

User Guide
Updated September 13, 2010

A service of the University of California Curation Center of the California Digital Library

http://www.cdlib.org/uc3

Contents:

 About Merritt

 Adding Objects

 Retrieving Objects

 Merritt and Metadata

 Using a Manifest

 Editing Objects

 Glossary

 Sample Data

1 Questions? Contact uc3@ucop.edu

About Merritt

Merritt is a new cost-effective service that provides the UC community with an easy to use tool to manage, archive, and share their content.
Merritt provides significant features for valuable digital objects:

 permanent storage

 access via persistent URLs

 tools for long-term management

 easy-to-use interface for deposit and updates

Take control of your content and provide access how and when you want
Merritt enables campus constituencies to have direct control over the management, curation, access, and preservation of the information
resources underpinning their scholarly activities.

Share research with others
UC researchers have datasets that they would like to share within and across disciplinary communities. Merritt users can share content via
persistent URLs.

Meet the data sharing and preservation requirements of a grant-funded project
Increasingly researchers are required by funding agencies to preserve and share data (such as observational data, experimental results,
and code books) as a condition of a grant. Merritt can be used to manage, share, and preserve the research outputs of a grant.

Provide long-term preservation
The UC community holds valuable and unique collections in their libraries, museums, and archives (e.g. specimens, oral history
recordings, or photographs) that they would like to make available online and preserve for future use. Merritt provides a trustworthy and
dependable environment for the long-term management of these valuable materials.

Why use Merritt?

Frequently Asked Questions

What kind of content
can be put in Merritt?

Content from all disciplines (sciences, humanities, social sciences) can be deposited in Merritt, including images, videos,
datasets, texts, and more.

Who can use
Merritt?

Merritt is available to the UC community.

What are the ways to
use Merritt?

Merritt is available in two ways: 1) via an API (machine to machine programming interface) or 2) a user interface. Either
method provides access to all of Merritt�s functions.

What does it cost to
use Merritt?

The UC Curation Center provides digital library services to the University of California. UC departments and organizations are
charged only for the storage used.

Who provides
support for Merritt?

Merritt was developed and is supported by the UC Curation Center (UC3).

What is the UC
Curation Center?

UC3 is a creative partnership bringing together the expertise and resources of the California Digital Library (CDL), the ten UC
campuses, and the broader international curation community. See http://www.cdlib.org/ uc3.

What is the technical
infrastructure behind
Merritt?

The Merritt infrastructure, based on the micro-services concept, was developed by UC3 in consultation with the UC libraries
and the international curation community. The infrastructure enables enhanced responsiveness to the ever increasing number,
size, and diversity of content, partners, and stakeholder expectations, while simultaneously accommodating an ever changing
technical environment. See http://www.cdlib.org/uc3/curation for more information.

Why is it called
Merritt?

Merritt refers to Lake Merritt, near the CDL offices in Oakland. Among other noteworthy attributes, Lake Merritt was the first
official wildlife refuge in the United States, and is also a National Historic Landmark.

2 Questions? Contact uc3@ucop.edu

Adding Objects

The Add Object screen allows you to submit digital objects one-by-one or in batches. Single objects can be uploaded directly
from your local drive. Batches must be submitted via a manifest file, which you prepare and upload from your local drive.

The following is a brief description of the options for adding objects. For any option involving a manifest, consult the detailed
Using a Manifest guide.

Upload a single file from a local drive.

Upload a .zip or .tar file from your local drive. This container file may contain any number of
component files or associated metadata files for a single object.

As an alternative to wrapping a multi-file object in a .zip or .tar file, you can also create
a .checkm format text manifest to upload the object. You will need to post all component files
for the object on a web server, then upload a manifest file that points to the object
components. This option allows you to provide and validate checksum information for each file
in an object. Details are provided in the Using a Manifest guide.

Use this option when you have a long list of simple, one –file objects to add. You can provide
metadata for each object in the manifest.

Use this option when you have many complex objects to add and you have enclosed each
object in a .zip or .tar file.

Use this option if you have prepared object manifests for a large number of objects.

Single object: file

Single object: container

Single object: manifest

Batch: of files

Batch: of containers

Batch: of object
manifests

3 Questions? Contact uc3@ucop.edu

When you add an object you will receive a confirmation screen with a batch ID number. This screen confirms that the object
has been submitted, but does not yet confirm that the object has been successfully ingested. Merritt takes a number of steps
(such as fixity checking) before an object is ingested. In most cases it will take a couple of minutes before the object will be
retrieved from a search and displayed.

You will receive an email with a confirmation when the object has either succeeded or failed the ingest process. Any error
details will be provided in the email message; you can contact uc3@ucop.edu if you have any questions.

Merritt allows you to provide title, creator, date and local identifier metadata either by filling out the Optional Description form,
by providing metadata in a manifest file, or by submitting an mrt-erc.txt file with the object. The metadata you provide
becomes searchable in Merritt; we strongly recommend that you provide at least title information. Further details are in the
Merritt and Metadata guide.

4 Questions? Contact uc3@ucop.edu

Retrieving Objects

If you used the Merritt metadata options to provide a title, creator, date or local identifier, you will be able to search within the
collection for any of those terms. Terms typed in the search box will be found in any of these fields, as well as in the primary
identifier assigned by Merritt.

The Display Object screen shows the complete metadata provided by the curator as well as system-generated metadata
such as primary identifier, file size, date added (created) and date last modified.

If there are multiple versions of an object, information about the most recent version will display on the Display Object page.

If there are multiple component files for the object, up to four of them will be listed in the right sidebar. Clicking on an object file
will open the file.

If there are multiple versions of the object, a link to each version will be available in the right sidebar. The Display Version
page, which will provide links to every component file for the object.

The Download Object button on the Display Object page will download a .zip file including every version of the object.

The Display Version screen provides links to each component file you supplied for the object, along with system-derived
metadata.

5 Questions? Contact uc3@ucop.edu

The Display Version screen also provides access to the files that Merritt generates to facilitate object management.

The Download Version button will provide you with a .zip file of the version you are viewing. The download will include the
system files Merritt generated.

6 Questions? Contact uc3@ucop.edu

Merritt and Metadata

We strongly recommend that descriptive metadata accompany each digital object. Metadata are critical to managing digital
collections and providing meaningful reports. We are aware that you most likely have descriptive metadata about each object,
stored in MARC, MODS, METS, or some other format. If you have metadata records, we will store and preserve them as part
of the digital object. To preserve metadata records with a digital object, we recommend that you create a container file (.zip
or .tar) include all object component files as well as the metadata files and submit the container file to Merritt.

Merritt also enables you to use metadata to discover and manage content in the repository. You can provide information about
title, creator (author), date and local identifier either by typing in metadata on the Add Object form, by using a batch manifest,
or by submitting a mrt-erc.txt file with the object. This guide will help you choose the best approach. Note that elements
contained within associated metadata files such as METS or MARC will be preserved but not searchable. If these files contain
title or author information, you will also need to provide that data via the Add Object form, a manifest or an mrt-erc.txt file.

Merritt uses Dublin Core Kernel Metadata, also expressed as Electronic Resource Citations (ERCs), to provide access to
content. These four elements can have different names depending on the means of submission:

Not only are all of these elements searchable in Merritt, but the local identifier element can be used to edit content. (If you
have a large number of objects to edit, you can submit a batch manifest that specifies the local identifiers of the objects to be
edited along with the revised content - see Editing Objects for details.) At this time these elements are not repeatable.

The Metadata Elements

ERC (mrt-erc.txt file) Dublin Core Add Object Screen Manifest File

Who DC.creator creator creator

What DC.title title title

When DC.date date date

Where identifier Local Identifier localIdentifier

Metadata Submission Options

7 Questions? Contact uc3@ucop.edu

The Electronic Resource Citation specification is meant to be lightweight and easy-to-supply and provides easy-to-read,
meaningful information about the object. We'll use the ERC metadata you supply in reports about your digital objects and
collections. For further details, see the Electronic Resource Citation Specification at:
http://dublincore.org/kernelwiki/FrontPage?action=AttachFile&do=get&target=ercspec.html

.

Sample ERC file:

erc:
who: (:unkn) unknown
what: Jazz for the bears
when: 1920-1932
where: 2001697390

If you are using the ERC method, be sure to name the file mrt-erc.txt and either include it in a container file with the object or
reference it in an object manifest file.

The ERC format

8 Questions? Contact uc3@ucop.edu

Using a Manifest to Submit Objects to Merritt

There are a variety of ways to submit digital objects to Merritt; the method you choose will depend on the nature of the digital
objects and how many objects you have to submit. One option is to use a manifest to add either complex objects consisting of
many files or a large batch of objects. A manifest is a simple pipe-delimited text file containing basic information about the files
being submitted; just post the objects to a web server and use the Add Object page to submit the manifest that points to
them.

CDL has created Excel macros that will transform an Excel worksheet into a properly formatted checkm manifest file. The
http://merritt.cdlib.org/docs/merrittManifest.xls file contains the macros for generating a manifest as well as worksheets with
sample data.

This guide will show you how to prepare manifest files to submit objects to Merritt, either individually or in batches. The guide
assumes that you are using MS Excel 2007 to record information about the objects you're submitting, and running a macro to
produce a manifest.

You can also use a text editor to create manifest files if you prefer; details are included in the Tips for Creating Text-based
Manifests section of this guide.

Why Use a Manifest?

9 Questions? Contact uc3@ucop.edu

For a single object: In most cases it will be easiest to submit single objects via the Merritt user interface rather than using an
object manifest. There are two reasons you might prefer to use an object manifest to submit a single object to Merritt:

1. You have checksum values for every file in a complex object, and you would like each file-level checksum to be
verified by Merritt upon ingest.

2. You have a complex object consisting of many files, but do not have access to a utility to create a .zip or .tar container
file.

For a batch of objects: If you have a large number of objects to submit, it may be more efficient to use a batch manifest. If
each object consists of many files, you can create container (.zip or .tar) files for each object, post those container files to a
web server, then create a batch manifest with URLs for the container files. You will also be able to supply metadata about
each object in the batch manifest.

A batch manifest will be an especially good option if you already have information about the objects available in a spreadsheet
format, or can easily export a spreadsheet report from another system.

You can also submit a batch manifest that points to object manifests for complex objects. This is a good option if you have in-
house scripting expertise and a way to derive object metadata. This is also the option to choose if you have checksum values
for every individual component file of every object, and you want Merritt to validate each checksum upon ingest.

The merrittManifest.xls Excel file contains four macros that allow you to create manifests for individual objects and batches
of single files, container files or manifest files. This spreadsheet also includes sample worksheets showing the information
needed for the batch and object manifests.

When you open the merrittManifest.xls file, you may see a security warning to let you know that the file contains macros, and
that they have been disabled. Click Options, select enable this content, then click OK.

You can use this excel file directly and simply create a new worksheet for each object or each batch. It's important that each
worksheet includes exactly the same columns in exactly the same order, so you may want to copy and paste the column
headings from a sample worksheet into your own worksheet. (If you are only entering the bare minimum elements, you will still
need headers for the columns you don't use). Note that the macro will ignore any text that is bold, so the header row must be
in bold, and no other text should be bold. The headings for required columns are highlighted in orange.

The Excel Macro

10 Questions? Contact uc3@ucop.edu

1. Place the object file(s) on a web server.

2. Download the merrittManifest.xls file

3. Create a new worksheet for the object manifest. There can be only one object per object manifest.

4. Provide a URL and file name for each file in the object. You may optionally provide checksum and file size information;
object manifest section of this guide for details.

5. Choose View > Macros > View Macros > ThisWorkbook.CreateObjectManifest > Run

6. Name your object manifest file. A file extension of .checkm will automatically be added to the file.

7. Login to Merritt. If you work with multiple collections, choose the collection this object will be submitted to.

8. Choose Add Object.

9. Select the Single object : Manifest radio button, and browse to select the object manifest you just created.

10. You will receive an email to acknowledge that the object submission has been received. You will receive another email
to tell you whether the object was added successfully or not.

1. If your digital objects are composed of many files, create a container (.zip or .tar) file for each object.

2. Place the container files on a web server.

3. Download the merrittManifest.xls file.

4. Create a new worksheet for your batch manifest.

5. Provide a URL and file name for each container file in the batch. Provide any optional metadata (details in The Batch
Manifest section).

6. Choose View > Macros > View Macros > ThisWorkbook.BatchOfContainerFiles > Run.

7. Name your batch manifest file. A file extension of .checkm will automatically be added to the file.

8. Login to Merritt. If you work with multiple collections, choose the collection this batch will be submitted to.

9. Choose Add Object.

10. Select the Batch of containers radio button, and browse to select the batch manifest you just created.

11. You will receive an email to acknowledge that the batch submission has been received. You will receive another email
to tell you whether the object was added successfully or not.

1. Place the files on a web server.

2. Download the merrittManifest.xls file.

3. Create a new worksheet for your batch manifest.

4. Provide a URL and file name for each file in the batch. Provide any optional metadata (details in The Batch Manifest
section).

5. Choose View > Macros > View Macros > ThisWorkbook.BatchOfSingleFiles > Run.

6. Name your batch manifest file. A file extension of .checkm will automatically be added to the file.

7. Login to Merritt. If you work with multiple collections, choose the collection this batch will be submitted to.

8. Choose Add Object.

9. Select the Batch of files radio button, and browse to select the batch manifest you just created.

10. You will receive an email to acknowledge that the batch submission has been received. You will receive another email
to tell you whether the object was added successfully or not.

Workflow: A Single Object

Workflow: A Batch of Container Files

Workflow: A Batch of Single Files

Workflow: A Batch of Object Manifest Files

11 Questions? Contact uc3@ucop.edu

1. Place the object files on a web server.

2. Download the merrittMacro.xls file.

3. Create a new worksheet for each object manifest. There can be only one object per object manifest.

4. Provide a URL and file name for each file in the object. You may optionally provide checksum and file size information;
see the Object Manifest section for details.

5. Choose View > Macros > View Macros > ThisWorkbook.CreateObjectManifest > Run.

6. Name your object manifest file. A file extension of .checkm will automatically be added to the file.

7. Post each resulting object manifest to a web server.

8. Create a new worksheet for your batch manifest.

9. Provide a URL and file name for each object manifest you created. Provide any optional metadata (details in The
Batch Manifest section).

10. Choose View > Macros > View Macros > ThisWorkbook.BatchOfManifestFiles > Run.

11. Name your batch manifest file. A file extension of .checkm will automatically be added to the file.

12. Login to Merritt. If you work with multiple collections, choose the collection this batch will be submitted to.

13. Choose Add Object.

14. Select the Batch of object manifests radio button, and browse to select the batch manifest you just created.

15. You will receive an email to acknowledge that the batch submission has been received. You will receive another email
when the submission has been processed. You will receive another email to tell you whether the object was added
successfully or not.

The object manifest contains a separate row for each file that is considered part of a single object. Each object worksheet or
manifest should only include information about one object. Object components can include files of metadata pertaining to the
object in any format (METS, marc etc.). The Object Manifest Specification for Merritt is available in a plain text file (to make
columns and rows more clear).

The information you can provide in an object manifest is:

fileURL | hashAlgorithm | hashValue | fileSize | filename

Only fileURL and fileName are required.

The hashAlgorithm column specifies what kind of checksum you are providing, if you have a checksum value for a
component file in the object. (Accepted checksum algorithms are: Adler-32, CRC-32, MD2, MD5,SHA-1, SHA-256, SHA-384,
and SHA-512). If you provide a hashAlgorithm, you must also provide a hashValue, and vice-versa. If provided, Merritt will
validate any checksum values provided for each file. If the value provided does not match that value that Merritt calculates, the
object submission will fail. You will be notified by email that the object was not submitted because the object did not pass a
fixity check.

The fileSize column is optional and is expressed in bytes.

There are no columns for object-level metadata such as title, creator etc. These can be supplied when you upload the manifest
by filling out the form on the Add Object screen, or by also submitting a batch manifest.

The batch manifest contains a separate row for each object, and can contain only one row for any complex, multi-file object.
Rows for complex object should point either to container (.zip or .tar) files or to object manifest files. The Batch Manifest
Specification for Merritt is available in a plain text file (to make columns and rows more clear).

The information you can provide in a batch manifest is:

fileUrl | hashAlgorithm | hashValue | fileSize | fileName | primaryIdentifier | localIdentifier | creator | title | date

The Object Manifest

Workflow: The Batch Manifest

12 Questions? Contact uc3@ucop.edu

Only fileURL and fileName are required.

The hashAlgorithm and hashValue columns refer to the checksum of whatever file is referenced in the fileUrl column. If you
provide URLs pointing to object manifest files, the hashValue would be the checksum of the object manifest itself. The
hashAlgorithm column specifies what kind of checksum you are providing, if you have a checksum value for a component file
in the object. (Accepted checksum algorithms are: Adler-32, CRC-32, MD2, MD5,SHA-1, SHA-256, SHA-384, and SHA-512).
If you provide a hashAlgorithm, you must also provide a hashValue, and vice-versa. If provided, Merritt will validate any
checksum values provided for each file. If the value provided does not match the value that Merritt calculates, the object
submission will fail. You will be notified by email that the object did not pass a fixity check.

The fileSize column is optional and is expressed in bytes.

primaryIdentifier is the identifier that Merritt uses to track the object. If you are submitting new objects, you will very likely not
have a primary identifier. Primary identifiers must be ARK format identifiers. You will generally only use this column if you are
using a manifest to edit an existing object. You will be able to see the Merritt-supplied primary identifier for any object in Merritt
when you display it.

localIdentifier is any identifier you already use to refer to the object. You can provide multiple local identifiers by separating
them with a semicolon. The contents of this column will be searchable in Merritt. You will also be able to edit the object by
referring to the local identifier in a manifest.

creator is the author or creator of the object itself. There are no format requirements for expressing named persons or entities.
Merritt will display the creator exactly as entered. This column will be searchable in Merritt.

title is the title of the object itself. Merritt will display the title exactly as entered. This column will be searchable in Merritt.

date is the publication date of the object itself. If you provide the date in a standard excel format, it will be submitted to in Web
UTC datetime format. If you enter a non-standard date format, the date will be submitted as plain text. Merritt will display the
date exactly as entered. This column will be searchable in Merritt.

 You do not have to use Excel to create a manifest file; you can also use a text editor or create a script to write manifest
files. You can use the sample batch and object manifests and simply edit the area for conveying rows of object
information.

 The contents of the manifest are listed on separate lines, with each column delimited by " | " [space] [pipe] [space].
Empty columns are indicated by a space between column delineators: " | | ". (There may be one or two blank spaces in
the column).

 The column heading text in the excel spreadsheet is slightly different than in the manifest files. The meaning and order
of the columns is the same, but the headings in the text of a manifest file will begin with either "nfo:" or "mrt:" (example:
nfo:fileUrl).

 Merritt manifests contain placeholders for two columns that do not appear in the spreadsheet described above:
nfo:fileLastModified and mrt:mimetype. These columns are not yet implemented in Merritt, but they do need to be
included in any manifest that you type by hand, with the columns left empty.

 Batch manifests must be identified as a batch of containers, batch of single files or a batch of object manifests. The
profile line of the manifest identifies the type of batch:

Batch of container files:

#%profile | http://uc3.cdlib.org/registry/ingest/manifest/mrt-container-batch-manifest

Batch of single files:

#%profile | http://uc3.cdlib.org/registry/ingest/manifest/mrt-single-file-manifest

Batch of object manifests:

#%profile | http://uc3.cdlib.org/registry/ingest/manifest/mrt-batch-manifest

Tips for Creating Text-based Manifests

13 Questions? Contact uc3@ucop.edu

 When you've finished editing a sample manifest, be sure to save it with a unique name and a ".checkm" file extension.

 In any batch manifest, empty cells up to the nfo:fileName column must be identified with " | | ". After the nfo:fileName
column, empty cells should be identified ONLY if they are followed by another cell that has a value. Examples:

 If you are using the Excel spreadsheet, any text in bold will be ignored. Make sure that all of your content is in plain
text.

 If you are using the Excel spreadsheet, and if you need to delete a row, use the [right click] [delete] approach. You
need to delete the entire row, rather than just the text in the row cells.

 If you are using either the spreadsheet or a text editor to produce a manifest, you cannot use a pipe (vertical bar)
character "|" in any of your fields. If you need a pipe character to appear anywhere in an object record, replace it with:
%7C

If you plan to create lot of Merritt manifests, you may want to create a trusted location for the merrittManifest.xls file on your
computer. This will allow you to run the macro without having to chose enable this content when you open the excel file. It will
also enable you to run the macro from other excel files as long as you have the merrittManifest.xls file open. The following
instructions are taken from Microsoft documentation for Office 2007 users (http://office.microsoft.com/en-us/excel-help/create-
remove-or-change-a-trusted-location-for-your-files-HA010031999.aspx)

1. Open MS Excel.

2. Click the Microsoft Office Button , and then click Excel Options.

3. Click Trust Center, click Trust Center Settings, and then click Trusted Locations.

4. Click Add new location. Important: We recommended that you do not make your entire Documents or My Documents
folder a trusted location; doing so increases your security risk. Create a subfolder within Documents or My Documents,
and make only that folder a trusted location.

5. In the Path box, type the name of the folder that you want to use as a trusted location, or click Browse to locate the
folder.

6. If you want to include subfolders as trusted locations, select the Subfolders of this location are also trusted check
box.

7. In the Description box, type what you want to describe the purpose of the trusted location.

8. Click OK.

9. Store the merrittManifest.xls spreadsheet in this directory.

10. When you open the merrittManifest.xls file, the macros will be accessible to any other excel file you open in the trusted
directory.

Special Considerations

Optimizing the Macro: Create a Trusted Location (Optional for PC)

14 Questions? Contact uc3@ucop.edu

Editing Objects in Merritt

If you have submitted an object to Merritt and need to edit either the object itself or the object metadata, you will need resubmit
the revised object and metadata, and specify either the local identifier or the primary identifier.

 Object metadata here refers to the four fields Merritt provides on the Add Object screen: title, creator, date and local
identifier. Changes made here will influence search results in Merritt.

 If you originally provided a local identifier for the object, you will be able to edit it by specifying that local identifier on
the Add Object screen.

 If you did not supply a local identifier, or if you are trying to edit the local identifier itself, you will need to display the
object, make a note of the primary identifier Merritt assigned to the object, and prepare a batch manifest to submit
revisions to the ojbect (steps provided below).

 Merritt will create a new object version as a result of any edits you make, including any edits to object metadata.

 If you are updating only one file in a multi-file object, be sure to provide copies of all of the unchanged files and repeat
any metadata you provided as well. If you include only the revised file, Merritt will consider that one file to constitute the
entirety of the next object version.

1. Make any changes needed to the object itself.

2. Post the object on a web server. If the object consists of more than one file, we recommend that you post it in a
container (.zip or .tar) file. If you choose to post all files of a multi-part object individually, you will also need to create
and post an object manifest.

3. Create a batch manifest for the object (even if there is only one object to edit). If the object consists of a single file, you
will use the batch of single files workflow and format. If you posted the object to a server in a container file, you will
use the batch of container files workflow and format. If you posted both a multi-part object and an object manifest file,
you will use the batch of object manifests workflow and format. (See Using a manifest).

4. Include any changes to title, creator or date metadata in the batch manifest. If there are no changes, be sure to include
the original correct values.

5. If you did not originally supply a local identifier or are trying to edit the local identifier, display the object in Merritt, make
a note of the primary identifier and include it in the batch manifest.

6. If you originally provided a correct local identifier, you will not need to provide a primary identifier, but you will need to
provide the correct local identifier again.

7. Go to the Add Object screen and add select the option for the type of batch manifest you created.

Edit with a Batch Manifest: Steps

15 Questions? Contact uc3@ucop.edu

Glossary

Digital objects can be submitted into the Merritt DPR in groups, called a batch. Batch
submissions require a manifest. For more information on manifests, see Using a manifest.

The digital objects you submit will be part of one or more collections. Depending on your login
permissions, the navigation bar will allow you to view and/or add objects to all of your
collections.

The Submission status is "completed" when all the objects have been processed for ingest.
The submission status is independent of job status. Some objects in the submission may not
have been successfully deposited in storage (with a job status of "failed") but the entire
submission would still have a submission status of "completed."

Digital objects consisting of multiple files can be packaged into a single container file using tar,
gzip or zip. Files submitted in these formats will be unpacked and the components stored (and
returned) as separate uncompressed files.

Digital objects may be simple, such as a single JPEG or TIFF image file, or complex with
multiple digital files. A digital book, for instance, may consist of a digital image file for each
page along with a text file transcription. A digital object could be each file, a page (consisting
of a set of image and text files) or the entire book, comprising hundreds or thousands of digital
files. The entire digital object would be assigned a single identifier, and stored under that
identifier in the Merritt Repository. Metadata about the object would describe the entire object.
Decisions about the scope of any digital object are left to the depositor.

See Electronic Resource Citation.

See Electronic Resource Citation.

Short, descriptive metadata about a digital object, also known as Dublin Kernel Metadata. (see
spec). These metadata will be used to manage digital objects in the repository, and in reports
about the collections, so the descriptions should be meaningful. See the Metadata Guide for
more information.

A submission will receive a status of failed if:
 A checksum was provided but could not be validated.
 The object was submitted via a manifest but no object was found at the URL provided

in the manifest.

Single files can be submitted to the repository through the user interface directly, or can be
submitted in batches using manifests. For more information on the latter option, see the
[Manifest Instructions].

Identifier. See: Submission ID, Job ID, Local ID, Primary ID

The process of submitting a digital object for storage into the Merritt DPR.

Each digital object that is submitted, whether submitted as a single object or part of a batch
submission, receives a Job ID. The Job ID is returned in the email notification, and will track
the digital object as it is deposited in the Merritt Repository.

Each object that is submitted, whether submitted as a single object or part of a batch
submission, will receive a job status that will indicate successful or failed deposit into storage.
There are four job statuses that will be reported:

 Pending: This status is assigned when the job is first deposited. The digital object is
sent to a queue awaiting deposit into storage. While waiting in the queue, the job
status will remain "pending."

 Completed: Once the object is successfully deposited in storage, the job status is
changed to "completed."

 Failed: If any problem prevents the digital object from being deposited successfully
into the storage, the job status will be "failed." There will be more information in the
"status message." Please contact UC3 for more information if you encounter this

Batch:

Collection:

Completed:

Container:

Digital object:

Description:

Dublin Kernel metadata:

Electronic Resource
Citation (ERC):

Failed:

File:

ID:

Ingest:

Job ID:

Job Status:

16 Questions? Contact uc3@ucop.edu

status.
 Deleted: Digital objects will remain in the queue until they are successfully deposited

into storage. When they are safely in storage, they will be deleted from the queue.

see Electronic Resource Citation (ERC).

Digital objects may have multiple identifiers. We will assign an ARK asprimary identifier when
we accept a submission to the Merritt repository. Your digital objects may have other
identifiers in your systems, and these "local IDs" can be included with the metadata
accompanying the digital objects. You can continue to track digital objects using these "local
IDs". See Primary ID.

A method for submitting multiple files or objects. See [Manifest Instructions] for more
information.

see User Profile

This is a basic search feature for all digital objects in the Merritt repository. In addition to the
Electronic Resource Citation metadata, this lookup will search the full-text (text, xml, pdf) of
any object in the Merritt repository.

see Manifest

We will assign an ARK as primary identifier for any digital object submitted to the Merritt
repository. These identifiers are durable, unique and in wide use. We recommend that you
update your records to include the primary identifiers for your digital objects. Digital objects will
also be retrievable using Local IDs (see Local ID).

This status is assigned when digital objects are first submitted. They are put in a queue before
being sent to storage to allow for an orderly process.

A single digital object may consist of one or more individual digital files. See Digital Object.
Single objects may be submitted to the Merritt DPR via the user interface directly, or using
manifests. See [Manifest Instructions] for more information.

See Job Status and Submission Status for more specific information.

Every submission to Merritt is assigned an identifier called a Submission ID. This ID is
returned in response to the initial submission.

The Submission Status indicates the state of the entire submission, whether a single object or
a batch submission.

Digital objects may change through corrections, improved digitization, or other reasons. These
changed versions can be resubmitted to Merritt and stored along with other versions of the
same object. Changed metadata can also be resubmitted, and changing metadata would be
considered a new version of the digital object.

Kernel Metadata:

Local ID:

Manifest:

My Profile:

Object Lookup:

Object Manifest:

Primary ID:

Queued:

Single object:

Status:

Submission ID:

Submission Status:

Version:

17 Questions? Contact uc3@ucop.edu

Sample Data

Sample data is available to use as you try out the service. In some cases samples such as manifest and erc files may be
useful as examples for formatting your own Merritt files. All of the sample files below are available as a zip file from
http://merritt.cdlib.org/samples/samples.zip

The http://merritt.cdlib.org/docs/merrittManifest.xls file that contains the macros needed to generate a manifest also contains
sample worksheets for objects and each kind of manifest. The objects referenced in those worksheets are all included in the
samples.zip file and are posted on Merritt for you to use. (If you run the macro to produce a manifest from the sample
worksheets, the sample objects are already posted on a server to add).

The jazzbears.zip file contains both a .tif image and a mrt-erc.txt file. The mrt-erc file contains the following metadata:

erc:
who: (:unkn) unknown
what: Jazz for the bears
when: 1920-1932
where: 2001697390

Submit this object as a container file to see that Merritt extracts the mrt-erc-txt metadata.

The "brain_v1" and "brain_v2" sample files will demonstrate both object versioning and will show you how different kinds of

Sample Files
Sample type File name

Single-file objects  goldenDragon.jpg
 tumbleBug.jpg
 generalDrapery.jpg

Container file objects  huskyChicken.zip (object has 3 files)
 outdoorStore.zip (object has 8 files)
 souvenirs.zip (object has 2 files)
 brain_v1.zip (object has 4 files)
 brain_v1.tar (object has 4 files)
 brain_v1.tar.gz (object has 4 files)
 brain_v2.zip (object has 5 files)
 brain_v2.tar (object has 5 files)
 brain_v2.tar.gz (object has 5 files)
 jazzbears.zip (object has 2 files)

Object manifests
(pointing to multi-file objects)

 4blocks.checkm
 bigHunt.checkm
 call911.checkm

Batch manifests  sampleBatchOfContainers.checkm
 sampleBatchOfFiles.checkm
 sampleBatchOfManifests.checkm

Using the Sample Files to Demonstrate Manifests

Using the Sample Files to Demonstrate ERC files

Using the Sample Files to Demonstrate Versioning

18 Questions? Contact uc3@ucop.edu

container files can be used to submit content to Merritt. The .tar, .zip and .tar.gz file sets are independent of one another; they
each include the same files:

 brain_398.tif

 brain_492.tif

 brain_508.tif

 brain_604.tif

v2 of the tar, gz and zip containers add another file: brain.tif

To demonstrate container formats, submit any of the files to see that they are unpacked upon ingest.

To test versioning, be sure to provide a local identifier, for version 1, then provide the same local identifier for version 2.

19 Questions? Contact uc3@ucop.edu

	user_guide_p1
	about_merritt
	add_object
	retrieve_object
	metadata_guide
	manifest_guide
	edit_objects
	glossary
	samples

