0 0 99 494	0									
Added Vol: 0 0 0 0 0 0 0 0 0 0 4 (0									
	0									
Initial Fut: 221 0 0 0 0 0 0 0 119 608	0									
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0)									
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0)									
	0									
	0									
	0									
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	a)									
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0										
· · · · · · · · · · · · · · · · · · ·	0									
	-									
Saturation Flow Module:										
Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	O.									
Lanes: 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0)									
	0									
	-									
Capacity Analysis Module:										
Vol/Sat: 0.35 xxxx xxxx xxxx xxxx xxxx xxxx xxxx x	X									
Crit Moves: ****										
Delay/Veh: 11.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.8 13.4 0.0	C									
Delay Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0										
Adjbel/Veh: 11.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.8 13.4 0.0										
LOS by Move: B * * * * * * * B B *										
Delay Adj: 1.00 xxxxx xxxxx 1.00 ApprAdiDel: 11.3 xxxxxx xxxxx 13.5										
ApproachDel: 11.3										
LOS by Appr: B * * B										
~~ · · · · · · · · · · · · · · · · · ·	* *									

Delay/Veh: 13.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.6 0.0 AdjDel/Veh: 13.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.6 0.0 DesignQueue: 15 0 0 0 0 0 0 0 0 0 23 0

UC Berkeley LRDP EIR

2020 No Project Conditions

PM Peak Hour

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

	of Service Computation op Method (Future Vol	lume Alternativ			2000 HCM 4-Way Sto		e Volume Alternati				
Intersection #42 Bancroft Way	/ College Avenue			**************************************							
Cycle (sec): 100	Critical Vo = 4 sec) Average Del Level Of Se	ol./Cap. (X): lay (sec/veh): ervice:	0.660 14.2 B	Cycle (sec): Loss Time (secoptimal Cycle	100 ec): 0 (Y+R =	Critica = 4 sec) Average Level (al Vol./Cap. (X): e Delay (sec/veh): Of Service:	0.931 29.6 D			
Approach: North Bound Movement: L - T - R	South Bound L - T - R L	East Bound - T - R	West Bound L - T - R	Approach: Movement:	North Bound L - T - R	South Bound L - T - R	East Bound L - T - R	West Bound L - T - R			
Control: Stop Sign Rights: Include Min. Green: 0 0 0 Lanes: 1 0 0 0 0	Stop Sign Include 0 0 0 0 0 0 0	Stop Sign Include 0 0 0 0 0 0	Stop Sign Include 0 0 0 1 1 0 0	Control: Rights: Min. Green: Lanes:	Stop Sign Include 0 0 0 0 0 0 0	Stop Sign	Stop Sign Include 0 0 0 0 0 0	Stop Sign Include 0 0 0 0 0 0 0			
Volume Module: >> Count Date: Base Vol: 371 0 0 Growth Adj: 1.00 1.00 1.00 Initial Bse: 371 0 0 Added Vol: 0 0 0 Future: 100 0 0 Initial Fut: 471 0 0 User Adj: 1.00 1.00 1.00 PHF Adj: 1.00 1.00 1.00 PHF Volume: 471 0 0 Reduct Vol: 0 0 0 Reduced Vol: 471 0 0 Reduct Vol: 0 1.00 1.00 MLF Adj: 1.00 1.00 1.00 Final Vol: 471 0 0 Saturation Flow Module: Adjustment: 1.00 1.00 1.00 Lanes: 1.00 0.00 0.00	13 Nov 2002 << 4:00 0 0 0 1.00 1.00 1.00 1.0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 1.00	- 6:00 PM 0 0 0 0 000 1.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 1.0	83 226 0 1.00 1.00 1.00 83 226 0 15 4 0 0 20 0 98 250 0 1.00 1.00 1.00 1.00 1.00 1.00 98 250 0 0 0 0 0 98 250 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	e: >> Count Date: 152 439 0 1.00 1.00 1.00 152 439 0 0 46 0 10 90 0 162 575 0 1.00 1.00 1.00 162 575 0 0 0 0 0 162 575 0 1.00 1.00 1.00 162 575 0 0 100 1.00 1.00 162 575 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	13 Nov 2002 << 4 0 357 159 1.00 1.00 1.00 0 357 159 0 22 19 0 40 10 0 419 188 1.00 1.00 1.00 0 419 188 0 0 0 0 419 188 1.00 1.00 1.00 0 419 188 1.00 1.00 1.00 0 419 188 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0 0 0 0 0 1.00 1.00 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1.00 1.00 0 0 0 0 0 0 0 0 0 0 0			
Final Sat.: 714 0 0	0 0 0	0 0 0	329 867 0			0 554 249	0 0 0	0 0 0			
Capacity Analysis Module: Vol/Sat: 0.66 xxxx xxxx Crit Moves: ****			***	Vol/Sat: Crit Moves:	***	***	xxxx xxxx xxxx				
Delay/Veh: 16.7 0.0 0.0 Delay Adj: 1.00 1.00 1.00 AdjDel/Veh: 16.7 0.0 0.0 LOS by Move: C * *	1.00 1.00 1.00 1.0	00 1.00 1.00	11.0 10.7 0.0 1.00 1.00 1.00 11.0 10.7 0.0 B B *	Delay/Veh: Delay Adj: AdjDel/Veh: LOS by Move:	37.9 37.9 0.0	0.0 19.5 19.5 1.00 1.00 1.00 0.0 19.5 19.5 * C C	0.0 0.0 0.0 1.00 1.00 1.00 0.0 0.0 0.0 * * *	0.0 0.0 0.0 1.00 1.00 1.00 0.0 0.0 0.0 * * *			
ApproachDel: 16.7 Delay Adj: 1.00 ApprAdjDel: 16.7 LOS by Appr: C	xxxxx xxxxx *	xxxxx xxxxx xxxxx	10.8 1.00 10.8	ApproachDel: Delay Adj: ApprAdjDel: LOS by Appr:	37.9 1.00 37.9 E	19.5 1.00 19.5	xxxxx xxxxx xxxxx *	xxxxx xxxxx xxxxx			

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative)											
Intersection #43 Bancroft Way / Piedmont Avenue											
Cycle (sec): 100											
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R - T - R											
Control: Stop Sign Include Incl											
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	0										
Capacity Analysis Module: Vol/Sat: 0.93 0.93 xxxx xxxx 0.76 0.76 xxxx xxxx xxxx xxxx xxxx xxxx xxxx x	X										
Delay/Veh: 37.9 37.9 0.0 0.0 19.5 19.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0										

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Intersection #44 Durant Avenue / Shattuck Avenue **********************************	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)											
Cycle (sec): 75 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 18.8 Optimal Cycle: 66	***************************************	*****										
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R	***************************************											
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R L - T - R L - T - R L - T - R L - T - R R Gights: Include Tinclude Tinclude Min. Green: 19 19 19 19 19 19 19 19 0 0 0 0 0 0 0 0	Cycle (sec): 75 Critical Vol./Cap. (X): 0.7	79										
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R L - T - R L - T - R L - T - R L - T - R R Gights: Include Tinclude Tinclude Min. Green: 19 19 19 19 19 19 19 19 0 0 0 0 0 0 0 0	Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 18	.8										
Approach: North Bound	Optimal Cycle: 66 Level Of Service:	В										
Novement: L - T - R L - T - T - R L	**************************	*****										
Control:	Movement: L - T - R L - T - R L - T - T	- R										
Min. Green: 19 19 19 19 19 19 19 0 0 0 0 0 0 0 0 0												
Min. Green: 19 19 19 19 19 19 19 0 0 0 0 0 0 0 0 0	Control: Permitted Prot+Permit Permitted Permi	tted										
Lanes: 1 0 1 1 0 1 1 0 1 0 1 1 0 0 0 1 0	Rights: Include Include Include Incl	ude										
Volume Module: >> Count Date: 14 Nov 2002 << 4:00 - 6:00 PM Base Vol: 69 1216 120 88 1099 51 9 72 55 0 0 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0												
Volume Module: >> Count Date: 14 Nov 2002 << 4:00 - 6:00 PM Base Vol: 69 1216 120 88 1099 51 9 72 55 0 0 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0												
Base Vol: 69 1216 120 88 1099 51 9 72 55 0 0 0 1 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0												
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0												
Initial Bse: 69 1216 120 88 1099 51 9 72 55 0 0 0 Added Vol: 0 29 0 0 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
Added Vol: 0 29 0 0 44 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1												
Initial Fut: 79 1415 180 148 1403 61 9 112 65 0 0 0 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Initial Bse: 69 1216 120 88 1099 51 9 72 55 0 0	-										
Initial Fut: 79 1415 180 148 1403 61 9 112 65 0 0 0 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Added Vol: 0 29 0 0 44 0 0 0 0 0 0	-										
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0		-										
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Initial Fut: 79 1415 180 148 1403 61 9 112 65 0 0	-										
PHF Volume: 79 1415 180 148 1403 61 9 112 65 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0												
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0											
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0												
Final Vol.: 79 1415 180 148 1403 61 9 112 65 0 0 0 0	PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190												
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Final Vol.: 79 1415 180 148 1403 61 9 112 65 0 0	0										
Adjustment: 0.16 0.84 0.84 0.86 0.85 0.85 0.77 0.77 0.77 1.00 1.00 1.00 Lanes: 1.00 1.77 0.23 1.00 1.92 0.08 0.10 1.20 0.70 0.00 0.00 0.00 Final Sat.: 308 2833 360 1625 3095 135 141 1758 1020 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
Lanes: 1.00 1.77 0.23 1.00 1.92 0.08 0.10 1.20 0.70 0.00 0.00 0.00 Final Sat.: 308 2833 360 1625 3095 135 141 1758 1020 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	1900										
Final Sat.: 308 2833 360 1625 3095 135 141 1758 1020 0 0 0 0 0 Capacity Analysis Module: Vol/Sat: 0.26 0.50 0.50 0.09 0.45 0.45 0.06 0.06 0.06 0.00 0.00 0.00 Crit Moves: *** **** Green/Cycle: 0.49 0.49 0.49 0.64 0.64 0.64 0.20 0.20 0.20 0.00 0.00 0.00 Volume/Cap: 0.52 1.02 1.02 0.14 0.71 0.71 0.32 0.32 0.32 0.00 0.00 0.00 Delay/Veh: 17.1 34.6 34.6 5.6 2.1 2.1 27.1 27.1 27.1 0.0 0.0 0.0 AdjDel/Veh: 17.1 34.6 34.6 5.6 2.1 2.1 27.1 27.1 27.1 0.0 0.0 0.0 0.00												
Capacity Analysis Module: Vol/Sat:												
Capacity Analysis Module: Vol/Sat: 0.26 0.50 0.50 0.09 0.45 0.45 0.06 0.06 0.06 0.00 0.00 0.00 Crit Moves: **** **** Green/Cycle: 0.49 0.49 0.49 0.64 0.64 0.64 0.20 0.20 0.20 0.00 0.00 0.00 Volume/Cap: 0.52 1.02 1.02 0.14 0.71 0.71 0.72 0.32 0.32 0.32 0.00 0.00 0.00 Delay/Veh: 17.1 34.6 34.6 5.6 2.1 2.1 27.1 27.1 27.1 0.0 0.0 0.0 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Final Sat.: 308 2833 360 1625 3095 135 141 1758 1020 0 0											
Vol/Sat: 0.26 0.50 0.50 0.09 0.45 0.45 0.66 0.06 0.06 0.00 0.00 0.00 Crit Moves: **** **** **** **** **** **** **** *												
Crit Moves: **** **** **** **** **** **** **** Green/Cycle: 0.49 0.49 0.49 0.64 0.64 0.64 0.62 0.20 0.20 0.20 0.00 0.00 0.00 Volume/Cap: 0.52 1.02 1.02 0.14 0.71 0.71 0.32 0.32 0.32 0.32 0.00 0.00 0.00 Delay/Veh: 17.1 34.6 34.6 36.6 2.1 2.1 27.1 27.1 27.1 0.0 0.0 0.0 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0												
Green/Cycle: 0.49 0.49 0.49 0.64 0.64 0.64 0.20 0.20 0.20 0.00 0.00 0.00 Volume/Cap: 0.52 1.02 1.02 0.14 0.71 0.71 0.32 0.32 0.32 0.32 0.00 0.00 0.00 Delay/Veh: 17.1 34.6 34.6 5.6 2.1 2.1 27.1 27.1 27.1 0.0 0.0 0.0 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0		0.00										
Volume/Cap: 0.52 1.02 1.02 0.14 0.71 0.71 0.32 0.32 0.32 0.00 0.00 0.00 Delay/Veh: 17.1 34.6 34.6 5.6 2.1 2.1 27.1 27.1 27.1 0.0 0.0 0.0 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0												
Delay/Veh: 17.1 34.6 34.6 5.6 2.1 2.1 27.1 27.1 27.1 0.0 0.0 0.0 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0												
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0												
AdjDel/Veh: 17.1 34.6 34.6 5.6 2.1 2.1 27.1 27.1 27.1 0.0 0.0 0.0												
DesignQueue: 2 34 4 2 23 1 0 4 2 0 0 0	DesignQueue: 2 34 4 2 23 1 0 4 2 0 0											

_____ UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

		нсм ор		ns Me	thod	(Future	Volur	me Alt	ternati			
************ Intersection ********	#45	Durant	Avenu	e / F	ulton	Street	:					
Cycle (sec): Loss Time (sec) Optimal Cycle ************************************	ec): e:	75 8 51	3 (Y+R	= 4	sec) A	Critica Average Level C	l Vol Delay	./Cap. y (sec vice:	. (X): c/veh):		0.42	24 .8 A
Approach: Movement:	No:	rth Bo	und - R	So:	uth Bo	ound - R	Ea L -	ast Bo	ound - R	We	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	0	Permit Inclu 0	ited ide 0 0 0	21	Permit Inclu 21 1 1	ited ide 0 0 0	22	Permit Inclu 22 0 1	tted ude 22 1 0	0 0	Permit Inclu 0 0	tted ude 0
Volume Modul. Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	0: >> 0 1.00 0 0 0 1.00 1.00 0 0 1.00 1.00	Count	Date: 0 1.00 0 0 0 0 0 1.00 1.00 1.00 0 1.00 0 0 0	14 No 527 1.00 527 0 70 597 1.00 597 1.00 1.00 597 1.00 597 1.00 597 1.00 597	760 760 1.00 760 4 90 854 1.00 1.00 854 1.00 1.00 854	02 << 4 0 1.00 0 0 0 0 1.00 1.00 1.00 0 0 1.00 1.00 0 0 0	1:00 - 137 1.00 137 0 20 157 1.00 157 0 157 1.00	6:00 219 1.00 219 0 110 329 1.00 329 0 329 1.00 1.00 329	PM 33 1.00 33 0 0 63 1.00 63 1.00 63 1.00 63 1.00 63 1.00 63 1.00 63 1.00 63	0 1.00 0 0 0 1.00 1.00 0 0 1.00	0 1.00 0 0 0 1.00 1.00 0 0 0 1.00	0 1.00 0 0 0 0 1.00 1.00 0 0 0
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	low M 1900 1.00 0.00	1900 1.00 0.00	1900 1.00 0.00	1900 0.95 1.23 2228	1900 0.95 1.77 3187	1900 1.00 0.00	1900 0.98 1.00 1854	1900 0.93 1.68 2957	1900 0.93 0.32 566	1900 1.00 0.00	1900 1.00 0.00 0	1900 1.00 0.00
Capacity Ana Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	0.00 0.00 0.00 0.00 0.0 1.00	Modul 0.00 0.00 0.00 0.0 1.00	0.00 0.00 0.00 0.00 0.0 1.00	0.27 0.60 0.45 5.2 1.00 5.2 11	0.27 **** 0.60 0.45 5.2 1.00	0.00 0.00 0.00 0.0 1.00	0.08 0.29 0.29 21.8 1.00	0.11 **** 0.29 0.38 22.1 1.00	0.11 0.29 0.38 22.1 1.00	0.00 0.00 0.00 0.0 1.00	0.00 0.00 0.00 0.0 1.00	0.00 0.00 0.00 0.0 1.00

2020 No Project Conditions

Thu Mar 18, 2004 11:36:31 Page 52-1 CUMULATIVE + LAB PM Thu Mar 18, 2004 11:36:31 Page 53-1

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report

PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)												
Intersection	Intersection #46 Durant Avenue / Telegraph Avenue											
Cycle (sec): Loss Time (se Optimal Cycle												
Approach: Movement:	No:	rth Bo - T	und – R	Sou L -	th Bo	ound - R	Ea L -	ast Bo - T	ound - R	We L -	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	0 0	Permit Inclu 18) 1	ted de 18	0 0	Permit Inclu 0	ited ide 0 0 0	17 0 1	Permit Inclu 17 L 2	ited of the state	0 0	Permit Inclu 0	ited ide 0
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future:	0 1.00	Count			ov 200 0			6:00 690		0 1.00 0 0	0	0 1.00 0 0
PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	1.00 1.00 0 0 0 1.00 1.00	1.00 1.00 472 0 472 1.00 1.00	151 1.00 1.00 151 0 151 1.00 1.00	0 1.00 1.00 0 0 0 1.00 1.00	1.00 0 0 0 1.00 1.00	0 1.00 1.00 0 0 0 1.00 1.00	222	1.00 850 0 850 1.00 1.00 850	0 1.00 1.00 0 0 0 1.00 1.00	1.00 0 0 0 1.00 1.00	0 0 0 1.00 1.00	0 1.00 1.00 0 0 0 1.00 1.00
Saturation Fl Sat/Lane: Adjustment: Lanes: Final Sat.:	0w Mo 1900 1.00 0.00	1900 0.92 1.52 2637	1900 0.92 0.48 843	1900 1.00 0.00 0	1900 1.00 0.00 0	1900 1.00 0.00	1900 0.91 0.62 1074	1900 0.91 2.38 4113	1900 1.00 0.00	1900 1.00 0.00 0	1.00 0.00 0	1900 1.00 0.00 0
Capacity Anal Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh:	0.00 0.00 0.00 0.00 0.0 1.00 0.0	Modul 0.18 **** 0.41 0.44 14.0			0.00 0.00 0.00 0.0		0.21 0.47 0.44 12.7 1.00	0.21 **** 0.47 0.44	0.00 0.00 0.00 0.0 1.00 0.0		0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.0 1.00 0.0
*****	****	****	****	****	****	*****	****	*****	*****	*****	*****	*****

******			eratio	ns Me	thod		Volum	me Alt	ternati			
Intersection	#47	Durant	Avenu	e / C	ollege	. Avenu	ie					
Cycle (sec): Loss Time (s Optimal Cycl												
Approach: Movement:	No	rth Bo	ound	So	uth Bo	ound	E	ast Bo	ound	We	est Bo	ound
Control: Rights: Min. Green: Lanes:	0	Permit Inclu 18 0 0	ted ide 18	0	Permit Inclu 0 1 0	ited ide 0	16 1	Permit Inclu 16 0 1	tted ude 16 10	0 0	Permit Inclu 0	tted ude 0
Volume Modul Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	e: >> 0 1.00 0 0 0 1.00 1.00 0 0 1.00 0	Count 189 1.00 189 0 40 229 1.00 229 1.00 229 1.00 1.00 229	2 Date: 62 1.00 62 4 20 86 1.00 1.00 86 0 86 1.00	19 No 16 1.00 16 0 16 1.00 1.00 16 0 1.00 16 0 1.00	50v 200 56 1.00 56 15 0 71 1.00 1.00 71 1.00 1.00 71	02 << 4 0 1.00 0 0 0 0 1.00 1.00 1.00 1.00 0 1.00 0 0 0	127 1.00 127 0 60 187 1.00 1.00 187 1.00	6:00 268 1.00 268 1 70 339 1.00 1.00 339 1.00 1.00 339	PM 202 1.00 202 0 40 242 1.00 1.00 242 1.00 242 1.00 242 1.00 242 1.00 242 1.00 242 1.00 242	0 1.00 0 0 0 1.00 1.00 0 0 1.00 0	1.00 0 0 0 0 1.00 1.00 0 0 0 1.00	0 1.00 0 0 0 0 1.00 1.00 0 0 0 1.00
Sat/Lane: Sat/Lane: Adjustment: Lanes: Final Sat.:	low M 1900 1.00 0.00	0.96 0.73	1900 0.96 0.27	1900 0.93 0.18	1900 0.93 0.82	1900 1.00 0.00	1900 0.94 1.00	1900 0.89 1.17	1900 0.89 0.83	1900 1.00 0.00	1900 1.00 0.00	1900 1.00 0.00
Capacity Ana Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	0.00 0.00 0.00 0.00 0.0 1.00	Modul 0.17 **** 0.44 0.39 14.5 1.00	0.17 0.44 0.39 14.5 1.00 14.5	0.05 0.44 0.11 11.7 1.00 11.7	0.05 0.44 0.11 11.7 1.00 11.7	0.00 0.00 0.00 0.0 1.00 0.0	0.11 0.44 0.24 12.9 1.00 12.9	0.17 **** 0.44 0.39 13.9 1.00 13.9	0.17 0.44 0.39 13.9 1.00 13.9	0.00 0.00 0.00 0.0 1.00 0.0	0.00 0.00 0.00 0.0 1.00 0.0	0.00 0.00 0.00 0.0 1.00 0.0

N

Capacity Analysis Module:

Crit Moves: **** ****

Crit Moves: ****

UC Berkeley LRDP EIR 2020 No Project Conditions

				PI	4 Peal	k Hour						
******	2000 I	HCM 4-	Way St	op Met	thod	Computa (Future	Volur	ne Alt	ternati	ve)	*****	*****
Intersection	#48 I	Durant	Avenu	e / P:	iedmor	nt Aven	iue					
Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e: *****	100 0 0 *****) (Y+R) :****	= 4 :	sec) <i>l</i> sec) <i>l</i> *****	Critica Average Level C	l Vol Delay	./Cap y (sec vice:	. (X): c/veh): *****	*****	0.85 27.	57 .3 D
Approach: Movement:	No:	rth Bo - T	und - R	Son L ·	uth Bo - T	ound - R	Ea L -	ast Bo - T	ound - R	We L -	est Bo - T	ound - R
Control: Rights:	St	top Si Inclu	.gn ide	S	top Si Incli	ign ıde	St	top Si Incli	ign ude	St	op Si Incli	ign ide
Min. Green: Lanes:	0 () 1	0 0	0 () 1	0 0	1 (0 0	0 1	0 (0 (0 0
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol:	0 1.00 0 0 0 1.00 1.00 0 0 1.00 1.00 0 1.00	398 1.00 398 41 70 509 1.00 509 0 509 1.00 1.00 509	0 1.00 0 0 0 1.00 1.00 0 0 1.00 1.00	0 1.00 0 0 0 1.00 1.00 0 0 0 1.00 0	427 1.00 427 22 50 499 1.00 1.00 499 0 499 1.00 1.00 499	1.00 0 0 0 0 0 1.00 1.00 0 0 0 1.00	179 1.00 179 5 40 224 1.00 1.00 224 0 224 1.00 1.00 224	1.00 0 0 0 0 1.00 1.00 0 0 1.00 0	197 1.00 197 0 40 237 1.00 237 0 237 1.00 237 1.00 237	0 1.00 0 0 0 0 1.00 1.00 0 0 0 1.00 1.0	1.00 0 0 0 1.00 1.00 0 0 1.00 1.00	1.00 0 0 0 1.00 1.00 0 1.00 1.00
Saturation Fi Adjustment:				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

2020 No Project Conditions PM Peak Hour Level Of Service Computation Report

UC Berkeley LRDP EIR

2000 HCM Operations Method (Future Volume Alternative) Intersection #49 Channing Way / Shattuck Avenue ****************** Cycle (sec): 75 Critical Vol./Cap. (X): 0.791 9.2 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 59 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Permitted Permitted Permitted Include Include Include Rights: Min. Green: 16 16 16 16 16 16 22 22 22 22 22 22 Lanes: 1 0 1 1 0 1 0 1 1 0 0 0 1! 0 0 0 0 1! 0 0 -----| Volume Module: >> Count Date: 14 Nov 2002 << 4:00 - 6:00 PM Base Vol: 83 1279 94 19 1089 49 18 76 81 144 97 106 Initial Bse: 83 1279 94 19 1089 49 18 76 81 144 97 106 Added Vol: 0 3 6 0 44 0 0 0 0 24 0 26 Future: 10 180 20 50 110 90 30 80 20 30 20 30 Initial Fut: 93 1462 120 69 1243 139 48 156 101 198 117 162 PHF Volume: 93 1462 120 69 1243 139 48 156 101 198 117 162 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 93 1462 120 69 1243 139 48 156 101 198 117 162 Final Vol.: 93 1462 120 69 1243 139 48 156 101 198 117 162 -----| Saturation Flow Module: Adjustment: 1.00 0.94 0.94 0.09 0.94 0.94 0.96 0.96 0.96 0.95 0.95 Lanes: 1.00 1.85 0.15 1.00 1.80 0.20 0.16 0.51 0.33 0.41 0.25 0.34 Final Sat.: 1900 3299 271 171 3198 358 286 928 601 752 445 616 _____| Capacity Analysis Module: Vol/Sat: 0.05 0.44 0.44 0.40 0.39 0.39 0.17 0.17 0.17 0.26 0.26 0.26

Lanes: 0.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00

Final Sat.: 0 594 0 0 592 0 466 0 550 0 0

-----|

Vol/Sat: xxxx 0.86 xxxx xxxx 0.84 xxxx 0.48 xxxx 0.43 xxxx xxxx xxxx

Delay/Veh: 0.0 33.8 0.0 0.0 32.2 0.0 16.5 0.0 13.4 0.0 0.0 0.0

AdjDel/Veh: 0.0 33.8 0.0 0.0 32.2 0.0 16.5 0.0 13.4 0.0 0.0 0.0

LOS by Move: * D * * D * C * B * * *

ApproachDel: 33.8 32.2 14.9 xxxxxx

Delay Adj: 1.00 1.00 1.00 xxxxx

ApprAdjDel: 33.8 32.2 14.9 xxxxxx

LOS by Appr: D D B * *

Green/Cycle: 0.56 0.56 0.56 0.59 0.59 0.59 0.33 0.33 0.33 0.33 0.33

Volume/Cap: 0.09 0.79 0.79 0.68 0.66 0.66 0.50 0.50 0.50 0.79 0.79 Delay/Veh: 1.3 5.2 5.2 31.3 1.9 1.9 23.1 23.1 23.1 32.8 32.8 32.8 AdjDel/Veh: 1.3 5.2 5.2 31.3 1.9 1.9 23.1 23.1 23.1 32.8 32.8 32.8 DesignQueue: 2 30 2 1 23 3 1 5 3 6 3 5

CUMULATIVE + LAB PM Thu Mar 18, 2004 11:36:31 Page 56-1 CUMULATIVE + LAB PM Thu Mar 18, 2004 11:36:31 Page 57-1

UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report

	2000 F		evel O Wav St						t ternati	ve)		
******											***	*****
Intersection	****	****	*****	****	*****	*****						
Cycle (sec): Loss Time (se		100	1			Critica	l Vol	./Cap	. (X):		0.82	28
Loss Time (se	ec):	0	(Y+R	= 4 :	sec) I	Average	Dela	y (sed	c/veh):		26.	. 6
Optimal Cvcl	e:	0			I	Level C	of Ser	vice:				D
*****	****	****	****	****	*****	*****	****	****	*****	*****	****	*****
Approach:												
Movement:									- R			
Control:	St	top Si	.gn	St	top Si	.gn	S	top S:	ign	St	op S	ign
Rights:			ıde		Inclu	ıde		Incl	ıde		Incl	ıde
Min. Green:									0			
Lanes:												
Volume Module												
						61		133			257	0
Growth Adj:								1.00		1.00		1.00
Initial Bse:		0	0					133		15	257	0
Added Vol:		0	0	4	0	0	0	6	0	0	50	0
Future:	0	U	U		100			110			70	0
Initial Fut:				62			0				377	0
User Adj:					1.00			1.00		1.00		1.00
PHF Adj:			1.00		1.00			1.00		1.00		1.00
PHF Volume:			0	62		61	0		68	25	377	0
Reduct Vol:			0		0	0		0	0	-	0	0
Reduced Vol:						61	0			25	377	0
PCE Adj:						1.00		1.00		1.00		1.00
MLF Adj:								1.00		1.00		1.00
Final Vol.:							. 0				377	0
Saturation F.				1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
Adjustment: Lanes:												
Final Sat.:												
Fillal Sat.:												
Capacity Ana							1			1		
Vol/Sat:				U 83	0 82	0.81	vvvv	0 57	0.57	0.71	0 71	~~~~
Crit Moves:		AAAA	AAAA	****	0.02	0.01	AAAA	****	0.57	****	0.71	AAAA
Delay/Veh:		0 0	0 0		31 7	30 3	0.0		17.0	22.9	22 a	0.0
Delay Adi:								1.00		1.00		1.00
AdjDel/Veh:							0.0					0.0
LOS by Move:							*			22.9 C		*
Annwanah Dal.					31.7	D		17.0	C		22.9	
Delay Adj:		,,,,,,			1.00			1.00			1.00	
Annradibel:	2	,,,,,,,,			31.7			17.0			22.9	
ApprAdjDel: LOS by Appr:	X.2	*			D D			17.0			22.9 C	
TOS DA Wbbt:												

	Level OI Servic	ce Computation Report	
2000 HCM	Operations Metho	d (Future Volume Alternative)	
			+++

2020 No Project Conditions

PM Peak Hour

*****	*****	*****	****	****	*****	****	****	*****	****	****
Intersection # *******						*****	****	*****	****	****
Cycle (sec):	70		C	ritica	l Vol.	/Cap.	(X):	OV	ERFLO	M
Cycle (sec): Loss Time (sec	:): 8	(Y+R = 4)	sec) A	verage	Delay	/ (sec	/veh):		16.	4
Optimal Cycle:	180		Le	evel 0:	f Serv	rice:			1	В
									****	****
Approach:									st Bo	
	L - T -		- T ·						T	
Control: Rights:		ed							ermit Inclu	
			inciu				ae 0		inciu 17	
	0 1 0 1		0 0 0				0 0	-	0	
Volume Module:								1		
Base Vol:	86 410			0	23		0	0	227	46
Growth Adj: 1			1.00	1.00		1.00		1.00		1.00
Initial Bse:		41 0	0	0	23	144	0	0	227	46
Added Vol:	0 0	9 0	0	0	0	10	0	0	50	2
Future:	10 40	30 0	0	0	0	30	80	40	30	0
Initial Fut:	96 450	80 0	0	0	23	184	80	40	307	48
User Adj: 1	.00 1.00	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj: 1	.00 1.00	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	96 450	80 0	0	0	23	184	80	40	307	48
Reduct Vol:	0 0	0 0	0	0	0	0	0	0	0	0
Reduced Vol:	96 450	80 0	0	0	23	184	80	40	307	48
PCE Adj: 1			1.00	1.00		1.00		1.00		1.00
MLF Adj: 1			1.00	1.00		1.00	1.00	1.00		1.00
Final Vol.:			0	0	23		80	40		48
Saturation Flor										
Sat/Lane: 1				1900		1900		1900		1900
Adjustment: 0			1.00	1.00		0.95		0.74		0.98
Lanes: 0 Final Sat.:			0.00	0.00			0.00		1617	253
										I
Capacity Analy				'	1		1	1		'
			0.00	0.00	0.12	0.12	xxxx	xxxx	0.19	0.19
Crit Moves:								***		
Green/Cycle: 0		0.26 0.00	0.00	0.00	0.63	0.63	0.63	0.63	0.63	0.63
Volume/Cap: 0	.70 0.70	0.70 0.00	0.00	0.00	0.18	0.18	XXXX	XXXX	0.30	0.30
		28.5 0.0	0.0	0.0	5.8	5.8	0.0	0.0	6.6	6.6
User DelAdj: 1		1.00 1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
AdjDel/Veh: 2		28.5 0.0		0.0		5.8	0.0	0.0	6.6	6.6
DesignQueue:		2 0	0	0	0	3	0	0	5	1
******	*****	*****	****	****	*****	****	*****	*****	****	****

Page 58-1

Page 59-1

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

			PI	1 reak	Hour						
		 Level O	f Serv	 7ice (Computa			 t			
	2000 HCM O										
*****							****	*****	****	*****	*****
Intersection	*****	*****	****	****	*****	****					
Cycle (sec):		5			Critica	l Vol	./Cap	. (X):		0.61	. 5
Loss Time (se	ec):	8 (Y+R	= 4 5	sec) I	Average	Dela	y (se	c/veh):		15.	
Optimal Cycle											

Approach:	North B	ound	Sot	ıth Bo	ound	E	ast Bo	ound	We	est Bo	ound
Movement:	L - T	- R	L -	- T	- R	L ·	- T	- R	L -	- T	- R
Control:		tted							I		
Rights:	Incl				ıde			ıde		Inclu	
Min. Green:	18 18				18			17	17		17
Lanes:	0 0 1!				0 0			0 0		1!	
7.1											
/olume Module									104	1 41	4.7
Base Vol:	31 189			206	24	5	95	58	124	141	47
Frowth Adj:			1.00			1.00		1.00		1.00	1.00
Initial Bse:			7		24	5		58	124	141	47
Added Vol:	3 4		0	15	0	0		16	1	12	0
Tuture:	30 60		0	40	10	30		40	40	20 173	30
Initial Fut:				261	34	35			165		77
_	1.00 1.00 1.00			1.00	1.00		1.00	1.00		1.00	1.00
PHF Adj: PHF Volume:			7	261	34	35		114	165	173	77
Reduct Vol:	0 0		0	201	0	0		0	1.02	1/3	0
Reduced Vol:				261	34	35			165	173	77
PCE Adj:	1.00 1.00			1.00		1.00				1.00	
MLF Adj:	1.00 1.00			1.00		1.00				1.00	
Final Vol.:	64 253			261	34	35		114		173	77
Saturation F					'			'			
Sat/Lane:	1900 1900		1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:						0.90	0.90	0.90	0.71	0.71	0.71
-											
Lanes:	0.16 0.66	0.18	0.02	0.87	0.11	0.10	0.59	0.31	0.40	0.42	0.18
Final Sat.:										564	
Capacity Ana	lysis Modu	le:									
7ol/Sat:	0.23 0.23	0.23	0.16	0.16	0.16	0.21	0.21	0.21	0.31	0.31	0.31
Crit Moves:	****									****	
Green/Cycle:								0.50		0.50	
/olume/Cap:				0.43		0.42			0.62	0.62	0.62
Delay/Veh:				15.7		11.9				16.0	16.0
Jser DelAdj:				1.00		1.00				1.00	1.00
AdjDel/Veh:									16.0		16.0
DesignQueue:	2 6	2		6	1	1		2		3	1

2020 No Project Conditions PM Peak Hour Level Of Service Computation Report

UC Berkeley LRDP EIR

2000 HCM Operations Method (Future Volume Alternative) Intersection #53 Haste Street / Shattuck Avenue ************************** Cycle (sec): 75 Critical Vol./Cap. (X): 0.950 14.7 8 (Y+R = 4 sec) Average Delay (sec/veh): Loss Time (sec): Optimal Cycle: 114 Level Of Service: В Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Permitted Permitted Permitted Include Include Include Include Rights: Min. Green: 22 22 0 0 22 22 0 0 27 27 27 Lanes: 1 0 2 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 -----| Volume Module: >> Count Date: 14 Nov 2002 << 4:00 - 6:00 PM Base Vol: 104 1277 0 0 1208 88 0 0 0 268 336 152 Initial Bse: 104 1277 0 0 1208 88 0 0 0 268 336 152 Added Vol: 0 8 0 0 51 17 0 0 0 32 67 0 Future. 30 160 0 0 130 20 0 0 40 80 4.0 Initial Fut: 134 1445 0 0 1389 125 0 0 0 340 483 192 PHF Volume: 134 1445 0 0 1389 125 0 0 0 340 483 192 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 134 1445 0 0 1389 125 0 0 0 340 483 192 Final Vol.: 134 1445 0 0 1389 125 0 0 340 483 192 -----| Saturation Flow Module: Adjustment: 0.13 0.95 1.00 1.00 0.94 0.94 1.00 1.00 1.00 0.90 0.90 0.90 Lanes: 1.00 2.00 0.00 0.00 1.83 0.17 0.00 0.00 0.00 0.67 0.95 0.38 Final Sat.: 243 3610 0 0 3272 294 0 0 0 1142 1623 645 -----|----||------| Capacity Analysis Module: Crit Moves: **** Delay/Veh: 92.3 6.0 0.0 0.0 6.9 6.9 0.0 0.0 0.0 28.3 28.3 28.3 AdjDel/Veh: 92.3 6.0 0.0 0.0 6.9 6.9 0.0 0.0 0.0 28.3 28.3 28.3 DesignQueue: 3 31 0 0 30 3 0 0 10 14 6

CUMULATIVE + LAB PM

Thu Mar 18, 2004 11:36:31 Page 61-1 ______

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

FM Feak Hour	rm reak noul
Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)
Intersection #54 Haste Street / Fulton Street	Intersection #55 Haste Street / Telegraph Avenue
Cycle (sec): 80	Cycle (sec): 70
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Rights: Include	Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 16 16 0 0 0 0 0 0 0 16 16 Lanes: 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0
Volume Module: >> Count Date: 14 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 0 0 0 580 154 0 0 0 50 604 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 19 Nov 2002 << 4:00 - 6:00 PM Base Vol: 186 476 0 0 0 0 0 0 0 0 0 0 470 57 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Final Vol.: 236 585 0 0 0 0 0 0 0 0 0 619 87
Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.00 0.26 0.26 0.00 0.00	Capacity Analysis Module: Vol/Sat: 0.23 0.23 0.00 0.00 0.00 0.00 0.00 0.00
Delay/Veh: 0.0 0.0 0.0 5.7 5.7 0.0 0.0 0.0 40.7 40.7 0.0 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume/Cap: 0.57 0.57 0.00 0.00 0.00 0.00 0.00 0.00

		СМ Оре	eratio	ns Met	thod (Volur	ne Alt	ernati			
************** Intersection	#55 Ha	aste S	Street	/ Te	legrap	h Aven	ue					
<pre>cycle (sec): Loss Time (sec) Optimal Cycle ************************************</pre>	ec): e:	70 8 40	(Y+R :	= 4 s	C sec) A L	ritica verage evel 0	l Vol Delay f Serv	./Cap. y (sec vice:	(X): c/veh):		0.48	2 4 B
Approach: Movement:	L -	Т -	- R	L -	- T	- R	L ·	- T	- R	L -	Т	- R
Control: Rights: Min. Green: Lanes:	16 0 1	ermitt Includ 16 1 (ted de 0	0 0	Permit Inclu 0 0	ted de 0	0 0	Permit Inclu 0 0	ited ide 0 0 0	0 0 0	ermit Inclu 16 1	ted de 16
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj:	186 1.00 186 0 50 236	Count 476 1.00 476 9 100 585	Date: 0 1.00 0 0 0	19 No 0 1.00 0 0 0	0 200 0 1.00 0 0 0 0	2 << 4 0 1.00 0 0 0	:00 - 0 1.00 0 0	6:00 0 1.00 0 0 0	PM 0 1.00 0 0	0 1.00 0 0 0	470 1.00 470 99 50 619	57 1.00 57 0 30 87
PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	236 0 236 1.00 1.00 236	585 0 585 1.00 1.00 585	0 1.00 1.00 0	0 0 0 1.00 1.00	0 0 0 1.00 1.00	0 1.00 1.00	0 0 0 1.00 1.00	0 1.00 1.00 0	0 0 0 1.00 1.00	0 0 0 1.00 1.00	619 0 619 1.00 1.00 619	87 0 87 1.00 1.00
Saturation F: Sat/Lane: Adjustment: Lanes: Final Sat.:	10w Mod 1900 1 0.95 0 0.57 1 1038 2	dule: 1900 0.95 1.43 2572	1900 1.00 0.00 0	1900 1.00 0.00	1900 1.00 0.00	1900 1.00 0.00	1900 1.00 0.00	1900 1.00 0.00	1900 1.00 0.00	1900 1.00 0.00	1900 0.93 1.75 3108	1900 0.93 0.25 437
Capacity Anal Vol/Sat:				0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.20

UC Berkeley LRDP EIR

2020 No Project Conditions

PM Peak Hour

AdjDel/Veh: 16.2 16.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.3 12.3 DesignQueue: 6 14 0 0 0 0 0 0 0 13 2

CUMULATIVE + LAB PM ______

Thu Mar 18, 2004 11:36:31 UC Berkeley LRDP EIR

2020 No Project Conditions

PM Peak Hour

Page 63-1

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

	FM FEAK HOUL
Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)
Intersection #56 Haste Street / College Avenue	Intersection #57 Dwight Way / Martin Luther King Way
Cycle (sec): 70 Critical Vol./Cap. (X): 0 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): Coptimal Cycle: 40 Level Of Service:	9
Approach: North Bound South Bound East Bound West Movement: L - T - R L - T - R L - T - R L - T	- R Movement: L - T - R L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Permitted Permitted Permitted Permitted Include Include<	ted Control: Permitted Permitted Permitted Permitted Ide Rights: Include Inclu
Volume Module: >> Count Date: 19 Nov 2002 << 4:00 - 6:00 PM Base Vol: 88 236 0 0 337 56 0 0 0 90 20 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 5 Dec 2002 << 4:00-6:00 PM 29 Base Vol: 71 821 60 113 860 272 49 444 111 0 0 0 0 1.00 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Saturation Flow Module: 1900 Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Capacity Analysis Module: Vol/Sat: 0.30 0.30 0.00 0.00 0.29 0.29 0.00 0.00 0.00 0.13 0.3 Crit Moves: **** Green/Cycle: 0.61 0.61 0.00 0.00 0.61 0.61 0.00 0.00	Capacity Analysis Module: 0.13

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

2000 HCM Operat:	Of Service Computation Report Lons Method (Future Volume Alternative)
Intersection #58 Dwight Way	
Cycle (sec): 75 Loss Time (sec): 12 (Y+1) Optimal Cycle: 97	Critical Vol./Cap. (X): 0.912 R = 5 sec) Average Delay (sec/veh): 15.7
Approach: North Bound Movement: L - T - R	
Control: Permitted Rights: Include Min. Green: 0 0 0 Lanes: 0 0 1 1 0	Prot+Permit Permitted Permitted Include Include Include 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0
	0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0 </td
Sat/Lane: 1900 1900 1900 Adjustment: 1.00 0.94 0.94 Lanes: 0.00 1.81 0.11 Final Sat.: 0 3218 342	4 0.24 0.95 0.95 0.88 0.88 0.88 1.00 1.00 1.00 1.00 1.00
Capacity Analysis Module: Vol/Sat: 0.00 0.45 0.45 Crit Moves: **** Green/Cycle: 0.00 0.49 0.49 Volume/Cap: 0.00 0.91 0.92 Delay/Veh: 0.0 15.0 15.0 User DelAdj: 1.00 1.00 1.00 AdjDel/Veh: 0.0 15.0 15.0 DesignQueue: 0 34	5 0.33 0.45 0.00 0.24 0.24 0.24 0.00 0.00 0.00

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report

*****		нсм ор	eratio	ns Me	thod		Volu	me Al	ternati			
Intersection	#59 1	Dwight	Way /	Fulto	on Sti	reet						
******	****	*****	****	****	****	*****	****	****	*****	****	*****	*****
Cycle (sec):		75	;		(Critica	l Vol	./Cap	. (X):		0.61	0
Loss Time (se	ec):	8	(Y+R	= 4 :	sec) 1	Average	Dela	y (se	c/veh):		17.	. 1
Optimal Cycle	∋:	4.5	,		1	Level O	f Ser	vice:				В

Approach: Movement:	No:	rth Bo	und	Sot	uth Bo	ound	E	ast B	ound	We	est Bo	und
Movement:	ь.	- T	- R	, L .	- T	- R	. L .	- T	- R	L -	- T	- R
Control: Rights:		rermit	tea		Permi	tea		Permi	ttea	1	rermit	tea
Kights:	_	Inclu	iae	0.1	Incli	ıae ^	0	Incli	uae	^	Incli	
Min. Green:		0	0 1						16 1 0			
Lanes:											0 0	
Volume Module										1		
Base Vol:					0 200	0		664		0	0	0
Growth Adj:												1.00
					0.00			664		1.00	1.00	1.00
Initial Bse: Added Vol:	0	0	02	031				1.5		0	•	0
Future:	0	0	20		0	0	0	13	30	0	-	0
Initial Fut:					0		0				0	
User Adj:											1.00	
PHF Adj:							1.00				1.00	1.00
PHF Volume:						1.00		739		1.00		0.00
Reduct Vol:					0	0		739	4.0	0	0	0
Reduced Vol:					0	-			45	-	-	-
PCE Adj:											-	1.00
MLF Adj:											1.00	
Final Vol.:						1.00	0	739	45		0	0
Saturation F				1		1	1		1	1		1
Sat/Lane:				1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:												
Lanes:												
Final Sat.:												
	ı			1			1			1		
Capacity Anal												
Vol/Sat:				0.33	0.00	0.00	0.00	0.22	0.22	0.00	0.00	0.00
Crit Moves:				****				****				
Green/Cycle:	0.00	0.00	0.53	0.53	0.00	0.00	0.00	0.36	0.36	0.00	0.00	0.00
Volume/Cap:									0.61			0.00
Delay/Veh:									20.6		0.0	0.0
User DelAdj:							1.00				1.00	
AdjDel/Veh:							0.0	20.6	20.6	0.0	0.0	0.0
DesignQueue:									1			0
- , ~												

CUMULATIVE + LAB PM

Thu Mar 18, 2004 11:36:31 ______ UC Berkeley LRDP EIR

2020 No Project Conditions

PM Peak Hour

Page 67-1

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)
Intersection #60 Dwight Way / Telegraph Avenue	Intersection #61 Dwight Way / College Avenue
Cycle (sec): 70	Cycle (sec): 70
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Rights: Include	Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 16 16 16 16 0 15 15 15 0 0 0 0 Lanes: 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
Volume Module: >> Count Date: 19 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 590 149 0 0 0 130 671 813 0 0 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 19 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 294 52 49 374 0 34 483 129 0 0 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Capacity Analysis Module: Vol/Sat: 0.00 0.25 0.25 0.00 0.00 0.58 0.58 0.59 0.00 0.00 0.00 Crit Moves: ****	Capacity Analysis Module: Vol/Sat: 0.00 0.25 0.25 0.32 0.32 0.00 0.20 0.20 0.20 0.00 0.00
Green/Cycle: 0.00 0.26 0.26 0.00 0.00 0.00 0.62 0.62	Green/Cycle: 0.00 0.54 0.54 0.54 0.54 0.00 0.34 0.34 0.34 0.00 0.00 0.00 Volume/Cap: 0.00 0.47 0.47 0.60 0.60 0.00 0.60 0.60 0.60 0.60 0.00 0.00 0.00 Delay/Veh: 0.0 8.3 8.3 10.3 10.3 0.0 21.3 21.3 21.3 0.0 0.0 0.0 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

:	2000 1					computa Future		-		ve)		
*****											*****	****
Intersection										****	****	****
Cycle (sec):		70			C	ritica	l Vol	./Cap.	(X):		0.44	7
Loss Time (sec): Optimal Cycle	ec):	8	(Y+R	= 4 :	sec) A	verage	Delay	y (sec	:/veh):		13.	4
Optimal Cycle	e:	61			I	evel 0	f Serv	vice:				

Approach:			und_						ound		est Bo	
Movement:	ь.	- T	- K	ъ.	- T	- R	ь.	- T	- K	Ъ.	- T	- K
Control		Darmit	+ a d	,	ermit	+64	1	Parmit	+ 0 d	1	ermi+	+64
Control: Rights:		Inclu	de		Inclu	ide		Incli	ide		Incli	ide
Min. Green:	0	29	29	29	29	0	24	24	24	24	0	24
Lanes:			1 0		1 1	0 0	1 () 1	0 1	0 (1!	
Volume Module												
Base Vol:	0		1	8	353	0	132	162		53		112
Growth Adj:						1.00		1.00	1.00		1.00	1.00
Initial Bse:		527	1	8	353 54	0	132		307	53	0	112
Added Vol: Future:		10 80	0 20	10	30	0	20	0 10	6 40	0 30	0	10
Initial Fut:		617	21	18	437	0	152	172	353	83	0	122
User Adj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Volume:	0	617	21	18	437	0	152	172	353	83	0	122
Reduct Vol:		0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	617	21	18	437	0	152	172	353	83	0	122
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Final Vol.:		617		. 18		0		172	353	. 83	0	122
2.1												
Saturation F. Sat/Lane:		1900		1 9 0 0	1900	1900	1 9 0 0	1900	1900	1900	1900	1900
Adjustment:			0.95		0.88	1.00		1.00			1.00	0.76
Lanes:		1.93				0.00		1.00			0.00	0.60
Final Sat.:			118			0		1900	1615	586		861
Capacity Ana												
Vol/Sat:			0.18	0.14	0.14	0.00	0.12	0.09		0.14	0.00	0.14
Crit Moves:									****			
Green/Cycle:					0.41	0.00		0.47	0.47		0.00	0.47
Volume/Cap: Delay/Veh:			0.43		14.0	0.00		10.19	0.46	11.6	0.00	0.30 11.6
User DelAdj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
AdiDel/Veh:			14.8		14.0	0.0		10.9	13.0	11.6		11.6
DesignQueue:				0	10	0	3	4	8	2	0	3
******	****	****	*****	****	****	*****	****	*****	****	****	*****	*****

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)

*******	****	****	****	****	****	*****	****	****	*****	*****	****	*****
	Intersection #63 Dwight Avenue / Prospect Street **********************************											
Average Dela	y (sec	c/veh;): *****	5.6	****	Wc	rst C	ase L	evel 0:	f Serv	ice: ****	B *****
Approach: Movement:	L -	- T	- R	L ·	- Т	- R	L	- Т	- R		- т	- R
Control: Rights: Lanes:	St	top S: Incl	ign ude	St	top S: Incl	ign ude 0 0	Un	contr Incl	olled ude	Un	contro Incl	olled ude
Lanes:												
Volume Modul Base Vol:	e: >>	Count	t Date:	: 20 No	ov 20	02 << 4	1:00 -	6:00	PM			
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse: Added Vol:	0	0	0	0	0	165 0	187 0		0	0		16 0
Future: Initial Fut:	0	0	0	37	0	185	207	148	0	0	113	0 16
User Adj: PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume: Reduct Vol:	0	0		0	0	0		0	0	0	0	
Final Vol.: Critical Gap			0	37	0	185	207	148	0	0	113	16
Critical Gp: FollowUpTim:	XXXXX	xxxx	XXXXX	3.5	xxxx	3.3	2.2	xxxx	XXXXX	XXXXX	xxxx	XXXXX
Capacity Mod												
Cnflict Vol: Potent Cap.:	xxxx											
Move Cap.:	XXXX	xxxx	XXXXX	367	xxxx	936	1469	xxxx	XXXXX	XXXX	xxxx	XXXXX
Level Of Ser	vice N	Module	e:									
Stopped Del: LOS by Move:						xxxxx *					xxxx *	*
Movement: Shared Cap.:												
Shrd StpDel: Shared LOS:												
ApproachLOS:	XX				11.9 B		X					

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

2	2000 1					Computa Future			: cernati	ve)		
*****											****	*****
Intersection											****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e:	90 8 168 *****	(Y+R =	= 6 s	sec) A	verage Level 0	Delay f Serv	y (sec vice:	(X): c/veh):		31.	. 6 C
Approach: Movement:	L ·	- T	- R	L -	- T	- R	L -	- T	- R	L -	T	- R
Control: Rights: Min. Green: Lanes:	0 0	Permit Inclu 25) 0	ted de 25 1 0	0 0	Permit Inclu 25) 2	ted ide 25 0 1	19 2 (rotect Inclu 0 0	ide 19	0 0 0	ermit Inclu 0 0	ited ide 0 0 1
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj:	0 1.00 0 0 0 0 0 1.00 1.00	Count 690 1.00 690 4 50 744 1.00 1.00		21 No 0 1.00 0 0 0 0 1.00 1.00	957 1.00 957 38	02 << 4 825 1.00 825 36 110 971 1.00 1.00	903 1.00 903 4 130 1037 1.00	6:00 0 1.00 0 0 0 0 1.00 1.00		0 1.00 0 0 0 0 1.00 1.00	0 1.00 0 0 0 0	0 1.00 0 0 0 0 1.00 1.00
Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	1.00 1.00 0	1.00 1.00 744	1.00 1.00 5	1.00 1.00 0	1045 1.00 1.00 1045	1.00 1.00 971	1.00 1.00 1037	0 1.00 1.00 0	1.00 1.00 2	1.00	1.00 1.00 0	1.00 1.00 0
Saturation Fi Sat/Lane: Adjustment:	1900 1900 1.00 0.00	1900 1.00 0.99 1885	1900 1.00 0.01 13	1900 1.00 0.00	1900 0.95 2.00 3610	1900 0.85 1.00 1615	1900 0.92 2.00 3502	1900 1.00 0.00 0	1900 0.85 1.00 1615	1900 1.00 0.00	1900 1.00 0.00 0	
Capacity Anal Vol/Sat: Crit Moves:	lysis	Modul	e:					0.00		0.00		
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignOueue:	0.00 0.0 1.00 0.0	0.65 14.1 1.00 14.1	14.1		0.47 10.3 1.00 10.3		0.98 55.6 1.00 55.6	0.00 0.00 0.0 1.00 0.0	0.30 0.00 22.0 1.00 22.0	0.00 0.00 0.0 1.00 0.0	0.00 0.0 1.00	0.00 0.00 0.0 1.00 0.0

	UC Berkeley LRDP EIR
202	20 No Project Conditions
	PM Peak Hour

						 Computa						
*****									ternati			
Intersection												
*****								****	*****	*****	****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle	e:	0	(Y+R		sec) 1	Average Level C	Dela of Serv	y (se vice:			1.62 259	.9 F
		rth Bo				ound			ound		est Bo	
Movement:	L ·	- T	– R			- R	L ·	- T	- R			- R
Control:									ign			
Rights: Min. Green:		Inclu 0				ude 0			ude 0	0	Incl	uae 0
Lanes:		0 0							0 0	n r	n n	1 0
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: PasserByVol: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	1.00 0 0 0 0 1.00 1.00 0 0 1.00 0 1.00	Count 0 1.00 0 0 0 0 1.00 1.00 0 0 1.00 0 1.00 0 0 0	Date: 0 1.00 0 0 0 0 1.00 1.00 0 1.00 0 1.00 0 0 1.00 0 0 1.00	: 20 Nn 765 1.00 765 60 110 935 1.00 1.00 935 1.00 935	1.00 0 0 0 0 0 0 0 0 1.00 1.00 0 0 0 1.00 0 0	30 1.00 30 0 1.00 40 1.00 1.00 40 1.00 1.00 40	1.00 - 7 1.00 7 0 0 7 1.00 1.00 7	6:00 62 1.00 62 0 0 62 1.00 1.00 62 1.00 1.00	PM 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1.00 0 0 0 1.00 1.00 0 0 0 1.00	75 1.00 75 0 0 75 1.00 1.00 75 1.00 1.00 75	780 1.00 780 10 120 910 1.00 910 0 910 1.00
Saturation F				1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
Adjustment: Lanes:									1.00			
Final Sat.:						25					51	
Capacity Ana												
Vol/Sat: Crit Moves:	XXXX	XXXX	XXXX	1.63	XXXX	1.63	0.13	0.13	XXXX	XXXX	1.46	1.46
Delay/Veh:						306.0		10.9				231.7
Delay Adj:				1.00		1.00		1.00		1.00		1.00
AdjDel/Veh:						306.0		10.9				231.7
LOS by Move:				F	*	F	В	B 10.9			F 231.7	F
ApproachDel: Delay Adj:		XXXXX			1.00			1.00			1.00	
Annradine:	· ·	XXXXX VVVVV			306.0						231.7	
ApprAdjDel: LOS by Appr:	Х.	*		•	500.U F			10.9		2	F F	
**********			+++++					_				++++++

UC Berkeley LRDP EIR 2020 No Project Conditions

PM Peak Hour

2000	Level O HCM Operatio	f Service C				ve)	
******							*****
Intersection #66					****	*****	*****
Cycle (sec):	65	C	ritica	l Vol./Cap.	(X):	0.79	8
<pre>Cycle (sec): Loss Time (sec): Optimal Cycle: ************************************</pre>	8 (Y+R	= 5 sec) A	verage	Delay (sec	/veh):	22.	. 8
Optimal Cycle:	61	I	evel 0	f Service:			C
Approach: No							
Movement: L							
~							
Control: Rights:	Permitted	Permit	ted	Permit	ted	Permit	ted
Min Croon: 19	111C1ude	U U	iue n	0 35	35	32 32 THCT	n n
Min. Green: 18 Lanes: 0	n 1! n n	0 0	0 0	0 0	1 0	0 1 0	0 0
		1	1	1		1	
Volume Module: >>							'
Base Vol: 4	0 225	0 0	0	0 872	11	31 741	0
Growth Adj: 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	
Initial Bse: 4	0 225	0 0	0	0 872	11	31 741	0
Added Vol: 0	0 0	0 0	0	0 60	0	0 10	0
Initial Bse: 4 Added Vol: 0 PasserByVol: 0	0 0	0 0	0	0 120	0	0 120	0
Initial Fut: 4	0 225	0 0	0	0 1052	11	31 871	0
User Adj: 1.00		1.00 1.00	1.00				
PHF Adj: 1.00		1.00 1.00	1.00				
PHF Volume: 4 Reduct Vol: 0		0 0		0 1052 0 0			0
Reduct Vol: 0 Reduced Vol: 4		0 0					
PCE Adj: 1.00						1.00 1.00	
MLF Adj: 1.00		1.00 1.00					
Final Vol.: 4		0 0		0 1052			0
Saturation Flow M	odule:						
Sat/Lane: 1900							
Adjustment: 0.86							
Lanes: 0.02							
Final Sat.: 29	0 1614	0 0	0	0 1878	20	62 1739	0
Capacity Analysis							
Vol/Sat: 0.14		0 00 0 00	0 00	0 00 0 56	0.56	0 50 0 50	0 00
Crit Moves: ****	0.00 0.14	0.00 0.00	0.00	****	0.50	0.30 0.30	0.00
Green/Cycle: 0.28	0.00 0.28	0.00 0.00	0.00	0.00 0.60	0.60	0.60 0.60	0.00
Volume/Cap: 0.50				0.00 0.93			
Delay/Veh: 23.7				0.0 26.6			0.0

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report

******		Operatio	ns Me	thod		Volur	ne Al	ternati			
Intersection	#67 Ash	by Avenue	/ Se	venth	Street						
********* Cycle (sec): Loss Time (sec) Optimal Cycle ***********************************											
Approach: Movement:	North L -	Bound T - R	Son L ·	uth Bo - T	ound - R	Ea L -	ast B	ound - R	We L -	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	Peri In 0 0 1	mitted clude 0 0	0 0	Permit Inclu 0 1 0	ited ide 0 1 0	Sp: 0	lit Pi Incl 0 0	hase ude 0	Sp:	lit Pl Incl 0 0 1	nase ude 0
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	e: >> Co 134 4 1.00 1. 134 4 0 60 194 4 1.00 1. 194 4 0 194 4 1.00 1. 194 4 1.00 1. 194 4	unt Date: 04 68 00 1.00 04 68 0 0 0 660 10 664 78 0 0 0 664 78 0 0 664 78 0 0 664 78 0 0 664 78	4 Dec 107 1.00 107 0 90 197 1.00 1.00 197 1.00 1.00 1.00	2 2002 270 1.00 270 0 300 300 1.00 300 0 300 1.00 1.00 300	2 << 4: 476 1.00 476 0 476 1.00 476 1.00 476 0 476 1.00 476 1.00 476	00-6:0 263 1.00 263 0 30 293 1.00 1.00 293 1.00 293 1.00 293	00 PM 546 1.00 546 5 60 611 1.00 611 1.00 611 1.00 1.00 611	113 1.00 113 0 60 173 1.00 1.00 173 0 1.73 1.00 1.73	98 1.00 98 0 20 118 1.00 1.00 118 1.00 1.00 1.00	774 1.00 774 39 60 873 1.00 1.00 873 1.00 1.00 873	31 1.00 31 0 70 101 1.00 1.00 101 1.00 1.00 1.00
Saturation F. Sat/Lane: Adjustment: Lanes: Final Sat.:	low Modu 1900 19 0.48 0. 0.53 1. 482 11	le: 00 1900 48 0.48 26 0.21 53 194	1900 0.52 0.40 402	1900 0.52 0.62 613	1900 0.52 0.98 972	1900 0.95 1.00 1805	1900 0.92 1.56 2721	1900 0.92 0.44 770	1900 0.95 1.00 1805	1900 0.93 1.79 3184	1900 0.93 0.21 368
Capacity Ana Vol/Sat: Crit Moves:	lysis Mo	dule: 40 0.40	0.49	0.49	0.49	0.16	0.22	0.22	0.07	0.27	0.27
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh:	0.91 0. 45.1 45 1.00 1.	91 0.91 .1 45.1 00 1.00	1.11 95.7 1.00	1.11 95.7 1.00	1.11 95.7 1.00	0.80 60.7 1.00	1.11 114 1.00	1.11 114.1 1.00	0.26 35.6 1.00	1.11 107 1.00	1.11 107.3 1.00
DesignQueue:								114.1			107.3

Adjpel/Veh: 23.7 0.0 23.7 0.0 0.0 0.0 26.6 26.6 18.0 18.0 0.0 DesignQueue: 0 0 6 0 0 0 0 18 0 1 14 0 PM Peak Hour

UC Berkeley LRDP EIR 2020 No Project Conditions

Level of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)

Intersection #68 Ashby Avenue / San Pablo Avenue

****************** Cycle (sec): 110 Critical Vol./Cap. (X): 0.961 46.1 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 158 Level Of Service:

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Protected Protected Permitted Permitted Include Include Include Rights: Min. Green: 4 17 17 4 19 19 18 18 18 18 18 18 -----| Volume Module: >> Count Date: 4 Dec 2002 << 4:00-6:00 PM Base Vol: 162 999 79 185 873 113 86 592 170 20 612 143 Initial Bse: 162 999 79 185 873 113 86 592 170 20 612 143

Added Vol: 0 1 1 0 1 16 0 5 0 15 23 0 Future: 20 190 90 20 320 30 20 90 50 40 90 30 Initial Fut: 182 1190 170 205 1194 159 106 687 220 75 725 173 PHF Volume: 182 1190 170 205 1194 159 106 687 220 75 725 173 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 182 1190 170 205 1194 159 106 687 220 75 725 173 Final Vol.: 182 1190 170 205 1194 159 106 687 220 75 725 173

Saturation Flow Module: Adjustment: 0.95 0.93 0.93 0.95 0.93 0.93 0.16 0.92 0.92 0.65 0.65 0.65 Lanes: 1.00 1.75 0.25 1.00 1.76 0.24 1.00 1.51 0.49 0.15 1.49 0.36 Final Sat.: 1805 3099 443 1805 3128 417 300 2636 844 191 1843 440 -----|----|-----|------|

-----|

Capacity Analysis Module: Vol/Sat: 0.10 0.38 0.38 0.11 0.38 0.38 0.35 0.26 0.26 0.39 0.39 0.39

Crit Moves: **** **** Volume/Cap: 0.93 0.96 0.96 0.96 0.93 0.93 0.86 0.64 0.64 0.96 0.96 0.96 Delay/Veh: 93.9 47.7 47.7 98.6 42.1 42.1 68.7 23.9 23.9 47.4 47.4 47.4 AdjDel/Veh: 93.9 47.7 47.7 98.6 42.1 42.1 68.7 23.9 23.9 47.4 47.4 47.4

DesignQueue: 10 48 7 11 48 6 4 26 8 3 28 7

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative)

Intersection #69 Ashby Avenue / Adeline Street ******************** Cycle (sec): 140 Critical Vol./Cap. (X): 0.605 39.2 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 86 Level Of Service:

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____|

Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 4 32 32 6 38 38 4 22 22 4 32 32 Lanes: 1 0 1 1 0 1 0 2 1 0 1 0 1 1 0 1 1 0 -----| Volume Module: >> Count Date: 21 Nov 2002 << 4:00 - 6:00 PM Base Vol: 92 693 85 31 700 169 135 491 39 68 547 39 Initial Bse: 92 693 85 31 700 169 135 491 39 68 547 39 Added Vol: 0 1 0 0 6 30 4 2 0 0 0 0 Future: 60 70 10 10 10 80 50 160 20 10 50 10 Initial Fut: 152 764 95 41 716 279 189 653 59 78 597 49 PHF Volume: 152 764 95 41 716 279 189 653 59 78 597 49 0 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 Reduced Vol: 152 764 95 41 716 279 189 653 59 78 597 49 Final Vol.: 152 764 95 41 716 279 189 653 59 78 597 49

Saturation Flow Module: Adjustment: 0.95 0.93 0.93 0.95 0.87 0.87 0.95 0.94 0.94 0.95 0.94 0.95 Lanes: 1.00 1.78 0.22 1.00 2.16 0.84 1.00 1.83 0.17 1.00 1.85 0.15 Final Sat.: 1805 3156 392 1805 3576 1393 1805 3271 296 1805 3299 271 _____|

_____|

Capacity Analysis Module: Vol/Sat: 0.08 0.24 0.24 0.02 0.20 0.20 0.10 0.20 0.20 0.04 0.18 0.18

Green/Cycle: 0.14 0.43 0.43 0.04 0.33 0.33 0.17 0.39 0.39 0.08 0.30 0.30 Volume/Cap: 0.60 0.57 0.57 0.53 0.60 0.60 0.60 0.51 0.51 0.51 0.60 0.60 Delay/Veh: 60.8 30.8 30.8 72.4 39.8 39.8 60.5 30.0 30.0 71.4 42.4 42.4 AdjDel/Veh: 60.8 30.8 30.8 72.4 39.8 39.8 60.5 30.0 30.0 71.4 42.4 42.4 DesignQueue: 10 36 4 3 39 15 12 33 3 6 34 3

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)

Intersection #70 Ashby Avenue / Shattuck Avenue

Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 36.5 Optimal Cycle: 59 Level Of Service: ******************************

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|-----|------|------| Permitted Permitted Permitted Include Include Include Rights: Min. Green: 21 21 21 6 21 21 20 20 20 20 20 20

-----| Volume Module: >> Count Date: 21 Nov 2002 << 4:00 - 6:00 PM Base Vol: 52 556 30 200 585 56 33 536 40 32 541 176 Initial Bse: 52 556 30 200 585 56 33 536 40 32 541 176 Added Vol: 0 3 0 10 26 0 0 2 0 0 0 0 Future: 10 10 10 20 20 10 10 170 20 10 60 20 Initial Fut: 62 569 40 230 631 66 43 708 60 42 601 196

PHF Volume: 62 569 40 230 631 66 43 708 60 42 601 196 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 62 569 40 230 631 66 43 708 60 42 601 196 Final Vol.: 62 569 40 230 631 66 43 708 60 42 601 196

Saturation Flow Module: Lanes: 0.18 1.70 0.12 0.50 1.36 0.14 0.11 1.74 0.15 0.10 1.43 0.47 Final Sat.: 171 1568 110 846 2321 243 181 2977 252 167 2383 777 -----|----|-----|

-----|

Capacity Analysis Module: Vol/Sat: 0.36 0.36 0.36 0.27 0.27 0.27 0.24 0.24 0.24 0.25 0.25 0.25 Crit Moves: **** Green/Cycle: 0.33 0.33 0.33 0.32 0.32 0.32 0.52 0.52 0.52 0.52 0.52

Volume/Cap: 1.12 1.12 1.12 0.84 0.84 0.84 0.45 0.45 0.45 0.48 0.48 0.48 Delay/Veh: 99.9 99.9 99.9 32.6 32.6 32.6 12.7 12.7 12.7 13.0 13.0 13.0 AdjDel/Veh: 99.9 99.9 99.9 32.6 32.6 32.6 12.7 12.7 12.7 13.0 13.0 13.0 DesignQueue: 2 18 1 7 20 2 1 16 1 1 13 4

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative)

Intersection #71 Ashby Avenue / Telegraph Avenue ******************

Cycle (sec): 80 Critical Vol./Cap. (X): 0.989 26.8 12 (Y+R = 6 sec) Average Delay (sec/veh): Loss Time (sec): Optimal Cycle: 104 Level Of Service:

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Protected Prot+Permit Protected Protected Rights: Include Include Include Include Min. Green: 21 21 21 6 21 21 25 25 25 25 25 25 ______|__|___| Volume Module: >> Count Date: 21 Nov 2002 << 4:00 - 6:00 PM Base Vol: 210 675 75 176 902 63 68 531 184 148 642 99 Initial Bse: 210 675 75 176 902 63 68 531 184 148 642 99 Added Vol: 0 0 0 0 0 0 0 12 0 0 0 Ω Future: 30 80 10 10 60 10 30 110 50 20 50 20 Initial Fut: 240 755 85 186 962 73 98 653 234 168 692 119 PHF Volume: 240 755 85 186 962 73 98 653 234 168 692 119 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 240 755 85 186 962 73 98 653 234 168 692 119 Final Vol.: 240 755 85 186 962 73 98 653 234 168 692 119 -----| Saturation Flow Module:

Adjustment: 0.95 0.94 0.94 0.56 0.94 0.94 0.95 0.91 0.91 0.95 0.93 0.93 Lanes: 1.00 1.80 0.20 1.00 1.86 0.14 1.00 1.47 0.53 1.00 1.71 0.29 Final Sat.: 1805 3196 360 1072 3318 252 1805 2551 914 1805 3013 518 _____| Capacity Analysis Module:

Vol/Sat: 0.13 0.24 0.24 0.17 0.29 0.29 0.05 0.26 0.26 0.09 0.23 0.23 Crit Moves: **** **** **** Green/Cycle: 0.35 0.35 0.35 0.94 0.46 0.46 0.35 0.35 0.35 0.35 0.35 0.35 Volume/Cap: 0.38 0.67 0.67 0.18 0.64 0.64 0.16 0.73 0.73 0.27 0.66 0.66 Delay/Veh: 25.6 30.1 30.1 2.9 19.8 19.8 23.8 33.4 33.4 25.3 31.3 31.3

AdjDel/Veh: 25.6 30.1 30.1 2.9 19.8 19.8 23.8 33.4 33.4 25.3 31.3 31.3 DesignQueue: 9 30 3 6 33 2 4 26 9 6 28 5

UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

						11041						
						Computa						
*****	2000 1	HCM Or	peratio	ns Me	thod	(Future	Volu	me Al	ternati	.ve)		
								****	*****	*****	****	*****
Intersection	****	****	*****	****	****	*****	****				****	*****
Cycle (sec): Loss Time (se		80)		(Critica	l Vol	./Cap	. (X):		0.96	53
Loss Time (se	ec):	8	3 (Y+R	= 4 :	sec) i	Average	Dela	y (se	c/veh):		37.	. 1
Optimal Cycle	e:	129	9		1	Level O	f Ser	vice:				D

Approach:	No	rth Bo	ound	Son	ıth Bo	ound	E	ast B	ound	We	st Bo	ound
Movement:						- R						
Control:												
Rights:		Tnalı	ıde		Tnal	ıde		Incl	ido		Incli	
Min. Green:		18	18	18			30			30		30
Lanes:		0 1!				0 0					1!	
Volume Module										1		'
Base Vol:	75	293	68	159	279	58	15	683	87	10	466	151
Growth Adi:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
Initial Bse:	75	293	68	159	279	58	15	683	87	10	466	151
Added Vol:	0	3	0	12	20	0	2	10	0	0	0	3
Future:	10	60	10	2.0	60	10	10	120	2.0	10	60	30
Initial Fut:	8.5	356	78	191	359	68	27	813	107	20	526	184
User Adj:	1.00		1.00		1.00		1.00	1.00	1.00	1.00	1.00	1.00
PHF Adi:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
PHF Volume:	85	356	78	191	359	68	27	813	107	20	526	184
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:		356	78	191	359	68	27	813	107	20	526	184
	1.00		1.00		1.00	1.00		1.00	1.00	1.00		1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
Final Vol.:			78		359	68		813	107		526	184
Saturation F	low Mo	odule:	:									
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.76	0.76	0.76	0.99	0.99	0.99	0.99	0.99	0.99	0.97	0.97	0.97
Lanes:	0.16	0.69	0.15	0.31	0.58	0.11	0.03	0.86	0.11	0.03	0.72	0.25
Final Sat.:				578			53		211	. 50		463
Capacity Ana												
Vol/Sat:				U 35	U 33	U 33	0 51	0.51	0.51	0.40	0 40	0.40
Crit Moves:		****	0.50	0.55	0.55	0.55	0.51	****	0.51	0.40	0.40	0.40
Green/Cycle:			0.38	U 30	0.38	0.38	0 53	0.53	0.53	0.53	0 53	0.53
Volume/Cap:			0.36		0.38	0.38		0.96	0.33	0.76		0.76
Delay/Veh:		55.0	55.0		38.2	38.2		39.5	39.5	20.5		20.5
User DelAdj:			1.00		1.00	1.00		1.00	1.00	1.00		1.00
oser beradj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

2020 No Project Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)

2 *******	:000 HCM Ope								****	*****
Intersection	#73 Ashby A	Avenue / C	laremon	nt Aven	ue					
Cycle (sec): Loss Time (se Optimal Cycle	70 12 12 72	(Y+R = 12	sec) 1	Critica Average Level O	l Vol Delay f Serv	./Cap. / (sec /ice:	(X): c/veh):		0.74	14 .8 .C
Approach: Movement:	North Box	und S		ound	Εā	ast Bo	ound - R	W∈	st Bo	ound
Rights: Min. Green: Lanes:	Split Pha Includ 16 16 0 1 0	ase S de 16 1 1 0 1	plit Ph Inclu 6 16 1 0	nase ide 16	28 0	Permit Inclu 28 L 0	ted ide 28 1 0	28 0 1	ermit Inclu 28	ted ide 28
PHF Volume: Reduct Vol: Reduced Vol:	e: >> Count 45 373 1.00 1.00 45 373 0 0 10 60 55 433 1.00 1.00 1.00 1.00 55 433 0 0 55 433	Date: 20 189 43 1.00 1.0 189 43 0 6 20 6 209 55 1.00 1.0 209 55 0 209 55	Nov 200 2 285 0 1.00 2 285 0 0 50 50 2 335 0 1.00 0 1.00 2 335 0 0 2 335	02 << 4 49 1.00 49 0 20 69 1.00 1.00 69 0	1.00 - 47 1.00 47 0 40 87 1.00 1.00 87 0	6:00 592 1.00 592 22 130 744 1.00 1.00 744 0	PM 5 1.00 5 0 10 15 1.00 15 0 15	66 1.00 66 0 10 76 1.00 1.00 76 0 76	504 1.00 504 3 60 567 1.00 1.00 567 0	232 1.00 232 10 20 262 1.00 1.00 262 0
PCE Adj: MLF Adj: Final Vol.:	1.00 1.00 55 433	1.00 1.0 209 55	0 1.00 0 1.00 2 335		1.00		1.00 15	1.00 1.00 76	1.00 567	1.00 1.00 262
Saturation Fl Sat/Lane: Adjustment: Lanes: Final Sat.:	ow Module: 1900 1900 0.95 0.95 0.16 1.24 285 2243	1900 190 0.95 0.9 0.60 1.7 1082 312	0 1900 5 0.95 3 1.05 7 1898	1900 0.95 0.22 391	1900 0.95 0.21 371	1900 0.95 1.76 3175	1900 0.95 0.03 64	1900 0.95 0.17 303	1900 0.95 1.25 2262	1900 0.95 0.58 1045
Capacity Anal Vol/Sat: Crit Moves:	ysis Module 0.19 0.19	e:	8 0.18	0.18		0.23		0.25		0.25
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	0.22 0.22 0.87 0.87 37.0 37.0 1.00 1.00 37.0 37.0 2 14	0.87 0.7 37.0 30. 1.00 1.0 37.0 30.	2 0.22 9 0.79 2 30.2 0 1.00 2 30.2 8 11	30.2 1.00 30.2 2	0.60 16.7 1.00 16.7 2	0.39 0.60 16.7 1.00 16.7	0.60 16.7 1.00 16.7	0.39 0.64 17.3 1.00 17.3 2	0.39 0.64 17.3 1.00 17.3	0.64 17.3 1.00 17.3

AdjDel/Veh: 55.0 55.0 55.0 38.2 38.2 38.2 39.5 39.5 39.5 20.5 20.5 20.5 DesignQueue: 3 11 2 6 11 2 1 20 3 0 12 4

CUMULATIVE + LAB PM

Thu Mar 18, 2004 11:36:31 Page 80-1

UC Berkeley LRDP EIR 2020 No Project Conditions PM Peak Hour

				Pi	4 Peak	Hour						
*****	****	HCM Op	eratic *****	ns Me	thod *	Computa (Future	Volur	me Alt	ternati	.ve)	****	*****
Intersection						*****	****	*****	*****	****	****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e:	65 8 67	(Y+R	= 4 :	sec) A	Critica Average Level O	l Vol Delay	./Cap y (sed vice:	. (X): c/veh):		0.8	19 .6 B
Approach: Movement:	No:	rth Bo - T	und – R	Son L ·	uth Bo - T	ound - R	Ea L -	ast Bo	ound - R	We L -	est Bo	ound - R
Control: Rights: Min. Green:	P: 0	rotect Inclu 0	ed de 0	P:	rotect Inclu 0	ed ide 0		lit Ph Inclu 0	hase ude 0	Sp:	lit Pl Ovl 0	nase 0
Lanes:			0 1			0 0	0 (0 0			0 2
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut:	1.00 0 0 0 0 0 1.00 1.00 0 0 1.00 0	Count 1130 1.00 1130 13 80 1223 1.00 1223 0 1223 1.00 1.00 1.223	Date: 256 1.00 256 0 0 256 1.00 256 1.00 256 1.00 256 1.00 256	21 No 534 1.00 534 37 70 641 1.00 641 1.00 641 1.00 641	0v 200 1095 1.00 1095 45 140 1280 1.00 1.280 0 1280 1.00 1.00	02 << 4 0 1.00 0 0 0 0 0 0 1.00 1.00 1.00 0 0 1.00 1.00 0 0 0	1.00 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6:00 0 1.00 0 0 0 1.00 1.00 0 0 1.00 0	PM 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	128 1.00 128 0 0 128 1.00 1.00 1.28 1.00 1.28	0 1.00 0 0 0 1.00 1.00 0 0 1.00 0	155 1.00 155 0 100 165 1.00 1.65 0 165 1.00
Saturation F. Sat/Lane: Adjustment: Lanes: Final Sat.:	low Mo 1900 1.00 0.00	odule: 1900 0.95 2.00 3610	1900 0.85 1.00 1615	1900 0.92 2.00 3502	1900 1.00 1.00 1900	1900 1.00 0.00	1900 1.00 0.00 0	1900 1.00 0.00 0	1900	1900 0.95 1.00 1805	1900 1.00 0.00 0	1900 0.75 2.00 2842
Capacity Ana. Vol/Sat: Crit Moves:	lysis	Modul	e:		0.67				0.00	'	0.00	
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignOueue:	0.00 0.0 1.00 0.0	0.66 12.4 1.00 12.4	0.31 9.3 1.00 9.3	0.66	0.85 9.0 1.00	0.00 0.00 0.0 1.00 0.0	0.00 0.0 1.00	0.00 0.00 0.0 1.00 0.0	0.00	0.85 63.4	1.00	0.36 0.16 14.1 1.00 14.1

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:02 Page 1-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:02 Page 2-1 UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 With Project Conditions

AM Peak Hour

Scenario Report

Scenario: CUMULATIVE + LAB + PROJECT AM

Command: CUMULATIVE + PROJECT AM Volume: CUMULATIVE AM

Geometry: CUMULATIVE + PROJECT AM
Impact Fee: Default Impact Fee
Trip Generation: AM LAB 2020 WITH PROJECT
Trip Distribution: Cumulative With Lab AM

Paths: Default Paths
Routes: Default Routes Configuration: CUMULATIVE LAB AM

2020) With Project Conditions
	AM Peak Hour

Trip Generation Report

Forecast for AM Peak - new

Zone #	Subzone		Units	In	Rate Out	In	Out	Trips	% Of Tota
1		Pab 50.00	Office	1.37	0.19	69	10	79	4. 4.
2			Office				10 10	79 79	4. 4.
3	Zone	1.00	Negative Parki Parking	95.00	10.00	95	-5 10 5	105	
4	Zone	1.00 4 Subtotal	Parking	127.00	13.00	127 127	13 13	140 140	
5	Zone		Parking					35 35	
6	Zone	1.00 6 Subtotal	Parking	95.00	10.00	95 95		105 105	
7	Zone		Parking					105 105	
8	Zone	1.00 8 Subtotal	Parking	32.00	3.00	32 32	3	35 35	2 .
9	Zone		Parking					105 105	
10	Zone		Parking l					175 175	
11	Zone		Parking l		10.00		10 10	105 105	
12	Zone		Negative Parki				-4 -4		
102 103 104 105 106	Blackberry Strawberry Strawberry Grizzly IN Grizzly OU	7 O 1.00 7 I 1.00 7 O 1.00 I 1.00 IT 1.00	LBNL Blackberr LBNL Strawberr LBNL Strawberr LBNL Grizzly I LBNL Grizzly O	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0 0 0 0	0 0 0 0	0 0 0 0	0 .

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:02 Page 2-2 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:02 Page 3-1

UC Berkelev LRDP EIR

020	With	Project	Conditions
	AΝ	1 Peak H	าแท

Rate Rate Trips Trips Total % Of # Subzone Amount Units In Out In Out Trips Total TOTAL 867 96 963 58.5

UC Berkeley LRDP EIR 2020 With Project Conditions

AM Peak Hour

Trip Generation Report

Forecast for AM Peak - diverted

Zone #	Subzone A	mount	Units		Rate Out	-	-		
3	Zone 3 Su	1.00	Negative Parki Parking	24.00	2.00	24		26	-0.9 1.6 0.7
4	Zone 4 Su		Parking			32 32			2.1
5	Zone 5 Su		Parking			8	1 1	9	0.5 0.5
6	Zone 6 Su		Parking			24 24	2 2		1.6 1.6
7	Zone 7 Su		Parking			24 24	2 2	26 26	
8	Zone 8 Su		Parking			8		9	0.5 0.5
9	Zone 9 Su		Parking			24 24	2 2	26 26	
10	Zone 10 S		Parking			40 40	4 4		2.7
11	Zone 11 S		Parking				2 2	26 26	1.6 1.6
12	Zone 12 S		Negative Parki			-11 -11	-1 -1	-12 -12	-0.7 -0.7
TOTAL						184	17	201	12.2

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:02 Page 4-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:02 Page 5-1 UC Berkeley LRDP EIR UC Berkeley LRDP EIR 2020 With Project Conditions 2020 With Project Conditions AM Peak Hour AM Peak Hour Trip Generation Report Trip Generation Report Forecast for APPROVED AM Forecast for AM LAB 2020 Zone Zone Rate Rate Trips Trips Total % Of Rate Rate Trips Trips Total % Of # Subzone Amount Units In Out In Out Trips Total # Subzone Amount Units In Out In Out Trips Total -1.00 Negative Parki 0.00 0.00 0 0 101 Blackberry I 1.00 LBNL Blackberr 64.00 0.00 64 0 64 3.9 0.0 1.00 Parking 0.00 0.00 0 0 0.0 3 13 Lower Hearst 1.00 Approved Parki 44.00 4.00 44 4 48 2.9 102 Blackberry O 1.00 LBNL Blackberr 0.00 11.00 0 11 11 0.7 14 Underhill 1.00 Approved Parki 276.00 28.00 276 28 304 18.5 103 Strawberry I 1.00 LBNL Strawberr 19.00 0.00 19 0 19 1.2 104 Strawberry O 1.00 LBNL Strawberr 0.00 3.00 0 3 3 0.2 Zone 104 Subtotal 0 3 3 0.2

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:02 Page 6-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:02 Page 6-2

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

12 13 14 15 16 17

Zone ----- -----106 0.0 0.0 0.0 0.0 0.0 0.0

Trip Distribution Report

Percent Of Trips CUMULATIVE AM WITH LAB

					To	Gates					
	1	2	3	4	5	6	7	8	9	10	11
Zone											
4	10.4	4 5	7.0	- A	10 0	12.0	0 1	11 1	10 0	1.4.4	0 0
1	13.4	4.5	7.0	5.4	10.2	13.0	8.1	11.1	12.9	14.4	0.0
2	13.4	4.5	7.0	5.4	10.2	13.0	8.1	11.1	12.9	14.4	0.0
3	13.4	4.5	7.0	5.4	10.2	13.0	8.1	11.1	12.9	14.4	0.0
4	13.4	4.5	7.0	5.4	10.2	13.0	8.1	11.1	12.9	14.4	0.0
5	13.4	4.5	7.0	5.4	10.2	13.0	8.1	11.1	12.9	14.4	0.0
6	13.4	4.5	7.0	5.4	10.2	13.0	8.1	11.1	12.9	14.4	0.0
7	13.4	4.5	7.0	5.4	10.2	13.0	8.1	11.1	12.9	14.4	0.0
8	13.4	4.5	7.0	5.4	10.2	13.0	8.1	11.1	12.9	14.4	0.0
9	13.4	4.5	7.0	5.4	10.2	13.0	8.1	11.1	12.9	14.4	0.0
10	13.4	4.5	7.0	5.4	10.2	13.0	8.1	11.1	12.9	14.4	0.0
11	13.4	4.5	7.0	5.4	10.2	13.0	8.1	11.1	12.9	14.4	0.0
12	13.4	4.5	7.0	5.4	10.2	13.0	8.1	11.1	12.9	14.4	0.0
13	13.4	4.5	7.0	5.4	10.2	13.0	8.1	11.1	12.9	14.4	0.0
14	13.4	4.5	7.0	5.4	10.2	13.0	8.1	11.1	12.9	14.4	0.0
101	5.6	0.0	5.6	0.0	10.3	11.6	19.5	22.5	11.9	0.0	3.0
102	6.0	0.0	14.0	0.0	8.0	10.0	18.0	20.0	10.0	0.0	2.0
103	5.7	0.0	8.9	0.0	10.0	11.1	17.8	23.3	12.2	0.0	2.2
104	9.1	0.0	27.2	0.0	9.1	9.1	9.1	18.2	18.2	0.0	0.0
105	5.3	0.0	14.7	0.0	9.3	10.0	16.7	20.7	12.0	0.0	2.0
106	11.1	0.0	11.1	0.0	11.1	11.1	22.2	22.2	11.2	0.0	0.0

			ro Gate	es		
	12	13	14	15	16	17
Zone						
1	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0	0.0	0.0
5	0.0	0.0	0.0	0.0	0.0	0.0
6	0.0	0.0	0.0	0.0	0.0	0.0
7	0.0	0.0	0.0	0.0	0.0	0.0
8	0.0	0.0	0.0	0.0	0.0	0.0
9	0.0	0.0	0.0	0.0	0.0	0.0
10	0.0	0.0	0.0	0.0	0.0	0.0
11	0.0	0.0	0.0	0.0	0.0	0.0
12	0.0	0.0	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	0.0	0.0	0.0
14	0.0	0.0	0.0	0.0	0.0	0.0
101	3.0	1.3	1.3	2.3	1.0	1.1
102	2.0	2.0	2.0	2.0	2.0	2.0
103	2.2	1.1	1.1	2.2	1.1	1.1
104	0.0	0.0	0.0	0.0	0.0	0.0
105	2.0	1.3	1.3	2.0	1.3	1.4

UC Berkeley LRDP EIR

2020 With Project Conditions

UC Berkeley LRDP EIR 2020 With Project Conditions

						M Peak													A	M Peak	Hour						
				7	Turnir	ng Move divert	ment R	Report						Volume Type		orthbo Thru			uthbo Thru		Ea Left	stbou Thru			stbour Thru F		Total Volume
Volume Type		orthb Thru			outhbo Thru			stbou Thru			stbou Thru		Total Volume	#8 Ceda													
11.1			, ~ -											Base	45		56	34	531	19	18	314	75	144	343	19	1784
#1 Mar				Pablo A			2.0	670	005	1 47	7.00	0.0	2406	Added	2	13	0	0	115	9	1	0	15	0	0	0	155
Base		363	59	106		15	38 0	672 20	235 8	147 4	768 2	90 2	3486	Future	30	20	10	10	10	0	10	40	30	10	120		290 2229
Added	1 120		1 64	7 20		0 14	14	20 67	30	34	267	10	203 891	Total	77	219	66	44	656	28	29	354	120	154	463	19	2229
Future Total	223		124		1166	29	52	759	273		1037	102	4580	#9 Ceda	r C+	root /	Fueli	d Aver	110								
IULAI	223	431	124	133	1100	23	32	133	213	100	1037	102	4300	Base	30	85	29	23	295	141	50	143	117	28	209	8	1158
#2 Mar	in Atra	an116	/ The I	Alameda	_									Added	0	0	0	0	11	3	0	-2	0	0	0	0	12
Base		189	7	38	279	23	33	494	291	20	420	48	2015	Future	20	0	0	0	10	40	10	30	20	20	80	0	230
Added	3		1	0	4	0	0	18	9	5	5	0	46	Total	50	85	29	23	316	184		171	137	48	289	8	1400
Future		0	10	10	190	20	0	70	50	10	170	10	650	10001		00		20	010		0.0	- / -	10,		200	Ū	1100
Total	286	190	18	48		43	33	582	350	35		58	2711	#10 Gri	zzlv	Peak	Blvd /	Cente	nnial	Drive							
														Base	31	13	13	25	52	4	6	165	143	169	90	16	727
#3 Gil	man St	treet	/ Sixt	h Stre	eet									Added	0	0	4	0	0	0	0	0	5	39	0	0	48
Base	122	24	56	11	45	28	21	416	114	47	430	20	1334	Future	30	0	10	0	0	0	0	20	10	20	10	0	100
Added	1	0	0	0	0	0	0	1	10	0	0	0	12	Total	61	13	27	25	52	4	6	185	158	228	100	16	875
Future	70	0	28	0	30	0	0	37	10	48	67	0	290														
Total	193	24	84	11	75	28	21	454	134	95	497	20	1636	#11 Hea				ttuck		е							
														Base	19		43	199	810	57	31	278	24	11	225	51	2039
#4 Gil				Pablo										Added	3	1	-13	3	11	0	0	37	25	6	4	0	77
Base	113		25		1055	125	75	189	96	62		42	2575	Future	10	90	20	50	160	20	30	30	30	10	20	70	540
Added	0		0	0		0	0	0	1	0	0	0	171	Total	32	382	50	252	981	77	61	345	79	27	249	121	2656
Future			60	60		20	35	20	10	10	40	32	692				,										
Total	143	721	85	134	1280	145	110	209	107	72	358	74	3438	#12 Hea				ord Av		20	1.0	200	114	007	0.01	0.7	0710
#E D	- 0+	/	Shattı	1- 7										Base Added	46 0	328 59	374 59	48	841 99	38 3	10 19	399 10	114 -1	207 8	281 8	27 19	2713 286
#3 ROS Base	55		11	174		28	28	174	40	32	185	40	1919	Future	20	50	40	10	30	20	0	80	30	30	70	10	390
Added	0		0	4		0	0	1/4	0	0	100	0.0	16	Total	66		473		970	61	29	489	143	245	359	56	3389
Future			20	10		10	10	10	20	20	10	10	470	IOCAI	00	457	4/3	01	370	01	23	400	143	245	555	50	5505
Total	95		31		1142	38	38	184	60		195	50	2405	#13 Hea	rst 2	Avenue	/ Spr	uce St	reet								
10001	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	002	0.1	100		00	00	101	00	02	130		2100	Base	0	0	, 01	9	0	63	11	843	0	0	430	7	1363
#6 Ced	ar Sti	reet .	/ Marti	in Luth	ner Ki	ng Way								Added	0	0	0	4	0	0	0	72	0	0	35	1	112
Base		292	44	35		26	14	276	62	58	248	30	1735	Future	0	0	0	0	0	20	0	130	0	0	110	0	260
Added	0	3	1	0	15	0	0	13	1	4	1	0	38	Total	0	0	0	13	0	83	11	1045	0	0	575	8	1735
Future	10	40	20	20	220	10	10	50	30	30	90	20	550														
Total	43	335	65	55	852	36	24	339	93	92	339	50	2323	#14 Hea	rst 2	Avenue	/ Arc	h Stre	et /	Le Con	ite Ave	nue					
														Base	0	0	0	2	0	130	276	566	0	0	307	4	1285
#7 Ced	ar St	reet ,	/ Shatt	cuck Av	venue									Added	0	0	0	0	0	0	24	52	0	0	35	0	111
Base	48	256	41	127	933	52	44	257	86	94	268	56	2262	Future	0	0	0	0	0	40	30	100	0	0	90	0	260
Added	0		0	2	9	0	0	14	0	4	6	0	36	Total	0	0	0	2	0	170	330	718	0	0	432	4	1656
Future	20	140	20	10	150	10	10	30	10	40	70	20	530														
Total	68	397	61	139	1092	62	54	301	96	138	344	76	2828	#15 Hea				nic Av									
														Base	0	0	0	0	0	37	0	531	0	0	290	55	913
														Added	0	0	0	0	0	1	0	0	0	0	34	2	37
														Future	0	0	0	0	0	20	0	100	0	0	90	10	220
														Total	0	0	0	0	0	58	0	631	0	0	414	67	1170

UC Berkeley LRDP EIR 2020 With Project Conditions

UC Berkeley LRDP EIR 2020 With Project Conditions

Value	AM Peak Hour	AM Peak Hour
Rase 2 0 2 47 1 151 75 448 1 1 276 10 1014 Phase 0 0 49 767 105 115 401 162 26 356 314 2295 346 340 36 438 1012 20 2 0 0 0 10 0 0 0 0 0	Volume Northbound Southbound Eastbound Westbound Total	Volume Northbound Southbound Eastbound Westbound Total
Base	Base 2 0 2 47 1 151 75 448 1 1 276 10 1014 Added 0 0 0 3 0 3 0 52 0 0 41 0 99 Future 0 0 10 0 50 10 90 0 0 70 0 230	Base 0 0 0 49 767 105 115 401 162 26 356 314 2295 Added 0 0 0 15 6 55 211 124 0 34 36 481 Future 0 0 0 10 120 60 20 50 10 10 200 90 570
Base 274 212 95	Base 0 0 0 19 0 60 59 436 0 0 230 3 807 Added 0 0 0 0 0 55 0 0 42 0 97 Future 0 0 0 0 10 90 0 0 70 0 180	Base 458 0 168 0 0 0 0 444 0 0 235 0 1305 Added 53 0 29 0 0 0 211 0 0 18 0 311 Future 220 0 20 0 0 0 0 0 0 80 0 320
Base 39 717 40 30 1132 11 20 18 72 10 2 12 2103 Base 69 476 0 0 543 75 53 0 73 0 0 0 1289	Base 274 212 95 12 274 21 28 161 304 21 33 5 1440 Added 32 3 32 0 38 0 0 32 23 2 9 0 171 Future 70 10 20 0 120 0 0 80 0 20 20 0 340	Base 147 487 4 41 1101 77 300 38 217 6 12 23 2453 Added 10 54 -2 -3 79 8 99 -6 147 0 -1 0 385 Future 50 90 0 10 80 30 20 10 20 0 10 10 330
Base 211 111 19 73 290 325 89 932 333 40 931 21 3375 Base 54 647 0 0 1165 61 4 0 31 0 0 0 1962 Added 0 17 12 0 4 1 6 291 0 1 31 0 363 Added 20 60 0 0 207 18 2 0 2 0 0 0 309 Future 150 60 10 10 10 80 10 60 40 10 155 10 600 Future 150 60 10 10 10 10 80 10 60 40 10 155 10 600 Future 150 60 10 10 10 10 80 10 60 40 10 155 10 600 Future 150 60 10 10 10 10 80 10 60 40 10 155 10 10 600 Future 150 60 10 10 10 10 80 10 60 40 10 150 10 600 Future 150 60 10 10 10 10 80 10 60 40 10 150 10 600 Future 150 60 10 10 10 80 10 60 40 10 10 10 10 10 10 10 10 10 10 10 10 10	Base 39 717 40 30 1132 11 20 18 72 10 2 12 2103 Added 38 115 0 0 80 26 3 0 4 0 0 0 266 PassBy 10 110 10 0 100 0 0 0 20 0 0 0 250	Base 69 476 0 0 543 75 53 0 73 0 0 0 1289 Added -13 69 0 0 84 -21 -2 0 -1 0 0 0 116 Future 20 70 0 0 110 10 10 0 20 0 0 0 240
Base 100 457 75 190 837 83 56 957 49 63 644 93 3604 Added 0 3 7 74 50 0 0 0 303 1 1 31 9 479 Added 0 0 0 0 0 15 779 71 0 69 51 17 102 0 1104 Added 0 3 7 74 50 0 0 0 303 1 1 1 31 9 479 Added 0 0 0 0 0 83 0 0 2 0 0 0 0 0 85 Future 50 200 40 60 30 20 10 60 10 10 120 100 710 Future 0 0 0 0 15 992 91 0 121 81 47 142 0 1489 #22 University Avenue / Martin Luther King Way Base 178 568 80 57 833 87 81 703 185 41 477 47 3337 Base 42 616 51 0 0 0 2 6 56 0 0 77 26 894 Added 1 3 3 0 14 0 2 386 -2 0 40 0 447 Added 0 98 -2 0 0 0 0 0 26 56 0 0 77 26 894 Added 1 3 3 3 0 14 0 2 386 -2 0 40 0 447 Added 0 98 -2 0 0 0 0 0 230 30 10 130 20 20 160 80 750 Future 70 0 0 0 230 30 10 130 20 20 160 80 750 Future 30 200 60 0 0 0 36 98 0 0 117 56 1402 #23 University Avenue / Milvia Street Base 100 98 21 6 203 63 37 656 137 18 406 15 1760 Base 50 663 42 11 1145 39 26 10 43 19 6 8 2062 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Base 211 111 19 73 290 325 89 932 333 40 931 21 3375 Added 0 17 12 0 4 1 6 291 0 1 31 0 363 Future 150 60 10 10 10 80 10 60 40 10 150 10 600	Base 54 647 0 0 1165 61 4 0 31 0 0 0 1962 Added 20 60 0 0 207 18 2 0 2 0 0 0 309 PassBy 20 140 0 0 90 10 0 0 10 0 0 270
Base 178 568 80 57 833 87 81 703 185 41 477 47 3337 Base 42 616 51 0 0 0 26 56 0 0 77 26 894 Added 1 3 3 0 14 0 2 386 -2 0 40 0 447 Added 0 98 -2 0 0 0 0 0 2 0 0 0 0 0 98 Future 70 0 0 0 230 30 10 130 20 20 160 80 750 Future 30 200 60 0 0 0 10 40 0 40 30 410 Total 249 571 83 57 1077 117 93 1219 203 61 677 127 4534 Total 72 914 109 0 0 0 36 98 0 0 117 56 1402 #23 University Avenue / Milvia Street Base 100 98 21 6 203 63 37 656 137 18 406 15 1760 Base 50 663 42 11 1145 39 26 10 43 19 6 8 2062 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Base 100 457 75 190 837 83 56 957 49 63 644 93 3604 Added 0 3 7 74 50 0 0 303 1 1 31 9 479 Future 50 200 40 60 30 20 10 60 10 10 120 100 710	Base 0 0 0 15 779 71 0 69 51 17 102 0 1104 Added 0 0 0 83 0 0 2 0 0 0 0 85 Future 0 0 0 130 20 0 50 30 30 40 0 300
Base 100 98 21 6 203 63 37 656 137 18 406 15 1760 Base 50 663 42 11 1145 39 26 10 43 19 6 8 2062 Added 0 0 0 0 0 390 0 0 40 0 47 -2 -5 214 0 4 -4 0 0 0 0 284 Future 10 10 10 10 10 20 80 20 20 240 20 460 Future 30 90 10 0 70 30 60 0 30 0 0 0 320	Base 178 568 80 57 833 87 81 703 185 41 477 47 3337 Added 1 3 3 0 14 0 2 386 -2 0 40 0 447 Future 70 0 0 230 30 10 130 20 20 160 80 750	Base 42 616 51 0 0 0 26 56 0 0 77 26 894 Added 0 98 -2 0 0 0 2 0 0 0 0 98 Future 30 200 60 0 0 0 10 40 0 0 40 30 410
	Base 100 98 21 6 203 63 37 656 137 18 406 15 1760 Added 0 0 0 0 0 390 0 0 40 0 430 Future 10 10 10 10 20 80 20 20 240 20 460	Base 50 663 42 11 1145 39 26 10 43 19 6 8 2062 Added 0 77 -2 -5 214 0 4 -4 0 0 0 0 284 Future 30 90 10 0 70 30 60 0 30 0 0 0 320

UC Berkeley LRDP EIR 2020 With Project Conditions

UC Berkeley LRDP EIR 2020 With Project Conditions

AM Peak	k Hour	AM Peak Hour
Volume Northbound Southbound	Eastbound Westbound Total Left Thru Right Left Thru Right Volume	Volume Northbound Southbound Eastbound Westbound Total Type Left Thru Right Left Thru Right Left Thru Right Volume
#32 Stadium Rim Road / Gayley Road Base 0 386 19 128 471 0 Added 0 49 18 19 64 0 Future 0 60 10 20 100 0 Total 0 495 47 167 635 0	12 5 14 18 1 118 1172 0 0 0 0 24 0 7 181 0 0 0 0 10 0 20 220 12 5 14 52 1 145 1573	#40 Bancroft Way / Telegraph Avenue Base 427 0 0 0 0 0 0 0 0 0 460 0 887 Added 24 0 0 0 0 0 0 0 0 0 143 0 167 Future 100 0 0 0 0 0 0 0 0 0 0 70 0 170 Total 551 0 0 0 0 0 0 0 0 0 0 673 0 1224
#33 Allston Way / Oxford Street Base 17 798 0 59 1111 34 Added 0 75 0 0 214 0 Future 10 130 0 10 80 10 Total 27 1003 0 69 1405 44	16 0 33 0 0 0 2068 0 0 0 0 0 0 0 289 0 0 30 0 0 0 270 16 0 63 0 0 0 2627	#41 Bancroft Way / Bowditch Street Base 191 0 0 0 0 0 0 0 0 99 494 0 784 Added 0 0 0 0 0 0 0 0 0 3 143 0 146 Future 10 0 0 0 0 0 0 0 0 0 20 60 0 90 Total 201 0 0 0 0 0 0 0 0 122 697 0 1020
#34 Kittridge Street / Oxford Street / F Base 13 801 0 0 1122 18 Added 0 68 23 69 145 0 Future 0 120 0 0 70 30 Total 13 989 23 69 1337 48	Fulton Street 6 0 23 0 0 1983 0 27 0 2 3 7 344 10 0 10 0 0 0 240 16 27 33 2 3 7 2567	#42 Bancroft Way / College Avenue Base 343 0 0 0 0 0 0 0 0 34 203 0 580 Added 157 0 0 0 0 0 0 0 0 1 132 0 290 Future 10 0 0 0 0 0 0 0 0 20 60 0 90 Total 510 0 0 0 0 0 0 0 55 395 0 960
#35 Stadium Rim Road / Centennial Drive Base 0 70 160 94 22 0 Added 0 0 0 37 0 0 Future 0 20 20 20 10 0 Total 0 90 180 151 32 0	0 0 0 114 0 71 531 0 0 0 0 0 0 31 68 0 0 0 20 0 10 100 0 0 134 0 112 699	#43 Bancroft Way / Piedmont Avenue Base 131 553 0 0 344 123 0 0 0 0 0 0 1151 Added 104 103 0 0 46 29 0 0 0 0 0 0 282 Future 10 60 0 0 40 60 0 0 0 0 0 0 0 170 Total 245 716 0 0 430 212 0 0 0 0 0 0 0 1603
#36 Bancroft Way / Shattuck Avenue Base 29 912 0 0 788 12 Added 0 115 0 0 86 0 Future 10 280 0 0 190 10 Total 39 1307 0 0 1064 22	1 0 62 116 51 71 2042 0 0 0 12 0 9 222 0 0 0 30 10 10 540 1 0 62 158 61 90 2804	#44 Durant Avenue / Shattuck Avenue Base 55 943 136 67 886 8 9 70 35 0 0 0 2209 Added 0 115 105 66 31 0 0 0 0 0 0 0 317 Future 10 90 70 40 180 10 200 40 0 0 0 0 640 Total 65 1148 311 173 1097 18 209 110 35 0 0 0 3166
#37 Bancroft Way / Fulton Street Base 13 146 0 0 1071 79 Added 13 0 0 0 127 20 Future 10 10 0 0 60 10 Total 36 156 0 0 1258 109	0 0 0 84 173 650 2216 0 0 0 2 24 91 277 0 0 0 10 20 110 230 0 0 0 96 217 851 2723	#45 Durant Avenue / Fulton Street Base
#38 Bancroft Way / Ellsworth Street Base 241 60 0 0 0 11 Added 96 0 0 0 0 0 Future 10 0 0 0 0 0 Total 347 60 0 0 0 11	0 0 0 0 0 674 39 1025 0 0 0 0 128 0 224 0 0 0 0 130 0 140 0 0 0 0 932 39 1389	#46 Durant Avenue / Telegraph Avenue Base
#39 Bancroft Way / Dana Street Base 0 0 0 0 0 0 0 Added 0 0 0 0 0 0 Future 0 0 0 0 0 0 Total 0 0 0 0 0	0 0 0 145 721 0 866 0 0 0 4 128 0 132 0 0 0 50 130 0 180 0 0 0 199 979 0 1178	#47 Durant Avenue / College Avenue Base 0 213 66 13 23 0 64 228 87 0 0 0 694 Added 0 29 31 0 1 0 128 39 2 0 0 0 230 Future 0 10 90 0 20 0 20 90 40 0 0 0 270 Total 0 252 187 13 44 0 212 357 129 0 0 0 1194

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

AM Pea		AM Peak Hour
Volume Northbound Southbound	Eastbound Westbound Total Left Thru Right Left Thru Right Volume	Volume Northbound Southbound Eastbound Westbound Total Type Left Thru Right Left Thru Right Left Thru Right Volume
#48 Durant Avenue / Piedmont Avenue Base	0 60 0 9 0 0 0 262 0 30 0 60 0 0 0 180	#56 Haste Street / College Avenue Base 167 267 0 0 115 69 0 0 0 48 223 21 910 Added 19 80 0 0 5 0 0 0 0 0 12 0 116 Future 30 40 0 0 90 60 0 0 0 30 30 40 320 Total 216 387 0 0 210 129 0 0 0 78 265 61 1346
#49 Channing Way / Shattuck Avenue Base 42 1070 96 19 868 19 Added 0 216 44 0 31 0 Future 20 130 20 40 90 70 Total 62 1416 160 59 989 89	0 0 0 0 3 0 3 297 0 30 40 20 30 10 10 510	#57 Dwight Way / Martin Luther King Way Base 62 690 66 88 868 163 68 419 83 0 0 0 2507 Added 3 9 0 0 15 10 0 114 19 0 0 0 170 Future 20 30 10 10 200 50 10 50 10 0 0 390 Total 85 729 76 98 1083 223 78 583 112 0 0 0 3067
#50 Channing Way / Fulton Street Base 0 0 0 86 543 51 Added 0 0 0 32 2 0 Future 0 0 0 0 30 0 Total 0 0 0 118 575 51	0 0 44 0 0 6 0 84 0 0 90 0 10 40 0 170	#58 Dwight Way / Shattuck Avenue Base 0 1094 113 95 989 0 66 420 151 0 0 0 2928 Added 0 222 0 2 31 0 38 76 0 0 0 0 369 Future 0 130 30 10 110 0 20 50 10 0 0 0 360 Total 0 1446 143 107 1130 0 124 546 161 0 0 0 3657
#51 Channing Way / Telegraph Avenue Base 56 423 79 0 0 0 Added 0 30 68 0 0 0 Future 10 40 30 0 0 Total 66 493 177 0 0	0 76 0 0 6 0 180 0 60 30 0 0 30 50 250	#59 Dwight Way / Fulton Street Base 0 0 12 449 0 0 0 620 6 0 0 0 1087 Added 0 0 0 1 0 0 0 78 0 0 0 79 Future 0 0 10 30 0 0 0 768 36 0 0 0 1306
#52 Channing Way / College Avenue Base 26 256 22 6 92 2 Added 25 59 -4 0 3 0 Future 20 50 20 0 60 10 Total 71 365 38 6 155 12	0 0 9 2 0 77 0 171 0 10 40 30 70 40 30 380	#60 Dwight Way / Telegraph Avenue Base 0 697 78 0 0 0 66 479 565 0 0 0 1885 Added 0 30 0 0 0 0 68 12 3 0 0 0 113 Future 0 60 10 0 0 0 10 60 40 0 0 0 180 Total 0 787 88 0 0 0 144 551 608 0 0 0 2178
#53 Haste Street / Shattuck Avenue Base 66 1117 0 0 903 46 Added 0 260 0 0 29 5 Future 10 130 0 0 110 20 Total 76 1507 0 0 1042 71	0 0 0 4 8 0 306 0 0 0 30 110 20 430	#61 Dwight Way / College Avenue Base
#54 Haste Street / Fulton Street Base 0 0 0 0 433 145 Added 0 0 0 0 1 1 Future 0 0 0 0 50 20 Total 0 0 0 0 484 166	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	#62 Dwight Way / Piedmont Avenue / Warring Street Base 0 583 0 8 324 0 91 143 238 42 0 48 1477 Added 0 193 0 0 18 0 1 0 3 0 0 215 Future 0 70 10 10 40 0 10 10 30 10 0 10 200 Total 0 846 10 18 382 0 102 153 271 52 0 58 1892
#55 Haste Street / Telegraph Avenue Base 216 520 0 0 0 0 Added 0 98 0 0 0 0 Future 20 50 0 0 0 0 Total 236 668 0 0 0	0 0 0 0 12 0 110 0 0 0 0 90 30 190	#63 Dwight Avenue / Prospect Street Base

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:02 Page 7-9 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:02 Page 7-10

UC Berkeley LRDP EIR UC Berkeley LRDP EIR 2020 With Project Conditions 2020 With Project Conditions AM Peak Hour AM Peak Hour

AM Fed		AM rear	
Volume Northbound Southbound	Eastbound Westbound Total Left Thru Right Left Thru Right Volume	Volume Northbound Southbound	Eastbound Westbound Total Left Thru Right Left Thru Right Volume
#64 Adeline Street / Ward Avenue / Shat Base 0 784 3 0 736 546		#72 Ashby Avenue / College Avenue Base 79 323 26 118 232 95	33 490 92 4 611 229 2332
Added 0 184 0 0 22 7		Added 0 24 0 4 2 0	18 6 0 0 28 49 131
Future 0 50 0 0 40 70		Future 20 20 10 20 20 60	20 80 10 10 20 30 320
Total 0 1018 3 0 798 623		Total 99 367 36 142 254 155	71 576 102 14 659 308 2783
#65 Derby Street / Warring Street		#73 Ashby Avenue / Claremont Avenue	
Base 0 0 0 650 0 31		Base 35 288 153 321 272 59	43 504 13 90 637 429 2844
Added 0 0 0 20 0 0		Added 0 0 0 20 0 0	0 10 0 0 78 193 301
Future 0 0 0 90 0 10		Future 20 10 30 40 50 10	30 60 10 30 20 50 360
Total 0 0 0 760 0 41	14 30 0 0 34 1062 1941	Total 55 298 183 381 322 69	73 574 23 120 735 672 3505
#66 Derby Street / Claremont Blvd.		#74 Tunnel Road / SR 13	
Base 5 0 64 0 0 0		Base 0 1293 435 487 608 0	0 0 0 205 0 307 3335
Added 0 0 0 0 0 0		Added 0 271 0 15 14 0	0 0 0 0 0 0 300
Future 0 0 0 0 0 0		Future 0 80 0 60 70 0	0 0 0 0 0 20 230
Total 5 0 64 0 0 0	0 785 12 52 1096 0 2014	Total 0 1644 435 562 692 0	0 0 0 205 0 327 3865
#67 Ashby Avenue / Seventh Street		#1004	
Base 62 162 54 54 193 224		Base 0 0 0 0 0 0	0 0 0 0 0 0
Added 0 0 0 0 0 0		Added 0 0 0 1 0 2	12 25 0 0 29 7 76
Future 100 70 20 60 20 30		Total 0 0 0 1 0 2	12 25 0 0 29 7 76
Total 162 232 74 114 213 254	483 1070 346 161 735 55 3899	#1005	
#68 Ashby Avenue / San Pablo Avenue		#1005 Base 0 0 0 0 0 0	0 0 0 0 0 0
Base 173 521 53 137 741 128	8 84 584 134 51 613 135 3354	Added 0 0 0 1 0 1	22 4 0 0 35 10 73
Added 2 20 57 0 28 2		Total 0 0 0 1 0 1	22 4 0 0 35 10 73
Future 20 220 20 20 320 30		10001 0 0 0 1 0 1	22 1 0 0 33 10 73
Total 195 761 130 157 1089 160		#1101 I-880 South/ I-80 West CHECK	
		Base 0 0 0 0 0 0	0 0 0 0 0 0
#69 Ashby Avenue / Adeline Street	100 564 40 00 540 14 0605	Added 0 190 0 0 21 0	0 0 0 0 0 0 211
Base 74 567 61 11 438 96 Added 4 12 0 0 2 5		Total 0 190 0 0 21 0	0 0 0 0 0 0 211
Added 4 12 0 0 2 5 Future 30 50 10 10 10 50		#1121 Highland Place/Heart Avenue/Cyclot	ron
Total 108 629 71 21 450 151		Base 0 0 0 0 0 0	0 0 0 0 0 0 0
10041 100 029 /1 21 430 131	203 732 70 93 730 14 9400	Added 0 0 0 0 0 0	0 64 0 0 11 0 75
#70 Ashby Avenue / Shattuck Avenue		Total 0 0 0 0 0 0	0 64 0 0 11 0 75
Base 77 590 26 124 450 35	33 557 31 40 550 182 2695	10001 0 0 0 0 0	0 01 0 0 11 0 70
Added 0 108 0 4 11 6		#1122 Stadium Rim Road/ Canyon Road	
Future 30 20 10 20 10 10	10 110 10 10 150 10 400	Base 0 0 0 0 0 0	0 0 0 0 0 0
Total 107 718 36 148 471 51	101 687 41 50 713 208 3331	Added 0 0 0 0 0 0	0 0 0 0 0 0
#71 Public Process (males and Process		Total 0 0 0 0 0 0	0 0 0 0 0 0
#71 Ashby Avenue / Telegraph Avenue Base 150 985 80 148 623 103	8 86 549 120 89 573 83 3589		
Base 150 985 80 148 623 103 Added 3 29 0 0 3 0			
Future 50 40 10 10 60 30			
Total 203 1054 90 158 686 133			

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

Impact	Anal	ysis	Report
Leve	el Of	Serv	/ice

Intersection	Base Del/ V/	Future Del/ V/	Change in
# 1 Marin Avenue / San Pablo Avenu	LOS Veh C E 64.3 0.775	LOS Veh C F 94.0 1.019	+29.711 D/V
			,
# 2 Marin Avenue / The Alameda	в 12.8 0.467	в 15.4 0.666	+ 2.633 D/V
# 3 Gilman Street / Sixth Street	в 10.6 0.511	в 16.5 0.688	+ 5.883 D/V
# 4 Gilman Street / San Pablo Aven	C 34.0 0.736	D 46.1 0.894	+12.112 D/V
# 5 Rose Street / Shattuck Avenue	A 6.9 0.480	A 9.9 0.574	+ 3.048 D/V
# 6 Cedar Street / Martin Luther K	B 16.4 0.661	C 33.4 0.982	+17.026 D/V
# 7 Cedar Street / Shattuck Avenue	A 9.3 0.528	в 10.5 0.627	+ 1.281 D/V
# 8 Cedar Street / Oxford Street	C 28.4 0.800	E 57.9 1.029	+29.582 D/V
# 9 Cedar Street / Euclid Avenue	B 12.4 0.512	в 13.8 0.599	+ 1.349 D/V
# 10 Grizzly Peak Blvd / Centennial	A 9.8 0.386	в 11.2 0.483	+ 0.097 V/C
# 11 Hearst Avenue / Shattuck Avenu	A 6.0 0.394	A 8.2 0.522	+ 2.238 D/V
# 12 Hearst Avenue / Oxford Avenue	A 9.8 0.458	в 11.7 0.554	+ 1.917 D/V
# 13 Hearst Avenue / Spruce Street	B 3.0 0.000	в 3.1 0.000	+ 0.000 V/C
# 14 Hearst Avenue / Arch Street /	B 2.4 0.000	B 2.4 0.000	+ 0.000 V/C
# 15 Hearst Avenue / Scenic Avenue	A 0.3 0.000	B 0.4 0.000	+ 0.000 V/C
# 16 Hearst Avenue / Euclid Avenue	в 16.3 0.442	в 17.9 0.586	+ 1.557 D/V
# 17 Hearst Avenue / Le Roy Avenue	B 3.2 0.000	в 3.2 0.000	+ 0.000 V/C
# 18 Hearst Avenue / Gayley Road /	в 18.0 0.837	E 59.9 1.193	+41.865 D/V
# 19 Berkeley Way / Oxford Street	A 4.4 0.432	A 7.0 0.517	+ 2.651 D/V
# 20 University Avenue / Sixth Stre	E 70.5 0.763	F 100.0 0.998	+29.555 D/V
# 21 University Avenue / San Pablo	F 86.7 0.732	F 129.9 0.962	+43.248 D/V
# 22 University Avenue / Martin Lut	в 19.4 0.742	D 40.0 1.018	+20.623 D/V
# 23 University Avenue / Milvia Str	B 10.4 0.460	в 14.1 0.675	+ 3.688 D/V

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

	UC	Ber	keley	LF	RDP	EIR
2020	Wi	th	Proje	ct	Cor	nditions
		AM	I Peak	Н	our	

Intersection	Base Del/ V/	Future Del/ V/	Change in
# 24 University Avenue / SB Shattuc	LOS Veh C B 19.1 0.431	LOS Veh C D 36.8 0.652	+17.667 D/V
# 25 University Avenue / NB Shattuc	в 15.5 0.311	в 17.0 0.471	+ 1.419 D/V
# 26 University Avenue / Oxford Str	C 22.4 0.728	D 38.8 0.914	+16.445 D/V
# 27 Univeristy Drive (East Gate)	C 1.7 0.000	D 2.6 0.000	+ 0.000 V/C
# 28 Addison Street / Oxford Street	B 0.3 0.000	E 0.8 0.000	+ 0.000 V/C
# 29 Center Street / SB Shattuck Av	B 14.3 0.324	B 16.8 0.449	+ 2.537 D/V
# 30 Center Street / NB Shattuck Av	A 4.5 0.248	A 5.3 0.396	+ 0.821 D/V
# 31 Center Street / Oxford Street	A 7.9 0.479	B 13.3 0.674	+ 5.379 D/V
# 32 Stadium Rim Road / Gayley Road	C 20.1 0.831	F 79.2 1.220	+ 0.390 V/C
# 33 Allston Way / Oxford Street	D 4.4 0.000	E 5.2 0.000	+ 0.000 V/C
# 34 Kittridge Street / Oxford Stre	C 2.3 0.000	F 8.4 0.000	+ 0.000 V/C
# 35 Stadium Rim Road / Centennial	A 8.6 0.268	A 9.6 0.341	+ 0.073 V/C
# 36 Bancroft Way / Shattuck Avenue	A 8.4 0.425	в 10.5 0.605	+ 2.127 D/V
# 37 Bancroft Way / Fulton Street	A 6.1 0.351	A 9.7 0.421	+ 3.611 D/V
# 38 Bancroft Way / Ellsworth Stree	B 2.9 0.000	C 4.5 0.000	+ 0.000 V/C
# 39 Bancroft Way / Dana Street	A 0.0 0.000	A 0.0 0.000	+ 0.000 V/C
# 40 Bancroft Way / Telegraph Avenu	B 20.0 0.240	C 21.6 0.327	+ 1.608 D/V
# 41 Bancroft Way / Bowditch Street	B 11.2 0.431	в 14.1 0.596	+ 0.166 V/C
# 42 Bancroft Way / College Avenue	B 10.5 0.455	C 16.8 0.743	+ 0.288 V/C
# 43 Bancroft Way / Piedmont Avenue	C 20.3 0.836	F 86.7 1.224	+ 0.388 V/C
# 44 Durant Avenue / Shattuck Avenu	B 10.3 0.449	B 14.2 0.749	+ 3.847 D/V
# 45 Durant Avenue / Fulton Street	A 7.2 0.327	в 10.9 0.459	+ 3.739 D/V
# 46 Durant Avenue / Telegraph Aven	B 10.6 0.247	в 12.0 0.370	+ 1.398 D/V
# 47 Durant Avenue / College Avenue	A 9.0 0.277	в 13.6 0.440	+ 4.596 D/V
# 48 Durant Avenue / Piedmont Avenu	C 15.4 0.703	F 53.0 1.111	+ 0.408 V/C
Traffix 7.5.0715 (c) 2002 Dowling	Assoc. Licensed	to FEHR & PEERS	, LAFAYETTE

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 8-3 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 8-4

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

AM reak nout						
Intersection	Base Del/ V/ LOS Veh C	Future Del/ V/ LOS Veh C	Change in			
# 49 Channing Way / Shattuck Avenue	A 4.6 0.469	A 7.2 0.652	+ 2.619 D/V			
# 50 Channing Way / Fulton Street	B 11.8 0.498	B 14.7 0.604	+ 0.106 V/C			
# 51 Channing Way / Telegraph Avenu	A 8.9 0.304	B 11.9 0.491	+ 3.048 D/V			
# 52 Channing Way / College Avenue	B 13.3 0.390	C 21.5 0.613	+ 8.148 D/V			
# 53 Haste Street / Shattuck Avenue	D 37.6 0.530	D 44.4 0.709	+ 6.780 D/V			
# 54 Haste Street / Fulton Street	B 13.5 0.309	в 15.2 0.379	+ 1.628 D/V			
# 55 Haste Street / Telegraph Avenu	B 15.3 0.350	B 16.9 0.447	+ 1.685 D/V			
# 56 Haste Street / College Avenue	A 8.0 0.415	в 11.2 0.616	+ 3.167 D/V			
# 57 Dwight Way / Martin Luther Kin	B 13.4 0.676	C 22.2 0.876	+ 8.862 D/V			
# 58 Dwight Way / Shattuck Avenue	B 10.1 0.713	в 16.7 0.919	+ 6.546 D/V			
# 59 Dwight Way / Fulton Street	B 11.2 0.419	в 13.7 0.493	+ 2.478 D/V			
# 60 Dwight Way / Telegraph Avenue	в 15.9 0.667	в 18.1 0.757	+ 2.127 D/V			
# 61 Dwight Way / College Avenue	B 10.4 0.439	в 12.4 0.556	+ 1.981 D/V			
# 62 Dwight Way / Piedmont Avenue /	A 9.3 0.352	в 10.9 0.462	+ 1.610 D/V			
# 63 Dwight Avenue / Prospect Stree	A 5.8 0.000	в 5.8 0.000	+ 0.000 V/C			
# 64 Adeline Street / Ward Avenue /	B 14.3 0.708	C 20.3 0.899	+ 6.025 D/V			
# 65 Derby Street / Warring Street	F 106.2 1.185	F 238.0 1.602	+ 0.417 V/C			
# 66 Derby Street / Claremont Blvd.	B 12.8 0.567	C 30.1 0.737	+17.295 D/V			
# 67 Ashby Avenue / Seventh Street	C 30.9 0.809	D 53.9 0.976	+22.993 D/V			
# 68 Ashby Avenue / San Pablo Avenu	C 33.3 0.668	D 42.2 0.973	+ 8.858 D/V			
# 69 Ashby Avenue / Adeline Street	D 39.5 0.501	D 42.1 0.623	+ 2.638 D/V			
# 70 Ashby Avenue / Shattuck Avenue	B 14.6 0.454	в 16.7 0.567	+ 2.148 D/V			
# 71 Ashby Avenue / Telegraph Avenu	C 23.7 0.671	C 26.9 0.907	+ 3.250 D/V			

72 Ashby Avenue / College Avenue D 41.3 0.988 D 35.9 1.181 -5.350 D/V

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

Intersection Base Future Change Del/ V/ Del/ V/ in LOS Veh C LOS Veh C # 73 Ashby Avenue / Claremont Avenu C 21.3 0.674 C 27.2 0.840 + 5.947 D/V # 74 Tunnel Road / SR 13 B 13.9 0.697 B 17.2 0.832 + 3.239 D/V

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 10-1

UC Berkeley LRDP EIR

2020 With Project Conditions

AM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

		I	Level (of Ser	vice (Computa	ation 1	Repor	t			
									ternati			
*****	****	****	*****	****	****	****	****	****	*****	****	****	*****
Intersection								****	*****	*****	****	*****
Cvcle (sec):		100)			Critica	al Vol	./Cap	. (X):		1.0	19
Loss Time (s	ec):	16	(Y+R	= 4	sec)	Average	e Dela	v (se	c/veh):	:	94	. 0
Loss Time (so	e:	180)		,	Level (of Ser	vice:	-, - ,			F
*****	****	****	*****	****	****	****	****	****	*****	****	****	*****
Approach:	Noi	rth Bo	ound	So	uth B	ound	E	ast B	ound	We	est B	ound
Movement:	L -	- T	- R	L	- T	- R	L ·	- T	- R	L -	- T	- R
Control:	Pi	rotect	ed	P	rotec	ted	P:	rotec	ted	P	rotec	ted
Rights:		Inclu			Incl			Incl			Incl	ude
Min. Green:			0		0	0		0	0	0	-	0
Lanes:			1 0			1 0			1 0) 1	
Volume Modul										1 4 5	7.00	0.0
Base Vol:	102	363	59	106	891		38		235		768	
Growth Adj:			1.00		1.00			1.00			1.00	
Initial Bse:		363	59	106	891		38	672	235	147	768	90
Added Vol:	1	14	1	7	144		0	20	8	4	2	2
Future:	120	120	64	20	131			67		34	267	10
Initial Fut:		497	124		1166		52	759			1037	102
User Adj:		1.00	1.00		1.00			1.00			1.00	
PHF Adj:	1.00		1.00		1.00			1.00	1.00		1.00	1.00
PHF Volume:	223	497	124		1166		52	759	273		1037	102
Reduct Vol:	0	0	0	0	0		0	0	0	0	0	0
Reduced Vol:		497	124		1166		52				1037	
PCE Adj:		1.00	1.00		1.00			1.00			1.00	
MLF Adj:		1.00	1.00		1.00			1.00			1.00	
Final Vol.:			124	133				759			1037	
Saturation F				1 0 0 0	1000	1000	1000	1000	1000	1000	1000	1000
Sat/Lane:			1900		1900			1900			1900	
Adjustment: Lanes:		0.92				0.95		0.91	0.91		0.94	
		2802	0.40		1.95	87		2549			3244	319
Final Sat.:												
Capacity Ana												
Vol/Sat:	-		0.18	0 07	0.33	0.33	U U3	0.30	0 30	0.10	0 33	0.32
Crit Moves:	****	U.10	0.10	0.07	****		0.03	****		****	0.32	0.52
Green/Cycle:		0.36	0 36	0 12	0.36	0.36	0 17	0.21	0.21	0 15	0.31	0.31
Volume/Cap:					0.92			1.42			1.03	
Delay/Veh:			25.2		41.8	41.8	35.7		235.7		69.9	
User DelAdj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
AdiDel/Veh:			25.2		41.8	41.8	35.7		235.7		69.9	69.9

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************************************					
Intersection #1 Marin Avenue / San Pablo Avenue	Intersection #2 Marin Avenue / The Alameda					
Cycle (sec): 100	Cycle (sec): 65 Critical Vol./Cap. (X): 0.666 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 15.4 Optimal Cycle: 56 Level Of Service: B					
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R					
Control: Protected Protected Protected Protected Rights: Include Include Include Min. Green: 0	Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 25 25 25 25 23 23 23 23 23 Lanes: 0 1 0 1 0 1 0 1 0 1 0					
Volume Module: >> Count Date: 5 Dec 2002 << 7:00-9:00 AM Base Vol: 102 363 59 106 891 15 38 672 235 147 768 90 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 6 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 173 189 7 38 279 23 33 494 291 20 420 48 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190					
Capacity Analysis Module: Vol/Sat: 0.12 0.18 0.18 0.07 0.33 0.33 0.03 0.30 0.30 0.10 0.32 0.32 Crit Moves: **** Green/Cycle: 0.12 0.36 0.36 0.12 0.36 0.36 0.17 0.21 0.21 0.15 0.31 0.31 Volume/Cap: 1.03 0.49 0.49 0.61 0.92 0.92 0.17 1.42 1.42 0.68 1.03 1.03 Delay/Veh: 113.1 25.2 25.2 47.0 41.8 41.8 35.7 236 235.7 47.3 69.9 69.9 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Capacity Analysis Module: Vol/Sat: 0.28 0.20 0.20 0.18 0.18 0.18 0.31 0.31 0.31 0.22 0.22 0.22 Crit Moves: **** Green/Cycle: 0.41 0.41 0.41 0.41 0.41 0.41 0.46 0.46 0.46 0.46 0.46 0.46 Volume/Cap: 0.67 0.48 0.48 0.43 0.43 0.43 0.67 0.67 0.67 0.67 0.47 0.47 0.47 Delay/Veh: 20.1 15.6 15.6 14.6 14.6 14.6 16.0 16.0 16.0 13.1 13.1 13.1 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 12-1 UC Berkeley LRDP EIR 2020 With Project Conditions

AM Peak Hour Level Of Service Computation Report

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

Level Of Service Computation Report	
2000 HCM Operations Method (Future Volume Alternative)	******
Intersection #3 Gilman Street / Sixth Street	
Cycle (sec): 65 Critical Vol./Cap. (X): Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh):	16.5
Optimal Cycle: 46 Level Of Service:	В
***********************************	*****
** ***	West Bound
	- T - R
Control: Permitted Permitted Permitted	
Rights: Include Include Include	Include
	.9 19 19
	0 1! 0 0
	17 430 20
	0 1.00 1.00
· · · · · · · · · · · · · · · · · · ·	17 430 20
	0 0 0
	18 67 0
	95 497 20
	00 1.00 1.00
	00 1.00 1.00
÷	95 497 20
	0 0 0
	95 497 20
	00 1.00 1.00
	00 1.00 1.00
	95 497 20
Saturation Flow Module:	1
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	0 1900 1900
Adjustment: 0.70 0.70 0.70 0.84 0.84 0.84 0.95 0.95 0.95 0.8	85 0.85 0.85
	6 0.81 0.03
Final Sat.: 858 107 373 310 2111 788 62 1341 396 25	51 1314 53
Capacity Analysis Module:	
	88 0.38 0.38
Crit Moves: ****	***
	55 0.55 0.55
	59 0.69 0.69
<u> </u>	9 14.9 14.9
	00 1.00 1.00
	9 14.9 14.9
DesignQueue: 5 1 2 0 2 1 0 8 2	2 9 0

******	2000 1	HCM Op	eratio	ns Me	thod (Future	Volu	me Alt	ernati	ve)		
Intersection								*****	*****	*****	****	*****
*********								****	*****	****	****	*****
Cycle (sec):		100			C	ritica	l Vol	./Cap.	. (X):		0.89	94
Cycle (sec): Loss Time (se	ec):	12	(Y+R	= 5 :	sec) A	verage	Dela	y (sec	c/veh):		46.	
Optimal Cycle	∋:	107			I	evel 0	f Ser	vice:				
******	****	****	*****	****	*****	*****	****	****	*****	*****	****	*****
Approach:	No	rth Bo	und	Soi	uth Bo	und	E	ast Bo	ound	W∈	est Bo	ound
Movement:	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R	L -	- T	- R
Control: Rights:	P	rotect	ed	P:	rotect	ed	1	Permit	ted	F	ermit	ted
Rights:		Inclu	de		Inclu	.de		Inclu	ıde		Inclu	ıde
Min. Green:	4	35	35	4	35	35	31	31	31	31	31	31
Lanes:	1	0 1	1 0	1 (0 1	1 0	0	1 0	1 0	0 () 1!	0 0
Volume Module	e: >>	Count										
Base Vol:	113	401	25	74	1055	125			96		318	42
Growth Adj:			1.00	1.00	1.00				1.00	1.00	1.00	1.00
Initial Bse:			25	74		125		189	96	62	318	42
Added Vol:			0	0	1.5.5	0	0	0	1	0	0	0
Future:	30	305	60	60	70	20	35	20	10	10	40	32
Initial Fut:			85	134		145	110		107	72	358	74
User Adj:	1.00	1.00	1.00	1.00		1.00		1.00			1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	143	721	85	134	1280	145	110	209	107	72	358	74
Reduct Vol:			0		0	-	0	-	0	0	0	0
Reduced Vol:				134	1280	145			107		358	74
PCE Adj:						1.00			1.00		1.00	
MLF Adj:											1.00	
Final Vol.:												
Saturation Fl												
Sat/Lane:								1900			1900	
Adjustment:									0.56		0.86	
Lanes:												
Final Sat.:												
Capacity Anal												
				0 07	0 40	0 40	0 00	0 00	0 20	0 21	0 21	0 21
Vol/Sat: Crit Moves:		0.23	0.23	0.07	U.4U	0.40	0.20	0.20	0.20	0.31	0.31	
Green/Cycle:						0 00	0 27	0 27	0 27	0 27		
Volume/Cap:											0.84	
Delay/Veh:				0.0		0.0		28.0	28.0		42.5	
Delay/ven:												

AdjDel/Veh: 0.0 27.8 0.0 0.0 82.1 0.0 28.0 28.0 28.0 42.5 42.5 DesignQueue: 8 27 5 8 50 9 4 8 4 3 14 3

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)											
******	****	****	*****	****	****	*****	****	****	*****	****	****	*****
Intersection							****	****	*****	****	****	*****
Cvcle (sec):		6.5	5			Critica	al Vol	./Cap	. (X):		0.57	7 4
Loss Time (se	ec):		3 (Y+R	= 5 5							9.	9
Optimal Cycle						Level (A
*******				****						****		
Approach:	Noi	rth Br	nund	SOI	ıth B	ound	E	ast B	ound	We	st Bo	nund
Movement:			- R			- R			- R			- R
										_	_	
Control:						tted					ermit	
Rights:		Incli			Incl			Incl			Incli	
Min. Green:			17			17	27			27		27
Lanes:) 1				1 0			0 1		1!	
Volume Module										1		
Base Vol:	5.5	191	11	174	961	28	28	174	40	32	185	40
Growth Adj:	1.00		1.00		1.00			1.00	1.00	1.00		1.00
Initial Bse:		191	11	174	961	28	28	174	40	32	185	40
Added Vol:	0	1	0	4	11		0	1/4	0	0	100	0
Future:	40	140	20	10	170		10	10	20	20	10	10
Initial Fut:			31		1142		38	184	60	52	195	50
	1.00		1.00		1.00			1.00	1.00	1.00		1.00
PHF Adj:	1.00		1.00		1.00			1.00	1.00	1.00		1.00
PHF Volume:	95	332	31		1142	38	38	184	60	52	195	50
Reduct Vol:	93	332	0	100	1142		0	104	0	0	193	0
Reduced Vol:	95	332	31		1142		38	184	60	52	195	50
PCE Adi:	1.00		1.00		1.00			1.00	1.00	1.00		1.00
MLF Adi:	1.00		1.00		1.00			1.00	1.00	1.00		1.00
MLF Adj: Final Vol.:		332	31		1142		38		60	52		50
Saturation F												
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.17	0.94	0.94	0.53	0.95	0.95	0.91	0.91	0.85	0.89	0.89	0.89
Lanes:	1.00	1.83	0.17	1.00	1.94	0.06	0.17	0.83	1.00	0.17	0.66	0.17
Final Sat.:	331	3259	304	1015	3476	116	297	1438	1615	297	1114	286
Capacity Anal												
Vol/Sat:	0.29	0.10	0.10	0.19	0.33	0.33	0.13	0.13	0.04	0.18	0.18	0.18
Crit Moves:					****						****	
Green/Cycle:	0.46	0.46	0.46	0.46	0.46	0.46	0.42	0.42	0.42	0.42	0.42	0.42
Volume/Cap:	0.62	0.22	0.22	0.40	0.71	0.71	0.31	0.31	0.09	0.42		0.42
Delay/Veh:	23.3	4.8	4.8	7.5	8.6	8.6	13.8	13.8	11.8	15.3	15.3	15.3
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	23.3	4.8	4.8	7.5	8.6	8.6	13.8	13.8	11.8	15.3	15.3	15.3
DesignQueue:	2	7	1	4	24	1	1	4	1	1	4	1
*****	****	****	*****	****	****	*****	****	****	*****	****	****	*****

						omputa						
						Future						
******									*****	****	*****	*****
Intersection ******									*****	****	*****	****
Cvcle (sec):		65			C	ritica	l Vol	./Cap.	(X):		0.98	32
Loss Time (s	ec):	8	(Y+R	= 5	sec) A	verage	Dela	v (sec	:/veh):		33.	4
Loss Time (so	e:	124			T	evel 0	f Ser	vice:	,			
*****	****	****	*****	****	****	****	****	****	****	****	****	*****
Approach:	No	rth Bo	und	So	uth Bo	und	E	ast Bo	und	We	est Bo	nind
Movement:	Τ.	- т	- R	т	- т	- R	т	- Т	- R	т		
	I			1			I		1	1		
Control: Rights:		Inclu	de		Inclu	de		Incli	ide		Incl	ide
Min. Green:						20						20
Lanes:			0 0			0 0					0 1!	
				1	o 1.					1		
Volume Modul										1		1
Base Vol:		292	44		617	26		276		58	248	30
Growth Adj:						1.00			1.00			
Initial Bse:			44	1.00	617	26	1.00		62	58		30
Added Vol:		3	1	35	15	0	0		1	4		0
Future:	10			20			10		30	30		20
Initial Fut:			20 65		852	10 36	24			92		50
						1.00		1.00			1.00	1.00
User Adj:			1.00		1.00	1.00					1.00	1.00
PHF Adj:								1.00				
PHF Volume: Reduct Vol:			65	55 0		36 0	24		93 0	92 0	339	50 0
Reduct Vol:		0	0									
			65	55		36	24			92		50
PCE Adj:					1.00	1.00					1.00	1.00
MLF Adj:						1.00		1.00			1.00	1.00
Final Vol.:	43	335				36				92		50
Saturation F												
Sat/Lane:				1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:											0.75	0.75
Lanes:												
Final Sat.:						69					999	147
Capacity Ana				1		'	1		1	1		1
Vol/Sat:				0 52	0 52	0.52	0 26	0 26	0.26	0 34	0 34	0.34
Crit Moves:	0.21	0.2/	0.21	0.52	****	0.52	0.20	0.20	0.20	0.04	****	0.01
Green/Cycle:	0 53	0 53	0 53	0 53		0 53	0 35	0 35	0.35	0 35	0.35	0.35
Volume/Cap:						0.98		0.74			0.98	0.98
Delay/Veh:						35.8		26.5			57.6	57.6
User DelAdj:						1.00		1.00			1.00	1.00
AdjDel/Veh:						35.8		26.5			57.6	
DesignQueue:									26.5		57.6	57.6
DesignQueue:												_

UC Berkeley LRDP EIR

2020 With Project Conditions

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 15-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 16-1

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)

******	****	*****	*****	****	*****	****	****	*****	*****	****	****	*****
Intersection *******								****	*****	****	****	*****
Cycle (sec): Loss Time (se Optimal Cycle	:	50	(Y+R :	= 5 s	sec) A	evel 0	Delay	y (sec vice:	c/veh):		10	.5 B
Approach: Movement:	No:	th Bo	und – R	Sou L -	uth Bo - T	ound - R	Ea L -	ast Bo - T	ound - R	We L -	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	20 1 (Permit Inclu 20) 1	ted de 20 1 0	20 1 (Permit Inclu 20 0 1	ted ide 20 1 0	22 1 (Permit Inclu 22 0 0	ited ide 22 1 0	22 1 (Permit Inclu 22) 0	tted ude 22 1 0
 Volume Module												
Base Vol: Growth Adj: Initial Bse: Added Vol: Future:	1.00	1.00 256 1	0	127 1.00 127 2 10	1.00 933 9	52 1.00 52 0 10	44 1.00 44 0	1.00 257 14	86 1.00 86 0		268 1.00 268 6 70	56 1.00 56 0 20
	1.00 1.00 68	1.00 1.00 397	1.00 1.00 61	1.00 1.00 139	1.00 1.00 1.00	1.00 1.00 62	1.00 54	1.00 1.00 301	96 1.00 1.00 96	1.00 138	344 1.00 1.00 344	76 1.00 1.00 76
Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	68 1.00 1.00 68	397 1.00 1.00 397		1.00 1.00 139		0 62 1.00 1.00 62	1.00 54	1.00 1.00 301	96	1.00 138	1.00 1.00 344	0 76 1.00 1.00 76
Saturation Fl Sat/Lane: Adjustment: Lanes: Final Sat.:	0w Mo 1900 0.22 1.00 424	dule: 1900 0.93 1.73 3067	1900 0.93 0.27 471	1900 0.48 1.00 920	1900 0.94 1.89 3389	1900 0.94 0.11 192	1900 0.33 1.00 621	1900 0.96 0.76 1389	1900 0.96 0.24 443	1900 0.36 1.00 675	1900 0.97 0.82 1514	1900 0.97 0.18 335
Capacity Anal Vol/Sat: Crit Moves:	ysis	Modul	e:	0.15					0.22		0.23	
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	0.31 6.4 1.00 6.4 1	0.25 2.9 1.00 2.9 7	0.25 2.9 1.00 2.9	0.29 4.2 1.00 4.2 2	1.00 4.9 21	0.51 0.63 4.9 1.00 4.9	0.24 17.0 1.00 17.0		0.60 20.8 1.00 20.8	0.56 25.7 1.00 25.7 3	0.36 0.63 21.5 1.00 21.5	0.36 0.63 21.5 1.00 21.5

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)
Intersection #8 Cedar Street / Oxford Street **********************************
Cycle (sec): 65
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R - T - R
Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Min. Green: 16
Volume Module: >> Count Date: 6 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 45 186 56 34 531 19 18 314 75 144 343 19 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Capacity Analysis Module: Vol/Sat: 0.25 0.25 0.25 0.40 0.40 0.40 0.29 0.29 0.29 0.50 0.50 0.50 Crit Moves:
Green/Cycle: 0.50 0.49 0.49 0.50 0.50 0.50 0.40 0.39 0.39 0.40 0.40 0.40 Volume/Cap: 0.50 0.51 0.51 0.80 0.80 0.80 0.73 0.74 0.74 1.27 1.27 1.27 Delay/Veh: 10.8 11.5 11.5 17.7 17.7 17.7 23.2 24.5 24.5 157.0 157 157.0 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0

UC Berkeley LRDP EIR

2020 With Project Conditions

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 18-1

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

	2000 HCM C		ns Met	thod (Future	Volum	ne Alt	ernati			
******	******	*****	****	*****	*****	*****	****	*****	*****	****	****
Intersection						*****	****	*****	****	****	****
Cvcle (sec):	6	0		(ritica	ıl Vol.	/Cap.	(X):		0.59	19
Loss Time (se	-c)·	8 (Y+R	= 5 9	sec) Z	verage	Delas	, (sec	/veh) •		13.	
Cycle (sec): Loss Time (se Optimal Cycle	ے. ے۔ ۵	12		, T	evel C	of Serv	rice:	, voii, .		10.	
******	******	· - : * * * * * * *	****	- *****	****	*****	****	*****	*****		
Approach:	North E	Round	SOI	ıth Bo	und	Ea	st Bo	nind	We	est Bo	und
Movement:										- Т	
Control:											
Rights:		.ude		Inclu			Incli			Inclu	
Min. Green:						17			17		17
								0 0			
Lanes:											
 Volume Module											
			23						0.0	000	0
Base Vol:				295	141	50	143	117	28	209	8
Growth Adj:				1.00		1.00			1.00		1.00
Initial Bse:			23	295	141	50	143	117	28	209	8
Added Vol:	0 0	0	0	11		0	-2	0	0	0	0
Future:	20 0				40		30	20	20	80	0
Initial Fut:			23	316	184	60	171	137	48	289	8
User Adj:				1.00			1.00		1.00		1.00
PHF Adj:				1.00		1.00		1.00	1.00		1.00
PHF Volume:	50 85	29	23	316	184	60	171	137	48	289	8
Reduct Vol:	0 0		0	0	0	0	0	0	0	0	0
Reduced Vol:	50 85	5 29	23	316	184	60	171	137	48	289	8
PCE Adj:	1.00 1.00	1.00		1.00			1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	50 85	5 29	23	316	184	60	171	137	48	289	8
Saturation Fl	Low Module	e:									
Sat/Lane:	1900 1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.78 0.78	0.78	0.94	0.94	0.94	0.86	0.86	0.86	0.92	0.92	0.92
Lanes:	0.30 0.52	0.18	0.04	0.61	0.35	0.16	0.47	0.37	0.14	0.84	0.02
Final Sat.:	452 769	262	78	1076	627	266	759	608	242	1457	40
Capacity Anal	lysis Modu	ıle:									
	0.11 0.11		0.29	0.29	0.29	0.23	0.23	0.23	0.20	0.20	0.20
Crit Moves:				****			***				
Green/Cycle:	0.49 0.49	0.49	0.49	0.49	0.49	0.38	0.38	0.38	0.38	0.38	0.38
Volume/Cap:				0.60	0.60		0.60				0.53
	8.9 8.9			12.2	12.2	16.7		16.7	15.4		15.4
User DelAdj:				1.00		1.00		1.00	1.00		1.00
AdiDel/Veh:				12.2		16.7		16.7	15.4		15.4
DesignQueue:						1				6	0
			-	-	-	_	-	-	_	-	-

Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)

Intersection #10 Grizzly Peak Blvd / Centennial Drive

UC Berkeley LRDP EIR

2020 With Project Conditions

*******	****	****	*****	****	****	*****	****	****	*****	****	****	*****
Intersection ******									*****	****	****	*****
Cycle (sec): Loss Time (so Optimal Cycle ************************************	ec): e: ****	100 ((*****)) (Y+R) :****	= 4	sec) <i>I</i> *****	Critica Average Level (al Vol e Dela of Ser	./Cap. y (sec vice: ****	. (X): c/veh):	****	0.48	83 .2 B *****
Approach: Movement:	No:	rth Bo - T	ound - R	So:	uth Bo - T	ound - R	E d	ast Bo - T	ound - R	W.	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	. S:	top Si Inclu 0) 1!	.gn ide 0	0 0	top Si Inclu 0 0 1!	ign ide 0	0	top Si Inclu 0 0 1!	ign ide 0	0	top Si Incli 0 0 1!	ign ude 0
Volume Modul Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	e: >> 31 1.00 31 0 30 61 1.00 1.00 61 1.00 1.00	Count 13 1.00 13 0 0 13 1.00 13 1.00 13 0 13 1.00 13 1.00 13 1.00 1.00 13	13 1.00 13 4 10 27 1.00 1.00 27 0 27 1.00	1.00 25 1.00 25 0 0 25 1.00 25 1.00 25 1.00 25 1.00 25 0 25	20022 52 1.00 52 0 0 52 1.00 1.00 52 1.00 52 1.00 52	2 << 7: 4 1.00 4 0 0 4 1.00 1.00 4 1.00 1.00 4 0 4 0 4 1.0	1.00-9: 6 1.00 6 0 0 6 1.00 1.00 6 1.00 6 1.00 6	00 AM 165 1.00 165 0 20 185 1.00 1.00 185 1.00 1.85	143 1.00 143 5 100 158 1.00 1.00 158 1.00 1.00 1.00	169 1.00 169 39 20 228 1.00 1.00 228 0 228 1.00 228 1.00 228	90 1.00 90 0 100 1.00 1.00 1.00 0 1.00 1.0	16 1.00 16 0 0 16 1.00 1.00 1.6 1.00 1.00
Saturation F Adjustment: Lanes: Final Sat.:	low Me 1.00 0.60	odule: 1.00 0.13	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Capacity Ana Vol/Sat: Crit Moves: Delay/Veh: Delay Adj: AdjDel/Veh:	lysis 0.17 **** 9.6 1.00 9.6	Modul 0.17 9.6 1.00 9.6	9.6 1.00 9.6	0.14 **** 9.5 1.00 9.5	0.14 9.5 1.00 9.5	0.14 9.5 1.00 9.5	0.46 11.1 1.00 11.1	0.46 **** 11.1 1.00 11.1	0.46 11.1 1.00 11.1	0.48 **** 12.2 1.00 12.2	0.48 12.2 1.00 12.2	0.48 12.2 1.00 12.2
ApproachDel: Delay Adj: ApprAdjDel: LOS by Appr:	++++	1.00 9.6 A	. * * * * *		1.00 9.5 A		. * * * * * *	1.00 11.1 B		****	1.00 12.2 B	****

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 19-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 20-1 UC Berkeley LRDP EIR 2020 With Project Conditions

AM Peak Hour

				A	n real	. 110u1						
		т	evel 0	f Seri	vice (Computa						
,	2000 1								ternati	170)		
******											*****	****
Intersection								****	*****	****	*****	*****
Cycle (sec):									. (X):			
Loss Time (se) R (Y+R	= 6	sec) i	Average	Dela	., cap	· (21) ·		8	2
Optimal Cycle						Level 0			J, VCII) .			A
*******		.****	- :****	****	****	*****	*****	****	*****	****		
Approach:												
Movement:									- R		- T	
Control:												
Rights:			ıde								Inclu	
Min. Green:			22	22	22	22	22	22	ıde 22	22		22
Lanes:) 1							1 0			
Lanes:												
Volume Module										1		
Base Vol:		291	43		810	57	31		.00 AM	11	225	51
Growth Adj:			1.00		1.00			1.00			1.00	1.00
				199		57	31			1.00		51
Initial Bse:			43	199			31					
	3		-13			0					4	0
Future:		90	20		160	20	30			10		70
Initial Fut:			50	252		77	61			27		121
_	1.00		1.00		1.00			1.00			1.00	1.00
_	1.00		1.00		1.00			1.00			1.00	1.00
PHF Volume:	32	382	50	252	981	77	61		79	27	249	121
Reduct Vol:		0	0	-	0	0	-	0	-	0	0	0
Reduced Vol:			50	252			61			27		121
PCE Adj:			1.00					1.00			1.00	1.00
MLF Adj:			1.00		1.00			1.00			1.00	1.00
Final Vol.:				252				345		27		121
Saturation F												
Sat/Lane:								1900			1900	1900
Adjustment:	0.27	0.93	0.93	0.50	0.94	0.94	0.79	0.79			0.82	0.82
Lanes:												0.61
Final Sat.:										211		947
Capacity Anal	lysis	Modul	Le:									
Vol/Sat:	0.06	0.12	0.12	0.27			0.16	0.16	0.16	0.13	0.13	0.13
Crit Moves:					****			****				
Green/Cycle:	0.54	0.54	0.54	0.54	0.54	0.54	0.34	0.34	0.34	0.34	0.34	0.34
Volume/Cap:	0.12	0.23	0.23	0.49	0.55	0.55	0.48	0.48	0.48	0.38	0.38	0.38
Delay/Veh:	2.5	2.0	2.0	5.5	3.3	3.3	18.6	18.6	18.6	17.3	17.3	17.3
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdiDel/Veh:			2.0	5.5	3.3	3.3	18.6	18.6	18.6	17.3	17.3	17.3

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************
Intersection #11 Hearst Avenue / Shattuck Avenue	Intersection #12 Hearst Avenue / Oxford Avenue
Cycle (sec): 65	Cycle (sec): 65
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Min. Green: 22	Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Min. Green: 19 19 19 19 22 22 22 22 22 22 Lanes: 1 0 1 0 1 0 1 0 1 0 1 0
Volume Module: >> Count Date: 12 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 19 291 43 199 810 57 31 278 24 11 225 51 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 12 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 46 328 374 48 841 38 10 399 114 207 281 27 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Capacity Analysis Module: Vol/Sat: 0.06 0.12 0.12 0.27 0.30 0.30 0.16 0.16 0.16 0.13 0.13 0.13 Crit Moves: **** **** Green/Cycle: 0.54 0.54 0.54 0.54 0.54 0.34 0.34 0.34 0.34 0.34 0.34 Volume/Cap: 0.12 0.23 0.23 0.49 0.55 0.55 0.48 0.48 0.48 0.38 0.38 Delay/Veh: 2.5 2.0 2.0 5.5 3.3 3.3 18.6 18.6 18.6 17.3 17.3 17.3 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Capacity Analysis Module: Vol/Sat: 0.03 0.24 0.26 0.30 0.30 0.30 0.18 0.18 0.18 0.12 0.12 0.12 Crit Moves: **** Green/Cycle: 0.54 0.54 0.54 0.54 0.54 0.54 0.34 0.34 0.34 0.34 0.34 0.34 Volume/Cap: 0.06 0.45 0.49 0.56 0.56 0.56 0.54 0.54 0.54 0.36 0.36 0.36 Delay/Veh: 5.2 7.1 7.5 8.2 8.2 8.2 19.1 19.1 19.1 16.7 16.7 16.7 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0

Page 21-1

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 22-1 ______ UC Berkeley LRDP EIR 2020 With Project Conditions

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

		1	Level C	of Serv	vice (Computa	tion I	Report	t			
						(Futur						
*****	****	****	*****	*****	****	*****	****	****	*****	*****	****	*****
Intersection ********				****	* * * * *	*****	****					****
Average Delay	y (sec	c/veh)): *****	3.1	****	Wc ****	rst Ca	ase Le	evel 0:	E Servi	ice:	B *****
Approach:						ound					est Bo	
Movement:			- R			- R			- R			- R
												1
Control:			ign '			ign '						
Rights:		Incl	ıde		Incl	ude		Incl	ıde		Incl	ıde
Lanes:	0 (0 0	0 0	0 (1!	0 0	0 :	1 1	0 0	0 () 1	1 0
Volume Module	e: >>	Count	Date:	12 No	ov 20	02 << 7	:00 A1	M - 9	:00 AM			
Base Vol:	0	0	0	9	0	63	11	843	0	0	430	7
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	9	0	63	11	843	0	0	430	7
Added Vol:	0	0	0	4	0	0	0	72	0	0	35	1
Future:	0	0	0	0	0	20	0	130	0	0	110	0
Initial Fut:	0	0	0	13	0	83	11	1045	0	0	575	8
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	0	0	0	13	0	83	11	1045	0	0	575	8
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Final Vol.:	0	0	0	13	0	83	11	1045	0	0	575	8
Critical Gap	Modu:	le:										
Critical Gp:	XXXXX	XXXX	XXXXX	6.8	XXXX	6.9	4.1	XXXX	XXXXX	XXXXX	XXXX	XXXXX
FollowUpTim:	XXXXX	XXXX	XXXXX	3.5	XXXX	3.3	2.2	XXXX	XXXXX	XXXXX	XXXX	XXXXX
Capacity Modu												
Cnflict Vol:								XXXX	XXXXX	XXXX	xxxx	XXXXX
Potent Cap.:	XXXX	xxxx	XXXXX	202	XXXX	711	1001	XXXX	XXXXX	XXXX	xxxx	XXXXX
Move Cap.:			XXXXX			711			XXXXX			XXXXX
Level Of Serv	vice N	4odule	: :									
Stopped Del:									XXXXX			XXXXX
200 21 11010.	*	*	*	*		*	A	*	*	*	*	*
Movement:		- LTR				- RT			- RT	LT -	- LTR	- RT
Shared Cap.:												XXXXX
Shrd StpDel:							8.6					XXXXX
Shared LOS:	*	*	*	*	В	*	A	*	*	*	*	*

AM Peak Hour	
Level Of Service Computation Report	_
2000 HCM Uneignalized Method (Future Volume Alternative)	

Intersection #14 Hearst Avenue / Arch Street / Le Conte Avenue ************************ Average Delay (sec/veh): 2.4 Worst Case Level Of Service: B ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Rights: Include Include Include Include Lanes: 0 0 0 0 0 0 0 1! 0 0 1 0 2 0 0 0 0 1 1 0 -----|----|-----|------| Volume Module: >> Count Date: 12 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 0 0 2 0 130 276 566 0 Initial Bse: 0 0 0 2 0 130 276 566 0 0 307 4 Added Vol: 0 0 0 0 0 24 52 0 0 35 0 0 0 0 0 40 30 100 0 90 0 Initial Fut: 0 0 0 2 0 170 330 718 0 0 432 4 PHF Volume: 0 0 0 2 0 170 330 718 0 0 432 4 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 Ω Ω 0 0 0 2 0 170 330 718 0 0 432 Final Vol.: Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.8 xxxx 6.9 4.1 xxxx xxxxx xxxx xxxx xxxxx FollowUpTim:xxxxx xxxxx xxxxx 3.5 xxxx 3.3 2.2 xxxx xxxxx xxxxx xxxxx xxxxx ______|___| Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 1453 xxxx 218 436 xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxx xxxxx 123 xxxx 792 1134 xxxx xxxxx xxxx xxxx xxxxx Move Cap.: xxxx xxxx xxxxx 96 xxxx 792 1134 xxxx xxxxx xxxx xxxx xxxx ______|___| Level Of Service Module: LOS by Move: * * * * * A * * * * Movement: LT - LTR - RT Shared LOS: * * * * B * * * * * * * ApproachDel: xxxxxx 11.4 xxxxxx xxxxx

13.3

B

ApproachDel: xxxxxx

ApproachLOS:

XXXXXX

*

XXXXXX

ApproachLOS:

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 23-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 24-1

UC Berkeley LRDP EIR

2020 With Project Conditions

AM Peak Hour

2	000 H	CM Una	Level (signal:	ized M	ethod	(Futu	re Vol	ume A	lterna	tive)	****	*****
Intersection								****	*****	*****		*****
Average Dela	y (se	c/veh)):	0.4		Wo	orst Ca	ase Le	evel 0:	f Servi	ce:	В
Approach: Movement:	No:	rth Bo	ound - R	So.	uth Bo	ound - R	E d	ast Bo	ound - R	We	est Bo - T	ound - R
Control: Rights: Lanes:	0 (top S: Incli	ign ude 00	0 0	top S: Incl 0 0	ign ude 0 1	Un O	contro Incl 0 2	olled ude 0 0	Und	contro Incli	olled ude 1 0
Volume Modul Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Final Vol.: Critical Gap Critical Gpr	e: >> 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Count 0 1.00 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0	t Date 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 De 0 1.00 0 0 0 0 1.00 1.00 0	c 2002 0 1.00 0 0 0 0 0 0 1.00 1.00 0	2 << 7 37 1.00 37 1 20 58 1.00 1.00 58	1.00 0 1.00 0 0 0 0 1.00 0 0 1.00 0 0	00 AM 531 1.00 531 0 100 631 1.00 1.00 631 0 631	0 1.00 0 0 0 0 1.00 1.00 0	0 1.00 0 0 0 1.00 1.00 0	290 1.00 290 34 90 414 1.00 1.00 414 0 414	55 1.00 55 2 10 67 1.00 1.00 67
FollowUpTim:	XXXXX	XXXX	XXXXX	XXXXX	XXXX	3.3	XXXXX	XXXX	XXXXX	XXXXX	XXXX	XXXXX
Capacity Mod Cnflict Vol: Potent Cap.: Move Cap.:	ule: xxxx xxxx xxxx	xxxx xxxx xxxx	***** *****	xxxx xxxx xxxx	xxxx xxxx	240 767 767	xxxx xxxx	xxxx xxxx xxxx	xxxxx xxxxx	xxxx xxxx	xxxx xxxx xxxx	xxxxx xxxxx
Level Of Ser Stopped Del: LOS by Move: Movement: Shared Cap.: Shared LOS: Shared LOS: ApproachDel: ApproachLOS:	vice ! xxxxx LT - xxxx xxxxx	Module xxxx * - LTR xxxx xxxx	e: xxxxx * RT xxxxx xxxxx	XXXXX * LT XXXX	XXXX * - LTR XXXX XXXX	10.1 B - RT xxxxx	LT · xxxx xxxx xxxx	xxxx * - LTR xxxx	XXXXX * - RT XXXXX XXXXX	XXXXX * LT - XXXX XXXXX	XXXX * - LTR XXXX	xxxxx * - RT xxxxx

				AI	M Peak	Hour						
			evel 0									
	2000 1					-		-		\		
******									ernati		*****	*****
Intersection	#16 B	Hearst	Avenu	e / Ei	uclid	Avenue						
	****			****								
Cycle (sec):	\	65		_ 2	\ 7	ritica	T AOT	./Cap.	(X): c/veh):		0.58	
Loss Time (s Optimal Cycl				- 3:		evel 0			:/veii):			B
*******				****					*****	****		_
Approach:											est Bo	
Movement:			- R						- R		- T	
				1		1	1		1			
Control:											Permit	
Rights:		Inclu	de		Inclu	de		Incli	ted ide		Inclu	
Min. Green:	0	0	0	25		25			16	16		16
Lanes:		0 1!				0 0			1 0		0 1!	
Volume Modul												
Base Vol:	2	0	2	47	1	151	75	448	1	1	276	10
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	2	0	2	47	1	151	75	448	1	1	276	10
Added Vol:	0	0	0	3	0	3	0	52	0	0	41	0
Future:	0	0	0	10	0	50	10	90	0	0	70	0
Initial Fut:	2	0	2	60	1	204	85	590	1	1	387	10
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	2	0	2	60	1	204	85	590	1	1	387	10
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	2	0	2	60	1	204	85	590	1	1	387	10
PCE Adj:		1.00	1.00	1.00	1.00	1.00		1.00		1.00	1.00	1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00
Final Vol.:	2	0	2	60	1	204		590	1	1		10
Saturation F												
Sat/Lane:					1900	1900		1900			1900	1900
Adjustment:					0.84	0.84		1.00			1.00	1.00
	0.50		0.50		0.01	0.77		0.99			0.97	0.02
	826		826		6			1897	3	. 5	1842	48
Capacity Ana				0 15	0 1 7	0 15	0 0 0	0 01	0 01	0 01	0 01	0 01
Vol/Sat:	0.00	0.00	0.00	0.17	0.17	0.17	0.07	0.31	0.31	0.21	0.21	0.21
Crit Moves:	0 20	0 00	0 20	0 20		0 20	0 40		0 40	0 40	0 40	0 42
Green/Cycle:					0.38	0.38		0.43			0.43	0.43
Volume/Cap:			0.01		0.43	0.43		0.72	0.72		15.4	15.4
Delay/Veh:		0.0	1.00		1.00	17.0		1.00	20.8		1.00	15.4
User DelAdj: AdjDel/Veh:			12.4		17.0	17.0		20.8	20.8		15.4	15.4
DesignQueue:					17.0	17.0		20.8	20.8		15.4	15.4
DesignQueue:		-	-						-	-	-	-

UC Berkeley LRDP EIR

2020 With Project Conditions

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ***********************************														
Average Dela	**************************************													
	North Bo		South_B		Εā			West						
Movement:														
Control: Rights: Lanes:	Stop Si Inclu	.gn ide 0 0 0	Stop S Incl 0 1!	ign ude 0 0	Unc	contro Inclu	olled ude 0 0	Uncont Inc 0 0 0	rolled lude 1 0					
Volume Modul														
Base Vol:	0 0		19 0	60	59			0 23	0 3					
Growth Adj:			00 1.00	1.00		1.00	-							
Initial Bse:			19 0		59	436	0	0 23						
Added Vol:			0 0		0	55		0 4						
Future:	0 0	0	0 0	10	10	90	0	0 7	0 0					
Initial Fut:	0 0	0	19 0	70	69	581	0	0 34	2 3					
User Adj:	1.00 1.00	1.00 1.	00 1.00	1.00	1.00	1.00	1.00	1.00 1.0	0 1.00					
PHF Adj:	1.00 1.00	1.00 1.	00 1.00	1.00	1.00	1.00	1.00	1.00 1.0	0 1.00					
PHF Volume:	0 0	0	19 0	70	69	581	0	0 34	2 3					
Reduct Vol:	0 0	0	0 0	0	0	0	0	0	0 0					
Final Vol.:	0 0	0	19 0	70	69	581	0	0 34	2 3					
Critical Gap														
Critical Gp:	XXXXX XXXX	xxxxx 6	.4 xxxx	6.2	4.1	XXXX	XXXXX	XXXXX XXX	x xxxxx					
FollowUpTim:														
Canadita Mad														
Capacity Mod Cnflict Vol:		Q	16 2222	311	3/15	WWW.	vvvvv	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	., .,,,,,,,,					
Potent Cap.:														
Move Cap.:							XXXXX							
Level Of Ser	vice Module	:												
Stopped Del:						xxxx	xxxxx	xxxxx xxx	x xxxxx					
LOS by Move:	* *	*	* *	*	A	*	*	* *	*					
	LT - LTR						- RT							
Shared Cap.:				XXXXX				XXXX XXX						
Shrd StpDel:								XXXXX XXX						
Shared LOS:		*		*	A	*	*	* *	*					
ApproachDel: ApproachLOS:			13.6 B		XX	*		*****	X					

	2020 With	M Peak		altion	15			
	Level Of Ser perations Me		-		-		110)	
2000 ncm 0j								*****
Intersection #18 Hears								
***************	t Avenue / (*****	таьог ****	lia AV	:::ue	******	******
Cycle (sec):	0 (V±D = 1	5001 7	TILICA.	DOJ 21	./Cap.	(A);	1	.193
Optimal Cycle: 19	P = 711) 0	SEC) A	ourol O	f cort	, (56	./ veii) .		J J . J
Cycle (sec): 6 Loss Time (sec): 7 Optimal Cycle: 18	U **********	u *****	*****	*****	/±CE.	*****	*****	*****
Approach: North Be	nund Sc	nith Bo	und	Ea	ast Bo	nind	West	Bound
Movement: L - T								
Control: Permi	tted	Permit	ted	' 1	Permit	ted	Per	mitted '
Rights: Incli	ıde	Inclu	de		Incli	ide	In	clude
Min. Green: 18 18	18 18	18	18	17	17	17	17	17 17
Control: Permi Rights: Incl Min. Green: 18 18 Lanes: 0 0 1!	0 0 0	0 1!	0 0	0 (1!	0 0	0 1	0 0 1
Volume Module: >> Coun	t Date: 6 No	v 2002	<< 7:	00-9:0	00 AM			
Base Vol: 274 212	95 12	274	21	28	161	304	21	33 5
Growth Adj: 1.00 1.00	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.	00 1.00
Initial Bse: 274 212	95 12	274	21	28	161	304	21	33 5
Added Vol: 32 3	32 (38	0	0	32	23	2	9 0
Future: 70 10	20 (120	0	0	80		20	20 0
Initial Fut: 376 225	147 12	432	21	28	273	327	43	62 5
User Adj: 1.00 1.00		1.00	1.00	1.00	1.00	1.00	1.00 1.	00 1.00
PHF Adj: 1.00 1.00	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.	00 1.00
PHF Volume: 376 225		432	21	28	273	327	43	62 5
Reduct Vol: 0 0		0	0	0			0	0 0
Reduced Vol: 376 225		432	21	28				62 5
PCE Adj: 1.00 1.00	1.00 1.00	1.00	1.00	1.00	1.00	1.00		
MLF Adj: 1.00 1.00								
Final Vol.: 376 225							43	
Saturation Flow Module								
Sat/Lane: 1900 1900					1900			
Adjustment: 0.58 0.58								
Lanes: 0.50 0.30						0.53		
Final Sat.: 549 329								
·								
Capacity Analysis Modu			0 05	0 00	0 00	0 00	0 0 0 0	0 00
Vol/Sat: 0.68 0.68 Crit Moves: ****	0.68 0.25	0.25	0.25	0.36	0.36	0.36	0.07 0.	07 0.00
	0 55 0 55	. 0 55	0 55	0 40		0 00	0 40 0	40 0.40
Green/Cycle: 0.55 0.55 Volume/Cap: 1.24 1.24					0.40		0.40 0.	
Delay/Veh: 134.6 135			10.1		33.6		12.0 12	
User DelAdj: 1.00 1.00		10.1				1.00		
AdjDel/Veh: 134.6 135			10.1			0.0		
DesignQueue: 7 4							12.0 12	
DesignQueue: / 4								

Saturation Flow Module:

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 28-1 ______

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

Level Of Service	Computation Report
2000 HCM Operations Method	(Future Volume Alternative)
********	*********
Intersection #19 Berkeley Way / Oxford	Street
********	**********
Cycle (sec): 70	Critical Vol./Cap. (X): 0.517
Loss Time (sec): $8 (Y+R = 4 sec)$	Average Delay (sec/veh): 7.0
Optimal Cycle: 46	Level Of Service: A
*******	***********
Approach: North Bound South B	Bound East Bound West Bound
Movement: L - T - R L - T	- R L - T - R L - T - R

Control:		Permi Incl			Permi Incl			Permit Incl		Permitted Include			
Rights:													
Min. Green:	18	18	18	18	18	18	20	20	20	20	20	20	
Lanes:	1	0 1	1 0	1	0 1	1 0	0	0 1!	0 0	1 0	0	1 0	
Volume Modul	e:												
Base Vol:	39	717	40	30	1132	11	20	18	72	10	2	12	
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Initial Bse:	39	717	40		1132	11	20	18	72	10	2	12	
Added Vol:	38	115	0	0	80	26	3		4	0	0	0	
PasserByVol:	10	110	10	0	100	0	0	0	20	0	0	0	
Initial Fut:	87	942	50	30	1312	37	23	18	96	10	2	12	
User Adj:		1.00		1.00	1.00	1.00		1.00	1.00		1.00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	87	942	50	30	1312	37	23	18	96	10	2	12	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	87	942	50	30	1312	37	23	18	96	10	2	12	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Final Vol.:	87	942	50	30	1312	37	23	18	96	10	2	12	

Final Sat.:													
Capacity Anal	Lysis	Module	e:										
Vol/Sat:	0.28	0.28	0.28	0.06	0.38	0.38	0.08	0.08	0.08	0.01	0.01	0.01	
Crit Moves:					****			****					
Green/Cycle:	0.60	0.60	0.60	0.60	0.60	0.60	0.29	0.29	0.29	0.29	0.29	0.29	
Volume/Cap:	0.46	0.46	0.46	0.10	0.63	0.63	0.29	0.29	0.29	0.02	0.03	0.03	
Delay/Veh:	12.4	5.2	5.2	4.0	6.5	6.5	21.0	21.0	21.0	18.1	18.1	18.1	
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
AdjDel/Veh:	12.4	5.2	5.2	4.0	6.5	6.5	21.0	21.0	21.0	18.1	18.1	18.1	
DesignQueue:	1	16	1	0	23	1	1	1	3	0	0	0	

Adjustment: 0.17 0.94 0.94 0.27 0.95 0.95 0.87 0.87 0.87 0.85 0.87 0.87 Lanes: 1.00 1.90 0.10 1.00 1.95 0.05 0.17 0.13 0.70 1.00 0.14 0.86

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

> Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)

Intersection #20 U	niversity Avenue	e / Sixth Street	
*****	*****	*********	*****
Cycle (sec):	114	Critical Vol./Cap. (X):	0.998
Loss Time (sec):	16 (Y+R = 5)	sec) Average Delay (sec/veh):	100.0

Cycle (sec): 114 Critical Vol./Cap. (X): 0.998 Loss Time (sec): 16 (Y+R = 5 sec) Average Delay (sec/veh): 100.0 Optimal Cycle: 180 Level Of Service: F												
******	=: *****	100	*****	****	. * * * * *	*****	* * * * * * * .	****	*****	****		
Approach: Movement:	T .	- m.	_ D	т .	ucii bo	_ D	T.	25 L DO _ TP	_ D	т .	- m	_ D
				1					- K	1		- K
Control:												
Rights:		Tnclii	ide		Incli	ide .		Incli	ide .		Incli	ide .
Min. Green:	6	23	23	0	23	23	6	15	15	6	15	15
Lanes:	1	0 1	0 1	1 (0 1	0 1	1	0 1	1 0	1 (0 1	1 0
Volume Module												
Base Vol:	211	111	19	73	290	325	89	932	333	40	931	21
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:										40		21
Added Vol:	0	17	12 10	0	4	1	6	291	0 40	1	31	
Future:	150	60	10	10	10	80	10			10	150	10
Initial Fut:									373		1112	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00		1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00		1.00	
PHF Volume:						406			373		1112	
Reduct Vol:		0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:		188	41	83	304	406	105	1283				
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:												
Saturation F				1000	1000	1000	1000	1000	1 0 0 0	1000	1000	1000
Sat/Lane: Adjustment:												
Lanes:	1 00	1.00	1 00	1.00	1.00	1 00	1 00	1 55	0.92	1 00	1 05	0.95
Final Sat.:	1.00	1000	1.00	1.00	1000	1.00	1.00	2702	705	1.00	2400	0.05
Final Sat.:	1000	1900	1013	1900	1900	1013	1005	2/02	705	1003	3490	90
Capacity Anal												
Vol/Sat:				0 04	0 16	0.25	0 06	0 47	0.47	0 03	0 32	0 32
Crit Moves:		0.10	0.03	0.04	0.10		0.00		0.47		0.32	0.32
Green/Cycle:		0 44	0 44	0 25	0 25						0 35	0.35
Volume/Cap:												
Delay/Veh:												
User DelAdi:											1.00	
AdiDel/Veh:												
DesignOueue:												

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 29-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 30-1 UC Berkeley LRDP EIR 2020 With Project Conditions

AM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)													
Intersection	#21 T	Jnive	sity A	venue	/ Sa	n Pablo	o Aveni	ue					

Approach:	No:	cth Bo	ound - R	Sou L -	uth B	ound - R	Ea L -	ast Bo	ound - R	We L -	est Bo - T	ound - R	
	P: 5	rotect Inclu 21) 1	ed ide 21	. Pi 5	rotec Incl 21) 1	ted ude 21 1 0	. Pi 5 1 (rotec Incl 22 0 1	ted ude 22 1 0	P: 5	rotect Inclu 22) 1	ted ude 22 1 0	
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.: 	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Count 457 1.00 457 3 200 660 1.00 660 0 660 1.00 660 1.00 660 1.00 660 1.00 600 1.00	To Date: 75 1.00 75 7 40 122 1.00 1.00 1.22 0 1.22 1.00 1.00 1.	5 Dec 190 1.00 190 74 60 324 1.00 324 1.00 324 1.00 324 1.00	2 200 837 1.00 837 50 30 917 1.00 917 0 917 1.00 1.00 917	2 << 7 83 1.00 83 0 20 103 1.00 1.00 1.03 0 1.00 1.03 1.00 1.00	560-9::00-9::56 1.000 56 0.00 666 1.000 666 1.000 666 1.000 666 1.000 1.000 666	00 AM 957 1.00 957 303 60 1320 1.00 1.320 0 1.320 1.00 1.320 1.00 1.00	49 1.00 49 1 10 60 1.00 1.00 60 1.00 1.00 60	63 1.00 63 1 10 74 1.00 1.00 74 1.00 1.00 74 1.00	644 1.00 644 31 120 795 1.00 795 1.00 795 1.00 795	93 1.00 93 9 100 202 1.00 1.00 202 0 202 1.00 1.00 202	
Adjustment: Lanes: Final Sat.:	1.00 1805	1.69 2977	0.31 550	1.00 1805		0.20 359	1.00 1805		0.09 156	1.00 1805		0.41 709	
Capacity Anal Vol/Sat: Crit Moves:	Lysis 0.08	Modul 0.22 ****	le: 0.22	0.18	0.29	0.29	0.04	0.38	0.38	0.04	0.28	0.28	
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	0.65 61.0 1.00 61.0 8	0.79 44.5 1.00 44.5 32	0.79 44.5 1.00 44.5	0.63 41.1 1.00 41.1 15	0.44 0.65 27.3 1.00 27.3 35	0.65 27.3 1.00 27.3 4	0.83 116.3 1.00 116.3	1.54 291 1.00 291 69	290.6 1.00 290.6 3	0.93 138.5 1.00 138.5 5	1.00 119 41	1.14 119.1 1.00 119.1	

Level Of Service Computation Report														
2000 HCM Operations Method (Future Volume Alternative)														

Intersection #22 University Avenue / Martin Luther King Way														
<pre>Cycle (sec): 65</pre>														
Loss Time (s	ec):	12	(Y+R	= 5 :	sec) A	verage	Dela	v (sec	c/veh):	4	10.0			
	Optimal Cycle: 180 Level Of Service: D													

Approach:	Approach: North Bound South Bound East Bound West Bound													
Movement: L - T - R L - T - R L - T - R L - T - R - T - R L - T - R														
Control:	Pro	t+Per	mit		Permit	ted		Permit	ted	Pern	nitted			
Control: Prot+Permit Permitted Permitted Permitted Rights: Include Include Include Include														
Min. Green:	5	23	23	23	23	23	17	17	17	17 1	.7 17			
Lanes:	1 () 1	1 0	1 (0 1	1 0	1	0 1	1 0	1 0 1	. 1 0			
Volume Modul	e: >>	Count	Date:	21 No	ov 200	2 << 7	:00 AI	M - 9:	:00 AM					
Base Vol:	178	568	80	57	833	87	81	703	185	41 47	77 47			
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.0	0 1.00			
Initial Bse:	178	568		57		87	81	703	185	41 47	7 47			
Added Vol:	1	3	3	0	14	0	2	386	-2	0 4	10 0			
Future:	70	0	0	0	230	30	10	130	20	20 16	0 80			
Initial Fut:	249	571	83	57	1077	117	93	1219	203	61 67	77 127			
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.0	0 1.00			
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.0	0 1.00			
PHF Volume:	249	571	83	57	1077	117	93	1219	203	61 67	77 127			
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0 0			
Reduced Vol:	249	571	83	57	1077	117	93	1219	203	61 67	77 127			
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.0	0 1.00			
MLF Adj:			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.0	0 1.00			
Final Vol.:	249	571	83	57	1077	117	93	1219	203	61 67	77 127			
Saturation F	low Mo	dule:												
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900 190	00 1900			
Adjustment:	0.99	0.93	0.93	1.00	0.94	0.94	0.17	0.93	0.93	1.00 0.9	0.93			
Lanes:	1.00	1.75	0.25	1.00	1.80	0.20	1.00	1.71	0.29	1.00 1.6	0.32			
Final Sat.:	1880	3092	449	1900	3207	348	315	3030	505	1900 296	57 557			
Capacity Ana	lysis	Modul	e:											
		0.18	0.18	0.03	0.34	0.34		0.40	0.40	0.03 0.2	23 0.23			
Crit Moves:	****				****			****						
Green/Cycle:	0.45	0.45	0.45	0.35	0.35	0.35	0.37	0.37	0.37	0.37 0.3				
Volume/Cap:	0.30	0.41	0.41	0.08	0.95	0.95	0.80	1.09	1.09	0.09 0.6	0.62			
Delay/Veh:	26.1	11.1	11.1	13.4	35.0	35.0	59.9	72.7	72.7	13.6 18.	9 18.9			
User DelAdj:			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.0	0 1.00			
AdjDel/Veh:	26.1	11.1	11.1	13.4	35.0	35.0	59.9	72.7	72.7	13.6 18.	9 18.9			
D = = - = - =	0	1.0	2	1	27	2	2	2.1		1 1				

DesignQueue: 8 12 2 1 27 3 2 31 5 1 16 3

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 32-1 UC Berkeley LRDP EIR

2020 With Project Conditions

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)										

Cycle (sec): 65										75 .1 B
Approach:	North Bo L - T	ound - R	Sou L -	ith Bo - T	und – R	Ea L -	ast Bo - T	ound - R	West Bo	ound - R
Control: Rights:	Permit Inclu 21 21 1 0 0	ited ide 21 1 0	21 0 (Permit Inclu 21) 1!	ted de 21 0 0	20 0 1	Permit Inclu 20 L 0	ted ide 20 1 0	Permit Include 20 20 0 1 0	tted ude 20 1 0
Volume Module: Base Vol: Growth Adj: 1 Initial Bse: Added Vol: Future: Initial Fut: User Adj: 1 PHF Adj: 1 PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: 1 FINA Adj: 1 Final Vol.:	: >> Count 100 98 1.00 1.00 100 98 0 0 1 110 108 1.00 1.00 1.00 1.00 110 108 0 0 0 110 108 1.00 1.00 110 108 1.00 1.00	21 1.00 21 0 10 31 1.00 1.00 31 1.00 1.00 31	21 No 6 1.00 6 0 10 16 1.00 1.00 16 0 1.00 1.0	ov 200 203 1.00 203 0 10 213 1.00 213 1.00 213 1.00 213 1.00 213	2 << 7 63 1.00 63 0 10 73 1.00 1.00 73 0 1.00 1.00 73 1.00 1.00 73	37 1.00 37 0 20 57 1.00 1.00 57 1.00 1.00 57	4 - 9: 656 1.00 656 390 80 1126 1.00 1126 0 1126 1.00 1.00	00 AM 137 1.00 137 0 20 157 1.00 1.00 157 0 157 0 157 1.00 1.57	18 406 1.00 1.00 18 406 0 40 20 240 38 686 1.00 1.00 38 686 0 0 38 686 1.00 1.00 1.00 1.00 38 686	15 1.00 15 0 20 35 1.00 1.00 35 0 35 1.00
Saturation Flo Sat/Lane: 1 Adjustment: 0 Lanes: 1 Final Sat.: 1	0w Module: 1900 1900 0.73 0.97 1.00 0.78 1391 1428	1900 0.97 0.22 410	1900 0.95 0.05 96	1900 0.95 0.71 1276	1900 0.95 0.24 437	1900 0.83 0.09 134	1900 0.83 1.68 2648	1900 0.83 0.23 369	1900 1900 0.79 0.79 0.10 1.81 151 2725	1900 0.79 0.09 139
Capacity Analy Vol/Sat: C Crit Moves:			0.17	0.17	0.17	0.43	0.43	0.43	0.25 0.25	0.25
Green/Cycle: C Volume/Cap: C Delay/Veh: 1 User DelAdj: 1 AdjDel/Veh: 1 DesignQueue:	0.24 0.23 17.5 17.0 1.00 1.00 17.5 17.0	0.23 17.0 1.00 17.0	0.32 0.52 21.1 1.00 21.1	0.52 21.1 1.00 21.1	0.32 0.52 21.1 1.00 21.1	0.77 14.6 1.00 14.6	0.55 0.77 14.6 1.00 14.6 20	0.77 14.6 1.00	0.55 0.55 0.45 0.45 9.5 9.5 1.00 1.00 9.5 9.5 1 12	0.55 0.45 9.5 1.00 9.5

				Al	M Peal	Hour						
Level Of Service Computation Report												
2000 HCM Operations Method (Future Volume Alternative)												

Intersection #24 University Avenue / SB Shattuck Avenue												
******	****	*****	*****	****	****	****	*****	*****	*****	****	****	*****
Cycle (sec):		75	(11.15)	4		Critica	al Vol	./Cap.	(X):		0.6	
Loss Time (s Optimal Cycl	ec):	ا 11	(Y+K	= 4	sec) A	verage	e nera	y (sec	:/ven):		36	
*********	****	±±***	*****	****	1 *****	****	*****	*****	*****	****	****	
Approach:	No	rth Bo	und	So	uth Bo	ound	E	ast Bo	ound	W	est Bo	ound
Movement:												
Control: Rights:		Permit	ted		Permit	ted		Permit	ted		Permi	ted
Rights:		Inclu	de _		Incl	ıde		Incl	ıde		Incl	ıde
Min. Green:												16
Lanes:	1	U U		1		1 0	1 	U I	I	1		I
Volume Modul												'
Base Vol:											356	314
Growth Adj:									1.00			1.00
Initial Bse:	0	0	0	49	767	105	115	401	162	26		314
Initial Bse: Added Vol: Future:	0	0	0	0	15	6	55	211	124	0		36
Future:	0	0	0	10	120			50	10	10		90
Initial Fut:						171	190		296	36		440
User Adj: PHF Adj:								1.00			1.00	1.00
			1.00		1.00	1.00	1.00	662	1.00	36	1.00	1.00
PHF Volume: Reduct Vol:	0	0	0	29	902		190		290		390	0
Reduced Vol:	0	0							296	36		440
PCE Adj:									1.00		1.00	1.00
MLF Adj:									1.00		1.00	1.00
Final Vol.:	0	0	0	59	902	171	190	662	296	36	590	440
Saturation F												
Sat/Lane:							1900				1900	
Adjustment: Lanes:												0.70
Final Sat.:												
	1		1	1			11		I	1		
Capacity Ana									'	'		'
Vol/Sat:				0.25	0.25	0.25	0.33	0.31	0.31	0.27	0.27	0.27
Crit Moves:					***		****					
Green/Cycle:											0.53	
Volume/Cap:			0.00		0.71		1.10				0.50	0.50
Delay/Veh:	0.0	0.0	0.0	23.2	23.2	23.2	122.5	63.8	63.8	0.0	12.1	12.1

AdjDel/Veh: 0.0 0.0 0.0 23.2 23.2 23.2 122.5 63.8 63.8 0.0 12.1 12.1 DesignQueue: 0 0 0 2 25 5 6 21 9 2 12 9

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 33-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 34-1 UC Berkeley LRDP EIR

2020 With Project Conditions AM Peak Hour

				1 reak							
Level Of Service Computation Report											
	2000 HCM Operations Method (Future Volume Alternative)										
*****	*****************										
Intersection								*****	****	*****	*****
Cycle (sec):	Cycle (sec): 75										
Loss Time (se	Cycle (sec): 75 CITETER VOL.76ap. (A). 0.471 Loss Time (sec): 15 (Y+R = 4 sec) Average Delay (sec/veh): 17.0 Optimal Cycle: 47 Level Of Service: B										
Optimal Cycle											_

Approach:											
Movement:	L - T				- R			- R		- T	
Control:	Protec	ted	Pi	rotect	ed	P:	roteci	ted	P	rotect	ed
Rights:		ıde			ıde		Incl			Inclu	ıde
Min. Green:	19 0				0		13		0		0
Lanes:					0 0			0 0		2	
						'					
Volume Module										005	
Base Vol:	458 0	168	0	0	0	1 00	444	0		235	0
Growth Adj:	1.00 1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Initial Bse:		168 29	0	0	0	0	444 211	0	0	235 18	0
Added Vol:	53 0 220 0	29	0	0	0	0	211	0	0	18	0
Future: Initial Fut:		217	0	0	0	0	655	0	0	333	0
User Adj:		1.00		1.00	1.00		1.00			1.00	1.00
PHF Adj:	1.00 1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Volume:	731 0	217	0	0	0	1.00	655	0	0	333	1.00
Reduct Vol:	0 0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:		217	0	0	0	0	655	0	0	333	0
PCE Adj:	1.00 1.00	1.00	1.00	1.00	1.00		1.00		1.00	1.00	1.00
MLF Adj:	1.00 1.00	1.00		1.00	1.00		1.00		1.00	1.00	1.00
Final Vol.:	731 0	217	0	0	0	0	655	0	0	333	0
Saturation F											
Sat/Lane:				1900	1900		1900			1900	
Adjustment:				1.00	1.00		0.86			0.86	
	2.70 0.00	1.30		0.00	0.00		2.00			2.00	
Final Sat.:		2071	. 0			. 0				3249	0
Capacity Anal Vol/Sat:			0 00	0 00	0.00	0 00	0.20	0.00	0 00	0.10	0.00
VOI/Sat: Crit Moves:		0.10	0.00	0.00	0.00	0.00	U.ZU		****	0.10	0.00
Green/Cycle:		0 37	0 00	0.00	0.00	0 00	0.43			0.43	0.00
Volume/Cap:		0.28		0.00	0.00		0.43			0.43	0.00
Delay/Veh:		16.7		0.0	0.00		16.5	0.0		14.1	0.00
User DelAdj:		1.00		1.00	1.00		1.00			1.00	1.00
AdiDel/Veh:		16.7	0.0		0.0		16.5	0.0		14.1	0.0
DesignQueue:			0.0	0	0		16	0.0		8	0
+++++++++++					-						-

Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)

Intersection #26 University Avenue / Oxford Street

Intersection								****	*****	****	****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e:	65 12 127	(Y+R	= 4 s	sec) i	Critica Average Level O	l Vol Delay f Serv	./Cap y (sed vice:	. (X): c/veh):		0.93 38	14 .8 D
Approach: Movement:	L -	- T	- R	L -	- T	- R	L ·	- T	- R	L -		- R
	Pro 5	ot+Per Inclu 18) 1	rmit ide 18	5 1 (Permit Inclu 18) 1	tted ude 18 1 0	18 1 :	Perminus Inclu 18 1 0	tted ude 18 0 1	18 0 0	ermit Inclu 18 1!	tted ude 18 0 0
Volume Module Base Vol: Growth Add: Initial Bse: Added Vol: Future: Initial Fut: User Add: PHF Add: PHF Volume: Reduct Vol: Reduced Vol: PCE Add: MLF Add:	e: >> 147 1.00 147 10 50 207 1.00 207 0 207 1.00 207 1.00 207	Count 487 1.00 487 54 90 631 1.00 631 1.00 631 1.00 631	1.000 4 -22 0 2 1.000 1.000 2 2 1.000 1.000 2 2	21 No 41 1.00 41 -3 10 48 1.00 1.00 48 0 48 1.00	0v 200 1101 1.00 1101 79 80 1260 1.00 1260 0 1260 1.00 1.00	02 << 7 77 1.00 77 8 30 115 1.00 1.00 115 0 115 1.00 1.15	:00 AN 300 1.00 300 99 20 419 1.00 1.00 419 1.00 1.00 419	M - 9 38 1.00 38 -6 10 42 1.00 1.00 42 1.00 1.00 42	:00 AM 217 1.00 217 147 20 384 1.00 384 1.00 384 1.00 384 1.00 384 384 1.00 384 384 384 384 384 384 384 384 384 384	6 1.00 6 0 6 1.00 1.00 6 0 6 1.00	12 1.00 12 -1 10 21 1.00 1.00 21 1.00 1.00 21	23 1.00 23 0 10 33 1.00 1.00 33 0 33 1.00 1.00 33
Saturation F. Sat/Lane: Adjustment: Lanes: Final Sat.:	1900 0.86 1.00 1625	1900 0.86 1.99 3239	1900 0.86 0.01 10	0.32 1.00 607	0.84 1.83 2939	0.84 0.17 268	0.64 1.82 2213		0.77 1.00 1454	155	0.82 0.35 544	855
Capacity Ana. Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj:	1ysis 0.13 **** 0.41 0.31 14.3	Modul 0.19 0.41 0.48 15.4	0.19 0.41 0.48 15.4	0.08	0.43 **** 0.41 1.05 58.9	0.43	0.19 0.30 0.63 23.8	0.19 0.30 0.63	0.26 **** 0.30 0.88 43.3	0.04 0.30 0.13 17.1 1.00	0.04 0.30 0.13 17.1	
AdjDel/Veh: DesignQueue:	14.3 5	15.4 14	15.4 0	14.1	58.9 30	58.9 3	23.8	23.8	43.3	17.1	17.1	17.1

Page 35-1

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 36-1 ______ UC Berkeley LRDP EIR 2020 With Project Conditions

AM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

	AM Peak Hour											
Tarrell Of Carrier Community Dates												
Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)												

Intersection #27 Univeristy Drive (East Gate) / Gayley Road												
incelsection #2/ Oniveristy Diive (Last Gate) / Gayley Avad												
Average Delay (sec/veh): 2.6 Worst Case Level Of Service: D												

Approach:	No	rth Bo	ound	Soi	ıth Bo	nınd	E.	ast Bo	nınd	We	est Bo	nınd
Movement:												
Control:												
Rights:												
			0 0									
Volume Module	: >>	Count	t Date:	5 De	2002	2 << 7	:00-9:	00 AM				
Base Vol:	69	476	0	0	543	75	53	0	73	0	0	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	69	476	0	0	543	75	53	0	73	0	0	0
Added Vol:			0			-21						0
Future: Initial Fut:	20	70	0	0	110	10	10	0	20	0	0	0
								0	92	0	0	0
User Adj:			1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:			0		737	64	61				0	0
		0	0	-		0	0		0		0	0
Final Vol.:			0	0	737	64	61	0	92	0	0	0
Critical Gap												
Critical Gp:												
FollowUpTim:												
Capacity Modu							1500		7.00			
Cnflict Vol:												
Potent Cap.:	831	XXXX	XXXXX	XXXX	XXXX	XXXXX	129	XXXX	404	XXXX	XXXX	XXXXX
Move Cap.:												XXXXX
Level Of Serv												
Stopped Del:							62 5		16 5			vvvvv
LOS by Move:									T0.5		**	*
Movement:									-			
Shared Cap.:												XXXXX
Shrd StpDel:x												
a copror.n												

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) Intersection #28 Addison Street / Oxford Street ************************ Average Delay (sec/veh): 0.8 Worst Case Level Of Service: E *********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include
 Include

 Lanes:
 1 0 2 0 0 0 0 1 1 0 0 0 1! 0 0 0 0 0 0 0
 0 0 0 0 0 0
 -----| Volume Module: >> Count Date: 13 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 54 647 0 0 1165 61 4 0 31 0 0 Initial Bse: 54 647 0 0 1165 61 4 0 31 0 0 Added Vol: 20 60 0 0 207 18 2 0 2 0 0 PasserByVol: 20 140 0 0 90 10 0 0 10 0 0 Initial Fut: 94 847 0 0 1462 89 6 0 43 0 0 Critical Gap Module: Critical Gp: 4.1 xxxx xxxxx xxxxx xxxx xxxxx 6.8 xxxx 6.9 xxxxx xxxx xxxxx ______|___|___| Capacity Module: Cnflict Vol: 1287 xxxx xxxxx xxxx xxxx xxxx 2108 xxxx 147 xxxx xxxx xxxxx Potent Cap.: 408 xxxx xxxxx xxxx xxxx xxxx 34 xxxx 657 xxxx xxxx xxxxx Move Cap.: 408 xxxx xxxxx xxxx xxxx xxxx 27 xxxx 657 xxxx xxxx xxxx ______|___| Level Of Service Module: LOS by Move: C * * * * * * * * * * *

Shared LOS: * * * * * * * * * * * * *

ApproachDel: xxxxx xxxx 34.8 xxxxxx ApproachLOS: * * D *

Movement: LT - LTR - RT Shrd StpDel:xxxxx xxxx xxxxx xxxxx xxxxx xxxxx 35.4 xxxxx xxxxx xxxxx Shared LOS: * * * * * * E * * * *

ApproachDel: xxxxxx xxxxx 35.4 xxxxxx

ApproachLOS:

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 38-1 UC Berkeley LRDP EIR

2020 With Project Conditions

AM Peak Hour

AM Peak Hour									
Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)									
Intersection #29 Center Street / SB Shattuck Avenue									
<pre>Cycle (sec): 65</pre>	**								
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R									
Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Include Include Include Min. Green: 0 0 0 0 20 20 20 0 22 22 33 33 0 0 0 0	0								
Tolume Module: >> Count Date: 19 Nov 2002 << 7:00 AM - 9:00 AM									
Added Vol: 0 0 0 0 83 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000								
Final Sat.: 0 0 0 62 4117 378 0 969 649 377 1138 0 									
Apacity Ministry Module: 701/Sat: 0.00 0.00 0.00 0.24 0.24 0.24 0.00 0.12 0.12 0.12 0.00 2rit Moves: ****	C								
Green/Cycle: 0.00 0.00 0.00 0.31 0.31 0.31 0.00 0.34 0.34 0.51 0.51 0.00 0.00 0.00 0.00 0.00 0.78 0.78 0.78	0 0 0								

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)							
***********************	***********************							
Intersection #29 Center Street / SB Shattuck Avenue	Intersection #30 Center Street / NB Shattuck Avenue							
Cycle (sec): 65 Critical Vol./Cap. (X): 0.449	Cycle (sec): 65							
Loss Time (sec): 12 (Y+R = 9 sec) Average Delay (sec/veh): 16.8	Loss Time (sec): 8 (Y+R = 9 sec) Average Delay (sec/veh): 5.3							
Optimal Cycle: 65 Level Of Service: B	Optimal Cycle: 60 Level Of Service: A							
******************************	***************************************							
Approach: North Bound South Bound East Bound West Bound	Approach: North Bound South Bound East Bound West Bound							
Movement: L - T - R L - T - R L - T - R	Movement: L - T - R L - T - R L - T - R							
Control: Permitted Permitted Permitted Permitted	Control: Permitted Permitted Permitted Permitted							
Rights: Include Include Include Include	Rights: Include Include Include Include							
Min. Green: 0 0 0 20 20 20 0 22 22 33 33 0	Min. Green: 30 30 30 0 0 0 22 22 0 0 22 22							
Lanes: 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0	Lanes: 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0							
Volume Module: >> Count Date: 19 Nov 2002 << 7:00 AM - 9:00 AM	Volume Module: >> Count Date: 19 Nov 2002 << 7:00 AM - 9:00 AM							
Base Vol: 0 0 0 15 779 71 0 69 51 17 102 0	Base Vol: 42 616 51 0 0 0 26 56 0 0 77 26							
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							
Initial Bse: 0 0 0 15 779 71 0 69 51 17 102 0	Initial Bse: 42 616 51 0 0 0 26 56 0 0 77 26 Added Vol: 0 98 -2 0 0 0 0 2 0 0 0							
1144C4 VOI. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0								
Future: 0 0 0 0 130 20 0 50 30 30 40 0 Initial Fut: 0 0 0 15 992 91 0 121 81 47 142 0	Future: 30 200 60 0 0 0 10 40 0 0 40 30 Initial Fut: 72 914 109 0 0 0 36 98 0 0 117 56							
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							
PHF Volume: 0 0 0 15 992 91 0 121 81 47 142 0	PHF Volume: 72 914 109 0 0 0 36 98 0 0 117 56							
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0	Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0							
Reduced Vol: 0 0 0 15 992 91 0 121 81 47 142 0	Reduced Vol: 72 914 109 0 0 0 36 98 0 0 117 56							
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							
Final Vol.: 0 0 0 15 992 91 0 121 81 47 142 0	Final Vol.: 72 914 109 0 0 0 36 98 0 0 117 56							
Saturation Flow Module:	Saturation Flow Module:							
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190							
Adjustment: 1.00 1.00 1.00 0.80 0.80 0.80 1.00 0.85 0.85 0.80 0.80 1.00	Adjustment: 0.79 0.79 0.79 1.00 1.00 1.00 0.79 0.79 1.00 1.00 0.86 0.86							
Lanes: 0.00 0.00 0.00 0.04 2.71 0.25 0.00 0.60 0.40 0.25 0.75 0.00	Lanes: 0.20 2.50 0.30 0.00 0.00 0.00 0.27 0.73 0.00 0.00 0.68 0.32							
Final Sat.: 0 0 0 62 4117 378 0 969 649 377 1138 0	Final Sat.: 298 3781 451 0 0 0 405 1103 0 0 1106 529							
Capacity Analysis Module:	Capacity Analysis Module:							
Vol/Sat: 0.00 0.00 0.00 0.24 0.24 0.24 0.00 0.12 0.12 0.12 0.00	Vol/Sat: 0.24 0.24 0.24 0.00 0.00 0.00 0.09 0.09 0.00 0.00 0.11 0.11							
Crit Moves: **** ****	Crit Moves: ****							
Green/Cycle: 0.00 0.00 0.00 0.31 0.31 0.00 0.34 0.34 0.51 0.51 0.00	Green/Cycle: 0.54 0.54 0.54 0.00 0.00 0.34 0.34 0.00 0.00 0.34 0.34							
Volume/Cap: 0.00 0.00 0.00 0.78 0.78 0.78 0.00 0.37 0.37 0.25 0.25 0.00 Delay/Veh: 0.0 0.0 0.0 18.9 18.9 18.9 0.0 18.2 18.2 3.6 3.6 0.0	Volume/Cap: 0.45 0.45 0.45 0.00 0.00 0.26 0.26 0.26 0.00 0.01 0.31 Delay/Veh: 2.6 2.6 2.6 0.0 0.0 0.0 11.5 11.5 0.0 0.0 17.4 17.4							
Delay/Veh: 0.0 0.0 0.0 18.9 18.9 18.9 0.0 18.2 18.2 3.6 3.6 0.0 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Delay/Veh: 2.6 2.6 2.6 0.0 0.0 0.0 11.5 11.5 0.0 0.0 17.4 17.4 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							
AdjDel/Veh: 0.0 0.0 0.0 18.9 18.9 18.9 0.0 18.2 18.2 3.6 3.6 0.0	AdjDel/Veh: 2.6 2.6 2.6 0.0 0.0 1.00 1.50 1.50 1.00 1.00 1.00 1							
DesignQueue: 0 0 0 0 26 2 0 3 2 1 3 0	DesignQueue: 1 16 2 0 0 0 1 2 0 0 3 1							
	besigngueue: 1 10 2 0 0 0 1 2 0 0 0 5 1							

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 40-1

UC Berkeley LRDP EIR

2020 With Project Conditions

AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)	Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative)							
**************************************	Intersection #32 Stadium Rim Road / Gayley Road							
Cycle (sec): 65	Cycle (sec): 100 Critical Vol./Cap. (X): 1.220 Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): 79.2 Optimal Cycle: 0 Level Of Service: F							
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R							
Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Min. Green: 19 19 19 19 19 19 19 19 19 19 19 19 19 10 10 10 10 0 0 1! 0 0 0 1! 0 0	Control: Stop Sign Stop Sign Stop Sign Stop Sign Rights: Include Include Include Include Min. Green: 0 1! 0 0 0 0 1! 0 0 0 0 0 1! 0 </td							
Volume Module: >> Count Date: 13 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 50 663 42 11 1145 39 26 10 43 19 6 8 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 20 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 386 19 128 471 0 12 5 14 18 1 118 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Saturation Flow Module: Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							
Capacity Analysis Module: Vol/Sat: 0.38 0.27 0.27 0.01 0.46 0.46 0.13 0.13 0.13 0.02 0.02 0.02 Crit Moves: **** Green/Cycle: 0.58 0.58 0.58 0.58 0.58 0.58 0.29 0.29 0.29 0.29 0.29 0.29 Volume/Cap: 0.65 0.47 0.47 0.02 0.79 0.79 0.43 0.43 0.43 0.08 0.08 0.08 Delay/Veh: 32.7 8.6 8.6 5.8 14.0 14.0 22.2 22.2 22.2 17.1 17.1 17.1 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Crit Moves:							

		Т	evel (of Serv	vice (Computa	tion I	Report	-			
Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative)												
2000 NCM 4 Way 3000 MECHOL (Future volume Alternative)												
Intersection #32 Stadium Rim Road / Gayley Road												

Cycle (sec):		100)		(Critica	l Vol	./Cap	. (X):		1.22	20
Cycle (sec): 100 Critical Vol./Cap. (X): 1.220 Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): 79.2 Optimal Cycle: 0 Level Of Service: F												
Optimal Cycle	∋:	C)]	Level O	f Serv	vice:				F
*****	****	****	****	****	****	*****	****	****	*****	****	****	*****
Approach:	No	cth Bo	und	Soi	uth Bo	ound	Εa	ast Bo	ound	We	est Bo	ound
Movement:	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R	L -	- Т	- R
Control:	St	op Si	.gn	S	top S:	ign	St	top S:	Lan	St	op Si	.gn
Rights:		Inclu			Incl			Incl			Incl	
Min. Green:			0			0			0	0	0	0
Lanes:			1 0			0 0						
Volume Module										'		
Base Vol:	0	386	19	128		0	12	5	14	1.8	1	118
Growth Adj:	-		1.00		1.00	1.00			1.00		1.00	1.00
Initial Bse:		386	19	128	471	0	12	5	14	18	1	118
Added Vol:	0	49	18	19		0	0	0	0	24	0	7
Future:	0	60	10	20		0	0	0	0	10	0	20
Initial Fut:		495	47	167		0	12		14	52	1	145
	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00
_	1.00		1.00		1.00	1.00		1.00	1.00	1.00		1.00
PHF Volume:	0.00	495	47	167	635	0	1.00	5	1.00	52	1.00	145
			4 /				0			0		
Reduct Vol: Reduced Vol:	0	0	47	0	0	0	12	0 5	0	52	0	0
		495						-			_	145
	1.00		1.00		1.00	1.00		1.00			1.00	1.00
_	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00
Final Vol.:			47		635	0	. 12		14	. 52	1	145
Saturation Fi												
Adjustment:						1.00			1.00		1.00	1.00
Lanes:			0.09		0.79			0.16			0.01	0.73
Final Sat.:					520	0		75			3	397
Capacity Ana												
Vol/Sat:	XXXX		0.84	1.22		XXXX		0.07	0.07	0.37	0.37	0.37
Crit Moves:		****			****		****				****	
4 '	0.0			131.5		0.0		10.7			12.9	12.9
4 2	1.00			1.00		1.00		1.00	1.00		1.00	1.00
AdjDel/Veh:	0.0	30.1	30.1	131.5	132	0.0	10.7	10.7	10.7	12.9	12.9	12.9
LOS by Move:			D	F	F	*	В	В	В	В	В	В
ApproachDel:		30.1			131.5			10.7			12.9	
Delay Adj:		1.00			1.00			1.00			1.00	
ApprAdjDel:		30.1			131.5			10.7			12.9	
TOC h 3		Б			177			Б			Б	

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 42-1 ______ UC Berkeley LRDP EIR 2020 With Project Conditions

_____ UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

Level Of Service Computation Report										
2000 HCM Unsignalized Method (Future Volume Alternative)										
*******	*****	* * * * * * * * * * * * * * * *	*****							
Intersection #33 Allston Way / Oxford Street										
*******	******	*****	*****							
Average Delay (sec/veh):	5.2 Wor	st Case Level Of	Service: E							

Average Delay	/ (sed	c/veh;): *****	5.2	****	W(orst C	ase L ****	evel 0:	f Serv:	ice: ****	E
Approach:	No	rth Bo	ound	Soi	ıth Bo	ound	E	ast B	ound	We	est Bo	ound
Movement:	L -	- T	- R	L -	- T	- R	L ·	- T	- R	L ·	- T	- R
Control:	Un	contro	olled	Uno	contro	olled	S	top S	ıgn	St	top S:	ıgn
Rights:												
Lanes:												
Volume Module												
											_	
Base Vol:									33			
Growth Adj:												1.00
Initial Bse:	17	798	0	59	1111	34	16	0	33	0	0	0
Added Vol: Future:	0	75	0	0	214	0	0	0	0	0	0	0
Initial Fut:				69	1405	44			63			
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
PHF Volume:	29	1078	0	74	1511	47	17	0	68	0	0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Final Vol.:	29	1078	0	74	1511	47	17	0	68	0	0	0
Critical Gap	Modu:	le:										
Critical Gp:	4.1	XXXX	XXXXX	4.1	XXXX	XXXXX	6.8	XXXX	6.9	XXXXX	XXXX	XXXXX
FollowUpTim:	2.2	XXXX	XXXXX	2.2	XXXX	XXXXX	3.5	XXXX	3.3	XXXXX	XXXX	XXXXX
Capacity Modu	ıle:											
Cnflict Vol:	1050	XXXX	XXXXX	1078	XXXX	XXXXX	2042	XXXX	10	XXXX	XXXX	XXXXX
Potent Cap.:	503	XXXX	XXXXX	654	XXXX	XXXXX	37	XXXX	805	XXXX	XXXX	XXXXX
Move Cap.:	503	xxxx	XXXXX	654	xxxx	xxxxx	32	xxxx	805	XXXX	xxxx	XXXXX
Level Of Serv	rice 1	Module	e:									
Stopped Del:	12.6	XXXX	XXXXX	11.2	XXXX	XXXXX	204.1	XXXX	9.9	XXXXX	XXXX	XXXXX
LOS by Move:	В	*	*	В	*	*	F	*	A	*	*	*

Movement: LT - LTR - RT
Shared LOS: B * * B * * * * * * * * *

ApproachDel: xxxxxx xxxxx 49.2 xxxxxx

ApproachLOS:

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)

AM Peak Hour

Intersection #34 Kittridge Street / Oxford Street / Fulton Street ******************* Average Delay (sec/veh): 8.4 Worst Case Level Of Service: F ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Uncontrolled Uncontrolled Stop Sign Stop Sign Rights: Include Include Include Include Rights: Include Include Include Include
Lanes: 0 1 0 1 0 0 1 0 1 0 0 0 1! 0 0 0 0 1! 0 0 -----| Volume Module: >> Count Date: 13 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 13 801 0 0 1122 18 6 0 23 0 0 0 Initial Bse: 13 801 0 0 1122 18 6 0 23 0 0 Added Vol: 0 68 23 69 145 0 0 27 0 2 3 7 0 120 0 0 70 30 10 0 10 0 0 Future: Initial Fut: 13 989 23 69 1337 48 16 27 33 2 3 7 Critical Gap Module: Critical Gp: 4.1 xxxx xxxxx 4.1 xxxx xxxxx 7.5 6.5 6.9 7.5 6.5 6.9 FollowUpTim: 2.2 xxxx xxxxx 2.2 xxxx xxxxx 3.5 4.0 3.3 3.5 4.0 3.3 _____| Capacity Module: Cnflict Vol: 513 xxxx xxxxx 1012 xxxx xxxxx 1521 2303 0 1257 2322 506 Potent Cap.: 701 xxxx xxxxx 693 xxxx xxxxx 55 26 0 86 25 517 Move Cap.: 701 xxxx xxxxx 693 xxxx xxxxx 44 23 0 0 22 517 ______|___|___| Level Of Service Module: LOS by Move: B * * B * * * * * * * * Movement: LT - LTR - RT Shrd StpDel: 10.2 xxxx xxxxx 10.8 xxxx xxxxx xxxxx 466 xxxxx xxxxx xxxxx xxxxx Shared LOS: B * * B * * F * * * * ApproachDel: xxxxxx xxxxx 466.0 xxxxxx ApproachLOS:

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 44-1 ______

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative)												
**************************************	*****											
<pre>Intersection #35 Stadium Rim Road / Centennial Drive ************************************</pre>												
Cycle (sec): 100 Critical Vol./Cap. (X): 0.3 Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): 9 Optimal Cycle: 0 Level Of Service:	.6 A											
Approach: North Bound South Bound East Bound West E Movement: L - T - R L - T - R L - T - R L - T	- R											
Control: Stop Sign Stop Sign <th< td=""><td>ign ude 0</td></th<>	ign ude 0											
Volume Module: >> Count Date: 20 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 70 160 94 22 0 0 0 0 114 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	71 1.00 71 31 10 112 1.00 1.00 112 0 112 1.00 1.00											
Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	0.46 329											
Capacity Analysis Module: Vol/Sat: xxxx 0.34 0.34 0.26 0.26 xxxx xxxx xxxx xxxx 0.34 xxxx Crit Moves: **** **** Delay/Veh: 0.0 9.4 9.4 9.6 9.6 0.0 0.0 0.0 0.0 9.9 0.0 Delay Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	**** 9.9 1.00 9.9 A											
ApprAdjDel: 9.4 9.6 xxxxxx 9.9 LOS by Appr: A A * A												

						Computa						
						(Future						
*****								*****	*****	*****	*****	*****
Intersection	#36 I ****	Bancro *****	oft Way	/ Sha ****	attuc: ****	k Avenu ******	e *****	****	*****	****	****	*****
Cycle (sec):												
Loss Time (se	ec):	8	(Y+R :	= 4 :	sec)	Average	Dela	/ (sec	/veh):		10.	. 5
Optimal Cycle	≘:	42	2			Level O	f Serv	/ice:				В
******	****	*****	*****	****	****	*****	****	*****	*****	****	*****	*****
Approach:												
Movement:	L ·	- T	- R	L ·	- T	- R	L -	- T	- R	L -	- T	- R
Control:	1	Permit	ted]	Permi	tted]	Permit	ted	I	Permit	ted
Rights:		Inclu	ıde		Incl	ude		Inclu	ıde		Inclu	ıde
Min. Green:	18	18	0	0	18	18	0	0	0	16	16	16
Rights: Min. Green: Lanes:	1 (2	0 0	0 (0 1	1 0	0 (1!	0 0	1 (0 0	1 0
Volume Module												
Base Vol:												
Growth Adj:												
Initial Bse:	29	912	0	0	788	12	1	0	62	116	51	71
Added Vol:												
Future: Initial Fut:												
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj: PHF Volume: Reduct Vol: Reduced Vol:	39	1307	0	0	1064	22	1	0	62	158	61	90
Reduct vol:	20	1 2 0 7	0	0	1004	0	0	0	0	1.50	0	0
Reduced Vol:	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj: Final Vol.:	1.00	1207	1.00	1.00	1064	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	. 39	130/	U		1004	22	1	U	ν∠ .	128	юΙ	90
Saturation F										1		
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.24	0.86	1.00	1.00	0.85	0.85	0.78	1.00	0.78	0.65	0.82	0.82

UC Berkeley LRDP EIR

2020 With Project Conditions

AM Peak Hour

Lanes: 1.00 2.00 0.00 0.00 1.96 0.04 0.02 0.00 0.98 1.00 0.40 0.60 Final Sat.: 450 3249 0 0 3174 66 23 0 1453 1228 629 928 -----|

Vol/Sat: 0.09 0.40 0.00 0.00 0.34 0.34 0.04 0.00 0.04 0.13 0.10 0.10

Green/Cycle: 0.63 0.63 0.00 0.00 0.63 0.63 0.25 0.00 0.25 0.25 0.25 Volume/Cap: 0.14 0.64 0.00 0.00 0.53 0.53 0.17 0.00 0.17 0.52 0.39 0.39 Delay/Veh: 5.9 8.9 0.0 0.0 7.7 7.7 20.3 0.0 20.3 27.5 23.5 23.5 AdjDel/Veh: 5.9 8.9 0.0 0.0 7.7 7.7 20.3 0.0 20.3 27.5 23.5 23.5 DesignQueue: 1 19 0 0 15 0 0 0 2 4 2 3

Capacity Analysis Module:

Crit Moves: ****

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 45-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 46-1 UC Berkeley LRDP EIR

2020 With Project Conditions

AM Peak Hour

	el Of Service Computatior ations Method (Future Vol		
******	*******	******	******
Intersection #37 Bancroft ************************************		*****	*****
Cycle (sec): 65 Loss Time (sec): 8 (Y Optimal Cycle: 49 ************************************	Y+R = 4 sec) Average Del Level Of Se	lay (sec/veh): ervice:	9.7 A
Approach: North Bound Movement: L - T -	R L - T - R L	- T - R L	West Bound
Rights: Include Min. Green: 17 17 Lanes: 0 1 1 0	d Permitted Include 0 0 17 17 0 0 0 2 1 0 0	Permitted Include 0 0 0 24 0 0 0 0 0	Permitted Ignore 24 24 1 1 0 1
PHF Volume: 36 156 Reduct Vol: 0 0	ate: 13 Nov 2002 << 7:00 0	AM - 9:00 AM 0 0 0 0 84 000 1.00 1.00 1.00 0 0 0 84 0 0 0 0 0 84 0 0 0 0 96 0 0 0 1.00 1.00 0 0 1.00 1.00 1.00 0 0 0 96 0 0 0 0 96 0 0 0 0 96 0 0 0 0 96 0 0 1.00 1.00 1.00	1 173 650 1 1.00 1.00 1 173 650 2 24 91 20 110 5 217 851 1 1.00 0.00 5 217 0
Saturation Flow Module: Sat/Lane: 1900 1900 19 Adjustment: 0.71 0.71 1. Lanes: 0.37 1.63 0. Final Sat.: 506 2194	900 1900 1900 1900 190 .00 1.00 0.90 0.90 1.0 .00 0.00 2.76 0.24 0.0 0 0 4716 409	00 1900 1900 1900 00 1.00 1.00 0.81 00 0.00 0.00 0.61 0 0 0 941	0 1900 1900 0 0.81 1.00 1 1.39 1.00 2 2127 1900
Capacity Analysis Module: Vol/Sat: 0.07 0.07 0. Crit Moves: Green/Cycle: 0.51 0.51 0. Volume/Cap: 0.14 0.14 0.	.00 0.00 0.27 0.27 0.0 **** .00 0.00 0.51 0.51 0.6 .00 0.00 0.53 0.53 0.6	00 0.00 0.00 0.37 00 0.00 0.00 0.28	0 0.10 0.00 **** 7 0.37 0.00 8 0.28 0.00
DesignQueue: 1 3	.00 1.00 1.00 1.00 1.0 0.0 0.0 8.9 8.9 0.	00 1.00 1.00 1.00 .0 0.0 0.0 15.0 0 0 0 2	15.0 0.0 1.00 1.00 15.0 0.0 2 5 0

				Al	4 Peal	K Hour						
2(CM Uns	signali	zed Me	ethod	Computa (Futu:	re Volu	ıme A.	lternat		****	*****
Intersection								****	*****	*****	****	*****
Average Delay				4.5	****	Wc	orst Ca	ase L	evel 0:	f Serv:	ice:	C *****
Approach: Movement:	L ·	- T	- R	L -	- T	ound - R	L -	- T	- R	L ·	est Bo	- R
Control: Rights: Lanes:	St	top Si Inclu 1 0	gn ide 0 0	St 0 (top Si Incli	ign ıde 0 1	Un (contro Incl	olled ude 0 0	Un (contro Incli) 1	olled ude 1 0
Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Final Vol.: Critical Gap Critical Gp: FollowUpTim:	241 1.00 241 96 10 347 1.00 1.00 347 0 347 Modu	Count 60 1.00 0 0 0 60 1.00 1.00 60 0 0 60 1.00 60 1.00 60 1.00 60 1.00 60 1.00	: Date: 0 1.00 0 0 0 0 0 0 1.00 1.00 0 0	13 No 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 200 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	02 << 1 11 1.00 11 0 0 11 1.00 1.00 1.00 11 0 11	7:00 AN 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 - 9 0 1.00 0 0 0 1.00 1.00 0 0	:00 AM 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1.00 0 0 0 0 1.00 1.00 0 0	674 1.00 674 128 130 932 1.00 1.00 932 0 932 xxxx	39 1.00 39 0 0 39 1.00 1.00 39 0 39
Capacity Modu Cnflict Vol: Potent Cap.: Move Cap.:	11e: 466 510 501	971 255 255	xxxxx xxxxx	xxxx xxxx	xxxx xxxx xxxx	486 586 586	xxxx xxxx	xxxx xxxx xxxx	xxxxx xxxxx	xxxx xxxx xxxx	XXXX XXXX	xxxxx xxxxx
Level Of Serv Stopped Del: LOS by Move: Movement: Shared Cap.: Shrd StpDel: Shared LOS: ApproachDel: ApproachLOS:	16.0 C LT 401	XXXX * - LTR XXXX	XXXXX * - RT XXXXX	LT -	* - LTR xxxx	B - RT xxxxx xxxxx	* LT - xxxx xxxxx	* - LTR xxxx	* - RT xxxxx	* LT · xxxx xxxx	* - LTR xxxx xxxx	* - RT xxxxx

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 47-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 48-1

UC Berkeley LRDP EIR

2020 With Project Conditions

	Level Of Servi				

			******	*****	*****
Average Delay (sec/veh					
Movement: L - T	- R L -	T - R	L - T	- R L	- T - R
Control: Stop S	Sign Sto	op Sign	Uncontro	lled Un	
			•	1 1	
			0 0		
racaro.		0	0 0	0 00	
			0 0		
- 3					
111101 1011.	0 0	0 0	0 0	0 199	979 0
Critical Gap Module:					
-					
1					
Capacity Module:					
Cnflict Vol: xxxx xxxx	XXXXX XXXXX	xxxx xxxx	XXXX XXXX	xxxxx 0	XXXX XXXXX
Potent Cap.: xxxx xxxx	XXXXX XXXXX	XXXX XXXXX	XXXX XXXX	xxxxx 0	XXXX XXXXX
1	2000 HCM Unsignalized Method (Future Volume Alternative) ************************************				
Level Of Service Modul	.e:	·			,
Loc by nove.				71	
1			XXXXX XXXX		xxxx xxxxx
Shared LOS: * *			* *		* *
11	xxx xxx			X.	

		2020		Proje 1 Peak	Hour	altio	ns				
		Level 0	f Sart				Penort	 -			
		peratio	ns Met	chod (Future	Volu	me Alt	ernati			
							*****	*****	****	****	*****
							*****		****	*****	*****
Cycle (sec):											
Loss Time (sec	c):	8 (Y+R	= 23 s	sec) A							
Optimal Cycle:	: 4										
Control:	Protec	ted	P	otect	ed	P	rotect	ted	P	rotect	ed
Rights:											
	### 2000 HCM Operations Method (Future Volume Alternative) ***********************************										
	#40 Bancroft Way / Telegraph Avenue **********************************										
	Protected Protected Protected Protected Protected Include Series: 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) 1000 HCM Op										
User Adj: 1	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:		-	-	-	-	-	-	-	-		-
		-	-		-	-	-	-	-	-	-
		-	-	-	-	-	-	-	-		-
MLF Adj: 1	1.00 1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
											-
			1900	1900	1900	1900	1900	1900	1900	1900	1 9 0 0
_			0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.00	0.00
		-	-	-	-	-	-	-			-
		'									
	•		0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 13	0 00
. ,		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
	0.23 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.35	0.00
_											
DesignOueue:											
		-	-	-	-	-		-	-		0

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 50-1

UC Berkeley LRDP EIR

2020 With Project Conditions

AM Peak Hour Level Of Service Computation Report

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

		т.	 	f Sart	7ice ('omput a	tion 1	enor	 -			
	2000									ve)		
											****	*****
								****	*****	****	****	*****
Cvcle (sec):												
	ec):			= 4 s								
Optimal Cycle									-, -,-			В
******	****	****	*****	****	*****	****	****	****	*****	****	****	*****
Approach:	No	rth Bo	und							We	est B	ound
Movement:												
Control:	S			St			S.			St		
Rights:	0			^			0			_		
Min. Green: Lanes:							-	-	-	-	-	-
										1		'
Base Vol:	191	0	0	0	0	0	0	0	0	99	494	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): 14.1 all Cycle: 0 Level Of Service: B Level Of Service: B Everl Of											
Added Vol:	0	0	0	0	0	0	0	0	0	3	143	0
Future:	10	0	0	0	0	0	0	0	0	20	60	0
Initial Fut:	201	0	0	0	0	0	0	0	0	122	697	0
User Adj:	1.00	1.00	1.00						1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	201	0		-	-	0	-	-	-		697	0
Reduct Vol:			-	-	-		-	-			-	-
Reduced Vol:		-	-	-	-	-	•	-	-			
PCE Adj:												
MLF Adj:	2000 HCM 4-Way Stop Method (Future Volume Alternative) ************************************											
Final Vol.:			-	-			-		-	122	69/	0
Adjustment:				1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
Lanes:	**************************************											
Final Sat.:												
Capacity Anal	lysis	Modul	e:									
Vol/Sat:		XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	xxxx	XXXX		0.59	XXXX
Crit Moves:												
Delay/Veh:												
Delay Adj:												
AdjDel/Veh:												
LOS by Move:	В		*			*			*	С		
ApproachDel:												
Delay Adj:												
ApprAdjDel:				X			X					
LOS by Appr:		_									_	

**************************************	***** #42 1	*****	*****	*****	*****	Arroniio	****	****	*****	****		
Cycle (sec): Loss Time (so Optimal Cycle ************************************	ec): e: ****	100 0 0 ****	(Y+R	= 4 5	sec) :	Critica Average Level C	l Vol Delag	./Cap. y (sec vice:	(X): c/veh):	****	0.74 16.	13 .8 C ******
Approach: Movement:	No:	rth Bo - T	und - R	Sou L -	uth Bo - T	ound - R	E d	ast Bo - T	ound - R	We L -	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	St 0	top Si Inclu 0	gn de 0	0 0 0 (top S. Incl 0	ign ude 0	0 0	top Si Inclu 0	ign ide 0	0 0	top Si Incli 0 1 1	ign ude 0
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	e: >> 343 1.00 343 157 10 510 1.00 510 0 510 1.00 1.00 510	Count 0 1.00 0 0 0 1.00 1.00 1.00 0 1.00 1.0	Date: 0 1.00 0 0 0 0 1.00 1.0	13 No 0 1.00 0 0 0 1.00 0 0 0 1.00 0 0 0	1.00 0 0 0 0 0 0 1.00 1.00 0 0 0 1.00	002 << 7 0 1.00 0 0 0 0 1.00 1.00 1.00 0 0 1.00 0 0 0	7:00 AP 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 - 9; 0 1.00 0 0 0 0 1.00 1.00 0 0 1.00 0	000 AM 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	34 1.00 34 1 20 55 1.00 1.00 55 1.00 1.00 55	203 1.00 203 132 60 395 1.00 1.00 395 1.00 1.00 395	0 1.00 0 0 0 0 1.00 1.00 0 0 0 1.00
Saturation F. Adjustment: Lanes: Final Sat.:	1.00 1.00 686	1.00 0.00 0	1.00 0.00 0	0.00	0.00	0.00	0.00	0.00	0.00	0.24	1.76 1045	0.00
Capacity Ana	lysis	Modul	e:									

Vol/Sat: 0.74 xxxx xxxx xxxx xxxx xxxx xxxx xxxx 0.38 0.38 xxxx

Delay/Veh: 21.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.1 11.9 0.0

AdjDel/Veh: 21.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.1 11.9 0.0 LOS by Move: C * * * * * * * * * * B B * ApproachDel: 21.1 xxxxxx xxxxx 12.0 Delay Adj: 1.00 xxxxx xxxx xxxxx 12.0 ApprAdjDel: 21.1 xxxxxx xxxx xxxxx 12.0 LOS by Appr: C * * B

Crit Moves: ****

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 51-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 52-1 UC Berkeley LRDP EIR 2020 With Project Conditions

AM Peak Hour

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternat	ive)

Intersection #43 Bancroft Way / Piedmont Avenue	*****
<pre>Cycle (sec): 100</pre>	: 86.7 F
Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R L - T - R	L - T - R
Control: Stop Sign Stop Sign Stop Sign Rights: Include Include Include Min. Green: 0 0 0 0 0 0 0 0 Lanes: 0 1 0 0 0 0 0 0 0 0	Stop Sign
Volume Module: >> Count Date: 13 Nov 2002 << 7:00 AM - 9:00 AM	
Base Vol: 131 553 0 0 344 123 0 0	
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
Initial Bse: 131 553 0 0 344 123 0 0	
Added Vol: 104 103 0 0 46 29 0 0	0 0 0
Future: 10 60 0 0 40 60 0 0	0 0 0
Initial Fut: 245 716 0 0 430 212 0 0	0 0 0
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00
PHF Volume: 245 716 0 0 430 212 0 0	0 0 0
Reduct Vol: 0 0 0 0 0 0 0 0	0 0 0
Reduced Vol: 245 716 0 0 430 212 0 0	0 0 0
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00
Final Vol.: 245 716 0 0 430 212 0 0	
Saturation Flow Module:	
Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00
Lanes: 0.25 0.75 0.00 0.00 0.67 0.33 0.00 0.00 0.00	0.00 0.00 0.00
Final Sat.: 200 585 0 0 537 265 0 0	
Capacity Analysis Module:	
Vol/Sat: 1.22 1.22 xxxx xxxx 0.80 0.80 xxxx xxxx xxxx	XXXX XXXX XXXX
Crit Moves: ****	
Delay/Veh: 129.2 129 0.0 0.0 23.0 23.0 0.0 0.0 0.0	0.0 0.0 0.0
Delay Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
AdjDel/Veh: 129.2 129 0.0 0.0 23.0 23.0 0.0 0.0 0.0	
LOS by Move: F F * * C C * * *	* * *
ApproachDel: 129.2 23.0 xxxxxx	xxxxxx
Delay Adj: 1.00 1.00 xxxxx	xxxxx
ApprAdjDel: 129.2 23.0 xxxxxx	xxxxxx
LOS by Appr: F C *	*
******************	******

Cycle (sec): 65 Crit	cical Vol./Cap. (X): 0.749		
-F1			
2			
Base Vol: 55 943 136 67 886	8 9 70 35 0 0 0		
SS Time (sec): 12 (Y+R = 5 sec) Average Delay (sec/veh): 14.2 timal Cycle: 59			
2000 HCM Operations Method (Future Volume Alternative)			
Added Vol: 0 115 105 66 31	0 0 0 0 0 0		
3			
3			
Saturation Flow Module:			
Sat/Lane: 1900 1900 1900 1900 1900 19	900 1900 1900 1900 1900 1900 1900		
	31 0 13 0 08 0 08 0 00 0 00 0 00		
. ,			
	55 0 26 0 28 0 28 0 00 0 00 0 00		
,			
	00 1.00 1.00 1.00 1.00 1.00 1.00		
AdjDel/Veh: 4.7 15.4 15.4 68.5 2.7 2	2.7 21.8 18.9 18.9 0.0 0.0 0.0		
DesignQueue: 1 25 7 6 19	0 6 3 1 0 0 0		

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 54-1 UC Berkeley LRDP EIR

2020 With Project Conditions

AM Peak Hour

		I	evel 0	f Serv	 7ice (Computa	tion E	 Report	 :					
2	2000 н	ICM Op	eratio	ns Met	hod	(Future	Volur	ne Alt	ernati	ve)				
*****								*****	*****	****	****	*****		
Intersection								*****	*****	****	****	****		
Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e: *****	65 8 51	(Y+R	Critical Vol./Cap. (X): = 3 sec) Average Delay (sec/veh): Level Of Service: ************************************						****	0.459 10.9 B			
Approach:						ound				West Bound				
Movement:	L -	T	- R	L -	- T	- R	L -	- T	- R					
			ted											
Rights:		Inclu	ide 0		Incl	ıde		Inclu	ıde		Incl	ude		
Min. Green:	0	0	0	21	21	0	22	22	22	0	0	0		
Lanes:	0 0	0	0 0	1 1	1	0 0	. 1 () 1	1 0	. 0	0 0	0 0		
 Volume Module														
Base Vol:			. Date.		656			262		0	0	0		
Growth Adj:												1.00		
Initial Bse:										1.00				
										0	-	-		
Added Vol: Future:	0	0	0	30	7.0	0	20	100	3.0	0	-	-		
Initial Fut:						0	156	510	57	0	-	-		
User Adj:									1.00	1.00				
PHF Adj:									1.00		1.00			
PHF Volume:				585					57	0				
					Λ	0	0	0		-	0			
Reduct Vol: Reduced Vol:	0	0	0	585	730	0	156	510			0			
PCE Adj:	1 00	1 00	1 00	1 00	1 00	1 00	1 00			1 00	1 00	1 00		
MLF Adj:	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00		
Final Vol.:										0				
Saturation F														
Sat/Lane:														
Adjustment:	1.00	1.00	1.00	0.95	0.95	1.00	0.99	0.94	0.94	1.00	1.00	1.00		
Lanes:											0.00			
Final Sat.:	0	0	0	2409	3006	0	1872	3198	357	0	0	0		
Capacity Ana: Vol/Sat:				0 04	0 04	0 00	0 00	0 10	0 10	0 00	0 00	0 00		
	0.00	0.00	0.00	∪.∠4	****		0.08	V.16	0.16	0.00	0.00	0.00		
Crit Moves:	0 00	0 00	0 00	0 50			0 25			0 00	0 00	0 00		
Green/Cycle:										0.00				
Volume/Cap:									0.46 17.7	0.00				
Delay/Veh:												0.0		
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
AdjDel/Veh: DesignQueue:	0.0	0.0	0.0	7.4	1.4	0.0	T0.0	1/./	1/./	0.0	0.0	0.0		
DesignQueue:				11	13			⊥3				0		

											****	. * * 1
								*****	*****	****	*****	.**
Cvcle (sec):		65			(Critica	l Vol	./Cap.	(X):		0.37	10
Loss Time (s	ec):	8 (Y+R = 4 sec) Average Delay (sec/veh): 43		12.	. 0							
Optimal Cycl	e:	43			1	Level O	f Ser	vice:				В
*****	****	****	*****	****	****	*****	****	****	****	****	*****	***
Approach:											est Bo	
Movement:	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R	L -	- T	-
Control:											 Permit	
Rights:			de		Tncl	1de		Tncl	ide ide		Inclu	
Min. Green:												
Lanes:											0 0	
				1			1					
										1		
Base Vol:										0	0	
Initial Bse:												
Added Vol:				0	0	0				0	0	
Future:	0	110	4.0	0	0	0	0			0	0	
Initial Fut:	0	479	150	0	0	0	90	657	0	0	0	
User Adi:	1.00	1.00					1.00	1.00	1.00	1.00	1.00	1.
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
PHF Volume:	0	479	150	0	0	0	90	657	0	0	0	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	0	479	150	0	0	0	90	657	0	0	0	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
MLF Adj:	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00	1.00	1.
Final Vol.:						-			-		0	
Saturation F												
Sat/Lane:												
_												
Lanes:												
Final Sat.:										-	-	
				0 00	0 00	0 00	0 14	0 1/	0 00	0 00	0 00	Λ
Crit Moves:			0.10	0.00	0.00	0.00	0.14		0.00	0.00	0.00	υ.
			0 49	0 00	0 00	0 00	0 30	0 39	0 00	0 00	0 00	0.
												0.
												(
4 '												1.
_											0.0	- 0
DesignOueue:											0.0	C
				-	-	-			-	-	-	

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 56-1 UC Berkeley LRDP EIR

2020 With Project Conditions

AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)								
Intersection #47 Durant Avenue / College Avenue								

Approach: North Bound South Bound Movement: L - T - R L - T - R L	- T - R L - T - R							
Control: Permitted Permitted Rights: Include Include Min. Green: 0 18 18 0 0 0	Permitted Permitted Include Include 16 16 16 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0							
Volume Module: >> Count Date: 19 Nov 2002 << 7:00 Base Vol: 0 213 66 13 23 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1. Initial Bse: 0 213 66 13 23 0 Added Vol: 0 29 31 0 1 0 1 0 1 Future: 0 10 90 0 20 0 Initial Fut: 0 252 187 13 44 0 2 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1. PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1. PHF Volume: 0 252 187 13 44 0 2 Reduct Vol: 0 0 0 0 0 0 Reduced Vol: 0 252 187 13 44 0 2 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00	AM - 9:00 AM 64 228 87 0 0 0 00 1.00 1.00 1.00 1.00 1.00 64 228 87 0 0 0 28 39 2 0 0 0 20 90 40 0 0 01 1.00 1.00 1.00 1.00 01 1.00 1.00							
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 19 Adjustment: 1.00 0.94 0.94 0.92 0.92 1.00 0. Lanes: 0.00 0.57 0.43 0.23 0.77 0.00 1.	96 0.91 0.91 1.00 1.00 1.00 96 1.47 0.53 0.00 0.00 0.00 24 2546 920 0 0 0							
Capacity Analysis Module:	12 0.14 0.14 0.00 0.00 0.00							
Green/Cycle: 0.00 0.56 0.56 0.56 0.56 0.00 0. Volume/Cap: 0.00 0.44 0.44 0.06 0.06 0.00 0. Delay/Veh: 0.0 7.0 7.0 6.7 6.7 0.0 18 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1. AdjDel/Veh: 0.0 7.0 7.0 6.7 6.7 0.0 18	32 0.32 0.32 0.00 0.00 0.00 36 0.44 0.44 0.00 0.00 0.00 0.3 18.3 18.3 0.0 0.0 0.0 00 1.00 1.00 1.00 1.00 1.00 5 9 3 0 0							

Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)

Intersection #48 Durant Avenue / Piedmont Avenue

Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e:	100 0 0	(Y+R	= 4 :	sec) A	Critica Average Level O	Delay f Serv	y (sec vice:	c/veh):		53	.0 F
Approach:	No:	rth Bo - T	und – R	Son L ·	uth Bo	ound - R	Ea L -	ast Bo	ound - R	We	est Bo	ound - R
Control: Rights:	St	top Si Inclu	gn de	St	top Si Incli	ign ide	St	top Si Incli	ign ide	St	top S: Incl	ign ude
Min. Green: Lanes:	0 (0 1	0 0	0 () 1	0 0	1 (0 0	0 1	0 (0 0	0 0
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future:	0 1.00 0 0	Count 489 1.00 489 147 50	Date:	20 No 0 1.00 0	ov 200 345	02 << 7 0 1.00 0	:00 Al	4 - 9: 0	:00 AM	0	0	
Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol:	1.00 1.00 0 0	1.00 1.00 686 0 686	1.00 1.00 0 0	1.00 0 0	1.00 1.00 431 0 431	1.00 1.00 0 0	1.00 248 0 248	0 1.00 1.00 0 0	1.00 1.00 155 0 155	1.00 0 0	1.00 1.00 0 0	0 1.00 1.00 0 0
PCE Adj: MLF Adj: Final Vol.:	1.00	1.00	1.00	1.00	1.00	1.00	248	1.00	155	1.00	1.00	1.00
Saturation F	low Mo	odule:										
Adjustment: Lanes: Final Sat.:	0.00	1.00	0.00	0.00	1.00 587	0.00	1.00 471	0.00	1.00 557	0.00	0.00	0.00
Capacity Anal Vol/Sat: Crit Moves:	lysis xxxx	Modul	e: xxxx	xxxx		xxxx	'		0.28	'	xxxx	
Delay/Veh: Delay Adj: AdjDel/Veh: LOS by Move:	1.00	1.00 93.2	1.00	1.00	1.00	0.0	18.2	1.00	11.5 1.00 11.5 B	0.0	0.0 1.00 0.0 *	0.0 1.00 0.0 *
ApproachDel: Delay Adj: ApprAdjDel: LOS by Appr:		93.2 1.00 93.2 F			23.8 1.00 23.8			15.6 1.00 15.6		2	xxxxx xxxxx xxxxx	

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 58-1 UC Berkeley LRDP EIR

2020 With Project Conditions

AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)								

<pre>Intersection #49 Channing Way / Shattuck Av ************************************</pre>	renue							
Cycle (sec): 65 Crit	ical Vol./Cap. (X): 0.652							
Cycle (sec): 65 Crit Loss Time (sec): 8 (Y+R = 4 sec) Aver	age Delay (sec/veh): 7.2							
Optimal Cycle: 46 Leve	el Of Service: A							
************	********							
Approach: North Bound South Bound								
Movement: L - T - R L - T -								
Control: Permitted Permitted								
Rights: Include Include								
Min. Green: 16 16 16 16 16								
	0 0 0 1! 0 0 0 0 1! 0 0							
Volume Module: >> Count Date: 14 Nov 2002 <								
	19 12 59 42 62 28 39							
Growth Adj: 1.00 1.00 1.00 1.00 1.								
	19 12 59 42 62 28 39							
	0 0 0 0 3 0 3							
	70 30 40 20 30 10 10							
	89 42 99 62 95 38 52							
2	00 1.00 1.00 1.00 1.00 1.00 1.00							
	00 1.00 1.00 1.00 1.00 1.00 1.00							
PHF Volume: 62 1416 160 59 989								
	0 0 0 0 0 0 0							
Reduced Vol: 62 1416 160 59 989								
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.								
	00 1.00 1.00 1.00 1.00 1.00 1.00							
Final Vol.: 62 1416 160 59 989								
Saturation Flow Module:								
	000 1900 1900 1900 1900 1900 1900							
	94 0.88 0.88 0.88 0.76 0.76 0.76							
Lanes: 1.00 1.80 0.20 1.00 1.83 0.								
Final Sat.: 498 3195 361 224 3272 2								
Capacity Analysis Module:	20 0 10 0 10 0 10 0 12 0 12							
	30 0.12 0.12 0.12 0.13 0.13 0.13							
Crit Moves: ****								
	54 0.34 0.34 0.34 0.34 0.34							
	56 0.36 0.36 0.36 0.38 0.38 0.38							
Delay/Veh: 3.8 6.9 6.9 15.6 3.4 3								
AdjDel/Veh: 3.8 6.9 6.9 15.6 3.4 3								
DesignQueue: 1 26 3 1 18	2 1 2 2 2 1 1							

Level Of Service Computat	tion Report
2000 HCM 4-Way Stop Method (Future	Volume Alternative)
************	*******

Cycle (sec):						Street ******						
Loss Time (se	٠()،	100) (Y+R	= 4	sec) i	Average	Dela	, (se	· (21) ·		14	7
Optimal Cycle	e:	()]	Level 0	f Serv	/ice:	o, (CII) .			В
Cycle (sec): Loss Time (se Optimal Cycle ********	****	****	*****	****	****	*****	****	****	*****	****	****	*****
Approach: Movement:	Noi	rth Bo	ound	Sot	uth Bo	ound	Εā	ast Bo	ound	We	est Bo	ound
Movement:	L -	- T	- R	L -	- T	- R	L -	- T	- R	L -	- T	– R
Control: Rights: Min. Green:	St	op Si	ign	S	top S:	ign	St	top S:	ign	St	top S:	ign
Rights:		Inclu	ıde		Incl	ıde		Incl	ıde		Incl	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	0 (0 (0 0	0 :	1 0	1 0	0 (0 0	1 0	0 :	1 0	0 0
Volume Module												
Base Vol:											72	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse: Added Vol: Future: Initial Fut:	0	0	0	86	543	51	0	132	20	7	72	0
Added Vol:	0	0	0	32	2	0	0	44	0	0	6	0
Future:	0	0	0	0	30	0	0	90	0	10	40	0
Initial Fut:	0	0	0	118	575	51	0	266	20	17	118	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume: Reduct Vol:	0	0	0	118	575	51	0	266	20	17	118	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	0	0	118	575	51	0	266	20	17	118	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj: Final Vol.:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	0	0	0	118	575	51	0	266	20	17	118	0
Saturation Fl												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.00	0.00	0.00	0.32	1.54	0.14	0.00	0.93	0.07	0.13	0.87	0.00
Final Sat.:	0	0	0	195	975	88	0	579	44	73	509	0
 Capacity Anal												
Vol/Sat:				0 60	0 50	0.50		0 46	0.46	0 23	0 33	vvvv
Crit Moves:		XXXX		****		0.50	XXXX	****		****		XXXX
Delay/Veh:		0 0				15 3	0 0					0 0
Delay Adj:												1.00
AdjDel/Veh:	0 0	0 0	0 0	16 7	15 9	15 3	0 0	13 1	13 1	10 6		
LOS by Move:	*	*	*	10.7	13.5	10.0	*	B B	13.1 R	10.0	10.0	*
ApproachDel:	×	(XXXX		Ŭ	16.0	Ü		13.1	-	_	10.6	
ApproachDel: Delay Adj: ApprAdjDel:		.xxxx			1 00			1 00			1.00	
Apprading.		/VVVV			16 0			13 1			10.6	
	~ ~ ~	VVVV			16 0			13 1			10 6	

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 59-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 60-1

UC Berkeley LRDP EIR

2020 With Project Conditions

AM Peak Hour

						Computa						
						(Future						
******	****	****	****	****	*****	*****	****	****	*****	****	*****	****
Intersection								*****	****	****	*****	****
Cvcle (sec):		6.5			(ritica	1 Vol	./Cap.	(X):		0.49	1
Cycle (sec): Loss Time (sec) Optimal Cycle ************************************	ac) •	8	(Y+R	= 4 9	sec) Z	verage	Dela	, cap.	/weh) •		11	9
Ontimal Cycle		13	(= . = .		лоо, г	Latral A	f Sars	7 (000	, , , , ,			B
********	- • * * * * * *	*****	*****	****	. * * * *	*****	****	*****	*****	****	*****	*****
Approach:												
Movement:												
Movement:												
Control:											Permit	ted
Rights:		Inclu	de		Incli	ıde		Inclu	de		Inclu	ide
Min. Green:	18	18	18	0	0	0	17	17	0	0	17	17
Lanes:												
Volume Module												
Base Vol:	56	423	79	0	0	0	16	179	0	0	98	9
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:					0	0	16	179	0	0	98	9
Added Vol:			68							0	6	0
Future:			30									50
Initial Fut:			177	0	0	0	76	285	0			59
User Adj:						1.00						1.00
PHF Adj:			1.00		1.00			1.00			1.00	1.00
PHF Volume:	66	493	177	0	0	0	/6	285 0	0	0		59
Reduct Vol:			0						U		0	0
Reduced Vol:						0			0			59
PCE Adj:						1.00			1.00		1.00	
MLF Adj:						1.00		1.00			1.00	1.00
Final Vol.:	66	493	177	0	0	0	76	285	0	0	134	59
Saturation F												
				1000	1000	1000	1000	1000	1000	1000	1000	1000
Sat/Lane:								1900			1900	1900
Adjustment:								0.90				0.96
Lanes:												0.31
Final Sat.:												557
Capacity Ana												
	-			0 00	0 00	0 00	0 01	0 01	0 00	0 00	0 11	0 11
Vol/Sat:		U.ZZ	0.22	0.00	0.00	0.00	0.21	0.21	0.00	0.00	0.11	0.11
Crit Moves:			0 45	0 00	0 00	0 00	0 40		0 00	0 00	0 40	0 40
Green/Cycle:			0.45		0.00			0.43			0.43	0.43
Volume/Cap:					0.00	0.00		0.49			0.25	0.25
Delay/Veh:			11.0	0.0		0.0			0.0		12.0	12.0
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	11.0	11.0	11.0	0.0	0.0	0.0	13.9	13.9	0.0	0.0	12.0	12.0
DogianOugue	1	1.0	1	0	0	0	2	6	0	0	2	1

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************
Intersection #51 Channing Way / Telegraph Avenue	Intersection #52 Channing Way / College Avenue
<pre>Cycle (sec): 65</pre>	Cycle (sec): 65
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Min. Green: 18 18 18 0 0 17 17 0 0 17 17 Lanes: 0 1 0	Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Min. Green: 18 18 18 18 0 0 17 17 17 Lanes: 0 0 1! 0 0 0 1! 0 0 0 1! 0 0 0 1! 0
Volume Module: >> Count Date: 19 Nov 2002 << 7:00-9:00 AM (WB thru adjusted due Base Vol: 56 423 79 0 0 0 16 179 0 0 98 9 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 19 Nov 2002 << 7:00 AM - 9:00 AM (WB thru, NB right Base Vol: 26 256 22 6 92 2 21 76 31 88 150 43 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Capacity Analysis Module: Vol/Sat: 0.22 0.22 0.22 0.00 0.00 0.00 0.21 0.21	Capacity Analysis Module: Vol/Sat: 0.27 0.27 0.27 0.09 0.09 0.09 0.12 0.12 0.12 0.27 0.27 0.27 Crit Moves: **** Green/Cycle: 0.58 0.58 0.58 0.58 0.58 0.58 0.30 0.30 0.30 0.30 0.30 0.30 Volume/Cap: 0.47 0.47 0.47 0.16 0.16 0.16 0.40 0.40 0.40 0.90 0.90 0.90 Delay/Veh: 6.4 6.4 6.4 4.2 4.2 4.2 20.5 20.5 20.5 42.2 42.2 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 62-1

UC Berkeley LRDP EIR

2020 With Project Conditions

AM Peak Hour

Level Of Service Computation Report												
2000 HCM Operations Method (Future Volume Alternative)												
*****											****	*****
Intersection								++++				++++++
		65							. (X):		0.70	
Cycle (sec): Loss Time (se									. (A): c/veh):		44	
Optimal Cycle	=0):	4-	7 (ITK	- 0 :	sec) .	Average Level (of com	y (se	J/VeII);		44	. 4 D
Optimal Cycle	3: +++++	4 + + + + +							+++++	. + + + + + .		_
Approach:												
Movement:												
Movement:												
Control:									tted	1		
Rights:		Inclu				ude		Incl		1.0	Incl	
Min. Green:			0		21			0	0	18		18
Lanes:			0 0			1 0			0 0			1 0
Volume Module										105	076	2.5
Base Vol:		1117	0	0	903		0	0	0	185		75
Growth Adj:		1.00	1.00		1.00			1.00	1.00	1.00		1.00
Initial Bse:		1117	0	0	903			0	0	185	276	75
Added Vol:	0		0	0	29			0	0	4	8	0
Future:	10	130	0	0	110		-	0	0	30	110	20
Initial Fut:		1507	0		1042		0	0	0	219	394	95
User Adj:		1.00	1.00		1.00			1.00		1.00		1.00
PHF Adj:		1.00	1.00		1.00			1.00	1.00	1.00		1.00
PHF Volume:		1507	0	-	1042		0	0	0	219	394	95
Reduct Vol:	0	0	0	0	0		0	0	0	0	0	0
Reduced Vol:		1507	0		1042		0	0	0	219	394	95
PCE Adj:		1.00	1.00		1.00			1.00			1.00	1.00
MLF Adj:		1.00	1.00		1.00			1.00	1.00	1.00		1.00
Final Vol.:			0	0				0	0		394	95
Saturation F												
Sat/Lane:			1900		1900			1900			1900	
Adjustment:					0.94			1.00		0.91		0.91
			0.00		1.87			0.00		0.62		0.27
Final Sat.:				0			0		0		1929	465
Capacity Anal	-											
	0.24		0.00	0.00	0.31	0.31	0.00	0.00	0.00	0.20	0.20	0.20
Crit Moves:		****									***	
Green/Cycle:	0.37	0.37	0.00	0.00	0.37		0.00	0.00	0.00	0.51	0.51	0.51
Volume/Cap:	0.65	1.13	0.00		0.84		0.00	0.00	0.00		0.40	0.40
Delay/Veh:		80.3	0.0		18.0		0.0	0.0	0.0	10.6		10.6
User DelAdj:			1.00		1.00	1.00		1.00	1.00	1.00		1.00
AdjDel/Veh:	35.2	80.3	0.0	0.0	18.0	18.0	0.0	0.0	0.0	10.6	10.6	10.6

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************
Cycle (sec): 65	Cycle (sec): 80
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Permitted Permitted Permitted Rights: Include Include Include Include Include Min. Green: 21 21 0 0 21 21 0 0 18 18 18 Lanes: 1 0 2 0 0 0 1 0 0 0 0 1 0	Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 25 25 0 0 0 20 20 0 Lanes: 0 0 0 0 1 1 0 0 0 0 1 1 0
Volume Module: >> Count Date: 14 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 66 1117 0 0 903 46 0 0 0 185 276 75 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 14 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 0 0 0 433 145 0 0 0 23 380 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Capacity Analysis Module: Vol/Sat: 0.24 0.42 0.00 0.00 0.31 0.31 0.00 0.00 0.00 0.20 0.20 0.20 Crit Moves: **** Green/Cycle: 0.37 0.37 0.00 0.00 0.37 0.37 0.00 0.00	Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.00 0.19 0.19 0.00 0.00

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 64-1 UC Berkeley LRDP EIR

2020 With Project Conditions

AM Peak Hour

	AM FEAR HOUL											
Level Of Service Computation Report												
2000 HCM Operations Method (Future Volume Alternative)												
								****	*****	****	*****	*****
Intersection ********								****	*****	****	*****	:****
Cycle (sec):		65							. (X):			
Loss Time (se												
Optimal Cycle) :****			Level (*****		B
Approach:											est Bo	
Movement:											- T	
Control:	I	Permit	ted]	Permi	tted]	Permi	tted	I	Permit	ted
Rights:			ıde			ude			ude		Inclu	
Min. Green:		16	0			0			0			16
Lanes:			0 0						0 0			
Volume Module												
Base Vol:	216		0	. 13 100	0		7.00 A	0	0	0	334	34
Growth Adi:		1.00	1.00		1.00			1.00				1.00
Initial Bse:			0	0	0		0	0	0	0	334	34
Added Vol:	0	98	0	0	0	0	0	0	0	0	12	0
Future:	20	50	0	0	0	0	0	0	0	0	90	30
Initial Fut:		668	0	0	0	0	0	0	0	0	436	64
	1.00		1.00			1.00		1.00			1.00	
PHF Adj:	1.00		1.00		1.00			1.00			1.00	1.00
PHF Volume:	236	668	0	0	0		0	0	0	0	436	64
Reduct Vol: Reduced Vol:	0 236	0 668	0	0	0	0	0	0	0	0	0 436	0 64
PCE Adi:		1.00	1.00	-	1.00	-	-	1.00		-	1.00	1.00
MLF Adj:	1.00		1.00		1.00			1.00			1.00	1.00
Final Vol.:			0		0			0			436	64
Saturation Fl	Low Mo	odule:										
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:					1.00			1.00			0.93	0.93
		1.48	0.00		0.00			0.00		0.00		0.26
Final Sat.:			0	0			-	0	0 I		3088	453
Capacity Anal Vol/Sat:	-			0.00	0 00	0.00	0 00	0.00	0.00	0 00	0.14	0.14
Crit Moves:	0.23	****	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	****	0.14
Green/Cycle:		0.34	0.34	0.00	0.00	0.00	0.00	0.00	0.00	0.53	0.53	0.53
Volume/Cap:			0.00		0.00			0.00			0.26	0.26
Delay/Veh:	21.6		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.6	8.6
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdiDel/Veh:	21.6	21.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.6	8.6

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative ************************************		Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************
**************************************	*****	incelsection #30 hase select / college avenue
Cycle (sec): 65 Critical Vol./Cap. (X): Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 40 Level Of Service:	0.447 16.9 B	Cycle (sec): 65 Critical Vol./Cap. (X): 0.616 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 11.2 Optimal Cycle: 40 Level Of Service: B
Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R	West Bound L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Rights: Include Include Include Min. Green: 16 16 0 0 0 0 0 0 0 0 0 Lanes: 0 1 1 0 0 0 0 0 0 0 0 0 0 0	Permitted Include 0 16 16 0 0 1 1 0	Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 16 16 0 0 0 16 16 16 Lanes: 0 1 0
Volume Module: >> Count Date: 19 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 216 520 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 334 34 1.00 1.00 1.00 0 334 34 0 12 0 0 90 30 0 436 64 1.00 1.00 1.00 1.00 1.00 1.00 0 436 64 0 0 0 0 0 436 64 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Volume Module: >> Count Date: 19 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 167 267 0 0 115 69 0 0 0 48 223 21 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Final Sat.: 942 2668 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3088 453	Final Sat.: 510 915 0 0 1117 686 0 0 0 665 2260 520
Volume/Cap: 0.73 0.73 0.00 0.00 0.00 0.00 0.00 0.00	**** 0.53 0.53 0.53 0.00 0.26 0.26	Capacity Analysis Module: Vol/Sat: 0.42 0.42 0.00 0.00 0.19 0.19 0.00 0.00 0.00 0.12 0.12 0.12 Crit Moves: **** Green/Cycle: 0.63 0.63 0.00 0.00 0.63 0.63 0.00 0.00
	0.0 8.6 8.6 1.00 1.00 1.00 0.0 8.6 8.6 0 8 1	Delay/Veh: 7.8 7.8 0.0 0.0 3.4 3.4 0.0 0.0 0.0 22.8 22.8 22.8 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 66-1 UC Berkeley LRDP EIR 2020 With Project Conditions

AM Peak Hour

			AM Pe	ak Hour				
20	00 HCM Op	eration	s Method	(Future	ation Repor	ternati		****
Intersection # ********	57 Dwight	Way /	Martin L	uther K	ing Way			
Cycle (sec): Loss Time (sec Optimal Cycle: ************************************	83	(Y+R =		Average Level (Of Service:	c/veh):	22	. 2 C
Approach: Movement:	North Bo L - T	und - R	South L - T	Bound - R	East Bo L - T	ound - R	West B L - T	ound - R
Control: Rights: Min. Green: Lanes:	Permit Inclu 18 18 0 1 0	ted de 18 1 0	Perm Inc 18 1 0 1 0	itted lude 8 18 1 0	Permi: Incl: 21 21 0 1 0	tted ude 21 1 0	Permi Incl 0 0 0 0 0	tted ude 0 0 0
Volume Module: Base Vol:				02 << 7			0 0	
Growth Adj: 1 Initial Bse:		1.00	1.00 1.0 88 86				1.00 1.00	
Added Vol: Future:	3 9 20 30	0 10	0 1 10 20	5 10	0 114		0 0	0
Initial Fut: User Adj: 1	85 729	76	98 108 1.00 1.0	3 223	78 583	112	0 0	0
PHF Adj: 1	.00 1.00	1.00	1.00 1.0	0 1.00	1.00 1.00	1.00	1.00 1.00	1.00
	85 729 0 0	76 0		0 0	78 583 0 0	112 0	0 0	0
Reduced Vol: PCE Adj: 1	85 729 .00 1.00	76 1.00	98 108 1.00 1.0				0 0	-
MLF Adj: 1 Final Vol.:	.00 1.00 85 729		1.00 1.0 98 108	0 1.00 3 223	1.00 1.00 78 583		1.00 1.00	
- Saturation Flo								
Sat/Lane: 1 Adjustment: 0			1900 190 0.74 0.7				1900 1900 1.00 1.00	
	.19 1.64	0.17	0.14 1.5	4 0.32		0.29	0.00 0.00	0.00
- Capacity Analy								
Vol/Sat: 0 Crit Moves:	.39 0.39	0.39	0.50 0.5		0.22 0.22	0.22	0.00 0.00	0.00
Green/Cycle: 0 Volume/Cap: 0			0.53 0.5 0.95 0.9		0.30 0.30 0.75 0.75		0.00 0.00	
	3.2 13.2	13.2	25.4 25. 1.00 1.0	4 25.4		27.0	0.0 0.0	0.0
Data DelAuj. 1							1.00 1.00	

Tanal Of Commission Department	Tanal Of Committee Committee Danson
Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************
Intersection #57 Dwight Way / Martin Luther King Way	Intersection #58 Dwight Way / Shattuck Avenue
Cycle (sec): 70	Cycle (sec): 65
Optimal Cycle: 83 Level Of Service: C	Optimal Cycle: 91 Level Of Service: B
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 18 18 18 18 21 21 21 0 0 0 Lanes: 0 1 0 1 0 1 0 1 0 0 0 0 0 0	Control: Permitted Prot+Permit Permitted Permitted Rights: Include Include Include Include Min. Green: 0
Volume Module: >> Count Date: 5 Dec 2002 << 7:00-9:00 AM Base Vol: 62 690 66 88 868 163 68 419 83 0 0 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 14 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 1094 113 95 989 0 66 420 151 0 0 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Adjustment: 0.60 0.60 0.60 0.74 0.74 0.74 0.91 0.91 0.91 1.00 1.00 1.00 Lanes: 0.19 1.64 0.17 0.14 1.54 0.32 0.20 1.51 0.29 0.00 0.00 0.00 Final Sat.: 218 1874 195 195 2158 444 348 2604 500 0 0 0	Adjustment: 1.00 0.94 0.94 0.22 0.95 0.95 0.90 0.90 0.90 1.00 1.00 1.00 Lanes: 0.00 1.82 0.18 1.00 2.00 0.00 0.30 1.31 0.39 0.00 0.00 0.00 Final Sat.: 0 3242 321 424 3610 0 508 2236 659 0 0 0
Capacity Analysis Module: Vol/Sat: 0.39 0.39 0.39 0.50 0.50 0.50 0.22 0.22 0.22 0.00 0.00	Capacity Analysis Module: Vol/Sat: 0.00 0.45 0.45 0.25 0.31 0.00 0.24 0.24 0.24 0.00 0.00 0.00 Crit Moves: **** **** Green/Cycle: 0.00 0.49 0.49 0.55 0.55 0.00 0.27 0.27 0.27 0.00 0.00 0.00 Volume/Cap: 0.00 0.92 0.92 0.46 0.57 0.00 0.92 0.92 0.92 0.00 0.00 0.00 Delay/Veh: 0.0 15.2 15.2 10.5 3.0 0.0 39.0 39.0 39.0 0.0 0.0 0.0 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 68-1 UC Berkeley LRDP EIR

2020 With Project Conditions

AM Peak Hour

		I	evel C	f Serv	vice (Computa	tion I	Repor	t		
2	2000 F								ternati	ve)	
*****	*****	****	****	****	****	*****	****	****	*****	*****	*****
Intersection							****	****	*****	*****	*****
Cycle (sec):		70							. (X):		
Loss Time (se	ec):	8	Y+R	= 4 5	sec) i	Average	Dela	v (se	c/veh):	13	
Loss Time (se Optimal Cycle	e:	4.5	, `		,	Level O	f Serv	vice:	-, - , -		В
*****	*****	****	****	****	****	*****	****	****	*****	*****	*****
Approach:	Noi	rth Bo	und	Sot	ath Bo	ound	Εa	ast B	ound	West Bo	ound
Movement:	L -	- T	- R	L -	- T	- R	L ·	- T	- R	L - T	- R
Control:	I	Permit	ted]	Permi	tted]	Permi	tted	Permi	tted
Rights:		Inclu	ıde		Incl	ıde			ude	Incl	ıde
Min. Green:	0	0	21	21	0	0	0	16	16	0 0	0
Lanes:			0 1			0 0		0 1			
Volume Module											
Base Vol:	0	0	12	449	0	0		620	6	0 0	0
Growth Adj:				1.00		1.00		1.00		1.00 1.00	1.00
Initial Bse:	0	0	12	449	0	0	0	620	6	0 0	0
Added Vol:	0	0	0	1	0	0	0	78	0	0 0	0
Future:	0	0	10	30	0	0	0	70	30	0 0	0
Initial Fut:	0	0	22	480	0	0	0	768	36	0 0	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
PHF Volume:	0	0	22	480	0	0	0	768	36	0 0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0 0	0
Reduced Vol:	0	0	22	480	0	0	0	768	36	0 0	0
PCE Adj:		1.00	1.00	1.00	1.00	1.00				1.00 1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
Final Vol.:			22		0		0			0 0	0
Saturation F											
Sat/Lane:			1900		1900			1900		1900 1900	
Adjustment:					1.00			0.94			1.00
Lanes:		0.00			0.00			1.91			0.00
Final Sat.:					0		0			0 0	0
Capacity Ana	-										
Vol/Sat:	0.00	0.00	0.01		0.00	0.00	0.00	0.22	0.22	0.00 0.00	0.00
Crit Moves:	0 00	0 00	0 40	****	0 00	0 00	0 00	****	0 45		0.00
Green/Cycle:					0.00	0.00		0.45	0.45	0.00 0.00	0.00
Volume/Cap:				0.49		0.00		0.49		0.00 0.00	0.00
Delay/Veh:				16.2	0.0	0.0		12.2	12.2	0.0 0.0	0.0
User DelAdj:			1.00		1.00	1.00		1.00	1.00	1.00 1.00	1.00
4071101/Vah•	(1) (1)	(1) (1)	116	16 2	(1)	(1)	(1)	17 7	12.2	0 0 0 0	0.0

AM Peak Hour	AM Peak Hour
Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)
Intersection #59 Dwight Way / Fulton Street	Intersection #60 Dwight Way / Telegraph Avenue
<pre>Cycle (sec): 70</pre>	<pre>Cycle (sec): 65</pre>
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 21 21 0 0 0 16 16 0 0 0 0 Lanes: 0 0 0 0 1 2 0 0 0 0 0 1 1 0 0 0 0 0 0	Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 15 15 0 0 0 17 17 17 0 0 0 0 Lanes: 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0
Volume Module: >> Count Date: 14 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 0 12 449 0 0 0 620 6 0 0 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 19 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 697 78 0 0 0 66 479 565 0 0 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.01 0.21 0.00 0.00 0.02 0.22 0.2	Capacity Analysis Module: Vol/Sat: 0.00 0.25 0.25 0.00 0.00 0.00 0.42 0.42 0.42 0.00 0.00
*******************	******************

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 70-1 UC Berkeley LRDP EIR

2020 With Project Conditions

AM Peak Hour

AM FEAK HOUL	AM Feak hour
Level Of Service Computation Report	Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)	2000 HCM Operations Method (Future Volume Alternative)
Intersection #61 Dwight Way / College Avenue	Intersection #62 Dwight Way / Piedmont Avenue / Warring Street
Cycle (sec): 65 Critical Vol./Cap. (X): 0.556	Cycle (sec): 65 Critical Vol./Cap. (X): 0.462
Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 12.4	Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 10.9
Optimal Cycle: 39 Level Of Service: B	Optimal Cycle: 61 Level Of Service: B
Approach: North Bound South Bound East Bound West Bound	Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R L - T - R	Movement: L - T - R L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Permitted	Control: Permitted Permitted Permitted Permitted
Rights: Include Include Include Include	Rights: Include Include Include Include
Min. Green: 0 16 16 16 16 0 15 15 15 0 0 0	Min. Green: 0 22 0 29 29 0 24 24 24 24 0 24
Lanes: 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0	Lanes: 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1! 0 0
Volume Module:	Volume Module: 7:00 AM - 9:00 AM
Base Vol: 0 365 51 10 150 0 68 352 85 0 0 0	Base Vol: 0 583 0 8 324 0 91 143 238 42 0 48
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Initial Bse: 0 365 51 10 150 0 68 352 85 0 0 0 Added Vol: 0 91 0 0 5 0 7 4 0 0 0	Initial Bse: 0 583 0 8 324 0 91 143 238 42 0 48
114404 101.	Added Vol: 0 193 0 0 18 0 1 0 3 0 0 0
140410. 0 00 10 20 30 0 20 10 0 0	Future: 0 70 10 10 40 0 10 10 30 10 0 10 Initial Fut: 0 846 10 18 382 0 102 153 271 52 0 58
Initial Fut: 0 506 61 30 245 0 95 376 95 0 0 0 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Initial Fut: 0 846 10 18 382 0 102 153 271 52 0 58 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
PHF Adj: 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96	PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
PHF Volume: 0 527 64 31 255 0 99 392 99 0 0 0	PHF Volume: 0 846 10 18 382 0 102 153 271 52 0 58
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0	Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 0 527 64 31 255 0 99 392 99 0 0 0	Reduced Vol: 0 846 10 18 382 0 102 153 271 52 0 58
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Final Vol.: 0 527 64 31 255 0 99 392 99 0 0 0	Final Vol.: 0 846 10 18 382 0 102 153 271 52 0 58
Saturation Flow Module:	Saturation Flow Module:
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Adjustment: 1.00 0.99 0.99 0.92 0.92 1.00 0.90 0.90 0.90 1.00 1.00 1.00	Adjustment: 1.00 0.95 0.95 0.87 0.87 1.00 0.71 1.00 0.85 0.77 1.00 0.77
Lanes: 0.00 0.89 0.11 0.11 0.89 0.00 0.34 1.33 0.33 0.00 0.00 0.00	Lanes: 0.00 1.98 0.02 0.09 1.91 0.00 1.00 1.00 0.47 0.00 0.53
Final Sat.: 0 1670 201 191 1561 0 576 2280 576 0 0 0	Final Sat.: 0 3561 42 148 3144 0 1351 1900 1615 696 0 776
Capacity Analysis Module:	Capacity Analysis Module:
Vol/Sat: 0.00 0.32 0.32 0.16 0.16 0.00 0.17 0.17 0.17 0.00 0.00 0.00	Vol/sat: 0.00 0.24 0.24 0.12 0.12 0.00 0.08 0.08 0.17 0.07 0.00 0.07
Crit Moves: ****	Crit Moves: **** ****
Green/Cycle: 0.00 0.57 0.57 0.57 0.57 0.00 0.31 0.31 0.31 0.00 0.00 0.00	Green/Cycle: 0.00 0.51 0.51 0.51 0.51 0.00 0.37 0.37 0.37 0.37 0.00 0.37
Volume/Cap: 0.00 0.56 0.56 0.29 0.29 0.00 0.56 0.56 0.56 0.00 0.00 0.00	Volume/Cap: 0.00 0.47 0.47 0.24 0.24 0.00 0.20 0.22 0.45 0.20 0.00 0.20
Delay/Veh: 0.0 7.8 7.8 5.4 5.4 0.0 20.4 20.4 20.4 0.0 0.0 0.0	Delay/Veh: 0.0 8.7 8.7 7.1 7.1 0.0 14.9 14.8 18.0 14.8 0.0 14.8
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
AdjDel/Veh: 0.0 7.8 7.8 5.4 5.4 0.0 20.4 20.4 20.4 0.0 0.0 0.0	AdjDel/Veh: 0.0 8.7 8.7 7.1 7.1 0.0 14.9 14.8 18.0 14.8 0.0 14.8
DesignQueue: 0 9 1 1 4 0 3 10 3 0 0 0	DesignQueue: 0 16 0 0 7 0 2 4 6 1 0 1

	2000					Computa (Future				110)		
*******											****	*****
Intersection	#62	Dwight	: Way /	Pied	mont 1	Avenue	/ War:	ring S	Street			
Cycle (sec):												
Loss Time (se	ec):	8	3 (Y+R	= 4	sec) 1	Average	Dela	v (sed	. (A). c/veh):		10	. 9
Optimal Cycle	e:	6.	L `]	Level 0	f Ser	vice:	, - , -			В
*****	****	****	*****	****	****	*****	****	****	*****	****		
Approach:												
Movement:	. L .	- T	- R	L ·		- R					- T	
Control:												
Rights:		Incli	ıde		Incl	ıde		Incli	ıde		Incl	ıde
Min. Green:			0						24			24
Lanes:	0	0 1	1 0	0	1 1	0 0	1	0 1	0 1	0	1!	0 0
Volume Module Base Vol:		583	- 9:00			0	0.1	1 / 2	238	42	0	48
Growth Adj:			-		1.00			1.00			1.00	
Initial Bse:			0.00	1.00	324	0						48
Added Vol:	0	193	0	0	18	0	1	142	238	0		0
Future:		70	10	10		0	10	10	30	10	0	10
Initial Fut:			10	18	382	0	102	153		52	0	
User Adj:			1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
PHF Adj:			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	0	846	10	18	382	0	102	153	271	52	0	58
Reduct Vol:			0	0	0	0	0	0	0	0	0	0
Reduced Vol:				18		0			271		0	
PCE Adj:					1.00			1.00			1.00	
MLF Adj:					1.00				1.00		1.00	
Final Vol.:				18					271			
Saturation F.												
Sat/Lane:				1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:					0.87			1.00			1.00	
Lanes:					1.91			1.00		0.47		
Final Sat.:	0	3561	42			0		1900				776
Capacity Ana	-			0 10	0 10	0 00	0 00	0 00	0 17	0 07	0 00	0 07
Vol/Sat: Crit Moves:			0.24	0.12	0.12	0.00	0.08	0.08	0.17	0.07	0.00	0.07
Green/Cycle:			0 51	0.51	0 51	0.00	0 37	0 37	0.37	0 37	0.00	0.37
Volume/Cap:				0.24				0.22			0.00	
Delay/Veh:				7.1				14.8			0.0	14.8
User DelAdi:												

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 71-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 72-1 UC Berkeley LRDP EIR

2020 With Project Conditions

AM Peak Hour

*************** Intersection	000 HCM Un: ********* #63 Dwigh:	****** t Avenu	zed Me *****	ethod ***** rospec	Futur ***** ct Stre	e Volu	ıme A	lternat	****		
************* Average Delay	y (sec/veh):	5.8		Wo	rst Ca	ase L	evel 0:	f Serv	ice:	В
*******						***** Ea				***** est Bo	
Approach: Movement:	L - T	- R	L -	- Т	- R	L -	- T	- R	L ·	- T	- R
Control: Rights: Lanes:	Stop S. Incl	ign ude 00	0 (top S: Inclu	ign ide 00	Und	contro Incl L 0	olled ude 0 0	Un O	contro Inclu	olled ude 1 0
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Final Vol.: Critical Gap Critical Gap: FollowUpTim: Capacity Modu	0 0 0 1.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0	t Date: 0 1.00 0 0 0 0 0 1.00 1.00 1.00 0 0 0 0	20 No 14 1.00 14 0 0 14 1.00 1.00 14 0 1.00	0 2000 2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0	02 << 7 109 1.00 109 0 20 129 1.00 129 0 129 6.2 3.3	:00 AN 246 1.00 246 0 30 276 1.00 276 0 276 4.1 2.2	1 - 9 72 1.00 72 0 0 72 1.00 1.00 72 0 72	1.00 AM 0 1.00 0 0 0 1.00 1.00 0 0	1.00 0 0 0 0 1.00 1.00 0 0	53 1.00 53 0 20 73 1.00 1.00 73 0 73	15 1.00 15 0 0 15 1.00 1.00 1.5 0 1.5 0 1.5
Cnflict Vol: Potent Cap.: Move Cap.:	xxxx xxxx xxxx xxxx	xxxxx xxxxx	406 339	xxxx xxxx	985 985	1520 1520	xxxx xxxx	***** *****	XXXX	XXXX	XXXXX
Level Of Serv Stopped Del:: LOS by Move: Movement: Shared Cap.: Shrd StpDel:: Shared LOS: ApproachDel: ApproachLOS:	* * * * * * * * * * * * * * * * * * *	XXXXX * - RT XXXXX	LT -	* - LTR 830 10.2	* - RT xxxxx	A LT - XXXX 7.9 A	* - LTR xxxx xxxx	- RT xxxxx xxxxx	LT XXXX	* - LTR xxxx	* - RT xxxxx

AM Peak Hour	
Level Of Service Computation Report	
2000 HCM Operations Method (Future Volume Alternative))

Intersection #64 Adeline Street / Ward Avenue / Shattuck Avenue	*****
Cycle (sec): 65 Critical Vol./Cap. (X):	0.899
Loss Time (sec): 8 (Y+R = 6 sec) Average Delay (sec/veh):	20.3
Optimal Cycle: 81 Level Of Service:	C

Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R L	West Bound L - T - R
Movement: L - T - R L - T - R L - T - R L	
Control: Permitted Permitted Protected	Permitted
Rights: Include Include Include	Include
Min. Green: 0 25 25 0 25 25 19 0 19	0 0 0
	0 0 0 0 0
Volume Module: >> Count Date: 21 Nov 2002 << 7:00 AM - 9:00 AM	
Base Vol: 0 784 3 0 736 546 723 0 4	0 0 0
	.00 1.00 1.00
Initial Bse: 0 784 3 0 736 546 723 0 4 Added Vol: 0 184 0 0 22 7 56 0 0	0 0 0
Future: 0 50 0 0 40 70 100 0 0	0 0 0
Initial Fut: 0 1018 3 0 798 623 879 0 4	0 0 0
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	.00 1.00 1.00
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	.00 1.00 1.00
PHF Volume: 0 1018 3 0 798 623 879 0 4	0 0 0
Reduct Vol: 0 0 0 0 0 0 0 0 0	0 0 0
Reduced Vol: 0 1018 3 0 798 623 879 0 4	0 0 0
	.00 1.00 1.00 .00 1.00 1.00
Final Vol.: 0 1018 3 0 798 623 879 0 4	0 0 0
Saturation Flow Module:	·
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	900 1900 1900
	.00 1.00 1.00
	.00 0.00 0.00
Final Sat.: 0 1894 6 0 3610 1615 3502 0 1615	0 0 0
Capacity Analysis Module: Vol/Sat: 0.00 0.54 0.54 0.00 0.22 0.39 0.25 0.00 0.00 0.	.00 0.00 0.00
Voi/Sat: 0.00 0.34 0.34 0.00 0.22 0.39 0.25 0.00 0.00 0. Crit Moves: ****	.00 0.00 0.00
	.00 0.00 0.00
	.00 0.00 0.00
Delay/Veh: 0.0 25.6 25.6 0.0 7.7 12.7 31.1 0.0 16.4 0	0.0 0.0 0.0
	.00 1.00 1.00
	0.0 0.0
DesignQueue: 0 18 0 0 13 10 24 0 0	0 0 0

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

	2000 но	CM 4-	Way St	op Met	thod	Computa (Future	Volur	ne Alt	ternati	ve)		

Intersection #65 Derby Street / Warring Street **********************************												
Cycle (sec):		100			(Critica	l Vol	./Cap	. (X):		1.60)2
Loss Time (se	ec):	0	(Y+R	= 4 5	sec) A	Average	Delay	y (sed	. (X): c/veh):		238.	. 0
Optimal Cycle	e:	0			. 1	Level C	of Serv	vice:				F
*****	****	****	*****	*****	****	*****	****	****	*****	*****	****	****
Approach:	Nort	th Bo	und	Sou	ath Bo	ound	Εa	ast Bo	ound	We	st Bo	ound
Movement:			- R			- R			- R		Т	- R
Control:												
Rights:	-	Inclu	de		Incli	ıde		Incli	ign ude	0.0	Incli	ide
Min. Green:	0		0			0		0			0	
Lanes:			0 0						0 0	-	0	-
Volume Module										1		1
Base Vol:	0	0	0	650	0	31	14	20	0	0	34	779
Growth Adj:	1.00		1.00		1.00	1.00		1.00	1.00	1.00		1.00
Initial Bse:		0	0.00	650	0.00	31	1.00	20	0.00	0.00	34	779
Added Vol:	0	0	0	20	0	0	0	0	0	0	0	193
										0		90
Future:	0	0	0	90	0	10	0	10	0	-	0	
Initial Fut:		0	0	760	0	41	14	30	0	0	34	1062
User Adj:			1.00		1.00	1.00		1.00		1.00		1.00
PHF Adj:	1.00		1.00		1.00	1.00		1.00	1.00	1.00		1.00
PHF Volume:	0	0	0	760	0	41	14	30	0	0	34	1062
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:		0	0	760	0	41	14	30	0	0	34	1062
PCE Adj:	1.00		1.00		1.00			1.00		1.00		1.00
MLF Adj:	1.00		1.00		1.00	1.00		1.00		1.00		1.00
Final Vol.:		0	0	760		41	14		0	0	34	1062
Saturation F												
Adjustment:						1.00		1.00		1.00		
Lanes:	0.00 (0.00	0.00	0.95	0.00	0.05	0.32	0.68	0.00	0.00	0.03	0.97
Final Sat.:			0			31				0		663
Capacity Ana:	lysis N	Modul	e:									
Vol/Sat:	XXXX X	XXXX	XXXX	1.32	XXXX	1.32	0.08	0.08	XXXX	XXXX	1.60	1.60
Crit Moves:				****				****				***
Delay/Veh:	0.0	0.0	0.0	175.9	0.0	175.9	10.5	10.5	0.0	0.0	293	292.6
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	0.0	0.0	175.9	0.0	175.9	10.5	10.5	0.0	0.0	293	292.6
LOS by Move:		*	*	F	*	F	В	В	*	*	F	F
ApproachDel:		xxxx		1	175.9			10.5		2	92.6	
Delay Adj:		XXXX			1.00			1.00			1.00	
ApprAdjDel:	XXX	XXXX			175.9			10.5			92.6	
LOS by Appr:		*			F			В		_	F	
******	****	****	*****			*****	****		*****	****		*****

		 T	evel 0	f Ser	vice (computa	tion	 Report	 :		
		нсм ор	eratio	ns Me	thod (Future	Volu	me Alt	ernati		
******	****	****	****	****	****	****	****	****	*****	*****	*****
Intersection ********								****	*****	*****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle		65			C	ritica	l Vol	./Cap.	(X):	0.7	37
Loss Time (se	ec):	8	(Y+R	= 4	sec) A	verage	Dela	v (sec	c/veh):	30	.1
Optimal Cvcl	e:	61			I	evel 0	f Ser	vice:	, , ,		С
******	****	****	****	****	****	****	****	****	*****	*****	*****
Approach:	No	rth Bo	und	So	uth Bo	und	E	ast Bo	ound	West B	ound
Movement:	L	- T	- R	L	- T	- R	L	- T	- R	L - T	- R
Control: Rights:	Sp	lit Ph	ase	Sp	lit Ph	ase		Permit	ted	Permi	tted
Rights:	-	Inclu	de	-	Inclu	ıde		Incl	ıde	Incl	ude
Min. Green:	18	0	18	0	0	0	0	35	35	35 35	0
Lanes:	0	0 1!	0 0	0	0 0	0 0	0	0 0	1 0	0 1 0	0 0
Volume Module	e: >>	Count	Date:	20 N	ov 200	2 << 7	:00 A	M - 9:	:00 AM		
Base Vol:	5	0	64	0	0	0	0	665	12	52 813	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
Initial Bse:	5	0	64	0	0	0	0	665	12	52 813	0
Added Vol:	0	0	0			0	0	20	0	0 193	0
Future:	0	0	0	0	0	0	0	100	0	0 90	0
Initial Fut:	5	0		0		0	0	785	12	52 1096	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
PHF Volume:				0	0	0	0	785	12	52 1096	0
Reduct Vol:	0	0	0	Λ	0	0	0	0	0	0 0	0
Reduct Vol: Reduced Vol:	5	0	64	0	0	0	0	785	0 12	52 1096	0
					1.00	1.00	1.00		1.00		1.00
PCE Adj: MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
Final Vol.:	5	0	64	0	0	0	0	785	12	52 1096	0
Saturation F.	low M	odule:									
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900 1900	1900
Adjustment:	0.87	1.00	0.87	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
Lanes:				0.00	0.00	0.00	0.00	0.98	0.02	0.05 0.95	0.00
Final Sat.:	120	0	1536	0	0	0	0	1868	29	86 1814	
Capacity Ana	lysis	Modul	e:								
Vol/Sat:	0.04	0.00	0.04	0.00	0.00	0.00	0.00	0.42	0.42	0.60 0.60	0.00
Crit Moves:	****									***	
Green/Cycle:	0.28	0.00	0.28	0.00	0.00	0.00	0.00	0.60	0.60	0.60 0.60	0.00
Volume/Cap:	0.15	0.00	0.15	0.00	0.00	0.00	0.00	0.70	0.70	1.01 1.01	0.00
Delay/Veh:	18.3	0.0	18.3	0.0	0.0	0.0	0.0	12.8	12.8	42.9 42.9	0.0
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
AdjDel/Veh:	18.3	0.0	18.3	0.0	0.0	0.0	0.0	12.8	12.8	42.9 42.9	0.0
DesignQueue:			2	0	0		0			1 19	0

UC Berkeley LRDP EIR

2020 With Project Conditions AM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

	2000 1		evel 0						t ternati	ve)		
*****											****	*****
Intersection								****	*****	****	*****	*****
Cycle (sec):		95	5			ritica	1 Vol.	./Cap	. (X):		0.97	7.6
Loss Time (se Optimal Cycle	201.	12	/ / (V+D :	= 4	eac) Z	maraga	Delat	, (cap	· (21) ·		53.	
Ontimal Cual		155	. (111.		3СС, г т	01701 0	of Cort	71.00.	J/ V C11 / .		55.	D
********	= . + + + + + .	LJJ +++++	. + + + + + +	+++++	1 1 + + + + +	ever o	T 261/	/ICE:		+++++		
									ound			
Approach:											est Bo	
Movement:										L -		
Control:												
Rights:												
Min. Green:			19						22			
Lanes:			1 0			1 0			1 0) 1	
Volume Module												-
Base Vol:					193	224		915		111	663	25
Growth Adj:						1.00					1.00	1.00
Initial Bse:		162	54	54	193	224	433	915	306	111	663	25
Added Vol:	0	0	0	0	0	0	0	95	0	0	12	0
Future:	100	70	20	60	20	30	50	60	40	50	60	30
Initial Fut:		232	74	114	213	254		1070	346	161	735	55
User Adj:			1.00		1.00	1.00		1.00			1.00	
PHF Adj:		1.00	1.00		1.00	1.00		1.00			1.00	1.00
PHF Volume:	162	232	74	114	213	254		1070	346	161	735	55
Reduct Vol:	0	232	0	114	213	2,54	403	0	0	0	7 3 3	0
Reduced Vol:		232	74	114	213	254		1070		161	735	55
			1.00			1.00					1.00	
PCE Adj: MLF Adj:						1.00					1.00	
												55
Final Vol.:								1070		161		
Saturation Fi												
Satulation F. Sat/Lane:				1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:								0.91			0.94	
Lanes:									0.49		1.86	
Lanes: Final Sat.:									849		3325	249
Final Sat.:												
Capacity Anal				1			,			1		
Vol/Sat:			0.22	0 10	0 10	0 10	0 27	0 41	0.41	0 00	0.22	0.22
Crit Moves:	U.ZZ	****	0.22	0.10	0.10	0.10	0.2/	0.41	****	0.09	0.22	****
	0 20		0.26	0.20	0.20	0.26	0 40	0 40		0 22	0 21	
Green/Cycle:						0.26		0.40			0.21	
Volume/Cap:						0.69		1.02			1.07	
Delay/Veh:				34.3		34.3		54.3			94.3	94.3
User DelAdj:				1.00		1.00		1.00			1.00	
AdjDel/Veh:				34.3		34.3		54.3			94.3	94.3
DesignQueue:	7	9	3	5	9	10	16	38	12	7	33	2

			An I C	ak nour					
*****		Operatio	f Service ns Method	(Future	Volum	me Alt	ernati		*****
Intersection									
Cycle (sec): Loss Time (sec) Optimal Cycle	ec):	100 8 (Y+R 163	= 4 sec)	Critica Average Level C	l Vol Delag	./Cap. y (sec vice:	(X): c/veh):	0.9 42	73 .2 D
Approach: Movement:	North	Bound r - R	South L - T	Bound - R	E e	ast Bo - T	ound - R	West Bo	ound - R
Control: Rights: Min. Green: Lanes:	Prote Inc 4 1	ected clude 17 17 1 1 0	Prote Inc 4 1 1 0 1	cted lude 9 19 1 0	18	Permit Inclu 18 0 1	ited ide 18	Permi Incl 18 18 0 1 0	tted ude 18 1 0
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	173 52 1.00 1.0 173 52 1.00 1.0 173 52 20 22 195 70 1.00 1.0 195 70 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0	ant Date: 21 53 00 1.00 21 53 20 57 20 20 61 130 00 1.00 61 130 0 0 61 130 0 0 61 130 0 1.00 61 130	5 Dec 20 137 74 1.00 1.00 137 74 0 2 20 32 157 108 1.00 1.00 1.57 108 0 157 108 0 157 108 1.00 1.00 157 108 1.00 1.00 157 108	02 << 7: 1 128 0 1.00 1 128 8 2 0 30 9 160 0 1.00 0 1.00 9 160 0 0 9 160 0 1.00 0 1.00 0 1.00	00-9: 84 1.00 84 0 20 104 1.00 1.00 1.04 0 1.00 1.00	00 AM 584 1.00 584 80 120 784 1.00 1.00 784 1.00 1.00 784	134 1.00 134 14 10 158 1.00 1.00 158 0 158 1.00	51 613 1.00 1.00 51 613 30 8 20 80 101 701 1.00 1.00 1.01 701 0 0 101 701 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	135 1.00 135 0 50 185 1.00 1.00 185 0 185 1.00
Saturation F. Sat/Lane: Adjustment: Lanes: Final Sat.:	low Modul 1900 190 0.95 0.9 1.00 1.7	le: 00 1900 93 0.93 71 0.29 15 515	1900 190 0.95 0.9 1.00 1.7 1805 308	0 1900 3 0.93 4 0.26 8 454	1900 0.16 1.00 300	1900 0.93 1.66 2929	1900 0.93 0.34 590	1900 1900 0.60 0.60 0.20 1.43 233 1615	1900 0.60 0.37 426
Capacity Anal Vol/Sat: Crit Moves:	lysis Mod		0.09 0.3	5 0.35	'	0.27	0.27	0.43 0.43	0.43
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	0.97 0.7 99.7 30 1.00 1.0 99.7 30	72 0.72 .1 30.1 00 1.00	0.12 0.3 0.72 0.9 53.0 50. 1.00 1.0 53.0 50. 8 4	7 0.97 2 50.2 0 1.00 2 50.2	0.78 47.7 1.00	0.45 0.60 21.6 1.00 21.6 26	0.45 0.60 21.6 1.00 21.6	0.45 0.45 0.97 0.97 48.9 48.9 1.00 1.00 48.9 48.9 3 23	0.45 0.97 48.9 1.00 48.9

UC Berkeley LRDP EIR

2020 With Project Conditions

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 78-1 2020 With Project Conditions

AM Peak Hour

UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)													
*****											*****	*****	
Intersection							****	****	*****	****	*****	*****	
Cycle (sec):		140)			Critica	1 Vol	/Can	(X) ·		0.62	2	
Loss Time (se	201.			= 1					. (A).		42.		
Optimal Cvcle		96	5 (1110)	_ 1		Level O			J/ VC11) .		72.	D	
*******									*****	****	*****	_	
Approach:		rth Bo			uth B			ast Bo			est Bo		
Movement:		- T				- R					- T		
Control:		rotect				ted	•						
Rights:	E.	Incli		E.	Incl		F.	Incl		Protected Include			
Min. Green:	1	38	38	6		38	4		22	4		32	
Lanes:) 1				1 0) 1) 1		
		. –											
Volume Module													
Base Vol:	74	567	61	11	438	96	189		.00 AM	83	549	14	
Growth Adj:	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Initial Bse:	74	567	61	1.00	438	96	189	564	49	83	549	1.00	
	4	12		0	430	5	44	78	1	0	19	0	
Added Vol:	30	50	0 10	10	10	50	50	110	20	10	190	0	
Future: Initial Fut:	108	629	71	21	450	151	283	752	70	9.3	758	14	
	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00	
User Adj: PHF Adj:	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00	
_	108	629	71	21	450	151	283	752	70	93	758	1.00	
PHF Volume: Reduct Vol:	108	029	71	0	450	131	283	752	0	93	758	0	
Reduced Vol:	108	629	71	21	450	151	283	752	70	93	758	14	
					1.00			1.00	1.00		1.00	1.00	
PCE Adj:	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00	
-	1.00		71	21		151		752	70		758	1.00	
Final VOI.:	108											1	
Saturation Fl													
Sat/Lane:		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Adjustment:	0.95		0.94		0.88			0.94			0.95	0.95	
Lanes:	1.00		0.20		2.25			1.83			1.96	0.04	
Final Sat.:		3195	361		3736			3260	303		3534	65	
									1			1	
Capacity Anal				1		1	1		1	1		1	
			0.20	0 01	0.12	0.12	0 16	0 23	0.23	0 05	0.21	0.21	
	****	0.20	0.20	0.01	****	0.12	****	0.23	0.23	0.05	****	0.21	
CIIC MOVES.													
Green/Cycle:	0 09	0.31	0.31	0.05	0.27	0.27	0.22	0.43	0.43	0.10	0.31	0.31	
	0.70		0.64		0.44			0.53			0.70	0.70	
Delay/Veh:	75.9		43.0		42.5			25.5			44.2	44.2	
User DelAdj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00	
AdjDel/Veh:			43.0		42.5	42.5		25.5	25.5		44.2	44.2	
DesignQueue:	73.9		45.0		26	9	18		3	70.0		1	

Level Of Service Computation Report											
2000 HCM Operations Method (Future Volume Alternative)											

Intersection #70 Ashby Aven	ue / Shattuck Avenue ***********************************										
Cycle (sec): 80	Critical Vol./Cap. (X): 0.567										
Loss Time (sec): 12 (Y+	R = 5 sec) Average Delay (sec/veh): 16.7										
Optimal Cycle: 53	Level Of Service: B										
*******	************										
Approach: North Bound	South Bound East Bound West Bound										
Movement: L - T - R	L-T-R L-T-R L-T-R										
	-										
Control: Permitted	Permitted Permitted Permitted Include Include										
Rights: Include	Include Include Include										
Min. Green: 21 21 2	1 6 21 21 20 20 20 20 20 20										
Lanes: 0 1 0 1 0											
	-										
	e: 21 Nov 2002 << 7:00 AM - 9:00 AM										
	6 124 450 35 33 557 31 40 550 182										
Growth Adj: 1.00 1.00 1.0											
Initial Bse: 77 590 2											
Added Vol: 0 108											
Future: 30 20 1											
Initial Fut: 107 718 3											
User Adj: 1.00 1.00 1.0											
PHF Adj: 1.00 1.00 1.0											
PHF Volume: 107 718 3											
Reduct Vol: 0 0											
Reduced Vol: 107 718 3											
PCE Adj: 1.00 1.00 1.0											
MLF Adj: 1.00 1.00 1.0											
Final Vol.: 107 718 3	6 148 471 51 101 687 41 50 713 208										
Saturation Flow Module:	-										
	0 1900 1900 1900 1900 1900 1900 1900 19										
Adjustment: 1.00 1.00 1.0											
	8 0.44 1.41 0.15 0.24 1.66 0.10 0.10 1.47 0.43										
Final Sat.: 472 3169 15											
	-										
Capacity Analysis Module:											
Vol/Sat: 0.23 0.23 0.2	3 0.18 0.18 0.18 0.22 0.22 0.22 0.26 0.26 0.26										
Crit Moves: ****	***										
Green/Cycle: 0.40 0.40 0.4	0 0.40 0.40 0.40 0.45 0.45 0.45 0.45 0.4										
Volume/Cap: 0.57 0.57 0.5	7 0.44 0.44 0.44 0.48 0.48 0.48 0.57 0.57 0.57										
Delay/Veh: 20.2 20.2 20.											
User DelAdj: 1.00 1.00 1.0											
- 1:- 1 / 1 00 0 00 0											

AdjDel/Veh: 20.2 20.2 20.2 18.4 18.4 18.4 13.9 13.9 13.9 14.9 14.9 14.9 DesignQueue: 3 20 1 4 13 1 3 18 1 1 19 5

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 80-1 UC Berkeley LRDP EIR

2020 With Project Conditions

AM Peak Hour

Level Of Service Computation Report														
2000 HCM Operations Method (Future Volume Alternative)														

Intersection #71 Ashby Avenue / Telegraph Avenue														
Cycle (sec): 80 Critical Vol./Cap. (X): 0.907 Loss Time (sec): 12 (Y+R = 6 sec) Average Delay (sec/veh): 26.9												7		
Loss Time (se	ec):	12	(Y+R :	= 6 s	sec) A	Average	Dela	y (se	c/veh):		26.	. 9		
Optimal Cycle: 100 Level Of Service: C												C		
Approach: North Bound South Bound East Bound West Bound														
Approach:														
Movement:			- R			- R					- T			
Control:											Permitted			
Rights:														
Min. Green:			21			21				25		25		
Lanes:			1 0						1 0					
Volume Module														
Base Vol:	150	985	80	148	623	103	86	549	120	89	573	83		
Growth Adj:		1.00	1.00		1.00	1.00		1.00			1.00	1.00		
Initial Bse:		985	80	148	623	103	86	549	120	89	573	83		
Added Vol:		29	0	140		0	0	24	0	0	26	2		
Future:		40	10	10	60	30	20	90	20	10	80	10		
Initial Fut:			90	158		133	106			99		95		
User Adj:			1.00		1.00	1.00		1.00			1.00	1.00		
PHF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00		
-	203		90	158	686	133	106	663	140	99	679	95		
Reduct Vol:	203		0	0	0	0	0	0	140	0	0 / 5	0		
Reduced Vol:			90	158		133	106			99		95		
PCE Adj:			1.00		1.00			1.00			1.00	1.00		
_		1.00	1.00		1.00	1.00		1.00			1.00	1.00		
Final Vol.:					686	133		663			679	95		
Saturation Fl	low Mo	odule:	'				'		'					
Sat/Lane:			1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Adjustment:	0.26	0.94	0.94	0.27	0.93	0.93	0.21	0.93	0.93	0.19	0.93	0.93		
Lanes:								1.65			1.75	0.25		
Final Sat.:											3110	435		
Capacity Anal	lysis	Modul	e:											
Vol/Sat:	0.41	0.32	0.32	0.31	0.23	0.23	0.27	0.23	0.23	0.27	0.22	0.22		
Crit Moves:	****			****						****				
Green/Cycle:	0.43	0.43	0.43	0.53	0.53	0.53	0.32	0.32	0.32	0.32	0.32	0.32		
Volume/Cap:	0.96	0.75	0.75	0.58	0.44	0.44	0.83	0.70	0.70	0.84	0.67	0.67		
Delay/Veh:	74.4	22.7	22.7	23.0	12.5	12.5		26.5	26.5		25.7	25.7		
User DelAdj:	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
AdjDel/Veh:	74.4	22.7	22.7	23.0	12.5	12.5	68.1	26.5	26.5	72.6	25.7	25.7		

AM FERN HOUL	AM FEAK HOUL								
Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************************************								
Intersection #71 Ashby Avenue / Telegraph Avenue	Intersection #72 Ashby Avenue / College Avenue								
<pre>Cycle (sec): 80</pre>	<pre>Cycle (sec): 60</pre>								
Approach: North Bound South Bound East Bound West Bound Movement: L $-$ T $-$ R L $-$ T $-$ R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R								
Control: Permitted Prot+Permit Permitted Permitted Rights: Include Include Include Include Min. Green: 21 21 21 0 21 25 25 25 25 25 25 Lanes: 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1	Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 18 18 18 18 18 18 30 30 30 30 30 30 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0								
Volume Module: >> Count Date: 21 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 150 985 80 148 623 103 86 549 120 89 573 83 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 21 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 79 323 26 118 232 95 33 490 92 4 611 229 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0								
Adjustment: 0.26 0.94 0.94 0.27 0.93 0.93 0.21 0.93 0.93 0.19 0.93 0.93 Lanes: 1.00 1.84 0.16 1.00 1.68 0.32 1.00 1.65 0.35 1.00 1.75 0.25 Final Sat.: 494 3286 281 515 2951 572 393 2903 613 363 3110 435	Adjustment: 0.81 0.81 0.81 0.73 0.73 0.73 0.84 0.84 0.84 0.95 0.95 0.95 Lanes: 0.20 0.73 0.07 0.26 0.46 0.28 0.09 0.77 0.14 0.01 0.68 0.31 Final Sat.: 303 1125 110 356 636 388 151 1224 217 26 1208 565								
Capacity Analysis Module: Vol/Sat: 0.41 0.32 0.32 0.31 0.23 0.23 0.27 0.23 0.23 0.27 0.22 0.22 Crit Moves: **** Green/Cycle: 0.43 0.43 0.43 0.53 0.53 0.53 0.32 0.32 0.32 0.32 0.32 0.32	Capacity Analysis Module: Vol/Sat: 0.33 0.33 0.33 0.40 0.40 0.40 0.47 0.47 0.47 0.55 0.55 Crit Moves: **** Green/Cycle: 0.38 0.38 0.38 0.45 0.45 0.45 0.53 0.53 0.53 0.54 0.54								
Volume/Cap: 0.96 0.75 0.75 0.58 0.44 0.44 0.83 0.70 0.70 0.84 0.67 0.67 Delay/Veh: 74.4 22.7 22.7 23.0 12.5 12.5 68.1 26.5 26.5 72.6 25.7 25.7 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume/Cap: 0.87 0.87 0.87 0.89 0.89 0.89 0.89 0.90 0.90 0.90 1.02 1.02 1.02 Delay/Veh: 32.3 32.3 32.3 29.7 29.7 27.1 27.1 27.1 48.0 48.0 48.0 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0								

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:36:09 Page 82-1 ______ UC Berkeley LRDP EIR 2020 With Project Conditions

AM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions AM Peak Hour

		I	evel 0	f Ser	vice (omputa	tion l	 Repor	 t				
		нсм ор	eratio	ns Me	thod	(Future	Volu	me Al	ternati				
******								****	*****	****	****	*****	
Intersection	#/3. ****	Asnby *****	****	****	aremor *****	it Aver	:ue :****	****	*****	****	****	*****	
Cycle (sec):		80							. (X):		0.8		
Loss Time (sec): 12 (Y+R = 6 sec) Average Delay (sec/veh): Optimal Cycle: 80 Level Of Service:										27.2			
Optimal Cycl	e:	80			I	Level	f Ser	vice:					
******		****	*****	****	****	*****	****	****	*****	****			
Approach: Movement:	Approach: North Bound Movement: L - T - R					ound - R			ound - R				
Control: Split Phase Split Phase Permitted										Permitted			
Rights:	-	Inclu	ide	-	Inclu	ıde		Incl	ude	Include			
Min. Green:	16	16	16	16	16	16	28	28	28	28 28 2			
Lanes:			1 0						1 0		1 0		
Volume Modul													
Base Vol:		288	153	321		59	43			90	637	429	
Growth Adj:				1.00		1.00		1.00			1.00	1.00	
Initial Bse:	35	288	153	321	272	59	43	504	13	90	637	429	
Added Vol:	0		0	20	0	0	0		0	0	78	193	
		10	30	40		10	30		10	30	20	50	
Initial Fut: User Adj:			183	381	322	69 1.00	73	574 1.00	23 1.00	120	735	672 1.00	
PHF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
PHF Volume:	55		183	381	322	69	73	574	23	120	735	672	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:			183	381	322	69	73			120		672	
_		1.00	1.00		1.00	1.00		1.00			1.00		
MLF Adj: Final Vol.:		298	1.00		1.00	1.00		1.00			1.00 735	1.00 672	
Saturation F	low M	odule:											
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900		1900	1900	1900	
Adjustment:						0.95		0.95			0.95		
Lanes:			0.68			0.27		1.71			0.96		
Final Sat.:						484			124		1738		
Capacity Ana				-		-	, -			-			
Vol/Sat:				0.14	0.14	0.14	0.19	0.19	0.19	0.42	0.42	0.42	
Crit Moves:	****				***						***		
Green/Cycle:					0.20	0.20		0.45			0.45		
Volume/Cap:				0.71		0.71		0.41			0.94		
Delay/Veh: User DelAdj:			34.2		32.1	32.1		12.6			28.7	28.7 1.00	
AdiDel/Veh:			34.2		32.1	32.1		12.6	12.6		28.7	28.7	
, , , , , , , , , , , , , , , , , ,	91.2	J 1 • Z	J1.2	J2.1	J2.I	J2.I	12.0	-2.0	12.0	20.7		20.7	

	2000 1					Computa (Future				.ve)		
*****	****	****	*****	****	****	*****	****	****	*****	****	*****	*****
Intersection *******	****	****	*****	****	****							
Cycle (sec): Loss Time (sec) Optimal Cycle ************************************	Critical Vol./Cap. (X): R = 4 sec) Average Delay (sec/veh): Level Of Service:						0.832 17.2 B					
Approach: Movement:	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R	L ·	- т	- R
Control: Rights: Min. Green: Lanes:	P: 0 0	rotect Inclu 0 0 2	ed de 0	0 2	rotec Incl 0 0 1	ted ude 0	Sp: 0	lit Ph Inclu 0 0	nase ide 0	Sp: 0	lit Ph Ovl 0	0 0 2
Volume Modul Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	0: >> 0 1.00 0 0 0 1.00 1.00 0 0 1.00 1.00	Count 1293 1.00 1293 271 80 1644 1.00 1.00 1644 1.00 1.00 1.00	Date: 435 1.00 435 0 0 435 1.00 435 1.00 435 1.00 435 1.00 435	21 No 487 1.00 487 15 60 562 1.00 562 0 562 1.00 1.00 562	0V 20 608 1.00 608 14 70 692 1.00 692 0 692 1.00 1.00 692	02 << 7 0 1.00 0 0 0 0 0 1.00 1.00 1.00 0 1.00 0 0 0	1.00 AI 0 1.00 0 0 0 0 0 0 0 1.00 0 0 0 1.00 0	M - 9: 0 1.00 0 0 0 0 1.00 0 0 1.00 0 1.00 0 1.00 0 0 0	000 AM 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	205 1.00 205 0 205 1.00 205 0 205 1.00 205 1.00 205	0 1.00 0 0 0 1.00 1.00 0 0 0 1.00	307 1.00 307 0 20 327 1.00 1.00 327 1.00 327 1.00
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	low Mo 1900 1.00 0.00	1900 0.95 2.00 3610	1900 0.85 1.00 1615	1900 0.92 2.00 3502	1900 1.00 1.00 1900	1900 1.00 0.00	1900 1.00 0.00	1900 1.00 0.00	1900 1.00 0.00	1900 0.95 1.00 1805	1900 1.00 0.00	1900 0.75 2.00 2842
Capacity Ana				'		'	1		'	'		'

DesignQueue: 2 11 7 14 12 3 2 15 1 3 20 18

Vol/Sat: 0.00 0.46 0.27 0.16 0.36 0.00 0.00 0.00 0.00 0.11 0.00 0.12

Green/Cycle: 0.00 0.55 0.55 0.19 0.74 0.00 0.00 0.00 0.00 0.14 0.00 0.33 Volume/Cap: 0.00 0.83 0.49 0.83 0.49 0.00 0.00 0.00 0.00 0.83 0.00 0.35 Delay/Veh: 0.0 15.4 9.5 33.9 3.7 0.0 0.0 0.0 48.1 0.0 16.7 AdjDel/Veh: 0.0 15.4 9.5 33.9 3.7 0.0 0.0 0.0 0.0 48.1 0.0 16.7

DesignQueue: 0 30 8 17 7 0 0 0 0 7 0 8

Crit Moves: ****

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:32:59 Page 1-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:32:59 Page 2-1

UC Berkeley LRDP EIR

2020 With Project Conditions PM Peak Hour

Scenario Report

Scenario: CUMULATIVE + LAB + PROJECT PM

Command: CUMULATIVE + PROJECT PM CUMULATIVE PM

Volume:

Geometry: CUMULATIVE + PROJECT PM
Impact Fee: Default Impact Fee
Trip Generation: PM LAB 2020 WITH PROJECT
Trip Distribution: Cumulative With Lab PM

Paths: Default Paths
Routes: Default Routes

Configuration: CUMULATIVE + LAB + PROJECT PM

UC Berkeley LRDP EIR 2020 With Project Conditions

PM Peak Hour

Trip Generation Report

Forecast for PM Peak - new

Zone #	Subzone A	Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% O
1			Office						4
2			Office					75 75	
3	Zone 3 Si	1.00	Negative Parki Parking	13.00	89.00	-7 13	-48 89 41	-55 102 47	6
4		1.00	Parking	17.00	119.00	17		136	8
5	Zone 5 Su		Parking					34 34	
6	Zone 6 Su		Parking					102 102	
7	Zone 7 Su		Parking					102 102	
8	Zone 8 Su		Parking					34 34	
9	Zone 9 St		Parking				89 89	102 102	
10	Zone 10 S		Parking l				149 149	170 170	
11	Zone 11 S		Parking				89 89	102 102	
12	Zone 12 S		Negative Parki				-42 -42		
 TOTAI								931	

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:32:59 Page 3-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:32:59 Page 4-1

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

Trip Generation Report

Trip Generation Report

Forecast for PM Peak - diverted Forecast for APPROVED PM

Zone #	Subzone	Amount		Rate In		In	Out	Total Trips	Total		Subzone				Rate In	Rate Out	In	Out	Total Trips	Total
3			Negative Parki				-9		-0.6		Lower Hear									2.9
3		1.00	Parking	2.00	17.00		17	19	1.2				otal				6	39		2.9
	Zone	3 Subtotal				1	. 8	9	0.6	1.4	Underhill	1	.00 Approv	ad Dawle	25 00	242 00	25	242	277	18.0
4		1.00	Parking	3.00	23.00	3	23	26	1.7	14			otal							18.0
	Zone						23		1.7											
5		1 00	Parking	1 00	6.00	1	. 6	7	0.5											
5	Zone						. 6		0.5	TOTAL							. 41	281	322	20.9
6		1 00	Parking	2 00	17.00		17	1.0	1.2											
0	Zone		······				17		1.2											
7		1 00	Parking	2 00	17.00	,	17	1.0	1.2											
,			rarking				17		1.2											
0		1 00	De al les	1 00	6.00	-		7	0 5											
8	Zone		Parking		6.00		. 6		0.5 0.5											
9	7one		Parking		17.00		17		1.2											
	20116	9 Subcocai				2	. 1/	19	1.2											
10					28.00		28		2.1											
	Zone	10 Subtota	1			4	28	32	2.1											
11		1.00	Parking	2.00	17.00	2	17	19	1.2											
	Zone	11 Subtota	1			2	17	19	1.2											
12		-1.00	Negative Parki	1.00	8.00	-1	8	-9	-0.6											
	Zone		1				-8	-9	-0.6											
TOTAL						. 17	131	148	9.6											

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

Trip Distribution Report

Trip Generation Report

UC Berkeley LRDP EIR

2020 With Project Conditions

PM Peak Hour

	1 11 11 11 11 11 11 11														-							
	Forecast for PM LAB 2020									Percent Of Trips CUMULATIVE PM WITH LAB												
Zone				Ra	ate	Rate	Trips	Trips	Total	% Of						То	Gates					
	Subzone	Amount	Units]			_	_	Trips			1	2	3	4	5	6	7	8	9	10	11
											Zone											
1.01	D1 11	T 1 0/) TDMT D1.	1 1	12 00	0 00	10	0	1.0	0 0	1	13.4					13.0			12.9		0.0
101	Blackberry						13			0.8	2	13.4	4.5				13.0			12.9		0.0
	Zone I	01 Subtot	tal				13	0	13	0.8	3		4.5	7.0			13.0			12.9		0.0
100	D1 11	0 1 00	O I DNII D1.	1 1	0 00	FO 00	0			2 0	4	13.4		7.0			13.0			12.9		0.0
102	Blackberry								58		5	13.4		7.0			13.0			12.9		0.0
	Zone 1	UZ SUDTO	tal				U	58	58	3.8	6 7	13.4		7.0			13.0			12.9		0.0
102	0+	T 1 00	O I DNII C+		2 00	0 00	2	0	2	0 0	8	13.4		7.0						12.9		0.0
103	Strawberry							0		0.2	9	13.4 13.4		7.0 7.0			13.0 13.0			12.9 12.9		0.0
	Zone i	US SUDIO	tal				3	U	3	0.2	10	13.4	4.5	7.0			13.0			12.9		0.0
104	C+varibavvii	0 1 00	TDMT C+~	b.o.v.v	0 00	21 00	0	21	2.1	1.4	11	13.4		7.0								0.0
104	Strawberry																13.0			12.9		
	Zone 1	U4 SUDLO	tal				U	21	21	1.4	12	13.4		7.0			13.0			12.9		0.0
100	Cudlu Orim	1 00	O I DNII Coni	:1 0	0 00	45 00	^	4 5	4 5	2 0	13	13.4		7.0			13.0			12.9		0.0
106	Grizzly OUT										14	13.4	4.5	7.0			13.0			12.9		0.0
	Zone 1	Ub Subcoi	al				U	45	45	2.9	101	5.3		5.2			8.6				0.0	1.7
											102	5.1			0.0		10.9				0.0	2.6
											103	7.1 5.0	0.0	7.1		14.3			28.6		0.0	0.0
														14.0			12.0				0.0	2.0
TOTA	L						. 16	124	140	9.1		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
											106	5.2	0.0	13.3	0.0	9.0	10.0	18.5	20.4	11.4	0.0	2.8
														To Gate								
												12	13	14	15	16	17					
											Zone											
											1	0.0	0.0	0.0	0.0	0.0	0.0					
											2	0.0	0.0	0.0	0.0	0.0	0.0					
											3	0.0	0.0	0.0	0.0	0.0	0.0					
											4	0.0	0.0	0.0	0.0	0.0	0.0					
											5	0.0	0.0	0.0	0.0	0.0	0.0					
											6	0.0	0.0	0.0	0.0	0.0	0.0					
											7	0.0	0.0	0.0	0.0	0.0	0.0					
											8	0.0	0.0	0.0	0.0	0.0	0.0					
											9	0.0	0.0	0.0	0.0	0.0	0.0					
											10	0.0	0.0	0.0	0.0	0.0	0.0					
											11	0.0	0.0	0.0	0.0	0.0	0.0					
											12	0.0	0.0	0.0	0.0	0.0	0.0					
											13	0.0	0.0	0.0	0.0	0.0	0.0					
											14	0.0	0.0	0.0	0.0	0.0	0.0					
											101		1.7	1.7		1.7	1.7					
											101	2.6	1.5	1.7		1.1						
											102	0.0	0.0	0.0	0.0	0.0	0.0					
											103	2.0	1.0	1.0			1.0					
											104			0.0								
											103	0.0	0.0	0.0	0.0	0.0	0.0					

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:32:59 Page 6-2 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:32:59 Page 7-1

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

Turning Movement Report PM Peak - new + PM Peak - diverted + APPROVED PM + PM LAB 2020

			To Gat	es			
	12	13	14	15	16	17	
Zone							
106	2.8	1.4	1.4	1.9	0.9	1.0	

	PM I	Peak -	- new +	PM Pe	eak -	diverte	ed + A	APPROV	JED PM	+ PM I	LAB 20	120	
Volume Type		orthbo Thru				ound Right		stboi Thru				ınd Right	
#1 Mari	n 7111	20110	/ Can D	ablo 1	\110nii								
Base		1022	114	169			18	656	137	145	736	154	4055
Added	5	117	3	1	20	0	0	3	1	1	18	19	188
Future	30	209	50	90	221	28	27	181	10	47	163	90	1146
Total	262	1348	167	260	900	46	45	840	148	193	917	263	5389
#2 Mari			The A										
Base	316	322	1		178	77	50	534	193	17		69	2280
Added	21	3	5	0	1	0	0	5	1	1	16	0	53
Future			10	10	30	70	20	200	80	10	70	10	750
Total	467	435	16	53	209	147	70	739	274	28	566	79	3083
#3 Gilm													
Base	346	46	159	24	47	52	28	497	109	53		11	1861
Added	9		0	0		0	0	0	2	0		0	12
PassBy			93	20	90	0	0	193	180	122		0	859
Total	475	46	252	44	137	52	28	690	291	175	531	11	2732
#4 Gilm													
Base		1057	87		830	112	174	345	155	40	233	82	3381
Added	1		0	0		0	0	0	0	0	0	0	149
PassBy	60	183	40	20		30	107	50	120	10	30	44	874
Total	201	1366	127	146	1032	142	281	395	275	50	263	126	4404
#5 Rose													
Base	159	641	14	112	444	26	69	253	49	29	214	228	2238
Added	0		0		1	0	0	0	0	0	0	4	15
Future	60	230	20	10	220	10	10	10	30	20	10	10	640
Total	219	880	34	123	665	36	79	263	79	49	224	242	2893
#6 Ceda	ır Stı	reet /	/ Marti	n Luth	ner Ki	ing Way							
Base	53		65	30	541	12	20	297	57	68	296	65	2118
Added	2	25	4	0	2	0	0	2	0	1	12	0	48
Future	20		30	20	80	10	10	110	10	10	30	10	550
Total	75	849	99	50	623	22	30	409	67	79	338	75	2716
#7 Ceda													
Base	138	795	56		619	72	86	275	67	59	341	150	2802
Added	0		0	0		0	0	6	0	1	13	1	29
Future	20	230	40	20	210	10	10	80	40	60	20	40	780
Total	158	1032	96	164	830	82	96	361	107	120	374	191	3611

UC Berkeley LRDP EIR 2020 With Project Conditions

UC Berkeley LRDP EIR 2020 With Project Conditions

PM Pe	ak Hour	PM Peak Hour								
Volume Northbound Southbound	Eastbound Westbound Total t Left Thru Right Left Thru Right Volume	Volume Northbound Southbound Eastbound Westbound Total Type Left Thru Right Left Thru Right Left Thru Right Volume								
	2 4 0 2 0 -3 0 147 0 20 120 40 50 100 10 500	#16 Hearst Avenue / Euclid Avenue Base								
#9 Cedar Street / Euclid Avenue Base 90 226 29 7 127 4 Added 0 3 0 0 1 Future 50 30 0 0 10 2 Total 140 259 29 7 138 6	0 3 0 0 0 -2 0 5 0 40 100 40 10 70 0 370	#17 Hearst Avenue / Le Roy Avenue Base 0 0 0 12 0 56 38 355 0 0 523 21 1005 Added 0 0 0 0 0 0 0 27 0 0 76 0 103 Future 0 0 0 0 0 10 20 90 0 0 140 10 270 Total 0 0 0 12 0 66 58 472 0 0 739 31 1378								
Added 7 0 39 0 0 Future 10 0 30 0 0	ve 3 3 159 45 22 111 25 913 0 0 0 0 4 0 0 50 0 0 20 20 10 10 0 100 3 3 179 65 36 121 25 1063	#18 Hearst Avenue / Gayley Road / LaLoma Avenue Base 318 288 19 4 203 49 28 52 288 69 197 40 1555 Added 26 28 7 0 12 0 0 6 20 8 50 0 157 Future 90 30 10 0 0 20 20 30 60 10 60 10 340 Total 434 346 36 4 215 69 48 88 368 87 307 50 2052								
#11 Hearst Avenue / Shattuck Avenue Base 34 715 63 117 537 5 Added 22 6 -2 0 2 Future 20 160 30 60 240 4 Total 76 881 91 177 779 9	0 0 5 3 31 37 2 106 0 50 20 20 50 20 90 800	#19 Berkeley Way / Oxford Street Base								
#12 Hearst Avenue / Oxford Avenue Base 80 743 315 30 458 2 Added -1 103 11 17 48 2 Future 30 110 40 10 70 2 Total 109 956 366 57 576 6	4 2 2 0 42 46 4 298 0 0 80 40 40 1120 10 1570	#20 University Avenue / Sixth Street Base 343 353 48 101 239 465 163 827 212 42 1205 33 4031 Added 0 4 2 0 19 8 1 36 0 5 264 0 339 Future 10 70 40 100 130 100 20 200 20 20 120 10 840 Total 353 427 90 201 388 573 184 1063 232 67 1589 43 5210								
#13 Hearst Avenue / Spruce Street Base 0 0 0 11 0 4 Added 0 0 0 1 0 Future 0 0 0 0 0 2 Total 0 0 0 12 0 6	0 0 29 0 0 92 3 125 0 0 130 0 0 170 0 320	#21 University Avenue / San Pablo Avenue Base 233 945 93 141 681 84 87 986 105 71 906 125 4457 Added 1 19 1 10 8 0 0 38 0 6 268 80 431 Future 50 90 10 20 220 60 90 190 80 10 60 20 900 Total 284 1054 104 171 909 144 177 1214 185 87 1234 225 5788								
Base 0 0 0 6 0 13	0 3 26 0 0 96 0 125 0 50 100 0 0 150 0 340	#22 University Avenue / Martin Luther King Way Base 282 902 78 46 702 77 80 679 134 71 727 81 3859 Added 12 25 0 0 3 1 0 49 0 3 343 0 436 Future 30 200 20 30 60 10 30 170 40 10 70 10 680 Total 324 1127 98 76 765 88 110 898 174 84 1140 91 4975								
#15 Hearst Avenue / Scenic Avenue Base 0 0 0 0 0 0 10 Added 0 0 0 0 0 3 Future 0 0 0 0 0 15	1 0 0 0 0 84 0 95 0 0 100 0 0 140 10 280	#23 University Avenue / Milvia Street Base 127 218 44 13 102 74 47 649 108 22 651 33 2088 Added 0 0 0 0 0 0 0 50 0 0 346 0 396 Future 10 10 10 10 10 10 20 180 20 10 80 20 390 Total 137 228 54 23 112 84 67 879 128 32 1077 53 2874								

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

UC Berkeley LRDP EIR 2020 With Project Conditions

UC Berkeley LRDP EIR 2020 With Project Conditions

2020 With Project Conditions PM Peak Hour	2020 With Project Conditions PM Peak Hour
Volume Northbound Southbound Eastbound Westbound Total Type Left Thru Right Left Thru Right Left Thru Right Volume	Volume Northbound Southbound Eastbound Westbound Total Type Left Thru Right Left Thru Right Left Thru Right Volume
#24 University Avenue / SB Shattuck Avenue Base	#32 Stadium Rim Road / Gayley Road Base 0 359 19 135 459 0 20 7 15 47 0 232 1293 Added 0 53 22 5 26 0 0 0 0 24 0 25 155 Future 0 90 10 20 50 0 0 0 0 10 0 30 210 Total 0 502 51 160 535 0 20 7 15 81 0 287 1658
#25 University Avenue / NB Shattuck Avenue Base 938 0 208 0 0 0 0 454 0 0 433 0 2033 Added 155 0 12 0 0 0 0 27 0 0 150 0 344 Future 150 0 40 0 0 0 0 0 0 0 70 0 260 Total 1243 0 260 0 0 0 0 481 0 0 653 0 2637	#33 Allston Way / Oxford Street Base
#26 University Avenue / Oxford Street Base 278 771 16 32 835 106 306 39 330 9 37 40 2799 Added 90 75 0 0 55 66 22 -1 19 -2 -6 -2 316 Future 50 130 0 10 160 30 20 10 20 0 10 10 450 Total 418 976 16 42 1050 202 348 48 369 7 41 48 3565	#34 Kittridge Street / Oxford Street / Fulton Street Base 45 995 0 0 1108 96 51 0 69 0 0 0 2364 Added 0 94 3 9 74 0 0 3 0 18 26 62 289 Future 20 180 0 0 150 30 10 0 20 0 0 0 410 Total 65 1269 3 9 1332 126 61 3 89 18 26 62 3063
#27 Univeristy Drive (East Gate) / Gayley Road Base 59 552 0 0 505 52 41 0 81 0 0 0 1290 Added -2 80 0 0 43 -3 -19 0 -12 0 0 0 87 Future 20 110 0 0 60 10 10 0 20 0 0 0 230 Total 77 742 0 0 608 59 32 0 89 0 0 0 1607	#35 Stadium Rim Road / Centennial Drive Base 0 99 140 102 57 0 0 0 0 204 0 146 748 Added 0 0 0 27 0 0 0 0 0 0 0 49 76 Future 0 20 20 20 10 0 0 0 0 10 0 20 100 Total 0 119 160 149 67 0 0 0 0 214 0 215 924
#28 Addison Street / Oxford Street Base 32 1006 0 0 952 28 10 0 114 0 0 0 2142 Added 3 149 0 0 70 2 16 0 18 0 0 0 258 Future 10 180 0 0 170 10 0 0 10 0 0 380 Total 45 1335 0 0 1192 40 26 0 142 0 0 0 2780	#36 Bancroft Way / Shattuck Avenue Base 30 1186 0 0 949 23 1 0 38 258 97 111 2693 Added 0 44 0 0 129 0 0 0 107 0 76 356 Future 10 150 0 0 290 10 0 0 0 30 20 20 530 Total 40 1380 0 0 1368 33 1 0 38 395 117 207 3579
#29 Center Street / SB Shattuck Avenue Base 0 0 0 41 790 126 0 104 179 29 160 0 1429 Added 0 0 0 0 105 0 0 0 0 -2 2 0 105 Future 0 0 0 10 230 40 0 50 30 30 40 0 430 Total 0 0 0 51 1125 166 0 154 209 57 202 0 1964	#37 Bancroft Way / Fulton Street Base 18 164 0 0 1066 165 0 0 0 12 287 898 2610 Added 2 0 0 0 85 7 0 0 0 20 143 97 354 Future 10 10 0 0 130 20 0 0 0 10 30 170 380 Total 30 174 0 0 1281 192 0 0 0 42 460 1165 3344
#30 Center Street / NB Shattuck Avenue Base 50 982 86 0 0 0 81 55 0 0 139 58 1451 Added 0 117 0 0 0 0 0 0 0 0 0 0 0 0 117 Future 30 110 30 0 0 0 30 40 0 0 40 60 340 Total 80 1209 116 0 0 0 111 95 0 0 179 118 1908	#38 Bancroft Way / Ellsworth Street Base 348 11 0 0 0 100 0 0 0 877 6 1342 Added 12 0 0 0 0 0 0 0 0 0 157 0 169 Future 50 0 0 0 0 0 0 0 0 0 0 230 0 280 Total 410 11 0 0 0 100 0 0 0 0 1264 6 1791
#31 Center Street / Oxford Street Base 87 998 24 19 980 67 33 6 84 37 9 16 2360 Added 0 156 0 -1 85 3 0 0 0 0 -2 -3 -5 233 Future 40 150 10 0 150 30 30 0 30 0 0 0 440 Total 127 1304 34 18 1215 100 63 6 114 35 6 11 3033	#39 Bancroft Way / Dana Street Base 0 0 0 0 0 0 0 0 0 282 873 0 1155 Added 0 0 0 0 0 0 0 0 0 32 157 0 189 Future 0 0 0 0 0 0 0 0 0 50 230 0 280 Total 0 0 0 0 0 0 0 0 0 364 1260 0 1624

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:32:59 Page 7-6 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:32:59 Page 7-7 ______ UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

PM Peak Hour Volume Northbound Southbound Eastbound Westbound Total Volume Northbound Southbound Eastbound Westbound Total Type Left Thru Right Left Thru Right Left Thru Right Left Thru Right Volume Type Left Thru Right Left Thru Right Left Thru Right Left Thru Right Volume #40 Bancroft Way / Telegraph Avenue #48 Durant Avenue / Piedmont Avenue Base 495 0 0 0 0 0 0 0 0 0 675 0 1170 Base 0 398 0 0 427 0 179 0 197 0 0 0 1201 Added 3 0 0 0 0 0 0 0 0 0 0 156
Future 130 0 0 0 0 0 0 0 0 0 140
Total 628 0 0 0 0 0 0 0 0 0 0 971 Added 0 56 0 0 36 0 21 0 79 Future 0 70 0 0 50 0 40 0 40 Total 0 524 0 0 513 0 240 0 316 0 0 0 192 0 0 0 200 0 0 0 1593 0 159 0 270 0 1599 #41 Bancroft Way / Bowditch Street Base 191 0 0 0 0 0 99 494 0 784 0 0 0 #49 Channing Way / Shattuck Avenue 0 0 0 0 0 0 27 156 Base 83 1279 94 19 1089 Added 0 0 0 0 183 49 18 76 81 144 97 106 3135 Future 30 0 0 0 0 0 0 0 20 110 0 160 Added 0 31 6 0 221 0 0 0 0 24 0 26 308 Total 221 0 0 0 0 0 0 0 146 760 0 1127 Future 10 180 20 50 110 90 30 80 20 30 20 30 670 Total 93 1490 120 69 1420 139 48 156 101 198 117 162 4113 #42 Bancroft Way / College Avenue Base 371 0 0 0 0 0 0 0 83 226 0 680 #50 Channing Way / Fulton Street 0 0 0 0 0 0 0 18 41 0 79 Base 0 0 0 48 686 61 0 133 38 15 257 0 1238 Future 100 0 0 0 0 0 0 0 0 0 20 0 120 Added 0 0 0 4 16 0 0 6 0 0 50 0 76 Future 0 0 0 10 100 0 0 110 30 10 70 0 Total 491 0 0 0 0 0 0 0 101 287 0 879 Λ 330 Total 0 0 0 62 802 61 0 249 68 25 377 0 1644 #43 Bancroft Way / Piedmont Avenue 0 0 357 159 0 0 0 0 36 46 0 0 0 0 40 10 0 0 Base 152 439 0 0 357 159 0 0 0 0 1107 #51 Channing Way / Telegraph Avenue 13 65 0 0 0 160 Base 86 410 41 0 0 Added 0 4 9 0 0 23 144 0 227 Added Ω Ω Ω 46 977 Added 0 4 9 0 0 0 14 0 0 50 Future 10 40 30 0 0 0 0 30 80 40 30 Total 96 454 80 0 0 0 23 188 80 40 307 0 Future 10 90 0 0 0 150 2 79 0 0 Total 175 594 0 0 433 215 0 0 1417 0 260 0 4.8 1316 #44 Durant Avenue / Shattuck Avenue Base 69 1216 120 88 1099 51 9 72 0 0 0 2779 55 #52 Channing Way / College Avenue 0 44 13 15 221 0 0 0 0 0 0 293 Added Base 31 189 41 7 206 5 95 5.8 124 141 968 Future 10 170 60 60 260 10 0 40 10 0 0 620 Added 3 8 -1 0 36 0 0 78 20 -3 12 0 153 Total 79 1430 193 163 1580 61 9 112 65 0 0 0 3692 Future 30 60 30 0 40 10 30 40 40 40 20 30 370 Total 64 257 70 7 282 34 35 213 118 161 173 77 1491 #45 Durant Avenue / Fulton Street Base 0 0 0 527 760 0 137 219 33 0 0 0 1676 #53 Haste Street / Shattuck Avenue Added 0 0 0 86 20 0 2 27 0 0 0 0 135 Base 104 1277 0 0 1208 88 0 0 0 268 336 152 3433 Added 0 37 0 0 200 45 0 0 0 32 73 Future 30 160 0 0 130 20 0 0 0 40 80 Future 0 0 0 70 90 0 20 110 30 0 0 320 0 387 Total 0 0 0 683 870 0 159 356 63 0 0 0 2131 40 500 Total 134 1474 0 0 1538 153 0 0 0 340 489 192 4320 #46 Durant Avenue / Telegraph Avenue Base 0 362 119 0 0 0 202 690 0 0 0 0 1373 #54 Haste Street / Fulton Street Added 0 1 5 0 0 0 2 100
Future 0 110 30 0 0 0 20 160
Total 0 473 154 0 0 0 224 950 0 0 0 0 108 0 0 0 0 320 0 0 0 0 1801 Base 0 0 0 0 580 154 0 0 0 50 604 0 1388 0 Added 0 0 0 0 12 5 0 0 0 100 Ω 117 Future 0 0 0 0 0 70 80 Total 0 0 0 0 662 239 0 1801 0 0 0 30 60 0 240 0 0 0 80 764 0 1745 #47 Durant Avenue / College Avenue Base 0 189 62 16 56 0 127 268 202 0 0 0 920 #55 Haste Street / Telegraph Avenue 0 4 4 0 18 0 0 0 156 Added 0 16 96 18 Base 186 476 0 0 0 0 0 470 57 1189 Future 0 40 20 0 0 0 60 70 40 0 0 0 230 Added 0 12 0 0 0 0 0 0 0 100 0 112

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

Total 0 233 86 16 74 0 203 434 260 0 0 1306

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

Future 50 100 0 0 0 0 0 0 0 50 30 230

87 1531

Total 236 588 0 0 0 0 0 0 0 0 620

2020 With Project Conditions

UC Berkeley LRDP EIR

2020 With Project Conditions PM Peak Hour													2020) With	_	ct Con		ns										
Volume	Northbo Left Thru	ound	Sc	outhbo	und	Ea	stbou	nd	W∈	stbou	nd	Total	 Volu Type	me	N	orthb	ound		Sc	uthbo	und		stbou	nd	We	stbou	nd	Total
#56 Has	te Street 88 236	/ Coll	.ege At		56	0	0	0	90	244	29	1080	#64	Ade:	line	Stre	et /	War	d Ave	enue /	Shatt	uck Av	renile					
Added	2 11	0	0	51	1	0	0	0	0	2	0	67	Base		0		/	5	0	957	825	903	0	2	0	0	0	3382
Future	30 70	0	0		30	0	0	0	30	30	40	310	Adde	d	0	24		0	0	182	52	7	0	0	0	0	0	265
Total	120 317	0	0	468	87	0	0	0	120	276	69	1457	Futu Tota		0			0 5	0	50 1189	110 987	130 1040	0	0	0	0	0	340 3987
#57 Dwi	ght Way / 71 821	Martir 60	Luthe	er Kin	g Way 272	49	444	111	0	0	0	2801	#65	Derk	hw S	treet	/ W:	arri	ng St	reet								
Added	17 13	0	0	15	85	0	14	4	0	0	0	148	Base		0		, ,,,	0	765	0	30	7	62	0	0	75	780	1719
Future	10 220	10	20	90	10	20	50	10	0	0	0	440	Adde		0			0	171	0	0	0	0	0	0	0	26	197
Total	98 1054	70	133	965	367	69	508	125	0	0	0	3389	Pass Tota	Ву	0			0	110 1046	0	10 40	0 7	0 62	0	0	0 75	120 926	240 2156
	ght Way /																, -				40	,	02	0	U	75	920	2130
Base	0 1273 0 32	123		1390	0	77 5	426 10	200	0	0	0	3622 279			oy S	treet 0		lare 25	mont 0	Blvd.	0	0	072	11	31	741	0	1884
Added Future	0 32 0 160	30		220 140	0	10	50	10	0	0	0	410	Base Adde		0		۷.	25	0	0	0		872 171	0	31	26	0	197
Total	0 1465	153		1750	0	92	486	210	0	0	0	4311	Pass		0			0	0	0	0			0	0	120	0	240
													Tota	-	4	0	2	25	0	0	0		1163	11		887	0	2321
#59 Dwi	ght Way /			et									#67	Ashk		venue			th St									
Base	0 0	62	631	0	0	0	664	15	0	0	0	1372	Base		134		(68	107	270	476	263	546	113	98	774	31	3284
Added	0 0	0	12	0	0	0	22 60	0	0	0	0	34 210	Adde		0			0	0	0 30	0	0	14	0 60	0	90	0 70	104
Future Total	0 0	20 82	100 743	0	0	0	746	30 45	0	0	0	1616	Futu Tota		60 194	60 464		10 78	90 197	300	476	30 293	60 620	173	20 118	60 924	101	550 3938
#60 Dwi	ght Way /	Telear	aph Av	zenue									#68	Ashk	ov A	venue	/ Sa	an P	ablo	Avenu	ıe							
Base	0 590	149	0	0	0	130	671	813	0	0	0	2353	Base		162			79	185	873	113	86	592	170	20	612	143	4034
Added	0 4	0	0	0	0	9	25	27	0	0	0	65	Adde	d	13	26	2	28	0	14	16	0	11	3	58	60	0	229
Future	0 120	10	0	0	0	10	60	100	0	0	0	300	Futu			190		90	20	320	30	20	90	50	40	90	30	990
Total	0 714	159	0	0	0	149	756	940	0	0	0	2718	Tota	1	195	1215	1	97	205	1207	159	106	693	223	118	762	173	5253
#61 Dwi	ght Way / 0 294	Colleg 52	ge Aver 49		0	34	483	129	0	0	0	1415	#60	7 chi	h. 7.	venue	/ 7\	doli	ne St	root								
Added	0 234	0	0	51	0	1	20	4	0	0	0	88	Base		92			85	31	700	169	135	491	39	68	547	39	3089
Future	0 50	60	20	80	0	30	0	10	0	0	0	250	Adde		1			0	0	11	40	6	22	4	0	57	0	143
Total	0 356	112	69	505	0	65	503	143	0	0	0	1753	Futu Tota		60 153	70 765		10 95	10 41	10 721	80 289	50 191	160 673	20 63	10 78	50 654	10 49	540 3772
#62 Dwi	ght Way /	Piedmo	nt Ave	enue /	Warri	ng Str	eet						IOCA	_	133	703		20	4.1	121	209	191	075	03	70	034	43	3112
Base	0 527	1	8		0		162	307	53	0	112	1655				venue				venue								
Added	0 26	0	0	151	0	0	0	20	0	0	0	197	Base			556		30	200	585	56	33	536	40	32	541	176	2837
Future	0 80	20	10	30	0	20	10	40	30	0	10	250	Adde		0			0	25	99	56	7	14	0	0	1	3	219
Total	0 633	21	18	534	0	152	172	367	83	0	122	2102	Futu Tota		10 62	10 580		10 40	20 245	20 704	10 122	10 50	170 720	20 60	10 42	60 602	20 199	370 3426
	ght Avenue		spect																									
Base	0 0	0	27	0	165	187	128	0	0	93	16	616				venue				Avenu			= 0.4					
Added	0 0	0	1.0	0	0	0	0	0	0	0	0	0	Base		210			75 0	176	902	63 0	68	531	184	148	642 3	99 0	3773 74
Future Total	0 0	0	10 37	0	20 185	20 207	20 148	0	0	20 113	16	90 706	Adde Futu		1 30	4 80		10	2 10	25 60	10	0 30	36 110	50	20	50	20	480
10041	0 0	U	57	J	100	201	140	J	J	110	10	,00	Tota			759		85	188	987	73	98	677	237	168	695	119	4327
Traff	ix 7.5.071	L5 (c)	2002 I	Dowlin	g Asso	oc. Lic	ensed	to FE	HR & F	EERS,	LAFA	YETTE	Traf	fix	7.5	.0715	(c)	200	2 Dow	aling	Assoc.	Licen	sed t	o FEHR	& PEE	RS,	LAFAYE	TTE

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:32:59 Page 7-10 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 8-1 UC Berkeley LRDP EIR 2020 With Project Conditions

PM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

Volume Northbound Southbound Type Left Thru Right Left Thru Right	Eastbound Westbound	Total Impact A	nalysis Report Of Service
#72 Ashby Avenue / College Avenue		Intersection	Base Future Change Del/ V/ Del/ V/ in
Base 75 293 68 159 279 58 Added 0 3 0 37 20 -2	2 35 0 0 5	107	LOS Veh C LOS Veh C D 41.6 0.874 F 96.0 1.164 +54.363 D/V
Future 10 60 10 20 60 10 Total 85 356 78 216 359 66		30 420 L88 2871 # 2 Marin Avenue / The Alameda	B 14.1 0.574 C 22.3 0.869 + 8.218 D/V
#73 Ashby Avenue / Claremont Avenue		# 3 Gilman Street / Sixth Street	E 60.6 0.864 F 128.7 1.267 +68.070 D/V
Base 45 373 189 432 285 49		232 2819	D 27 2 0 704 D 60 6 1 070 +21 225 D/W
Added 0 0 0 171 0 0 Future 10 60 20 60 50 20		26	D 37.3 0.724 E 68.6 1.070 +31.335 D/V
Total 55 433 209 663 335 69	87 794 15 76 576	278 3590 # 5 Rose Street / Shattuck Avenue	B 11.0 0.514 B 16.3 0.759 + 5.244 D/V
#74 Tunnel Road / SR 13	0 0 0 128 0		C 21.3 0.792 D 51.1 1.086 +29.823 D/V
Base 0 1130 256 534 1095 0 Added 0 38 0 122 121 0		0 281 # 7 Cedar Street / Shattuck Avenue	B 11.5 0.580 B 16.7 0.764 + 5.241 D/V
Future 0 80 0 70 140 0 Total 0 1248 256 726 1356 0		10 300 165 3879 # 8 Cedar Street / Oxford Street	B 19.0 0.711 E 62.5 1.103 +43.539 D/V
#1004		# 9 Cedar Street / Euclid Avenue	B 11.5 0.428 B 14.0 0.637 + 2.472 D/V
Base 0 0 0 0 0 0 0 Added 0 0 0 7 0 14	2 25 0 0 35		C 15.4 0.738 D 25.2 0.905 + 0.167 V/C
Total 0 0 0 7 0 14	2 25 0 0 35	1 84 # 11 Hearst Avenue / Shattuck Avenu	B 13.5 0.478 C 22.6 0.869 + 9.127 D/V
#1005			
Base 0 0 0 0 0 0 0 Added 0 0 0 14 0 31		0 0 # 12 Hearst Avenue / Oxford Avenue 0 82	D 36.1 0.883 D 48.7 0.961 +12.589 D/V
Total 0 0 0 14 0 31	0 32 0 0 5	0 82 # 13 Hearst Avenue / Spruce Street	B 2.4 0.000 C 2.7 0.000 + 0.000 V/C
#1101 I-880 South/ I-80 West CHECK			B 1.6 0.000 C 2.0 0.000 + 0.000 V/C
Base 0 0 0 0 0 0 0 Added 0 25 0 0 170 0		0 0 0 195 # 15 Hearst Avenue / Scenic Avenue	B 0.7 0.000 B 0.9 0.000 + 0.000 V/C
Total 0 25 0 0 170 0	0 0 0 0 0	0 195 # 16 Hearst Avenue / Euclid Avenue	B 18.4 0.458 B 17.2 0.632 -1.242 D/V
#1121 Highland Place/Heart Avenue/Cyclo	tron	# 16 HearSt Avenue / Euclid Avenue	B 18.4 0.438 B 1/.2 0.632 -1.242 D/V
Base 0 0 0 0 0 0 0 Added 0 0 0 0 0 0		0 0 # 17 Hearst Avenue / Le Roy Avenue 0 71	B 2.3 0.000 C 2.5 0.000 + 0.000 V/C
Total 0 0 0 0 0 0		0 71 # 18 Hearst Avenue / Gayley Road /	B 17.5 0.778 E 69.0 1.117 +51.498 D/V
#1122 Stadium Rim Road/ Canyon Road			A 7.2 0.419 A 9.9 0.559 + 2.689 D/V
Base 0 0 0 0 0 0 0 0 Added 0 0 0 0 0 0	0 0 0 0 0		F 81.2 0.993 F 107.1 1.045 +25.890 D/V
Total 0 0 0 0 0 0	0 0 0 0 0	0 0 # 21 University Avenue / San Pablo	F 124.2 0.817 F 197.8 1.105 +73.601 D/V
		# 22 University Avenue / Martin Lut	C 22.5 0.686 D 40.7 0.986 +18.190 D/V
		# 23 University Avenue / Milvia Str	B 16.3 0.448 C 23.0 0.643 + 6.791 D/V

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

Intersection	Τ.Ο	Base Del/ V/	т.	Future Del/ V/	Change in
# 24 University Avenue / SB Shattuc	В	OS Veh C 18.2 0.585	C	OS Veh C 21.7 0.897	+ 3.520 D/V
# 25 University Avenue / NB Shattuc	В	16.8 0.449	В	18.5 0.613	+ 1.700 D/V
# 26 University Avenue / Oxford Str	В	17.2 0.650	С	29.2 0.874	+11.936 D/V
# 27 Univeristy Drive (East Gate)	С	1.5 0.000	С	1.5 0.000	+ 0.000 V/C
# 28 Addison Street / Oxford Street	С	0.8 0.000	E	2.0 0.000	+ 0.000 V/C
# 29 Center Street / SB Shattuck Av	В	14.0 0.469	В	17.3 0.630	+ 3.382 D/V
# 30 Center Street / NB Shattuck Av	A	7.3 0.409	А	9.5 0.551	+ 2.179 D/V
# 31 Center Street / Oxford Street	A	7.3 0.415	В	10.5 0.550	+ 3.210 D/V
# 32 Stadium Rim Road / Gayley Road	D	26.8 0.917	F	82.3 1.230	+ 0.313 V/C
# 33 Allston Way / Oxford Street	D	4.9 0.000	E	6.0 0.000	+ 0.000 V/C
# 34 Kittridge Street / Oxford Stre	F	3.6 0.000	F	18.5 0.000	+ 0.000 V/C
# 35 Stadium Rim Road / Centennial	В	10.5 0.474	В	12.7 0.604	+ 0.131 V/C
# 36 Bancroft Way / Shattuck Avenue	В	12.1 0.637	С	22.1 0.836	+10.074 D/V
# 37 Bancroft Way / Fulton Street	A	6.6 0.380	В	10.3 0.507	+ 3.698 D/V
# 38 Bancroft Way / Ellsworth Stree	С	3.7 0.000	E	6.3 0.000	+ 0.000 V/C
# 39 Bancroft Way / Dana Street	A	0.0 0.000	A	0.0 0.000	+ 0.000 V/C
# 40 Bancroft Way / Telegraph Avenu	В	17.3 0.307	В	19.3 0.414	+ 2.032 D/V
# 41 Bancroft Way / Bowditch Street	В	11.2 0.431	С	16.2 0.669	+ 0.238 V/C
# 42 Bancroft Way / College Avenue	В	11.4 0.511	С	15.3 0.700	+ 0.189 V/C
# 43 Bancroft Way / Piedmont Avenue	С	16.3 0.733	E	36.7 0.979	+ 0.246 V/C
# 44 Durant Avenue / Shattuck Avenu	В	11.6 0.617	С	21.3 0.801	+ 9.741 D/V
# 45 Durant Avenue / Fulton Street	Α	6.9 0.346	A	9.9 0.454	+ 3.007 D/V
# 46 Durant Avenue / Telegraph Aven	В	13.0 0.350	В	13.3 0.459	+ 0.295 D/V
# 47 Durant Avenue / College Avenue	В	13.2 0.311	В	13.6 0.427	+ 0.347 D/V
# 48 Durant Avenue / Piedmont Avenu	С	15.9 0.668	D	34.1 0.919	+ 0.252 V/C

UC	Ber	keley	LRDP	EIR
2020 W	ith 1	Proje	ct Co	nditions
	PM	Peak	Hour	

Intersection	Base Del/ V/ LOS Veh C	Future Del/ V/ LOS Veh C	Change in
# 49 Channing Way / Shattuck Avenue	A 5.3 0.699	A 9.2 0.799	+ 3.912 D/V
# 50 Channing Way / Fulton Street	C 15.6 0.642	D 27.6 0.842	+ 0.201 V/C
# 51 Channing Way / Telegraph Avenu	B 12.2 0.338	B 16.4 XXXXX	+ 4.235 D/V
# 52 Channing Way / College Avenue	A 9.7 0.402	B 15.9 0.614	+ 6.199 D/V
# 53 Haste Street / Shattuck Avenue	A 9.0 0.655	в 19.3 1.125	+10.287 D/V
# 54 Haste Street / Fulton Street	B 17.2 0.434	C 22.7 0.549	+ 5.433 D/V
# 55 Haste Street / Telegraph Avenu	B 12.1 0.375	B 14.4 0.483	+ 2.311 D/V
# 56 Haste Street / College Avenue	A 9.0 0.354	B 11.3 0.494	+ 2.389 D/V
# 57 Dwight Way / Martin Luther Kin	B 14.8 0.793	C 28.5 0.993	+13.697 D/V
# 58 Dwight Way / Shattuck Avenue	D 43.3 0.807	в 16.6 0.925	-26.634 D/V
# 59 Dwight Way / Fulton Street	B 13.7 0.526	в 17.3 0.618	+ 3.620 D/V
# 60 Dwight Way / Telegraph Avenue	B 19.4 0.834	C 32.3 0.969	+12.950 D/V
# 61 Dwight Way / College Avenue	B 14.3 0.484	B 14.5 0.614	+ 0.163 D/V
# 62 Dwight Way / Piedmont Avenue /	B 12.8 0.380	B 13.6 0.462	+ 0.748 D/V
# 63 Dwight Avenue / Prospect Stree	B 5.4 0.000	B 5.6 0.000	+ 0.000 V/C
# 64 Adeline Street / Ward Avenue /	C 21.3 0.844	C 32.5 0.997	+11.239 D/V
# 65 Derby Street / Warring Street	F 157.8 1.327	F 308.1 1.813	+ 0.486 V/C
# 66 Derby Street / Claremont Blvd.	B 14.8 0.690	C 34.3 0.864	+19.465 D/V
# 67 Ashby Avenue / Seventh Street	D 46.8 0.911	F 94.5 1.130	+47.722 D/V
# 68 Ashby Avenue / San Pablo Avenu	C 30.1 0.694	D 41.1 0.891	+10.960 D/V
# 69 Ashby Avenue / Adeline Street	D 46.4 0.490	D 39.4 0.627	-6.973 D/V
# 70 Ashby Avenue / Shattuck Avenue	C 26.3 0.709	D 42.5 0.732	+16.242 D/V
# 71 Ashby Avenue / Telegraph Avenu	C 24.9 0.869	C 27.0 1.007	+ 2.071 D/V
# 72 Ashby Avenue / College Avenue	C 25.8 0.912	D 39.0 0.968	+13.253 D/V

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 9-1 ______ HC Dowled or IDDD EID

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

Del/ V/ Del/ V/ LOS Veh C LOS Veh C # 73 Ashby Avenue / Claremont Avenu C 21.8 0.638 C 26.6 0.777 + 4.759 D/V # 74 Tunnel Road / SR 13 B 12.9 0.738 B 16.4 0.895 + 3.516 D/V

OC Belkeley Ekbr Elk	
2020 With Project Conditions	
PM Peak Hour	

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) Intersection #1 Marin Avenue / San Pablo Avenue ************************* Cycle (sec): 90 Critical Vol./Cap. (X): 1.164 96.0 Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 180 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Protected Protected Protected Protected Rights: Include Include Include Include Rights: Min. Green: 0 0 0 0 0 0 0 0 0 0 0 -----| Volume Module: >> Count Date: 5 Dec 2002 << 4:00-6:00 PM Base Vol: 227 1022 114 169 659 18 18 656 137 145 736 154 Initial Bse: 227 1022 114 169 659 18 18 656 137 145 736 154 Added Vol: 5 117 3 1 20 0 0 3 1 1 18 19 Future: 30 209 50 90 221 28 27 181 10 47 163 90 Initial Fut: 262 1348 167 260 900 46 45 840 148 193 917 263 PHF Volume: 262 1348 167 260 900 46 45 840 148 193 917 263 0 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 Reduced Vol: 262 1348 167 260 900 46 45 840 148 193 917 263 Final Vol.: 262 1348 167 260 900 46 45 840 148 193 917 263 _____| Saturation Flow Module: Adjustment: 0.95 0.93 0.93 0.95 0.94 0.94 0.95 0.93 0.93 0.95 0.92 0.92 Lanes: 1.00 1.78 0.22 1.00 1.90 0.10 1.00 1.70 0.30 1.00 1.55 0.45 Final Sat.: 1805 3161 392 1805 3410 174 1805 3002 529 1805 2713 778 -----|----||------| Capacity Analysis Module: Vol/Sat: 0.15 0.43 0.43 0.14 0.26 0.26 0.02 0.28 0.28 0.11 0.34 0.34 Crit Moves: **** **** **** Green/Cycle: 0.17 0.37 0.37 0.12 0.32 0.32 0.02 0.24 0.24 0.09 0.31 0.31 Volume/Cap: 0.83 1.16 1.16 1.16 0.83 0.83 1.09 1.16 1.16 1.16 1.09 1.09 Delay/Veh: 53.2 111 111.2 151.2 34.1 34.1 212.9 121 120.9 161.8 87.3 87.3 AdjDel/Veh: 53.2 111 111.2 151.2 34.1 34.1 212.9 121 120.9 161.8 87.3 87.3 DesignQueue: 11 48 6 12 33 2 2 34 6 9 35 10

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 11-1

UC Berkeley LRDP EIR

2020 With Project Conditions

PM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

		 Le	evel O	f Serv	 vice 0	Computa	tion	Repor	 t			
2000 HCM Operations Method (Future Volume Alternative)												
*******	****	****	*****	****	*****	****	****	****	*****	****	****	*****
Intersection							****	****	*****	****	****	*****
Cycle (sec):		70							. (X):			
Loss Time (s												
Optimal Cycl		75				evel (C

Approach: Movement:	L -					und - R					est B	ouna - R
movement.												
Control:									tted			
Rights:		Includ	de		Inclu	ıde		Incl	ude		Incl	ude
Min. Green:			25	25	25	25			23		23	23
Lanes:			1 0			1 0			1 0			1 0
Volume Modul										1.7	400	60
Base Vol: Growth Adj:	316		1		178	77 1.00	50	1.00	193 1.00		480	69 1.00
Initial Bse:		322	1.00	43	178	77	50			1.00	480	69
Added Vol:	21	322	5	43	1 / 6	0	0			1	16	0
Future:	130	110	10	10	30	70	20			10	70	10
Initial Fut:		435	16	53		147	70			28	566	79
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	467	435	16	53	209	147	70	739	274	28	566	79
Reduct Vol:	-	0	0	0	0	0	0	-	-	0	-	0
Reduced Vol:		435	16	53	209	147	70			28		79
PCE Adj:	1.00		1.00		1.00	1.00		1.00			1.00	
MLF Adj: Final Vol.:	467		1.00		1.00	1.00		1.00			1.00	
Final vol.:												
Saturation F			1	1			1		ı	1		1
Sat/Lane:	1900		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.61	0.61	0.61	0.70	0.70	0.70	0.78	0.78	0.78	0.80	0.80	0.80
Lanes:	1.00	0.96	0.04	0.26	1.02	0.72		1.36		0.08	1.69	0.23
Final Sat.:						962		2031			2549	
Capacity Ana				0 15	0 15	0 15	0 00	0 00	0 00	0 00	0 00	0 00
Vol/Sat:	0.41 ****	0.39	0.39	0.15	0.15	0.15	0.36	0.36		0.22	0.22	0.22
Crit Moves: Green/Cycle:		0 47	0.47	0 47	0 47	0 47	0.42	0.42		0 42	0.42	0.42
Volume/Cap:				0.47				0.42			0.42	
Delane/Cap.												

				PI	n real	K Hour						
		1	Level C	f Ser	vice (Computa	tion F	Report	;			
			peratio									
*****							*****	****	*****	*****	*****	****
Intersection							*****	****	*****	*****		
Cycle (sec):		7(Critica					1.26	
Loss Time (s			3 (Y+R	= 4							128.	
Optimal Cycl		180		- 4.		Level C			./ veii) .		120.	F
*******			-	****					*****	*****	****	-
Approach:	Not	rth Bo	ound	Soi	ith Bo	ound	Ea	st Bo	nund	We	est Bo	nınd
Movement:			- R			- R			- R		- T	
Control:			ted			ted	. E		'		Permit	
Rights:	_		ıde		Incl			Incli			Inclu	
Min. Green:	19		19			19			19	19		
Lanes:			0 0	0 :		1 0			0 0) 1!	
Volume Modul									'			
Base Vol:	346	46	159	24	47	52	28	497	109	53	489	
Growth Adj:	1 00		1.00		1.00		1.00		1.00	1.00		1.
Initial Bse:		46	159	24	47	52	28	497	109	53	489	
Added Vol:	9	0	0	0	0	0	0	0	2	0	1	
PasserByVol:		0	93	20	90	0	0	193	180	122	41	
Initial Fut:		46	252	44	137		28	690	291	175	531	
User Adi:			1.00		1.00		1.00		1.00		1.00	1.
PHF Adi:		1.00	1.00		1.00		1.00		1.00		1.00	1.
PHF Volume:	475	46	252	44	137	52	28	690	291	175	531	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	-	46	252	44	137	-	28	690	291	175	531	
PCE Adi:	1.00		1.00		1.00			1.00			1.00	1.
MLF Adj:		1.00	1.00		1.00		1.00		1.00		1.00	1.
Final Vol.:			252		137			690	291	175		
Saturation F							'		'			
Sat/Lane:			1900	1900	1900	1900	1900	1900	1900	1900	1900	19
Adjustment:						0.79			0.94		0.61	0.
Lanes:				0.38					0.29			0.
Final Sat.:		92	502	564				1216	513	282		
Capacity Ana	lysis	Modu:	le:									
Vol/Sat:			0.50	0.08	0.08	0.08	0.57	0.57	0.57	0.62	0.62	0.
Crit Moves:		***									***	
Green/Cycle:	0.27	0.27	0.31	0.31	0.31	0.31	0.63	0.63	0.63	0.63	0.63	0.
Volume/Cap:				0.25			0.90	0.90	0.90	0.99	0.99	0.
Delay/Veh:						18.5	22.9		22.9		42.9	42
User DelAdj:					1.00		1.00	1.00	1.00	1.00	1.00	1.
AdiDel/Veh:					18.5		22.9		22.9		42.9	42
DesignOueue:		1	7	1			0	12	5	3	9	
*******											_	

Delay/Veh: 26.4 24.1 24.1 12.4 12.4 12.4 26.9 26.9 26.9 16.8 16.8 16.8 Adjpel/Veh: 26.4 24.1 24.1 12.4 12.4 12.4 26.9 26.9 26.9 16.8 16.8 16.8

DesignQueue: 10 10 0 1 4 3 2 18 7 1 13 2

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 13-1 ______

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

Level Of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative) *************** Intersection #4 Gilman Street / San Pablo Avenue ********************** Loss Time (sec): 12 (Y+R = 5 sec) Average Delay (sec/veh): 68.6 Optimal Cycle: 180 Level Of Service: E ************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|-----|------| Control: Protected Protected Permitted Permitted Rights: Include Include Include Include Min. Green: 4 35 35 4 35 35 31 31 31 31 31 31 Lanes: 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1! 0 0 -----|

Volume Module: >> Count Date: 5 Dec 2002 << 4:00-6:00 PM Base Vol: 140 1057 87 126 830 112 174 345 155 40 233 82 Initial Bse: 140 1057 87 126 830 112 174 345 155 40 233 82 Added Vol: 1 126 0 0 22 0 0 0 0 0 0 0 PasserByVol: 60 183 40 20 180 30 107 50 120 10 30 Λ Initial Fut: 201 1366 127 146 1032 142 281 395 275 50 263 126 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 201 1366 127 146 1032 142 281 395 275 50 263 126

Final Vol.: 201 1366 127 146 1032 142 281 395 275 50 263 126 -----| Saturation Flow Module: Adjustment: 0.95 0.94 0.94 0.95 0.93 0.93 0.57 0.57 0.57 0.67 0.67 Lanes: 1.00 1.83 0.17 1.00 1.76 0.24 0.59 0.83 0.58 0.11 0.60 0.29 Final Sat.: 1805 3260 303 1805 3116 429 636 894 622 146 766 367 -----| Capacity Analysis Module: Crit Moves: **** **** Green/Cycle: 0.12 0.39 0.39 0.08 0.35 0.35 0.41 0.41 0.41 0.41 0.41 0.41 Volume/Cap: 0.95 1.07 1.07 1.07 0.95 0.95 1.07 1.07 0.83 0.83 0.83 Delay/Veh: 94.1 75.7 75.7 143.3 47.1 47.1 80.1 80.1 80.1 40.5 40.5 40.5

AdjDel/Veh: 94.1 75.7 75.7 143.3 47.1 47.1 80.1 80.1 80.1 40.5 40.5 40.5 DesignQueue: 10 52 5 8 41 6 10 14 10 2 9 4

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

Level Of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative)

Intersection							****	****	*****	****	****	*****
Cycle (sec): Loss Time (so Optimal Cycle ************************************	ec): e: *****	7(8 52 ****) 3 (Y+R 2 *****	= 4 :	sec) :	Critica Average Level C	l Vol Delay	./Cap y (se vice: ****	. (X): c/veh): *****	****	0.75 16 ****	59 .3 B *****
Approach: Movement:	No:	rth Во	ound - R	Soi T.	uth B	ound - R	Ea	ast Bo	ound - R	W∈ T	est Bo	ound - R
Control: Rights: Min. Green: Lanes:	17 1 (Permit Inclu 17) 1	ited ide 17 1 0	17 1 (Permi Incl 17 0 1	tted ude 17 1 0	27 0	Perminus Include 27 1 0	tted ude 27 0 1	27 0 (Permit Inclu 27 0 1!	tted ude 27 0 0
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	159 1.00 159 0 60 219 1.00 1.00 219 1.00 219 1.00 1.00	Count 641 1.00 641 9 230 880 1.00 1.00 880 1.00 1.00 880	Date: 14 1.00 14 0 20 34 1.00 1.00 34 0 34 1.00 1.00 34	19 No 112 1.00 112 1 10 123 1.00 1.23 0 123 1.00 123 1.00	200 444 1.00 444 1 220 665 1.00 1.00 665 1.00 1.00	02 << 4 26 1.00 26 0 10 36 1.00 1.00 36 1.00 36 1.00	1.00 - 69 1.00 69 0 10 79 1.00 79 0 79 1.00 1.00	6:00 253 1.00 253 0 10 263 1.00 263 0 263 1.00 1.00 263	PM 49 1.00 49 0 30 79 1.00 79 0 79 1.00 1.00 79 1.00 79 1.00 79 79 1.00 79 79	29 1.00 29 0 20 49 1.00 1.00 49 1.00 1.00	214 1.00 214 0 10 224 1.00 1.00 224 1.00 1.00 224	228 1.00 228 4 100 242 1.00 1.00 242 1.00 1.00 242
Saturation F. Sat/Lane:	low Mo	odule:										
Adjustment: Lanes: Final Sat.:	1.00	1.93 3455	0.07 133	1.00	1.90 3397	0.10 184	0.23	0.77 1125	1.00 1615	0.10 159	0.43 726	0.47 784
Capacity Ana Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap:	lysis 0.36 **** 0.48 0.76	Modul 0.25 0.48 0.53	0.25 0.48 0.53	0.29 0.48 0.60	0.20 0.48 0.41	0.20 0.48 0.41	0.23 0.41 0.57	0.23 0.41 0.57	0.05 0.41 0.12	0.31 0.41 0.76	0.31 **** 0.41 0.76	0.31 0.41 0.76
Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	1.00 26.0 5	1.00 13.1 19	1.00 13.1 1	1.00 18.2 3	1.00 12.0 14	1.00 12.0 1	1.00 17.5 2	1.00 17.5 6	2	1.00 22.8 1	22.8	1.00 22.8 6

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 15-1

2020 With Project Conditions

PM Peak Hour

UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

I.eve	Level Of Service Computation Report							
	ions Method (Future	*	ve)					

Intersection #6 Cedar Stree	t / Martin Luther H	King Way						
******	*****	******	*****					
Cycle (sec): 65	Critica	al Vol./Cap. (X):	1.086					
Loss Time (sec): 8 (Y-	R = 5 sec) Average	e Delay (sec/veh):	51.1					
Optimal Cycle: 180		Of Service:	D					
*******	******	******	*****					
Approach: North Bound		East Bound	West Bound					
Movement: L - T - H			L - T - R					
Control: Permitted	Permitted	Permitted	Permitted					
Rights: Include	Include	Include	Include					
Min. Green: 20 20 2								
	0 0 1! 0 0							
Volume Module: >> Count Dat			60 006 65					
	5 30 541 12	20 297 57						
Growth Adj: 1.00 1.00 1.0 Initial Bse: 53 614	0 1.00 1.00 1.00 5 30 541 12	1.00 1.00 1.00 20 297 57	1.00 1.00 1.00 68 296 65					
	4 0 2 0	0 2 0	1 12 0					
	0 20 80 10	10 110 10	10 30 10					
	9 50 623 22	30 409 67	79 338 75					
User Adj: 1.00 1.00 1.0		1.00 1.00 1.00	1.00 1.00 1.00					
PHF Adj: 1.00 1.00 1.0			1.00 1.00 1.00					
2	9 50 623 22	30 409 67	79 338 75					
	0 0 0 0	0 0 0	0 0 0					
	9 50 623 22	30 409 67	79 338 75					
PCE Adj: 1.00 1.00 1.0		1.00 1.00 1.00	1.00 1.00 1.00					
MLF Adj: 1.00 1.00 1.0			1.00 1.00 1.00					
	9 50 623 22	30 409 67	79 338 75					
Saturation Flow Module:		' '						
Sat/Lane: 1900 1900 190	0 1900 1900 1900	1900 1900 1900	1900 1900 1900					
Adjustment: 0.90 0.90 0.9		0.93 0.93 0.93	0.73 0.73 0.73					
Lanes: 0.07 0.83 0.1		0.06 0.81 0.13	0.16 0.69 0.15					
Final Sat.: 125 1418 16	5 121 1505 53	105 1433 235	224 957 212					
	-							
Capacity Analysis Module:								
	0 0.41 0.41 0.41	0.29 0.29 0.29	0.35 0.35 0.35					
Crit Moves: ****			***					
Green/Cycle: 0.55 0.55 0.5	5 0.55 0.55 0.55	0.33 0.33 0.33	0.33 0.33 0.33					
Volume/Cap: 1.09 1.09 1.0	9 0.75 0.75 0.75	0.88 0.88 0.88	1.09 1.09 1.09					
Delay/Veh: 65.2 65.2 65.	2 13.1 13.1 13.1	37.8 37.8 37.8	89.2 89.2 89.2					
User DelAdj: 1.00 1.00 1.0		1.00 1.00 1.00	1.00 1.00 1.00					
- 1:- 1/ 1 65 0 65 0 65	0 10 1 10 1 10 1	00 00 00 00 0	00 0 00 0 00 0					

				PI	1 Peak	Hour						
		I	Level O	f Serv	rice C	omputa	tion I	Report	:			
			eratio									
*****								*****	*****	****	****	****
Intersection								*****	*****	****	****	****
Cycle (sec):		65				ritica					0.7	
Loss Time (s	ec):		Y+R	= 5 s							16	
Optimal Cycl		52				evel 0			, - , -			В
*****	****	****	****	****	****	****	****	*****	****	****	****	* * * * *
Approach:	Noi	th Bo	ound	Soi	ıth Bo	und	Εa	ast Bo	und	We	est B	ound
Movement:			- R			- R			- R		- T	
 Control:									,			
Rights:	20		1de 20	20		ide 20			1de 22	22		uae 2
Min. Green: Lanes:			1 0			1 0		22				1 0
Lanes:												
Volume Modul										,		
Base Vol:	138	795	. Date:		619	72		275	-M 67	59	341	15
Growth Adi:			1.00			1.00		1.00	1.00		1.00	1.0
Initial Bse:		795	56		619	72	86	275	67	59	341	1.0
Added Vol:	130	7	0	144	1	0	0	273	0	1	13	1.
Future:	20	230	40	20	210	10	10	80	40	60	20	4
Initial Fut:		1032	96	164	830	82	96	361	107	120	374	19
User Adj:	1.00		1.00		1.00			1.00	1.00		1.00	
PHF Adj:		1.00			1.00	1.00		1.00	1.00		1.00	1.0
PHF Volume:		1032	96	164	830	82	96	361	107	120	374	19
Reduct Vol:		0	0	104	0	0	0	0	0	120	0	Δ.
Reduced Vol:	-	1032	96	164	830	82	96	361	107	120	374	19
PCE Adi:			1.00		1.00			1.00			1.00	
MLF Adj:			1.00		1.00			1.00	1.00		1.00	
Final Vol.:			96			82		361	107		374	
Saturation F						'	'		'			
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Adjustment:	0.31	0.94	0.94	0.24	0.94	0.94	0.18	0.97	0.97	0.24	0.95	0.9
Lanes:	1.00	1.83	0.17	1.00	1.82	0.18	1.00	0.77	0.23	1.00	0.66	0.3
Final Sat.:	595	3260	303	460	3243	320	346	1416	420	462	1194	61
Capacity Ana	_											
Vol/Sat:	0.27	0.32	0.32		0.26	0.26	0.28	0.25	0.25	0.26	0.31	0.3
Crit Moves:				****							****	
Green/Cycle:					0.53			0.34			0.34	
Volume/Cap:			0.60		0.48			0.75	0.75		0.93	
Delay/Veh:			4.0			3.2		27.3	27.3		42.8	42.
User DelAdj:			1.00			1.00		1.00	1.00		1.00	
AdjDel/Veh: DesignQueue:			4.0		3.2			27.3	27.3		42.8	42.
	3	19	2	3	15	1	2.	9	.3	.3	1.0	

Adjpel/Veh: 65.2 65.2 65.2 13.1 13.1 13.1 37.8 37.8 37.8 89.2 89.2 89.2 DesignQueue: 1 16 2 1 11 0 1 11 2 2 9 2

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 16-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 17-1 UC Berkeley LRDP EIR 2020 With Project Conditions

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)							
INCELSECTION #0 Cedal Science / Orlond Science	Intersection #9 Cedar Street / Euclid Avenue							
Cycle (sec): 65	Cycle (sec): 60							
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R							
Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 16 16 16 16 16 16 16 16 16 16 16 16 16	Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 17 17 17 17 17 17 17 17 17 17 0 Lanes: 0							
Volume Module: >> Count Date: 6 Nov 2002 << 4:00 - 6:00 PM Base Vol: 91 464 81 17 196 17 18 307 57 61 340 31 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 6 Nov 2002 << 4:00 - 6:00 PM Base Vol: 90 226 29 7 127 44 51 180 49 18 91 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190							
Capacity Analysis Module: Vol/Sat: 0.54 0.54 0.54 0.16 0.16 0.16 0.33 0.33 0.33 0.43 0.43 0.43 Crit Moves: **** Green/Cycle: 0.49 0.49 0.49 0.49 0.49 0.49 0.39 0.39 0.39 0.39 0.39 0.39 Volume/Cap: 1.10 1.10 1.10 0.32 0.32 0.32 0.84 0.84 0.84 1.10 1.10 1.10 Delay/Veh: 80.0 80.0 80.0 11.1 11.1 11.1 30.3 30.3 30.3 90.0 90.0 90.0 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Capacity Analysis Module: Vol/Sat: 0.27 0.27 0.27 0.12 0.12 0.12 0.28 0.28 0.28 0.11 0.11 0.00 Crit Moves: **** Green/Cycle: 0.43 0.43 0.43 0.43 0.43 0.43 0.44 0.44							

			2020			Hour							
			evel 0			Computa	tion 1	Report					
	2000 1	HCM Op	eratio	ns Me	thod (Future	Volu	ne Alt	ternati	ve)			
*****							****	*****	*****	****	****	****	* *
Intersection													
													* *
Cycle (sec): Loss Time (sec		60) /VID	_ 5	7	ritica	T AOT	./Cap.	(X):		0.63		
Optimal Cycl	ec):	40) (ITK	- 5	sec) F	overage	f cor	y (sec	:/veii):		14	. U	
******	□• *****	±****	*****	****	_ *****	****	*****	*****	*****	****	****	****	* * *
Approach:													
Movement:			- R						- R		- T		Ł
													·-
Control:		Permit	ted		Permit	ted	1	Permit	ted		Permi	tted	
Rights:			ıde			ıde		Incl	ıde		Incl	ude	
Min. Green:			17			17	17	17	17	17			
Lanes:			0 0						0 0				
													·-
Volume Modul										1.0	0.1		^
Base Vol:						44		180		18			0
Growth Adj:					1.00	1.00		1.00			1.00		
Initial Bse: Added Vol:				0			51 3		49	18 0			-
Future:	0	3 30			10	0 20	40		40	10			0
Initial Fut:				7		64	94		89	28			
User Adj:						1.00	1.00		1.00		1.00		-
PHF Adj:		1.00			1.00	1.00		1.00	1.00		1.00		
PHF Volume:		259	29	7		64	94		89	28			
		0	0		0	0	0		0	0			-
Reduced Vol:				7		64	94	280	89	28			0
PCE Adj:			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		0
MLF Adj:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0	0
Final Vol.:				7			94		89		159		
													·-
Saturation F													
Sat/Lane:											1900		
Adjustment:											0.91		
Lanes:									0.19				
Final Sat.:						550				259			
	1			1						1			
Capacity Ana	lveis	Modul	۵.										
Vol/Sat:				0.12	0.12	0.12	0.28	0.28	0.28	0.11	0.11	0.0	0 (
Crit Moves:			J /	0.12	J	0.12	0.20	****	0.20	0.11	J	٠.٥	,
Green/Cycle:			0.43	0.43	0.43	0.43	0.44	0.44	0.44	0.44	0.44	0.0	0
Volume/Cap:							0.64				0.25		0
Delay/Veh:					11.3	11.3	15.0	15.0	15.0	10.8	10.8	0.	0
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0	0

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 18-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 19-1 UC Berkeley LRDP EIR

2020 With Project Conditions

PM Peak Hour

2	000 F					-	tion R Volum	~	: :ernati	ve)		
*****	****	****	*****	*****	****	*****	****	****	*****	****	****	*****
Intersection ********									*****	****	****	*****
Cycle (sec): Loss Time (se Optimal Cycle ************************************	:	0			sec) A	verage evel 0	e Delay of Serv	/ (sec	(X): c/veh):		0.90 25.	. 2 D
Approach: Movement:	L -	- T	- R	L -	- T	- R		- Т	- R	L -		- R
Control: Rights: Min. Green: Lanes:	0 0	cop Sicop Si	gn de 0	0 0 0	op Sicop Sic	gn de 0	0 0 0 0	op Si Inclu 0 1!	lgn ide 0	0 0 0 0	op Si Inclu 0 1!	ign ide 0 0 0
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj:	162 1.00 162 7 10 179 1.00 0.90 199 0.199 1.00 1.00	Count 65 1.00 65 0 0 65 1.00 72 1.00 72 1.00 1.00 72	Date: 250 1.00 250 39 30 319 1.00 0.90 354 1.00 1.00 354	4 Dec 33 1.00 33 0 0 33 1.00 0.90 37 0 37 1.00 1.00	2 2002 30 1.00 30 0 0 30 1.00 0.90 33 0 33 1.00 1.00 33	<< 4: 8 1.00 8 0 0 8 1.00 0.90 9 1.00 1.00 9	00-6:0 3 1.00 3 0 0 3 1.00 0.90 3 1.00 1.00	00 PM 159 1.00 159 0 20 179 1.00 0.90 199 0.199 1.00 1.00	45 1.00 45 0 20 65 1.00 0.90 72 0 72 1.00 1.00	22 1.00 : 22 4 10 36 1.00 : 0.90 (40 0 40 1.00 : 1.00 :	111 1.00 111 0 10 121 1.00 0.90 134 0 134 1.00 1.00	25 1.00 25 0 0 25 1.00 0.90 28 1.00 1.00 28
Saturation Fl Adjustment:	ow Mo 1.00 0.32 220	dule: 1.00 0.11 80	1.00 0.57 391	1.00 0.47 239	1.00 0.42 217	1.00 0.11 58	1.00 0.01 7	1.00 0.73 414	1.00 0.26 150	1.00 : 0.20 (1.00 0.66 362	1.00 0.14 75
Capacity Anal Vol/Sat:	ysis		e:		0.15		0.48		0.48	0.37		0.37
Delay Adj:	E	1.00 36.1 E 36.1 1.00 36.1 E	36.1 1.00 36.1 E	10.4 1.00 10.4 B	1.00 10.4 B 10.4 1.00 10.4 B	10.4 1.00 10.4 B		1.00 13.9 B 13.9 1.00 13.9 B	13.9 1.00 13.9 B	:	1.00 12.6 B 12.6 1.00 12.6 B	12.6 1.00 12.6 B

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)							
Intersection #11 Hearst Avenue / Shattuck Avenue							
Cycle (sec): 75 Critical Vol./Cap. Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec	(X): 0.869						
Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec	c/ven): 22.6						
Optimal Cycle: 77 Level Of Service:	· · · · · · · · · · · · · · · · · · ·						
Approach: North Bound South Bound East Bo							
Movement: L - T - R L - T - R L - T							
Movement:							
Control: Permitted Permitted Permit							
Rights: Include Include Include	ide Include						
Min. Green: 22 22 22 22 22 22 22 22							
Lanes: 1 0 1 1 0 1 1 0 0 1 0							
Volume Module: >> Count Date: 12 Nov 2002 << 4:00 - 6:00							
Base Vol: 34 715 63 117 537 54 67 232							
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							
Initial Bse: 34 715 63 117 537 54 67 232	20 122 321 136						
Added Vol: 22 6 -2 0 2 0 0 5							
Future: 20 160 30 60 240 40 50 20							
Initial Fut: 76 881 91 177 779 94 117 257							
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00							
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00							
PHF Volume: 76 881 91 177 779 94 117 257	43 203 378 228						
Reduct Vol: 0 0 0 0 0 0 0 0	0 0 0 0						
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 76 881 91 177 779 94 117 257	43 203 378 228						
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00						
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00 1.00						
Final Vol.: 76 881 91 177 779 94 117 257	43 203 378 228						
Saturation Flow Module:							
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900	1900 1900 1900 1900						
Adjustment: 0.25 0.94 0.94 0.21 0.93 0.93 0.54 0.54							
Lanes: 1.00 1.81 0.19 1.00 1.78 0.22 0.56 1.23							
	213 614 1144 690						
Capacity Analysis Module:							
Vol/Sat: 0.16 0.27 0.27 0.45 0.25 0.25 0.20 0.20							
Crit Moves: ****	****						
Green/Cycle: 0.41 0.41 0.41 0.41 0.41 0.41 0.39 0.39							
Volume/Cap: 0.39 0.67 0.67 1.09 0.60 0.60 0.52 0.52	0.52 0.85 0.85 0.85						
Delay/Veh: 14.1 12.2 12.2 109.6 11.3 11.3 20.0 20.0							
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00							
AdjDel/Veh: 14.1 12.2 12.2 109.6 11.3 11.3 20.0 20.0							
DesignQueue: 2 23 2 4 20 2 3 7							

PM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)											
Intersection #	**************************************											
Cycle (sec): 75												
Approach: Movement:	Noi L -	rth Bo - T	ound - R	Sou L -	ith Bo - T	ound - R	Ea L -	ast Bo	ound - R	We	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	19 1 (Permit Inclu 19) 1	ted ide 19	19 0 :	Permit Inclu 19 L 0	ited ide 19	22	Permit Inclu 22 1 0	tted ude 22 1 0	22 1	Permit Inclu 22 L 0	ited ide 22 1 0
Volume Module: Base Vol: Growth Adj: 1 Initial Bse: Added Vol: Future: Initial Fut: User Adj: 1 PHF Adj: 1 PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: 1	80 1.00 80 -1 30 109 1.00 1.00 109 0	743 1.00 743 103 110 956 1.00 1.00 956 0	315 1.00 315 11 40 366 1.00 1.00 366 0 366	30 1.00 30 17 10 57 1.00 1.00 57 0	458 1.00 458 48 70 576 1.00 576 0 576	25 1.00 25 24 20 69 1.00 1.00 69 0	23 1.00 23 2 0 25 1.00 1.00 25 0 25	267 1.00 267 2 80 349 1.00 1.00 349 0	115 1.00 115 0 40 155 1.00	313 1.00 313 42 40 395 1.00 1.00 395 0	1.00 478 46 1120 1644 1.00 1.00 1644 0	1.00 52 4 10 66 1.00 1.00 66 0
MLF Adj: 1 Final Vol.:	109	956 	366 	57	576	69	1.00	1.00 349	1.00 155	1.00 395	1.00 1644	1.00
Saturation Flo Sat/Lane: 1 Adjustment: 0 Lanes: 1 Final Sat.:	L900 0.17 L.00 319	1900 0.91 1.45 2501	1900 0.91 0.55 957	0.89 0.16 276	0.89 1.64 2786	0.89 0.20 334	0.87 0.09 156	1.32 2174	0.87 0.59 966	0.95 1.00 1796		0.95 0.08 139
Capacity Analy Vol/Sat: (Crit Moves:	ysis 0.34	Modul 0.38 ****	0.38	0.21	0.21	0.21	0.16	0.16	0.16	0.22	0.48	0.48
Green/Cycle: (Volume/Cap: 10 Delay/Veh: 13 User DelAdj: 1 AdjDel/Veh: 13 DesignQueue:	1.07 35.5 1.00 35.5 3	1.20 125 1.00 125 30	1.20 124.6 1.00 124.6 11	0.65 24.4 1.00 24.4 2	0.65 24.4 1.00 24.4 17	0.65 24.4 1.00 24.4 2	0.28 8.4 1.00 8.4 0	0.28 8.4 1.00 8.4 6	8.4 1.00 8.4 3	0.38 8.9 1.00 8.9 7	0.83 16.2 1.00 16.2 33	0.83 16.2 1.00 16.2

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) Intersection #13 Hearst Avenue / Spruce Street ****************** Average Delay (sec/veh): 2.7 Worst Case Level Of Service: C ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Rights: Include Include Include Include Include Lanes: 0 0 0 0 0 0 0 0 1! 0 0 0 1 1 0 0 0 0 1 1 0 -----| Volume Module: >> Count Date: 12 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 0 0 11 0 48 34 579 0 0 792 13 Initial Bse: 0 0 0 11 0 48 34 579 0 0 792 13 Added Vol: 0 0 0 1 0 0 0 29 0 0 92 3 0 0 0 0 0 20 0 130 0 0 170 0 Future: Initial Fut: 0 0 0 12 0 68 34 738 0 0 1054 16 Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.8 xxxx 6.9 4.1 xxxx xxxxx xxxx xxxx xxxxx FollowUpTim:xxxxx xxxx xxxxx 3.5 xxxx 3.3 2.2 xxxx xxxxx xxxx xxxxx xxxxx ______|___| Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 1499 xxxx 535 1070 xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxx xxxxx 115 xxxx 495 659 xxxx xxxxx xxxx xxxx xxxxx Move Cap.: xxxx xxxx xxxxx 111 xxxx 495 659 xxxx xxxxx xxxx xxxx xxxxx ______|___| Level Of Service Module:

Stopped Del:xxxxx xxxx xxxxx xxxxx xxxxx 10.8 xxxx xxxxx xxxxx xxxxx xxxxx LOS by Move: * * * * * B * * * * * Movement: LT - LTR - RT Shrd StpDel:xxxxx xxxxx xxxxx xxxxx 19.6 xxxxx 10.8 xxxx xxxxx xxxxx xxxxx xxxxx Shared LOS: * * * * C * B * * * * * ApproachDel: xxxxxx 19.6 xxxxxx xxxxxx

ApproachLOS:

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 23-1 ______ UC Berkeley LRDP EIR 2020 With Project Conditions

PM Peak Hour

Level Of Service Computation Report

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

Level Of Service Computation Report

2000 HCM Unsignalized Method (Fu	ture Volume Alternative)
*********	*********
Intersection #14 Hearst Avenue / Arch Stree	t / Le Conte Avenue
*********	*********
Average Delay (sec/veh): 2.0	Worst Case Level Of Service: C

Average Delay (sec/v	eh): 2.0 ******) ·*****	Wo:	rst Ca *****	ase Le	evel 0:	E Serv:	ice: *****	C *****
Approach: North	Bound S	outh Bo	ound	Εa	ast Bo	ound	We	est Bo	ound
Movement: L -	T - R L	- T	- R	L -	- T	- R	L ·	- T	- R
Control: Stop	Sign	Stop Si	ign	Und	contro	olled	Un	contr	olled
Rights: In	clude	Inclu	ıde		Incl	ıde		Incl	ıde
Lanes: 0 0									
Volume Module: >> Co									
Base Vol: 0									
Growth Adj: 1.00 1.									
Initial Bse: 0	0 0	6 0	135	146	439	0	0	668	6
Added Vol: 0	0 0	0 0	0	3	26	0	0	96	0
Future: 0	0 0	0 0	40	50	100	0	0	150	0
Initial Fut: 0									
User Adj: 1.00 1.							1.00		
PHF Adj: 1.00 1.				1.00			1.00		
PHF Volume: 0									
Reduct Vol: 0 Final Vol.: 0	0 0	0 0	175	100	- 0	0	0	0	0
		6 0	1/5	199	263	U	U	914	6
Critical Gap Module: Critical Gp:xxxxx xx		0	<i>C</i> 0	4 1					
Critical Gp:xxxxx xx	xx xxxxxx o.	o xxxx	0.9	4.1	XXXX	XXXXX	XXXXX	XXXX	XXXXX
FollowUpTim:xxxxx xx	vv vvvvv 3	5 0000	3 3	2 2		VVVVV	vvvvv	~~~~	VVVVV
Capacity Module:	11		'	1			1 1		'
Cnflict Vol: xxxx xx	xx xxxxxx 159	8 xxxx	460	920	xxxx	xxxxx	xxxx	xxxx	xxxxx
Potent Cap.: xxxx xx						XXXXX			

Move Cap.: xxxx xxxx xxxx 79 xxxx 554 750 xxxx xxxxx xxxx xxxx xxxx

-----|

LOS by Move: * * * * * B * * * *

Movement: LT - LTR - RT
Shared LOS: * * * * C * * * * * * *

*

ApproachDel: xxxxxx 17.7 xxxxxx xxxxxx

C

Level Of Service Module:

ApproachLOS:

2000 HCM Unsignalized Method (Future Volume Alternative) Intersection #15 Hearst Avenue / Scenic Avenue ************************* Average Delay (sec/veh): 0.9 Worst Case Level Of Service: B *********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Rights: Include Include Include Include Lanes: 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 1 1 0 -----|----|-----|------| Volume Module: >> Count Date: 12 Nov 2002 << 4:00-6:00 PM Base Vol: 0 0 0 0 109 0 437 0 0 566 54 Initial Bse: 0 0 0 0 109 0 437 0 0 566 54 Added Vol: 0 0 0 0 11 0 0 0 84 0 0 0 0 0 0 30 0 100 0 0 140 10 Future: Initial Fut: 0 0 0 0 150 0 537 0 0 790 64 PHF Volume: 0 0 0 0 150 0 537 0 0 790 64 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 0 0 0 0 0 150 0 537 0 0 0 0 0 790 64 Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx xxxxx xxxx 6.9 xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx ______|___|___| Capacity Module: ______|___|___| Level Of Service Module: LOS by Move: * * * * B * * * * * Movement: LT - LTR - RT

ApproachIOS: xxxxx 13.3 xxxxx xxxxx ApproachIOS: * B * *

ApproachLOS:

UC Berkeley LRDP EIR

2020 With Project Conditions

PM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

		HCM Op	eratio	ns Me	thod (Volu	me Alt	ernati			
************** Intersection	#16	Hearst	Avenu	e / E	uclid	Avenue						
********* Cycle (sec): Loss Time (sec) Optimal Cycle ************	ec): e:	80 12 53	(Y+R	= 3	C sec) A L	ritica verage evel 0	l Vol Dela f Ser	./Cap. y (sec vice:	(X): c/veh):		0.63 17	32 .2 B
Approach: Movement:											est Bo	ound
Movement:	L ·	- T	- R	L .	- Т 	- R	L .	- T	- R	L -	- T	
Control: Rights: Min. Green:		Permit	ted		Permit	ted		Permit	ited ide 0		Permit	ted
Lanes:	0	0 1!	0 0	0	0 1!	0 0	1	0 1	0 0	0 (1!	0 0
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol:	1.00 4 0	Count 0 1.00 0 0	Date: 1 1.00 1 0	5 De 57 1.00 57 0	0 1.00 0 0	<< 4: 115 1.00 115 0	00-6: 120 1.00	307 1.00 307 26	0 1.00 0 0	2 1.00 2 0	503 1.00 503	23
Future: Initial Fut: User Adj: PHF Adj: PHF Volume:	1.00 1.00 4	1.00 1.00 0	1.00	1.00	1.00	155 1.00 1.00 155	160 1.00 1.00 160	413 1.00 1.00 413	0 1.00 1.00	2 1.00 1.00 2	707 1.00 1.00 707	36 1.00 1.00 36
Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	4 1.00 1.00 4	0 1.00 1.00	1 1.00 1.00	1.00	0 1.00 1.00	1.00 155	160 1.00 1.00 160		0 1.00 1.00	1.00 1.00 2	1.00 1.00 707	1.00
Saturation F. Sat/Lane: Adjustment: Lanes: Final Sat.:	low M 1900 0.86 0.80 1307	1900 1.00 0.00	1900 0.86 0.20 327	1900 0.82 0.30 470	1900 1.00 0.00 0	1900 0.82 0.70 1088	1900 0.56 1.00 1058	1900 1.00 1.00 1900	1900 1.00 0.00	1900 0.99 0.01 5	1900 0.99 0.95 1792	1900 0.99 0.04 91
Capacity Ana Vol/Sat: Crit Moves:	lysis	Modul	e:								0.39	
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	0.01 19.0 1.00 19.0	0.00 0.0 1.00 0.0	0.01 19.0 1.00 19.0	0.46 25.1 1.00 25.1	0.00 0.0 1.00 0.0	0.46 25.1 1.00 25.1	0.28 11.3 1.00 11.3	0.40 12.1 1.00 12.1	0.0 1.00 0.0	0.73 18.8 1.00	0.54 0.73 18.8 1.00 18.8 16	0.54 0.73 18.8 1.00 18.8

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) Intersection #17 Hearst Avenue / Le Roy Avenue ******************* Average Delay (sec/veh): 2.5 Worst Case Level Of Service: C ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Rights: Include Includ -----|----|-----|------| Volume Module: >> Count Date: 5 Dec 2002 << 4:00-6:00 PM Base Vol: 0 0 0 12 0 56 38 355 0 0 523 21 Initial Bse: 0 0 0 12 0 56 38 355 0 0 523 21 Added Vol: 0 0 0 0 0 0 27 0 0 76 0 0 0 0 0 10 20 90 0 0 140 10 Future: Initial Fut: 0 0 0 12 0 66 58 472 0 0 739 31 Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.4 xxxx 6.2 4.1 xxxx xxxxx xxxx xxxx xxxxx FollowUpTim:xxxxx xxxxx xxxxx 3.5 xxxx 3.3 2.2 xxxx xxxxx xxxxx xxxxx xxxxx ______|___|___| Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 1331 xxxx 755 770 xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxx xxxxx 163 xxxx 412 854 xxxx xxxxx xxxx xxxx xxxxx Move Cap.: xxxx xxxx xxxxx 154 xxxx 412 854 xxxx xxxxx xxxx xxxx xxxxx ______|___|___| Level Of Service Module: LOS by Move: * * * * * A * * * * Movement: LT - LTR - RT Shrd StpDel:xxxxx xxxxx xxxxx xxxxx 19.4 xxxxx 9.5 xxxx xxxxx xxxxx xxxxx xxxxx Shared LOS: * * * * C * A * * * * *

ApproachDel: xxxxxx 19.4 xxxxxx xxxxxx

ApproachLOS:

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 27-1

UC Berkeley LRDP EIR

2020 With Project Conditions

PM Peak Hour

PM Peak Hour
Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)
Intersection #18 Hearst Avenue / Gayley Road / LaLoma Avenue
Cycle (sec): 70 Critical Vol./Cap. (X): 1.117 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 69.0 Optimal Cycle: 180 Level Of Service: E
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Min. Green: 18 18 18 18 18 18 17 17 17 17 17 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 1! 0 0 0 1 0 0 1
Volume Module: >> Count Date: 5 Dec 2002 << 4:00-6:00 PM Base Vol: 318 288 19 4 203 49 28 52 288 69 197 40 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
PHF Volume: 434 346 36 4 215 69 48 88 368 87 307 50 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Capacity Analysis Module: Vol/Sat: 0.63 0.63 0.63 0.16 0.16 0.16 0.36 0.36 0.36 0.29 0.29 0.03 Crit Moves: ****
Green/Cycle: 0.57 0.57 0.57 0.57 0.57 0.57 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)	
Intersection #18 Hearst Avenue / Gayley Road / LaLoma Avenue	Intersection #19 Berkeley Way / Oxford Street
Cycle (sec): 70	Cycle (sec): 75
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Permitted Permitted Permitted Permitted Permitted Include Includ	Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 18 18 18 18 20 20 20 20 20 20 Lanes: 1 0 1 0 1 0 0 1! 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Volume Module: >> Count Date: 5 Dec 2002 << 4:00-6:00 PM Base Vol: 318 288 19 4 203 49 28 52 288 69 197 40	Volume Module: >> Count Date: 12 Nov 2002 << 4:00 - 6:00 PM Base Vol: 48 1039 3 4 890 22 72 2 51 29 18 42
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Initial Bse: 48 1039 3 4 890 22 72 2 51 29 18 42 Added Vol: 5 90 0 0 87 3 23 0 34 0 0 0
Initial Fut: 434 346 36 4 215 69 48 88 368 87 307 50 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Initial Fut: 73 1289 3 4 1147 25 105 2 95 49 18 52 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
PHF Volume: 434 346 36 4 215 69 48 88 368 87 307 50 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Saturation Flow Module:	Saturation Flow Module:
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Capacity Analysis Module: Vol/Sat: 0.63 0.63 0.63 0.16 0.16 0.16 0.36 0.36 0.36 0.29 0.29 0.03 Crit Moves: ****	Capacity Analysis Module:
Green/Cycle: 0.57 0.57 0.57 0.57 0.57 0.57 0.32 0.32 0.32 0.32 0.32 0.32 Volume/Cap: 1.12 1.12 1.12 0.28 0.28 0.28 1.12 1.12 1.12 0.89 0.89 0.10 Delay/Veh: 85.3 85.3 85.3 85.3 8.5 8.5 8.5 101.2 101 101.2 44.7 44.7 16.6	Volume/Cap: 0.33 0.57 0.57 0.02 0.52 0.52 0.53 0.53 0.53 0.13 0.16 0.16 Delay/Veh: 7.4 8.5 8.5 5.3 8.0 8.0 24.9 24.9 24.9 21.0 21.2 21.2
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	· · · · · · · · · · · · · · · · · · ·

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 28-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 29-1

2020 With Project Conditions

PM Peak Hour

UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)

*****	****	****	****	****	****	*****	****	****	*****	****	****	*****
Intersection	#20 1	Univer	sity A	venue	/ Si:	xth Str	eet	****	*****	*****	****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle	ec):	128 16 180	(Y+R	= 5 s	sec) i	Critica Average Level C	l Vol Delay	./Cap y (sec vice:	(X): c/veh):	:	1.0	45 .1 F
Approach: Movement:	L ·	rth Bo - T	- R		- T	- R		- T	- R	L ·	est Bo - T	- R
Control: Rights: Min. Green: Lanes:	Pro 6	ot+Per Inclu 23 0 1	mit de 23 0 1	0	Permit Inclu 23) 1	tted ude 23 0 1	6 1 (rotect Inclu 15) 1	ted ude 15 1 0	P: 6 1 (rotect Inclu 15) 1	ted ude 15 1 0
Volume Module							'					
Volume Module Base Vol:	343	353	48	101	2002 239 1.00	465	163	827	212		1205	33
Growth Adj: Initial Bse:	1.00	353	1.00	101	239	1.00 465	1.00	827	1.00		1.00 1205	1.00
Added Vol:	0	4	2	0	19	8	1	36	0	5	264	0
Future:	10	70	40	100	130	100	20	200	20	20	120	10
Initial Fut:		427	90	201	388	573		1063	232		1589	43
User Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Adj: PHF Volume:	353	1.00	1.00	201	1.00	1.00 573		1.00	1.00		1.00	1.00
Reduct Vol:	333	427	90	201	388	0	184	1063	232	0	1389	43
Reduced Vol:		427	90	201	388	573		1063			1589	43
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Final Vol.:		427	90	201	388	573		1063	232		1589	43
Saturation F	low M	odule:										
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:			0.85		1.00	0.85		0.92	0.92		0.95	0.95
Lanes:		1.00	1.00		1.00	1.00		1.64			1.95	0.05
Final Sat.:			1615		1900	1615		2883	629		3501	95
Capacity Anal Vol/Sat:	0.19		e: 0.06	0 11	0 00	0.35	0 10	0 27	0.37	0 04	0.45	0.45
Crit Moves:	****	0.22	0.00	0.11	0.20	****		0.37	0.37	0.04	****	0.43
Green/Cycle:		0 33	0.33	0.28	0 28	0.28	0.08	0 39	0.39	0.05	0.36	0.36
Volume/Cap:			0.17		0.73	1.26		0.94			1.26	1.26
Delay/Veh:			31.1			181.6				112.4		166.3
User DelAdj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
AdjDel/Veh:		42.9	31.1			181.6				112.4		166.3
DesignQueue:	22	22	4	11	21	32	12	50	11	5	82	2
****	****	****	*****	****	****	*****	****	****	*****	****	****	*****

			F1	M reak	. nour							_
		Level (of Sari	rice C	'omniit	tion 1	Penort					
200	00 HCM (-		-		170)			
********										****	*****	*
Intersection #2	21 Unive	ersity A	Avenue	/ San	Pablo) Aven	ue					
*******			*****									
Cycle (sec):	. 12							. (X):		1.10		
Loss Time (sec)		.6 (Y+R	= 4 :					c/ven):		197		
Optimal Cycle:		30				of Ser					F	
* *	North E					E				est Bo		
	L - T				- R			- R		- T		
												l
Control:		ted	P:	rotect	ed	P:		ted	P:	rotect		
Rights:		.ude	_	Inclu		_	Incl		_	Incl		
Min. Green:	5 21				21	5		22	5		22	
	1 0 1				1 0		0 1			0 1		
												l
Volume Module:												
	233 945		141	681	84	87		105	71	906	125	
_	.00 1.00			1.00	1.00		1.00	1.00		1.00	1.00	
	233 945		141	681	84	87	986	105	71	906	125	
Added Vol:	1 19		10	8	0	0	38	0	6	268	80	
Future:	50 90		20	220	60	90	190	80	10	60	20	
	284 1054		171	909	144		1214	185		1234	225	
	.00 1.00			1.00	1.00		1.00	1.00		1.00	1.00	
_	.00 1.00			1.00	1.00		1.00	1.00		1.00	1.00	
	284 1054		171	909	144		1214	185		1234	225	
Reduct Vol:	0 (-	0	0	0	0	0	0	0	0	0	
	284 1054		171	909	144		1214	185		1234	225	
_	.00 1.00			1.00	1.00		1.00	1.00		1.00	1.00	
_	.00 1.00			1.00	1.00		1.00	1.00		1.00	1.00	
	284 1054			909	144		1214	185		1234	225	
	900 1900		1900	1900	1900	1900	1900	1900	1900	1900	1900	
	.95 0.94			0.93	0.93		0.93			0.93	0.93	
_	.00 1.82			1.73	0.27		1.74			1.69	0.31	
	305 3243			3051	483		3070	468		2983	544	
Capacity Analys											'	
Vol/Sat: 0.	.16 0.33	0.33	0.09	0.30	0.30	0.10	0.40	0.40	0.05	0.41	0.41	
Crit Moves: *	***			****		****				****		
Green/Cycle: 0.	.14 0.28	0.28	0.09	0.28	0.28	0.09	0.21	0.21	0.05	0.37	0.37	
Volume/Cap: 1.	.12 1.16	1.16	1.00	1.06	1.06	1.12	1.88	1.88	0.97	1.12	1.12	
Delay/Veh: 149	9.3 130	129.7	126.6	93.3	93.3	167.5	453	453.0	149.3	107	107.0	
User DelAdj: 1.	.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
AdjDel/Veh: 149	9.3 130	129.7	126.6	93.3	93.3	167.5	453	453.0	149.3	107	107.0	
DesignQueue:	18 59	6	11	50	8	12	76	12	6	62	11	

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

		ICM Op	eratio	ns Met	thod		e Volur	me Al	ternati			
******										*****	****	*****
Intersection *******										*****	****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle	:	180	(Y+R		sec) i	Average Level (e Delay	y (se vice:	. (X): c/veh):	:	0.9 40	.7 D
Approach:	Nor	th Bo	und	Soı	ıth B	ound	Ea	ast B	ound	We	est B	ound
Movement:									- R			- R
Control: Rights: Min. Green:	Pro	t+Per Inclu	mit .	I	Permi				tted		Permi Incl	tted
Lanes:	1 0	1	1 0	1 () 1	1 0	1 (0 1	1 0	1 () 1	1 0
Volume Module Base Vol: Growth Adj:	282 1.00	Count 902 1.00	Date: 78 1.00	21 No 46 1.00	702 1.00	02 << 77 1.00	4:00 - 80 1.00	6:00 679 1.00	PM 134 1.00	71 1.00	727 1.00	81 1.00
Initial Bse: Added Vol: Future:	12 30	902 25 200	78 0 20	46 0 30	702 3 60	1 10	80 0 30	679 49 170	134 0 40	71 3 10	727 343 70	81 0 10
<pre>Initial Fut: User Adj: PHF Adj:</pre>	324 1.00 1.00	1.00	98 1.00 1.00		765 1.00 1.00	88 1.00 1.00		898 1.00 1.00	174 1.00 1.00	1.00	1140 1.00 1.00	91 1.00 1.00
PHF Volume: Reduct Vol: Reduced Vol:	324 0	1127 0 1127	98 0 98	76 0 76	765 0 765	88 0 88	110 0 110	898 0 898	174 0 174	0	1140 0 1140	91 0 91
PCE Adj: MLF Adj: Final Vol.:	1.00	1.00	1.00 1.00 98	1.00	1.00 1.00 765	1.00	1.00	1.00	1.00	1.00	1.00 1.00 1140	1.00 1.00 91
	1900 0.37 1.00	1900 0.94 1.84	0.16	0.13 1.00		0.94	0.14	1.68	0.93	0.14		0.94 0.15
Final Sat.:						367		2951			3306	
Capacity Anal Vol/Sat: Crit Moves:	0.46			0.30	0.24	0.24	0.41	0.30	0.30	0.31	0.34	0.34
<pre>Green/Cycle: Volume/Cap:</pre>	0.52	0.66	0.66	0.78	0.39	0.62		0.33	0.91		0.33	
Delay/Veh: User DelAdj: AdjDel/Veh:	37.8	1.00 12.8	12.8 1.00 12.8	1.00 66.6	21.2 1.00 21.2	1.00	1.00 198.4	1.00 39.4	1.00	1.00 107.5	1.00 63.7	1.00 63.7
DesignQueue:			2 *****		24	3 *****	4		6 *****	3		3 *****

	f Service Computation Report ns Method (Future Volume Alternat	ive)
*****************	*************************	******
Intersection #23 University A	<i>g</i> enue / Milvia Street	*****
Cycle (sec): 75	Critical Vol./Cap. (X):	0.643
Loss Time (sec): 8 (Y+R	Critical Vol./Cap. (X): = 4 sec) Average Delay (sec/veh)	: 23.0
Optimal Cycle: 49	Level Of Service:	C
*******	******	******
	South Bound East Bound	
Movement: L - T - R		
Control: Permitted Rights: Include	Permitted Permitted Include Include	Permitted Include
Min. Green: 21 21 21	21 21 21 20 20 20	
Lanes: 1 0 0 1 0	0 0 1! 0 0 0 1 0 1 0	
·	21 Nov 2002 << 4:00 - 6:00 PM	
Base Vol: 127 218 44	13 102 74 47 649 108	22 651 33
Growth Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00
Initial Bse: 127 218 44	13 102 74 47 649 108	22 651 33
Added Vol: 0 0 0	0 0 0 0 50 0	
Future: 10 10 10	10 10 10 20 180 20	10 80 20
Initial Fut: 137 228 54	23 112 84 67 879 128	32 1077 53
User Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00
PHF Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00
PHF Volume: 137 228 54	23 112 84 67 879 128	32 1077 53
Reduct Vol: 0 0 0	0 0 0 0 0	
Reduced Vol: 137 228 54	23 112 84 67 879 128	32 1077 53
PCE Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00	
MLF Adj: 1.00 1.00 1.00 Final Vol.: 137 228 54	1.00 1.00 1.00 1.00 1.00 1.00 23 112 84 67 879 128	1.00 1.00 1.00 32 1077 53
	23 112 84 67 879 128 	
Saturation Flow Module:		
Sat/Lane: 1900 1900 1900	1900 1900 1900 1900 1900 1900	1900 1900 1900
Adjustment: 0.70 0.97 0.97	0.90 0.90 0.90 0.67 0.67 0.67	
Lanes: 1.00 0.81 0.19	0.11 0.51 0.38 0.12 1.64 0.24	
Final Sat.: 1336 1492 353	180 875 656 159 2086 304	
Capacity Analysis Module:		
Vol/Sat: 0.10 0.15 0.15	0.13 0.13 0.13 0.42 0.42 0.42	0.36 0.36 0.36
Crit Moves: ****	* * * *	
Green/Cycle: 0.35 0.35 0.35	0.35 0.35 0.35 0.47 0.47 0.47	
Volume/Cap: 0.30 0.44 0.44	0.37 0.37 0.37 0.89 0.89 0.89	
Delay/Veh: 19.5 21.1 21.1	20.1 20.1 20.1 28.0 28.0 28.0	19.9 19.9 19.9
User DelAdj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00
AdjDel/Veh: 19.5 21.1 21.1	20.1 20.1 20.1 28.0 28.0 28.0	19.9 19.9 19.9
DesignQueue: 4 6 2	1 3 2 2 21 3	
*********	**********	******

UC Berkeley LRDP EIR

2020 With Project Conditions

PM Peak Hour

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 33-1 UC Berkeley LRDP EIR 2020 With Project Conditions

PM Peak Hour

		Т	evel ()f Serv	vice (Computa	ation I	Repor	t.			
2	2000 E								ternati	ve)		
*****											****	****
Intersection									******	*****	****	*****
Cycle (sec):		75							. (X):			
Toss Time (sec).	20).	, ,) } (V+D	= 4	eec) ;	Aversa	nelar	., Cap	· (A) ·		21.	
Loss Time (se Optimal Cycle	3.	86	, (1117	- 1.	300, 2	Latral (of Sart	7 (5C)	c/ veii) .		21.	Ċ
******	- • * * * * * * *	****	, :*****	*****	:***	*****	*****	****	*****	*****	****	*****
Approach:												
Movement:												
Control:												
		Inclu				ıde					Inclu	
Rights:		Incit		1.0	Incl	uae 1.0	1.0	INCL	ude	16	INCIL	
Min. Green:			0 0							0 1		16 1 1
Lanes:												
Volume Module												
Base Vol:	0	0	Date:	55		146	131		254	74	642	640
Growth Adj:		1.00	1.00		1.00			1.00		1.00		1.00
Initial Bse:		0	0	55	576	146	131			74		640
Added Vol:	0	0	0	0	74	50	7			4	296	5
Future:	0	0	0	30	230	30	40	100	50	10	80	130
Initial Fut:		0	0	85	880		178	501	320		1018	775
_	1.00		1.00		1.00			1.00		1.00		1.00
PHF Adj:	1.00		1.00		1.00			1.00	1.00	1.00		1.00
PHF Volume:	0	0	0	85	880	226	178	501	320		1018	775
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:		0	0	85	880		178	501	320		1018	775
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	0	0	0	85	880	226	178	501	320	88	1018	775
Saturation F	Low Mo	dule:										
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	1.00	1.00	1.00	0.77	0.77	0.77	0.18	0.81	0.81	0.68	0.68	0.68
Lanes:	0.00	0.00	0.00		2.22			1.22		0.14		1.24
Final Sat.:		0	0			837		1868		181 2		1590
Capacity Anal												
Vol/Sat:	0.00	0.00	0.00	0.27	0.27	0.27		0.27	0.27	0.49	0.49	0.49
Crit Moves:					****		****					
Green/Cycle:			0.00	0.30	0.30	0.30	0.59	0.59	0.59	0.59	0.59	0.59
Volume/Cap:	0.00	0.00	0.00	0.90	0.90	0.90	0.90	0.45	0.45	0.82	0.82	0.82
Delay/Veh:	0.0	0.0	0.0	34.8	34.8	34.8	54.9	9.3	9.3	15.7	15.7	15.7
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdiDel/Web.	0 0	\cap \cap	0 0	3/1 8	3/1/8	3/1 8	5/1 9	9 3	9 3	15 7	15 7	15 7

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************		Level Of Service Co 2000 HCM Operations Method (F							
Intersection #24 University Avenue / SB Shattuck Avenue	Intersection ********	Intersection #25 University Avenue / NB Shattuck Avenue							
Optimal Cycle: 86 Level Of Service:	897	ec): 15 (Y+R = 4 sec) Av e: 53 Le	itical Vol./Cap. (X): erage Delay (sec/veh): vel Of Service: ************************************	0.613 18.5 B					
Approach: North Bound South Bound East Bound West F Movement: L - T - R L - T - R L - T - R L - T	- R Movement:	North Bound South Bou L - T - R L - T -	R L - T - R	West Bound L - T - R					
	1 1 Lanes:	Protected Protecte Include Include	e Include 0 0 13 0 0 0 0 2 0 0	Protected Include 0 13 0 0 0 2 0 0					
Volume Module: >> Count Date: 12 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 0 0 55 576 146 131 374 254 74 642 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module 2 640 Base Vol: 0 1.00 Growth Adj: 1.01 Initial Bse: 6 5 Added Vol: 0 130 Future: 8 775 Initial Fut: 0 1.00 User Adj: 0 1.00 PHF Adj: 8 775 PHF Volume: 0 0 Reduct Vol: 8 775 Reduced Vol: 9 775 Reduced Vol: 1.00 PCE Adj: 0 1.00 MLF Adj: 9 775 Final Vol.:	e: >> Count Date: 12 Nov 2002 938	<pre><< 4:00 - 6:00 PM 0</pre>	0 433 0 1.00 1.00 1.00 0 433 0 0 150 0 0 70 0 0 653 0 1.00 1.00 1.00 1.00 1.00 1.00 0 653 0 0 0 0 0 653 0 1.00 1.00 1.00 0 653 0 1.00 1.00 1.00 0 653 0 1.00 1.00 1.00					
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Saturation F. 0 1900 Sat/Lane: 8 0.68 Adjustment: 2 1.24 Lanes: 8 1590 Final Sat.:	1900 1900 1900 1900 1900 0.82 1.00 0.84 1.00 1.00	1900 1900 1900 1900 1.00 1.00 0.86 1.00 0.00 0.00 2.00 0.00 0 0 3249 0	1900 1900 1900 1.00 0.86 1.00 0.00 2.00 0.00 0 3249 0					
Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.27 0.27 0.27 0.53 0.27 0.27 0.49 0.49 Crit Moves: **** **** Green/Cycle: 0.00 0.00 0.00 0.30 0.30 0.30 0.59 0.59 0.59 0.59 0.59 Volume/Cap: 0.00 0.00 0.00 0.90 0.90 0.90 0.90 0.45 0.45 0.82 0.82 Delay/Veh: 0.0 0.0 0.0 34.8 34.8 34.8 54.9 9.3 9.3 15.7 15.7 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Capacity Ana. 9 0.49 Vol/Sat:	lysis Module: 0.29 0.00 0.13 0.00 0.00 **** 0.47 0.00 0.47 0.00 0.00 0.61 0.00 0.28 0.00 0.00 15.9 0.0 12.2 0.0 0.0 1.00 1.00 1.00 1.00 1.00		0.00 0.20 0.00 **** 0.00 0.33 0.00 0.00 0.61 0.00 0.0 23.9 0.0 1.00 1.00 1.00 0.0 23.9 0.0					
DesignQueue: 0 0 0 3 27 7 3 9 6 2 19	9 14 DesignQueue: *******	29 0 6 0 0 *********	0 0 14 0	0 19 0					

2020 With Project Conditions

		L	evel 0	f Ser	vice (Computa	tion 1	Report	 t			
									ternati			
*****								****	*****	*****	****	*****
Intersection								****	*****	****	****	****
Cycle (sec):		75				Critica	l Vol	./Cap	. (X):		0.87	7.4
Loss Time (se	ec):	4	(Y+R :	= 4 :	sec) A	Average	Dela	y (sec	c/veh):		29.	. 2
Optimal Cycle	e: 123 Level Of Service: C											
******	****	*****	****	****	****	*****	****	****	*****	****	****	*****
Approach:	No	rth Bo	und	Soi	ath Bo	ound	Εċ	ast Bo	ound	W∈	st Bo	ound
						- R				L -		
Control:	Pro											
Rights:									ıde			ıde
Min. Green:			18			18						18
Lanes:			1 0			1 0			0 1		1!	
77. 1 M. 1. 1.												
Volume Module Base Vol:		771	16		ov ∠uu 835	106	306	39	330	9	37	40
	1.00		1.00		1.00	1.00		1.00	1.00			1.00
Initial Bse:		771	1.00		835	106	306		330	1.00	37	40
Added Vol:	90	75	0	0		66	22		19	-2	-6	-2
Future:		130	0	10		30	20		20	-2	10	10
Initial Fut:		976	16		1050	202	348	48	369	7	41	48
User Adj:			1.00		1.00			1.00			1.00	1.00
	1.00		1.00		1.00	1.00		1.00	1.00	1.00		1.00
PHF Volume:	418	976	16		1050	202	348	48	369	7	41	48
Reduct Vol:		0	0		0	0	0	0	0	0	0	0
Reduced Vol:			16	-	1050		348	48		7	41	48
PCE Adj:			1.00		1.00			1.00			1.00	
_	1.00		1.00		1.00			1.00		1.00		1.00
Final Vol.:	418	976	16	42	1050	202	348	48	369	7	41	48
Saturation F	low Mo	odule:										
Sat/Lane:			1900		1900			1900	1900		1900	1900
Adjustment:								0.59				0.83
Lanes:						0.32		0.24			0.43	
Final Sat.:								274			673	
Capacity Anal					0 00	0 00	0 10	0 10	0.05	0 00	0 00	0.06
Vol/Sat:	****	0.31	0.31	0.09	U.39	0.39	0.18	0.18	0.25	0.06	0.06	0.06
Crit Moves:		0 00	0 60	0 41		0 41	0 07	0 07		0 07	0 07	0 07
Green/Cycle:			0.68	0.41	0.41			0.27	0.27	0.27	0.27	0.27
Volume/Cap:			6.1		37.9			30.2			22.8	
Delay/Veh: User DelAdj:			1.00		1.00			1.00		1.00		1.00
AdiDel/Veh:			6.1		37.9	37.9		30.2		22.8		22.8
DesignQueue:			0.1			5/.9		20.2			22.8	22.8
*********												_

rm reak hour
Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)

*****	****	****	****	*****	****	****	****	****	*****	****	****	*****
Intersection										*****	****	*****
Average Dela										f Serv.) *****
Approach:	No	rth B	ound	So	uth B	ound	E	ast B	ound	W	est B	ound
Movement:												
Control:												
Rights:		Incl	ude		Incl	ude		Incl	ude		Incl	ude
			0 0									
Volume Module												
Base Vol:	59						41			0	0	Λ
Growth Adj:												
Initial Bse:											1.00	
Added Vol:			0	0	43	-3	41 -19	0	-12		0	0
	20		0	0	60	10	10	0	20		0	•
Initial Fut:							32		89		0	-
User Adj:										1.00	-	_
PHF Adi:										1.00		
	77						32					
			0						0		-	-
Final Vol.:										0		-
Critical Gap												
Critical Gp:			xxxxx	xxxxx	xxxx	xxxxx	6.4	xxxx	6.2	xxxxx	xxxx	xxxxx
FollowUpTim:												xxxxx
Capacity Mod	ule:											
Cnflict Vol:												
Potent Cap.:	932	XXXX	XXXXX	XXXX	XXXX	XXXXX	130	XXXX	481	XXXX	XXXX	XXXXX
Move Cap.:										XXXX		
Level Of Ser												
Stopped Del:				xxxxx	xxxx	xxxxx	45.0	xxxx	14.2	xxxxx	xxxx	xxxxx
LOS by Move:											*	
Movement:										LT ·	- LTR	- RT
Shared Cap.:												
Shrd StpDel:	xxxxx	xxxx	XXXXX	xxxxx	XXXX	XXXXX	XXXXX	XXXX	xxxxx	xxxxx	XXXX	XXXXX
Shared LOS:	*	*	*	*	*	*	*	*	*	*	*	*
ApproachDel:	X	xxxxx		X	xxxxx			22.3		X	xxxxx	
ApproachLOS:		*			*			C			*	

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 36-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 37-1 UC Berkeley LRDP EIR 2020 With Project Conditions

21	000 11					Computa (Futu:						
*****											****	*****
Intersection								****	*****	*****	****	*****
Average Delay				2.0		Wo						E
		rth Bo			uth B			ast B			est Bo	
Movement:	L	- т	- R			- R			- R			
Control:						olled				S1		
Rights:		Incl	ıde		Incl	ude		Incl	ude		Incl	ıde
Lanes:			0 0			1 0			0 0		0 0	
Volume Module												
Base Vol:		1006	0	0	952	28	10	0	114	0	0	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:		1006	0	0	952	28	10	0	114	0	0	0
Added Vol:		149	0		70	2	16	0	18	0	0	0
Future:		180	0		170	10	0	0	10	0	0	0
Initial Fut:		1.00	1 00	0		40	26	1 00	142	0	0	1.00
User Adj: PHF Adj:		0.94		1.00	0.94	1.00	1.00	0.94	1.00		1.00	0.94
PHF Volume:		1420	0.94		1268	43	28	0.94	151	0.94	0.94	0.94
Reduct Vol:		0	0		0	0	0	0	0	0	0	0
Final Vol.:		1420	0		1268	43	28	0	151	0	0	0
Critical Gap	Modu	le:										
Critical Gp:										XXXXX	xxxx	XXXXX
FollowUpTim:								XXXX		xxxxx		
Capacity Mod												
Cnflict Vol:		xxxx	xxxxx	xxxx	xxxx	xxxxx	1710	xxxx	83	XXXX	xxxx	xxxxx
Potent Cap.:	581	xxxx	xxxxx	XXXX	xxxx	XXXXX				XXXX	xxxx	XXXXX
Move Cap.:								XXXX				XXXXX
Level Of Serv												
Stopped Del:				xxxxx	xxxx	xxxxx	xxxxx	xxxx	xxxxx	xxxxx	xxxx	xxxxx
LOS by Move:	В	*	*	*	*	*	*	*	*	*	*	*
Movement:	LT	- LTR	- RT	LT ·	- LTR	- RT	LT ·	- LTR	- RT	LT ·	- LTR	- RT
Shared Cap.:												
Shrd StpDel:										XXXXX	XXXX	XXXXX
Shared LOS:		*	*		*	*	*	E	*	*	*	*
ApproachDel:	X	XXXXX *		X.	XXXXX *			44.5		X	XXXXX *	
ApproachLOS:		^			^			Ε			^	

		2020 W1		ect Con k Hour	altion	ns				
200	Le O HCM Ope	evel Of S						\		
ZUU *******									****	****
Intersection #2										
******						*****	****	****	****	*****
Cvcle (sec):	75			Critica	l Vol.	./Cap.	(X):		0.63	0
Loss Time (sec)	: 12	(Y+R = 1	0 sec)	Average	Delay	y (sec	:/veh):		17.	3
Optimal Cycle:	67			Level O	f Serv	vice:				В
******								****	****	*****
Approach:									st Bo	
	- T									
Control:	Permit	ted de	Permi	tted	I	Permit	ted	P	ermit	ted
Rights:	Inclu	de	Incl	ude		Inclu	ıde		Inclu	.de
Min. Green:	0 0	0	30 30	2.0	0	17	17	25	25	0
	0 0 0		1 1				1 0	0 1		
										1
Volume Module:								1		1
Base Vol:	0 0		41 790		0	104	179	29	160	0
Growth Adj: 1.			00 1.00			1.00	1.00	1.00		1.00
Initial Bse:			41 790		0	104	179	29	160	0
Added Vol:	0 0	0	0 105	0	0	0	0	-2	2	0
Future:	0 0	0	10 230	40	0	50	30	30	40	0
Initial Fut:	0 0	0	51 1125	166	0	154	209	57	202	0
User Adj: 1.	00 1.00	1.00 1.	00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	00 1.00		00 1.00			1.00	1.00	1.00		1.00
PHF Volume:	0 0		51 1125		0	154	209	57	202	0
Reduct Vol:	0 0		0 0		0	0	0	0	0	0
Reduced Vol:	0 0		51 1125		0	154	209	57	202	0
	00 1.00		00 1.00			1.00		1.00		1.00
MLF Adj: 1. Final Vol.:	00 1.00		00 1.00 51 1125			1.00	1.00	1.00	202	1.00
Final vol.:		-								•
Saturation Flow	Module:									
	00 1900	1900 19	00 1900	1900	1900	1900	1900	1900	1900	1900
	00 1.00		79 0.79			0.83		0.79		1.00
	00 0.00		11 2.52			0.42		0.22		0.00
			71 3766		0	669	908	329	1164	0
Capacity Analys	is Module	∋:								
Vol/Sat: 0.	00.00	0.00 0.	30 0.30		0.00	0.23	0.23	0.17	0.17	0.00
Crit Moves:			***			****				
Green/Cycle: 0.			40 0.40			0.29		0.43		0.00
Volume/Cap: 0.			75 0.75			0.78	0.78	0.41		0.00
Delay/Veh: 0			.6 13.6	13.6		36.9	36.9	9.4	9.4	0.0
User DelAdj: 1.			00 1.00			1.00	1.00	1.00		1.00
AdjDel/Veh: 0			.6 13.6			36.9	36.9	9.4		0.0
DesignQueue: ********	0 0	0	1 30		0	5	6	1	-	0

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 39-1 ______

UC Berkeley LRDP EIR

2020 With Project Conditions

PM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

Level Of Service Computation Report	Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)	2000 HCM Operations Method (Future Volume Alternative)

****************** Intersection #30 Center Street / NB Shattuck Avenue ************************* Cycle (sec): 75 Critical Vol./Cap. (X): 0.551 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 9.5 Optimal Cycle: 65 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|-----|------| Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 40 40 40 0 0 0 17 17 0 0 17 17 Lanes: 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 -----| Volume Module: >> Count Date: 6 Nov 2002 << 4:00 - 6:00 PM Base Vol: 50 982 86 0 0 0 81 55 0 0 139 58 Initial Bse: 50 982 86 0 0 0 81 55 0 0 139 58 Initial Fut: 80 1209 116 0 0 0 111 95 0 0 179 118 PHF Volume: 80 1209 116 0 0 0 111 95 0 0 179 118 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 80 1209 116 0 0 0 111 95 0 0 179 118 Final Vol.: 80 1209 116 0 0 0 111 95 0 0 179 118 -----| Saturation Flow Module: Adjustment: 0.80 0.80 0.80 1.00 1.00 1.00 0.74 0.74 1.00 1.00 0.85 0.85 Lanes: 0.17 2.58 0.25 0.00 0.00 0.00 0.54 0.46 0.00 0.00 0.60 0.40 Final Sat.: 259 3921 376 0 0 0 754 645 0 0 975 643 -----| Capacity Analysis Module: Vol/Sat: 0.31 0.31 0.31 0.00 0.00 0.00 0.15 0.15 0.00 0.00 0.18 0.18 Crit Moves: **** Delay/Veh: 3.8 3.8 3.8 0.0 0.0 0.0 20.2 20.2 0.0 0.0 29.1 29.1 AdjDel/Veh: 3.8 3.8 3.8 0.0 0.0 0.0 20.2 20.2 0.0 0.0 29.1 29.1 DesignQueue: 2 25 2 0 0 0 3 3 0 0 5 4

2000 HCN	Level Of Ser M Operations Me			rnative)		
******					*****	****
Intersection #31 Cer			*****	*****	*****	****
Cycle (sec):	75	Critica	l Vol./Cap.	(X):	0.550	
Cycle (sec): Loss Time (sec):	8 (Y+R = 4)	sec) Average	Delay (sec/	veh):	10.5	
орстнат сусте.	- U	HE VET O	T DELVICE.			

Approach: North Movement: L -		- T - R			est Bou - T -	
Control: Per	rmitted	Permitted	Permitt	ed	Permitt	ed
Control: Per Rights: Ir	nclude	Include	Includ	е	Includ	е
Min. Green: 19	19 19 19	19 19	19 19	19 19	19	19
		0 1 1 0			0 1! 0	
	ount Date: 13 N 998 24 19		33 6	м 84 37	9	16
Growth Adj: 1.00 1.		1.00 1.00				1.00
	998 24 19		33 6	84 37		16
Added Vol: 0 1	156 0 -1	85 3	0 0	0 -2	-3	-5
Future: 40 1			30 0	30 0		0
Initial Fut: 127 13		1215 100	63 6	114 35		11
User Adj: 1.00 1.		1.00 1.00				1.00
PHF Adj: 1.00 1. PHF Volume: 127 13		1.00 1.00 1215 100	1.00 1.00	1.00 1.00 114 35		1.00
	0 0 0			0 0		0
Reduced Vol: 127 13		1215 100	63 6	114 35		11
PCE Adj: 1.00 1.		1.00 1.00				1.00
MLF Adj: 1.00 1.	.00 1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00	1.00
Final Vol.: 127 13		1215 100	63 6	114 35		11
Saturation Flow Modu Sat/Lane: 1900 19		1900 1900	1900 1900	1900 1900	1900	1900
Adjustment: 0.19 0.		1900 1900 0.94 0.94				0.76
Lanes: 1.00 1.		1.85 0.15				0.70
Final Sat.: 359 35			527 50		168	307
Capacity Analysis Mo						
Vol/Sat: 0.35 0.		0.37 0.37		0.12 0.04	0.04	0.04
Crit Moves: **		0.64.0.64	****		0.05	0.05
Green/Cycle: 0.64 0. Volume/Cap: 0.55 0.		0.64 0.64 0.58 0.58				0.25 0.14
Delay/Veh: 16.8 8		8.8 8.8				22.5
User DelAdj: 1.00 1.		1.00 1.00				1.00
AdjDel/Veh: 16.8 8		8.8 8.8				22.5
DesignQueue: 2			2 0		0	0
++++++++++++++++		++++++++++	++++++++++	++++++++	++++++	++++

2020 With Project Conditions

PM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

Level Of Service Computation Report

*****		HCM 4-	Way St	op Met	thod	(Future	Volu	me Alt	ternati		*****	*****
Intersection								****	*****	****	*****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e:	C	(Y+R	= 4 :	sec) i	Critica Average Level O *****	Dela f Ser	y (sec vice:	c/veh):		82.	3 F
Approach:	No:	rth Bo	und	Sot	uth B	ound	E	ast Bo	ound	We	est Bo	ound
Movement:	L ·	- T	- R	L ·	- T	- R	L	- T	- R	L -	- T	- R
Control: Rights: Min. Green:	S-	top Si Inclu	.gn .de	St	top S: Incl	ign ude	S-	top S: Incl	ign ide	St	top Si Inclu	.gn .de
Min. Green:	0	0	0	0	. 0	0	0	0	0	0	0	0
Lanes:	1	U U	1 U	0 .	1 0	0 0	1	J I!	0 0	0 () I!	0 0
Volume Module	e: >> 0	Count 359	Date:	20 No 135	ov 200 459	02 << 4	:00 - 20	6:00	PM 15	47		
Initial Bse:			19	135	459		20	7	1.00	47		232
Added Vol:	0	53	22	5	26	0	0	Ó	1.00	24		25
Future:	0	90	22 10 51	20		0	0			10	0	30
Initial Fut:					535	0	20	7		81	0	287
User Adj:					1.00			1.00			1.00	1.00
PHF Adj:					1.00			1.00			1.00	1.00
PHF Volume: Reduct Vol:		502	51 0	160 0	535 0	0	20	7		81	0	287 0
Reduced Vol:			51	160			20		15	81	-	287
PCE Adj:						1.00			1.00		1.00	
MLF Adj:				1.00				1.00			1.00	1.00
Final Vol.:	0	502	51									287
Saturation F				1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
Adjustment: Lanes:											1.00	
Final Sat.:												
Capacity Ana	lysis	Modul	e:									
Vol/Sat:	XXXX	0.97	0.97	1.23				0.10	0.10	0.68	XXXX	
Crit Moves:					****		****					****
Delay/Veh: Delay Adj:	0.0	55.1	55.1	140.0	140	0.0		12.1			0.0	22.2
AdjDel/Veh:								1.00			1.00	1.00
IOS by Morre:	*	F	F	F	F	*	B	B	12.1			22.2 C
ApproachDel:		55.1	-		140.0			12.1			22.2	C
Delay Adj:		1.00			1.00			1.00			1.00	
ApprAdjDel:		55.1			140.0			12.1			22.2	
ApproachDel: Delay Adj: ApprAdjDel: LOS by Appr:		F			F			В				
*****	****	****	****	****	****	*****	****	****	*****	****	*****	*****

	FI	m reak nour				
2000 HCM U	Level Of Serv	ethod (Futu	re Volume A	lternativ		*****
Intersection #33 Alls			*****	*****	*****	*****
Average Delay (sec/ve	h): 6.0	W	orst Case L	evel Of S	Service:	E
Approach: North	- R L -	- T - R	L - T	- R	L - T	- R
Control: Uncont	rolled Und lude		Stop S Incl	ign ude		ign ide
				-		
Volume Module: >> Cou Base Vol:	2 0 26 0 1.00 1.00 2 0 26 6 0 0 0 0 0 10 8 0 36 0 1.00 1.00 8 0 36 0 0 0 0 8 0 36 0 0 36 0 0 36	1082 75 1.00 1.00 1082 75 83 0 160 10 1325 85 1.00 1.00 1.00 1.00 1325 85 0 0 1325 85 xxxx xxxxx xxxx xxxxx	23 0 1.00 1.00 23 0 0 0 0 0 23 0 1.00 1.00 1.00 1.00 23 0 0 0 23 0 6.8 xxxx 3.5 xxxx	110 1.00 110 0 30 140 1.00 140 0 140	xxxx xxxx	XXXXX
Capacity Module: Cnflict Vol: 1296 xxx Potent Cap.: 511 xxx Move Cap.: 511 xxx	x xxxxx 1348 x xxxxx 517 x xxxxx 517	**** ***** **** *****	2147 xxxx 40 xxxx 35 xxxx	549 2 457 2 457 2	XXXX XXXX XXXX XXXX	xxxxx xxxxx
Level Of Service Modu Stopped Del: 12.7 xxx LOS by Move: B *	le: x xxxxx 12.5 * B R - RT LT x xxxxx xxxx x xxxxx 12.5 * B	xxxx xxxxx * *	219.9 xxxx F * LT - LTR xxxx xxxx	16.3 xx C - RT xxxxx xx xxxx xx	XXXX XXXX * * LT - LTR XXXX XXXX	xxxxx * - RT xxxxx

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 42-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 43-1 UC Berkeley LRDP EIR

2020 With Project Conditions

************ Intersection	000 HCM Unsignal: ********* #34 Kittridge St	************** treet / Oxford St	re Volume Alterna ******** reet / Fulton Str	*****
Average Dela	y (sec/veh):	18.5 W	orst Case Level O	f Service: F

			East Bound L - T - R	West Bound
				- T - R
Control: Rights: Lanes:	Uncontrolled Include 0 1 0 1 0	Uncontrolled Include 0 1 0 1 0	Stop Sign Include 0 0 1! 0 0	Stop Sign Include 0 0 1! 0 0
Volume Modul	e: >> Count Date: 45 995 0	: 13 Nov 2002 << 0 1108 96		0 0 0
	1.00 1.00 1.00		1.00 1.00 1.00	
Initial Bse:			51 0 69	
	0 94 3	9 74 0		
	20 180 0			
Initial Fut:				
	1.00 1.00 1.00			
PHF Adj:	1.00 1.00 1.00	1.00 1.00 1.00		
PHF Volume:	65 1269 3	9 1332 126	61 3 89	18 26 62
Reduct Vol:	0 0 0	0 0 0	0 0 0	0 0 0
Final Vol.:	65 1269 3	9 1332 126	61 3 89	18 26 62
Critical Gap				
			7.5 6.5 6.9	
			3.5 4.0 3.3	
Capacity Mod		1070	2136 2795 588	2026 2860 636
			27 18 434	
Move Can :	487 **** ****	553 xxxx xxxxx	0 15 434	
Level Of Ser	•	' '		
			xxxxx xxxx xxxxx	xxxxx xxxx xxxxx
LOS by Move:	в * *	B * *	* * *	* * *
Movement:	LT - LTR - RT	LT - LTR - RT	LT - LTR - RT	
			xxxxx 0 xxxxx	
			XXXXX XXXX XXXXX	
			* * *	
ApproachDel: ApproachLOS:		******	xxxxxx F	1122.1 F

		PM Pe	ak Hour				
	2000 HCM 4-Wa	vel Of Service Ty Stop Method	l (Future	Volume Alt	ernativ		****
Intersection	#35 Stadium	Rim Road / Ce	entennial	Drive			
Cycle (sec): Loss Time (se Optimal Cycle	e: 0	(Y+R = 4 sec)	Average Level O	Service:	/veh):	12.	7 B
Approach: Movement:	North Boun	nd South	Bound - R	East Bo L - T	und – R	West Bo	und - R
Control: Rights: Min. Green: Lanes:	Stop Sign Include 0 0 0 0 0 1	Stop in Stop in 0 0 0 0 1 0	Sign clude 0 0	Stop Si Inclu 0 0 0 0 0	gn de 0	Stop Si Inclu 0 0 0 0 1!	gn de 0
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	e: >> Count E 0 99 1.00 1.00 1 0 99 0 0 0 0 20 0 119 1.00 1.00 1 1.00 1.00 1 0 119 0 0 0 0 119 1.00 1.00 1 1.00 1.00 1 0 119	00 1.00 1.0 140 102 5 0 27 20 20 1 160 149 6 00 1.00 1.0 160 149 6 0 0 160 149 6 00 1.00 1.0 00 1.00 1.0	2002 << 4: 57 0 1.00 1.00 57 0 0 0 0 1.00 0 0 0 1.00 0 0 0 1.00 0 0 0 0 0 1.00 0 0 0 1.00 0 0 0 1.00 0 0 0 1.00 0 0 0 1.00 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 - 6:00 0 0 1.00 1.00 0 0 0 0 0 0 1.00 1.00 1.00 1.00 0 0 0 0 0 0 1.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PM 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	204 0 1.00 1.00 204 0 0 0 10 0 214 0 1.00 1.00 214 0 0 0 214 0 0 0 214 0 1.00 1.00 214 0 1.00 1.00	146 1.00 146 49 20 215 1.00 1.00 215 0 215 1.00 1.00 215
Saturation Fl Adjustment: Lanes: Final Sat.:	ow Module: 1.00 1.00 1 0.00 0.43 0 0 293	00 1.00 1.0 0.57 0.69 0.3 394 426 19	00 1.00 31 0.00 92 0	1.00 1.00 0.00 0.00 0 0	1.00	1.00 1.00 0.50 0.00 354 0	1.00 0.50 356
Capacity Anal	ysis Module:			xxxx xxxx	xxxx	0.60 xxxx ****	0.60
Delay/Veh: Delay Adj: AdjDel/Veh: LOS by Move: ApproachDel:	1.00 1.00 1 0.0 11.0 1 * B	11.0 11.2 11. 1.00 1.00 1.0 11.0 11.2 11. B B E	00 1.00 2 0.0 8 *	0.0 0.0 1.00 1.00 0.0 0.0 * *	0.0 1.00 0.0 *	14.5 0.0 1.00 1.00 14.5 0.0 B *	14.5 1.00 14.5 B
Delay Adj: ApprAdjDel: LOS by Appr:	1.00 11.0 B	1.0 11. E	00 . 2 3	xxxxx xxxxx *	*****	1.00 14.5 B	****

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 44-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 45-1 UC Berkeley LRDP EIR

2020 With Project Conditions

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

		 L	evel 0	f Ser	vice (Computa	 tion I	Repor	 t			
2	2000 1	HCM Op	eratio	ns Met	thod	(Future	Volur	me Al	ternati	ve)		
******	****	****	*****	****	****	*****	****	****	*****	****	*****	*****
Intersection								****	*****	****	*****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle			(Y+R	= 5 :	sec) i	Critica Average Level O	Delay	y (se	c/veh):		0.83	
*****			****	****						****	****	****
Movement:	L ·	- T	- R	L ·	- T	ound - R	L -	- T	- R	L -	est Bo - T	- R
 Control:		 Permit				 tted			 tted		 Permit	
Rights:		Inclu			Incl				ıde		Inclu	
Min. Green:	18		0	0		18	0		0	16		16
Lanes:	1 (0 1				0 0	1 (
Volume Module												
Base Vol:	30	1186	0	0	949	23	1	0	38	258	97	111
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	30	1186	0	0	949	23	1	0	38	258	97	111
Added Vol:	0	44	0	0	129	0	0	0	0	107	0	76
Future:	10	150	0	0	290	10	0	0	0	30	20	20
Initial Fut:	40	1380	0	0	1368	33	1	0	38	395	117	207
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	40	1380	0	0	1368	33	1	0	38	395	117	207
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	40	1380	0	0	1368	33	1	0	38	395	117	207
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	40	1380	0	0	1368	33	1	0	38	395	117	207
Saturation Fl	Low Mo	odule:										
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.13	0.86	1.00	1.00	0.85	0.85	0.78	1.00	0.78	0.66	0.81	0.81
Lanes:	1.00	2.00	0.00	0.00	1.95	0.05	0.03	0.00	0.97	1.00	0.36	0.64
Final Sat.:				0				0	1438	1259	558	988
			,									
Capacity Anal	Lysis	Modul	e:									
Vol/Sat:	0.16	0.42	0.00	0.00	0.43	0.43	0.03	0.00	0.03		0.21	0.21
Crit Moves:					****					***		
Green/Cycle:	0.52	0.52	0.00	0.00	0.52			0.00	0.38		0.38	0.38
Volume/Cap:	0.31	0.82	0.00	0.00	0.84	0.84	0.07	0.00	0.07	0.84	0.56	0.56
Delay/Veh:	16.5	19.8	0.0	0.0	20.5	20.5	15.3	0.0	15.3	37.3	22.4	22.4
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	16.5	19.8	0.0	0.0	20.5	20.5	15.3	0.0	15.3	37.3	22.4	22.4

			2020		_	ect Con Hour	altio	ns				
3	2000 1		evel O eratio							We)		
******	****	****	****	****	*****	****	****	****	****	****	*****	****
Intersection	#37 1	Bancro	ft Way	/ Fu	lton S	Street						
Cycle (sec): Loss Time (se Optimal Cycle	٠ ()	7.5	Y+R	= 4	sec) Z	werage	Dela	./cap.	(A). :/weh).		10	3
Optimal Cycle	٠,٠	40) (111	_ 1.	Jec, r	evel 0	f Ser	y (sec	., veii) .		10.	B
******	·*	****	****	****	- *****	****	****	****	****	****	*****	*****
Approach:	No	rth Bo	und	Soi	uth Bo	und	E	ast Bo	ound	We	est Bo	ound
Movement:											- T	- R
Control:	1	Permit	ted ide		Permit	ted		Permit	ted	I	Permit	ted
Rights:		Inclu	ıde		Inclu	ide		Inclu	ıde		Ignor	re
Min. Green:			0	0	17	17	0	0	0	24	24	24
Lanes:			0 0			1 0			0 0		1 1	
Volume Module												
	18		0		1066	165	0	0	0		287	
Growth Adj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
Initial Bse:			0	0		165	0	0	0	12		898
Added Vol:	2	0	0	0	85 130	7		0		20	143	97
Future:	10	10	0			20	0	0	0	10	30	170
Initial Fut:			0		1281	192		0		42		1165
User Adj:			1.00		1.00	1.00		1.00			1.00	0.00
PHF Adj:			1.00		1.00	1.00		1.00			1.00	0.00
PHF Volume:		174	0		1281	192	0	0	0	42	460	0
Reduct Vol: Reduced Vol:			0		0 1281	0 192	0	0	0	0 42	0 460	0
PCE Adi:			1.00		1.00	1.00	-	1.00	-		1.00	0.00
MLF Adj:		1.00	1.00		1.00			1.00			1.00	0.00
Final Vol.:							0		0			0.00
												-
Saturation Fl				'		'	1		'	1		'
Sat/Lane:				1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:						0.89		1.00			0.81	
Lanes:	0.29	1.71	0.00	0.00	2.61	0.39		0.00			1.83	1.00
Final Sat.:	408	2365	0	0	4425	663	0	0	0	257	2812	1900
Capacity Anal	Lysis	Modul	.e:									
Vol/Sat:	0.07	0.07	0.00	0.00	0.29	0.29	0.00	0.00	0.00	0.16	0.16	0.00
Crit Moves:					***						***	
Green/Cycle:					0.57	0.57		0.00			0.32	
Volume/Cap:			0.00		0.51	0.51		0.00			0.51	0.00
Delay/Veh:			0.0		6.9	6.9		0.0	0.0		22.4	0.0
User DelAdj:			1.00		1.00	1.00		1.00			1.00	1.00
AdjDel/Veh:			0.0	0.0			0.0		0.0		22.4	0.0
DesignQueue:				0		4		0			13	0
	· * * * * :	* * * * * *	****	* * * * * ;	* * * * * * *	****	×××××	* * * * * * *		****	* * * * * * *	

DesignQueue: 1 31 0 0 30 1 0 0 1 11 3 6

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 47-1 UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

				1.1	n rear	n HOUL						
			Level (
20	000 H	CM Un:	signali	ized M	ethod	(Futu	re Vol	ume A	lternat	tive)		
*****								****	*****	****	****	*****
Intersection								****	*****	*****	****	*****
Average Delay	y (se ****	c/veh;): *****	6.3	****	W *****	orst C	ase L	evel 0:	f Serv	ice:	E *****
Approach: Movement:	No	rth Bo	ound	So	uth Bo	ound	E	ast B	ound	W	est B	ound
Movement:	L	– T	- R	L ·	– T	- R	L .	- T	- R	L ·	- T	- R
Control:	s	top S:	ign	S:	top S:	ign	Un	contr	olled	Un	contr	olled
Rights:		Incl	ude		Incl	ude		Incl	ude		Incl	ude
Lanes:	1	1 0	0 0	0	0 0	0 1	0 (0 0	0 0	0	0 1	1 0
 Volume Module												
Volume Module Base Vol:										0	877	6
Growth Adj:												
Initial Bse:	348	11	0	0	0	100	0	0	0	0	877	6
Initial Bse: Added Vol: Future:	12	0	0	0	0	0	0	0	0	0	157	0
Future:	50	0	0	0	0	0	0	0	0	0	230	0
Initial Fut:	410	11	0	0	0	100	0	0	0	0	1264	6
Jser Adi:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	410	11	0	0	0	100	0	0	0	0	1264	6
PHF Volume: Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Final Vol.:	410	11	0	0	0	100	0	0	0	0	1264	6
Critical Gap	Modu	le:										
Critical Gp:	7.1	6.5	XXXXX	XXXXX	XXXX	6.2	XXXXX	XXXX	XXXXX	XXXXX	XXXX	XXXXX
FollowUpTim:												
Capacity Modu							11			1 1		
Cnflict Vol:	632	1270	xxxxx	XXXX	xxxx	635	xxxx	xxxx	xxxxx	XXXX	xxxx	XXXXX
Potent Cap.:	396	170	XXXXX	XXXX	XXXX	482	XXXX	xxxx	xxxxx	XXXX	xxxx	XXXXX
Move Cap.:	314	170	XXXXX	XXXX	XXXX	482	XXXX	XXXX	XXXXX	XXXX	XXXX	XXXXX
Level Of Serv												
Stopped Del:												
LOS by Move:	E	*	*	*	*	В	*	*	*	*	*	*
Movement: Shared Cap.:	LT	- LTR	- RT	LT ·	- LTR	- RT	LT ·	- LTR	- RT	LT ·	- LTR	- RT
Shared Cap.:	301	XXXX	XXXXX	XXXX	XXXX	XXXXX	XXXX	XXXX	XXXXX	XXXX	XXXX	XXXXX

2020 With Project Conditions PM Peak Hour												
2(000 H	CM Uns	signal:	ized Me	ethod	Computa (Futu:	re Vol	ume A	lternat	ive)	****	*****
Intersection #39 Bancroft Way / Dana Street												
Average Delay												
******	****	****	*****	*****	****	*****	*****	****	*****	****	****	*****
Approach: Movement:	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R
Control:	S [†]	top Si	ign	S†	top S:	ign	Un	contr	olled	Un	contr	olled
Rights:		Incl	ıde		Incl	ude		Incl	ude		Incl	ude
Lanes:	0 (0 0	0 0	0 (0 0	0 0	0	0 0	0 0	0	1 2	0 0
Volume Module	e: >>	Count	Date	: 13 No	ov 20	02 << 4	4:00 -	6:00				
Growth Adj:												
Initial Bse:					0			0		282		
Added Vol:				0	0	0	0	0				
Future: Initial Fut:	0	0	0	0	0	0	0	0	0			
Initial Fut:	0	0	0	0	0	0	0	0	0	364	1260	0
User Adj:								1.00			1.00	
PHF Adj:	1.00	1.00				1.00		1.00			1.00	
PHF Volume:		0			0	0		0				0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Final Vol.:	0		0	0	0	0	0	0	0	364	1260	0
Critical Gap												
Critical Gp:	XXXX	XXXX	XXXXX	XXXXX	XXXX	XXXXX	XXXXX	XXXX	XXXXX	4.1	XXXX	XXXXX
FollowUpTim:	XXXX	XXXX	XXXXX	XXXXX	XXXX	XXXXX	XXXXX	XXXX	XXXXX	2.2	XXXX	XXXXX
Capacity Modu												
Cnflict Vol:		xxxx	xxxxx	xxxx	xxxx	xxxxx	xxxx	xxxx	xxxxx	0	xxxx	xxxxx
Potent Cap.:												xxxxx
Move Cap.:												XXXXX
Level Of Serv												
Stopped Del:	XXXX	XXXX	XXXXX	XXXXX	XXXX	XXXXX	XXXXX	XXXX	XXXXX	0.0		XXXXX
LOS by Move:											*	
Movement:												
Shared Cap.:												
Shrd StpDel:												

XXXXXX

ApproachDel: xxxxxx xxxxxx xxxxxx

ApproachLOS: *

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 48-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 49-1

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

		HCM Op	eratio	ns Met	thod	Computa (Future	Volu	me Al	ternati			
**************************************								****	*****	*****	****	*****
******								****	*****	*****	****	*****
Cycle (sec):		70				Critica	l Vol	./Cap	. (X):		0.4	14
Loss Time (se		8	(Y+R	= 22 s	sec) <i>I</i>	verage	Dela	y (se	c/veh):	:		
Optimal Cycle						evel 0				*****		B ******
Approach:											est B	
Movement:	L -	- T	- R	L -	- T	- R	L ·	- T	- R	L ·		- R
Control:												
Rights:		Inclu				ıde			ude		Incl	
Min. Green:		0	0 0			0 0					21	
Lanes:												
Volume Module										11		
	495	0	0	0	0	0	0	0		0	675	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	495	0	0	0	0	0	0	0	0	0	675	0
Added Vol:	3	0	0	0	0	0	0	0	0	0	156	0
Future:	130		0	0		0	0		-	0	140	0
Initial Fut:		0	0	0	0	0	0	0	-	0	971	0
User Adj: PHF Adj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Adj: PHF Volume:	628	0.10	1.00	1.00	1.00	1.00	1.00	1.00		1.00	971	1.00
Reduct Vol:	020	-	0	0	0	0	0	0	0	0	9/1	0
Reduced Vol:		0	0	0		0	0	-		0		0
PCE Adj:			1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:				0					0		971	0
Saturation Fl				1000	1000	1000	1000	1000	1000	1000	1000	1000
Sat/Lane: Adjustment:		1900			1900			1900	1900		1900	
Lanes:					0.00				0.00			
Final Sat.:				0.00			0.00					
Capacity Anal	ysis	Modul	e:									
Vol/Sat:		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.19	
0110 110 100 1	****										****	
Green/Cycle:					0.00	0.00		0.00			0.30	
Volume/Cap: Delay/Veh:			0.00	0.00	0.00	0.00		0.00			0.62	0.00
User DelAdi:			1.00		1.00	1.00		1.00			1.00	1.00
AdjDel/Veh:			0.0		0.0	0.0		0.0	0.0		23.0	0.0
DesignQueue:				0		0	0		0		28	0

PM Peak Hour										
Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative)										

Intersection #41 Bancroft Way / Bowditch Street **********************************										

UC Berkeley LRDP EIR

2020 With Project Conditions

Intersection	#41 1	Bancro	ft Way	/ Bot	wditcl	n Stree	t ****	****	*****	*****	****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e:	100 0) (Y+R	= 4 s	sec) i	Critica Average Level C	l Vol Delay	./Cap y (sed vice:	. (X): c/veh):		0.6 16	69 .2 C
Approach: Movement:	L -	- T	- R	L -	- Т	- R	L -	- T	- R	L ·		- R
Min. Green: Lanes:	0 1 (top Si Inclu 0 0	.gn ide 0	0 0 0	top Si Incli 0	ign ude 0	0 0	top Si Incli 0	ign ude 0	0 0	top Si Incli 0 1 1	ign ude 0
Volume Module Base Vol:	e: >> 191	Count 0	Date:	13 No	ov 200	02 << 4	:00 -	6:00 0	PM 0	99	494	0
Growth Adj: Initial Bse: Added Vol:	191	0	0	0	0	-	0	0	0	99 27	494 156	0
Future: Initial Fut: User Adj:	221	0 0 1.00	0	0	-	0 0 1.00	0 0 1.00	0 0 1.00	0	20 146 1.00		0
PHF Adj: PHF Volume: Reduct Vol:	1.00 221 0	0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 146 0		0
Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	221 1.00 1.00 221	0 1.00 1.00	0 1.00 1.00	0 1.00 1.00 0	0 1.00 1.00 0	0 1.00 1.00	0 1.00 1.00 0	0 1.00 1.00 0	1.00 1.00 0	146 1.00 1.00 146	760 1.00 1.00 760	0 1.00 1.00
Saturation F: Adjustment: Lanes: Final Sat.:	low Mo 1.00 1.00 617	0.00 0.00 0.00	1.00	1.00	1.00 0.00 0	1.00	1.00	1.00 0.00 0	1.00	1.00 0.32 218	1.00 1.68 1157	1.00
Capacity Anal Vol/Sat: Crit Moves:	lysis 0.36	Modul	.e:	'		 xxxx	'			' '	0.66	
Delay/Veh: Delay Adj: AdjDel/Veh:	1.00 11.7	1.00	1.00	1.00	1.00	1.00	0.0 1.00 0.0	1.00	1.00	1.00 17.9	17.1 1.00 17.1	1.00
LOS by Move: ApproachDel: Delay Adj: ApprAdjDel: LOS by Appr:		11.7 1.00 11.7 B		X	<pre></pre>		X2 X2	* XXXXX XXXXX XXXXX		C	17.3 1.00 17.3	

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 51-1 ______

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

Level Of Service	Computation Report
2000 HCM 4-Way Stop Method	(Future Volume Alternative)

Intersection #42 Bancroft Way / College Avenue ******************* Cycle (sec): 100 Critical Vol./Cap. (X): 0.700 Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): 15.3

Optimal Cycle: 0 Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R

Movement:		_ 1				- K		_ 1	- K	П	_ 1	- K
Control: Rights:	s.	top Si	gn	St	top Si	.gn '	St	top Si	ign '	' S	top Si	ign '
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1	0 0	0 0	0 (0 0	0 0	0 (0 0	0 0	0	1 1	0 0
				1			1			1		
Volume Module	e: >>	Count	Date:	13 No	ov 200)2 << 4	:00 -	6:00	PM			
Base Vol:	371	0	0	0	0	0	0	0	0	83	226	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	371	0	0	0	0	0	0	0	0	83	226	0
Added Vol:	20	0	0	0	0	0	0	0	0	18	41	0
Future:	100	0	0	0	0	0	0	0	0	0	20	0
Initial Fut:	491	0	0	0	0	0	0	0	0	101	287	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	491	0	0	0	0	0	0	0	0	101	287	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	491	0	0	0	0	0	0	0	0	101	287	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	491	0	0	0	0	0	0	0	0	101	287	0
Saturation F.	low M	odule:										
Adjustment:												
Lanes:	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.52	1.48	0.00
Final Sat.:	701	0	0	0	0	0	0	0	0	302	883	0
	1											
Capacity Ana												
. ,		XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX		0.32	XXXX
Crit Moves:	****									***		

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

LOS by Move: C * * * * * * * * B B *

ApproachDel: 18.5 xxxxxx xxxxx 11.3 Delay Adj: 1.00 xxxxx xxxx 1.00 ApprAdjDel: 18.5 xxxxxx xxxxx 11.3 LOS by Appr: C * * B

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

Level Of Service Computation Report

				- L	
2000 HCN	4-Way Stop	Method	(Future	Volume	Alternative)

Intersection								****	*****	****	*****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle	∋:	0	(Y+R	= 4 s	sec) 1	Level O	Delay f Serv	y (sed vice:	c/veh):		36.	. 7 E
Approach: Movement:	No: L -	rth Bo - T	und - R	Sou L -	uth Bo - T	ound - R	Ea L -	ast Bo	ound - R	We	est Bo - T	ound - R
Control: Rights: Min. Green:	St	op Si Inclu	.gn .de	St	top Si Incli	ign ıde	St	top Si Incl	ign	St	top Si Incli	ign
Lanes:	0 1	L 0	0 0	0 (0 0	1 0	0 (0 0	0 0	0 (0 0	0 0
Volume Module Base Vol: Growth Adj:	152	Count 439	Date:	13 No	ov 200 357	02 << 4 159		6:00 0	PM 0	0		0
Initial Bse: Added Vol: Future: Initial Fut:	13 10	65 90		0	36 40	46 10	0 0 0			0 0 0	0 0	0 0 0
User Adj: PHF Adj: PHF Volume:	1.00	1.00	1.00	1.00	1.00		1.00	0 1.00 1.00	1.00 1.00	1.00	0 1.00 1.00	-
Reduct Vol: Reduced Vol: PCE Adj: MLF Adj:	175 1.00	1.00	1.00	1.00	1.00	215 1.00	0 0 1.00 1.00	1.00	1.00	1.00	0 0 1.00 1.00	0 0 1.00 1.00
Final Vol.:	175	594		0	433	215	0	0	0	0	0	0
Saturation Fl Adjustment:	Low Mo	odule:									1.00	
Lanes: Final Sat.:	179	607	0	0	536	266	0	0	0	0	0	0
Capacity Anal Vol/Sat: Crit Moves:	0.98	0.98	XXXX		0.81	0.81	xxxx	xxxx	xxxx	xxxx	xxxx	xxxx
Delay/Veh: Delay Adj: AdjDel/Veh: LOS by Move:	1.00	1.00	1.00	1.00	1.00 23.2	1.00	0.0 1.00 0.0	1.00	1.00	1.00	1.00	0.0 1.00 0.0
ApproachDel: Delay Adj: ApprAdjDel: LOS by Appr:		48.0 1.00 48.0 E			23.2 1.00 23.2 C		X	***** ***** *****		XI XI	×××× ×××× ××××	

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 53-1

UC Berkeley LRDP EIR

2020 With Project Conditions

						Computa						
:	2000	нсм Ор	eratio	ns Me	thod	(Future	Volu	me Al	ternati	.ve)		
******								****	*****	****	****	*****
Intersection								****	*****	****	****	*****
Cycle (sec):		75				Critica	l Vol	./Cap	. (X):		0.80)1
Cycle (sec): Loss Time (se	ec):	12	(Y+R	= 4	sec) 1	Average	Dela	y (se	c/veh):		21.	. 3
Optimal Cycle												
*****											****	*****
Approach:	No	rth Bo	und	So	uth Bo	ound	Ε	ast B	ound	We	est Bo	
Movement:			- R			- R			- R			- R
									tted			
Rights:			de		Inclu	ıde		Incl	ude		Incl	
Min. Green:		19				19				-	-	0
Lanes:			1 0						1 0		0 0	
Volume Module										_	_	
Base Vol:		1216	120		1099		-	72		0	0	0
Growth Adj:					1.00			1.00			1.00	1.00
Initial Bse:			120		1099	51	9			0	0	0
Added Vol:		44	13	15		0	0	0		0	0	0
Future:		170	60	60			0	40		0	0	0
Initial Fut:		1430	193		1580	61		112		0	0	0
User Adj:			1.00		1.00			1.00			1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:			193		1580	61	9			0	0	0
Reduct Vol:	0	0	0	0			0	0	0	0	0	0
Reduced Vol:			193		1580			112		0	0	0
PCE Adj:					1.00				1.00			
MLF Adj:	1.00	1.00	1.00			1.00		1.00			1.00	1.00
Final Vol.:					1580			112			0	0
Saturation F.	low M	odule:										
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.14	0.84	0.84	0.86	0.85	0.85	0.77	0.77	0.77	1.00	1.00	1.00
Lanes:	1.00	1.76	0.24	1.00	1.93	0.07	0.10	1.20	0.70	0.00	0.00	0.00
Final Sat.:						120				0		0
Capacity Ana	lysis	Modul	e:									
Vol/Sat:						0.51	0.06	0.06		0.00	0.00	0.00
Crit Moves:		****		***				****				
<pre>Green/Cycle:</pre>				0.64				0.20			0.00	0.00
Volume/Cap:				0.16				0.32			0.00	0.00
Delay/Veh:	26.5	40.2	40.2	5.7	3.2	3.2	27.1	27.1	27.1	0.0	0.0	0.0
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	26.5			5.7		3.2		27.1		0.0	0.0	0.0
DesignQueue:				3		1		4		0	0	0
*****	****	****	*****	****	****	****	****	****	*****	****	****	*****

*****		нсм ор		ns Me	thod	Future	Volum	ne Al	ternati		****	**
Intersection ******	#45	Durant	Avenu	e / F	ulton	Street						
Cvcle (sec):		75							. (X):		0.4	
Loss Time (s		8	Y+R	= 4	sec) I				c/veh):		9	. 9
Optimal Cycl						_evel C						Α

Movement:	L ·		- R	L ·	- T	und - R	L ·	- T	ound - R	L ·	est Bo - T	_
Control:									 tted			
Rights:		Inclu			Inclu			Incl			Incl	
Min. Green:			0							0	0	
Lanes:			0 0						1 0		0 0	
Volume Modul		Count 0								0	0	
Base Vol:			0			1 00				1 00		
Growth Adj: Initial Bse:		0.10	1.00	527		1.00	137		33	1.00	1.00	
Added Vol:	0	0	0	86	20	0	2		0	0	0	
Future:	0	0	0	70		0	20		30	0	0	
Initial Fut:				683			159		63	0	0	
User Adj:									1.00	-	1.00	
PHF Adj:		1.00						1.00			1.00	
PHF Volume:	0	0	0	683		0	159	356	63	0	0	
Reduct Vol:	0	0	0	0		0	133	0	0	0	0	
Reduced Vol:	-	0	0	683	870	0	159	356	63	0	0	
PCE Adj:							1.00				1.00	
MLF Adj:		1.00			1.00			1.00			1.00	
Final Vol.:							159				0	
Saturation F	low M	odule:										
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Adjustment:	1.00	1.00	1.00	0.95	0.95	1.00	0.98	0.93	0.93	1.00	1.00	
Lanes:									0.30	0.00	0.00	
Final Sat.:									531		0	
Capacity Ana												
Vol/Sat:			0.00	0.29	0 29	0.00	0 09	0.12	0.12	0.00	0.00	
Crit Moves:	3.00	3.00	3.00	0.20	****	0.00	0.00	****	0.12	0.00	3.00	
Green/Cycle:	0.00	0.00	0.00	0.60		0.00	0.29	0.29	0.29	0.00	0.00	
Volume/Cap:								0.40			0.00	
Delay/Veh:			0.0		5.3			22.4		0.0		
User DelAdj:								1.00			1.00	
AdjDel/Veh:		0.0	0.0		5.3			22.4		0.0	0.0	
DesignOueue:		0	0	12		0		11	2	0	0	

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 54-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 55-1

UC Berkeley LRDP EIR

2020 With Project Conditions

PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************************************		rm reak nout									
The control Permitted Pe	Level Of Service Computation Report										
The property of the property o	2000 H										
Cycle (sec): 70											
Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 13.3 Optimal Cycle: 43 Level Of Service: B ***********************************											
Optimal Cycle: 43	Cycle (sec):	70	C	ritical	Vol./Cap.	(X):	0.45	.9			
Approach: North Bound South Bound East Bound Movement: L - T - R L L - T - R L L - T - R L L - T - R L L - T - R L L - T - R L L - T - R L L - T - R L L - T - R L L - T - R L L - T - R L	Loss Time (sec):			verage I	Delay (sec	:/veh):	13.	3			
Approach: North Bound								_			
Movement: L T R L											
Control: Permitted											
Control:											
Rights:											
Min. Green: 0 18 18 0 0 0 17 17 0 0 0 0 0 0 1 2 10 0 0 0 0 0 0 0 0 0 0											
Lanes: 0 0 1 1 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0	-										
Volume Module: >> Count Date: 19 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 362 119 0 0 0 202 690 0 0 0 0 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0								-			
Base Vol: 0 362 119 0 0 0 202 690 0 0 0 0 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >>	Count Date:	19 Nov 200	2 << 4:0	00 - 6:00	PM		·			
Initial Bse: 0 362 119 0 0 0 202 690 0 0 0 0 0 Added Vol: 0 1 5 0 0 0 0 2 100 0 0 0 0 0 0 0 0 0 0 0 0 0	Base Vol: 0	362 119	0 0	0	202 690	0	0 0	0			
Added Vol: 0 1 5 0 0 0 2 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Growth Adj: 1.00	1.00 1.00	1.00 1.00	1.00 1	1.00 1.00	1.00	1.00 1.00	1.00			
Future: 0 110 30 0 0 0 20 160 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0	Initial Bse: 0	362 119	0 0	0	202 690	0	0 0	0			
Initial Fut: 0 473 154 0 0 0 224 950 0 0 0 0 0 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0				-							
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0				-				-			
PHF Volume: 0 473 154 0 0 0 224 950 0 0 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-										
Reduced Vol: 0 473 154 0 0 0 224 950 0 0 0 0 0 0 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0				-				-			
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
Final Vol.: 0 473 154 0 0 0 224 950 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_										
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	_										
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900				-							
Adjustment: 1.00 0.91 0.91 1.00 1.00 1.00 0.91 0.91	Saturation Flow Mo	dule:									
Lanes: 0.00 1.51 0.49 0.00 0.00 0.57 2.43 0.00 0.00 0.00 0.00 Final Sat.: 0 2623 854 0 0 0 990 4197 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sat/Lane: 1900	1900 1900	1900 1900	1900 1	L900 1900	1900	1900 1900	1900			
Final Sat.: 0 2623 854 0 0 0 990 4197 0 0 0 0	Adjustment: 1.00	0.91 0.91				1.00	1.00 1.00	1.00			
				-							
Capacity Analysis Module:				0 00 0		0 00		0 00			
Vol/Sat: 0.00 0.18 0.18 0.00 0.00 0.23 0.23 0.00 0.00 0.00 0.00			0.00 0.00	0.00 (0.00	0.00 0.00	0.00			
Crit Moves: **** Green/Cycle: 0.00 0.39 0.39 0.00 0.00 0.49 0.49 0.00 0.00 0.00 0.0			0 00 0 00	0 00 0		0 00	0 00 0 00	0 00			
Volume/Cap: 0.00 0.46 0.46 0.00 0.00 0.00 0.46 0.46											
Delay/Veh: 0.0 15.3 15.3 0.0 0.0 0.0 12.2 12.2 0.0 0.0 0.0 0.0	•										
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************	Intersection	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************						
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	459 Cycle (sec): 3.3 Loss Time (s B Optimal Cycl	Cycle (sec): 70						
Approach: North Bound South Bound East Bound West Movement: L - T - R L - T		North Bound South Bound L - T - R L - T - R	East Bound L - T - R	West Bound L - T - R				
Control: Permitted Permitted Permitted Permitted Permitted Permitted Permitted Permitted Include Includ	mitted Control: clude Rights: 0 0 Min. Green: 0 0 Lanes:	Permitted Permitted Include Include 0 18 18 0 0 0 0 0 0 1 0 0 1 0 0 0	Permitted Include 16 16 16 1 0 1 1 0	Permitted Include 0 0 0 0 0 0				
Volume Module: >> Count Date: 19 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 362 119 0 0 0 202 690 0 0 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	0 0 Base Vol: 00 1.00 Growth Adj: 0 0 Initial Bse: 0 0 Added Vol: 0 0 Future: 0 0 Initial Fut: 0 0 1.00 User Adj: 0 0 PHF Adj: 0 0 0 PHF Volume: 0 0 0 Reduct Vol: 0 0 0 Reduced Vol: 0 1.00 PCE Adj: 0 1.00 MLF Adj: 0 0 Final Vol.:	Le: >> Count Date: 19 Nov 2002 <<	4:00 - 6:00 PM 127 268 202 1.00 1.00 1.00 127 268 202 16 96 18 60 70 40 203 434 260 1.00 1.00 1.00 1.00 1.00 1.00 203 434 260 0 0 0 203 434 260 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0 0 0 0 1.00 1.00 0 0 0 0 0 0 0 0 0 0 0				
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	00 1900 Sat/Lane: 00 1.00 Adjustment: 00 0.00 Lanes: 0 0 Final Sat.:	1900 1900 1900 1900 1900 1900 1.00 0.96 0.96 0.93 0.93 1.00 0.00 0.73 0.27 0.18 0.82 0.00	0.94 0.90 0.90 1.00 1.25 0.75 1794 2131 1277	1.00 1.00 1.00 0.00 0.00 0.00 0 0 0				
Capacity Analysis Module: Vol/Sat: 0.00 0.18 0.18 0.00 0.00 0.00 0.23 0.23 0.00 0.00 0.00	Capacity And Vol/Sat: Crit Moves: 00 0.00 Green/Cycle: 00 0.00 Volume/Cap: 00 0.0 Delay/Veh: 00 1.00 User DelAdj:	llysis Module: 0.00 0.17 0.17 0.05 0.05 0.00 **** 0.00 0.41 0.41 0.41 0.41 0.00 0.00 0.43 0.43 0.12 0.12 0.00 0.0 16.6 16.6 13.3 13.3 0.0 1.00 1.00 1.00 1.00 1.00 1.00 0.0 16.6 16.6 13.3 13.3 0.0 0.0 16.6 16.6 13.3 13.3 0.0	0.11 0.20 0.20 **** 0.48 0.48 0.48 0.24 0.43 0.43 11.4 12.8 12.8 1.00 1.00 1.00 11.4 12.8 12.8					

UC Berkeley LRDP EIR

2020 With Project Conditions

PM Peak Hour

		I	Level 0	f Ser	vice	 Computa	tion	Repor	 t				
									ternati				
******								****	*****	*****	****	*****	
Intersection								****	*****	*****	****	******	
Cycle (sec).		100)			Critica	1 Vol	/Can	(X) ·		0.9		
Loss Time (s	ec).	100) (Y+R	= 4	sec)	Average	Dela	v (se	· (A) ·		34		
Optimal Cycle)			Level C						D	
****				****						****	****	*****	
Approach:	No	rth Bo	ound			ound		ast B		W∈	est B	ound	
Movement:			- R			- R						- R	
Control:							S	top S	ign	Stop Sign Include			
Rights:			ıde			ude			ıde				
Min. Green:		0				0			0	-		0	
Lanes:			0 0			0 0			0 1			0 0	
olume Modul													
Base Vol:	0.	398	Date:	20 N			179	0:00	197	0	0	0	
Growth Adi:	-		1.00		1.00			1.00	1.00	1.00			
nitial Bse:		398	0	0.00	427		179		197	0	0.10	0.00	
dded Vol:	0	56	0	0			21	-	79	0	0	0	
uture:	0	70	0	0			40	-	40	0	0	0	
Initial Fut:	-	524	0	-	513	-	240	-		0	0	0	
Jser Adj:			1.00		1.00			1.00	1.00	1.00		1.00	
PHF Adi:		1.00	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00	
PHF Volume:	0	524	0	0	513	0	240	0	316	0	0	0	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	0	524	0	0	513	0	240	0	316	0	0	0	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Final Vol.:			0	0				0	316	0	-	0	
Saturation F				1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	
Adjustment: Lanes:						1.00			1.00	1.00			
Lanes: Final Sat.:			0.00	0.00				0.00			0.00		
:IIIdI Sat.:													
Capacity Ana						'	'		'	'			
Jol/Sat:				XXXX	0.90	XXXX	0.52	xxxx	0.58	XXXX	XXXX	XXXX	
Crit Moves:		****			***				****				
elay/Veh:			0.0	0.0	41.7	0.0	18.0	0.0	17.2	0.0	0.0	0.0	
elay Adj:	1.00	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	
djDel/Veh:			0.0		41.7			0.0	17.2	0.0			
OS by Move:			*	*	_	*	С		С	*	*	*	
approachDel:		44.4			41.7			17.5		XX	XXXXX		
Delay Adj:		1.00			1.00			1.00			XXXXX		
ApprAdjDel: LOS by Appr:		44.4			41.7			17.5		XX	XXXX		
LOS by Appr:		E			E			С			*		

	2000 1					 Computa (Future				ve)		
*****											****	****
Intersection								****	*****	****	****	****
Cycle (sec):		75			(Critica	l Vol	/Cap	(X):		0.79	9
Loss Time (se	= 4 :	sec) 1	Average	Dela	/ (sed	c/veh):	9.2 A ******					
Optimal Cvcl	e:	60			. 1	Level O	f Serv	/ice:				A
*****	****	****	****	****	****	****	****	****	*****	****	****	***
Approach:	No	rth Bo	und	Soi	uth Bo	ound	Εā	ast Bo	ound	W∈	est Bo	und
Movement:	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R	L -	- T	- R
Control: Rights:	1	Permit	ted	1	Permit	tted]	Permit	ted	I	Permit	ted
Rights:		Inclu	de		Incl	ude		Incl	ıde		Inclu	ıde
Min. Green:	16	16	16	16	16	16	22	22	22	22	22	2
Lanes:	1 (0 1	1 0	1 (0 1	1 0	0 (1!	0 0	0 (1!	0 0
Volume Module	e: >>	Count	Date:	14 No	ov 200	02 << 4	:00 -	6:00	PM			
Base Vol:	83	1279	94	19	1089	49	18	76	81	144	97	10
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Initial Bse:	83	1279	94	19	1089	49	18	76	81	144	97	10
Added Vol:	0	31	6	0	221	0	0	0	0	24	0	2
Future:	10	180	20	50	110	0 90	30	80	20	30	20	3
Initial Fut:	93	1490	120	69	1420	139	48	156	101	198	117	16
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PHF Volume:			120				48			198	117	16
Reduct Vol: Reduced Vol:	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	93	1490	120	69	1420	139	48	156	101	198	117	16
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PCE Adj: MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Final Vol.:	93	1490				139						16
Saturation F	low Mo	odule:										
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Adjustment:	1.00	0.94	0.94	0.09	0.94	0.94	0.96	0.96	0.96	0.95	0.95	0.9
Lanes:	1.00	1.85	0.15	1.00	1.82	0.18	0.16	0.51	0.33	0.41	0.25	0.3
Final Sat.:												61
Capacity Ana												
Vol/Sat:			0.45	0.40	0.44	0.44	0.17	0.17	0.17	0.26		0.2
Crit Moves:											****	
Green/Cycle:						0.59					0.33	
Volume/Cap:						0.74					0.80	
Delay/Veh:						2.6					33.6	
User DelAdj:											1.00	1.0
AdjDel/Veh:											33.6	33.
DesignQueue:												

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 59-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 59-1

UC Berkeley LRDP EIR

2020 With Project Conditions

PM Peak Hour

		1 0		• • • • •								
	2000 HCM 4	Level O)			
******										****	*****	
Intersection	#50 Chann	ing Way	/ Fu	lton S	Street							
*****	*****	*****	****	****	*****	****	****	*****	****	****	*****	
Cycle (sec):	10							. (X):		0.8		
Loss Time (s			= 4 :			27.6						
Optimal Cycl		0			Level 0						D	
************** Approach:	********* North B		**************************************						**************************************			
Movement:					- R			- R			- R	
movement.	1					1		I				
Control:	Stop S											
Rights:	Incl				ide		Incl		Include			
Min. Green:	0 0	0	0	0	0	0	0	0	0	0	0	
Lanes:	0 0 0	0 0	0 :	1 0	1 0	0	0 0	1 0	0 :	1 0	0 0	
	,											
Volume Modul												
Base Vol:	0 0	0	48	686	61	0	133		15	257		
Growth Adj:		1.00		1.00	1.00		1.00			1.00		
Initial Bse:		0	48	686	61	0	133	38	15	257	0	
Added Vol:	0 0	0	4	16	0	0	6	0	0	50	0	
Future:	0 0	0	10	100	0	0	110	30	10	70	0	
Initial Fut:		0	62	802	61	1 00	249		25	377	0	
User Adj:	1.00 1.00	1.00		1.00	1.00		1.00			1.00	1.00	
PHF Adj: PHF Volume:	1.00 1.00	1.00	62	1.00	1.00	1.00	1.00	1.00	25	1.00	0	
Reduct Vol:	0 0	0	02	0	0	0	249		25	3//	0	
Reduced Vol:		0	62	802	61	0	249		25	377	0	
PCE Adi:	1.00 1.00	1.00		1.00	1.00	-	1.00			1.00	-	
MLF Adi:	1.00 1.00	1.00		1.00	1.00		1.00			1.00		
Final Vol.:	0 0	0	62		61		249		25	377		
Saturation F	low Module	:										
Adjustment:	1.00 1.00	1.00	1.00	1.00	1.00		1.00		1.00	1.00	1.00	
Lanes:	0.00 0.00		0.13	1.74	0.13	0.00	0.79	0.21	0.06	0.94	0.00	
Final Sat.:	0 0	0	74		74		439		35	528	0	
Capacity Ana Vol/Sat:	-		0 94	0 00	0.82		0.57	0.57	0 71	0.71	xxxx	
VOI/Sat: Crit Moves:	AXXX XXXX	XXXX	****	0.83	∪.8∠	XXXX	****	0.5/	0./1	U./1	XXXX	
Delay/Veh:	0.0 0.0	0.0		33.2	31.8	0 0	17.0	17.0	23 N	23.0	0.0	
Delay Adj:	1.00 1.00	1.00	1.00		1.00		1.00			1.00		
AdiDel/Veh:		0.0		33.2	31.8		17.0	17.0		23.0	0.0	
LOS by Move:		*	D D		D D	*	C C	17.0 C	23.0 C		*	
ApproachDel:			ב	33.2	D		17.0	0	_	23.0		
Delay Adj:				1.00			1.00			1.00		
ApprAdjDel:				33.2			17.0			23.0		
LOS by Appr:				D			C			C		
				_			-			-		

	2000 1		evel 0 eratio						t ternati	lve)		
************ Intersection	***** #51 (***** Channi	****** .ng Way	***** / Te	***** legrap	***** h Aver	***** iue	****	*****	*****		
Cycle (sec): Loss Time (sec)	ec):	70) 3 (Y+R	= 4 :	ritica	OVERFLOW 16.4 B						
Approach: Movement:	No:	rth Bo - T	und - R	Son L ·	uth Bo - T	und - R	Ea L -	ast Bo - T	ound - R	We	est B	ound - R
Control: Rights: Min. Green: Lanes:	18	Permit Inclu 18 1 0	ted ide 18	0	Permit Inclu 0 0	ted de 0	17	Permit Inclu 17 1 0	tted ude 0	0	Perminological Permin	tted ude 17 1 0
Volume Modul- Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	86 1.00 86 0 10 96 1.00 1.00 96 1.00 1.00	Count 410 1.00 410 40 454 1.00 454 0 454 1.00 1.00 454	1 Date: 41 1.00 41 9 30 80 1.00 1.00 0 80 1.00 1.00 80 80	1 Sep 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1997 0 1.00 0 0 0 0 1.00 1.00 0 0 1.00 1.00	<< 4: 0 1.00 0 0 0 0 1.00 1.00 0 1.00 0 1.00 0 0 1.00 0 0 0	1.00 - (23 1.00 23 0 0 23 1.00 1.00 23 1.00 23 1.00 23 1.00 23	6:00 P 144 1.00 144 14 30 188 1.00 1.00 188 1.00 1.00 1.88 1.00 1.00	PM 0 1.00 0 0 0 80 1.00 80 1.00 1.00 80 80 80 80 80 80 80 80 80 80 80 80 8	0 1.00 0 40 40 1.00 1.00 40 0 40 1.00 1.0	227 1.00 227 50 30 307 1.00 1.00 307 1.00 307 1.00 307	46 1.00 46 2 0 48 1.00 1.00 48 1.00 48 1.00
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	1900 0.91 0.30 529	1900 0.91 1.45 2504	1900 0.91 0.25 441	1.00 0.00 0	1.00 0.00 0	1.00 0.00 0	0.95 0.11 196	0.95 0.89 1603	0.96 0.00 0	0.74 0.00 0	0.86 1617	0.98 0.14 253
Capacity Ana Vol/Sat: Crit Moves:	0.18	0.18	0.18							***		
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	0.71 28.7 1.00 28.7	0.71 28.7 1.00 28.7	0.71 28.7 1.00 28.7	0.00 0.0 1.00 0.0	0.00 0.0 1.00 0.0	0.00 0.0 1.00 0.0	0.19 5.8 1.00 5.8	0.19 5.8 1.00 5.8	0.63 xxxx 0.0 1.00 0.0	0.0 1.00 0.0	0.30 6.6 1.00 6.6	0.30 6.6 1.00 6.6

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 61-1

UC Berkeley LRDP EIR

2020 With Project Conditions

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

Level Of Service Computation Report									
2000 HCM Operations Method (Future Volume Alternative)									
Intersection #52 Channing Way / College Avenue									
Cycle (sec): 65									
Optimal Cycle: 43 Level Of Service: B									
*******************************	******								
Approach: North Bound South Bound East Bound	West Bound								
	- T - R								
	Permitted								
	Include								
	7 17 17								
	0 1! 0 0								
Base Vol: 31 189 41 7 206 24 5 95 58 124	1 141 47								
	1.00 1.00								
Initial Bse: 31 189 41 7 206 24 5 95 58 124									
Added Vol: 3 8 -1 0 36 0 0 78 20 -3 Future: 30 60 30 0 40 10 30 40 40 40									
Initial Fut: 64 257 70 7 282 34 35 213 118 163									
	1.00 1.00								
	1.00 1.00								
PHF Volume: 64 257 70 7 282 34 35 213 118 163									
Reduct Vol: 0 0 0 0 0 0 0 0 0 0									
Reduced Vol: 64 257 70 7 282 34 35 213 118 163									
	1.00 1.00								
	1.00 1.00								
Final Vol.: 64 257 70 7 282 34 35 213 118 163									
Saturation Flow Module:									
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	1900 1900								
Adjustment: 0.88 0.88 0.88 0.98 0.98 0.98 0.90 0.90	L 0.71 0.71								
	0.42 0.19								
Final Sat.: 272 1093 298 40 1621 195 164 997 552 530	570 254								
Capacity Analysis Module:									
	0.30 0.30								
Crit Moves: ****	***								
	0.49 0.49								
	L 0.61 0.61								
4.	1 16.1 16.1								
	1.00 1.00								
	1 16.1 16.1								
DesignQueue: 2 6 2 0 7 1 1 4 2	3 1								

2020 With Project Conditions PM Peak Hour												
Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)												
											*****	*****

Cycle (sec): 75 Critical Vol./Cap. (X): 1.125 Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 19.3 Optimal Cycle: 180 Level Of Service: B												
Loss Time (se	ec):	8	(Y+R	= 4 :	sec) I	Average	Delay	y (sec	c/veh):		19.	. 3
Optimal Cycle	: :	180)		ΙΙ	Level 0	f Serv	vice:				В
Approach:												
Movement:												
	_ 			1			1			1		
Control: Rights: Min. Green:		Permit	ted	'	Permit	ted	'	Permit	ted	'	Permit	ted
Rights:		Inclu	ıde		Inclu	ıde		Inclu	ıde		Inclu	ıde
Min. Green:	22	22	0	0	22	22	0	0	0	27	27	27
Lanes:	1	0 2	0 0	0 (0 1	1 0	0 (0 0	0 0	0 :	1 0	1 0
Volume Module										0.00	226	1.50
Base Vol:			0		1208			1 00		268		
Growth Adj:					1.00			1.00	1.00	1.00		1.00
Initial Bse:	104	37	0		1208					268 32		152
Added Vol: Future:	20	100	0	0	120	45	0	0	0	40	80	0 40
Initial Fut:	124	1 4 7 4	0		1538	153			0	340	489	192
User Adj:					1.00			1.00			1.00	1.00
PHF Adj:					1.00	1.00		1.00			1.00	1.00
PHF Volume:			0		1538	153	0	0		340	489	192
Reduct Vol:		0	0		0	0	0	0		0		0
Reduced Vol:			0		1538	153	0		0	340		192
PCE Adj:			1.00		1.00			1.00	1.00		1.00	1.00
MLF Adj:			1.00		1.00			1.00			1.00	1.00
Final Vol.:			0	0	1538	153	0	0	0	340	489	192
Saturation F												
Sat/Lane:								1900			1900	
Adjustment:						0.94		1.00			0.90	
Lanes:						0.18		0.00			0.96	
Final Sat.:									0 l			641
Capacity Anal												
Vol/Sat:				0.00	0 47	0 47	0 00	0.00	0.00	0.30	0.30	0.30
Crit Moves:		J. 11	0.00	3.00	J. 17	0.1/	3.00	3.00	0.00	0.50	****	J.JU
Green/Cycle:		0.53	0.00	0.00	0.53	0.53	0.00	0.00	0.00	0.36	0.36	0.36
Volume/Cap:			0.00		0.89			0.00			0.83	
Delay/Veh: 2			0.0		10.4				0.0		28.6	28.6
User DelAdj:			1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh: 2	202.5	6.3	0.0	0.0	10.4	10.4	0.0	0.0	0.0	28.6	28.6	28.6
DesignQueue:	3	32	0	0	34	3	0	0	0	10	14	6
*******	****	*****	****	****	*****	****	****	*****	****	****	*****	*****

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 63-1

PM Peak Hour

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 62-1 _____ UC Berkeley LRDP EIR UC Berkeley LRDP EIR 2020 With Project Conditions

2020 With Project Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***********************************					
Intersection #54 Haste Street / Fulton Street	Intersection #55 Haste Street / Telegraph Avenue					
Cycle (sec): 80	Cycle (sec): 70					
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R					
Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Min. Green: 0 0 0 25 25 0 0 0 20 20 0 Lanes: 0 0 0 0 1 1 0 0 0 0 1 1 0	Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Min. Green: 16 16 0 0 0 0 0 0 16 16 Lanes: 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0					
Volume Module: >> Count Date: 14 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 0 0 0 580 154 0 0 0 50 604 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 19 Nov 2002 << 4:00 - 6:00 PM Base Vol: 186 476 0 0 0 0 0 0 0 0 0 470 57 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190					
Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.00 0.26 0.26 0.00 0.00	Capacity Analysis Module: Vol/Sat: 0.23 0.23 0.00 0.00 0.00 0.00 0.00 0.00					
Green/Cycle: 0.00 0.00 0.00 0.00 0.69 0.69 0.00 0.00	Green/Cycle: 0.40 0.40 0.00 0.00 0.00 0.00 0.00 0.0					

Page 64-1

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 65-1 ______ UC Berkeley LRDP EIR 2020 With Project Conditions

PM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

IM FEAK HOUL												
Level Of Service Computation Report												
2000 HCM Operations Method (Future Volume Alternative)												

Intersection #56 Haste Street / College Avenue												
Cycle (sec): 70												
Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 11.3												
Optimal Cycle: 40 Level Of Service: B										_		

Approach:											est Bo	
Movement:			- R			- R			- R		- T	
Control:						ted					Permit	
Rights:		Inclu			Inclu			Incl		•	Incli	
Min. Green:	16	16	0		16	16	0		0	16	16	16
Lanes:		1 0		0 (1 0	-		0 0			
Volume Module										0.0	044	0.0
Base Vol:	88	236	0	0	337	56	0	1.00	0	90	244	29 1.00
Growth Adj: Initial Bse:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	90	244	29
Added Vol:	2	236	0	0	51	1	0	0	0	90	244	29
Future:	30	70	0	0	80	30	0	0	0	30	30	40
Initial Fut:			0	0	468	87	0	0	0	120	276	69
User Adj:			1.00		1.00	1.00		1.00			1.00	1.00
PHF Adj:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	120	317	0	0	468	87	0	0	0	120	276	69
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	120	317	0	0	468	87	0	0	0	120	276	69
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Final Vol.:			0	. 0	468	87	. 0	0	0	120	276	69
0.1												
Saturation F. Sat/Lane:		1900	1900	1 0 0 0	1900	1900	1 9 0 0	1900	1900	1900	1900	1900
Adjustment:			1.00			0.98		1.00			0.91	0.91
Lanes:		0.73				0.16		0.00			1.19	
Final Sat.:							0				2049	
Capacity Ana	lysis	Modul	e:									
Vol/Sat:	0.30	0.30	0.00	0.00	0.30	0.30	0.00	0.00	0.00	0.13	0.13	0.13
Crit Moves:		****									****	
Green/Cycle:			0.00		0.61	0.61		0.00	0.00		0.27	0.27
Volume/Cap:		0.49	0.00		0.49	0.49		0.00	0.00		0.49	0.49
Delay/Veh: User DelAdj:			0.0	0.0	5.5	5.5 1.00	0.0	0.0	0.0		23.3	23.3
AdjDel/Veh:			0.0	0.0	5.5	5.5	0.0	0.0	0.0		23.3	23.3
walner/veu:	0.0	0.0	0.0	0.0	5.5	5.5	0.0	0.0	0.0	23.3	23.3	۷۵.3

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) Intersection #57 Dwight Way / Martin Luther King Way ******************* Cycle (sec): 75 Critical Vol./Cap. (X): 0.993 28.5 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 137 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Permitted Permitted Permitted Include Include Include Include Rights: Min. Green: 0 0 0 0 0 0 0 0 0 0 0 -----| Volume Module: >> Count Date: 5 Dec 2002 << 4:00-6:00 PM Base Vol: 71 821 60 113 860 272 49 444 111 0 0 Initial Bse: 71 821 60 113 860 272 49 444 111 0 0 Added Vol: 17 13 0 0 15 85 0 14 4 0 0 0 Future: 10 220 10 20 90 10 20 50 10 0 Ω Initial Fut: 98 1054 70 133 965 367 69 508 125 0 0 0 PHF Volume: 98 1054 70 133 965 367 69 508 125 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 98 1054 70 133 965 367 69 508 125 0 0 0

Final Vol.: 98 1054 70 133 965 367 69 508 125 0 0 -----|

Adjustment: 0.64 0.64 0.64 0.61 0.61 0.61 0.90 0.90 0.90 1.00 1.00 1.00 Lanes: 0.16 1.73 0.11 0.18 1.32 0.50 0.20 1.45 0.35 0.00 0.00 0.00 Final Sat.: 195 2095 139 212 1535 584 336 2473 609 0 0 -----|

Vol/Sat: 0.50 0.50 0.50 0.63 0.63 0.63 0.21 0.21 0.21 0.00 0.00 0.00

AdjDel/Veh: 9.3 9.3 9.3 28.5 28.5 28.5 61.9 61.9 61.9 0.0 0.0 0.0

DesignQueue: 2 18 1 2 16 6 2 18 4 0 0 0

*** Green/Cycle: 0.63 0.63 0.63 0.63 0.63 0.21 0.21 0.21 0.00 0.00 0.00 Delay/Veh: 9.3 9.3 9.3 28.5 28.5 28.5 61.9 61.9 61.9 0.0 0.0 0.0

Saturation Flow Module:

Capacity Analysis Module:

Crit Moves:

DesignQueue: 2 5 0 0 8 1 0 0 4 8 2

UC Berkeley LRDP EIR 2020 With Project Conditions

PM Peak Hour

		нсм Ор	eratio	ns Met	thod	Computa (Future	Volu	me Al	ternati			

Intersection							****	****	*****	****	****	*****
Cvcle (sec):						Critica					0.92	
Loss Time (se	ec):	12	(Y+R :	= 5 :		Average					16	
Optimal Cycle	e:	102	,			Level 0			-, -,-			В
******					****	****	****	****	*****	****	****	*****
Approach:	No	rth Bo	und	Soi	uth B	ound	E	ast B	ound	We	est Bo	ound
Movement:												
Control:		Permit	ted	Pro	ot+Pe	rmit	1	Permi	tted	1	Permi	tted
Rights:		Inclu	.de		Incl	ude		Incl	ıde		Incl	ıde
Min. Green:			0		0			0	0	-	0	0
Lanes:			1 0			1 0						
Volume Module												
Base Vol:		1273	123		1390			426	200	0	0	0
Growth Adj:				1.00				1.00			1.00	
Initial Bse:			123		1390		77	426	200	0	0	0
Added Vol:		32	0	12			5	10	0	0	0	0
Future:		160	0.0		140	0	10	50	10	0	0	0
Initial Fut:			153		1750		92		210	1 00	1 00	0
User Adj:			1.00		1.00			1.00			1.00	1.00
PHF Adj:		1.00	1.00 153		1.00 1750		92	1.00	1.00	1.00	1.00	1.00
PHF Volume: Reduct Vol:		1465	153	155	1/50		92	486	210	0	0	0
Reduced Vol:	-	-	153	-	1750		92	-	-	0	0	0
			1.00		1.00			1.00			1.00	-
MLF Adj:			1.00	1.00				1.00		1.00		1.00
Final Vol.:				155				486	210	0.00	1.00	0
										-	-	-
Saturation Fl				1		1	1		'	1		'
			1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:											1.00	
Lanes:									0.53		0.00	0.00
Final Sat.:								2052	887	0	0	0
Capacity Anal	Lysis	Modul	e:									
Vol/Sat:			0.45	0.34	0.48	0.00	0.24	0.24	0.24	0.00	0.00	0.00
Crit Moves:		****		****				****				
Green/Cycle:	0.00	0.49	0.49	0.58	0.58	0.00	0.26	0.26	0.26	0.00	0.00	0.00
Volume/Cap:	0.00	0.93	0.93	0.58	0.83	0.00		0.93		0.00	0.00	0.00
Delay/Veh:			16.2	13.4	4.8	0.0	44.5	44.5	44.5	0.0		0.0
User DelAdj:			1.00		1.00			1.00			1.00	1.00
AdjDel/Veh:			16.2		4.8			44.5			0.0	0.0
DesignQueue:				6				16	7		0	0
*********	++++	*****	****	****	****	*****	****	****	*****	****	++++	*****

PM Peak Hour										
Level Of Service Computation Report										
2000 HCM Operations Method (Future Volume Alternative)										

Intersection #59 Dwight Way / Fulton Street										

UC Berkeley LRDP EIR

2020 With Project Conditions

2000 HCM Operations Method (Future volume Alternative)	+++++++
Intersection #59 Dwight Way / Fulton Street	******
Cycle (sec): 75 Critical Vol./Cap. (X): Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh):	
Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/ven):	17.3
Optimal Cycle: 45 Level Of Service:	В

Approach: North Bound South Bound East Bound West	Bound
Movement: L - T - R L - T - R L - T - R L -	
Control: Permitted Permitted Permitted Per	mitted
Rights: Include Include Include Ir	clude
	0 0
Lanes: 0 0 0 0 1 2 0 0 0 0 0 1 1 0 0 0	
Volume Module: >> Count Date: 14 Nov 2002 << 4:00 - 6:00 PM	
Base Vol: 0 0 62 631 0 0 0 664 15 0	0 0
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	00 1.00
Initial Bse: 0 0 62 631 0 0 0 664 15 0	0 0
Added Vol: 0 0 0 12 0 0 0 22 0 0	0 0
Added Vol: 0 0 0 12 0 0 0 22 0 0 Future: 0 0 20 100 0 0 0 60 30 0	0 0
Initial Fut: 0 0 82 743 0 0 0 746 45 0	0 0
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	00 1.00
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
	0 0
Reduct Vol: 0 0 0 0 0 0 0 0 0	0 0
Reduced Vol: 0 0 82 743 0 0 0 746 45 0	
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
Final Vol.: 0 0 82 743 0 0 0 746 45 0	
Saturation Flow Module:	1
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	00 1900
Adjustment: 1.00 1.00 0.87 0.59 1.00 1.00 1.00 0.94 0.94 1.00 1.	
Lanes: 0.00 0.00 1.00 2.00 0.00 0.00 0.00 1.89 0.11 0.00 0.	
Final Sat.: 0 0 1644 2245 0 0 0 3374 204 0	
	0 0
Capacity Analysis Module:	
	00 000
Vol/Sat: 0.00 0.00 0.05 0.33 0.00 0.00 0.00 0.22 0.22 0.00 0.	00.00
C110 110 VCO.	
Green/Cycle: 0.00 0.00 0.54 0.54 0.00 0.00 0.00 0.36 0.36 0.00 0.	
Volume/Cap: 0.00 0.00 0.09 0.62 0.00 0.00 0.00 0.62 0.62 0.00 0.	
Delay/Veh: 0.0 0.0 8.7 14.5 0.0 0.0 0.0 20.8 20.8 0.0 0	
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
AdjDel/Veh: 0.0 0.0 8.7 14.5 0.0 0.0 0.0 20.8 20.8 0.0 0	
DesignQueue: 0 0 2 15 0 0 0 21 1 0	
************************	*****

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 68-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 69-1 UC Berkeley LRDP EIR 2020 With Project Conditions

PM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

FM Feak Hour	rm reak nour							
Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)							
**********************	**************************************							
Intersection #60 Dwight Way / Telegraph Avenue	Intersection #61 Dwight Way / College Avenue							
Cycle (sec): 70	Cycle (sec): 70 Critical Vol./Cap. (X): 0.614							
Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 32.3	Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): 14.5							
Optimal Cycle: 122 Level Of Service: C	Optimal Cycle: 39 Level Of Service: B							
*********************	***************************************							
Approach: North Bound South Bound East Bound West Bound	Approach: North Bound South Bound East Bound West Bound							
Movement: L - T - R L - T - R L - T - R	Movement: L - T - R L - T - R L - T - R							
Control: Permitted Permitted Permitted Permitted	Control: Permitted Permitted Permitted Permitted							
Rights: Include Include Include Include Min. Green: 0 15 15 0 0 0 17 17 17 0 0 0	Rights: Include Include Include Include Min. Green: 0 16 16 16 16 0 15 15 15 0 0 0							
Lanes: 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0	Lanes: 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0							
dates:								
Volume Module: >> Count Date: 19 Nov 2002 << 4:00 - 6:00 PM	Volume Module: >> Count Date: 19 Nov 2002 << 4:00 - 6:00 PM							
Base Vol: 0 590 149 0 0 0 130 671 813 0 0	Base Vol: 0 294 52 49 374 0 34 483 129 0 0 0							
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							
Initial Bse: 0 590 149 0 0 0 130 671 813 0 0 0	Initial Bse: 0 294 52 49 374 0 34 483 129 0 0 0							
Added Vol: 0 4 0 0 0 0 9 25 27 0 0	Added Vol: 0 12 0 0 51 0 1 20 4 0 0 0							
Future: 0 120 10 0 0 0 10 60 100 0 0	Future: 0 50 60 20 80 0 30 0 10 0 0							
Initial Fut: 0 714 159 0 0 0 149 756 940 0 0	Initial Fut: 0 356 112 69 505 0 65 503 143 0 0 0							
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							
PHF Volume: 0 714 159 0 0 0 149 756 940 0 0	PHF Volume: 0 356 112 69 505 0 65 503 143 0 0 0							
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0	Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0							
Reduced Vol: 0 714 159 0 0 0 149 756 940 0 0	Reduced Vol: 0 356 112 69 505 0 65 503 143 0 0 0							
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							
Final Vol.: 0 714 159 0 0 0 149 756 940 0 0	Final Vol.: 0 356 112 69 505 0 65 503 143 0 0							
Saturation Flow Module:	Saturation Flow Module:							
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190							
Adjustment: 1.00 0.92 0.92 1.00 1.00 1.00 0.81 0.81 0.81 1.00 1.00	Adjustment: 1.00 0.97 0.97 0.90 0.90 1.00 0.89 0.89 0.89 1.00 1.00 1.00							
Lanes: 0.00 1.64 0.36 0.00 0.00 0.16 0.84 1.00 0.00 0.00 0.00	Lanes: 0.00 0.76 0.24 0.12 0.88 0.00 0.18 1.42 0.40 0.00 0.00 0.00							
Final Sat.: 0 2873 640 0 0 0 254 1287 1541 0 0 0	Final Sat.: 0 1399 440 206 1509 0 311 2403 683 0 0 0							
Capacity Analysis Module:	Capacity Analysis Module:							
Vol/Sat: 0.00 0.25 0.25 0.00 0.00 0.59 0.59 0.61 0.00 0.00 0.00	Vol/Sat: 0.00 0.25 0.25 0.33 0.33 0.00 0.21 0.21 0.21 0.00 0.00 0.00							
Crit Moves: **** Green/Cycle: 0.00 0.26 0.26 0.00 0.00 0.63 0.63 0.63 0.00 0.00 0.0	Crit Moves: **** **** Green/Cvcle: 0.00 0.54 0.54 0.54 0.54 0.00 0.34 0.34 0.34 0.00 0.00							
Volume/Cap: 0.00 0.97 0.97 0.00 0.00 0.00 0.93 0.93 0.97 0.00 0.00 0.00	Volume/Cap: 0.00 0.47 0.47 0.61 0.61 0.00 0.61 0.61 0.61 0.00 0.00							
Delay/Veh: 0.0 49.6 49.6 0.0 0.0 0.0 0.0 0.93 0.93 0.97 0.00 0.00 0.00 0.00	Delay/Veh: 0.0 8.3 8.3 10.5 10.5 0.0 21.7 21.7 21.7 0.0 0.0 0.0							
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							
AdjDel/Veh: 0.0 49.6 49.6 0.0 0.0 0.0 21.3 21.3 26.9 0.0 0.0 0.0	AdjDel/Veh: 0.0 8.3 8.3 10.5 10.5 0.0 21.7 21.7 21.7 0.0 0.0 0.0							
DesignQueue: 0 22 5 0 0 0 2 12 16 0 0 0	DesignOueue: 0 7 2 1 10 0 2 14 4 0 0 0							
Designiqueue:	**************************************							

UC Berkeley LRDP EIR

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

			1			~		D				
Level Of Service Computation Report												
2000 HCM Operations Method (Future Volume Alternative)												

Intersection										*****	*****	*****
Cvcle (sec):		70			(Critica	l Vol	./Cap	. (X):		0.46	52
Loss Time (se	٠ ()	8	(Y+R :	= 4 9							13.	6
Optimal Cycle			(Level O			o, vo, •			В
*******									*****	*****		
		rth Bo							ound		est Bo	
Movement:						- R					- T	
movement:												
Control:	1	Permit	ted		Permi	ted ide	1	Permi	tted	ŀ	Permit	.ted
Rights:												
Min. Green:			29			0			24			24
Lanes:			1 0			0 0						
Volume Module												110
Base Vol:	0	527	1	8	353	0	132	162	307		0	112
Growth Adj:		1.00	1.00		1.00	1.00		1.00		1.00		1.00
Initial Bse:		527	1	8	353	0	132	162	307	53	0	112
Added Vol:	0	26	0	0	151	0	0	0	20	0	0	0
Future:	0	80	20	10	30	0	20	10	40	30	0	10
Initial Fut:	0	633	21	18	534	0	152	172	367	83	0	122
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	0	633	21	18	534	0	152	172	367	83	0	122
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	633	21	18	534	0	152	172	367	83	0	122
	1.00		1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
_	1.00		1.00		1.00	1.00		1.00	1.00	1.00		1.00
Final Vol.:		633	21	18		0		172	367	83	0	122
						-					-	
Saturation Fl				1		1	1		'	1		ı
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	1.00	0.95	0.95	0.88	0.88	1.00	0.66	1.00	0.85	0.76	1.00	0.76
Lanes:		1.94	0.06		1.93			1.00		0.40		0.60
			115		3244			1900	1615		0	861
Capacity Anal				1		'	1		,	'		'
Vol/Sat:	0.00	0.18	0.18	0.16	0.16	0.00	0.12	0.09	0.23	0.14	0.00	0.14
Crit Moves:		****							****			
Green/Cycle:	0.00	0.41	0.41	0.41	0.41	0.00	0.47	0.47	0.47	0.47	0.00	0.47
Volume/Cap:			0.44		0.40	0.00		0.19	0.48	0.30		0.30
Delay/Veh:			14.9		14.6	0.0		10.9	13.1		0.0	11.6
User DelAdj:			1.00		1.00	1.00		1.00	1.00	1.00		1.00
AdiDel/Veh:			14.9		14.6	0.0		10.9	13.1	11.6		11.6
DesignQueue:			14.9	14.0	14.0	0.0	3	10.9	13.1	11.0	0.0	3
nesiduõnene:	U	ΤЭ	Τ.	U	13	U	3	4	ð		U	3

Level Of Service Computation Report
2000 HCM Unsignalized Method (Future Volume Alternative)

Intersection #63 Dwight Avenue / Prospect Street

2020 With Project Conditions

PM Peak Hour

Intersection #63 Dwight Avenue / Prospect Street												
Average Dela	y (sec	c/veh)	:	5.6	****	Wc	rst C	ase L	evel 01	f Serv:	ice:	B *****
Approach: Movement:	L -	- T	- R	L -	- T	- R	L ·	- T	R	L ·	- T	- R
Control: Rights:	St	op Si Incli	ign ide	St	op Si Incli	ign ıde	Un	contro Incl	olled ude	Un	contro Incl	olled ude
Lanes:												
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Volume: Reduct Vol: Final Vol.: Critical Gap Critical Gp: FollowUpTim:	0 1.00 0 0 0 0 1.00 1.00 0 0 0 0 0 0 0 0	Count	Date: 0 1.00 0 0 0 0 0 1.00 0 0 1.00 0 0 0 0	20 No. 27 1.00 27 0 10 37 1.00 1.00 37 0 37	0 200 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	02 << 4 165 1.00 165 0 20 185 1.00 1.00 185 0 1.5 0	1.00 - 187 1.00 187 0 20 207 1.00 1.00 207 0 207	6:00 128 1.00 128 0 20 148 1.00 1.00 148 0 148	PM 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1.00 0 0 0 1.00 1.00 0	93 1.00 93 0 20 113 1.00 1.00 113 0 113	16 1.00 16 0 0 16 1.00 1.00 16 0 1.6
Capacity Mod												
Cnflict Vol: Potent Cap.: Move Cap.:	XXXX XXXX	xxxx xxxx	xxxxx xxxxx	418 367	xxxx xxxx	936 936	1469 1469	XXXX	XXXXX	xxxx	xxxx	XXXXX
Level Of Serv Stopped Del:: LOS by Move: Movement:	vice N xxxxx *	Module xxxx *	xxxxx *	xxxxx *	xxxx *	xxxxx *	7.9 A	xxxx *	xxxxx *	*****	xxxx *	xxxxx *
Shared Cap.: Shrd StpDel: Shared LOS: ApproachDel:	xxxx xxxxx *	**** *	****** *****	XXXX	744	XXXXX	**** 7.9 A	xxxx	XXXXX XXXXX *	XXXX	****	XXXXX
ApproachLOS:	XX				В		X	*		X.	*	

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 72-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 73-1 UC Berkeley LRDP EIR 2020 With Project Conditions

PM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)												
*************** Intersection	#64 2	Adelin	e Stree	et / N	Ward A	Avenue	/ Shat	ttuck	Avenue			

Cycle (sec): Loss Time (se Optimal Cycle	ec):	90	(Y+R =	= 6 s	sec) 1	Critica Average	l Vol	./Cap.	(X): c/veh):			5 C
*******	: • : * * * * :	*****	****	****	. * * * *	*****	****	*****	*****	*****		
Approach:	Noi	rth Bo	und	Soi	ıth Bo	ound	Εa	ast Bo	ound	W∈	est Bo	und
Approach: Movement:	L -	- T	- R	L -	- T	- R	L -	- T	- R	L -	- T	- R
Control:	I	Permit	ted	1	Permit	tted	P	rotect	ted	I	Permit	ted
Rights:		Inclu	de		Incl	ude 25		Incl	ıde		Inclu	ıde
Min. Green:												
Lanes:			1 0			0 1						
Volume Module												
Base Vol:			5		957			0.00		0	0	0
Growth Adj:							1.00	-			1.00	
Initial Bse:		690	5	0	957	825				0	0	0
Added Vol:	0	24	0	0	182	52	7	0	0	0	0	0
Future: Initial Fut:	0	50	0	0	50	110	130	0	0 2	0	0	0
				0	1189	987	1040	0	2			0
User Adj:				1.00					1.00		1.00	
			1.00		1.00			1.00	1.00	1.00	1.00	1.00
PHF Volume:	0	764	5	0	1189 0	987		0		0	-	0
Reduct VOI.	0	0					0					0
Reduced Vol:									2			0
PCE Adj: MLF Adj:					1.00			1.00			1.00	1.00
Final Vol.:										1.00		1.00
Saturation Fl						'			'	'		'
Sat/Lane:				1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	1.00	1.00	1.00	1.00	0.95	0.85	0.92	1.00	0.85	1.00	1.00	1.00
Lanes:								0.00		0.00		1.00
Final Sat.:	0	1886	12	0	3610	1615		0		0		1900
		M = d - 1										
Capacity Anal Vol/Sat:	-			0 00	0 22	0 61	0 20	0.00	0.00	0 00	0.00	0.00
Crit Moves:	0.00	0.41	0.41	0.00	0.33	****		0.00	0.00	0.00	0.00	0.00
Green/Cycle:	0.00	0.61	0.61	0.00	0.61			0.00	0.30	0.00	0.00	0.00
Volume/Cap:								0.00			0.00	0.00
Delay/Veh:								0.0			0.0	0.0
User DelAdj:			1.00				1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:										0.0		0.0
DesignQueue:									0			0

	Level Of Service Computation Report											
	2000 HCM 4-Way Stop Method (Future Volume Alternative)											
Intersection										~ ~ ~ ~ ~ /		
******								****	*****	*****	****	*****
Cycle (sec):		100				Critica					1.8	
Loss Time (se			(Y+R	= 4							308	
Optimal Cycle						Level O						F

Approach:					uth B			ast Bo			est B	
Movement:			- R						- R			- R
Control:						ign						
Rights:			ide			ude			ude		Incl	
Min. Green:		0				0			0	0		0
Lanes:			0 0			0 0			0 0	0 0	0 0	1 0
Volume Module												
Base Vol:	0	0	0	765	0	30	7	62	0	0	75	780
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	765	0	30	7	62	0	0	75	780
Added Vol:	0	0	0	171	0	0	0	0	0	0	0	26
PasserByVol:	0	0	0	110	0	10	0	0	0	0	0	120
Initial Fut:	0	0	0	1046	0	40	7	62	0	0	75	926
User Adj:		1.00	1.00	1.00	1.00	1.00		1.00			1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	0	0	0	1046	0	40	7	62	0	0	75	926
Reduct Vol:	0	0	0	0	0	0	0	0		0	0	0
Reduced Vol:		0	0	1046	0	40	7	62	-	0	75	926
PCE Adj:		1.00	1.00		1.00	1.00		1.00			1.00	1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00			1.00	1.00
Final Vol.:		0	0	1046	-	40	. 7			. 0	75	926
Saturation F.												
Adjustment:				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:		0.00		0.96				0.90				
Final Sat.:	0	0	0	577	0	22	53	471	0	0	51	624
G												
Capacity Ana				1 01		1 01	0 10	0 12			1 40	1 40
Vol/Sat:	XXXX	XXXX	XXXX	****	XXXX	1.81	U.13	0.13	XXXX	XXXX	1.48	1.48
Crit Moves:	0 0	0 0	0 0		0 0	207 0	10 0		0 0	0 0	242	
4 '	0.0	1.00		1.00		387.9		10.9			1.00	241.9
Delay Adj: AdjDel/Veh:						387.9		10.9		0.0		1.00
LOS by Move:			*	387.9 F		387.9 F	10.9 B		U.U *	U.U *		241.9 F
ApproachDel:		XXXXX		-	387.9	£	Д	10.9			241.9	r
Delay Adj:					1.00			1.00			1.00	
ApprAdjDel:		XXXXX			387.9			10.9			241.9	
LOS by Appr:	X.	*			307.9 F			10.9 B		4	241.9 F	
					r 							

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 74-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 75-1

UC Berkeley LRDP EIR

2020 With Project Conditions

PM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)												
******											****	*****
Intersection	#66 I	Derby	Street	/ Cla	remon	nt Blvd *****	****	****	*****	****	****	*****
Cycle (sec):		65			(Critica	l Vol	./Cap	. (X):		0.8	
Loss Time (se	c):	8	(Y+R =	= 5 s	sec) 1	Average	Dela	y (se	c/veh):		34	
Optimal Cycle	:	71]	Level O	f Ser	vice:				C
*****	****	*****	****	****	****	*****	****	****	*****	****	****	*****
Approach:											est B	
Movement:						- R						- R
Control:	1	Permit	ted	I	Permit	ted	1	Permi	tted		Permi	
Rights:		Inclu			Incl				ude		Incl	
			18		0	0				35		0
Lanes:			0 0						1 0			
							,					
Volume Module Base Vol:	: //	Count	225	21 NC	0 200	0	0	872	PM 11	31	741	0
	-	-	1.00	1.00	-	1.00	-	1.00			1.00	
Initial Bse:	4	0	225	0.00	0.00	0	1.00	872	11	31	741	
Added Vol:	0	0	0	0	0	0	0	171		0	26	0
PasserByVol:		0	0	0	0	0	0	120		0	120	0
Initial Fut:			225	0	0	0	-	1163		31	887	0
User Adj:			1.00		1.00	1.00		1.00			1.00	1.00
			1.00		1.00	1.00		1.00		1.00	1.00	1.00
PHF Volume:	4	0	225	0	0	0	0	1163	11	31	887	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	4	0	225	0	0	0	0	1163	11	31	887	0
PCE Adj:	1.00		1.00		1.00			1.00			1.00	1.00
			1.00		1.00	1.00		1.00			1.00	1.00
Final Vol.:	4	0	225	0	0	0		1163		31	887	0
Saturation Fl												
			1900					1900			1900	
Adjustment: Lanes:				1.00					1.00		0.94	
Final Sat.:									18			
Capacity Anal				1		1	1		1	1		1
	-		0.14	0 00	0 00	0.00	0 00	0.62	0.62	0 51	0.51	0.00
. ,	****	0.00	0.11	0.00	0.00	0.00	0.00	****	0.02	0.01	0.01	0.00
Green/Cycle:	0.28	0.00	0.28	0.00	0.00	0.00	0.00	0.60	0.60	0.60	0.60	0.00
Volume/Cap:			0.50	0.00		0.00		1.03			0.86	
		0.0	23.7	0.0		0.0		47.9			19.5	0.0
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	23.7	0.0	23.7	0.0	0.0	0.0	0.0	47.9	47.9	19.5	19.5	0.0
DesignQueue:					0	0	0		0	1		0
********	****	*****	****	*****	****	*****	****	****	*****	****	****	*****

		т		of Sar		Computa	 tion 1	Penor	 +			
	Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)											
******	****	****	****	*****	****	*****	****	****	*****	****	****	*****
Intersection *******								****	*****	*****	****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle ************************************	e:	180				Level O	f Ser	vice:			94.	5 F
Approach: Movement:	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R	L -		- R
Control: Rights:		Permit	ted		Permi	tted ude 0	Sp.	lit Pl	hase	Spl	it Ph	nase
Min. Green: Lanes:	0	1 0	1 0	0	1 0	1 0	1	0 1	1 0	1 0	1	1 0
Volume Modula Base Vol:				: 4 Dec				00 PM 546		0.0	774	31
Growth Adj:												1.00
Initial Bse:				107				546		98		31
	134		0	0	2 / 0	0	203				90	0
Future:		60	1.0	90				60		20	60	70
Initial Fut:			78		300			620		118		101
User Adj:			1.00		1.00				1.00			
PHF Adi:			1.00	1.00				1.00		1.00		1.00
PHF Volume:			78		300			620		118	924	101
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	194	464	78	197	300	476	293	620	173	118	924	101
PCE Adj:				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:		1.00	1.00			1.00				1.00	1.00	1.00
Final Vol.:						476						101
Saturation F												
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.48	0.48	0.48	0.52	0.52	0.52	0.95	0.92	0.92	0.95	0.94	0.94
Lanes:												
Final Sat.:	481	1151	194	401	611	969	1805		762			350
 Capacity Ana												
Vol/Sat:												0.29
Crit Moves:	0 40	0 40	0 40			0 40			0.00			
Green/Cycle:												
Volume/Cap:												
Delay/Veh:												114.1
User DelAdj: AdjDel/Veh:												1.00
DesignQueue:												5

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 76-1 CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 77-1

UC Berkeley LRDP EIR

2020 With Project Conditions

PM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

		L	evel 0	f Ser	vice C	Computa	tion I	Repor	t			
	2000 HCM Operations Method (Future Volume Alternative)											
								****	*****	*****	****	*****
Intersection								****	*****	****	****	*****
Cycle (sec):		110			C	Critica	l Vol	./Cap	. (X):		0.8	91
Loss Time (se	ec):	8	(Y+R	= 4 :	sec) A	Average	Delay	y (se	c/veh):		41	.1
Cycle (sec): Loss Time (sec) Optimal Cycle	e:	99			ΙΙ	Level 0	f Ser	vice:				D
Approach:												
Movement:												
Control:	Pro	otect	ed	P:	rotect	ed]	Permi	tted	1	Permi	tted
Rights: Min. Green:		Inclu	de		Inclu	ıde		Incl	ude		Incl	ıde
Min. Green:	4	17	17	4	19	19	18	18	18	18	18	18
Lanes:	1 0	1	1 0	. 1 (0 1	1 0	. 1 () 1	1 0	0 1	L 0	1 0
Volume Module												
Base Vol:			79		873			592		20	612	143
Growth Adj:					1.00				1.00			
Initial Bse:				185		113						143
Added Vol:				0		16	0	11	3	58	60	0
Future:		190		20	320	30	20	90	50	40	90	30
Initial Fut:			197	205	1207		106	693	223		762	173
User Adj:			1.00		1.00	1.00	1.00	1.00			1.00	1.00
PHF Adj:			1.00		1.00	1.00		1.00				1.00
PHF Volume:			197		1207	159		693		118	762	173
Reduct Vol: Reduced Vol:					0 1207	0		0			0	0 173
PCE Adi:					1.00			693	1.00			
MLF Adj:					1.00			1.00				
Final Vol.:									223			
Saturation F	low Mo	dule:										
Sat/Lane:				1900	1900	1900	1900	1900	1900			
Adjustment:					0.93				0.92			
Lanes:						0.23			0.49			
Final Sat.:						413			847			552 I
Capacity Ana							1			1		
Vol/Sat:				0.11	0.38	0.38	0.06	0.26	0.26	0.31	0.31	0.31
Crit Moves:				****		0.00	0.00	3.20	0.20	0.01	****	
Green/Cycle:				0.11	0.48	0.48	0.31	0.31	0.31	0.31	0.31	0.31
Volume/Cap:	0.80	0.80	0.80	1.00	0.80	0.80	0.18	0.84	0.84	1.00	1.00	1.00

	2000 1					Computa (Future			: ternati	ve)		
*****											****	***
Intersection *******								****	*****	****	*****	. * * 1
Cycle (sec):		140				Critica	l Vol	./Cap.	(X):		0.62	27
Loss Time (s				= 4 :					c/veh):		39.	. 4
Optimal Cycl		86				Level O						D

Approach: Movement:		run Bo - T	und _ p			ound - R		ast Bo	- R		est Bo - T	
movement:												
Control:		rotect			rotect			rotect			cotect	
Rights:		Inclu			Incli			Incli			Incli	
Min. Green:	4	32	32	6	38	38	4	22		4	32	
Lanes:			1 0			1 0			1 0	1 () 1	1
Volume Modul	e: >>	Count	Date:	21 No	ov 200)2 << 4	:00 -	6:00	PM			
Base Vol:	92	693	85	31	700	169	135	491	39	68	547	
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
Initial Bse:	92	693	85	31	700	169	135	491	39	68	547	
Added Vol:	1	2	0	0	11	40	6	22	4	0	57	
Future:	60	70	10	10	10	80	50	160	20	10	50	
Initial Fut:	153	765	95	41	721	289	191	673	63	78	654	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
PHF Volume:	153	765	95	41	721	289	191	673	63	78	654	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	153	765	95	41	721	289	191	673	63	78	654	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
Final Vol.:		765	95		721	289		673	63	78		
Saturation F												
Sat/Lane:			1900		1900			1900			1900	19
Adjustment:			0.93		0.87				0.94		0.94	
Lanes:		1.78			2.14				0.17		1.86	0.
Final Sat.:			392		3544			3258			3325	2
Capacity Ana												
Vol/Sat:		0.24	0.24	0.02	0.20	0.20	0.11	0.21	0.21	0.04	0.20	0 .
Crit Moves:	****	0 46	0 40	0 0:	****	0 00		0 40	0 40	0 00		_
Green/Cycle:					0.32			0.40			0.31	0 .
Volume/Cap:					0.63			0.52			0.63	0.
Delay/Veh:		32.0	32.0		40.9			28.8	28.8		41.1	41
User DelAdj:					1.00				1.00		1.00	1.
AdjDel/Veh:		32.0	32.0		40.9			28.8	28.8		41.1	41
DesignOueue:	11	37	5	3	40	16	13	33	3	6	37	

Delay/Veh: 63.5 25.6 25.6 111.3 27.1 27.1 26.9 40.2 40.2 64.2 64.2 64.2 Adjpel/Veh: 63.5 25.6 25.6 111.3 27.1 27.1 26.9 40.2 40.2 64.2 64.2 64.2

DesignQueue: 11 41 7 11 42 6 5 31 10 5 34 8

CUMULATIVE + LAB + PROJECT Thu Mar 18, 2004 11:33:06 Page 79-1 UC Berkeley LRDP EIR

2020 With Project Conditions

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

Level Of Service Computation Report										
	2000 HCM Operations Method (Future Volume Alternative)									
Intersection #70 Ashby Avenue / Shattuck Avenue										
Loss Time (sec): 12 (Y+R	Critical Vol./Cap. (X): 0.732 = 4 sec) Average Delay (sec/veh): 42.5 Level Of Service: D									
Optimal Cycle: 60	Level Of Service: D									
******	***********									
Approach: North Bound	South Bound East Bound West Bound									
Movement: L - T - R	L-T-R L-T-R L-T-R									
Control: Permitted	Permitted Permitted Permitted									
Rights: Include	Include Include Include 6 21 21 20 20 20 20 20 20									
	6 21 21 20 20 20 20 20 20									
Lanes: 0 1 0 1 0										
	: 21 Nov 2002 << 4:00 - 6:00 PM									
Base Vol: 52 556 30										
Growth Adj: 1.00 1.00 1.00										
Initial Bse: 52 556 30										
Added Vol: 0 14 0	25 99 56 7 14 0 0 1 3									
Future: 10 10 10	20 20 10 10 170 20 10 60 20									
Initial Fut: 62 580 40	245 704 122 50 720 60 42 602 199									
User Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00									
PHF Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00									
PHF Volume: 62 580 40	245 704 122 50 720 60 42 602 199									
Reduct Vol: 0 0 0	0 0 0 0 0 0 0 0									
Reduced Vol: 62 580 40	245 704 122 50 720 60 42 602 199									
PCE Adj: 1.00 1.00 1.00										
MLF Adj: 1.00 1.00 1.00										
Final Vol.: 62 580 40	245 704 122 50 720 60 42 602 199									
Saturation Flow Module:	1000 1000 1000 1000 1000 1000 1000 1000									
Sat/Lane: 1900 1900 1900										
	0.89 0.89 0.89 0.90 0.90 0.90 0.88 0.88									
	775 2228 386 205 2958 246 166 2376 785									
Capacity Analysis Module:										
	0.32 0.32 0.32 0.24 0.24 0.24 0.25 0.25 0.25									
Crit Moves: ****	***									
Green/Cycle: 0.33 0.33 0.33										
Volume/Cap: 1.13 1.13 1.13										
Delay/Veh: 106.7 107 106.7										
User DelAdj: 1.00 1.00 1.00										
AdjDel/Veh: 106.7 107 106.7										
DesignQueue: 2 18 1	8 23 4 1 16 1 1 13 4									

PM Peak Hour	
Level Of Service Computation Report	
2000 HCM Operations Method (Future Volume Alternative)	

*****	2000 HCM O								*****
Intersection	#71 Ashby	Avenue	/ Teleg:	caph Aver	nue				
Cycle (sec): Loss Time (soc) Optimal Cycle	8 ec): 1 e: 10) 2 (Y+R :	= 6 sec	Critica Average Level (al Vol. e Delay Of Serv	./Cap / (sed	. (X): c/veh):	1.0	07 .0 C
Approach: Movement:	North B L - T	ound - R	South L - '	Bound r - R	Ea L -	ast Bo - T	ound - R	West E L - T	ound - R
Control: Rights: Min. Green: Lanes:	Protec Incl 21 21 1 0 1	ted ude 21 1 0	Prot+1 Inc 6 2 1 0	Permit clude 21 21 L 1 0	Pi 25 1 (rotect Inclu 25) 1	ted ude 25 1 0	Protect Incl 25 25 1 0 1	ted ude 25 1 0
Volume Modul. Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.: Saturation F	e: >> Coun 210 675 1.00 1.00 210 675 1 4 30 80 241 759 1.00 1.00 241 759 0 0 241 759 1.00 1.00 241 759 1.00 1.00 241 759	Total Pate: 75	21 Nov 2 176 90 1.00 1.0 176 90 1.00 1.0 188 91 1.00 1.0 1.88 91 0 188 91 1.00 1.0 188 91 1.00 1.0	2002 << 4 02 63 00 1.00 02 63 02 63 02 63 05 0 10 06 10 07 73 0 0 07 73 0 0 07 73 0 0 07 73 0 0 08 7 73 0 0 09 1.00 09 1.00 09 7 73	1:00 - 68 1.00 68 0 30 98 1.00 1.00 98 1.00 1.00 98	6:00 531 1.00 531 36 110 677 1.00 677 0 677 1.00 1.00 677	PM 184 1.00 184 3 50 237 1.00 237 0 237 1.00 237 1.00 237 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	148 642 1.00 1.00 148 642 0 3 20 50 168 695 1.00 1.00 1.00 1.00 168 695 1.00 1.00 168 695 1.00 1.00 168 695	99 1.00 99 0 20 119 1.00 1.00 119 0 1.00 1.00
Sat/Lane: Adjustment:	1900 1900 0.95 0.94 1.00 1.80 1805 3198	1900 0.94 0.20 358	0.56 0.5 1.00 1.8 1070 332	94 0.94 86 0.14 28 246	0.95 1.00 1805	0.91 1.48 2570	0.91 0.52 900	0.95 0.93 1.00 1.71 1805 3014	0.93 0.29 516
Capacity Ana Vol/Sat: Crit Moves:	0.13 0.24 ****	0.24	**	k *		0.26		0.09 0.23	
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue: *************	0.38 0.68 25.7 30.2 1.00 1.00 25.7 30.2 9 30	0.68 30.2 1.00 30.2	0.19 0.0 3.0 20 1.00 1.0 3.0 20 6	0.65 .1 20.1 00 1.00 .1 20.1 33 2	0.16 23.8 1.00 23.8 4	0.75 34.2 1.00 34.2 27	0.75 34.2 1.00 34.2 10	25.3 31.3 1.00 1.00 25.3 31.3 6 28	0.66 31.3 1.00 31.3

UC Berkeley LRDP EIR 2020 With Project Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)												
	2000 ncm Operations method (rutile volume Alberhative)											
Intersection	#72	Ashby	Avenue	/ Co	llege	Avenue						
Cvcle (sec):		80			(Critica	1 Vol	/Can	(X) ·		0.96	5.8
Loss Time (se	-()			= 4		Average					39	
Optimal Cycle		134		1 .		Level O			J, V C11) .		33.	D
*********				****					*****	****	****	_
Approach:		rth Bo				ound			ound		est Bo	
Movement:			- R			- R			- R		- Т	
											_	
Control:		Permit				ted	']				Permit	,
Rights:		Inclu			Incl			Incl			Incli	
Min. Green:	18		18	18		18	30		30	30	30	30
Tanes:		0 1!			0 1!			1!				
	-						-			-		
Volume Module							,			1		1
Base Vol:	75	293	68	159	279	58	15	683	87	10	466	151
Growth Adi:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Initial Bse:	75	293	68	159	279	58	15	683	87	10	466	151
Added Vol:	0	3	0	37	20	-2	2	35	0	0	5	7
Future:	10	60	10	20	60	10	10	120	20	10	60	30
Initial Fut:	85	356	78	216	359	66	27	838	107	20	531	188
User Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Volume:	85	356	78	216	359	66	27	838	107	20	531	188
Reduct Vol:	0	0	0	0	0	0	- 0	0.00	0	0	0	0
Reduced Vol:	85	356	78	216	359	66	27	838	107	20	531	188
PCE Adi:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Final Vol.:	85	356	78	216	359	66	27		107	20	531	188
Saturation Fl				'		'	'		'	'		'
Sat/Lane:		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:		0.78	0.78		0.99	0.99		0.99	0.99		0.97	0.97
Tanes:		0.69	0.15		0.56	0.10		0.86	0.11		0.72	0.25
Final Sat.:		1012	222		1049	193		1613	206		1319	467
Capacity Anal				'		'	'		'	'		'
Vol/Sat:		0.35	0.35	0 34	0.34	0.34	0 52	0.52	0.52	0 40	0.40	0.40
Crit Moves:	0.00	****	3.33	J.J.	J.J.	0.01	3.32	****	0.52	3.10	J. 10	J. 10
Green/Cycle:	0.38		0.38	0.38	0.38	0.38	0 53	0.53	0.53	0.53	0.53	0.53
		0.94	0.94		0.91	0.91		0.99	0.99		0.77	0.77
Delay/Veh:		49.8	49.8		42.0	42.0		45.0	45.0		20.9	20.9
User DelAdj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
AdiDel/Veh:		49.8	49.8		42.0	42.0		45.0	45.0		20.9	20.9
DesignQueue:	3		49.0	72.0	11	42.0	45.0	20	3	20.9	12	4
**********										-		_

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)	Intersection #73 Ashby Avenue / Claremont Avenue											
Thetrsection \$73 Ashby Avenue / Claremont Avenue **********************************	Thtersection #73 Ashby Avenue / Claremont Avenue **********************************	Level Of Service Computation Report										
Intersection #73 Ashby Avenue / Claremont Avenue	Intersection #73 Ashby Avenue / Claremont Avenue **********************************		2000 HCM C	peratio	ns Met	thod	(Future	Volu	me Alt	ernati	ve)	
Cycle (sec): 70	Cycle (sec): 70	*****	*****	*****	****	*****	*****	****	****	*****	*****	*****
Loss Time (sec): 12 (YHR = 12 sec) Average Delay (sec/veh): 26.6 Cytimal Cycle: 72	Loss Time (sec): 12 (Y+R = 12 sec) Average Delay (sec/veh): 26.6	Intersection	#73 Ashby	* Avenue	/ Cla	aremor	nt Aven	ue ****	****	*****	******	*****
Loss Time (sec): 12 (YHR = 12 sec) Average Delay (sec/veh): 26.6 Cytimal Cycle: 72	Loss Time (sec): 12 (Y+R = 12 sec) Average Delay (sec/veh): 26.6	Cycle (sec):	7	0		(Critica	l Vol	./Cap.	(X):	0.7	77
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L L - T - R L L - T L L L L L L L L L L L L L L L L	Approach: North Bound South Bound East Bound West Bound Movement: L - T - R	Loss Time (s	ec): 1	.2 (Y+R	= 12 s	sec) 1	Average	Dela	v (sed	c/veh):	26	. 6
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R	Approach: North Bound	Optimal Cyci	e:	2		1	rever o	r ser	vice:			C
Movement: L - T - R L - T - R L - T - R L - T - R L - T - R L - T - R Control: Split Phase Split Phase Split Phase Include	Novement: L - T - R R Model	*****	******	*****	****	*****	*****	****	****	*****	*****	*****
Control: Split Phase	Control: Split Phase	Approach:										
Control: Split Phase Rights: Include I	Control: Split Phase											
Min. Green: 16 16 16 16 16 16 16 16 28 28 28 28 28 28 28 28 28 28 28 28 28	Min. Green: 16 16 16 16 16 16 16 16 28 28 28 28 28 28 28 28 28 28 Lanes: 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0											
Min. Green: 16 16 16 16 16 16 16 16 28 28 28 28 28 28 28 28 28 28 28 28 28	Min. Green: 16 16 16 16 16 16 16 16 28 28 28 28 28 28 28 28 28 28 Lanes: 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0	Control:	Split E	hase	Spl	lit Ph	nase	1	Permit	ted	Permi	tted
Lanes:	Lanes: 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1	Rights:	Incl	.ude		Incl	ıde		Incl	ıde	Incl	.ude
Lanes:	Lanes: 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1	Min. Green:	16 16	16	16	16	16	28	28	28	28 28	28
Volume Module: >> Count Date: 20 Nov 2002 << 4:00 - 6:00 PM Base Vol: 45 373 189 432 285 49 47 592 5 66 504 232 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Volume Module: >> Count Date: 20 Nov 2002 << 4:00 - 6:00 PM Base Vol: 45 373 189 432 285 49 47 592 5 66 504 232 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Lanes:	0 1 0	1 0	1 1	1 0	1 0	0	1 0	1 0	0 1 0	1 0
Base Vol: 45 373 189 432 285 49 47 592 5 66 504 232 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Base Vol: 45 373 189 432 285 49 47 592 5 66 504 232 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
Initial Bse: 45 373 189 432 285 49 47 592 5 66 504 232 Added Vol: 0 0 0 171 0 0 0 72 0 0 12 26 Future: 10 60 20 60 50 20 40 130 10 10 60 20 Initial Fut: 55 433 209 663 335 69 87 794 15 76 576 278 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Initial Bse: 45 373 189 432 285 49 47 592 5 66 504 232 Added Vol: 0 0 0 171 0 0 0 72 0 0 12 26 Future: 10 60 20 60 50 20 40 130 10 10 60 20 Initial Fut: 55 433 209 663 335 69 87 794 15 76 576 278 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
Future: 10 60 20 60 50 20 40 130 10 10 60 20 Initial Fut: 55 433 209 663 335 69 87 794 15 76 576 278 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Future: 10 60 20 60 50 20 40 130 10 10 60 20 Initial Fut: 55 433 209 663 335 69 87 794 15 76 576 278 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
Future: 10 60 20 60 50 20 40 130 10 10 60 20 Initial Fut: 55 433 209 663 335 69 87 794 15 76 576 278 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Future: 10 60 20 60 50 20 40 130 10 10 60 20 Initial Fut: 55 433 209 663 335 69 87 794 15 76 576 278 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Initial Bse:	45 373	189	432	285	49	47	592	5		
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Added Vol:	0 0	0								
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Future:	10 60	20	60	50	20	40	130	10		
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Initial Fut:	55 433	209								
PHF Volume: 55 433 209 663 335 69 87 794 15 76 576 278 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PHF Volume: 55 433 209 663 335 69 87 794 15 76 576 278 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	User Adj:	1.00 1.00	1.00								
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											
Reduced Vol: 55 433 209 663 335 69 87 794 15 76 576 278 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Reduced Vol: 55 433 209 663 335 69 87 794 15 76 576 278 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PHF Volume:	55 433	209								
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
Final Vol.: 55 433 209 663 335 69 87 794 15 76 576 278	Final Vol.: 55 433 209 663 335 69 87 794 15 76 576 278											
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190											
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190											
Adjustment: 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	Adjustment: 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95				1		'	1		'	1	ı
Lanes: 0.16 1.24 0.60 1.87 0.94 0.19 0.19 1.78 0.03 0.16 1.24 0.60 Final Sat.: 285 2243 1082 3365 1700 350 351 3199 60 295 2236 1079	Lanes: 0.16 1.24 0.60 1.87 0.94 0.19 0.19 1.78 0.03 0.16 1.24 0.60 Final Sat.: 285 2243 1082 3365 1700 350 351 3199 60 295 2236 1079	Sat/Lane:	1900 1900	1900	1900	1900	1900	1900	1900	1900	1900 1900	1900
Final Sat.: 285 2243 1082 3365 1700 350 351 3199 60 295 2236 1079	Final Sat.: 285 2243 1082 3365 1700 350 351 3199 60 295 2236 1079	Adjustment:	0.95 0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95 0.95	0.95
Capacity Analysis Module: Vol/Sat: 0.19 0.19 0.19 0.20 0.20 0.20 0.25 0.25 0.25 0.26 0.26 0.26 Crit Moves: **** Green/Cycle: 0.22 0.22 0.22 0.22 0.22 0.22 0.39 0.39 0.39 0.39 0.39 0.39 Volume/Cap: 0.87 0.87 0.87 0.89 0.89 0.89 0.64 0.64 0.64 0.66 0.66 0.66 Delay/Veh: 37.0 37.0 37.0 35.4 35.4 35.4 17.2 17.2 17.2 17.6 17.6 17.6	Capacity Analysis Module: Vol/Sat: 0.19 0.19 0.19 0.20 0.20 0.20 0.25 0.25 0.25 0.26 0.26 0.26 Crit Moves: **** Green/Cycle: 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.39 0.39 0.39 0.39 0.39 Volume/Cap: 0.87 0.87 0.87 0.89 0.89 0.89 0.64 0.64 0.64 0.66 0.66 0.66 Delay/Veh: 37.0 37.0 37.0 35.4 35.4 35.4 17.2 17.2 17.2 17.6 17.6 17.6 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
Capacity Analysis Module: Vol/Sat: 0.19 0.19 0.19 0.20 0.20 0.20 0.25 0.25 0.25 0.26 0.26 0.26 Crit Moves: **** Green/Cycle: 0.22 0.22 0.22 0.22 0.22 0.22 0.39 0.39 0.39 0.39 0.39 Volume/Cap: 0.87 0.87 0.87 0.89 0.89 0.89 0.64 0.64 0.64 0.66 0.66 0.66 Delay/Veh: 37.0 37.0 37.0 35.4 35.4 35.4 17.2 17.2 17.2 17.6 17.6 17.6	Capacity Analysis Module: Vol/Sat: 0.19 0.19 0.19 0.20 0.20 0.20 0.25 0.25 0.25 0.26 0.26 0.26 Crit Moves: **** Green/Cycle: 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.39 0.39 0.39 0.39 0.39 Volume/Cap: 0.87 0.87 0.87 0.89 0.89 0.89 0.64 0.64 0.64 0.66 0.66 0.66 Delay/Veh: 37.0 37.0 37.0 35.4 35.4 35.4 17.2 17.2 17.2 17.6 17.6 17.6 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Final Sat.:	285 2243	1082	3365	1700	350	351	3199	60	295 2236	1079
Vol/Sat: 0.19 0.19 0.19 0.20 0.20 0.20 0.25 0.25 0.25 0.26 0.26 0.26 Crit Moves: **** Green/Cycle: 0.22 0.22 0.22 0.22 0.22 0.22 0.29 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.40 0.64 0.64 0.66 0.66 0.66 Delay/Veh: 37.0 37.0 37.0 35.4 35.4 35.4 17.2 17.2 17.2 17.6 17.6 17.6	Vol/Sat: 0.19 0.19 0.19 0.20 0.20 0.20 0.25 0.25 0.25 0.26 0.26 0.26 Crit Moves: **** Green/Cycle: 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.39 0.39 0.39 0.39 0.39 Volume/Cap: 0.87 0.87 0.87 0.89 0.89 0.89 0.64 0.64 0.64 0.66 0.66 0.66 Delay/Veh: 37.0 37.0 37.0 35.4 35.4 35.4 17.2 17.2 17.2 17.6 17.6 17.6 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
Crit Moves: ****	Crit Moves: **** Green/Cycle: 0.22 0.22 0.22 0.22 0.22 0.22 0.39 0.39 0.39 0.39 0.39 0.39 Volume/Cap: 0.87 0.87 0.87 0.89 0.89 0.89 0.64 0.64 0.64 0.66 0.66 0.66 Delay/Veh: 37.0 37.0 37.0 35.4 35.4 35.4 17.2 17.2 17.2 17.6 17.6 17.6 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
Green/Cycle: 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.39 0.39 0.39 0.39 0.39 Volume/Cap: 0.87 0.87 0.87 0.89 0.89 0.89 0.64 0.64 0.64 0.66 0.66 Delay/Veh: 37.0 37.0 37.0 35.4 35.4 35.4 17.2 17.2 17.2 17.6 17.6 17.6	Green/Cycle: 0.22 0.22 0.22 0.22 0.22 0.22 0.39 0.39 0.39 0.39 0.39 Volume/Cap: 0.87 0.87 0.87 0.89 0.89 0.89 0.64 0.64 0.64 0.66 0.66 0.66 Delay/Veh: 37.0 37.0 37.0 35.4 35.4 35.4 17.2 17.2 17.2 17.6 17.6 17.6 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0			0.19	0.20		0.20	0.25	0.25	0.25		
Volume/Cap: 0.87 0.87 0.87 0.89 0.89 0.89 0.64 0.64 0.64 0.66 0.66 Delay/Veh: 37.0 37.0 37.0 35.4 35.4 35.4 17.2 17.2 17.2 17.6 17.6	Volume/Cap: 0.87 0.87 0.87 0.89 0.89 0.89 0.64 0.64 0.64 0.66 0.66 0.66 Delay/Veh: 37.0 37.0 37.0 35.4 35.4 35.4 17.2 17.2 17.2 17.6 17.6 17.6 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
Delay/Veh: 37.0 37.0 37.0 35.4 35.4 35.4 17.2 17.2 17.2 17.6 17.6 17.6	Delay/Veh: 37.0 37.0 37.0 35.4 35.4 35.4 17.2 17.2 17.2 17.6 17.6 17.6 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
	User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0											
	AdjDel/Veh: 37.0 37.0 37.0 35.4 35.4 35.4 17.2 17.2 17.2 17.6 17.6 17.6											
DesignOutside: $\frac{14}{2}$ 14 7 22 11 2 2 21 0 2 15 7	DesignQueue: 2 14 7 22 11 2 2 21 0 2 15 7											

UC Berkeley LRDP EIR

2020 With Project Conditions

PM Peak Hour

UC Berkeley LRDP EIR 2020 With Project Conditions

PM Peak Hour Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) Intersection #74 Tunnel Road / SR 13 Control: Protected Protected Split Phase Split Phase Rights: Include Include Include Ovl Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 2 0 1 2 0 1 0 0 0 0 0 0 0 1 0 0 0 2 -----| Volume Module: >> Count Date: 21 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 1130 256 534 1095 0 0 0 128 0 155 Initial Bse: 0 1130 256 534 1095 0 0 0 128 0 155 Added Vol: 0 38 0 122 121 0 0 0 0 0 0 0 Future: 0 80 0 70 140 0 0 0 0 0 0 10 Initial Fut: 0 1248 256 726 1356 0 0 0 128 0 165 PHF Volume: 0 1248 256 726 1356 0 0 0 0 128 0 165 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 0 1248 256 726 1356 0 0 0 0 128 0 165 Final Vol.: 0 1248 256 726 1356 0 0 0 128 0 165 -----| Saturation Flow Module: Adjustment: 1.00 0.95 0.85 0.92 1.00 1.00 1.00 1.00 0.95 1.00 0.75

Final Sat.: 0 3610 1615 3502 1900 0 0 0 1805 0 2842 -----|

Vol/Sat: 0.00 0.35 0.16 0.21 0.71 0.00 0.00 0.00 0.00 0.07 0.00 0.06

Volume/Cap: 0.00 0.69 0.32 0.69 0.89 0.00 0.00 0.00 0.00 0.89 0.00 0.15 Delay/Veh: 0.0 13.7 9.9 22.2 11.9 0.0 0.0 0.0 75.1 0.0 13.4 AdjDel/Veh: 0.0 13.7 9.9 22.2 11.9 0.0 0.0 0.0 75.1 0.0 13.4 DesignQueue: 0 25 5 19 12 0 0 0 0 4 0 4 CUMULATIVE + LAB + PROJECT Wed Mar 31, 2004 17:04:52 Page 1-1

UC Berkeley LRDP EIR 2020 With Project Conditions (Mitigated)

AM Peak Hour

Scenario Report

Scenario: CUMULATIVE + LAB + PROJECT AM

CUMULATIVE + PROJECT AM Command:

CUMULATIVE AM Volume:

Capacity Analysis Module:

Crit Moves: ****

UC Berkeley LRDP EIR 2020 With Project Conditions (Mitigated) AM Peak Hour

Township and the Property

Impact Analysis Report Level Of Service

Intersection	Base	Future	Change
	Del/ V/	Del/ V/	in
	LOS Veh C LO	S Veh C	
# 8 Cedar Street / Oxford Street	в 15.3 0.618 в	18.7 0.785	+ 3.328 D/V
# 28 Addison Street / Oxford Street	A 1.2 0.400 A	1.5 0.510	+ 0.276 D/V
# 33 Allston Way / Oxford Street	A 1.4 0.441 A	2.3 0.593	+ 0.819 D/V
# 34 Kittridge Street / Oxford Stre	A 1.0 0.335 A	2.3 0.529	+ 1.392 D/V
# 38 Bancroft Way / Ellsworth Stree	0.0 0.000	0.0 0.000	+ 0.000 V/C
# 43 Bancroft Way / Piedmont Avenue	C 20.3 0.836 F	86.7 1.224	+ 0.388 V/C
-			
# 48 Durant Avenue / Piedmont Avenu	в 10.2 0.345 в	12.3 0.498	+ 2.114 D/V
# 65 Derby Street / Warring Street	7 F O O 414 7	E 4 0 40C	. 0 111 D/T
# 65 Derby Street / Warring Street	A 5.2 0.414 A	3.4 0.486	+ U.III D/V

UC Berkeley LRDP EIR 2020 With Project Conditions (Mitigated) AM Peak Hour

	2000 I		evel 0: eration						ernati	 ve)		
*****											****	****
Intersection							*****	****	*****	*****	****	****
Cycle (sec): Loss Time (sec) Optimal Cycle	ec):	65 8 55	(Y+R =	= 4 s	sec) A	Critica Liverage Level 0	l Vol. Delay f Serv	./Cap. / (sec	(X): c/veh):		0.78 18.	5 7 B
Approach: Movement:	L -	- T	- R	L -	- T	- R	L -	- T	- R	L -	est Bo - T	- R
Control: Rights: Min. Green: Lanes:	16 0 (Permit Inclu 16) 1!	ted ide 16 0 0	16 0 (Permit Inclu 16) 1!	ted ide 16 0 0	16 0 (Permit Inclu 16) 1!	ited ide 16 0 0	16 1 (Permit Inclu 16) 0	ted de 16 1 0
Volume Module Base Vol:		Count					00 AM			144		19
Growth Adj:							1.00		1.00	1.00	1.00	1.00
Initial Bse:	45	186	56	34	531	19	18	314	75	144	343	19
Added Vol:	2	13	0	0	115	9		0	15	0	0	0
Future:	30	20	10	10	10	0	10	40	30	10	120	0
Initial Fut:	77	219	66	44	656	28	29	354	120	154	463	19
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	77	219	66	44	656	28	29	354	120	154	463	19
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	77	219	66	44	656	28	29	354	120	154	463	19
PCE Adj:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:					656	28		354	120	154		19
 Saturation Fl												
Sat/Lane:				1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:					0.96		0.92		0.92			0.99
Lanes:					0.90				0.24			0.04
Final Sat.:	306	871	262	110	1639	70	101	1227	416	1362	1814	74
 Capacity Anal												
			0.25	0.40	0.40	0.40	0.29	0.29	0.29	0.11	0.26	0.26
Green/Cycle:	0.50	0.49	0.49	0.50	0.50	0.50	0.39	0.39	0.39	0.39	0.40	0.40
Volume/Cap:	0.50	0.51	0.51	0.80	0.80	0.80	0.75	0.75	0.75	0.29	0.65	0.65
Delay/Veh:	10.8	11.5	11.5	17.7	17.7	17.7	24.8	24.8	24.8	15.3	20.3	20.3
User DelAdj:	1.00	1.00		1.00		1.00	1.00		1.00	1.00		1.00
AdjDel/Veh:					17.7	17.7	24.8		24.8	15.3		20.3
DesignQueue:	1	4	1	1	13	1	1	8	3	3	11	0

	20	020 With	Projec AM	ct Cor	K Hour		igate	ed)			
*****		Level O Operatio	ns Met	hod	(Future	Volur	ne Alt	ernati		*****	*****
Intersection ******	#28 Add:	ison Stre	et / (xford	d Stree	t					
Cycle (sec): Loss Time (sec) Optimal Cycle ************************************	e:	29		1	Level 0	f Serv	/ice:				A
Approach: Movement:	North L - '	Bound T - R	Sou L -	th Bo	ound - R	Ea L -	ast Bo - T	und - R	We	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	Permonal Income 1 0 1	mitted clude 0 0 2 0 0	0 0	Permit Inclu 0) 1	ited ide 0 1 0	0 0	Permit Inclu 0) 1!	ted ide 0	0 0	Permit Inclu 0 0	ted ide 0
Volume Modul- Base Vol: Growth Adj: Initial Bse: Added Vol: PasserByVol: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	e: >> Con 54 6. 1.00 1.1 54 6. 20 20 1. 94 8. 1.00 1.1 0.91 0.1 103 9. 1.00 1.1 1.00 1.1 1.00 1.1	unt Date: 47 0 000 1.00 447 0 660 0 440 0 47 0 000 1.00 91 0.91 31 0 0 0 31 0 000 1.00 000 1.00	13 No 0 1.00 0 0 0 1.00 0.91 0 0 0 1.00	0v 200 1165 1.00 1165 207 90 1462 1.00 0.91 1607 0.1607 1.00 1.00	02 << 7 61 1.00 61 18 10 89 1.00 0.91 98 0 98 1.00 98	:00 AN 4 1.00 4 2 0 6 1.00 0.91 7 0 7 1.00 7	4 - 9: 0 1.00 0 0 0 0 1.00 0.91 0 0 0 1.00	00 AM 31 1.00 31 2 10 43 1.00 0.91 47 0 47 1.00 1.00 47	0 1.00 0 0 0 1.00 0.91 0 0 0 1.00	0 1.00 0 0 0 1.00 0.91 0 0 0 1.00 1.00	0 1.00 0 0 0 0 1.00 0.91 0 0 0 1.00
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	low Modul 1900 190 0.13 0.5 1.00 2.0 249 365	le: 00 1900 95 1.00 00 0.00 10 0	1900 1.00 0.00	1900 0.94 1.89 3372	1900 0.94 0.11 205	1900 0.85 0.12 198	1900 1.00 0.00 0	1900 0.85 0.88 1420	1900 1.00 0.00	1900 1.00 0.00 0	1900 1.00 0.00
Capacity Ana Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	0.42 0.2 0.93 0.2 0.44 0.2 1.7 0 1.00 1.0	dule: 26 0.00 93 0.00 28 0.00 .3 0.0 00 1.00 .3 0.0	0.00 0.00 0.00 0.0 1.00	0.48 **** 0.93 0.51 0.5 1.00	0.48 0.93 0.51 0.5 1.00	0.03 **** 0.07 0.51 49.3 1.00 49.3	0.00 0.00 0.00 0.0 1.00	0.03 0.07 0.51 49.3 1.00 49.3	0.00 0.00 0.00 0.0 1.00	0.00 0.00 0.00 0.0 1.00	

Capacity Analysis Module:

Crit Moves:

______ UC Berkeley LRDP EIR

2020 With Project Conditions (Mitigated) AM Peak Hour

AM Peak Hour
Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)
Intersection #33 Allston Way / Oxford Street
Cycle (sec): 100
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Volume Module: >> Count Date: 13 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 17 798 0 59 1111 34 16 0 33 0 0 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190

AM Peak Hour Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************* Intersection #34 Kittridge Street / Oxford Street / Fulton Street **************** Cycle (sec): 100 Critical Vol./Cap. (X): 0.529 Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): 2.3 Optimal Cycle: 31 Level Of Service: A ************************ -----| Control: Permitted Permitted Permitted Rights: Include Include Include Include Include Rights: Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 1 0 1 0 0 1 0 1 0 0 0 1! 0 0 0 1! 0 0 _____| Volume Module: >> Count Date: 13 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 13 801 0 0 1122 18 6 0 23 0 0 Initial Bse: 13 801 0 0 1122 18 6 0 23 0 0 Added Vol: 0 68 23 69 145 0 0 27 0 2 3 0 120 0 0 70 30 10 0 10 0 Future: Ω Initial Fut: 13 989 23 69 1337 48 16 27 33 2 3 7 PHF Volume: 13 989 23 69 1337 48 16 27 33 2 3 7 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 13 989 23 69 1337 48 16 27 33 Final Vol.: 13 989 23 69 1337 48 16 27 33 2 3 7 -----|----|-----|------| Saturation Flow Module: Adjustment: 0.88 0.88 0.88 0.79 0.79 0.79 0.89 0.89 0.89 0.86 0.86 0.86 Lanes: 0.03 1.93 0.04 0.09 1.84 0.07 0.21 0.36 0.43 0.17 0.25 0.58 Final Sat.: 42 3230 75 143 2761 99 356 600 734 274 411 959 -----| Capacity Analysis Module: Vol/Sat: 0.31 0.31 0.31 0.48 0.48 0.48 0.04 0.04 0.04 0.01 0.01 Crit Moves: **** Delay/Veh: 0.6 0.6 0.6 0.9 0.9 0.9 47.5 47.5 47.5 42.4 42.4 42.4 AdjDel/Veh: 0.6 0.6 0.6 0.9 0.9 0.9 47.5 47.5 47.5 42.4 42.4 42.4 DesignQueue: 0 5 0 0 7 0 1 1 2 0 0

______ UC Berkeley LRDP EIR

2020 With Project Conditions (Mitigated)

Vol/Sat: 0.35 0.35 0.00 0.55 0.55 0.55 0.01 0.00 0.04 0.00 0.00 0.00

Green/Cycle: 0.93 0.93 0.00 0.93 0.93 0.93 0.07 0.00 0.07 0.00 0.00 0.00

Volume/Cap: 0.38 0.38 0.00 0.59 0.59 0.59 0.15 0.00 0.59 0.00 0.00 0.00

Delay/Veh: 0.5 0.5 0.0 0.9 0.9 0.9 44.3 0.0 53.2 0.0 0.0 0.0

AdjDel/Veh: 0.5 0.5 0.0 0.9 0.9 0.9 44.3 0.0 53.2 0.0 0.0 0.0 DesignQueue: 0 5 0 0 7 0 1 0 4 0 0

Capacity Analysis Module:

Crit Moves:

______ UC Berkeley LRDP EIR

2020 With Project Conditions (Mitigated) AM Peak Hour

				Al	4 Peal	K Hour						
2(CM Uns	ignali	zed Me	ethod		e Volu	ıme Al	Lternat		****	*****
Intersection								****	*****	*****	****	****
Cycle (sec): Loss Time (sec) Optimal Cycle	ec):	100 0 0	(Y+R	= 4 5	sec) A	Average	Dela	v (sed	(X): c/veh):		0.	. 0
Approach:												
Movement:	L -	- T	- R	L -	- T	- R	L ·	- T	- R	L -	Т	- R
Control: Rights: Lanes:	P:	rotect Inclu L 0	ed ide 0 0	0 (rotect Incli	ted ide 0 1	0 (rotect Incli	ted ide 0 0	Pr:	otect Inclu 1	ed ide 1 0
Volume Module												
	241		0		0				0	0	674	39
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	241	60	0	0	0	11	0	0	0	0	674	39
Added Vol:	96	0	0	0	0	0	0	0	0	0	128	0
Future:	10	0	0	0	0	0	0	0	0	0	130	0
Initial Fut:	347	60	0	0	0	11	0	0	0	0	932	39
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00		1.00
PHF Volume:		60	0	0	0	11	0	0	0	0	932	39
Reduct Vol:			0		0	0	0	0	0	0	0	0
Final Vol.:			0	0				0	0	0	932	39
Saturation Fl												
Sat/Lane:	0	0		0				0	-	0	0	0
Adjustment:									1.00			1.00
						0.00				0.00		0.00
Final Sat.:									0		0	0
				1								

			Al	M Peak	Hour	- (,			
	I	Level 0	f Serv	vice C	omputa	tion 1	Report	:			
	2000 HCM 4-										
************* Intersection							*****	*****	*****	****	*****
******							****	*****	*****	****	*****
Cycle (sec):	100)		C	ritica	l Vol	./Cap.	(X):		1.22	24
Loss Time (se		(Y+R	= 4 s					c/veh):		86.	
Optimal Cycle					evel 0						F
Approach:	North Bo			ith Bo			ast Bo			est Bo	
Movement:	L - T			- T			- T			- T	
Control:	Stop Sign Stop Sign Stop Sign										
Rights:	Include Include Include Incl										
Min. Green: Lanes:	0 0	0 0	0 (1 0	0		0 0	0 0	0	0
Volume Module	e: >> Count	Date:	13 No	ov 200	2 << 7	:00 AI	M - 9:	00 AM			
Base Vol:	131 553	0	0	344	123	0	0	0	0	0	0
Growth Adj:	1.00 1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
Initial Bse:	131 553	0	0	344	123	0	0	0	0	0	0
Added Vol: Future:	104 103 10 60	0	0	46 40	29 60	0	0	0	0	0	0
Initial Fut:	245 716	0	0	430	212	0	0	0	0	0	0
User Adj:	1.00 1.00	1.00		1.00	1.00	-	1.00	1.00	1.00	-	1.00
PHF Adj:	1.00 1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00
PHF Volume:	245 716	0	0	430	212	0	0	0	0	0	0
Reduct Vol:	0 0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:		0	0	430	212	0	0	0	0	0	0
PCE Adj: MLF Adj:	1.00 1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
Final Vol.:	245 716	0	0	430	212	1.00	0	1.00	0.00	1.00	0.00
									-		
Saturation F	Low Module:										
Adjustment:	1.00 1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Lanes:	0.25 0.75	0.00		0.67	0.33		0.00	0.00	0.00		0.00
Final Sat.:	200 585	0		537	265	0	-	0	0	0	0
Capacity Anal											
Vol/Sat:	1.22 1.22	xxxx	xxxx	0.80	0.80	xxxx	xxxx	xxxx	xxxx	XXXX	xxxx
Crit Moves:	****			****							
4 '	129.2 129	0.0		23.0	23.0	0.0	0.0	0.0	0.0	0.0	0.0
Delay Adj:		1.00		1.00	1.00		1.00	1.00	1.00		1.00
AdjDel/Veh: 1		0.0	0.0	23.0	23.0	0.0	0.0	0.0	0.0	0.0	0.0
LOS by Move: ApproachDel:	F F 129.2	*	^	C 23.0	С		×××××	^		× XXXX	*
Delay Adj:	1.00			1.00			XXXXX			XXXXX	
ApprAdjDel:	129.2			23.0			XXXXX			XXXX	
LOS by Appr:	F			C			*			*	
	and the second second second										

UC Berkeley LRDP EIR

2020 With Project Conditions (Mitigated)

DesignQueue: 0 0 0 0 0 0 0 0 0 0 0

2020 With Project Conditions (Mitigated)

UC Berkeley LRDP EIR 2020 With Project Conditions (Mitigated) AM Peak Hour

AM Peak Hour	
Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)	***
Intersection #48 Durant Avenue / Piedmont Avenue	
Cycle (sec): 100	***
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F	R
Control: Protected Protected Protected Protected Protected Protected Protected Protected Include Includ	0
Volume Module: >> Count Date: 20 Nov 2002 << 7:00 AM - 9:00 AM Base Vol: 0 489 0 0 345 0 158 0 86 0 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190	00
Capacity Analysis Module: Vol/Sat: 0.00 0.36 0.00 0.00 0.23 0.00 0.14 0.00 0.10 0.00 0.00 0.00 Crit Moves: **** **** Green/Cycle: 0.00 0.72 0.00 0.00 0.72 0.00 0.28 0.00 0.28 0.00 0.00 0.00 Volume/Cap: 0.00 0.50 0.00 0.00 0.31 0.00 0.50 0.00 0.35 0.00 0.00 0.00 0.00	00

		2020	WICH			Hour	S (MI	LIGALE	ea)		
	2000					omputa			t ternati	We)	
******											*****
Intersection	#65	Derby	Street	/ Wa:	rring	Street					
*****								****	*****	*****	*****
Cycle (sec):		100							. (X):		86
Loss Time (se Optimal Cycle	ec):	0	(Y+R	= 4 :	sec) A	verage	Dela	y (sed	c/veh):	5	. 4
Optimal Cycle	∋:	44			I	evel 0	f Ser	vice:			A

Approach:											
Movement:									- R		
										Split F	
Control: Rights:			.ase .de	sp.	IIU PII	do.	sp.	IIL FI	ıdse	Spilt	nase
Min. Green:		0		0	111010	n.	Λ	111011	n n	Igno 0 0	0
Lanes:			0 0							0 0 1	
Volume Module	e: >>	Count	Date:	20 No	ov 200	2 << 7	:00 AI	M - 9:	:00 AM		
Base Vol:	0	0	0	650	0	31	14	20	0	0 34	779
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
Initial Bse:			0	650	0	31	14	20	0	0 34	
Added Vol:	0		0	20		0	0	0	0	0 0	
Future:	0		0	90		10	0	10	0	0 0	
Initial Fut:				760	0	41	14		0	0 34	
User Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00 1.00	
PHF Adj: PHF Volume:	1.00	0	0	760	0.1.00	41	1.00	30	1.00	0 34	
Reduct Vol:	0	0	0	7 00	0	41	0	0	0	0 0	
Reduced Vol:	-	0	0	760	0	41	14	30	0	0 34	-
PCE Adi:			1.00		1.00	1.00		1.00			
MLF Adj:		1.00	1.00		1.00	1.00		1.00			
Final Vol.:			0		0	41	14		0	0 34	
Saturation F											
Sat/Lane:			1900		1900	1900		1900			
Adjustment:					1.00	0.95		0.98			
			0.00		0.00	0.05		0.68			
Final Sat.:			0		0	92		1275	0	0 1900	1900
Capacity Anal											
Vol/Sat:				0 44	0 00	0 44	0 02	0.02	0.00	0.00 0.02	0.00
Crit Moves:	5.00	3.00	3.00	****	0.00	J. 11	0.02	****		****	
Green/Cycle:	0.00	0.00	0.00	0.91	0.00	0.91	0.05	0.05	0.00	0.00 0.04	0.00
Volume/Cap:			0.00		0.00	0.49		0.49		0.00 0.49	
Delay/Veh:			0.0	0.9		0.9		50.4		0.0 52.5	
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
AdjDel/Veh:			0.0	0.9		0.9		50.4		0.0 52.5	0.0
DesignQueue:			0	4		0		2		0 2	
*******	****	****	*****	****	****	*****	****	****	*****	******	*****

Delay/Veh: 0.0 6.2 0.0 0.0 5.0 0.0 31.2 0.0 29.5 0.0 0.0 0.0 AdjDel/Veh: 0.0 6.2 0.0 0.0 5.0 0.0 31.2 0.0 29.5 0.0 0.0 0.0 DesignQueue: 0 12 0 0 7 0 10 0 6 0 0 0 CUMULATIVE + LAB + PROJECT Wed Mar 31, 2004 17:06:18 Page 1-1 CUMULATIVE + LAB + PROJECT Wed Mar 31, 2004 17:06:34 Page 8-1

UC Berkeley LRDP EIR

2020 With Project Conditions (Mitigated)

PM Peak Hour

Scenario Report

Scenario: CUMULATIVE + LAB + PROJECT PM

Command:

Volume:

CUMULATIVE + PROJECT PM

CUMULATIVE PM

Geometry:

CUMULATIVE + PROJECT PM

Impact Fee:

Default Impact Fee

Trip Generation:

Trip Distribution:

Paths:

Default Paths

Paths: Default Paths
Routes: Default Routes
Configuration: CUMULATIVE + LAB + PROJECT PM

UC Berkeley LRDP EIR 2020 With Project Conditions (Mitigated) PM Peak Hour

Impact Analysis Report Level Of Service

Intersection	Del/ V/	Future Del/ V/	in
# 8 Cedar Street / Oxford Street		LOS Veh C D 48.1 1.050	
# 28 Addison Street / Oxford Street	A 5.1 0.377	A 5.9 0.503	+ 0.788 D/V
# 33 Allston Way / Oxford Street	A 4.1 0.430	A 4.6 0.547	+ 0.523 D/V
# 34 Kittridge Street / Oxford Stre	A 4.4 0.415	A 6.3 0.582	+ 1.914 D/V
# 38 Bancroft Way / Ellsworth Stree	в 13.6 0.375	в 13.4 0.505	-0.190 D/V
# 43 Bancroft Way / Piedmont Avenue	C 16.3 0.733	E 36.7 0.979	+ 0.246 V/C
# 48 Durant Avenue / Piedmont Avenu	B 13.0 0.347	B 15.2 0.471	+ 2.207 D/V
# 65 Derby Street / Warring Street	в 11.7 0.658	C 20.2 0.872	+ 8.529 D/V

UC Berkeley LRDP EIR 2020 With Project Conditions (Mitigated) PM Peak Hour

*****		HCM Op		ns Met	thod (Future	Volur	me Al	ternati			. * * * * * *		
Intersection	#8 Ce	edar S	treet ,	/ Oxfo	ord St	reet								
Cycle (sec): 65 Critical Vol./Cap. (X): Loss Time (sec): 8 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 180 Level Of Service:											1.050 48.1 D			
Approach:	No:	rth Bo - T	und – R	Sou L -	ith Bo - T	und - R	Ea L -	ast B - T	ound - R	We	est Bo - T	ound - R		
Control: Rights: Min. Green: Lanes:	16 0 (Permit Inclu 16) 1!	ted de 16 0 0	16 0 (Permit Inclu 16) 1!	ted ide 16 0 0	16 0 (Permi Incl 16 0 1!	tted ude 16 0 0	16 1 (Permit Inclu 16 0 0	ited ide 16 1 0		
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduct Vol: PCE Adj: MLF Adj: Final Vol.:	91 1.00 91 16 40 147 1.00 1.00 147 1.00 1.00 1.00	Count 464 1.00 464 112 80 656 1.00 656 1.00 656 1.00 1.00 656	Date: 81 1.00 81 0 20 101 1.00 101 0 101 1.00 1.00 1.00 1.00 1.00 1.01	6 Nov 17 1.00 17 0 10 27 1.00 1.00 27 0 27 1.00 1.00 27	7 2002 196 1.00 196 14 10 220 1.00 220 220 1.00 220 1.00 1.00	<pre>4 < 4: 17 1.00 17 2 0 19 1.00 1.00 1.00 1.00 1.00 1.00 1.00</pre>	18 1.00 18 4 20 42 1.00 1.00 42 1.00 1.00 42	5:00 307 1.00 307 0 120 427 1.00 427 0 427 1.00 427 1.00 427	57 1.00 57 2 40 99 1.00 1.00 99 0 99 1.00	61 1.00 61 0 50 111 1.00 1.00 111 1.00 1.00 1.11	340 1.00 340 -3 100 437 1.00 1.00 437 0 437 1.00 1.00 437	31 1.00 31 0 10 41 1.00 1.00 41 0 41 1.00 1.00 41		
Saturation Fl Sat/Lane: Adjustment: Lanes: Final Sat.: 	1900 0.88 0.16 272 	1900 0.88 0.73 1213 Modul 0.54	1900 0.88 0.11 187	1900 0.88 0.10 170	1900 0.88 0.83 1389	1900 0.88 0.07 120	1900 0.79 0.07 110	1900 0.79 0.76 1123	1900 0.79 0.17 260 	1900 0.78 1.00 1478	1900 0.99 0.91 1714	1900 0.99 0.09 161		
Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue: **********************************	0.52 1.05 60.5 1.00 60.5 3	1.05 60.5 1.00 60.5	1.05 60.5 1.00 60.5 2	0.31 10.0 1.00 10.0 0	4	0.31 10.0 1.00 10.0	1.05 73.3 1.00 73.3	73.3 1.00 73.3 11	0.36 1.05 73.3 1.00 73.3	0.21 15.2 1.00 15.2 3		23.8 1.00 23.8		

		2020	WICH			Hour	5 (PII)	Jiga c	54)			
						Computa		-				
******	2000 H	CM Op	eratio	ns Me	thod i	(Future	Volur	ne Alt	ternati	ve)		
Intersection	#28 A	ddiso	n Stre	et / (Oxford	d Stree	t					
Cycle (sec):		100							. (X):			
Loss Time (s	ec):	0	(Y+R	= 4 :	sec) A	Average	Dela	/ (sec	. (A). :/veh):		5.	
Loss Time (s Optimal Cycl	e:	29	(I	Level 0	f Serv	/ice:	-,, .			A
*****	****	****	****	****	*****	*****	****	****	*****	****	****	*****
Approach: Movement:	L -	T	- R	L ·	- T	- R	L ·	- T	- R	L ·	est Bo - T	- R
Control: Permitted Permitted Permitted Rights: Include Include Include											rermit Incli	
Min. Green:			.ae 0	0		0			1de 0			1de 0
Lanes:			0 0			1 0			0 0			
Volume Modul	e: >>	Count	Date:	13 No	ov 200)2 << 4	:00 -	6:00	PM			
Base Vol:	32	1006	0	0	952	28	10	0	114	0	0	0
Growth Adj:							1.00				1.00	1.00
Initial Bse:							10			0	-	0
Added Vol:	3			0	70	2	16	0		0		0
Future:		180	U	U	1/0	10	U	-		0	-	0
Initial Fut:									142		0	0
User Adj: PHF Adj:						0.94			1.00		1.00	1.00
PHF Volume:							28				0.94	0.94
Reduct Vol:					0		0		131	0	-	0
Reduced Vol:	48	1420	0				28			-	0	0
PCE Adj:									1.00		1.00	-
	1.00								1.00		1.00	
Final Vol.:	48	1420	0	0	1268	43	28	0	151	0	0	0
Saturation F												
Sat/Lane:									1900		1900	
Adjustment:											1.00	
Lanes:									0.85		0.00	0.00
Final Sat.:										0		0
Capacity Ana												
Vol/Sat:				0.00	0.36	0.36	0.11	0.00	0.11	0.00	0.00	0.00
Crit Moves:		****					****					
Green/Cycle:		0.78	0.00	0.00	0.78	0.78	0.22	0.00	0.22	0.00	0.00	0.00
Volume/Cap:							0.50	0.00			0.00	0.00
Delay/Veh:	3.1	4.1	0.0	0.0	3.9	3.9	35.5	0.0	35.5	0.0	0.0	0.0
User DelAdj:						1.00	1.00				1.00	1.00
AdjDel/Veh:							35.5			0.0		0.0
DesignQueue:	1	19	0	0	17	1	1	0	7	0	0	0

UC Berkeley LRDP EIR

2020 With Project Conditions (Mitigated)

UC Berkeley LRDP EIR 2020 With Project Conditions (Mitigated) PM Peak Hour

2		нсм ор	eration	ns Met	thod		Volur	ne Alt	ternati				
Intersection ********	#33 2	Allsto	n Way	/ Oxf	ord St	reet							
<pre>Cycle (sec): 100</pre>										A			
Approach: Movement:	L -	rth Bo - T	- R	L -		- R	L -		- R	West Bound L - T - R			
Control: Permitted Permitted Split Phase Rights: Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0									nase ide				
Lanes:	0	1 1	0 0	0	1 0	1 0	1 (0	0 1			0 0	
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: Future: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	46 1.00 46 0 0 46 1.00 1.00 46 1.00 1.00 46 1.00 1.00 46 1.00 80	Count 1002 1.00 1002 156 190 1348 1.00 1.00 1348 1.00 1.348 1.00 1.00 1.348 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Date: 0 1.00 0 0 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00	13 No 26 1.00 26 0 10 36 1.00 36 1.00 36 1.00 1.00 36 1.00 36	DV 200 1082 1.00 1082 83 160 1325 1.00 1.325 1.00 1.325 1.00 1.325	02 << 4 75 1.00 75 0 10 85 1.00 1.00 85 1.00 1.00 85 1.00 1.00 85	23 1.00 23 0 0 23 1.00 1.00 23 1.00 23 1.00 23 1.00 23 1.00	6:00 0 1.00 0 0 0 1.00 0 0 1.00 1.00 0 1.00 1.00	PM 110 1.00 110 0 30 140 1.00 1.40 1.00 1.40 1.00 1.40 1.00 1.0	1.00 0 0 0 0 1.00 1.00 0 1.00 1.00 1.00	1.00 0 0 0 0 1.00 1.00 0 0 1.00 1.00 0	0 1.00 0 0 0 0 1.00 0 0 0 1.00 0 0 1.00 0 1.00 0	
	100		0	78	1.83 2881	0.12 185	1.00	0	1.00 1615	0	0.00	0.00	
Capacity Anal Vol/Sat: Crit Moves:		Modul 0.46	e: 0.00	0.46	0.46	0.46	0.01	0.00	0.09	0.00	0.00	0.00	
Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: DesignQueue:	0.55 2.6 1.00 2.6 0	0.55 2.6 1.00 2.6 13	0.00 0.00 0.0 1.00 0.0	0.55 2.6 1.00 2.6 0	0.84 0.55 2.6 1.00 2.6 13	0.84 0.55 2.6 1.00 2.6	0.08 36.0 1.00 36.0	0.0 1.00 0.0 0	0.16 0.55 41.2 1.00 41.2 7	0.00 0.0 1.00 0.0 0	0.00 0.00 0.0 1.00 0.0	0.00 0.00 0.0 1.00 0.0	

PM Peak Hour
Level Of Service Computation Report
2000 HCM Operations Method (Future Volume Alternative)

Intersection #34 Kittridge Street / Oxford Street / Fulton Street

Cycle (sec): 100 Critical Vol./Cap. (X): 0.582
Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): 6.3 Optimal Cycle: 34 Level Of Service: A
Optimal Cycle: 34 Level Of Service: A

Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Permitted
Rights: Include Include Include Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0
Lanes: 0 1 0 1 0 0 1 0 1 0 0 0 1! 0 0 0 0 1! 0 0
Volume Module: >> Count Date: 13 Nov 2002 << 4:00 - 6:00 PM
Base Vol: 45 995 0 0 1108 96 51 0 69 0 0
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Initial Bse: 45 995 0 0 1108 96 51 0 69 0 0 0
Added Vol: 0 94 3 9 74 0 0 3 0 18 26 62
Future: 20 180 0 0 150 30 10 0 20 0 0 0
Initial Fut: 65 1269 3 9 1332 126 61 3 89 18 26 62 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
PHF Volume: 65 1269 3 9 1332 126 61 3 89 18 26 62
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 65 1269 3 9 1332 126 61 3 89 18 26 62
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Final Vol.: 65 1269 3 9 1332 126 61 3 89 18 26 62
Saturation Flow Module:
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190
Adjustment: 0.74 0.74 0.79 0.89 0.89 0.76 0.76 0.76 0.87 0.87
Lanes: 0.09 1.90 0.01 0.01 1.82 0.17 0.40 0.02 0.58 0.17 0.25 0.58 Final Sat.: 137 2666 6 21 3067 290 577 28 842 282 407 970
Capacity Analysis Module:
Vol/Sat: 0.48 0.48 0.48 0.43 0.43 0.43 0.11 0.11 0.11 0.06 0.06 0.06
Crit Moves: **** ****
Green/Cycle: 0.82 0.82 0.82 0.82 0.82 0.82 0.18 0.18 0.18 0.18 0.18
Volume/Cap: 0.58 0.58 0.58 0.53 0.53 0.53 0.58 0.58 0.58 0.35 0.35
Delay/Veh: 3.5 3.5 3.5 3.1 3.1 40.7 40.7 40.7 36.5 36.5 36.5
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
AdjDel/Veh: 3.5 3.5 3.5 3.1 3.1 3.1 40.7 40.7 40.7 36.5 36.5 36.5
DesignQueue: 1 14 0 0 15 1 3 0 4 1 1 3 *******************************

UC Berkeley LRDP EIR

2020 With Project Conditions (Mitigated)

_____ UC Berkeley LRDP EIR

2020 With Project Conditions (Mitigated) PM Peak Hour

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) **************** Intersection #38 Bancroft Way / Ellsworth Street

*************** Cycle (sec): 100 Critical Vol./Cap. (X): 0.505 Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): 13.4
Optimal Cycle: 29 Level Of Service: B *************************

Approach: North Bound South Bound East Bound West Bound L - T - R L - T - R L - T - R Movement: -----|
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 -----| Volume Module: >> Count Date: 13 Nov 2002 << 4:00 - 6:00 PM Base Vol: 348 11 0 0 0 100 0 0 0 877 6 Initial Bse: 348 11 0 0 0 100 0 0 0 877 6 Added Vol: 12 0 0 0 0 0 0 0 0 157 50 0 0 0 0 0 0 0 0 0 230 0 Future: Initial Fut: 410 11 0 0 0 100 0 0 0 1264 6 PHF Volume: $410 \quad 11 \quad 0 \quad 0 \quad 100 \quad 0 \quad 0 \quad 0 \quad 1264 \quad 6$ Reduct Vol: 0 0 0 0 0 0 0 Reduced Vol: 410 11 0 0 0 100 0 0 0 0 0 0 0 0 0 1264 Final Vol.: 410 11 0 0 0 100 0 0 0 1264 6 -----| Saturation Flow Module: Adjustment: 0.73 0.73 1.00 1.00 1.00 0.87 1.00 1.00 1.00 0.95 0.95 Final Sat.: 2690 72 0 0 0 1644 0 0 0 3589 17 -----| Capacity Analysis Module: Crit Moves: **** Delay/Veh: 29.2 29.2 0.0 0.0 0.0 26.1 0.0 0.0 0.0 0.0 7.2 7.2

Traffix 7.5.0715 (c) 2002 Dowling Assoc. Licensed to FEHR & PEERS, LAFAYETTE

AdjDel/Veh: 29.2 29.2 0.0 0.0 0.0 26.1 0.0 0.0 0.0 0.0 7.2 7.2 DesignQueue: 16 0 0 0 0 4 0 0 0 23 0 CUMULATIVE + LAB + PROJECT Wed Mar 31, 2004 17:06:35 Page 51-1

______ UC Berkeley LRDP EIR 2020 With Project Conditions (Mitigated) PM Peak Hour

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative)

Intersection #43 Bancroft Way / Piedmont Avenue												
Cycle (sec):		100	/VID	_ 1	(Critica	l Vol	./Cap.	(X):		0.97	7
Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): 36.7 Optimal Cycle: 0 Level Of Service: E										E		
Approach:	Noi	rth Bo	und	Soi	uth Bo	ound	Εā	ast Bo	ound	West Bound		
Movement:												
				Stop Sign Include						Stop Sign		
Kights:	0	Inclu	.ae	0 0 0			_	Inci	lae ^	0 0 0		
Lanes:	0 3	L 0	0 0	0 (0 C	1 0	0 (0 0	0 0	0 (0 0	0 0
Volume Modul												
Base Vol:									0	0	0	0
Growth Adj:												
Initial Bse:							0			0	0	0
Added Vol:		65	0	0	36	46				0	0	0
Future:	10	90	0	0	40	46 10	0	0	0	0	0	0
Initial Fut:	175	594	0	0	433	215	0	0	0	0	0	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:						1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:							0			0	-	0
Reduct Vol:							0			0		0
Reduced Vol:												
PCE Adj:											1.00	
MLF Adj:											1.00	
Final Vol.:												0
Saturation F												
Adjustment:												
Lanes:												
Final Sat.:												0
Capacity Ana												
Vol/Sat:				xxxx	0.81	0.81	XXXX	xxxx	XXXX	XXXX	xxxx	XXXX
Crit Moves:		****			***							
Delay/Veh:	48.0	48.0	0.0	0.0	23.2	23.2	0.0	0.0	0.0	0.0	0.0	0.0
Delay Adj:									1.00			
AdjDel/Veh:									0.0			
LOS by Move:				*	C	C			*			*
ApproachDel: Delay Adj:		48.0			23.2		X	XXXXX		XX	XXXX	
					1.00						XXXX	
ApprAdjDel:		48.0					X	XXXXX				
LOS by Appr:		E			C			*			*	

Page 56-1

UC Berkeley LRDP EIR 2020 With Project Conditions (Mitigated)

PM Peak Hour Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************* Intersection #48 Durant Avenue / Piedmont Avenue ********************** Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): 15.2
Optimal Cycle: 43 Level Of Service: B Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 _____| Volume Module: >> Count Date: 20 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 398 0 0 427 0 179 0 197 0 0 Initial Bse: 0 398 0 0 427 0 179 0 197 0 0 0 36 0 21 0 79 0 0 0 50 0 40 0 40 0 0 0 513 0 240 0 316 0 0 Added Vol: 0 56 0 Future: 0 70 0 Initial Fut: 0 524 0 PHF Volume: 0 524 0 0 513 0 240 0 316 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 0 524 0 0 513 0 240 0 316 0 0 Final Vol.: 0 524 0 0 513 0 240 0 316 0 0

-----| Capacity Analysis Module: Vol/Sat: 0.00 0.28 0.00 0.00 0.27 0.00 0.13 0.00 0.20 0.00 0.00 Crit Moves: **** **** Green/Cycle: 0.00 0.58 0.00 0.00 0.58 0.00 0.42 0.00 0.42 0.00 0.00 0.00 Volume/Cap: 0.00 0.47 0.00 0.00 0.46 0.00 0.32 0.00 0.47 0.00 0.00 0.00 Delay/Veh: 0.0 12.2 0.0 0.0 12.1 0.0 20.0 0.0 21.8 0.0 0.0 0.0

_____|

Adjustment: 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.85 1.00 1.00 1.00

Lanes: 0.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00

Final Sat.: 0 1900 0 0 1900 0 1805 0 1615 0 0

Saturation Flow Module:

AdjDel/Veh: 0.0 12.2 0.0 0.0 12.1 0.0 20.0 0.0 21.8 0.0 0.0 0.0 DesignOueue: 0 13 0 0 13 0 8 0 11 0 0 UC Berkeley LRDP EIR 2020 With Project Conditions (Mitigated) PM Peak Hour

2000 HCM Operations Method (Future Volume Alternative)

Level Of Service Computation Report

Intersection #65 Derby Street / Warring Street ******************* Cycle (sec): 100 Critical Vol./Cap. (X): 0.872

20.2 Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 145 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Permitted Permitted Split Phase Rights: Include Include Include Ignore Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 0 0 0 0 0 1! 0 0 0 1 0 0 0 0 1 0 1 -----| Volume Module: >> Count Date: 20 Nov 2002 << 4:00 - 6:00 PM Base Vol: 0 0 0 765 0 30 7 62 0 0 75 780 Initial Bse: 0 0 0 765 0 30 7 62 0 0 75 780 0 0 26 Added Vol: 0 0 0 171 0 0 0 0 0 0 120 PasserByVol: 0 0 0 110 0 10 0 0 0 Initial Fut: 0 0 0 1046 0 40 7 62 0 0 75 926 PHF Volume: 0 0 0 1046 0 40 7 62 0 0 75 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 0 0 1046 0 40 7 62 0 0 75 Ω Final Vol.: 0 0 0 1046 0 40 7 62 0 0 75 0 -----| Saturation Flow Module: Adjustment: 1.00 1.00 1.00 0.72 1.00 0.72 1.00 1.00 1.00 1.00 1.00 1.00 Lanes: 0.00 0.00 0.00 0.96 0.00 0.04 0.10 0.90 0.00 0.00 1.00 1.00 Final Sat.: 0 0 0 1315 0 50 192 1699 0 0 1900 1900 -----|----|-----| Capacity Analysis Module: Crit Moves: **** **** **** Green/Cycle: 0.00 0.00 0.00 0.91 0.00 0.91 0.04 0.04 0.00 0.00 0.05 0.00 Delay/Veh: 0.0 0.0 0.0 8.8 0.0 8.8 107.7 108 0.0 0.0 104 0.0

AdjDel/Veh: 0.0 0.0 0.0 8.8 0.0 8.8 107.7 108 0.0 0.0 104 0.0

DesignQueue: 0 0 0 6 0 0 0 3 0 0 4 0

APPENDIX G

Noise

.....

TABLE OF CONTENTS

	StatementG-1
List of	Figures
LT-1:	Adjacent Blocks West - Shattuck Avenue (2050
	Delaware) ~55 Feet From the Centerline of
	Shattuck Avenue, February 26-27, 2003G-2
LT-2:	Adjacent Blocks North - Intersection of Scenic
	Avenue and Ridge Road Graduate Theological
	Union Hewlett Library, February 26-27, 2003G-3
LT-3:	Southside - Intersection of Channing Avenue and
	Dana Street ~30 Feet from the Centerline of
	Channing Avenue First Presbyterian Church
	Across from Residence Halls Unit 3, March
	18-19, 2003
List of	Tables
LT-1:	Adjacent Blocks West - Shattuck Avenue (2050
	Delaware) ~55 Feet From the Centerline of
	Shattuck Avenue, February 26-27, 2003G-5
LT-2:	Adjacent Blocks North - Intersection of Scenic
	Avenue and Ridge Road Graduate Theological
	Union Hewlett Library, February 26-27, 2003G-6
LT-3:	Southside - Intersection of Channing Avenue and
	Dana Street ~30 Feet from the Centerline of
	Channing Avenue First Presbyterian Church
	Across from Residence Halls Unit 3, March
	18-19, 2003

APPENDIX G NOISE

In preparing this Environmental Impact Report (EIR), noise levels were monitored over 24 hours at three locations designated LT-1, LT-2 and LT-3. These locations were selected to characterize existing ambient levels at representative locations along major roadways and in a quieter area of the City Environs. The results of these long-term measurements are included in this Appendix in both tabular and graphical form.

FIGURE G-I LT-I: ADJACENT BLOCKS WEST – SHATTUCK AVENUE (2050 DELAWARE) ~ 55 FEET FROM THE CENTERLINE OF SHATTUCK AVENUE – FEBRUARY 26 - 27, 2003

FIGURE G-2 LT-2: ADJACENT BLOCKS NORTH – INTERSECTION OF SCENIC AVENUE AND RIDGE ROAD, GRADUATE THEOLOGICAL Union HEWLETT LIBRARY – FEBRUARY 26 - 27, 2003

FIGURE G-3 LT-3: SOUTHSIDE – INTERSECTION OF CHANNING WAY AND DANA STREET ~ 30 FEET FROM THE CENTERLINE OF CHANNING AVENUE, FIRST PRESBYTERIAN CHURCH ACROSS FROM RESIDENCE HALLS UNIT 3 – MARCH 18 - 19, 2003

Table LT-1: Adjacent Blocks West - Shattuck Avenue (2050 Delaware) ~ 55 feet from the Centerline of Shattuck Avenue February 26 - 27, 2003

INTERVAL REPORT L DAVIS LABORA ODEL 700 SN B1439
2/27/2003 14:01 6:41

Date 26 FEBRUARY Period 01

Date	Time	LVL	Lmin	Lmax	L01	L10	L50	L90	Energy + Penalty Ldn
26-Feb	13:41:01	69.5	57	88.5	80	71.5	66.5	62.5	8912509.381
26-Feb	14:00:01	68.5	53	85.5	78	70.5	66	61.5	7079457.844 71.41217363
26-Feb	15:00:00	68.5	54.5	85	<i>7</i> 9	71	66.5	62	7079457.844
26-Feb	16:00:00	68	52.5	86.5	<i>7</i> 9	69.5	64.5	59.5	6309573.445
26-Feb	17:00:00	68	51.5	85.5	78.5	69.5	65	60	6309573.445
26-Feb	18:00:00	68	51.5	87.5	<i>77.</i> 5	70.5	64.5	59	6309573.445
26-Feb	19:00:00	67	49.5	87.5	<i>77.</i> 5	69	64	57.5	5011872.336
26-Feb	20:00:00	68.5	48.5	95.5	<i>7</i> 5.5	68.5	62.5	55.5	7079457.844
26-Feb	21:00:00	64	48.5	81.5	73	67.5	61.5	53.5	2511886.432
26-Feb	22:00:00	68.5	49.5	80.5	<i>77.</i> 5	72.5	64.5	56.5	70794578.44
26-Feb	23:00:00	68	47.5	81	<i>77.</i> 5	72.5	61.5	52.5	63095734.45
27-Feb	0:00:00	62.5	44.5	81	73.5	67	53.5	46.5	17782794.1
27-Feb	1:00:00	58	43	74.5	70.5	61.5	47.5	44.5	6309573.445
27-Feb	2:00:00	55.5	42.5	74.5	68.5	58.5	45.5	43.5	3548133.892
27-Feb	3:00:00	55.5	43	79	69.5	56.5	45	43.5	3548133.892
27-Feb	4:00:00	57.5	43	79	71.5	59	46	44.5	5623413.252
27-Feb	5:00:00	58.5	43.5	76.5	70.5	63	48.5	45	7079457.844
27-Feb	6:00:00	66	45.5	85.5	<i>77.</i> 5	69.5	59	49	39810717.06
27-Feb	7:00:00	69	47.5	87	78.5	72.5	67	58	7943282.347
27-Feb	8:00:00	71	58.5	85.5	80.5	73.5	69.5	65.5	12589254.12
27-Feb	9:00:00	71	55.5	87.5	81.5	73.5	68.5	63	12589254.12
27-Feb	10:00:00	69.5	58.5	88	78.5	72	67.5	63.5	8912509.381
27-Feb	11:00:00	69.5	54	86.5	80.5	72.5	67	62	8912509.381
27-Feb	12:00:00	69.5	56.5	87.5	80.5	71.5	66.5	62.5	8912509.381
27-Feb	13:00:00	68.5	50.5	85.5	78	71.5	66	61	7079457.844
27-Feb	14:00:01	84.5	57	108	99.5	76.5	67.5	62.5	281838293.1

OVERALL LEQ: 72.1

Table LT-2: Adjacent Blocks North - Intersection of Scenic Avenue and Ridge Road Graduate Theological Union Hewlett Library February 26 - 27, 2003

INTERVAL REPORT L DAVIS LABORA ODEL 700 SN B1091 2/27/2003 16:00 0:58

Date 26 FEBRUARY Period 01

Date	Time	LVL	Lmin	Lmax	L01	L10	L50	L90	Energy + Penalty	Ldn
26-	Feb 15:05:01	55.5	46	80	67.5	57	52	49	354813.3892	
26-	Feb 16:00:01	54.5	47	71	64	57	52	49.5	281838.2931	58.42666001
26-	Feb 17:00:00	55	46.5	73	66	57.5	52.5	49.5	316227.766	
26-	Feb 18:00:00	54.5	45.5	68.5	63	58	52.5	48.5	281838.2931	
26-	Feb 19:00:00	53	43.5	71.5	62	55.5	50.5	47	199526.2315	
26-	Feb 20:00:00	50.5	42.5	64.5	59.5	54	47.5	44.5	112201.8454	
26-	Feb 21:00:00	49	42	64	59	52.5	46.5	43	79432.82347	
26-	Feb 22:00:00	56.5	43.5	64	62	60	55.5	46	4466835.922	
26-	Feb 23:00:00	56	42	72.5	63.5	59	54	45.5	3981071.706	
27-	Feb 0:00:00	46	38.5	64	57.5	49	42	39.5	398107.1706	
27-	Feb 1:00:00	43.5	37	67	56.5	42.5	39.5	38	223872.1139	
27-	Feb 2:00:00	42	36.5	59.5	54	42.5	38.5	37.5	158489.3192	
27-	Feb 3:00:00	48	37	68.5	63.5	44.5	39	38	630957.3445	
27-	Feb 4:00:00	42	37.5	59	51.5	44	39.5	38.5	158489.3192	
27-	Feb 5:00:00	48	39.5	72.5	59.5	51	42.5	40.5	630957.3445	
27-	Feb 6:00:00	52	40.5	74	62.5	52	45.5	43	1584893.192	
27-	Feb 7:00:00	54.5	43	70	64	59	51	45.5	281838.2931	
27-	Feb 8:00:00	56	43.5	71	67	59	53	47.5	398107.1706	
27-	Feb 9:00:00	58	43	77.5	70	61	53	47.5	630957.3445	
27-	Feb 10:00:00	54	43	72	65	56.5	50	46	251188.6432	
27-	Feb 11:00:00	54.5	44	73	64.5	57	51.5	47.5	281838.2931	
27-	Feb 12:00:00	53.5	44	67	63	57	51	47.5	223872.1139	
27-	Feb 13:00:00	55	45	71	65.5	57.5	52	48	316227.766	
27-	Feb 14:00:00	57	44.5	80	68.5	58	51.5	47.5	501187.2336	
27-	Feb 15:00:00	55	45.5	75.5	64	58	51.5	47.5	316227.766	
27-	Feb 16:00:01	53	50	56	56	55	52.5	50.5	199526.2315	

OVERALL LEQ: 53.8

Table LT-3: Southside - Intersection of Channing Avenue and Dana Street ~ 30 feet from the Centerline of Channing Avenue
First Presbyterian Church across from Residence Halls Unit 3
March 18 - 19, 2003

INTERVAL REPORT L DAVIS LABORA ODEL 700 SN B0950
DATA FR OM: 02149 -3 3/19/2003 17:00 1:45

Date 18 MARCH Period 01

Date	Time	LVL	Lmin	Lmax	L01	L10	L50	L64.8	Energy + Penalty	Ldn
18-Mar	14:48:01	64	50.5	18-Mar	14-Mar	12:00:00	61	55	2511886.432	
18-Mar	15:00:01	65	48.5	27-Mar	15-Mar	12:00:00	60.5	56.5	3162277.66	9-Mar
18-Mar	16:00:00	65	49.5	26-Mar	16-Mar	0:00:00	61	56.5	3162277.66	
18-Mar	17:00:00	66	53.5	31-Mar	16-Mar	0:00:00	62	58	3981071.706	
18-Mar	18:00:00	64	49	23-Mar	13-Mar	0:00:00	61	57	2511886.432	
18-Mar	19:00:00	63.5	50.5	20-Mar	13-Mar	12:00:00	60.5	55.5	2238721.139	
18-Mar	20:00:00	64.5	46.5	27-Mar	16-Mar	0:00:00	59.5	53.5	2818382.931	
18-Mar	21:00:00	63	48	22-Mar	13-Mar	0:00:00	59	53	1995262.315	
18-Mar	22:00:00	64	45.5	27-Mar	16-Mar	0:00:00	58	51.5	25118864.32	
18-Mar	23:00:00	61	44.5	25-Mar	13-Mar	0:00:00	54.5	48	12589254.12	
19-Mar	0:00:00	63	43	29-Mar	15-Mar	12:00:00	52.5	45.5	19952623.15	
19-Mar	1:00:00	59.5	43.5	22-Mar	12-Mar	12:00:00	51	45.5	8912509.381	
19-Mar	2:00:00	60	43	28-Mar	11-Mar	12:00:00	46.5	44	10000000	
19-Mar	3:00:00	54	43	16-Mar	7-Mar	12:00:00	44.5	43.5	2511886.432	
19-Mar	4:00:00	61	43	29-Mar	14-Mar	0:00:00	46	44	12589254.12	
19-Mar	5:00:00	65.5	44.5	28-Mar	15-Mar	12:00:00	57.5	49	35481338.92	
19-Mar	6:00:00	65	48	28-Mar	17-Mar	0:00:00	58.5	51	31622776.6	
19-Mar	7:00:00	65	49.5	25-Mar	16-Mar	0:00:00	60.5	54.5	3162277.66	
19-Mar	8:00:00	65	46.5	26-Mar	15-Mar	0:00:00	60	53	3162277.66	
19-Mar	9:00:00	65.5	48	26-Mar	17-Mar	12:00:00	60	53.5	3548133.892	
19-Mar	10:00:00	66	47.5	29-Mar	16-Mar	0:00:00	59	53	3981071.706	
19-Mar	11:00:00	66	48	26-Mar	18-Mar	12:00:00	61	55.5	3981071.706	
19-Mar	12:00:00	65.5	51.5	23-Mar	17-Mar	0:00:00	61	57	3548133.892	
19-Mar	13:00:00	69.5	53.5	4-Apr	20-Mar	12:00:00	62	58	8912509.381	
19-Mar	14:00:00	65.5	51	25-Mar	16-Mar	12:00:00	62	57	3548133.892	
19-Mar	14:59:35	62.5	61	3-Mar	3-Mar	0:00:00	62.5	61	1778279.41	
19-Mar	15:00:01	67	53.5	18-Mar	18-Mar	0:00:00	61.5	55.5	5011872.336	
	18-Mar 18-Mar 18-Mar 18-Mar 18-Mar 18-Mar 18-Mar 18-Mar 19-Mar	18-Mar 14:48:01 18-Mar 15:00:01 18-Mar 16:00:00 18-Mar 17:00:00 18-Mar 19:00:00 18-Mar 19:00:00 18-Mar 20:00:00 18-Mar 21:00:00 18-Mar 21:00:00 18-Mar 22:00:00 18-Mar 23:00:00 19-Mar 1:00:00 19-Mar 1:00:00 19-Mar 4:00:00 19-Mar 4:00:00 19-Mar 6:00:00 19-Mar 7:00:00 19-Mar 8:00:00 19-Mar 9:00:00 19-Mar 11:00:00 19-Mar 10:00:00 19-Mar 11:00:00	18-Mar 14:48:01 64 18-Mar 15:00:01 65 18-Mar 16:00:00 65 18-Mar 17:00:00 66 18-Mar 18:00:00 64 18-Mar 19:00:00 63.5 18-Mar 20:00:00 64.5 18-Mar 21:00:00 63 18-Mar 22:00:00 64 18-Mar 23:00:00 64 18-Mar 23:00:00 64 19-Mar 1:00:00 59.5 19-Mar 1:00:00 59.5 19-Mar 4:00:00 65 19-Mar 6:00:00 65 19-Mar 9:00:00 65 19-Mar 1:00:00 66 19-Mar 11:00:00 66 19-Mar 11:00:00 66 19-Mar 12:00:00 65.5 19-Mar 13:00:00 65.5 19-Mar 14:00:00 65.5	18-Mar 14:48:01 64 50.5 18-Mar 15:00:01 65 48.5 18-Mar 16:00:00 65 49.5 18-Mar 17:00:00 66 53.5 18-Mar 18:00:00 64 49 18-Mar 19:00:00 63.5 50.5 18-Mar 20:00:00 64.5 46.5 18-Mar 21:00:00 63 48 18-Mar 22:00:00 64 45.5 18-Mar 23:00:00 61 44.5 19-Mar 0:00:00 63 43 19-Mar 1:00:00 59.5 43.5 19-Mar 1:00:00 59.5 43.5 19-Mar 2:00:00 60 43 19-Mar 3:00:00 61 43 19-Mar 4:00:00 65.5 44.5 19-Mar 6:00:00 65.5 48 19-Mar 10:00:00 65.5 48 19-Mar 10:00:00 66 47.5 19-Mar 12:00:00 65.5 <td< td=""><td>18-Mar 14:48:01 64 50.5 18-Mar 18-Mar 15:00:01 65 48.5 27-Mar 18-Mar 16:00:00 65 49.5 26-Mar 18-Mar 17:00:00 66 53.5 31-Mar 18-Mar 18:00:00 64 49 23-Mar 18-Mar 19:00:00 63.5 50.5 20-Mar 18-Mar 20:00:00 64.5 46.5 27-Mar 18-Mar 21:00:00 63 48 22-Mar 18-Mar 21:00:00 64 45.5 27-Mar 18-Mar 21:00:00 63 48 22-Mar 18-Mar 22:00:00 64 45.5 27-Mar 18-Mar 23:00:00 61 44.5 25-Mar 19-Mar 0:00:00 63 43 29-Mar 19-Mar 1:00:00 59.5 43.5 22-Mar 19-Mar 4:00:00 60 43 28-Mar 19-Ma</td><td>18-Mar 14:48:01 64 50.5 18-Mar 14-Mar 18-Mar 15:00:01 65 48.5 27-Mar 15-Mar 18-Mar 16:00:00 65 49.5 26-Mar 16-Mar 18-Mar 17:00:00 66 53.5 31-Mar 16-Mar 18-Mar 18:00:00 64 49 23-Mar 13-Mar 18-Mar 19:00:00 63.5 50.5 20-Mar 13-Mar 18-Mar 20:00:00 64.5 46.5 27-Mar 16-Mar 18-Mar 21:00:00 63 48 22-Mar 13-Mar 18-Mar 22:00:00 64 45.5 27-Mar 16-Mar 18-Mar 22:00:00 61 44.5 25-Mar 13-Mar 19-Mar 1:00:00 59.5 43.5 22-Mar 12-Mar 19-Mar 1:00:00 59.5 43.5 22-Mar 12-Mar 19-Mar 1:00:00 60 43 28-Mar</td><td>18-Mar 14:48:01 64 50.5 18-Mar 14-Mar 12:00:00 18-Mar 15:00:01 65 48.5 27-Mar 15-Mar 12:00:00 18-Mar 16:00:00 65 49.5 26-Mar 16-Mar 0:00:00 18-Mar 17:00:00 66 53.5 31-Mar 16-Mar 0:00:00 18-Mar 18:00:00 64 49 23-Mar 13-Mar 0:00:00 18-Mar 19:00:00 63.5 50.5 20-Mar 13-Mar 12:00:00 18-Mar 20:00:00 64.5 46.5 27-Mar 16-Mar 0:00:00 18-Mar 21:00:00 63 48 22-Mar 13-Mar 0:00:00 18-Mar 21:00:00 64 45.5 27-Mar 16-Mar 0:00:00 18-Mar 23:00:00 64 45.5 27-Mar 16-Mar 0:00:00 18-Mar 23:00:00 61 44.5 25-Mar 13-Mar 0:00:00</td><td>18-Mar 14:48:01 64 50.5 18-Mar 14-Mar 12:00:00 61 18-Mar 15:00:01 65 48.5 27-Mar 15-Mar 12:00:00 60.5 18-Mar 16:00:00 65 49.5 26-Mar 16-Mar 0:00:00 61 18-Mar 17:00:00 66 53.5 31-Mar 16-Mar 0:00:00 62 18-Mar 18:00:00 64 49 23-Mar 13-Mar 0:00:00 60.5 18-Mar 19:00:00 63.5 50.5 20-Mar 13-Mar 12:00:00 60.5 18-Mar 21:00:00 63 48 22-Mar 13-Mar 0:00:00 59.5 18-Mar 21:00:00 64 45.5 27-Mar 16-Mar 0:00:00 59.5 18-Mar 23:00:00 64 45.5 27-Mar 16-Mar 0:00:00 58 18-Mar 10:00:00 63 43 29-Mar 15-Mar 12:00:00 52.5</td><td>18-Mar 14:48:01 64 50.5 18-Mar 14-Mar 12:00:00 61 55 18-Mar 15:00:01 65 48.5 27-Mar 15-Mar 12:00:00 60.5 56.5 18-Mar 16:00:00 65 49.5 26-Mar 16-Mar 0:00:00 61 56.5 18-Mar 17:00:00 66 53.5 31-Mar 16-Mar 0:00:00 62 58 18-Mar 19:00:00 63.5 50.5 20-Mar 13-Mar 12:00:00 60.5 55.5 18-Mar 20:00:00 64.5 46.5 27-Mar 16-Mar 0:00:00 59.5 53.5 18-Mar 21:00:00 63 48 22-Mar 13-Mar 0:00:00 59.5 53.5 18-Mar 21:00:00 64 45.5 27-Mar 16-Mar 0:00:00 59.5 53.5 18-Mar 22:00:00 64 45.5 27-Mar 16-Mar 0:00:00 54.5 48</td><td>18-Mar 14:48:01 64 50.5 18-Mar 14-Mar 12:00:00 61 55 2511886.432 18-Mar 15:00:01 65 48.5 27-Mar 15-Mar 12:00:00 60.5 56.5 3162277.66 18-Mar 16:00:00 65 49.5 26-Mar 16-Mar 0:00:00 61 56.5 3162277.66 18-Mar 17:00:00 66 53.5 31-Mar 16-Mar 0:00:00 62 58 3981071.706 18-Mar 18:00:00 64 49 23-Mar 13-Mar 0:00:00 61 57 2511886.432 18-Mar 19:00:00 63.5 50.5 20-Mar 13-Mar 12:00:00 60.5 55.5 2238721.139 18-Mar 21:00:00 63 48 22-Mar 13-Mar 0:00:00 59.5 53.5 2818382.931 18-Mar 23:00:00 61 44.5 27-Mar 16-Mar 0:00:00 58 51.5 25118864.32 <</td></td<>	18-Mar 14:48:01 64 50.5 18-Mar 18-Mar 15:00:01 65 48.5 27-Mar 18-Mar 16:00:00 65 49.5 26-Mar 18-Mar 17:00:00 66 53.5 31-Mar 18-Mar 18:00:00 64 49 23-Mar 18-Mar 19:00:00 63.5 50.5 20-Mar 18-Mar 20:00:00 64.5 46.5 27-Mar 18-Mar 21:00:00 63 48 22-Mar 18-Mar 21:00:00 64 45.5 27-Mar 18-Mar 21:00:00 63 48 22-Mar 18-Mar 22:00:00 64 45.5 27-Mar 18-Mar 23:00:00 61 44.5 25-Mar 19-Mar 0:00:00 63 43 29-Mar 19-Mar 1:00:00 59.5 43.5 22-Mar 19-Mar 4:00:00 60 43 28-Mar 19-Ma	18-Mar 14:48:01 64 50.5 18-Mar 14-Mar 18-Mar 15:00:01 65 48.5 27-Mar 15-Mar 18-Mar 16:00:00 65 49.5 26-Mar 16-Mar 18-Mar 17:00:00 66 53.5 31-Mar 16-Mar 18-Mar 18:00:00 64 49 23-Mar 13-Mar 18-Mar 19:00:00 63.5 50.5 20-Mar 13-Mar 18-Mar 20:00:00 64.5 46.5 27-Mar 16-Mar 18-Mar 21:00:00 63 48 22-Mar 13-Mar 18-Mar 22:00:00 64 45.5 27-Mar 16-Mar 18-Mar 22:00:00 61 44.5 25-Mar 13-Mar 19-Mar 1:00:00 59.5 43.5 22-Mar 12-Mar 19-Mar 1:00:00 59.5 43.5 22-Mar 12-Mar 19-Mar 1:00:00 60 43 28-Mar	18-Mar 14:48:01 64 50.5 18-Mar 14-Mar 12:00:00 18-Mar 15:00:01 65 48.5 27-Mar 15-Mar 12:00:00 18-Mar 16:00:00 65 49.5 26-Mar 16-Mar 0:00:00 18-Mar 17:00:00 66 53.5 31-Mar 16-Mar 0:00:00 18-Mar 18:00:00 64 49 23-Mar 13-Mar 0:00:00 18-Mar 19:00:00 63.5 50.5 20-Mar 13-Mar 12:00:00 18-Mar 20:00:00 64.5 46.5 27-Mar 16-Mar 0:00:00 18-Mar 21:00:00 63 48 22-Mar 13-Mar 0:00:00 18-Mar 21:00:00 64 45.5 27-Mar 16-Mar 0:00:00 18-Mar 23:00:00 64 45.5 27-Mar 16-Mar 0:00:00 18-Mar 23:00:00 61 44.5 25-Mar 13-Mar 0:00:00	18-Mar 14:48:01 64 50.5 18-Mar 14-Mar 12:00:00 61 18-Mar 15:00:01 65 48.5 27-Mar 15-Mar 12:00:00 60.5 18-Mar 16:00:00 65 49.5 26-Mar 16-Mar 0:00:00 61 18-Mar 17:00:00 66 53.5 31-Mar 16-Mar 0:00:00 62 18-Mar 18:00:00 64 49 23-Mar 13-Mar 0:00:00 60.5 18-Mar 19:00:00 63.5 50.5 20-Mar 13-Mar 12:00:00 60.5 18-Mar 21:00:00 63 48 22-Mar 13-Mar 0:00:00 59.5 18-Mar 21:00:00 64 45.5 27-Mar 16-Mar 0:00:00 59.5 18-Mar 23:00:00 64 45.5 27-Mar 16-Mar 0:00:00 58 18-Mar 10:00:00 63 43 29-Mar 15-Mar 12:00:00 52.5	18-Mar 14:48:01 64 50.5 18-Mar 14-Mar 12:00:00 61 55 18-Mar 15:00:01 65 48.5 27-Mar 15-Mar 12:00:00 60.5 56.5 18-Mar 16:00:00 65 49.5 26-Mar 16-Mar 0:00:00 61 56.5 18-Mar 17:00:00 66 53.5 31-Mar 16-Mar 0:00:00 62 58 18-Mar 19:00:00 63.5 50.5 20-Mar 13-Mar 12:00:00 60.5 55.5 18-Mar 20:00:00 64.5 46.5 27-Mar 16-Mar 0:00:00 59.5 53.5 18-Mar 21:00:00 63 48 22-Mar 13-Mar 0:00:00 59.5 53.5 18-Mar 21:00:00 64 45.5 27-Mar 16-Mar 0:00:00 59.5 53.5 18-Mar 22:00:00 64 45.5 27-Mar 16-Mar 0:00:00 54.5 48	18-Mar 14:48:01 64 50.5 18-Mar 14-Mar 12:00:00 61 55 2511886.432 18-Mar 15:00:01 65 48.5 27-Mar 15-Mar 12:00:00 60.5 56.5 3162277.66 18-Mar 16:00:00 65 49.5 26-Mar 16-Mar 0:00:00 61 56.5 3162277.66 18-Mar 17:00:00 66 53.5 31-Mar 16-Mar 0:00:00 62 58 3981071.706 18-Mar 18:00:00 64 49 23-Mar 13-Mar 0:00:00 61 57 2511886.432 18-Mar 19:00:00 63.5 50.5 20-Mar 13-Mar 12:00:00 60.5 55.5 2238721.139 18-Mar 21:00:00 63 48 22-Mar 13-Mar 0:00:00 59.5 53.5 2818382.931 18-Mar 23:00:00 61 44.5 27-Mar 16-Mar 0:00:00 58 51.5 25118864.32 <

OVERALL LEQ: 64.6

APPENDIX H

LAWRENCE BERKELEY NATIONAL LABORATORY NOTICE OF PREPARATION 2004 LONG RANGE DEVELOPMENT PLAN

Ernest Orlando Lawrence Berkeley National Laboratory

October 28, 2003

One Cyclotron Road, MS 90K Berkeley, California 94720

> State of California Office of Planning and Research 1400 Tenth Street Sacramento, California 95814

REVISED NOTICE OF PREPARATION DRAFT ENVIRONMENTAL IMPACT REPORT

Project Title: LBNL 2004 Long Range Development Plan Project Location: Lawrence Berkeley National Laboratory

County: Alameda County, California

SCH#: 2000102046

Project Description:

Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) proposes to prepare and adopt the 2004 Long Range Development Plan (LRDP). The 2004 LRDP will provide a physical development framework for implementing Berkeley Lab's mission through the year 2025.

Agency Review and Comments:

In compliance with the State and University of California Guidelines for implementation of the California Environmental Quality Act (CEQA), this Notice of Preparation is hereby sent to inform you that the Lawrence Berkeley National Laboratory is preparing a Draft Environmental Impact Report (EIR) on the 2004 LRDP.

As Lead Agency, we need to know the views of your agency as to the scope and content of the environmental information that is germane to your agency's statutory responsibilities in connection with the proposed project. (Anticipated areas of analysis are identified in the attached Initial Study). Please designate a contact person in your agency and send your response to the address below.

Environmental Review Process:

The University of California will be the Lead Agency and will prepare an EIR to evaluate the potential environmental effects of implementing the 2004 LRDP. This will include a programmatic level of environmental review of Berkeley Lab development through 2025.

The 2004 LRDP EIR will replace the 1987 LRDP EIR (as well as the 1992 Supplemental EIR and 1997 Addendum) when it has been certified and the proposed new LRDP has been approved by The UC Regents. The LRDP EIR will be designed to analyze a series of related actions at Lawrence Berkeley National Laboratory under the 2004 LRDP. It will contain a comprehensive and detailed analysis of environmental impacts of the 2004 LRDP. Subsequent activities within the scope of the 2004 LRDP will be analyzed to determine whether there are any impacts requiring further CEQA documentation or instead whether no documentation in addition to the LRDP EIR is required.

An Initial Study has been prepared pursuant to CEQA to identify the environmental issues that will be addressed in Berkeley Lab's 2004 LRDP EIR. The Initial Study is attached to this Notice of Preparation. Copies of the Initial Study are available for review at the main branch of the Berkeley Public Library, 2090 Kittredge Avenue, Berkeley, and on-line at http://www.lbl.gov/Community/env-rev-docs.html.lbl.gov.

Due to time limits mandated by State law, this NOP will include a 30-day comment period that extends from October 28, 2003 to November 26, 2003. Comments must be received before 5:00 pm on November 26, 2003 to be considered in the preparation of the LRDP EIR. They may be e-mailed to LRDP-EIR@lbl.gov or mailed to:

Jeff Philliber
Environmental Planning Group Coordinator
Lawrence Berkeley National Laboratory
One Cyclotron Road, MS 90K
Berkeley, CA 94720

A public scoping meeting for the 2004 LRDP and EIR will be held from 7:00 PM to 9:00 PM on November 17, 2003 at the North Berkeley Senior Center, 1901 Hearst Avenue, Berkeley.

Sincerely,

Laura Chen, Chief LBNL Facilities Planning

Enclosure: Initial Study Checklist

CC: State Agencies

State Clearinghouse

CA Air Resources Board, Dr. Alan C. Lloyd

CA Department of Fish and Game, Robert C. Hight, Director

CA Department of Health Services, Mr. Edgar Bailey, Chief, Radiological Health Branch, et. al.

CA Department of Water Resources, David Kennedy, Director

CA Environmental Protection Agency, Winston Hickox, Secretary, et. al.

CA EPA, Department of Toxic Substances Control, Sal Ciriello et. al.,

CA Regional Water Quality Control Board, Mr. Lawrence Kolb, Executive, et. al.

CA State Resources Agency, Ms. Mary D. Nichols, Secretary

CA State Water Resources Control Board, Ms. Heidi Temko, et. al.

CalTrans, Gary Adams, Chief, et. al.

Federal Agencies

U.S. Environmental Protection Agency, Region 9, Mr. Michael Bandrowski, et. al.

U.S. Fish and Wildlife Service, Sacramento Field Office, Wayne White, Supervisor,

U.S. Department of Energy, Berkeley Site Office, Mr. Richard Nolan, et. al.

U.S. Department of Energy, NEPA Compliance Officer, Janet M. Neville

U.S. Department of Energy, Oakland Office, Mr. Roger Little, et. al.

Regional/County Agencies

Alameda County, Supervisor District 5, Keith Carson

Alameda County LAFCO, Lon Ann Texeira, Executive Officer

Alameda County, Susan Muranishi, County Administrator

Alameda County, Health Care Agency, Public Health Officer, Arthur Chen et. al.

Alameda County, Clerk, Crystal Hishida

Alameda County Planning Department, James Sorenson, Director, et. al.

Metropolitan Transportation Commission Steve Heminger, Executive Director

Association of Bay Area Governments, Eugene Leong, et. al.

Bay Area Air Quality Management District, Brian Bateman, et. al.

Contra Costa County Department of Health Services, Andy Parsons

East Bay Municipal Utilities District, Dennis Diemer, General Manager, et. al.

East Bay Regional Park District, Pat O'Brien, General Manager, et. al.

Regional Water Quality Control Board, San Francisco Division, Keith Lichten, et. al.

City of Berkeley

Berkeley City Clerk, Ms. Sherry M. Kelly

Berkeley City Manager's Office, Mr. Phil Kamlarz, et. al.

City of Berkeley, City Attorney's Office, Manuela Albuquerque

City of Berkeley, Mayor Tom Bates, et. al.

City of Berkeley, Council Members Breland, Hawley, Maio, Olds, Shirek, Spring, Worthington, Wozniak

City of Berkeley, Department of Planning, Dan Marks, et. al.

City of Berkeley, Toxics Management Division, Dr. Nabil Al-Hadithy

City of Berkeley, Energy Officer, Neal DeSnoo

City of Berkeley, Peace & Justice Commission Secretary, Hector Manual

City of Berkeley, Parks & Waterfront Commission Secretary, Jay Kelekian

City of Berkeley, Solid Waste Management Commission Secretary, Tania Levy

City of Berkeley, Police Chief Roy Meissner

City of Berkeley, Fire Department, Reg Garcia, Chief, et. al.

City of Berkeley, Peter Hilliard, Transportation Manager

City of Oakland

City of Oakland Mayor Jerry Brown

City of Oakland, District 1, Jane Brunner, Councilmember

City of Oakland, City Attorney John Russo

City of Oakland, Planning and Zoning Division, Leslie Gould, Director

Oakland City Clerk's Office, Ceda Floyd

City of Oakland, Deborah Edgerly, Interim City Manager

City of Oakland, Fire Department, Gerald Simon, Chief, et. al.

City of Albany

City of Albany City Clerk Jacqueline Bucholz

City of Albany Administrator, Beth Pollard

Kensington

Kensington Fire District, Paul Wilson

University of California Office of the President (UCOP)

UCOP, Budget and University Relations, Bruce Darling, Vice-President

UCOP, Laboratory Administration, Howard Hatayama, Sr. VP

UCOP Office of General Counsel, Alan Waltner

UCOP Office of Planning, Design, & Construction, John Zimmermann, et. al.

UCOP Facilities Administration, Michael Bocchichio, Assistant Vice President

UC Berkeley

UC Berkeley, Chancellor Robert Berdahl

UC Berkeley, Exec. Vice Chancellor, Paul Gray

UC Berkeley, Vice Chancellor for Research, Beth Burnside

UC Berkeley, Vice Chancellor Business and Administrative Services, Horace Mitchell, et. al.

UC Berkeley, Physical and Environmental Planning, Tom Lollini, Director, et. al.

UC Berkeley, Chancellor's Adv. Committee on Strawberry Creek, G. Mathias Kondolf

UC Berkeley, EH&S Division, Mark Frieberg, et. al.

UC Berkeley, Office of Radiation Safety, Paul Lavely, Director, et. al.

UC Berkeley, Community Relations, Irene Hegarty, Director

UC Berkeley, Lawrence Hall of Science, Elizabeth Stage, Director et. al.

UC Berkeley, Botanical Garden, Ellen Sims, Director, et. al.

UC Berkeley, Police Chief, Victoria Harrison

UC Berkeley, Campus Landscape Architect, James Horner

UC Berkeley, Emergency Services Manager, Tom Klatt

Organizations

Berkeley Association of Realtors, Donald Clark, Executive Director

Berkeley Chamber of Commerce, Rachel Rupert et. al.

Campus Parnassus Neighborhood Association, Eric Arens

Committee to Minimize Toxic Waste, Pam Sihvola, Co-Chair, et. al.

Community Environmental Advisory Commission, Sara MacKusick

Council of Neighborhood Associations, Marie Bowman, President

Euclid-LeConte Neighbors, Jim Sharp et. al.

League of Women Voters, Nancy Bickel, President, et. al.

Nyingma Institute, Abby Blum

Oakland Metropolitan Chamber of Commerce, Joseph Haraburda

Panoramic Neighborhood Association, Janice Thomas, President

Urban Creeks Council, Carol Schemmerling

Friends of Strawberry Creek, Janet Byron

Individuals and Neighbors

(Various)

One Cyclotron Road, MS 90K Berkeley, California 94720 October 28, 2003

INITIAL STUDY 2004 LONG RANGE DEVELOPMENT PLAN LAWRENCE BERKELEY NATIONAL LABORATORY

PROJEC	T INIT	\sim D $_{1}$ $_{1}$ $_{2}$	Δ
PRUJEU			4 1 10 3151

Project Title: 2004 Long Range Development Plan

Lead Agency: University of California

Contact Person: Jeff Philliber; (510) 486-5257

Project Location: One Cyclotron Road, Berkeley, California 94720

State Clearinghouse #: 2000102046

II. PROJECT DESCRIPTION

See Below.

III. ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED

The environmental factors checked below may be potentially affected by this project and will be carried forward for full analysis in the LRDP EIR:

Aesthetics	Agriculture Resources		Air Quality
Biological Resources	Cultural Resources		Geology/Soils
Hazards & Haz. Materials	Hydrology/Water Quality		Land Use/Planning
Mineral Resources	Noise		Population/Housing
Public Services	Recreation		Transportation/Traffic
Utilities/Service Systems	Mandatory Findings of Significance		

IV. DETERMINATION: (To be completed by the Lead Agency)				
On the basis of the initial evaluation that follows:				
I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.				
I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.				
■ I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.				
I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. A TIERED ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.				
I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, no further environmental document is required. FINDINGS consistent with this determination will be prepared.				
Signature Date				
Laura Chen				
Printed Name Chief, LBNL Facilities Planning				

LBNL 2004 LRDP PROJECT DESCRIPTION

Introduction

Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) is a multi-program national research facility operated by the University of California (UC) for the Department of Energy (DOE)'s missions in fundamental science, energy resources and environmental quality. LBNL's programs advance four distinct goals for DOE and the nation:

- To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment.
- To develop and operate unique national experimental facilities for qualified investigators.
- To educate and train future generations of scientists and engineers to promote national science and education.
- To transfer knowledge and technological innovations and to foster productive relationships among the Lab's research programs, universities, and industry in order to promote national economic competitiveness.

Classified research is not conducted at LBNL.

Background

University of California campuses, including LBNL, are required to maintain and periodically update Long Range Development Plans (LRDPs). An LRDP is a planning document that establishes a general framework and direction for the physical development of an institution over a span of several years. The University of California further mandates that any new LRDP be accompanied by an Environmental Impact Report (EIR) pursuant to the California Environmental Quality Act (CEQA). An EIR provides a comprehensive review and analysis of a proposed project and of its potential effects on the environment. An EIR analysis is presented for review and comment to the public, to relevant government agencies, and to the Lead Agency (in this case, UC) decision-makers. Any new LBNL LRDP and EIR must be approved by The Regents of the University of California before the EIR can be adopted and the LRDP can be implemented.

LBNL's existing LRDP and EIR were approved in 1987. The EIR was later updated by a Supplemental EIR in 1992 and an Addendum in 1997. Sufficient time has passed that a renewed statement of planning vision is appropriate for Berkeley Lab as it works to address the national scientific challenges and research opportunities at the beginning of this new century.

LBNL had begun the long range planning process with a previous LRDP EIR Notice of Preparation in the fall of 2000. Because the schedule for completion and circulation of the LRDP and EIR was delayed, this revised Notice of Preparation has been issued. With this revised Notice of Preparation, the LRDP and CEQA process recommences. Berkeley Lab expects to complete and circulate the Draft LRDP and Draft EIR for public review in Spring 2004. Berkeley Lab plans to submit the proposed Final LRDP and EIR documents for The UC Regents' consideration during Fall 2004.

Setting

The main LBNL site straddles the border between the cities of Berkeley and Oakland in Alameda County adjacent to the UC Berkeley campus (see Figures 1 and 2). The site is situated on the ridges and in the draws of Blackberry and Strawberry Canyons in the East Bay Hills. To the west are UC Berkeley student and general residential neighborhoods; to the north are single-family residential neighborhoods, the Lawrence Hall of Science, and other rurally set recreational and cultural facilities and parking uses; to the east and southeast are University-owned rural lands including designated ecological study area and botanical gardens; and to the south and southwest are the University of California, Berkeley, recreational facilities, and single-family residential neighborhoods (see Figure 3).

The approximately 200-acre main LBNL site (or "Hill site," see figure 2) includes approximately 1.76 million gross square feet (gsf) of building space consisting mainly of office, laboratory, shop, and storage areas. Additional development includes roads, parking lots, utilities, and infrastructure. Approximately 25 percent of the site is developed (impermeable surface area) while the remaining approximately 75 percent is generally permeable and/or undeveloped, although historically agriculturally-used or otherwise managed areas. The latter areas are hosts to a variety of mostly non-native grasses, brush, and woodlands. LBNL's undeveloped areas are subject to on-going vegetation management for fire control purposes.

LBNL occupies approximately 400,000 gsf of office, laboratory, and storage space off of the LBNL Hill site. This includes approximately 100,000 gsf on UC-owned land on the UC Berkeley Campus, and approximately 295,000 gsf of commercial/industrial lease space primarily in the

cities of Berkeley, Oakland, Walnut Creek, and Washington, D.C. The amount of off-site space occupied and the location of this space changes as needs and market conditions change.

The LBNL Hill site includes three vehicular entry gates and generates several thousand one-way (access and egress) vehicle trips on a typical workday. The site currently contains approximately 2,200 employee parking spaces, and the current objective for Berkeley Lab's parking-to-employee ratio is 1.7 employees for every parking space for the Lab's current adjusted daily population of about 4,300. The Lab offers free employee and guest shuttle service throughout the workday, both on- and off-site, and maintains incentives for carpooling and alternative forms of transportation.

LBNL's landscape management areas include stands of eucalyptus, bay, oak, redwoods, and Monterey pine; scrub and brush; and grasslands. No rare, endangered, threatened, or otherwise listed plant or animal species have been sighted at LBNL. The Berkeley Lab site contains several mostly seasonal and intermittent waterways and drainages and is part of the Strawberry Creek watershed. No jurisdictional wetlands or blue-line streams exist on the site. An on-going vegetation management program for wildland fire control consists of periodic tree-thinning and pruning and regular brush and grass maintenance activities.

The Cooper's hawk, a California species of concern, and the Red-tailed hawk, which is protected under California Fish and Game Code Section 3505.5, have been observed within the Lab environs. In addition, in 2000, the US Fish and Wildlife Service (USFWS) designated a large portion of Alameda and Contra Costa Counties as habitat for the Alameda whipsnake—a species previously listed as "threatened." This critical habitat listing included areas within the LBNL Hill site. No Alameda whipsnake has been reported at the LBNL site, and a 1996 survey conducted by a whipsnake expert reported that only a small portion of the LBNL site (less than five acres) actually contains any viable or colonizable Alameda whipsnake habitat. The USFWS critical habitat listing for the Alameda whipsnake was vacated by a Federal district court in 2003.

While some LBNL buildings are over fifty years old, virtually all of these have been substantially modified over the years. LBNL is conducting a sitewide review of historic resources in coordination with the Department of Energy and the State Historic Preservation Office. Based on archaeological surveys of the Hill site, as well as on decades of construction-related excavation, no archaeological or Native American sites are thought to exist on the LBNL site.

1987 LRDP and EIR

At present, Berkeley Lab's on- and off-hill site facilities are host to an average daily population of approximately 4,300 staff and guests. Under the current, approved LRDP and LRDP EIR, as amended, Berkeley Lab may grow by approximately 450 staff and guests above current levels to a total of 4,750 staff and guests, and may develop or occupy an additional 238,000 gsf on site to a total of 2 million gsf (see Table I). In addition, the 1987 LRDP and EIR, as amended, project that LBNL off-hill (non-UC-owned land) space use will be 100,000 gsf by an unspecified date within the 21st Century ("20XX").

2004 LRDP

Project Description

The project under consideration in this EIR will be LBNL's proposed new LRDP. The LRDP will be a planning document that will address continuing and future uses and activities at Berkeley Lab. The LRDP planning period will extend through 2025, although the actual pace and nature of projected development will depend on a number of factors that cannot all be predicted at this time; these include future funding levels and the future direction of national research. For the purposes of environmental analysis, an approximately twenty-year timeframe will be used.

While the LRDP planning process is not complete, LBNL has developed some general parameters for the Plan. These parameters, discussed below, are the result of preliminary planning and may be refined or adjusted as a result of the on-going planning process.

The objectives of this proposed LRDP reflect the evolution of the Lab, its mission, and the climate of scientific research since the issuance of the 1987 LRDP. The anticipated primary LRDP objectives are:

- Provide research and support facilities to accommodate research program and associated population growth.
- Secure and sustain investment in research facilities.
- Improve overall operational and scientific efficiencies.
- Strengthen the core site plan concept of multiple, consolidated functional areas.
- Improve research and support operations through proper siting and consolidation of functions, including the relocation of off-site and UCB research activities to the main Hill site.

- Develop facilities that foster innovation and collaboration.
- Protect the environment through exemplary sustainable design and operational practices.
- Plan for site amenities and constraints.
- Provide a setting that attracts and retains leading research talent in a safe, healthful, and attractive work environment.
- Provide a flexible land use policy that accommodates the rapidly changing nature of scientific research.

LRDP Scope

The 2004 LRDP will guide the physical development of Berkeley Lab to achieve the best possible balance among the Lab's mission; staff, user, and visitor needs for state of the art research and support facilities and services; the environmental character of the site; and a harmonious integration with the surrounding community. The LRDP will not be per se an implementation plan; rather, it will be a guide to implementation. Adoption of the LRDP will not constitute a commitment to any specific development projects, construction schedules, or funding priorities. Specifically, this LRDP will:

- Summarize the Laboratory's setting, planning processes, planning concepts and design objectives.
- Identify population growth and space needs projections to the twenty-year horizon year.
- Define the physical context for facilities development on the main Hill site.
- Indicate redevelopment needs for existing buildings and utility systems.
- Summarize site amenities and constraints to protect the environment and natural setting.
- Provide a land use plan and accompanying design principles and themes as a guide for the location and qualitative aspects of new development.

Population Growth Projections

Over the next twenty years, the "adjusted daily population" (ADP) at the Hill site is expected to grow from the current 4,300 to 5,500. The ADP counts both staff and guests and is adjusted to account for the normal fluctuations in guest attendance. This average growth rate of approximately 1.1% per year would be less than LBNL's annual population growth rate of about 1.3% per year since adoption of the 1987 LRDP. This forecasted population would represent an

increase of approximately 28% over the current LBNL population and approximately 16% over the 1987 LRDP population projection of 4,750.¹

Space Needs Projections

Currently, LBNL occupies 2,180,000 gsf, including a combined total of about 1,760,000 gsf at the main Hill site, about 99,000 gsf at the UCB campus, and approximately 295,000 gsf of leased space distributed over multiple sites, for a combined total of 2,155,501 gsf. Implementation of the 2004 LRDP would increase the Lab's main Hill site total building area to approximately 2,560,000 gsf.¹

Table 1

	Current Level	Current Projection	Projected Future
		(1987 LRDP/EIR)	(2025) Level
Population (ADP)	4,300	4,750	5,500
Space ¹			
On-Hill space	1.76 M	2.00 M	2.56 M
Off-Hill space at UCB ²	0.10 M	0.30 M	0.10 M

^{1 -} in Millions square feet

Off-Hill functions may continue to operate at their current locations or at the other sites as conditions warrant. LBNL does not expect to increase space occupied on the UC Berkeley campus park, but the mix of office and laboratory space may change over time. It is anticipated that LBNL's special status space in Calvin and Donner laboratory buildings on the UC Berkeley campus will continue in these or other negotiated buildings on the UC Berkeley campus. LBNL's off-Hill Commercial lease space will fluxuate as needs and market conditions allow.

Land Use

The Land Use Plan will identify general zones of development intensity rather than areas of specific use types. The three development zones that will comprise the plan are expected to be:

Facilities Development Area – research and support activities. Would encompass
primarily the already developed central portion of the Lab. New development of

² – Does not include off-site lease space, which will change as needs and/or market conditions allow.

¹ Revisions to text were made to correct overstatements in NOP, per errata sheet issued to the State Clearinghouse on October 31, 2003.

laboratory, office, and support structures would be allowed throughout this zone. Final building locations and massing would not be dictated by the land use plan but would be the result of a comprehensive planning process. The LRDP would promote development on infill and existing building sites and would look to consolidating research activities.

- Vegetation Management Areas managed landscape, wildland fire and natural areas.
 Would be located entirely along the perimeter of the LBNL site and would provide an open space buffer to neighboring land uses. Vegetation in these areas would continue to be managed to reduce wildland fire risks. Environmental monitoring structures and access roadways would be allowed in these areas.
- **Special Habitat Protection Areas –** no regular vegetation management or development is anticipated. Would provide for protection of identified special status species habitats and riparian zones.

Since the 1987 LRDP, approximately 66 acres of Regents'-owned land formerly managed by UC Berkeley have been added to LBNL's management area. These acres are currently managed under existing land use designations provided under the current UC Berkeley LRDP until LBNL's new LRDP is adopted by The Regents. At such time, these acres will be assigned new land use designations by the Berkeley Lab LRDP. This land currently includes "Ecological Study Area" zone and "Natural" area designations under the UC Berkeley LRDP, and it is actively managed by LBNL for vegetation and fire management purposes. The lands currently designated as Ecological Study Area zones under the 1990 UC Berkeley LRDP are anticipated to be designated "managed areas" under the new Berkeley Lab LRDP.

Proposed Major Planning Policies

Based upon the Lab's mission, population growth projections, and space needs forecast, policies are being formulated to serve as a guide to the continuing development of the LBNL main site.

These draft policies include the following:

Facilities

- Develop flexible facilities that meet changing needs of research programs
- Design buildings to work with hillside topography
- Design buildings as leading examples of sustainable design principles
- Develop and maintain flexible and accessible utility infrastructure

Environmental Character

- Establish the built form as a strong sense of place to facilitate interactive work and social life that will help to attract and retain top researchers
- Commit to integrate natural and man-made environments

- Optimize the potential of open space, views, and landscape as valuable, distinguishing amenities
- Continue vegetation management to minimize wildland fire risk

Growth & Development

- Accommodate changing space and support needs of scientific research
- Accommodate program population and space growth
- Balance approach to new development
- Replace old low density with new space efficient facilities
- Promote sustainable development
- Promote opportunities for third-party development

Land Use

- Co-locate interdependent research programs in clusters
- Promote infill development sites reinforcing the cluster concept
- Assign land use in accordance with sustainable guidelines
- Site development adjacent to existing development and utilities

Circulation and Transportation

- Promote alternative forms of transportation
- Provide parking to support a campus like setting and increased population
- When possible, segregate service and employee/visitor traffic

Plan Concept: Hill Town Research Clusters

The 2004 LRDP will advance the concept of development in research clusters defined by the hillside topography, natural features, and the character of the built environment. These clusters will be known as individual "hill towns" with their own unique character and themes. The Lab campus as a whole will maintain a cohesive sense of place primarily from the unifying force of the natural setting. Further development of common elements such as pedestrian walkways, site structures, landscaping and signage will further bind the unique hill town settings into a unified whole.

These hill towns provide a place to concentrate research activities either by research Division or by project into "research clusters." The hill town analogy provides a framework to guide the site planning strategies, development principles, and design themes unique to each hill town. Further, as hill towns, by necessity, tend to concentrate activities and space, these development

principles and themes reinforce a primary LRDP objective to provide higher density facilities that foster opportunities for collaboration.

Construction Program

The 2004 LRDP will envision project construction as a series of activities that takes place sequentially and, at times, simultaneously at the Lab site. Consequently, the 2004 LRDP EIR will analyze construction as an on-going activity based upon expected annual averages as opposed to as a series of discrete, temporary, and unrelated actions that are deferred to future, segregated analyses.

Environmental Impact Report

The 2004 LRDP EIR will replace the 1987 LRDP EIR (as well as the 1992 Supplemental EIR and 1997 Addendum) when it has been certified and the proposed new LRDP has been approved by The UC Regents. The 2004 LRDP EIR will be designed to analyze a series of related actions at Lawrence Berkeley National Laboratory under the 2004 LRDP. It will contain a comprehensive and detailed analysis of environmental impacts of the 2004 LRDP. Subsequent activities within the scope of the 2004 LRDP will be analyzed to determine whether there are any impacts requiring further CEQA documentation or instead whether no documentation in addition to the LRDP EIR is required.

The EIR analyses of potential LRDP effects on environmental resources shall include the following areas: Aesthetics; Air Quality; Biological Resources; Cultural Resources; Geology, Seismicity, and Soils; Hazards and Hazardous Materials; Hydrology and Water Quality; Land Use and Planning; Noise; Population and Housing; Public Services; Recreation; Transportation; and, Utilities and Service Systems. The EIR will include analysis of other considerations required by CEQA.

The LRDP EIR will also consider the combined effects of the proposed LRDP program in concert with past, present, and probable future projects producing related or cumulative impacts. Among these are LBNL's on-going activities, UC Berkeley's projected new Long Range Development Plan, and the City of Berkeley's recently-approved General Plan update.

Alternatives

The LRDP EIR will include an examination of alternatives to the project, including the "no project" alternative required by CEQA. While the final list of alternatives will be developed in conjunction with the environmental analyses, likely alternatives to be included are:

- Reduced On-Site Population Growth: Under this alternative, space growth would be similar to that of the proposed project, but population growth would be limited.
- Reduced On-site Space Growth: Under this alternative, population growth would be similar to that of the proposed project, but space growth would be limited. Staff compression and/or off-site leases of space would be emphasized under this alternative.
- Reduced or No New On-site parking growth: Under this alternative, growth of population
 and space would continue as projected, but fewer or no new parking spaces would be
 provided. Alternative modes of transportation would be emphasized to a greater degree
 under this alternative than under the proposed LRDP.
- Satellite or Second Campus Development Off-site: Under this alternative, LBNL would concentrate new facilities and population growth in an off-site area such as in an industrial park.
- No Project: Under this alternative, LBNL would not develop beyond the parameters described in the 1987 LRDP.

Cortese List

As required by Public Resources Code Section 21092.6, information regarding LBNL locations on the CAL/EPA Hazardous Waste and Substances Sites List, or "Cortese List," are provided at the following URL: http://www.lbl.gov/Community/env-rev-docs.html

Potential Effects

The following is a preliminary assessment of potential environmental impacts that may be analyzed in the LRDP EIR. This assessment will be used as part of the information considered in determining the scope of environmental issues to be evaluated in preparing the EIR. The EIR will consider all areas below. Topic areas that are expected to be impacted by the proposed project will be fully analyzed. Topic areas not expected to be impacted will be addressed briefly or in depth as appropriate.

	Will be Analyzed in EIR	No Additional Analysis Required		
1. AESTHETICS Would the project:				
a) Have a substantial adverse effect on a scenic vista?				
Project-related development on-site may be noticeable from not Avenue in Berkeley, the Campanile on the UC Berkeley Campanizely Peak Boulevard. Development would likely include the and by the removal of natural or screening elements, like key so viewpoints downhill would be whether such visual changes were the LBNL portion of the Berkeley hills, which are characterized natural-appearing topography. A measure of effect from view would block or substantially detract from panoramic, long-range the LRDP likely would include LBNL aesthetic design guidely	bus, the Lawrence Hall of Science addition of new visual elements of the screening trees. One likely metabolic substantially alter the exical by a mix of buildings surroupoints uphill would be whether ge views of the San Francisco	ence, and segments of nents, such as buildings, easure of effect from sting visual character of unded by trees, foliage, and er such visual changes Bay and distant skyline.		
b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?				
No LBNL on-site resources are within or in the vicinity of a state scenic highway. Regional access to the LBNL hill site is provided by Interstate Highways 80 and 580, and State Routes 24 and 13. None of these are designated or presently eligible as scenic routes. Therefore, no impact would occur to a state scenic highway and additional analysis is not required.				
c) Substantially degrade the existing visual character or quality of the site and its surroundings?				
LRDP-related on-site development would likely occur on both planning period, the project could introduce new buildings and the terrain and landscape, and remove and/or add key screenin development in some areas. Due to distance, elevation, and in would not be expected to appear highly visible from most off-viewpoints downhill would be whether such visual changes we the LBNL portion of the Berkeley hills, which are characterized natural-appearing topography. LRDP would be expected to in incorporated into any development projects.	I structures to the site, remove g trees. It could change existi tervening terrain and vegetation site viewpoints. One likely mould substantially alter the exical by a mix of buildings surror	existing buildings, alter ng land uses and intensify on, new development easure of effect from sting visual character of unded by trees, foliage, and		

¹ Brief explanations are provided in shaded boxes. These explanations represent a best estimate based on the current preliminary understanding of the proposed LRDP and its likely effects.

	Will be Analyzed in EIR	No Additional Analysis Required
d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?		
With the potential inclusion of new buildings, intensification of LRDP-related on-site development could create new sources of LRDP would be expected to include LBNL aesthetic design guiprojects.	f light and glare visible from	off-site viewpoints. The
2. AGRICULTURE RESOURCES: In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Dept. of Conservation as an optional model to use in assessing impacts on agriculture and farmland. Would the project:		
a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?		
No active agriculturally-used lands occur on the LBNL site.		
b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?		
No active agriculturally-used lands occur on the LBNL site.		
c) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland to non-agricultural use?		
No active agriculturally-used lands occur on the LBNL site.		
3. AIR QUALITY Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the project:		
a) Conflict with or obstruct implementation of the applicable air quality plan?		

	Will be Analyzed in	No Additional			
	EIR	Analysis Required			
The LBNL site is located in the Bay Area Air Quality Management District (BAAQMD), an area that is currently designated a non-attainment zone for PM ₁₀ (particulate matter with a nominal diameter of 10 microns or less) and					
be likely to add incrementally to regional ambient air pollutant criteria air pollutants from mobile and stationary sources, inclu	ozone levels. LRDP-related increases in LBNL staff, laboratory space, equipment, and construction activities would be likely to add incrementally to regional ambient air pollutant emissions, including short- and long-term emissions of criteria air pollutants from mobile and stationary sources, including PM ₁₀ and ozone. This would not advance the goals of the relevant air quality implementation plan for PM ₁₀ and ozone, although LRDP-related emissions increases would				
excavation, use of alternative fuel vehicles on-site, free shuttle systems, etc., are likely to be identified in the LRDP where app	service to public transportation				
b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?					
The LRDP EIR will examine the potential for vehicle and stationary source emissions under the project to violate state and federal air quality standards or contribute to existing air quality violations. The potential for mobile source, construction and operational emissions associated with 2004 LRDP implementation to influence air quality would be examined. The analysis will include examination of criteria pollutants, toxic air contaminants, and airborne radionuclides that might potentially result from project implementation.					
c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?					
The BAAQMD is designated as a non-attainment area for ozon contribution of these emissions to the region would likely conswill examine the cumulative projection of total emissions throu UC Berkeley 2020 LRDP, and the City of Berkeley General Placitical pollutants would be cumulatively considerable.	stitute an adverse cumulative i ugh 2025 — including those o	mpact. The LRDP EIR of the proposed project, the			
d) Expose sensitive receptors to substantial pollutant concentrations?					
The LRDP EIR will evaluate whether construction and development activities under the 2004 LRDP would expose sensitive receptors, including nearby schools, to substantial pollutant concentrations.					
e) Create objectionable odors affecting a substantial number of people?					
	· · · · · · · · · · · · · · · · · · ·	-			

	Will be Analyzed in EIR	No Additional Analysis Required			
Ongoing activities from the proposed project are not expected to create nuisance or objectionable odors affecting substantial numbers of people, particularly people off-site. Actions that might create objectionable odors include asphalt-laying during construction activities. Such odors would be temporary and likely noticeable to a small number of off-site people, and then only under limited meteorological conditions. The prevailing wind directions measured on site typically do not blow in the direction of nearby populated areas during normal LBNL operating hours. Nevertheless, the LRDP EIR will examine the potential for objectionable odors resulting from implementation of the 2004 LRDP.					
f) Expose people to substantial levels of toxic air contaminants (TACs), such that the exposure could cause an incremental human cancer risk greater than 10 in one million or exceed a hazard index of one for the maximally exposed individual?					
Development under the 2004 LRDP could add research facilities or expand existing campus uses that are potential sources of toxic air contaminants (TACs). The 2004 LRDP EIR will include estimates for emissions from development under the 2004 LRDP. If the 2004 LRDP would result in an excess cancer risk greater than 10 in one million or exceed a hazard index of one, a significant impact would be assumed to result and be addressed in the EIR. Calculated cancer risks assume a continuous exposure time of 70 years, which provides a conservative analysis because most exposures are of much shorter duration. The hazard index assumes a one-hour exposure to maximum hourly emissions from all LBNL site sources, which provides a conservative analysis because maximum hourly emissions from all sources are not expected to simultaneously occur within one hour.					
4. BIOLOGICAL RESOURCES – Would the project:					
a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?					
In 2000, the US Fish and Wildlife Service (USFWS) designated a substantial portion of the eastern LBNL site as critical habitat for the "threatened" Alameda whipsnake. There have never been reported sitings of the Alameda whipsnake species at LBNL, and most of the habitat so designated by the USFWS had been earlier reported as not "colonizable" in a sitewide survey prepared by a leading whipsnake expert for LBNL (McGinnis, 1996). In 2003, a Federal district court vacated the 2000 USFWS critical habitat listing for the Alameda whipsnake. Nevertheless, LBNL continues to operate with a heightened degree of sensitivity towards potential whipsnake presence on all undeveloped areas of its site. Similarly, LBNL recognizes that habitat for or members of various special status birds, bats, reptiles, amphibians, and other species of concern may exist in the area and must be accounted for in Berkeley Lab's planning. In addition, Cooper's hawk and Red-tailed hawk, both special status species, have been observed at LBNL. The 2004 LRDP EIR will examine the potential for development under the LRDP to adversely affect candidate, sensitive, or special status species or their habitat.					

	Will be Analyzed in EIR	No Additional Analysis Required
b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or US Fish and Wildlife Service?		
LBNL contains several drainages and a wide range of both nat LRDP EIR will include a sitewide survey to identify any ripar site. Any such areas will be considered in the analysis of LRD	ian or sensitive natural comm	
c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?		
The LRDP EIR will include a sitewide survey to identify any the Clean Water Act. Although jurisdictional waters of the Unfederally protected wetlands are thought to exist on-site.		
d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?		
The LBNL site is not known to serve as a migratory corridor of Site surveys will be conducted to confirm this.	or nursery site to any native re	sident or migratory species.
e) Conflict with any local applicable policies protecting biological resources?		
The LRDP EIR will evaluate the consistency of the 2004 LRD regulations, such as the Migratory Bird Treaty Act, that are related a condinances do not apply to Lab projects, because the Unaccordance with the state constitution.	levant to potentially occurring	biological resources.
f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other applicable habitat conservation plan?		
The LBNL site is not known to be subject to or designated for Community Conservation Plan, or other approved conservation		
5. CULTURAL RESOURCES Would the project:		

	Will be Analyzed in EIR	No Additional Analysis Required			
a) Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5?					
The LRDP likely would encourage reuse or redevelopment of functionally obsolete buildings when opportunities for new development arise. Several LBNL buildings are or are approaching 50 years of age and have been associated with LBNL's scientific work. A historic survey is being conducted to assist in determining which structures at Berkeley Lab may be historical resources as defined in CEQA Section 15064.5, and how many among them might be eligible for the National Register of Historic Places pursuant to the National Historic Preservation Act. The results of this survey, as available, will be included in the EIR analysis.					
b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?					
There are no known archaeological resources on the LBNL site. No archaeological artifacts have been discovered during Lab development and excavation, and archaeological field surveys of the site have uncovered no evidence of prehistoric inhabitation or the presence of archaeological resources. Nevertheless, potential for discovery of unexpected archaeological resources during project development and excavation under the 2004 LRDP program will be examined in the LRDP EIR.					
c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?					
The LBNL site does not contain any known unique paleontolo course of development at Berkeley Lab, extensive excavation to presence of unique paleontological or geologic resources. No required.	for buildings and infrastructur	e have not revealed the			
d) Disturb any human remains, including those interred outside of formal cemeteries?					
See response to 5b, above. There is no known evidence of prehistoric habitation of the LBNL site, nor any indication that the site has been used for burial purposes either in the recent or distant past. The LRDP EIR will identify actions to be taken to mitigate any impacts that might occur in the unlikely event that human remains were disturbed by implementation of the 2004 LRDP.					
6. GEOLOGY AND SOILS Would the project:					
a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:					

	Will be Analyzed in EIR	No Additional Analysis Required
i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.		
The LBNL site is near the Hayward Fault, and some portions of Fault Zone. LRDP-related increases in on-site personnel and be earthquake risk. LBNL observes all applicable earthquake and rated all structures in accordance with the University Seismic Strelationships between LBNL future development and known for shaking, ground failure, and landslides.	ouilding space would create act I safety codes in its construction Safety Policy. The LRDP EIF	Iditional exposure to on and has evaluated and R shall examine the
ii) Strong seismic ground shaking?		
See response to 6a-i, above. The LRDP EIR will analyze the princreased population and built space on the LBNL site due to it.		•
iii) Seismic-related ground failure, including liquefaction?		
See response to 6a-i, above. The LRDP EIR will analyze the princreased population and built space on the LBNL site due to its space of the LBNL site due to its space.		
iv) Landslides?		
The LBNL site includes steep slopes and retained areas. LRD space would create additional exposure to landslide risk, espective LRDP EIR will analyze the potential increased landslide the LBNL site due to implementation of the 2004 LRDP.	cially during seismic events. S	ee response to 6a-I, above.
b) Result in substantial soil erosion or the loss of topsoil?		
Erosion could occur during construction and excavation project construction management practices to minimize the extent of soloss of topsoil and potential for substantial soil erosion under the	uch effects. The LRDP EIR v	will examine the potential

	Will be Analyzed in	No Additional
	EIR	Analysis Required
c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?		
Implementation of the LRDP EIR is not likely to include development under the LRDP would be required to meet all but personnel safety. As described in 6.a., above, the potential for that expose people or properties to risk due to landslide, liquef in the LRDP EIR;	nilding standards and codes fo development under the 2004	r structural integrity and LRDP to occur on lands
d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1997), creating substantial risks to life or property?		
As described above, the potential for 2004 LRDP developmen landslide, liquefaction, or other soils-related condition such as		
e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?		
The LBNL site is served by sanitary sewer systems; thus, this EIR.	topic does not need to be furth	er analyzed in the LRDP
7. HAZARDS AND HAZARDOUS MATERIALS – Would the project:		
a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?		

	Will be Analyzed in EIR	No Additional Analysis Required
The presence and use of hazardous materials, and the presence of hazardous waste, provides potential exposure risks to workers, the public, and the environment. These risks during routine transport, use, and disposal are reduced to less than significant levels by a wide variety of measures undertaken by the Laboratory, including compliance with applicable laws and regulations governing hazardous materials and hazardous waste management activities, and the use of Berkeley Lab's Hazardous Waste Handling Facility meeting all applicable regulatory requirements. Hazardous waste is sent to authorized treatment and disposal facilities using licensed transporters. The Laboratory also has an extensive hazardous waste minimization program.		
Like many older facilities at which hazardous materials have been handled, the Laboratory site includes some areas of contaminated soil and groundwater. The Laboratory undertakes detection, investigation, and remediation activities in accordance with regulatory requirements. In the judgment of regulatory agencies, past releases of hazardous materials at the Laboratory have not created significant hazards to the public or environment. LRDP-related development would not be expected to create any significant new hazardous materials issues at LBNL.		
Implementation of the 2004 LRDP could result in the development of additional research laboratories and other research facilities that would use, store, and require the transportation of hazardous materials and disposal of hazardous waste. Also, solvents, adhesives, cements, paints, cleaning agents, degreasers, and fuels in construction and other vehicles are among the types of existing hazardous materials used at Berkeley Lab that could increase if the 2004 LRDP is implemented. The LRDP EIR will characterize on-site hazardous materials use, transport and disposal, will identify projected increases in these activities that could occur under the LRDP program, and will evaluate potential impacts associated with these increased activities.		
b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?		
Upset and accident conditions could expose workers, the public, and the environment to risks from releases of hazardous materials and hazardous waste. The risk of releases currently is reduced to less than significant levels by such measures as complying with Building and Fire Code provisions governing the design of earthquake- and fire-resistant structures, implementing a fuel reduction/vegetation management program that reduces fire hazards from surrounding vegetation, and maintaining necessary emergency preparedness and response capabilities.		
The LRDP EIR will characterize hazardous waste handling and hazardous materials use in research, operations, maintenance, and construction, along with their transport, handling and disposal. It will identify projected increases in these activities that could occur under the 2004 LRDP and will evaluate associated potential impacts, including potential risks from upset or accident conditions.		
c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?		

	Will be Analyzed in EIR	No Additional Analysis Required
Although it is adjacent to the UC Berkeley campus, LBNL is not located within one-quarter mile of an existing or proposed school per CEQA Guideline 15186. The Lawrence Hall of Science, which is not a school but an educational institution (science museum) serving many school-aged visitors, is approximately 350 feet from Berkeley Lab's northern property line. In addition, LBNL-used space on the UC Berkeley campus may include some laboratory use of hazardous materials within one-quarter mile of schools or day care centers. While LBNL does handle certain hazardous materials in its capacity as a scientific laboratory, these materials and their handling protocols are subject to extensive regulations and procedures and oversight; they are also on-going activities that are described and approved under the 1987 LRDP and LRDP EIR. Beyond allowing for growth of normal LBNL operations and activities, the proposed LRDP is not anticipated to result in major new sources of on-site hazardous materials or handling. Nevertheless, the EIR shall include analysis of any project-related hazards that could affect the Lawrence Hall of Science and other neighbors.		
d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?		
Five LBNL locations are listed on the current CAL/EPA Hazardous Waste and Substances Sites List, also known as the "Cortese list." These sites may be found at: http://www.lbl.gov/Community/env-rev-docs.html . All are listed due to past leaks from underground fuel storage tanks. Corrective action was implemented by the Laboratory, and the local regulatory agency responsible for oversight (City of Berkeley, Toxics Management Division) has approved No Further Action status for four out of the five sites. Interim corrective measures are in place at the remaining site. The sites do not create a significant hazard to the public or the environment. Contamination from the sites has not gone beyond Laboratory boundaries, and has not created any known adverse impacts to on- or off-site personnel, wildlife, or vegetation. (The presence of a site on the hazardous materials sites list does not necessarily indicate a significant hazard. Once a location has been listed, it remains on the list even after all contamination has been removed. This policy enables parties to discover whether tanks or contamination exist or formerly existed on properties where ownership may be transferred.) These sites will be briefly identified and discussed in the LRDP EIR.		
e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?		
The LBNL site is neither within an airport land use plan nor within the vicinity of an airport.		
f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?		
The LBNL site is not within the vicinity of a private airstrip.		
g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?		

	Will be Analyzed in	No Additional	
	EIR	Analysis Required	
The LRDP likely would require that all operations and development conform or be compatible with all elements of LBNL's site emergency response and evacuation plans.			
h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?			
The LRDP EIR will analyze the LRDP-related risks involved with wildland fires. LRDP-related increases in on-site personnel and development would result in increased exposure of persons to potential wildland fire conditions. LBNL is on sloped terrain and adjacent to both urban areas and wildlands and is subject to dry, warm conditions and occasional high winds during the fire season. LBNL has considerable on-site fire suppression capabilities and its on-site fire department, which is maintained under contract with Alameda County, maintains mutual assistance arrangements with neighboring fire districts, and has implemented a fuel reduction/vegetation management program that has greatly reduced the risk of wildland fire in the vicinity of the Lab. All buildings are code compliant and are protected by sprinkler systems or other appropriate measures. LBNL maintains two 200,000-gallon emergency water tanks on site (with a third 200,000-gallon tank under construction) to ensure adequate emergency water supply and pressure, and construction of a third will soon be underway. Any LRDP-related new structures would be constructed under similar conditions and to applicable fire and safety codes.			
8. HYDROLOGY AND WATER QUALITY – Would the project:			
a) Violate any water quality standards or waste discharge requirements?			
Development under the 2004 LRDP could result in an increase of impermeable surface area, which could produce additional volume and pollutant loading of urban runoff. The Regional Water Quality Control Board has expressed water quality concerns for Strawberry Creek and its receiving waters (the San Francisco Bay) based on releases of sediment, bacteria, nutrients, metals and hydrocarbons. Additionally, increased water usage that could result from implementation of the 2004 LRDP could cause increases in wastewater discharges that could exceed waste discharge requirements for water quality or quantity. The LRDP EIR will evaluate impacts to water quality from runoff and characterize current waste discharge volumes of the LBNL and wastewater treatment capacity at the East Bay Municipal Utility District's (EBMUD's) wastewater treatment plant, and evaluate whether the implementation of the 2004 LRDP would result in a violation of applicable standards or waste discharge requirements.			
b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?			

	Will be Analyzed in EIR	No Additional Analysis Required
LBNL does not use on-site groundwater nor does its steep terrain allow it to be an important site for groundwater recharge. Except for monitoring wells, there are no groundwater wells on-site or nearby that support existing or planned land uses. Groundwater is not a local supply source for Berkeley. Therefore, this topic will be briefly discussed in the LRDP EIR.		
c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?		
Because Berkeley Lab is situated in an area of hills and canyons with multiple drainages, drainage control and maintenance has historically been an essential component of the Lab's existence. The 2004 LRDP likely would encourage siting of future projects in areas not affecting the major drainage patterns of the site. In cases where such siting is unavoidable, proper engineering would be employed to protect against erosion and siltation. Development under the 2004 LRDP could increase impervious surfaces and alter drainage patterns of building sites, which could result in increased runoff. The LRDP EIR will characterize site-wide drainage patterns and will evaluate the potential for flooding as a result of increased runoff under the proposed LRDP program		
d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?		
LBNL's original stormwater drainage system was not initially designed for 100-year storm conditions, although subsequent improvements and expansion have been designed to that standard. Under extremely heavy rainfall, LBNL may contribute to off-site overloading downstream along Strawberry Creek. An LRDP-related increase of impervious surface area could add incrementally to this condition. Such an increase in impervious surface could increase the volume of surface water runoff and increase levels of urban contaminants in stormwater. The LRDP EIR will evaluate if the existing/planned drainage system could accommodate increased runoff generated as a result of development under the 2004 LRDP. The LRDP EIR will also evaluate potential impacts associated with stormwater pollution under the 2004 LRDP.		
e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?		
See above. Such an increase in impervious surface could increase the volume of surface water. The LRDP EIR will evaluate if the existing/planned drainage system could accommodate increased runoff generated as a result of development under the 2004 LRDP. The LRDP EIR will also evaluate potential impacts associated with stormwater pollution under the 2004 LRDP. The proposed LRDP likely would encourage new on-site development for existing developed areas such that the need for new impervious surfaces would be minimized. Nonetheless, an increase of new impervious surface is expected to result from the proposed LRDP.		

	Will be Analyzed in EIR	No Additional Analysis Required
f) Otherwise substantially degrade water quality?		
Various ways in which the 2004 LRDP could potentially affect of potential surface water quality degradation from LBNL is at Lab emits very small quantities of various radionuclides result they are airborne, these radionuclides can disperse and become monitoring of LBNL radionuclides emission to date indicates the such low levels as to be undetectable; this has resulted in a negative research activities under the LRDP could result in some increase potential emissions too are expected to have negligible effect of	irborne deposition of radionuc ing from laboratory use of the deposited upon surface wate that such deposition on surfac- digible effect to area water qual se of radionuclide use and res	clides. Currently, Berkeley see chemicals. Because rs in the area. Extensive e waters is generally of ality. Expansion of
g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?		
The LBNL site is not within a 100-year flood hazard area nor versidential siting.	would the proposed LRDP be	directly involved in
h) Place within a 100-year flood hazard area structures which would impede or redirect flood flows?		
See response to 8g, above.		
i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?		
See response to 8g, above.		
j) Inundation by seiche, tsunami, or mudflow?		
Neither seiche, tsunami, or mudflow are considered realistic risto surrounding geographic features.	sks to the LBNL site due to its	s elevation and proximity
9. LAND USE AND PLANNING - Would the project:		
a) Physically divide an established community?		
The LRDP would not expand or substantially change the LBN subject to physical division by potential LRDP projects.	L site's borders. Surrounding	communities would not be

	Will be Analyzed in EIR	No Additional Analysis Required
b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the LRDP, general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?		
The LBNL site is not subject to local or agency land use plann LBNL LRDP.	ing besides the University of	California's approved
c) Conflict with any applicable habitat conservation plan or natural community conservation plan?		
The LRDP would not affect any applicable habitat conservation	on plan or natural community	conservation plans.
10. MINERAL RESOURCES Would the project:		
a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?		
The LBNL site does not include known mineral resources of re-	egional value.	
b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?		
The LBNL site does not include any locally-important mineral	l resource recovery sites.	
11. NOISE – Would the project result in:		
a) Exposure of persons to or generation of noise levels in excess of standards established in any applicable plan or noise ordinance, or applicable standards of other agencies?		
Increases in traffic, mechanical equipment associated with new structures, and increases in LBNL Hill site population could result in potential long-term increases in noise levels. Additionally, operation of construction equipment could result in substantial short-term noise increases that might include short-term, temporary exceedances of noise ordinances in nearby areas. The LRDP EIR will analyze the magnitude of these noise increases, and will evaluate whether the increased noise levels associated with implementation of the 2004 LRDP would exceed applicable standards.		

	Will be Analyzed in EIR	No Additional Analysis Required
b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?		
Because construction at LBNL generally does not include pile groundborne vibration or groundborne noise levels, particularly vibration and groundborne noise issues, as appropriate.		
c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?		
See above. Increases in on-site population and general operatilevel increases. The LRDP EIR will evaluate whether the increastandards.		
d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?		
See above. Operation of construction or other equipment coulincreases. The LRDP EIR will use current noise modeling me increases, and will evaluate whether the increased temporary n LRDP would exceed applicable standards.	thods to predict the magnitude	e of these temporary noise
e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?		
The LBNL site is neither within an airport land use plan nor w	ithin two miles of a public air	port.
f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?		
The LBNL site is not within the vicinity of a private airstrip.		
12. POPULATION AND HOUSING Would the project:		
a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?		

	Will be Analyzed in	No Additional
	EIR	Analysis Required
By raising the LBNL population ceiling by approximately 750, the proposed LRDP could increase the demand for housing near the Lab area. This demand would be dispersed over 20 years and, based on current commute patterns of Lab employees, over a broad area of the East Bay and beyond. While this would be an insignificant increase in demand relative to the overall number of houses in the region, cumulative growth over 20 years could cause an aggregate increase in demand versus a dwindling supply of available residences. Hence, the LRDP could contribute slightly to a cumulative housing impact. This will be analyzed in the LRDP EIR.		
b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?		
The LBNL site does not include housing or long-term resident	ial uses, and no housing woul	d be displaced.
c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?		
The LBNL site does not include housing or long-term resident	ial uses, and no housing woul	d be displaced.
13. PUBLIC SERVICES		
a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:		
Fire protection?		
2004 LRDP-related increases in development and on-site personant services. LBNL's on-site fire response equipment, water sexpanded as needed to address any increases in demand. The fire protection providers.	storage or distribution, and fire	e department may be
Police protection?		
LRDP-related increases in development and on-site personnel services. LBNL's on-site security forces likely would be expandemand. The LRPD EIR will analyze impacts to both on- and	nded as needed to accommoda	te any increases in
Schools?		

	Will be Analyzed in EIR	No Additional Analysis Required
LRDP-related increases in LBNL personnel could draw more families with school-aged children to the LBNL commute area. This would be a relatively small increase in demand for schools when dispersed over 20 years and a relatively wide geographic area. The LRPD EIR will analyze impacts to both on- and off-site security and police protection providers.		
Parks?		
LRDP-related increases in LBNL personnel could draw more and recreational facilities. The LRPD EIR will analyze impac		
Other public facilities?		
See response to 13a "Parks," above.		
14. RECREATION		
a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?		
2004 LRDP-related growth in on-site personnel might slightly increase demand for parks and recreational facilities throughout the region, but this increase would be imperceptible and would not be anticipated to substantially contribute to physical deterioration of facilities. The LRDP EIR will address this issue as appropriate.		
b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?		
New or expanded recreational facilities are not expected to be The LRDP EIR will address this issue as appropriate.	a result, either direct or indire	ect, of the proposed project.
15. TRANSPORTATION/TRAFFIC Would the project:		
a) Cause an increase in traffic which is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume to capacity ratio on roads, or congestion at intersections)?		

	Will be Analyzed in EIR	No Additional Analysis Required
Implementation of the proposed 2004 LRDP would increase the LBNL population and the number of on-site parking spaces, which could result in increased vehicular traffic on local streets and the adjacent regional highway system. The LRDP EIR will analyze the impact of additional LRDP-related and cumulative traffic on the local street networks, including intersection capacity, and the regional highway network, including the impact on the capacity of Congestion Management Program designated roadways and freeway ramps and adjacent segments.		
b) Exceed, either individually or cumulatively, a level of service standard established by the county congestion management agency for designated roads or highways?		
The EIR will analyze the impact of additional 2004 LRDP-relational including intersection capacity, the regional highway network, Alameda County Congestion Management Agency.		
c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?		
Implementation of the 2004 LRDP would not alter existing air	traffic patterns.	
d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)? Create unsafe conditions for pedestrians or bicycles?		
The 2004 LRDP is a general land use plan intended to guide the specific projects or structures. The LRDP EIR will evaluate the system or development of incompatible uses to increase hazard any design of new roads under the proposed LRDP would feature appropriate design guidelines, regulations and safety plans would be appropriate design guidelines.	e potential for future changes ds to traffic, pedestrians or bic ure safety and compatibility v	to the campus circulation yelists. It is expected that
e) Result in inadequate emergency access?		
See response to 15d, above. The LRDP EIR will analyze impairmplementation of the 2004 LRDP.	acts to emergency access and	egress resulting from
f) Result in inadequate parking capacity?	-	
The 2004 LRDP will include parking policies and projections to LRDP EIR will evaluate the adequacy of existing and proposed not be met, measures will be identified to encourage or enhance car and van-pooling, and public transportation.	d parking at Berkeley Lab. W	here parking demand may

	Will be Analyzed in EIR	No Additional Analysis Required
g) Conflict with applicable policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)?		
See above. It is expected that the proposed LRDP would continue accommodating alternative transportation. The proposed 2004 and include policies to promote and expand their use; the LRD 2004 LRDP would conflict with applicable LRDP policies support to the conflict with applicable LRDP policies.	LRDP will describe alternation EIR will analyze whether the	ve transportation modes ne implementation of the
16. UTILITIES AND SERVICE SYSTEMS – Would the project:		
a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?		
The East Bay Municipal Utility District operates a wastewater LRDP EIR will characterize the capacity of the EBMUD plant development under the 2004 LRDP.		
b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?		
With the exception of some process water treatment, water and wastewater service providers. Growth under the 2004 LRDP of wastewater treatment facilities. The LRDP EIR will evaluate to conveyance facilities under the LRDP, and evaluate potential if any would be required to meet this demand.	could increase the quantity of the increased demand on wast	wastewater discharged to ewater treatment and
c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?		
Development under the 2004 LRDP could increase impervious surfaces, which could increase the volume of stormwater drainage. The LRDP EIR will characterize sitewide drainage, will evaluate the increased demand for stormwater drainage facilities under the 2004 LRDP, and will evaluate potential impacts associated with any new or altered drainage facilities, if any would be required to meet this demand.		
d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?		

	Will be Analyzed in EIR	No Additional Analysis Required
Implementation of the proposed 2004 LRDP would increase the amount of LBNL building space and population, which could result in an increase in water usage. The LRDP EIR will evaluate whether possible water demand increases would exceed available or planned entitlements or capacity; the environmental impacts of new, expanded, or altered facilities, if any are required to meet the increased demand, would also be evaluated in the EIR.		
e) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?		
See above. The LRDP EIR will evaluate whether projected w population would exceed available or planned entitlements or environmental impacts of new, expanded, or altered facilities,	capacity. The LRDP EIR wil	l also examine the
f) Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?		
LRDP-related on-site construction and personnel increases would be encouraged within existing developed areas, which may entail demolition of obsolete structures. This increased waste stream—from both increased operations and construction/demolition—would be partially offset by LBNL's aggressive approach to integrated recycling and reuse and overall solid waste stream reduction. Implementation of the proposed 2004 LRDP could result in an increase in LBNL's solid waste generation, including debris from construction activities. The LRDP EIR will evaluate whether existing landfill capacity is sufficient to accommodate growth under the 2004 LRDP.		
g) Comply with applicable federal, state, and local statutes and regulations related to solid waste?		
The LRDP EIR will evaluate the impact of implementation of applicable statutes and regulations related to solid waste.	the 2004 LRDP on Berkeley	Lab compliance with
17. MANDATORY FINDINGS OF SIGNIFICANCE		
a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?		

	Will be Analyzed in EIR	No Additional Analysis Required
As indicated above, implementation of the 2004 LRDP has the potential to result in significant impacts that could degrade the quality of the environment. The LRDP EIR will evaluate the potential for the 2004 LRDP to result in significant impacts that could degrade the quality of the environment, reduce habitat for a fish or wildlife species, cause a fish or wildlife population to drop below self sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal, or eliminate important examples of the major periods of California history or prehistory.		
b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?		
UC Berkeley is preparing a new LRDP to accommodate a projected enrollment increase. The City of Berkeley has updated its general plan and anticipates new growth and development. Those programs, among other programs and projects, and the proposed growth under a new 2004 LRDP could contribute to a range of cumulative impacts in the area. The LRDP EIR will evaluate whether impacts associated with growth under the 2004 LRDP, in combination with past, current, and reasonably foreseeable future projects, have the potential to be cumulatively considerable.		
c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?		
As discussed in the checklist sections above, the proposed 2004 LRDP will have the potential to result in significant impacts. The LRDP EIR will evaluate if these impacts have the potential to result in substantial adverse effects on human beings, either directly or indirectly.		
18. Fish and Game Determination Based on the information above, there is no evidence that the I	Project has a notantial for a ch	ange that would

based on the information above, there is no evidence that the Project has a potential for a change that would
adversely affect wildlife resources or the habitat upon which the wildlife depends. The presumption of adverse effect
set forth in 14 CCR 753.5 (d) has been rebutted by substantial evidence.
N (C (C) C C C C

Yes (Certificate of Fee Exemption)
No (Pay fee)

One Cyclotron Road, MS 90K Berkeley, California 94720 October 31, 2003

State of California
Office of Planning and Research
1400 Tenth Street
Sacramento, California 95814

ERRATA SHEET

For:

REVISED NOTICE OF PREPARATION DRAFT ENVIRONMENTAL IMPACT REPORT

Project Title: LBNL 2004 Long Range Development Plan Project Location: Lawrence Berkeley National Laboratory

County: Alameda County, California

SCH#: 2000102046

On October 28, 2003, Lawrence Berkeley National Laboratory (LBNL) submitted to the State Clearinghouse a revised Notice of Preparation (NOP) for the above project. The NOP includes two numerical errors that overstate elements of the projected growth of LBNL under the proposed project. The following replacement text is provided to correct those errors or to otherwise clarify the text (text to be changed is underlined):

1. On Revised NOP page 7, the text currently reads:

This forecasted population would represent an increase of approximately $\underline{30}\%$ over the current LBNL population and approximately $\underline{25}\%$ over the 1987 LRDP population projection of 4,750.

This text is hereby amended to read:

This forecasted population would represent an increase of approximately <u>28</u>% over the current LBNL population and approximately <u>16</u>% over the 1987 LRDP population projection of 4,750.

2. On Revised NOP page 8, the text currently reads:

Implementation of the 2004 LRDP would increase the Lab's main Hill site total building area to 2,980,000 gsf.

This text is hereby amended to read:

Implementation of the 2004 LRDP would increase the Lab's main Hill site total building area to approximately 2,560,000 gsf.

LBNL appreciates your interest in this project and welcomes your comments on the NOP by November 26, 2003 to:

Jeff Philliber Environmental Planning Group Coordinator Lawrence Berkeley National Laboratory One Cyclotron Road, MS 90K Berkeley, CA 94720

Or by e-mail to: LRDP-EIR@lbl.gov

Sincerely,

Laura Chen, Chief LBNL Facilities Planning

LBNL Regional Location

LBNL Local Location

LBNL Site

Figure 1: Regional, Local, and Site Location Maps

