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Abstract

With the advent of autonomous systems, machine
perception is a decisive safety-critical part to make
such systems become reality. However, presently
used Al-based perception does not meet the re-
quired reliability for usage in real-world systems
beyond prototypes, as for autonomous cars. In this
work, we describe the challenge of reliable per-
ception for autonomous systems. Furthermore, we
identify methods and approaches to quantify the
uncertainty of Al-based perception. Along with dy-
namic management of the safety, we show a path to
how uncertainty information can be utilized for the
perception, so that it will meet the high dependabil-
ity demands of life-critical autonomous systems.

1 Introduction

The use cases for autonomous systems have long been lim-
ited to highly controlled environments where mostly deter-
ministic algorithmic approaches were applied for perception.
This changed after deep neural networks (DNNs) proved to
be very advantageous in classification and regression tasks,
beating previously used shallow methods for recognizing pat-
terns in various fields like computer vision, speech recog-
nition, and many more. As a consequence, DNNs are now
given large responsibility in perceiving and interpreting the
environment for highly autonomous systems like self-driving
vehicles. Nevertheless, especially adversarial attacks have
shown that present confidence scores of DNNs do not cor-
respond to reliable uncertainty estimates of a prediction. In
order to ensure sufficient safety for these systems, the un-
certainty of DNNs needs to be quantified for giving reliable
confidence values over the outputs as system planning and
control functionalities of autonomous systems strongly rely
on this information. For instance, if a computer vision based
DNN responsible for detecting pedestrians is indicating high
uncertainty in predicting the presence or absence of an imme-
diate obstruction, the vehicle may follow alternative strategies
to reduce the uncertainty or take measures that the uncertainty
is not endangering its safety, e.g. by slowing down or plan-
ning other trajectories.

Unlike formal safety verification approaches, which pro-
vide safety guarantees for certain input regions, the approach

we envision encompasses developing reliable methods to cap-
ture uncertainties in deep learning through combining meth-
ods which tackle DNN confidence and to evaluate them in
simulated and real-world driving scenarios for autonomous
vehicles.

2 Related Work

Recent advances towards autonomous vehicles make heavy
use of cameras, radars, and lidars, whose outputs are then in-
terpreted by a machine learning model to perceive their sur-
roundings, e.g. detect other traffic participants, lane mark-
ings, etc. Popular DNNs for these tasks include ResNet
and DenseNet for image recognition, Faster R-CNN and
YOLOv3 for real-time object detection, and PointNet++
and VoxelNet for object detection on point clouds. How-
ever, although these networks achieve impressive results on
their respective test datasets, the question arises whether
they are sufficiently reliable for safety-critical decisions, like
autonomous vehicles [Koopman and Wagner, 2017; Frtu-
nikj and Fiirst, 2019]. Adversarial attacks show exemplary
that DNNs are vulnerable and overconfident when dealing
with out-of-distribution examples [Goodfellow et al., 2014;
Kurakin et al., 2017; Liang er al., 2017]. Efforts to take
measures against these weaknesses are subject to current re-
search [Madry et al., 2017; Papernot et al., 2016], but are not
sufficiently comprehensive to enable using DNNs in safety-
critical applications. Therefore, it is important to at least esti-
mate the uncertainty of a DNN. Some of the most promising
approaches towards dealing with and measuring uncertainty
in DNNs are discussed in detail in Section 4.1

3 Perception of Autonomous Systems

For an autonomous system’s operation in different scenarios,
many decisions rely on its perception of the environment. An
example are autonomous vehicles which must drive safely
in changing surroundings and complex situations. As Al is
capable to abstract from distinct learned scenarios to solve
present tasks, DNNs are commonly used in different stages
of sensing and interpreting a system’s environment. There is
the possibility to implement all tasks by DNNs end-fo-end or
solving single stages of the perception in a modular approach.
The latter (cf. top of Figure 1) allows utilizing deterministic
and verifiable algorithms for single tasks (e.g. depth detection



or actuating) and is currently favored from a safety perspec-
tive.

However, a major open challenge for ensuring safe behav-
ior of an autonomous system is to keep its failure rate below
unaccepted risk levels. Just as an exemplary indication, for
automotive systems’ functional safety with highest safety in-
tegrity level this is 10~? failures/hour. Unfortunately, today’s
utilized DNNs do not allow for reliable classification which
meets the high safety requirements needed for autonomous
systems. A major factor is the uncertainty of a DNNs’ output.
However, a reliable perception is an inevitable precondition
for all subsequent decisions. Traditionally, a common prac-
tice to integrate such unreliable components into dependable
systems is to encapsulate and monitor them by a so-called
safety envelope. In case of a detected fault, the untrusted
component is isolated and a verified safety path is used. For
perception such an approach is very challenging, since there
is currently no alike powerful deterministic and safe substi-
tute available. Thus, the safe backup would be to shutdown
or transit to a less automated behavior, which results in a sys-
tem which is safe but with low availability. Therefore, we
need high resilience of the system, i.e. ensuring dependabil-
ity while optimizing performance.

To achieve this, a solution for limiting the uncertainty of
Al-based perception under bounds which are acceptable for
safety-relevant applications is required. Any information on
the uncertainty of the individual perception tasks may help
to improve the supervision of an inherent unsafe Al. For
instance, derived high uncertainty of a region may trigger
a cross-validation or recheck with additional measures, like
other sensors or deterministic algorithms. Hence, in the fol-
lowing we introduce suitable approaches to quantify the un-
certainty of DNNs, which may help to pave the way towards
safe perception.

4 Taming Uncertainty of Al-based Perception
4.1 Uncertainty in Deep Neural Networks

For the context of this paper, uncertainty is defined as a state
of limited knowledge about the correctness of a predicted out-
come. In general, we can distinguished two kinds of uncer-
tainty in DNNs (cf. [Kendall and Gal, 2017]). Epistemic un-
certainty, which is also referred to as model uncertainty, ac-
counts for uncertainty in model parameters and captures the
ignorance of which model generated the collected data. This
kind of uncertainty would be zero if the model was trained
with all possible data existing which is obviously unfeasible.
Epistemic uncertainty is modeled by placing a prior distri-
bution of the weights of a model and capturing how these
weights vary given some data. Aleatoric uncertainty, which
is also referred to as data uncertainty captures the noise inher-
ent in the observations. This kind of uncertainty is modeled
by placing a distribution over the outputs of a model.

Calibration

One approach is to calibrate the outputs of a DNN’s softmax-
layer so that their prediction weights match the probabilities
of being the correct classes respectively, meaning that a class
predicted with weight p is correct p percent of the time. Large

increases in model capacity and complexity of DNNs during
the last years like rising depth, the use of more convolutional
filters, or the use of batch normalization have been identi-
fied to negatively affect model calibration [Guo et al., 2017]
which often leads to overconfident predictions. For calibrat-
ing these DNNs, [Guo et al., 2017] suggest temperature scal-
ing as straightforward method for minimizing the expected
calibration error. Even though this approach significantly
improves model calibration it still does not present a com-
plete solution to the uncertainty problem, as the networks are
calibrated relative to a dataset. Outside of this distribution
the network is not calibrated. As a result, calibration based
methods alone are not suitable for quantifying uncertainty in
DNN s for perception, as the data for testing often varies very
much from the training data. Nevertheless, calibration can be
beneficial, if very large datasets are used for training, which
are more representative for the overall data generating dis-
tribution. This can be the case in autonomous systems that
operate in more controlled environments, like logistic or pro-
duction facilities. Furthermore, the calibration of a DNNs’
predictions provide a well suited measure to evaluate other
approaches dealing with reliable uncertainty estimation.

Out-of-Distribution Detection

Another approach to tackle uncertainty is to detect out-of-
distribution (OOD) inputs by identifying data which is very
different from the training data. One way to select them is by
utilizing temperature scaling ([Guo et al., 2017]) in combina-
tion with adding controlled perturbations (cf. [Goodfellow et
al., 2014]) to the input. This is done by using a pre-trained
classifier, in order to enlarge the softmax score gap between
in- and out-of-distribution examples and apply simple thresh-
olding ([Liang er al., 2017]). However, the performance of
this method is highly depending on this pre-trained classi-
fiers. It can be problematic, if the classifier does not sep-
arate the maximum value of the predictive distribution well
enough for in- and out-of-distribution inputs. This problem
can be reduced by changing the loss function to additionally
minimize the Kullback-Leibler (KL) divergence from the pre-
dictive distribution on out-of-distribution samples to the uni-
form distribution, in order to give less confident predictions
on these points ([Lee ef al., 2017]). Nonetheless, low confi-
dent posteriors over classes could indicate uncertainty in the
prediction as a result of a high overlap region of class in an in-
distribution input (data uncertainty) or an out-of-distribution
input far from the training data (distributional uncertainty).
In order to deal with this problem, [Malinin and Gales, 2018]
present a novel framework of so called Prior Networks which
parameterize a prior distribution over predictive distributions
in order to allow data, distributional and model uncertainty
to be comprehended within a consistent interpretable frame-
work.

OOD networks can be useful for detecting adversarial
attacks or recognizing classes that are not contained in the
model, which is highly relevant regarding many safety-
critical perception tasks. Nonetheless, OOD methods often
do not provide reliable scores of the uncertainty of the
prediction itself. Rather they predict the probability of a data
point being an OOD input or not. However, the approach



using Prior Networks [Malinin and Gales, 2018] is able to
extract different kind of uncertainties in one model, which
makes this method interesting for application in perception.

Bayesian Neural Networks

Probably the most popular family of approaches to capture
uncertainty in deep learning are Bayesian Neural Networks
(BNN), which integrate uncertainties in form of probability
distributions over its weights. Unfortunately, it is intractable
to evaluate the posterior probability of a DNN analytically
due to the fact that it requires integration over all possible
model parameters. To deal with this problem, two kinds
of approaches are used: variational inference and sampling
methods. Variational inference methods try to approximate
this true posterior over the model parameters with a different
distribution from a tractable family (e.g. gaussian) by find-
ing the parameters of this distribution that minimize the KL
divergence to the true distribution. The problem with varia-
tional inference is that it has a very high bias, as we manually
choose the distribution family which the weights are drawn
from. On the other hand, sampling methods approximate the
true distribution with the average of samples drawn from it.
One way to do it is by using a Markov Chain Monte Carlo
(MCMC) algorithm, which constructs a markov chain with
the desired distribution as its equilibrium distribution. How-
ever, even though in theory MCMC would lead to a perfect
approximation of the true posterior, it requires way too much
computation for most DNNs to converge within acceptable
time.

A more recent theoretical finding provides a Bayesian in-
terpretation of the regularization technique known as dropout
[Gal and Ghahramani, 2016]. The argument is that dropout
could be used for performing variational approximation of a
BNN with a Bernoulli distribution prior from which Monte
Carlo (MC) sampling is done. In practice, this finding pro-
vides an easy way to turn a conventional DNN into a BNN by
simply applying dropout during training and testing time. It
averages over multiple forward passes through the DNN dur-
ing testing time, in order to achieve a MC approximation of
the predictive distribution. Due to its simplicity, high scal-
ability, and good generalization performance, this approach
is widely used to tackle the problem of deriving reliable un-
certainty estimation of DNNs. For instance, [Kendall et al.,
2017] used this method for capturing pixel-wise uncertainty
on the perception task of semantic segmentation. In order
to capture epistemic and aleatoric uncertainty separately in a
single model for pixel-wise semantic classification, [Kendall
and Gal, 2017] successfully use MC dropout for model un-
certainty together with placing a gaussian distribution over
the logits (i.e. values for each class label before applying the
softmax function) with their respective values as mean and
additional noise as variance for data uncertainty.

Overall, many state-of the-art BNNs utilize MC dropout to
capture uncertainty. The main reasons are that it can be im-
plemented easily in any given DNN without many changes
and the strong results achieved by this method. Furthermore,
[Gal et al., 2017] propose a new dropout variant which gives
improved calibration and performance. Nevertheless, it re-

quires many forward passes on a single input (often more than
50) to obtain a principled estimate of the predictive distribu-
tion. This is a problem for real-time perception tasks, like
vision based object detection or Lidar-data based segmenta-
tion, for which computation resources and time are limited.
But despite the slow run-time, MC dropout presents a well
suited method for dealing with uncertainty in perception tasks
that are not sensitive to performance limitations.

Deep Ensembles

Another non-Bayesian approach to quantify uncertainty uses
ensembles of DNNs for obtaining a distribution over the pre-
dictions. [Lakshminarayanan et al., 2017] adopt an ensemble
of DNNs together with adversarial training [Goodfellow et
al., 2014] to smooth the predictive distribution. The ensem-
bles are used as uniformly-weighted mixture to get the predic-
tive mean and variance associated with the prediction. This
method is actually similar to MC dropout in the sense that
both methods sample from many different models. The key
difference is that MC dropout only samples from sub-models
of the initial model which share weights. As a consequence,
Deep Ensembles (DEs) also capture model uncertainty by av-
eraging predictions over multiple models and furthermore,
due to the use of adversarial training, allows for increased
robustness to model misspecification and out-of-distribution
examples. As sampling is also involved in DEs, they share
the same weaknesses regarding run-time performance with
MC dropout. Nevertheless, DEs deliver highly competitive
results, which have been shown to be at least on par with
MC dropout. Due to simplicity and strong performance,DEs
provide an auspicious approach to tackle uncertainty in per-
ception tasks.

4.2 Dynamic Management of Perception
Uncertainty

The diverse advances for estimating uncertainty of DNNs
described in the previous Section 4.1 seem very promising.
Nevertheless, up to now there is no solution which is capa-
ble to enable adequate perception reliability. Therefore, we
believe that only a combination approach will be successful,
which uses different methods for deriving uncertainty infor-
mation in the various tasks of the functional perception chain
(see Figure 1). In addition to a safety envelope architecture
[Weiss et al., 2018], this will provide improved reliability of
the DNNs’ performance. However, as it is not likely that
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Figure 1: Concept overview for utilizing uncertainty information of
modular perception stages for dynamic dependability management.
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this alone will meet the high requirements of safety-critical
systems with respect to fault rates, we propose to assess the
actual risks dynamically considering the uncertainty informa-
tion and to take respective safety measures at runtime [Trapp
etal.,2018]. As example we consider the case that the uncer-
tainty of a detected obstacle is low and the expected severity
of a wrong classification is high, e.g. as an impact would be
likely. The dynamic dependability management would ini-
tialize a cross-validation of that area with an additional sensor
and algorithm, which is not subject to the same type of weak-
nesses. Additionally, by dynamically assessing and managing
the risks, environment regions can be classified and treated
differently with respect to their characteristics and impact on
the systems’s safety. For instance, a higher uncertainty of the
perception in a specific area could be acceptable, if this re-
gion is not likely to have a substantial impact on the system’s
safety, e.g. it is not in the trajectory path of the autonomous
system and it is unlikely that an object will be able to move
from this area into the driveway.

Overall, the combination of modularly estimating the un-
certainty of perception and dynamic dependability manage-
ment poses a promising solution for overcoming the chal-
lenge of unreliable perception. In the scope of our work, we
will examine several presented methods for estimating uncer-
tainty of different modules involved in the perception chain
and identify the most suitable for each case.

5 Conclusion and Future Work

Reliable perception for autonomous systems poses an open
challenge. With a comprehensive overview, we showed that
various methods capturing uncertainty in DNNs may be uti-
lized to improve confidence in Al-based perception. Overall,
we identified Prior Networks, Concrete Monte Carlo dropout,
and Deep Ensembles as the most promising approaches for
deriving reliable confidence scores. By exploiting such un-
certainty information in the different stages of an autonomous
systems’ perception, a dynamic management with the given
uncertainty becomes feasible.

In our ongoing research we develop an approach for reli-
able perception, based on the combination of systematically
deriving perception weaknesses, architectural designs, and
dynamic dependability management.
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