
LH
C

b-
PR

O
C

-2
00

4-
02

9
27

/0
9/

20
04

Developing LHCb Grid Software: Experiences
and Advances

I. Stokes-Rees, A. Soroko, C. Cioffi, University of Oxford, UK
A. Tsaregorodtsev, V. Garonne, CPPM, France

R. Graciani, University of Barcelona, Spain
M. Sanchez, University of Santiago de Compostela, Spain M. Frank, J. Closier, CERN

G. Kuznetsov, RAL, UK

October 18, 2004

Public Note
Issue : 1
Revision : 0
Reference : LHCb-2004-091-Offline
Created : October 12, 2004
Last modified : October 18, 2004

produced 90 TB of data and required over 400 processor years of computing power. This paper discusses the
group’s experience with developing Grid Services, interfacing to the LCG, running LHCb experiment software on
the grid, and the integration of a number of new technologies into the LHCb grid software. Our experience and
utilisation of the following core technologies will be discussed: OGSI, XML-RPC, grid services, LCG middle-ware,
and instant messaging.

page 2

Chapter 1

AHM 2004 paper: Developing LHCb
Grid Software: Experiences and
Advances

1.1 Introduction

LHCb is one of four particle physics experiments currently being developed for the Large Hadron Collider (LHC)
at CERN, the European Particle Physics Laboratory. Once operational, the LHCb detector will produce data at
a rate of 40 MB/s[19]. This data is then distributed around the world for 500 physicists at 100 sites to be able to
carry out analysis. Before this analysis of real physics data can begin simulations are required to verify aspects of
the detector design, algorithms, and theory. LHCb has worked closely with the LHC Computing Grid (LCG)[4],
which is coordinating the common computing strategy for the four LHC experiments (LHCb, Atlas, Alice, and
CMS). The LHCb computing model intends to utilise many aspects of LCG but will have, in addition, experiment
specific components.

: DIRAC Sites

: DIRAC via LCG

: DIRAC and LCG Sites

Canada

Brasil

Taiwan

USA

Figure 1.1: Sites running DIRAC. This includes a mixture of LCG sites and conventional cluster computing centres.

DIRAC (Distributed Infrastructure with Remote Agent Control) is the resulting LHCb grid computing environ-
ment. It incorporates LCG computing resources and functionality, while also, critically, allowing the integration
of non-LCG resources (see figure 1.1). This paper recounts our experience of developing DIRAC, integrating it
into the LCG grid environment, making use of existing middle-ware services and libraries, and advances from
incorporating new technology such as instant messaging into our architecture.

We will start with a description of the DIRAC architecture in section 2, outline key features and advances in
section 3, describe our experience developing and using grid software in section 4, and conclude in section 5 with

page 3

page 4

Chapter 2

2.1 Architecture

DIRAC is designed following a lightweight Agent/Service model, which emphasises a Service Oriented Architec-
ture. It provides a scalable high throughput generic grid computing environment for uncoupled or loosely coupled
long running computational tasks, requiring significant input data and producing large volumes of output data.
The basic design objectives are to support: 100,000 queued jobs; 10,000 running jobs; and 100 sites.

The architecture is divided into four areas: Services, Agents, Resources, and User Interface. The core of the
system is a set of independent, stateless, distributed Services. The services are meant to be administered centrally
and deployed on a set of high availability machines. Resources refer to the distributed storage and computing
resources available at remote sites, beyond the control of any central administration. An Agent runs on each
computing resource is monitors the resource availability, requesting jobs when possible.

The User Interface API provides access to the Services, for control, retrieval, and monitoring of jobs and files,
and has been incorporated into command line tools, GUIs, and web sites. A complete GUI interface for managing
LHCb jobs has been produced by the Ganga project[1].

The general separation between Services and Agents is that Services are stateless and reactive, whereas Agents
are stateful and proactive. The Services can be distributed across several machines, or run from a single “server”.
This allows easy replication for redundancy and load-balancing.

2.1.1 Job Management Services

Jobs are described using the text based ClassAd Job Description Language (JDL) designed by the Condor project
for use with the Condor Matchmaking scheduling system[21]. The JDL file is submitted to the Job Receiver Service
which registers the job in the Job Database and notifies the Optimiser Service. The

Optimiser Service sorts jobs into different job queues and dynamically re-prioritises queue ordering. Agents
monitor resource availability. When they detect “free slots”, they submit a job request to the Matchmaker Service,
which interrogates the various Job Queues and returns a suitable job, based on the resource’s profile. These
components are illustrated in figure 2.1.

Job Receiver

Submission

Service

Job
Database

Optimiser Queue
Queue

Queue

Optimiser

Service

Matchmaker

Notification

Agent Agent Agent

Computing Resources

Job

Figure 2.1: Core DIRAC Services

page 5

g p , p , g ,
access for files both at DIRAC computing centres and long term mass storage sites.

A Storage Element (SE) is an abstracted interface to Internet-accessible storage. It is defined entirely by a host,
a protocol, and a path. This definition is stored in the Configuration Service (see section 2.1.3), and can be used
by any Agent, Job, Service or User, either for retrieving or uploading files. Protocols currently supported by the
SE include: gridftp, bbftp, sftp, ftp, http, rfio or local disk access. The SE access API is similar to the Replica
Manager interface of the EDG project.[15]

The File Catalogue Service provides a simple interface for locating physical files from aliases and universal file
identifiers. This has made it possible to utilise two independent File Catalogues, one from the already existing
LHCb Bookkeeping Database, and another using the AliEn File Catalogue from the Alice experiment[2]. In the
recent LHCb Data Challenge they were both filled with replica information in order to provide redundancy to this
vital component of the data management system, and to allow performance comparisons to be made.

Within a running job, all outgoing data transfers are registered as Transfer Requests in a transfer database
local to each Agent. The requests contain all the necessary instructions to move a set of files in between the local
storage and any of the SEs defined in the DIRAC system. Different replication, retry, and fail-over mechanisms
exist to maximise the possibility of successfully transferring the data (see section 3.1.4). This system disconnects
the data transfer from the job execution in a manner similar to that done by Condor Stork[14]. It recognises that
data placement is a significant, but under appreciated, part of computational grid infrastructure.

2.1.3 Configuration Service

It is necessary for Services, Agents, Jobs, and Users to be able to “find” each other, and to learn about the
properties of the other components. This is a common issue in all service oriented architectures. Services also need
their own configuration mechanism. It was felt that the existing approaches, such as LDAP, UDDI[12], MDS[10],
and R-GMA[24, 6], were powerful, yet complex, and required significant infrastructure to utilise.

As such, and in keeping with the principles of simplicity and lightweight implementation, a network-enabled
categorised name/value pair system was implemented, which overloads the Python ConfigParser API and the
Microsoft Windows INI file format. Components which use the Configuration Service do so via a Local Configuration
Service (LCS). This retrieves information from a local file, from a remote service, or via a combination of the two.

This system proved to be very robust, and the multi-threaded XML-RPC server was able to handle high volumes
of concurrent requests, as illustrated in figure 2.2. The simplicity of the data format and the access API allowed
site administrators to easily edit their local configurations, and for multiple Configuration Service implementations
to be developed.

0 3 6 9 12 15 18 21 24
0

50

100

150

200

250

300

hour

re
qu

es
ts

 (
#)

Figure 2.2: XML-RPC requests per minute to the Configuration Service over a 24 hour period

page 6

or Users to query job state. This only retains information for jobs which are active in the system. Jobs which
have completed or failed are eventually cleared to the Job Accounting Service. There are three access modes to the
Monitoring Services: an API, a web-interface, and command line tools.

2.1.5 Agent

The Agent handles DIRAC jobs at a computing site by submitting them to the Local Resource Management
System (LRMS). The current system supports PBS, LSF, BQS, Sun Grid Engine, Condor, Globus, EDG/LCG,
Fork, and In-Process resource types. The job JDL is inspected by the Agent to handle staging and registering
of input or output files. The Agent monitors the progress of the job and sends status updates to the Monitoring
Service.

The design consists of a set of pluggable Agent modules. The modules are executed in sequence in a continuous
loop. Typically a site runs several agents each having its own set of modules, for example job management modules
or data management modules. This feature makes the DIRAC Agent very flexible, since new functionality can
be added easily, and sites can choose which modules they wish to have running. Further details are discussed in
section 3.1.2.

Agents can operate in a cycle-scavenging mode at the cluster level, where they only request and execute jobs
when the local resources are under-utilised. This idea comes from global computing models, such as SETI@Home,
BOINC, and distributed.net [23, 3, 7], which perform cycle-scavenging on home PCs.

page 7

Chapter 3

3.1 Key Features and Advances

This section discusses four aspects which have been key to the success of DIRAC: the pull scheduling paradigm,
lightweight modular agents, the use of instant messaging, and mechanisms to provide fault tolerance.

3.1.1 Pull Scheduling

DIRAC emphasises high throughput rather than high performance. This idea was first presented by the Condor
project[5], from which DIRAC borrows heavily in terms of philosophy for designing generic distributed compu-
tational systems[18]. It advocates immediately using computing resources as they become available, rather than
attempting global optimisations of all jobs over all resources. In the Condor approach, which we will call the
pull paradigm, computing resources request computing tasks by announcing their availability. In contrast a push
paradigm has a scheduler which monitors the state of all queues and assigns jobs to queues as it wishes.

For push scheduling to work, all the information concerning the system needs to be made available at one
place and at one time. In a large, federated, grid environment this is often impractical as information may be
unavailable, incorrect, or out of date. Even if it is available, job allocation complexity grows quadratically with
the number of jobs and resources, where every possible allocation combination must be evaluated to select an
optimal schedule. While there are efficient heuristic approaches that in practise approach an optimal solution,
such algorithms generally require complete and up to date information regarding system state, and are typically
designed to operate on homogeneous computing resources with 102 − 103 queued jobs.

As a result of this, push scheduling in a grid environment has proven to be problematic. By contrast, the DIRAC
Central Services simply maintain queues of prioritised jobs (see section 2.1.1) and allocate the highest priority job
which matches the resource’s profile. The Condor Matchmaking libraries facilitate dynamic resource definitions,
as opposed to the traditional batch system which contains queues consisting of static characteristics[21].

The previously difficult task of determining where free computing resources exist is now distributed to the
remote Agents (see section 2.1.5) which have an up to date view of their sites state. Since jobs are grouped into
queues based on common requirements, the worst case is that each Agent job request will be compared against
each queue once, where the number of queues is much less than the total number of queued jobs.

Both long matching time and the risk of job starvation can be avoided through the use of an appropriate
Optimiser to move “best fit”, “starving”, or “high-priority” jobs to the front of the appropriate queue. As reported
elsewhere[9], this allows a mixture of standard and custom scheduling algorithms.

Figure 3.1 shows the match times for jobs during LHCb DC04. 97% of the time this operation takes less than
one second even with tens of thousands of queued jobs, thousands of running jobs, and dozens of Sites requesting
jobs concurrently.

3.1.2 Lightweight Modular Agents

By providing simple abstractions of Computing Elements (CE) and Storage Elements (SE), and exposing simple
APIs to the Core Services, it was possible to implement lightweight Agents (see section 2.1.5) which can be installed
and run entirely in user-space on any Computing Resource. This allows the rapid utilisation of heterogeneous
systems in a federated manner — the most general objective of computational grids. Local site administrators
simply install a one megabyte self-contained package with all the necessary software for the DIRAC Agent.

page 8

0.05s 0.25s 0.5s 0.75s 2s 7s 30s 207s
0

mean: 0.42s

mode: 0.25s

total jobs: 59174

jo
bs

match time (s) (non−linear scale)

Figure 3.1: Match time distribution for 60,000 jobs during DC04

The configuration allows local policies on queue usage to be applied, and selection of specific Agent modules to
run. This modularity gives administrators great flexibility and control, and makes it easy to write custom modules.

The only pre-requisite is a recent version of the Python interpreter and outbound Internet connectivity, in
order to contact the DIRAC Services. This allows the agent to run under virtually any computing and network
environment, including behind firewalls and private networks utilising Network Address Translation (NAT) to
reach the Internet. Installation entirely in regular user-space mitigates the security risks present in software which
requires “root” access and system wide installation.

3.1.3 Instant Messaging for Grid Services

DIRAC has incorporated an instant messaging framework into all the components: Services, Agents, Jobs, and
User Interface. This provides reliable, asynchronous, lightweight, and high speed messaging between components.
Public demand for instant messaging has led to highly optimised packages which utilise well defined standards,
and are proven to support thousands to tens-of-thousands of simultaneous users. While these have primarily been
for person-to-person communication, it is clear that machine-to-machine and person-to-machine applications are
possible, and it is in these areas DIRAC has demonstrated a novel application of the technology.

While the DIRAC Services expose their APIs via XML-RPC, due to the simplicity, maturity, and robustness
of this protocol, the need to expose a monitoring and control channel to the transient Agents and Jobs led to the
use of instant messaging. No a priori information is available about where or when an Agent or Job will run, and
local networks often will not allow Agents or Jobs to start an XML-RPC server that is generally accessible. This
suggests a client-initiated dynamic and asynchronous communications framework is required.

Extensible Messaging and Presence Protocol (XMPP), now an IETF Internet Draft[13], is currently used in
DIRAC. This has grown out of the open-source, non-proprietary, XML based Jabber instant messaging standard.
XMPP provides standard instant messaging functionality, such as one-to-one messaging, group messaging (“chat”),
and broadcast messaging. An RPC-like mechanism exists called Information/Query, (IQ) which can be used to
expose an API to any XMPP entity. The roster mechanism facilitates automatic, real-time monitoring of XMPP
entities via their presence.

The DIRAC Services use XMPP in places where fault tolerant, asynchronous messaging is important. For
example, the Job Receiver Service uses XMPP to notify the Optimiser Service when it receives a new job. When
the Optimiser gets this message, it will then sort the new job into the appropriate queues. The IQ functionality
has the potential to allow users to retrieve real-time information about running jobs, something which is critical
for interactive tasks, or for job steering. It also greatly facilitates debugging and possible recovery of stuck jobs.

XMPP is specifically designed to have extremely lightweight clients, and gracefully handles dynamic availability
of entities, buffering all messages until an entity is available to retrieve them. By matching the XMPP IQ function-
ality to standard XMPP messages, it is possible for users with a standard XMPP client to locate and communicate
with Agents, Jobs and Services from anywhere. This has already been put to good use in DC04 for controlling
and monitoring the state of Agents.

The two main outstanding issues for the use of Instant Messaging are the security and authentication implications

page 9

and authentication. For the second, many high performance commercial XMPP servers are available, however the
freely available open source servers still demonstrate some robustness and scalability issues which have created
problems when XMPP is used heavily, for example by thousands of jobs broadcasting status updates (see section
4.1.2).

3.1.4 Fault Tolerance

In a distributed computing environment it is impossible to assume that the network, remote storage, and remote
services will constantly be available. The result is that any remote operation may fail in one of three ways: failure
to connect to the remote resource; stall during the remote operation; or, exit with a failure.

These failures often are not permanent, so a retry at a later time or to an alternate equivalent resource may be
successful and allow the parent operation to complete, albeit with a delay incurred due to the retry. In order to
cope with these failure modes the following mechanisms were used in DIRAC:

Retry Many commands retry with a time delay in order to overcome any network outages, service request satu-
ration, or service failure and restart.

Duplication Numerous services have a duplicate backup service available at all times.

Fail-Over When contacting critical services, after the retry limit is reached, a request to an alternate service is
attempted.

Caching In the Local Configuration Service, the remotely fetched data can be cached locally for future retrieval.

Watchdog Monitors components to ensure continuous availability and restart on failures.

All Services and Agents are run under the runit watchdog[20]. It ensures that the component will be restarted
if it fails, or if the machine reboots. It also has advanced process management features which limit memory
consumption and file handles, so one service cannot incapacitate an entire system. Automatic time-stamping
and rotation of log files facilitates debugging, and components can be paused, restarted, or temporarily disabled.
Furthermore, none of this requires root access.

page 10

Chapter 4

4.1 Implementation and Operational Experience

DIRAC has been developed over the past two years by a core team of two to four developers, with extensive
input, contributions, testing, and deployment feedback from the LHCb Data Management Group, and computing
centre administrators. It has aimed to bridge the computing requirements of LHCb with the capabilities available at
the collaborating computing centres, and to provide a basis for evaluating grid computing approaches, particularly
the functionality offered by the LCG environment.

4.1.1 OGSA and OGSI

The framework proposed by OGSA and specified in detail by OGSI was seen as a very positive step toward
increased interoperability between grid software components. The DIRAC team invested several months of intensive
work in developing DIRAC Services as Java GT3 components, however this was abandoned shortly before Globus
and IBM jointly announced their intent to discontinue OGSI and in its place proposed WSRF (Web Services
Resource Framework)[11].

In principal, the DIRAC team supports the idea of dynamic, stateful, transient Grid Services, as compared
to Web Services which are static and stateless. A common standard for security, lifetime, service data, and
publish/subscribe event notifications are all required, however in the end we found OGSI was unworkable for the
following reasons:

heavyweight and complex impossible to develop lightweight clients, difficult to run as a regular user, significant
infrastructure required for deploying Grid Service container

not standards compatible unable to leverage existing Web Services tools

poor documentation for installation, maintenance, debugging, development

poor implementation many bugs in GT3 and constant exceptions being thrown

Together these made it difficult to develop, debug, deploy, and maintain OGSI Grid Services. Similar experiences
were recorded by others[22]. We also investigated using a pure Python implementation of OGSI, pyGridWare,
prepared by Lawrence Berkley Laboratory (USA), but this was not sufficiently complete to be usable. While
it is understood that the more recent versions of GT3 have corrected many of the early technical problems,
the combined facts that OGSI no longer had a future, and the complexity of development under GT3 forced
development of DIRAC to return to Python and XML-RPC.

4.1.2 Data Challenge 2004

The DIRAC system has been used for the LHCb Data Challenge 2004 (DC04), held from May to July 2004.
DC04 had three goals: to validate the LHCb distributed computing model based on the combined use of LCG and
conventional computing centres; to verify LHCb physics software; and, to generate simulation data for analysis.
150,000 jobs were run, consuming over 400 processor-years of CPU power, and producing 90 terabytes of data. This
data was redistributed across the centres for both organised (i.e. planned and predictable) and chaotic analysis of
the results.

page 11

detected with the local resources.

The twenty participating sites varied enormously in size, from 20 CPU clusters shared heavily with other users
to large 500+ dedicated CPU clusters. A mailing list and weekly phone conferences allowed the DIRAC software
developers, site administrators, and data challenge managers to discuss progress and solve problems.

41 LCG.Roma.it

51 DIRAC.Santiago.es

55 DIRAC.Imperial.uk

65 LCG.Imperial.uk

76 LCG.KFKI.hu

99 LCG.PIC.es

106 DIRAC.Lyon.fr

111 DIRAC.ITEP−Moscow.ru

125 LCG.NIKHEF.nl

164 LCG.Toronto.ca
204 LCG.FZK.de

207 DIRAC.ScotGrid.uk

243 DIRAC.Bologna.it

298 LCG.CNAF.it

363 DIRAC.CERN.ch

Figure 4.1: Representative snapshot of running jobs per site during DC04. Notice a mixture of “standard” sites (prefixed
DIRAC), and sites accessed via LCG (prefixed LCG). Numbers indicate running jobs at that site.

Another 20 sites were accessed via LCG, and are discussed in section 4.1.3. In total, these 40 sites provided
more than 3000 worker nodes. At the typical level of 5000 globally queued jobs, the Matchmaker Service responded
to Agent job requests in an average of 0.42 seconds (see figure 3.1). More than 40,000 jobs were completed in the
month of May with an average duration of 23 hours, running on average at 93% load, the remaining 7% being I/O
operations. Each job produced on average 400 megabytes, which was replicated to several sites for redundancy
and to facilitate later data analysis. To date the system has produced, stored and transfered 20 terabytes of data.

At the time of writing, there have been four major outages in the DIRAC core services availability which resulted
in jobs failing, jobs stalling, or sites failing to get new jobs:

Deleted Database One of the high availability core servers, which is monitored 24 hours a day by CERN IT
staff, reached 90% of full on the local hard drive. This was due to a large and very actively used database on
the server. The IT staff intervened by stopping MySQL and deleting part of the database, resulting in the
loss of all queued jobs.

Distributed Denial of Service Early efforts to incorporate instant messaging into all aspects of DIRAC re-
sulted in very effective distributed denial of service attack on the server hosting DIRAC and the instant
messaging hub. Thousands of jobs were simultaneously sending status information, and in many cases were
(unnecessarily) sharing this information with each other, resulting in an extremely high, and unmanageable,
message volume which compromised the performance of other services running on the same server.

Network Failure CERN experienced a site wide network failure for approximately one day due to efforts re-
quired to isolate an internally compromised machine. All services were unavailable during this time, and it
was proposed that a fail-over system be prepared at an external site. This was not completed due to the
infrequency of extended total network failure at CERN and the effort required to configure and manage a
second DIRAC system.

MySQL Connection Limit MySQL has a default limit of 100 simultaneous database connections. The multi-
threaded XML-RPC Services take their DB connection handles from a connection pool local to each Service.
If the pool is emptied, the Service creates more connection handles. At a point of high load, due to the ramp
up of LCG sites in DC04, one Service repeatedly emptied its connection pool and claimed all 100 available
connections, thereby blocking all other Services from communication with the DB. Until the MySQL connec-
tion limit was increased and the Services set a pool limit, the DIRAC Services were effectively unavailable.
This occurred over the weekend and resulted in a day of lost job matching, although running jobs continued.

page 12

Experience with LCG is discussed in section 4.1.3.

The small size of DIRAC, buffering of transfer requests, use of a local job database, and independence from the
local batch system, all meant that it was possible to stop the Agent, even while jobs are still running on the site,
perform a software update, and recommence the Agent without loosing existing jobs or transfers. This greatly
facilitated rapid resolution of bugs, and was even extended to a prototype Update Agent module which would
perform automatic Agent software updates.

Data Management presented the greatest overall challenge. A number of sites experienced significant data
transfer delays or failures, resulting in transfer backlogs. Large sites would quickly fill their queues with hundreds
of jobs, producing 40 Gb of data and all finishing at approximately the same time, therefore saturating the site’s
outbound bandwidth or the target server’s inbound bandwidth. Although DIRAC supports a wide range of transfer
protocols (see section 2.1.2), difficulties in using every one of these were encountered. In particular we note the
lack of a simple user-level installation of a grid-ftp client as a major stumbling block in its acceptance. From a
global view the system has difficulty in identifying fatally failed transfers (i.e. those that will not be retried) and
transfers which are outstanding but queued. There are plans to use the XMPP interface to Agents to resolve this.
The Transfer Request mechanism performed well and eventually flushed data backlogs.

4.1.3 Integration with LCG

LCG is required to make possible the storage and processing of the vast quantities of data produced by the LHC
experiments. It will bring together hundreds of computing centres around the world and provide an aggregated
computing power equivalent to over 70,000 of today’s fastest processors. One of the broad objectives for DIRAC
is to provide a smooth transition from cluster based to grid based computing for the LHCb experiment and to
integrate LHCb computing with the LCG resources.

The following are the primary challenges LHCb has faced in trying to use LCG for DC04 and during integration
with DIRAC:

Computing power and queue normalisation Job submissions to LCG include a job duration. This only
makes sense in some sort of normalised time units (for CPU-bound jobs), however there was no good mech-
anism to do this. Some sites internally normalised their queue times, resulting in LHCb jobs running with
less time than expected. Some sites overload the processors or use Hyper-Threading, similarly throwing off
the expected execution time. This resulted in thousands of jobs being terminated by queue time limits.

Job working space LHCb jobs required 500 megabytes to 1.5 gigabytes of working space. NFS mounted job
working directories resulted in overwhelming NFS. Other sites did not provide sufficient space for LHCb jobs
to complete.

Availability of output files after failure LCG jobs run in a “sandbox” which is erased when a job completes,
is cancelled, or aborts. Output files are often required to diagnose the cause of failures, but these are not
available if the job was cancelled or aborted.

Security certificates The x509 GSI certificates do not allow sharing of job details with others within the VO.
This makes collaborative work difficult. There were also bugs found in the handling of proxy certificates
which would result in the use of almost-expired certificates and the subsequent failure of jobs.

Operating on large volumes of jobs None of the LCG tools are responsive or easy to use with large numbers
of jobs. During DC04 hundreds or thousands of jobs would be submitted to LCG each day. Monitoring and
managing these jobs was extremely difficult.

Poor job scheduling It was difficult to evenly spread DC04 jobs across the available LCG resources due to
problems with the Ranking algorithm and Estimated Response Time values. At times all jobs submitted to
LCG would end up queued at a single overloaded site.

Lack of API documentation The LCG command line tools are largely written in Python, the same language
as DIRAC. It would be preferable for DIRAC to use the same APIs as utilised in these tools, however the
lack of useful documentation made this difficult.

page 13

Chapter 5

5.1 DIRAC Future Developments

The service oriented architecture of DIRAC proved that the flexibility offered by this approach allows faster
development of an integrated distributed system. The pull paradigm Agent/Service model has scaled well with a
large and varying set of computing resources, therefore we see the future evolution of DIRAC along the lines of
the services based architecture proposed by the ARDA working group at CERN[17] and broadly followed by the
EGEE middle-ware development group[16]. This should allow DIRAC to be integrated seamlessly into the ARDA
compliant third party services, possibly filling functionality gaps, or providing alternative service implementations.
The use of two different File Catalogues in the DIRAC system is a good example of leveraging the developments
of other projects, and being able to “swap” services, provided they implement a standard interface.

DIRAC currently operates in a trusted environment, and therefore has had only a minimal emphasis on security
issues. A more comprehensive strategy is required for managing authentication and authorisation of Agents, Users,
Jobs, and Services. It is hoped that a TLS based mechanism can be put in place with encrypted and authenticated
XML-RPC calls using some combination of the GridSite project[8], and the Clarens Grid Enabled Web Services
Framework, from the CERN CMS project.

While the pull model works well for parameter sweep tasks, such as the physics simulations conducted during
DC04, it remains to be seen if individual analysis tasks, which are more chaotic by nature, and require good response
time guarantees, will operate effectively. A new class of Optimiser is planned which will allocate time-critical jobs
to high priority global queues in order that they be run in a timely fashion.

Expanded use of the XMPP instant messaging framework should allow both Jobs and Agents to expose a Service
interface, via the XMPP IQ mechanisms. This has great promise for user interactivity, and real-time monitoring
and control of Agents and Jobs.

Furthermore, with this Service interface to Agents, a peer-to-peer network of directly interacting Agents is
envisioned. This would reduce, and possibly even eventually eliminate, the reliance on the Central Services, as
Agents could dynamically load-balance by taking extra jobs from overloaded sites.

DIRAC will follow with interest the anticipated release of Web Service-Resource Framework (WSRF), the
successor to OGSI, with the hopes that the ease of use, language neutrality, tool availability, and complexity level
will make it suitable for future versions of DIRAC. Increased integration with LCG and more detailed performance
analysis of the DIRAC architecture is planned for the coming year. Finally, it is hoped that computational grids can
benefit from the maturing technologies in peer-to-peer file sharing, instant messaging, and global computing which
benefit from economies of scale. We believe a convergence and integration of these areas will provide solutions to
many outstanding issues in grid computing.

page 14

Chapter 6

Acknowledgements

We gratefully acknowledge the involvement of the LHCb Collaboration Data Management Group, and the
managers of the LHCb production sites. Help from the LCG Experiment Support Group, particularly Roberto
Santinelli and Flavia Donno, was invaluable for integrating DIRAC with LCG.

page 15

Bibliography

[1] D. Adams, P. Charpentier, U. Egede, K. Harrison, R. Jones, J. Martyniak, P. Mato, J. Moscicki, A. Soroko, and
C. Tan. The ganga user interface for physics analysis on distributed resources. In Computing in High Energy Physics
(CHEP 04), September 2004.

[2] AliEN. http://www.alien.cern.ch.
[3] BOINC. http://boinc.berkeley.edu.

[4] CERN. The LHC Computing Grid Project. http://lcg.web.cern.ch/LCG/.
[5] Condor. http://www.cs.wisc.edu/condor/.
[6] A. W. Cooke et al. Relational Grid Monitoring Architecture (R-GMA). 2003.
[7] distributed.net. http://www.distributed.net.
[8] A. T. Doyle, S. L. Lloyd, and A. McNab. Gridsite, gacl and slashgrid: Giving grid security to web and file applications.

In Proceedings of UK e-Science All Hands Conference 2002, Sept 2002.
[9] D. G. Feitelson and A. M. Weil. Utilization and Predictability in Scheduling the IBM SP2 with Backfilling. In 12th

International Parallel Processing Symposium, pages 542–546, 1998.
[10] S. Fitzgerald. Grid Information Services for Distributed Resource Sharing. In Proceedings of the 10th IEEE Inter-

national Symposium on High Performance Distributed Computing (HPDC-10’01), page 181. IEEE Computer Society,
2001.

[11] Globus and IBM. http://www.globus.org/wsrf/#announcement, January 2004.
[12] W. Hoschek. The Web Service Discovery Architecture. In Proceedings of the 2002 ACM/IEEE conference on Super-

computing, pages 1–15. IEEE Computer Society Press, 2002.
[13] IETF. Extensible Messaging and Presence Protocol. http://www.ietf.org/html.charters/xmpp-charter.html/.
[14] T. Kosar and M. Livny. Stork: Making data placement a first class citizen in the grid. In 24th IEEE International

Conference on Distributed Computing Systems (ICDCS2004), Tokyo, Japan, March 2004.
[15] P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger. Advanced Replica Management with Reptor. 5th International

Conference on Parallel Processing and Applied Mathemetics, Sept 2003.
[16] E. Laure. EGEE Middleware Architecture. In EDMS 476451. CERN, June 2004.
[17] LHC. Architectural Roadmap Towards Distributed Analysis - Final Report. Technical report, CERN, November 2003.
[18] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mechanisms for High Throughput Computing, 1997.
[19] N. Neufeld. The LHCb Online System. Nuclear Physics Proceedings Supplement, 120:105–108, 2003.
[20] G. Pape. runit Service Supervision Toolkit. http://smarden.org/runit/.
[21] R. Raman, M. Livny, and M. H. Solomon. Matchmaking: Distributed resource management for high throughput

computing. In HPDC, pages 140–, 1998.
[22] G. Rixon. http://wiki.astrogrid.org/bin/view/Astrogrid/GlobusToolkit3Problems, December 2003.
[23] SETI@Home. http://setiathome.ssl.berkeley.edu/.
[24] B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R. Wolsky, and M. Swany. A Grid Monitoring Architecture,

Jan 2002.

page 16

