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Abstract

Language models may be trained on data that contain per-
sonal information, such as clinical data. Such sensitive data
must not leak for privacy reasons. This article explores
whether BERT models trained on clinical data are suscepti-
ble to training data extraction attacks.
Multiple large sets of sentences generated from the model
with top-k sampling and nucleus sampling are studied. The
sentences are examined to determine the degree to which
they contain information associating patients with their con-
ditions. The sentence sets are then compared to determine if
there is a correlation between the degree of privacy leaked and
the linguistic quality attained by each generation technique.
We find that the relationship between linguistic quality and
privacy leakage is weak and that the risk of a successful train-
ing data extraction attack on a BERT-based model is small.

1 Introduction
Modern language models have a vast number of parameters,
which is the source of their impressive capabilities. How-
ever, their size also implies many problems. Among these is
the problem of accidentally memorizing sensitive informa-
tion from their training data (Bender et al. 2021). Avoiding
memorization is especially important when training on sen-
sitive data such as electronic patient records, as these contain
sensitive information about the identity of patients. Acciden-
tal memorization of such information puts patients’ identi-
ties and other sensitive information at risk of being leaked.

This is not a purely theoretical risk. In fact, Carlini et al.
(2020) successfully mounted a training data extraction at-
tack on GPT-2. This attack produced many instances of
clearly memorized passages from the training data, contain-
ing telephone numbers, addresses, and names of actual liv-
ing persons.

Based on a methodology from Lehman et al. (2021), we
mount a training data extraction attack on the clinical BERT1

model that they release. Their results suggest that generating
sensitive data from a BERT model is difficult, especially in
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1Short for Bidirectional Encoder RepresentaTion (Devlin et al.
2019).

comparison to more generative models such as GPT-2 (Car-
lini et al. 2020). However, their samples were generated us-
ing a simple sampling technique, resulting in sentences of
low linguistic quality.

Our goal is to strengthen these results by using more ad-
vanced sampling techniques which produce higher-quality
generations. In this way, we show that the lack of sensitive
information in the generated data is not simply a result of
the linguistic qualities of the samples. We argue that BERT’s
poor performance in text generation is, from a privacy per-
spective, a feature and not a bug.

2 Language Models
The language model used in this study is a BERT model
trained by Lehman et al. (2021) using pseudonymized
MIMIC-III data. It is based on the BERT architecture (De-
vlin et al. 2019) and is a masked language model, which is
trained to correctly predict a masked token using the right
and left contexts surrounding it. BERT models are among
the latest and best-performing language models, and several
such models are being used in the health domain (Lee et al.
2019; Huang, Altosaar, and Ranganath 2020).

Given a masked token xmask in a sentence X , the objec-
tive is to learn the probability distribution over a vocabulary
V such that:

xmask = argmax
w∈V

P (w|X \ xmask) (1)

This sets masked language models apart from autoregressive
language models. These models are instead trained to predict
the next token xi+1 based solely on the previous tokens in
the sequence:

xi+1 = argmax
w∈V

P (w|x1, x2, ..., xi) (2)

3 Related Research
Modern language models are very large. For example, the
small version of BERT consists of 110 million parameters
(Devlin et al. 2019). This makes BERT and other large
model architectures vulnerable to various types of privacy
attacks. This section provides an overview of the most com-
mon attacks before focusing on the main topic of this article:
training data extraction.



3.1 Membership Inference Attacks
Shokri et al. (2017) and Nasr, Shokri, and Houmansadr
(2019) describe how membership inference attacks can be
used to reveal whether or not a data point was part of a
model’s training data. They show how this can be carried
out both in a white-box setting (where the model’s param-
eters are available) and in a black-box setting (where the
model can only be queried). They show that this attack can
successfully be used against a range of different models and
datasets. However, none of these seem to focus on unstruc-
tured natural language data.

The white-box attack described in Nasr, Shokri, and
Houmansadr (2019) shows that a model can be trained to
infer membership using the outputs of the last layer or the
gradients provided by the loss function. There are a variety
of attacks, some requiring access to a subset of the training
data, but others do not require any access to actual training
data.

Lehman et al. (2021) attack a clinical BERT model trained
on pseudonymized MIMIC-III data by adding multi-layer
perceptron and logistic regression classifiers to probe the
BERT model. They tried training the classifiers to discern
whether the model had been trained on datapoints containing
sensitive data such as name, medical conditions, and combi-
nations thereof. They were unable to recover links between
patients and their conditions using this method. On the other
hand, experiments focused on names indicate a certain de-
gree of memorization of patient names.

3.2 Unmasking Pseudonymized Training Data
If a language model M has been trained on a dataset D,
then there is a risk that the model has memorized certain
sensitive details. If this dataset is pseudonymized to create
a non-sensitive dataset D′, then an adversary with access to
M and D′ may be able to reconstruct some of the original
data from D.

Such an attack was attempted by Nakamura et al. (2020).
Sentences were selected from a clinical dataset which con-
tained a patient’s first and last names. A BERT model trained
on the non-pseudonymized dataset was then used to calcu-
late the probability of predicting the correct first and last
names in the sentences. The resulting probabilities were
small, and the authors conclude that BERT is not susceptible
to this kind of attack.

However, the probability distributions emitted by deep
neural networks are known to be inaccurate (Holtzman et al.
2020; Guo et al. 2017). Thus, estimating the risk of re-
identifying a person using these probabilities is likely to be
inaccurate.

3.3 Training Data Extraction
Attacks need not be limited to simply inferring whether or
not a datapoint was part of a model’s training data. Carlini
et al. (2020) demonstrate that it is possible to extract train-
ing data from the language model GPT-22 (Radford et al.
2019). They do this by implementing an attack that extracts

2GPT-2 is an abbreviation of Generative Pre-trained
Transformer 2.

sentences identical to sentences in the training corpus. A
number of these memorized sentences contain specific de-
tails that are very unlikely to be generated by chance.

This shows that GPT-2 and other language models can
be prone to accidentally memorizing datapoints from their
training data, which may lead to privacy leaks. Furthermore,
the aforementioned attack can be performed in a black-box
setting and does not require direct access to the weights of
the model.

However, GPT-2 is an autoregressive language model.
These models have an obvious way of generating data:
from left to right. Masked language models like BERT, on
the other hand, have no such obvious generation strategies.
Thus, autoregressive models like GPT-2 have traditionally
been preferred over masked language models like BERT
when generating text. Due to this difference, it is not obvious
if autoregressive models like GPT-2 are disproportionately
affected by this vulnerability and to what extent masked lan-
guage models share this problem.

Lehman et al. (2021) perform a related attack using the
BERT model mentioned previously. They generate a large
number of sentences and examine the degree to which they
contain information linking patients with their conditions.
Their results indicate that the degree of privacy leakage is
low.

However, the sentences are of poor linguistic quality due
to the simple sampling technique used. In the following sec-
tions, we will describe more sophisticated ways of sampling
from BERT and evaluate how these techniques impact the
level of privacy leakage and the quality of the sentences.

4 Generating Text using Masked Language
Models

Although autoregressive language models have been
favoured for text generation, recent studies have provided
strategies for generating coherent text from masked lan-
guage models as well. Wang and Cho (2019) implement and
evaluate a generation strategy based on Gibbs sampling (Ge-
man and Geman 1984), which results in reasonably coherent
outputs. Another strategy described by Ghazvininejad et al.
(2019) first predicts all masked tokens at once. It then it-
eratively refines the output by re-masking the least likely
predicted tokens. This approach is successfully applied to
machine translation.

Besides deciding which tokens to unmask, one must also
provide a method for sampling from the predicted unmasked
tokens. Wang and Cho (2019) randomly sample from all
possible tokens weighted by their predicted probabilities.
Holtzman et al. (2020) show that this can result in incoher-
ent text and instead provide a method they call nucleus sam-
pling. This sampling method only considers the subset of
tokens that constitute the bulk of the probability mass: the
nucleus. Recalling equation (1) and given a target probabil-
ity mass p, we sample from the smallest subset V ′ of tokens
w ∈ V such that:∑

w∈V ′

P (w|X \ xmask) ≥ p (3)



Nucleus sampling is shown to produce text that, according
to a variety of metrics, has similar properties to human-
produced text. They show that this strategy produces higher
quality results than other popular techniques, such as the
top-k sampling method.

This method only considers the k most likely predictions
when sampling, discarding the other less likely predictions.
Nucleus sampling is similar in that it only considers the most
likely predictions. However, nucleus sampling does not have
a fixed k. The cut-off used to control the diversity of the sam-
ples is instead determined dynamically using the parameter
p.

Lehman et al. (2021) perform a training data extraction at-
tempt by sampling from the same clinical BERT model used
in this study. They generate text by sampling from the top-
40 candidate tokens when they unmask each token. How-
ever, results from Holtzman et al. (2020) show that this is
likely to be a too strict value for k and that other sampling
configurations may lead to better results.

5 Experiments and Results
This article uses a version of MIMIC-III (Johnson et al.
2016) and a clinical BERT model trained on this corpus3.
MIMIC-III is a corpus of wide range of patient-related infor-
mation that has been anonymized. In this article, a subset of
MIMIC-III containing clinical notes and diagnoses is used.
The anonymous placeholders have been replaced with real-
istic pseudonyms, and the dataset consists of 1,247,291 clin-
ical notes related to 27,906 patients. This pseudonymized
dataset and the model trained on it were made available by
Lehman et al. (2021).

5.1 Generating Memorized Information
Techniques modeled on those described by Carlini et al.
(2020) were employed to determine whether or not the Clin-
ical BERT model is susceptible to training data extraction
attacks. A key difference, however, is how we sample from
our non-autoregressive language model.

As described in Section 4, there is no obvious way of
sampling from a masked language model. Instead, a vari-
ety of strategies are employed to extract text from the Clini-
cal BERT model. Tokens are selected using top-k sampling
(k = 1000) and nucleus sampling (p = 0.99 and p = 0.95),
as Holtzman et al. (2020) have shown these configurations
to be effective when sampling from autoregressive models.
The token to unmask is selected randomly, and each gener-
ated sequence is 100 tokens long.

50,000 samples are generated using each strategy. First,
each sequence is initialized as fully masked or using a
prompt4. In all cases, we then run a burn-in period (Johansen
2010) of 500 iterations to encourage a diverse set of outputs.
Each initialized sequence is then processed for 1,000 itera-
tions using one of the sampling methods.

3In Lehman et al. (2021) this model is referred to as Regular
Base.

4This prompt was used in 30% of the batches and was either
[CLS] mr or [CLS] ms, which was the same setup used by
Lehman et al. (2021).

We compare our results with the samples generated by
Lehman et al. (2021). Their 500,000 sentences were gener-
ated from the same model using a burn-in period of 250 iter-
ations, followed by 250 iterations using the top-k sampling
method with k = 40.

5.2 Sensitive Data in the Generated Samples
Each set of generated samples was processed in the same
manner as done by Lehman et al. (2021) to ensure com-
parability. An NER tagger (Honnibal et al. 2020) was used
to locate the few thousand sentences that contained names
(first names or last names) associated with a patient in the
pseudonymized MIMIC-III corpus. Then, every such sen-
tence was further processed to determine if it mentioned a
condition associated with the named patient. The set of con-
ditions associated with the patients was determined by pro-
cessing the clinical notes using MedCAT (Kraljevic et al.
2021) in conjunction with the ICD-9 codes assigned to each
clinical note.

Finding Conditions Some sentences with names con-
tained conditions irrelevant to the patient. Suppose most of
the patient-condition associations in the generated corpora
are false. In that case, the signal from finding a name and
a condition in the same sentence is unreliable in determin-
ing from what condition a patient suffers. The prevalence of
such false associations was measured by counting them.

Table 1 shows the results of this processing. There is a
slight increase in the proportion of sentences containing a
name and a matching condition. At the same time, the col-
umn Name + Wrong condition shows that the percentage of
sentences containing a name and a condition not associated
with a patient bearing the name is slightly larger for all sam-
pling techniques.

It is important to note that the conditions found using
MedCAT vary in their specificity. Figure 2 plots the per-
centage of all found conditions constituted by the ten most
common conditions. The top ten most common conditions
explain a majority of the found conditions. This holds for
the texts generated by Lehman et al. (2021) and us and for
the pseudonymized MIMIC-III corpus. Many of these are
very vague and general. Finding a possible link between a
name and the condition pain, for example, does not reveal
very much information.

Detecting Names Furthermore, Lehman et al. (2021)
found that their results likely contained many false positives
due to the ambiguous nature of some names. The samples
generated in this study show a similar pattern. For example,
approximately 10% of the sentences deemed to be associ-
ated with a patient and a condition were selected on the basis
of containing the name (or word) Max.

The set of names detected in the generated sentences con-
stitute a small portion of the total collection of names found
in the pseudonymized MIMIC-III corpus. Table 2 shows the
percentages of all such names detected in the sentences gen-
erated by Lehman et al. (2021) and us.

The vast majority of all names are not detected at all. This
is only partly due to the vastly larger size of the MIMIC-
III corpus. More likely, this is due to the aforementioned



Figure 1: A few examples from a clinical note that the model seems to have memorized. The name (i.e. ”Coleman”) and the
condition (e.g. ”myclonic jerking”) are highlighted in yellow and green respectively.

First name Last name Name + Condition Name + Wrong condition
Lehman et al. (2021) 0.94% 3.14% 23.53% 28.33%

k = 1000 1.04% 3.61% 24.06% 28.28%
p = 0.99 1.28% 3.76% 24.72% 28.25%
p = 0.95 1.10% 3.81% 25.51% 29.33%

Table 1: The First name and Last name columns show the proportion of sentences containing a first or last name. The Name +
Condition column shows what percentage of these sentences also contain a condition associated with a patient with that (first or
last) name. Similarly, the Name + Wrong condition shows the percentage where the condition is not associated with the patient.

Figure 2: The figure above plots the most common conditions in the texts generated by Lehman et al. (2021), our nucleus text
(p = 0.95), and MIMIC-III. The top ten conditions detected by MedCAT in each text explain a majority of all conditions. Many
of them are vague and general, like edema or pain.

Percentage of names detected
Lehman et al. (2021) 10.1%

k = 1000 3.27%
p = 0.99 4.25%
p = 0.95 2.40%

Table 2: Lehman et al. (2021) generate the largest amount of sentences (500,000 sentences), and 10.1% of the names of the
pseudonymized MIMIC-III corpus can be detected in their sentences. The largest proportion of names detected in our sentences
is the 4.25% found in the 50,000 sentences generated using a nucleus sampling method with p = 0.95.



overrepresentation of ambiguous names like Max. Many of
the names found in the sentences are not part of the MIMIC-
III corpus, and have likely been learned in the earlier pre-
training of the BERT base model.

In combination with the observation that many names are
false positives, this suggests that only a small minority of
all names are leaked. However, there are examples of likely
memorizations, and Figure 1 illustrates a such a case.

5.3 Metrics for Assessing Linguistic Quality
The quality of a given corpus of generated text is not a well-
defined property. Gatt and Krahmer (2018) list several sub-
jective and objective metrics that can be used to assess the
quality of a generated body of text. This study takes the view
that human-likeness is a good proxy for quality in the con-
text of natural language generation.

The human-likeness of the generated samples was as-
sessed by computing a series of metrics and comparing
them to a gold standard corpus of human-produced text. The
corpus used as the gold standard was the pseudonymized
MIMIC-III corpus which the clinical BERT model was
trained to model. Using a more general corpus would make
less sense in this context. This is because the clinical BERT
model is specifically trained to learn the characteristics of
clinical notes, which differ significantly from more general
forms of writing.

Similarly to Holtzman et al. (2020), we calculated the
Self-BLEU (Zhu et al. 2018) and the shape of the Zipf distri-
bution (Piantadosi 2014) - two diversity metrics - as well as
the repetitiveness of the texts - which captures the fluency5.
The quality of the generated samples is determined by com-
paring the metrics calculated from the generated samples
with those of the gold standard.

Self-BLEU is a metric of diversity that measures how sim-
ilar each sentence in a corpus is to the rest of the corpus. Zhu
et al. (2018), who first proposed the metric, calculate it by
averaging together the BLEU of every sentence compared to
the rest of the corpus.

Due to the size of our generated corpora, we calculate the
Self-BLEU slightly differently. As was done by Holtzman
et al. (2020), the Self-BLEU is calculated using a random
subset |S′| = 1, 000 of the larger corpus S:

Self-BLEU =
1

|S′|
∑
s∈S′

∑
r∈S\s BLEU(s, r)

|S| − 1
(4)

The Zipf distribution is a statistical distribution based on
Zipf’s law, which states that there is a relationship between
a word’s rank r in a frequency list of a corpus and its fre-
quency f(r):

f(r) ∝ 1

rszipf
(5)

This relationship can be used to estimate szipf , which can
then be used to compare the rank-frequency distributions of
different corpora.

5The perplexity is left out as there is no consensus on how to
calculate it for masked language models and the alternatives are
very expensive to calculate (Salazar et al. 2019).

Figure 3: Rank-frequency distribution for the human gold
standard (MIMIC-III) as well as the generated samples. The
distribution of the samples generated in Lehman et al. (2021)
have a tail of unnaturally frequent words which is absent in
the gold standard and in our more advanced generations.

5.4 Measuring the Quality of the Generated
Samples

Every collection of generated samples was analyzed to de-
termine the quality of the generations. Table 3 and Figure 3
show that the methods used in this study result in generated
samples that are closer to the MIMIC-III corpus.

The small number of repetitions that are absent in the
datasets used for comparison is the exception. The MIMIC-
III data is human-produced, so it is not surprising that it
does not contain any repetitions. The other discrepancies
are likely due to the larger number of iterations used in this
study as compared to the 500 iterations used in Lehman et al.
(2021), which leaves some masked tokens in the generated
samples.

6 Discussion
This study has given us insights into the complicated area of
protecting privacy in training data represented in language
models. One suggestion in the research community is to use
homomorphic encryption (Parmar et al. 2014; Al Badawi
et al. 2020) for the data and models. However, it seems that
using homomorphically encrypted models is currently too
complicated for users.

A more straightforward way to protect the privacy of
persons in the training data is to pseudonymize it before
training. Both Berg, Chomutare, and Dalianis (2019) and
Berg, Henriksson, and Dalianis (2020) build NER taggers
on clinical data that has been pseudonymized. They find that,
while this decreases the performance of the NER taggers, it
does so to an acceptable degree. These taggers can be used
to build automatic de-identification systems that can make
training datasets less sensitive, as shown by Dalianis and
Berg (2021). However, no such system can achieve perfect
recall. Thus, this approach is analogous to a weak form of
differential privacy where noise in the form of pseudonyms
is added to the training data.



[MASK] Repetitions bleu-4 bleu-5 szipf
MIMIC-III N/A 0% 0.399 0.298 1.05

Lehman et al. (2021) 5.54% 0% 0.251 0.116 1.39
p = 0.99 1.91e-3% 0.12% 0.433 0.253 1.22
p = 0.95 1.91e-3% 0.12% 0.485 0.306 1.26
k = 1000 5.75e-3% 0.11% 0.435 0.246 1.23

Table 3: Text quality metrics for each corpus of text. MIMIC-III is the human gold standard and the values closest to the
gold standard are bolded. The percentages describe the proportions of sentences in each corpus containing [MASK] tokens or
containing repetitions.

The clinical BERT model used in this article is trained on
clinical data, but uses a BERT model pre-trained on non-
sensitive data as its basis. This is good from a privacy per-
spective, as it means that names that are emitted when sam-
pling from the model are of uncertain origin. Detecting a
name in the output is thus a weaker signal, as the name might
simply be memorized from the first phase of training on
non-sensitive data. However, Gu et al. (2021) show that pre-
training with only medical data can yield stronger results,
suggesting that this approach may become more prevalent
in the future.

Further research into extracting training data for BERT
models trained solely on sensitive data would shed light on
the potential risks of this approach. The model in this article
is also uncased, meaning that it is only trained on lowercase
tokens. This means that it has a harder time distinguishing
entities that are normally capitalized, like names, from other
words. Investigating the impact of not lowercasing the data
would be interesting since this is a design choice that may
not be suitable for languages where the casing is important.

More robust metrics for measuring privacy leakage from
training data extraction attacks would also be of use. The
metrics used in this article and by Lehman et al. (2021)
strongly suggest that detecting a link between a patient’s
name and a condition is very difficult. A very small num-
ber of samples contain any such possible associations, and
many of these are likely to be false positives. This is both
due to the ambiguity of many of the detected names and be-
ing slightly more likely to find a condition not associated
with the named patient.

It is also unclear what risks are acceptable from a legal
perspective. Regulations such as the GDPR have strict re-
quirements to avoid risk for identification. At the same time,
the GDPR also contains language stating that ”the costs of
and the amount of time required for identification” (Euro-
pean Commission 2018) should be taken into considera-
tion when making risk assessments. Clarifications from le-
gal scholars are necessary for these and other results in the
privacy domain to be contextualized and applicable to real
applications.

7 Conclusions
The sampling methods used in this article show a significant
improvement regarding the linguistic quality of the samples,
as shown in Table 3. At the same time, Table 1 shows that the
prevalence of patients and their conditions within the gener-
ated samples is stable. This suggests that privacy leakage is

not strongly correlated with the quality of the sampling tech-
niques.

Nucleus sampling, first described as a technique for sam-
pling from the autoregressive model GPT-2 (Holtzman et al.
2020), is also shown to be an effective technique for sam-
pling from the masked language model BERT. Further re-
search into how to sample quality text from masked lan-
guage models is an interesting topic, but our research indi-
cates that advances in that direction do not have significant
privacy implications.

It cannot be ruled out that other sampling techniques, re-
gardless of their linguistic quality, may be able to extract
training data more effectively. Carlini et al. (2020) showed
that the risk of an adversary successfully extracting training
data from GPT-2 is significant. Our results, together with
those of Lehman et al. (2021), strongly suggest that the risk
of successfully sampling sensitive data from a BERT-based
model is much smaller when compared to GPT-2.
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