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Abstract

In this survey we describe the Learning with Errors (LWE) problem, discuss its properties,
its hardness, and its cryptographic applications.

1 Introduction

In recent years, the Learning with Errors (LWE) problem, introduced in [Reg05], has turned out to
be an amazingly versatile basis for cryptographic constructions. Its main claim to fame is being as
hard as worst-case lattice problems, hence rendering all cryptographic constructions based on it
secure under the assumption that worst-case lattice problems are hard. Our goal in this survey is
to present the state-of-the-art in our understanding of this problem. Although all results presented
here already appear in the literature (except for the observation in Appendix A), we tried to make
our presentation somewhat simpler than that in the original papers. For more information on
LWE and related problems, see some of the recent surveys on lattice-based cryptography [MR08,
Pei09b, Mic07, Reg06].

LWE. The LWE problem asks to recover a secret s ∈ Zn
q given a sequence of ‘approximate’

random linear equations on s. For instance, the input might be

14s1 + 15s2 + 5s3 + 2s4 ≈ 8 (mod 17)

13s1 + 14s2 + 14s3 + 6s4 ≈ 16 (mod 17)

6s1 + 10s2 + 13s3 + 1s4 ≈ 3 (mod 17)

10s1 + 4s2 + 12s3 + 16s4 ≈ 12 (mod 17)

9s1 + 5s2 + 9s3 + 6s4 ≈ 9 (mod 17)

3s1 + 6s2 + 4s3 + 5s4 ≈ 16 (mod 17)
...

6s1 + 7s2 + 16s3 + 2s4 ≈ 3 (mod 17)
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Figure 1: The error distribution with q = 113 and α = 0.05.

where each equation is correct up to some small additive error (say,±1), and our goal is to recover
s. (The answer in this case is s = (0, 13, 9, 11).)

If not for the error, finding s would be very easy: after about n equations, we can recover s in
polynomial time using Gaussian elimination. Introducing the error seems to make the problem
significantly more difficult. For instance, the Gaussian elimination algorithm takes linear combi-
nations of n equations, thereby amplifying the error to unmanageable levels, leaving essentially
no information in the resulting equations.

Let us define the problem more precisely. Fix a size parameter n ≥ 1, a modulus q ≥ 2, and
an ‘error’ probability distribution χ on Zq. Let As,χ on Zn

q ×Zq be the probability distribution
obtained by choosing a vector a ∈ Zn

q uniformly at random, choosing e ∈ Zq according to χ,
and outputting (a, 〈a, s〉+ e), where additions are performed in Zq, i.e., modulo q.1 We say that
an algorithm solves LWE with modulus q and error distribution χ if, for any s ∈ Zn

q , given an
arbitrary number of independent samples from As,χ it outputs s (with high probability). We note
that one can equivalently view LWE as the problem of decoding from random linear codes, or
as a random bounded distance decoding problem on lattices. Also, we note that the special case
q = 2 corresponds to the well-known learning parity with noise (LPN) problem. In this case the
error distribution χ can be specified by just one parameter ε > 0, namely, the probability of error
(i.e., the probability of 1).

Parameters. In all applications and throughout this survey, the error distribution χ is chosen to
be a normal distribution rounded to the nearest integer (and reduced modulo q) of standard devi-
ation αq where α > 0 is typically taken to be 1/poly(n) (see Figure 1). In fact, as we shall mention
later, it can be shown that this distribution is in some sense ‘LWE-complete’. The modulus q is
typically taken to be polynomial in n. Choosing an exponential modulus q has the disadvantage
of significantly increasing the size of the input (as a function of n), thereby making cryptographic
applications considerably less efficient, but does have the advantage that the hardness of the prob-
lem is somewhat better understood; see below for the details. The number of equations seems to

1It is usually more natural and mathematically cleaner to consider a continuous error distribution; for simplicity we
ignore this issue in this survey.
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be, for most purposes, insignificant. For instance, the known hardness results are essentially inde-
pendent of it. This can be partly explained by the fact that from a given fixed polynomial number
of equations, one can generate an arbitrary number of additional equations that are essentially
as good as new, with only a slight worsening in the error distribution. This property was shown
in [GPV08, ACPS09] (see also [Lyu05]) and will be discussed again in Section 2.

Algorithms. One naı̈ve way to solve LWE is through a maximum likelihood algorithm. Assume
for simplicity that q is polynomial and that the error distribution is normal, as above. Then, it is
not difficult to prove that after about O(n) equations, the only assignment to s that ‘approximately
satisfies’ the equations is the correct one. This can be shown by a standard argument based on
Chernoff’s bound and a union bound over all s ∈ Zn

q . This leads to an algorithm that uses only
O(n) samples, and runs in time 2O(n log n). As a corollary we obtain that LWE is ‘well-defined’ in
the sense that with high probability the solution s is unique, assuming the number of equations is
Ω(n).

Another, even more naı̈ve algorithm is the following: keep asking for LWE samples until
seeing poly(n) equations of the form s1 ≈ . . . (i.e., a pair (a, b) where a = (1, 0, . . . , 0)), at which
point we can recover the value of s1. We then repeat this for all si. The probability of seeing such an
equation is q−n, leading to an algorithm requiring 2O(n log n) equations, and with a similar running
time.

A much more interesting algorithm follows from the work of Blum, Kalai, and Wasserman
[BKW03], and requires only 2O(n) samples and time. It is based on a clever idea that allows to find a
small set S of equations (say, of size n) among 2O(n) equations, such that ∑S ai is, say, (1, 0, . . . , 0) (in
brief: partition the n coordinates into log n blocks of size n/ log n each, and construct S recursively
by finding collisions in blocks). By summing these equations we can recover the first coordinate
of s (and similarly for all other coordinates).

Somewhat surprisingly, the Blum et al. algorithm is the best known algorithm for the LWE
problem. This is closely related to the fact that the best known algorithms for lattice problems [AKS01,
MV10] require 2O(n) time. Any algorithmic improvement on LWE is likely to lead to a break-
through in lattice algorithms.

Hardness. There are several reasons to believe the LWE problem is hard. First, because the best
known algorithms for LWE run in exponential time (and even quantum algorithms don’t seem to
help). Second, because it is a natural extension of the LPN problem, which is itself an extensively
studied problem in learning theory that is widely believed to be hard. Moreover, LPN can be
formulated as the problem of decoding from random linear binary codes, hence any algorithmic
progress on LPN is likely to lead to a breakthrough in coding theory.

Third, and most importantly, because LWE is known to be hard based on certain assump-
tions regarding the worst-case hardness of standard lattice problems such as GAPSVP (the de-
cision version of the shortest vector problem) and SIVP (the shortest independent vectors prob-
lem) [Reg05, Pei09a]. More precisely, when the modulus q is exponential, hardness is based on
the standard assumption that GAPSVP is hard to approximate to within polynomial factors. For
polynomial moduli q (which is the more interesting setting for cryptographic applications), the
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hardness is based on slightly less standard (but still quite believable) assumptions. Namely, ei-
ther that GAPSVP is hard to approximate even given a ‘hint’ in the form of a short basis, or that
GAPSVP or SIVP are hard to approximate to within polynomial factors even with a quantum
computer.

We note that SIVP is in some sense harder than GAPSVP, and the fact that we have hardness
based on SIVP is crucial for establishing the hardness of the ring-LWE problem described below.
We also note that the above results require q to be somewhat large (typically, at least

√
n) and

hence do not apply to LPN, i.e., the case q = 2. Finally, we remark that the approximation factors
obtained for the worst-case lattice problems are typically of the form Õ(n/α), explaining why we
prefer to have α ≥ 1/poly(n). A further discussion of the known hardness results will be given in
Section 2.

Thanks to these strong hardness results, a reader skeptical of the hardness of LWE can view
the work in this area as attempts to find (possibly quantum) algorithms for worst-case lattice
problems (and admittedly, this was the original motivation for [Reg05]).

Variants. As we will describe in Section 3, the LWE problem can be reduced to many, apparently
easier, problems. These reductions are one of the main reason the LWE problem finds so many
applications in cryptography. Among these reductions is a search to decision reduction, showing
that it suffices to distinguish LWE samples from entirely uniform samples, and a worst-case to
average-case reduction, showing that it suffices to solve this distinguishing task for a uniform
secret s ∈ Zn

q . Both reductions are quite simple, yet extremely useful. We will also describe some
recent reductions that are somewhat less trivial.

Cryptographic applications. The LWE problem has turned out to be amazingly versatile as a
basis for cryptographic constructions, partly due to its extreme flexibility as evidenced by the
variants of LWE described above. Among other things, LWE was used as the basis of public-key
encryption schemes secure under chosen-plaintext attacks [Reg05, KTX07, PVW08]2 and chosen-
ciphertext attacks [PW08, Pei09a], oblivious transfer protocols [PVW08], identity-based encryp-
tion (IBE) schemes [GPV08, CHKP10, ABB10], various forms of leakage-resilient encryption (e.g.,
[AGV09, ACPS09, DGK+10, GKPV10]), and more. The LWE problem was also used to show hard-
ness results in learning theory [KS06]. (We note that cryptographic applications of LPN, i.e., the
case q = 2, also exist but seem to be much more limited; see, e.g., [BFKL93, HB01, Ale03, JW05,
GRS08, ACPS09].)

All the above results rely on the LWE problem; through the known hardness results, one im-
mediately obtains hardness based on worst-case lattice problems. This gives LWE-based cryp-
tography strong security guarantees not shared by most other cryptographic constructions, such
as conjectured security against quantum computers. In addition, LWE is attractive as it typically
leads to efficient implementations, involving low complexity operations (often mainly additions).

2See also [Ajt05] for a public key cryptosystem that seems to have many properties in common with the LWE-based
one in [Reg05].
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Origins. The origins of the LWE problem can be traced back to the celebrated work of Ajtai
and Dwork [AD97], which describes the first public key cryptosystem whose security is based on
worst-case lattice problems, and to the simplifications and improvements that followed it [GGH97,
Reg03] (see also [AD07]). Although the LWE problem does not appear in any of those papers, a
careful inspection of the Ajtai-Dwork construction in the simplified form given in [Reg03] reveals
that a hardness result for the LWE problem is already implicit there. We provide a few more
details on this observation in Appendix A.

This might be a good opportunity to point out that early work on the topic (including [AD97,
Reg03]) based the hardness on a not so well known lattice problem called unique-SVP, and for
a long time it was not clear whether it could be replaced with more standard lattice problems.
Recently, Peikert [Pei09a] and Lyubashevsky and Micciancio [LM09] realized that unique-SVP is
essentially equivalent to the standard lattice problem GAPSVP, leading to a considerably cleaner
picture of the area. Our presentation here incorporates this observation.

The SIS problem. The LWE problem has a ‘dual’ problem known as the SIS problem (which
stands for Small Integer Solution). In the SIS problem, we are given a sequence of vectors a1, a2, . . .
chosen uniformly from Zn

q and asked to find a subset of them (or more generally, a combination
with small coefficients) that sums to zero (modulo q). One can equivalently think of SIS as the
problem of finding short vectors in a random lattice or code. The SIS problem was introduced
in [MR04], and has its origins in the ground-breaking work of Ajtai [Ajt96], where for the first
time, a cryptographic primitive based on the worst-case hardness of lattice problems was shown.
The SIS problem is used in the construction of so-called ‘minicrypt’ primitives, such as one-way
functions [Ajt96], collision resistant hash functions [GGH96], digital signature schemes [GPV08,
CHKP10], and identification schemes [MV03, Lyu08, KTX08]; this is in contrast to LWE, whose
cryptographic applications are typically of the ‘cryptomania’ type (i.e., public-key encryption and
beyond). The hardness of the SIS problem is quite well understood [MR04]: it is known that for
any q that is at least some polynomial in n, solving the SIS problem implies a solution to standard
worst-case lattice problems such as SIVP and GAPSVP.

Ring-LWE. Cryptographic schemes based on the SIS and LWE problems tend to require rather
large key sizes, typically on the order of n2. This is because for cryptographic applications, one
typically needs to provide at least n vectors a1, . . . , an ∈ Zn

q leading to key sizes of order n2.
Reducing this to almost linear size is highly desirable from a practical point of view, and as we
shall see below, might also lead to interesting theoretical developments.

One natural way to achieve this goal (which is related to the idea underlying the heuristic
design of the NTRU cryptosystem [HPS98]) is to assume that there is some structure in the LWE
(or SIS) samples. More specifically, one kind of ‘structure’ that is often considered is the following.
Assume n is a power of two (for reasons that will be explained shortly), and assume that the a
vectors arrive in blocks of n samples a1, . . . , an ∈ Zn

q , where a1 = (a1, . . . , an) is chosen uniformly
as before, and the remaining vectors are given by ai = (ai, . . . , an,−a1, . . . ,−ai−1). Notice that
representing n vectors now requires only O(n) elements of Zq, as opposed to O(n2). Also, using
the fast Fourier transform, operations on such vectors can be significantly sped up, leading to
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cryptographic constructions that not only have smaller keys, but are also considerably faster.
Mathematically speaking, the above can be interpreted as replacing the group Zn

q with the ring
Zq[x]/〈xn + 1〉. For this reason, these structured variants are called ring-SIS and ring-LWE. Other
choices of rings are possible, but for simplicity we focus here on the one above. The requirement
that n is a power of 2 is meant to guarantee that xn + 1 is irreducible over the rationals, as otherwise
certain things start behaving badly (e.g., it is easy to see that both ring-SIS and the decision version
of ring-LWE over the somewhat more familiar ‘cyclic ring’ Zq[x]/〈xn − 1〉 are easy, and this can
be seen as a consequence of the factorization xn − 1 = (x− 1)(1 + x + · · ·+ xn−1)).

But are these special cases of SIS and LWE still hard? In the case of SIS, this was established
in a sequence of papers starting with Micciancio’s work [Mic02], which placed this study on firm
theoretical grounds, and continuing with work by Peikert and Rosen [PR06], and Lyubashevsky
and Micciancio [LM06].3 Just like the hardness results for standard SIS, these results show that
solving the ring-SIS problem implies a solution to worst-case instances of lattice problems. How-
ever, the worst-case lattice problems are restricted to the family of ideal lattices, which are lattices
that satisfy a certain symmetry requirement (for instance, that if (x1, . . . , xn) is a lattice vector, then
so is (x2, . . . , xn,−x1)). It is reasonable to conjecture that lattice problems on such lattices are still
hard; there is currently no known way to take advantage of that extra structure, and the running
time required to solve lattice problems on such lattices is the same as that for general lattices. One
caveat is that GAPSVP is actually easy on ideal lattices (due to what seems like ‘technical’ reasons);
this is why hardness results based on ideal lattices always use problems like SIVP (or the search
version of GAPSVP, called SVP, which over ideal lattice is more or less equivalent to SIVP).

Several cryptographic constructions based on the hardness of the ring-SIS problem were de-
veloped, including collision resistant hash functions [PR06, LM06, LMPR08], identification schemes
[Lyu09], and signature schemes [LM08, Lyu09]. As mentioned above, these systems typically
boast small key sizes, and extremely fast computations.

Obtaining analogous hardness results for ring-LWE turned out to be quite nontrivial, and
was only achieved very recently. Stehlé, Steinfeld, Tanaka, and Xagawa [SSTX09] showed (based
on [Reg05]) a quantum reduction from (ring-)SIS to (ring-)LWE. Although this way of establish-
ing the hardness of LWE through that of SIS seems quite elegant and attractive, the resulting
hardness unfortunately deteriorates with the number of LWE samples m and even becomes vac-
uous when m is greater than q2; in contrast, in the hardness result for standard LWE, the number
of LWE samples plays an essentially insignificant role. It is not clear if this disadvantage is an
inherent limitation of any SIS to LWE reduction.

A hardness result for ring-LWE that is independent of the number of samples was given
in [LPR10]. Instead of showing a reduction from the SIS problem, the proof in [LPR10] follows the
outline of the original LWE hardness proof of [Reg05]. We note that in order for the hardness not
to deteriorate with the number of samples, the error distribution in the LWE instances is required
to have a somewhat unusual ‘ellipsoidal’ shape. This might be an artifact of the proof, although it

3Specifically, Micciancio initiated the theoretical study of ring-SIS by proving that its inhomogeneous variant over
Zq[x]/〈xn − 1〉 is hard. Later work showed that in order to extend this result to (the homogeneous) ring-SIS, one
needs to either restrict the domain of the solutions [PR06], or switch to a different ring, such as the ring Zq[x]/〈xn + 1〉
considered in this survey [LM06].
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might also be the case that ring-LWE with the more natural spherical error is somehow easier.
It was also shown in [LPR10] that ring-LWE shares some of the nice properties of the standard

LWE problem, most notably an equivalence between the decision version and the search version.
This is particularly useful for efficient cryptographic applications, as without such an equivalence,
one is forced to rely on hard-core bit constructions, which typically damage the efficiency (or
alternatively, force us to make very strong hardness assumptions). In Section 5 we give a self-
contained description of this reduction as well as other details on the ring-LWE problem.

Open questions. Being a relatively new problem, there are still many open questions surround-
ing the LWE problem. The first is regarding the hardness of LWE. As mentioned above, the
known LWE hardness results (for the polynomial modulus case) are based on somewhat non-
standard assumptions. It would be most desirable to improve this and reach a situation similar to
the one known for the SIS problem. The bottleneck is that the lattice problem solved using LWE
is somewhat non-standard, and the only known way to reduce standard problems to it is using a
quantum reduction.

A related problem is to understand the hardness of the LPN problem. The hardness proof of
LWE does not work for small moduli. Or perhaps there is an efficient algorithm for LPN that
awaits to be discovered? Such an algorithm must make use of the small modulus.

The hardness of ring-LWE and of lattice problems on ideal lattices is still not too well under-
stood. Can we reduce lattice problems on general lattices to problems on ideal lattices (possibly
with some increase in the dimension)? Another intriguing possibility is that problems on ideal lat-
tices are easier than those on general lattices. The reductions to ring-LWE and its variants might
lead to the discovery of such algorithms.

The range of cryptographic applications of the LWE problem is already quite impressive, and
will surely continue to grow in the next few years. One open question is to give a direct construc-
tion of a family of efficient pseudorandom functions. Another outstanding question is whether
LWE (or more likely ring-LWE) can be used as the security assumption underlying the construc-
tion of a fully-homomorphic encryption scheme. The recent breakthrough construction by Gen-
try [Gen09] is not based on the LWE problem, but is instead based on quite strong assumptions on
the hardness of lattice problems and subset sum. Building a scheme based on the LWE problem
would give us more confidence in its security, and might have some other advantages, such as
higher efficiency and practicality.

One ambitious goal is to show reductions from LWE to classical problems in the literature,
akin to Feige’s work on implications of the conjectured hardness of refuting random 3SAT in-
stances [Fei02]. See Alekhnovich’s paper [Ale03] for some related work.

Outline. In the next section we describe the known hardness results for LWE. That section is
somewhat more technical than the rest of this survey and the reader might wish to skip some parts
of it on first reading. In Section 3 we describe several equivalent variants of LWE that demonstrate
its flexibility. We give an example of one very simple cryptographic application in Section 4, and
in Section 5 we discuss recent work on ring-LWE.
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2 Hardness

In this section we provide a simplified description of the LWE hardness results from [Reg05,
Pei09a].

As mentioned above, Stehlé et al. [SSTX09] recently suggested an alternative way to establish
the hardness of LWE, namely, through a quantum reduction from the SIS problem (whose hard-
ness is quite well understood). Since this reduction unfortunately leads to a qualitatively weaker
hardness result for LWE with an undesirable dependence on the number of samples m, we will
not discuss it here further. It would be interesting to see if their approach can lead to a hardness
result that is qualitatively similar to those described below.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: DΛ,2 (left) and DΛ,1 (right) for a two-dimensional lattice Λ. The z-axis represents proba-
bility.

Before presenting the LWE hardness result, we need a few very basic definitions related to
lattices and lattice problems. A lattice in Rn is defined as the set of all integer combinations of n
linearly independent vectors. This set of vectors is known as a basis of the lattice and is not unique.
The dual of a lattice Λ in Rn, denoted Λ∗, is the lattice given by the set of all vectors y ∈ Rn such
that 〈x, y〉 ∈ Z for all vectors x ∈ Λ. For instance, for any t > 0, the dual of tZn is Zn/t. We
let λ1(Λ) denote the length of the shortest nonzero vector in the lattice Λ. We define the discrete
Gaussian distribution on Λ with parameter r, denoted DΛ,r, as the distribution that assigns mass
proportional to e−π‖x/r‖2

to each point x ∈ Λ (see Figure 2). Samples from DΛ,r are lattice vectors
of norm roughly

√
nr (assuming r is not too small).

In computational problems involving lattices, lattices are always represented in terms of an
(arbitrary) basis. As a rule of thumb, ‘algebraic’ questions regarding lattices are easy, e.g., de-
ciding if a vector is contained in a lattice, computing the dual lattice, etc. Geometric questions
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are typically hard. One of the most well-known geometric questions is GAPSVPγ. Here, we are
given a lattice Λ and are asked to approximate λ1(Λ) to within a multiplicative factor of γ. The
problem is known to be NP-hard for small γ, and easy for exponential approximation factors
γ = 2O(n) [LLL82]. But our focus (and of the entire lattice-based cryptography literature) is on
polynomial approximation factors of the form nc where c is a constant that is typically at least 1.
For these approximation factors, the problem is believed not to be NP-hard, but is nevertheless
believed to be hard. For instance, the best known algorithms for it run in exponential time 2O(n),
and even quantum computers don’t seem to improve this in any way. In order to avoid unneces-
sary technicalities, we will typically ignore here the exact approximation factor (be it n, n2, etc.)
and just say that, e.g., the hardness is based on GAPSVP.

A second well-known geometric problem is SIVPγ; here we are asked to find a set of n linearly
independent vectors in a given lattice, such that the length of the longest vector in the set is at
most γ times longer than the shortest possible for any such set. All the properties of GAPSVP
mentioned above also apply to SIVP. Another problem that will appear below is the bounded
distance decoding problem (BDD); here, for some distance parameter d > 0, we are given a lattice
Λ and a point x within distance at most d of Λ, and asked to find the closest lattice vector to x.
Notice that as long as d < λ1(Λ)/2, there is a unique correct answer.

The core of the LWE hardness results is the following proposition from [Reg05], whose proof
will be given towards the end of this section.

Proposition 2.1. Let q ≥ 2 be an integer and α be a real number in (0, 1). Assume we are given access to
an oracle that solves the LWE problem with modulus q and error parameter α. Then, given as input any
lattice Λ, a large enough polynomial number of samples from the discrete Gaussian distribution DΛ∗,r for
some (not too small) r, and a point x within distance αq/(

√
2r) of Λ, we can output the (unique) closest

lattice point to x in polynomial time.

The requirement that r is not too small is very mild; the precise condition is r ≥
√

2q · ηε(Λ∗)
where η is the so-called smoothing parameter and ε is some negligible amount; for our purposes,
one can instead use the slightly stronger condition r ≥ q

√
2n/λ1(Λ), or even ignore this condition

altogether. (Notice that some kind of lower bound on r is necessary as otherwise, if r is too small,
the distribution DΛ∗,r is essentially a deterministic distribution on the origin, samples from which
can be trivially obtained. Moreover, if r <

√
2αq/λ1(Λ), the above bounded distance decoding

problem does not always have a unique solution.)
In order to understand the significance of this proposition, it is useful to contrast it with a

result from [AR04, LLM06] which says the following: given as input a lattice Λ, a large enough
polynomial number of samples from the discrete Gaussian distribution DΛ∗,r for some (not too
small) r, and a point x within distance O(

√
log n/r) of Λ, we can output the (unique) closest

lattice point to x in polynomial time. Notice that no LWE oracle is required in this algorithm. So
what the proposition shows is that using an LWE oracle, the decoding radius can be increased
from O(

√
log n/r) to αq/(

√
2r).

The above can already be interpreted as an indication that the LWE problem is hard, as it
allows us to solve a worst-case lattice problem (BDD given a hint in the form of samples from the
discrete Gaussian distribution) that we do not know how to solve otherwise. More specifically, for
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Figure 3: The quantum state.

αq = Ω(
√

n), the best algorithms we have to solve the problem require exponential time.
It would be, however, preferable to relate this problem to more standard lattice problems.

Exactly such a result was obtained by Peikert [Pei09a]. His main realization (which was made
explicit by [LM09]) is that there is a polynomial time reduction from the standard lattice problem
GAPSVP (with a poly(n) approximation factor) to BDD (to within distance λ1/poly(n)).4 This is
quite reassuring, as it tells us that as long as αq/r = λ1(Λ)/poly(n), the LWE problem is as hard
as the variant of the worst-case lattice problem GAPSVP in which we are given samples DΛ∗,r.

It would be even nicer if we could replace the somewhat unusual assumption regarding the
discrete Gaussian samples with a more familiar one. This can be done using the sampling proce-
dure of [GPV08] which roughly speaking, is able to efficiently produce such samples given a basis
of Λ∗ all of whose vectors are of length at most r. This leads to a hardness result for LWE based on
the assumption that GAPSVP is hard even given an unusually good basis for it (see [Pei09a] for
the exact statement). Alternatively, using the LLL algorithm [LLL82] we can efficiently produce
a basis of Λ∗ whose vectors are of length at most 2n/λ1(Λ); this implies that LWE for exponential
moduli q = 2O(n) is as hard as the standard worst-case lattice problem GAPSVP.

The approach originally taken in [Reg05] is different. The main additional ingredient proved
there is that for any d > 0, there is an efficient quantum reduction from the problem of sampling
from DΛ∗,

√
n/d to the problem of solving BDD on Λ to within distance d.5 The reduction is a

relatively simple quantum procedure: by using a BDD oracle, one can create a quantum state
corresponding to a periodic Gaussian distribution (see Figure 3), whose Fourier transform (which

4The basic idea of the reduction is the following. We check the BDD oracle’s ability to correctly recover lattice points
after adding to them a perturbation of norm d, for various values of d. For d < λ1/poly(n) the BDD oracle must
always succeed, by assumption. For d >

√
nλ1, one can prove that the oracle must err with noticeable probability

because there is not enough statistical information in the query to determine the original lattice point (a similar idea
was used in [GG00]). This allows us to deduce a poly(n) approximation to λ1, as desired.

5Essentially the same reduction (with an improved analysis) was used by Stehlé et al. [SSTX09] to establish their SIS
to LWE reduction.
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can be computed efficiently using the quantum Fourier transform) turns out to be exactly the
quantum state corresponding to the distribution DΛ∗,

√
n/d; the latter can be measured to produce

a sample from DΛ∗,
√

n/d, as desired.
By combining this quantum reduction with the proposition above, we can now show that

solving LWE with a polynomial modulus q implies a quantum solution to standard worst-case
lattice problems. More precisely, assume that αq ≥ 2

√
n. Start by creating a bunch of samples

from DΛ∗,r for a large r (which, as mentioned above, one can do efficiently). Now apply the
proposition to obtain a solution to BDD on Λ to within distance

√
2n/r. Next, apply the quantum

reduction to obtain a bunch of samples from DΛ∗,r/
√

2. Now repeat the above two steps using
these new samples as input, leading to samples from DΛ∗,r/2, DΛ∗,r/2

√
2, etc. After a polynomial

number of steps, we end up with samples from DΛ∗,r′ for a small r′ = poly(n)/λ1(Λ). From this
it is easy to solve GAPSVP by applying once more the first step above, and using the reduction
from GAPSVP to BDD. Alternatively, by taking about n samples from DΛ∗,r′ , we obtain a solution
to the worst-case lattice problem SIVP.

Proof of Proposition 2.1. We demonstrate the main idea of the proof with the lattice Λ = Zn.
The general argument is essentially identical, but might be confusing to those not familiar with
lattices, and is therefore omitted; see [Pei09a] for more details and [Reg05] for the full details. (The
main disadvantage of our presentation below is that the BDD problem is trivial on Zn, so one
should keep in mind that the use of Zn is just in order to clarify the main ideas.)

Assume we are given a point x close to some unknown lattice point v ∈ Zn. We will show
below how to generate samples from the LWE distribution with secret s = v mod q. Using the
LWE oracle, we can recover s, which gives us the least significant digits of v in base q. Recovering
the entire vector v can now be done using a straightforward reduction; namely, run the same
process on the point (x− s)/q (which is close to the lattice point (v− s)/q ∈ Zn) to recover the
second digits of v in base q, etc.

The core of the proof is, therefore, in producing LWE samples with secret s. This is done as
follows. Take a sample y from DZn,r (using the samples given to us as input), and output the pair

(a = y mod q, b = b〈y, x〉emod q) ∈ Zn
q ×Zq.

Since r is not too small, the distribution of a is essentially uniform over Zn
q , as required. To analyze

the second coordinate, condition on any fixed value of a, so now y is distributed according to a
discrete Gaussian distribution on the set of points qZn + a. Notice that if x = v, then b is exactly
〈a, s〉, corresponding to LWE equations with no error. In the case that x = v + e for some vector
e of norm at most αq/(

√
2r), we obtain an error term in the second coordinate of the form 〈e, y〉.

Being the inner product of a fixed vector of norm at most αq/(
√

2r) with a discrete Gaussian vector
of norm roughly r, this error term is essentially normally distributed with standard deviation at
most roughly αq, as required.

The above description hides two technical details. The first is that the error term 〈e, y〉 still has
some of the discrete structure of y; in order to get a true normal distribution, one needs to add a
small amount of extra normal noise, by taking b = b〈y, x〉+ ee mod q where e is chosen from a
continuous normal distribution. (This is why we assumed the distance of x is at most αq/(

√
2r),
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and not αq/r.) The second minor detail is that the amount of noise in the resulting LWE samples
depends on the distance of x from the lattice, i.e., the closer x is, the less noise there is in the
LWE samples. The problem with this is that our LWE oracle might only work correctly with its
specified amount of noise. Luckily, the solution is very easy: we simply add some extra noise to b
of various amounts, until we hit the right amount of noise, allowing us to recover s. (This minor
issue turns out to be much less benign in the case of ring-LWE; see Section 5 for details.)

Other implications. In addition to its role in hardness results, Proposition 2.1 has a nice impli-
cation regarding the complexity of the LWE problem [GPV08, ACPS09]: It says that from a given
small fixed polynomial number of LWE samples with secret s one can generate an arbitrary num-
ber of further LWE samples that are ‘as good as new’, i.e., LWE samples that are independently
distributed according to As,χ for a normal noise χ. This result explains why the hardness of the
LWE problem is independent of the number of samples. In a high level, this result follows easily
from the proof of Proposition 2.1; all one has to notice is that the LWE problem is itself an instance
of the BDD problem, and hence the proof above converts it into a legal instance of LWE.6

Notice that in the argument above we never used any properties of the input error distribution,
beyond it being small — the LWE samples produced by the reduction are still guaranteed to be
properly distributed, with the usual normal distribution of the error. This observation indicates
that LWE with a normal error distribution is ‘LWE-complete’: LWE instances with an arbitrary
error distribution can be reduced to LWE with a normal error distribution.

3 Variants of the Problem

We start by showing a reduction from the (search version of) LWE problem to the decision prob-
lem of distinguishing between LWE samples and samples from the uniform distribution U on
Zn

q ×Zq. Although quite simple, this reduction is extremely helpful in cryptographic applica-
tions. The proof below is taken from [Reg05], and is similar to a proof in [BFKL93].

Lemma 3.1 (Decision to Search). Let n ≥ 1 be some integer, 2 ≤ q ≤ poly(n) be a prime, and χ be
some distribution on Zq. Assume we have access to a procedure W that for all s accepts with probability
exponentially close to 1 on inputs from As,χ and rejects with probability exponentially close to 1 on inputs
from U. Then, there exists an efficient algorithm W ′ that, given samples from As,χ for some unknown s,
outputs s with probability exponentially close to 1.

Proof: Let us show how W ′ finds s1 ∈ Zq, the first coordinate of s. Finding the other coordinates
is similar. For each k ∈ Zq, consider the following transformation. Given a pair (a, b) we output
the pair (a + (r, 0, . . . , 0), b + r · k) where r ∈ Zq is chosen uniformly at random. It is easy to see
that if k = s1 then this transformation takes As,χ to itself. Moreover, if k 6= s1 then it takes As,χ

6To be precise, this would lead to LWE instances whose number of variables has grown from the original n to the
number of equations m. The proof in [GPV08, ACPS09] is slightly different and uses the observation that the BDD
instance corresponding to the input LWE instance is on a lattice that contains qZm as a sublattice, and our task is to
find which of the qn cosets of qZm contains the nearest lattice point.
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to the uniform distribution (note that this requires q to be prime). Hence, using W, we can test
whether k = s1. Since there are only q < poly(n) possibilities for s1 we can try all of them.

In [Pei09a], this lemma was extended to the case that q is a product of distinct primes, each
of which is large enough but still polynomial, under the assumption that the noise distribution is
normal. The idea is to find the value of s1 modulo each of the prime factor of q using a transforma-
tion similar to the one above. As in the above proof, if our guess is correct, the LWE distribution
is taken to itself. If, on the other hand, our guess is incorrect then, using the assumption that the
noise distribution is normal, one can prove that the resulting distribution is extremely close to
uniform.

We next show that solving the decision problem with a non-negligible probability over a uni-
form choice of secret s ∈ Zn

q suffices to solve the problem for all secrets s.

Lemma 3.2 (Average-case to Worst-case). Let n, q ≥ 1 be some integers and χ be some distribution on
Zq. Assume that we have access to a distinguisher W that distinguishes As,χ from U for a non-negligible
fraction of all possible s. Then there exists an efficient algorithm W ′ that for all s accepts with probability
exponentially close to 1 on inputs from As,χ and rejects with probability exponentially close to 1 on inputs
from U.

Proof: The proof is based on the following transformation. For any t ∈ Zn
q consider the function

ft : Zn
q ×Zq → Zn

q ×Zq defined by

ft(a, b) = (a, b + 〈a, t〉).

It is easy to see that this function transforms the distribution As,χ into As+t,χ. Moreover, it trans-
forms the uniform distribution U into itself.

The algorithm W ′ repeats the following a large enough poly(n) times. Choose a vector t ∈ Zn
q

uniformly at random, and estimate to within±1/poly(n) the acceptance probability of W, both on
U and on the distribution obtained by applying ft to our input distribution (by simply applying
W to each distribution poly(n) times). If the two estimates differ by a noticeable amount, stop and
accept. Otherwise, repeat with another t. If, no noticeable difference is ever observed, reject.

To prove correctness, observe that if the input distribution is U then for each t, both our es-
timates are of exactly the same quantity, hence (by setting parameters correctly) the probability
we accept is exponentially small. If, on the other hand, the input distribution is As,χ then with
high probability in one of our attempts we will hit a t for which W distinguishes As+t,χ from U, in
which case we’ll accept with probability exponentially close to 1.

Two recent results show further ways to modify the distribution of secrets s in the LWE prob-
lem, without compromising its hardness. The first result, shown by Applebaum, Cash, Peikert,
and Sahai [ACPS09], says that we can choose the coordinates of the secret s from the same distri-
bution as that of the noise distribution χ. (This result does not follow from the previous lemma
since χn typically has a negligible ‘mass’ under the uniform distribution.) Roughly speaking, their
proof is based on the observation that any set of n (linearly independent) approximate equations
essentially give us an approximation of s up to the noise distribution, so by subtracting that ap-
proximation from the LWE secret, we obtain an LWE instance whose secret is distributed like
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the noise distribution. More precisely, assume we are given samples from the distribution As,χ

for some arbitrary unknown s ∈ Zn
q . Take n samples from the distribution, and write them as

b̄ = ĀTs + x̄ where each coordinate of (the unknown) x̄ ∈ Zn
q is chosen independently from χ.

Assume for simplicity that Ā is invertible. (This happens with good probability; alternatively,
we can accumulate samples until we obtain an invertible matrix). Now, it is easy to check that
by replacing each sample (a, b) from As,χ with (−Ā−1a, b−

〈
Ā−1a, b̄

〉
), we obtain samples from

the distribution Ax̄,χ. Noticing that this transformation maps the uniform distribution to itself
completes the proof.

A second related result, which we will not describe in detail, was recently shown by Gold-
wasser, Kalai, Peikert, and Vaikuntanathan [GKPV10]. Their result is much more general than the
two described above: it essentially shows that as long as the secret is chosen from a distribution
whose entropy is not too small, the LWE problem remains hard. There are, however, some sub-
tleties, most notably the fact that the hardness of this restricted-secret variant of LWE is based on
the hardness of (standard) LWE whose noise parameter α is taken to be negligibly small (which, in
turn, is as hard as approximating worst-case lattice problems to within super-polynomial factors).
Strengthening this to a hardness result based on LWE with the usual setting of α = 1/poly(n) is
an interesting open question.

4 Cryptographic Applications

The range of cryptographic applications of the LWE problem has by now become very wide, and it
would be outside the scope of this survey to describe all known applications. Instead, we choose
to include one very simple cryptographic application, in order to give a taste of this area, and
in order to motivate the rest of this paper, especially Section 5. We emphasize that the example
below is quite inefficient; for more efficient schemes, see, e.g., [PVW08, MR08]. Moreover, using
the ring-LWE problem described in Section 5, the system can be made truly practical [LPR10].

Our cryptosystem is parameterized by integers n (the security parameter), m (number of equa-
tions), q (modulus), and a real α > 0 (noise parameter). One possible choice that guarantees
both security and correctness is the following. Choose q to be a prime between n2 and 2n2,
m = 1.1 · n log q, and α = 1/(

√
n log2 n). In the following description, all additions are performed

modulo q.

• Private key: The private key is a vector s chosen uniformly from Zn
q .

• Public Key: The public key consists of m samples (ai, bi)m
i=1 from the LWE distribution with

secret s, modulus q, and error parameter α.

• Encryption: For each bit of the message, do the following. Choose a random set S uni-
formly among all 2m subsets of [m]. The encryption is (∑i∈S ai, ∑i∈S bi) if the bit is 0 and
(∑i∈S ai, b q

2c+ ∑i∈S bi) if the bit is 1.

• Decryption: The decryption of a pair (a, b) is 0 if b− 〈a, s〉 is closer to 0 than to b q
2c modulo

q, and 1 otherwise.
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As promised, this system is quite inefficient: its public key size is O(mn log q) = Õ(n2) and
encryption increases the size of a message by a factor of O(n log q) = Õ(n).

Correctness. Note that if not for the error in the LWE samples, b − 〈a, s〉 would be either 0 or
b q

2c depending on the encrypted bit, and decryption would always be correct. Hence we see that
a decryption error occurs only if the sum of the error terms over all S is greater than q/4. Since
we are summing at most m normal error terms, each with standard deviation αq, the standard
deviation of the sum is at most

√
mαq < q/ log n; a standard calculation shows that the probability

that such a normal variable is greater than q/4 is negligible.

Security. We now sketch the security proof, showing that the system is secure based on the LWE
assumption. Assume that the system is not secure against chosen plaintext attacks; i.e., that there
exists an efficient algorithm that given a public key (ai, bi)m

i=1 chosen from the LWE distribution
with some secret s and an encryption of a random bit generated as above, can correctly guess the
encrypted bit with probability at least 1/2 + 1/poly(n) for a non-negligible fraction of secrets s.

Now imagine we provide the algorithm with pairs (ai, bi)m
i=1 chosen uniformly from Zn

q ×Zq

(instead of from the LWE distribution), and a random bit encrypted as before using these pairs
(as if they were a public key). It follows from the leftover hash lemma [IZ89] (or alternatively, an
argument based on Fourier analysis as in [NS99]) that with very high probability over the choice
of (ai, bi)m

i=1, the distribution (over S) of a random subset sum (∑i∈S ai, ∑i∈S bi) is extremely close
to uniform in statistical distance. Intuitively, this follows because the number of possible subsets
is 2m, which is much larger than the number of possible pairs, qn+1. As a result, encryptions of 0
and of 1 are essentially identically distributed and the algorithm simply has no way to guess the
encrypted bit beyond random guessing.

Therefore, by checking the algorithm’s ability to correctly guess the value of an encrypted
random bit, we can distinguish LWE samples from uniform samples for a non-negligible fractions
of secrets s. Using Lemmas 3.1 and 3.2, this implies a solution to the LWE problem, and we are
done.

5 Ring-LWE

As described in the introduction, the ring-LWE problem holds a great promise to make lattice-
based cryptography truly practical, as well as to lead to theoretical advances in the area. In this
section we describe some of the recent work on establishing results for ring-LWE that are analo-
gous to those known for LWE [LPR10].

First, let us start by giving a slightly more convenient, yet equivalent, definition of the ring-
LWE problem. Let n be a power of two, and let q be a prime modulus satisfying q = 1 mod 2n.
Define Rq as the ring Zq[x]/〈xn + 1〉 containing all polynomials over the field Zq in which xn is
identified with −1. In ring-LWE we are given samples of the form (a, b = a · s + e) ∈ Rq × Rq

where s ∈ Rq is a fixed secret, a ∈ Rq is chosen uniformly, and e is an error term chosen inde-
pendently from some error distribution over Rq. The most natural choice of error distribution is
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to choose the coordinates of the polynomial e to be i.i.d. normal, i.e., a spherical Gaussian distri-
bution. Our goal is to recover the secret s from these samples (for all s, with high probability).
This definition can be extended to somewhat more general rings, but for simplicity we focus on
the choice above.

A hardness result for the above search version of ring-LWE was established in [LPR10]. The
proof follows the same outline as that in [Reg05], namely, proving an analogue of Proposition 2.1
for ideal lattices, and then combining it with the quantum reduction from Gaussian sampling to
BDD, leading to a solution to worst-case problems like SIVP on ideal lattices. Luckily, the quan-
tum reduction of [Reg05] can be used nearly as is; the main effort is in adapting Proposition 2.1.

One of the main issues that arise during this adaptation is the error distribution. Recall that
in the proof of Proposition 2.1, the error distribution in the LWE samples we produce is a normal
variable whose variance depends on the norm of the offset vector e. Since the error is specified by
just one real parameter (the variance), we could easily take care of this issue by adding varying
amounts of extra normal error, until we ‘hit’ the amount of error for which the oracle is promised
to output the solution of the LWE instance. In the case of ring-LWE, because we replace the in-
ner product 〈e, y〉 with a ring product, the error distribution turns out to be a (not necessarily
spherical) Gaussian distribution whose variances depend on the entire vector e. Because the error
distribution has n parameters (and not one as before), we cannot hope to hit any fixed noise dis-
tribution by simply adding more noise. Instead, we must assume that the ring-LWE oracle works
for a whole range of noise parameters (or some distribution on such parameters). The upshot of
this is that the hardness of ring-LWE obtained in [LPR10] only applies if the error distribution
is itself chosen from a certain distribution on non-spherical Gaussian variables. While somewhat
undesirable, luckily this issue does not seem to cause any trouble in most of the applications, and
we will therefore ignore it in the sequel, instead assuming for simplicity that the error is taken
from a spherical Gaussian distribution. We remark that a hardness result for the spherical error
case is shown in [SSTX09] (or can be derived from [LPR10]), but unfortunately it depends on the
number of samples m.

In the rest of this section we sketch the reduction from the search version of ring-LWE to the
decision problem of distinguishing valid ring-LWE samples from uniform samples in Rq × Rq,
which is the problem most suited for cryptographic applications. Our description hides many
technical (but crucial) steps in this reduction, such as amplification, and worst-case to average-case
reductions; see [LPR10] for the full details. Before we go on, the reader might wish to reread the
proof of the analogous statement for LWE, as given in Lemma 3.1. To recall, the main idea there
was to guess a part of the secret (namely, the first coordinate) and to modify the LWE samples
in such a way that: (1) a correct guess keeps the distribution as is, and (2) an incorrect guess
transforms it into the uniform distribution.

Let us try to apply the same idea to ring-LWE, and for now just focus on requirement (1).
Given a sample (a, b) ∈ Rq × Rq, we would like to somehow sample an r ∈ Rq and output a pair
(a + r, b + k) where k ∈ Rq is our guess for r · s. However, r · s might take qn possible values, so
how can we hope to guess it?

In order to solve this problem, we need to use some basic facts regarding the ring Rq. First,
notice that if t ∈ Zq is such that tn = −1 (i.e., a root of xn + 1), then for any elements p1, p2 ∈ Rq
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we have p1(t) · p2(t) = (p1 · p2)(t), i.e., the mapping that takes each polynomial p ∈ Rq to
its evaluation p(t) ∈ Zq is a ring homomorphism. Next, notice that since q = 1 mod 2n, the
polynomial xn + 1 has all n roots in the field Zq. Namely, if g is a generator of the multiplicative
group, then the roots are

t1 = g(q−1)/2n, t3 = g3(q−1)/2n, . . . , t2n−1 = g(2n−1)(q−1)/2n.

We can now define the mapping ϕ : Rq → Zn
q that maps each p ∈ Rq to (p(t1), p(t3) . . . , p(t2n−1)) ∈

Zn
q . Using our previous observation, this mapping is a ring homomorphism, with the opera-

tions in Zn
q being coordinate-wise. Moreover, this mapping is actually a ring isomorphism, since

given any element in Zn
q we can find using interpolation a degree n − 1 polynomial mapped to

it. To summarize, the isomorphism ϕ allows us to think of Rq equivalently as the ring Zn
q with

coordinate-wise addition and multiplication.
The solution to our problem above should now be clear. Choose r = ϕ−1(r, 0, . . . , 0) for a

random r ∈ Zq, and then transform each sample (a, b) to (a + r, b + ϕ−1(r · k, 0, . . . , 0)) where k is
our guess for the first coordinate of ϕ(s). The point is that by taking r to be of the above form, we
managed to restrict the number of possible values of r · s to only q, hence allowing us to efficiently
enumerate all possible values.

There is still one important piece missing from the above description. While our transforma-
tion satisfies requirement (1) above, it does not satisfy requirement (2). Indeed, when our guess
k is incorrect, the distribution we obtain is far from uniform: if (a, b) is a sample from that dis-
tribution, then the first coordinate of ϕ(b) is uniform, but the remaining n − 1 coordinates are
distributed as in the original ring-LWE samples. The problem with this is that the decision or-
acle might behave on such a distribution in exactly the same way as on the original ring-LWE
distribution, thereby not allowing us to check if our guess k is correct.

We solve this problem using a hybrid argument, as follows. For i ∈ {0, . . . , n}, consider the
distribution obtained from the input samples (a, b) by replacing the first i coordinate of ϕ(b) with
uniform values. This sequence interpolates between the original ring-LWE distribution (i = 0)
and the completely uniform distribution (i = n). Since by assumption our oracle is able to dis-
tinguish these two cases, there must exist an i for which the oracle distinguishes the i − 1st dis-
tribution from the ith distribution. Using an argument similar to the one above, we are now able
to correctly recover the ith coordinate of ϕ(s) (the only extra step being to make coordinates 1
through i− 1 uniform by simply adding to the b component an element whose first i− 1 coordi-
nates are chosen uniformly).

So we are now able to recover the ith coordinate of ϕ(s), but unfortunately i is determined by
the oracle, over which we have no control. How can we recover all the coordinate of ϕ(s)? One
thing we can try to do is permute the coordinates of ϕ(s). More precisely, for any permutation
π : [n]→ [n], let τπ : Rq → Rq be the operation that permutes the coordinates (in the Zn

q represen-
tation) according to π. Since multiplication and addition in Zn

q are coordinate-wise, τπ is clearly
an automorphism. So now assume we transform each input sample (a, b = a · s + e) to

(τπ(a), τπ(b) = τπ(a) · τπ(s) + τπ(e)).

These samples look a lot like legal ring-LWE samples with the secret τπ(s). If this were really
the case, we would be done, as we could recover the ith coordinate of τπ(s), from which we can
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recover all of s by using several different permutations. However, applying τπ to e can completely
ruin the error distribution, which, to recall, was defined as a Gaussian distribution of the polyno-
mial’s coefficients, and hence is likely to be quite ‘strange’ when viewed in the Zn

q representation.
Luckily, it turns out that certain permutations π leave the error distribution invariant. Namely,
for each j ∈ {1, 3, . . . , 2n− 1}, consider the permutation πj that sends the coordinate correspond-
ing to ti to that corresponding to ti·j−1 mod 2n. It is not difficult to see that when viewed in Rq, the
operation τπj can be described as taking each polynomial p = p(x) ∈ Rq and mapping it to the
polynomial p(xj) ∈ Rq. Hence, all τπj does is simply permute the coefficients of the polynomial
and possibly negate some, and in particular, it preserves the Gaussian error distribution. Using
these n permutations, we can now recover all n coordinates of ϕ(s), and complete the proof.

The reduction above might seem mysterious and ad-hoc: where do ϕ and τ come from? how
come the τπj preserve the error distribution? The answer is that underlying the entire reduction are
some algebraic structures, such as the cyclotomic number field Q(ζ2n), its canonical embedding,
its n automorphisms, and the factorization of the ideal 〈q〉 into ideals of small norm. Viewed this
way, the reduction easily extends to all cyclotomic polynomials (and not just xn + 1), as was done
in [LPR10].
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Figure 4: A two-dimensional wavy distribution with s = (4, 2).
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A The hardness of LWE and Ajtai-Dwork

Here we observe that a certain hardness result for the LWE problem is already implicit in Ajtai
and Dwork’s work [AD97] as presented in its simplified form [Reg03]. Even though the hardness
results for LWE described in the body of this survey seem to us superior in all respects, we decided
to include this observation for its historical value, and because we view it as an indication that
LWE is the correct unifying idea behind all work on lattice-based public-key cryptography.

For s ∈ Zn define the ‘wavy’ distribution with parameter s as the distribution on [0, 1)n in
which the probability of obtaining x (or more precisely, its probability density) is proportional
to exp(−(n · dist(〈x, s〉, Z))2) where dist(·, Z) denotes the distance from the nearest integer (see
Figure 4). So vectors x ∈ [0, 1)n for which 〈x, s〉 is integer are most likely to appear, and typical
vectors x from the distribution will have 〈x, s〉 that is within ± 1

n from an integer. In other words,
one can think of each sample x as an approximate equation

s1x1 + · · ·+ snxn ≈ 0 (mod 1)

with normal error.
In the next-to-last step of the chain of reduction in [Reg03], the following problem was shown

to be as hard as the worst-case lattice problem unique-SVP (and thanks to the reductions in [Pei09a,
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LM09], also as hard as GAPSVP): given an unlimited number of samples from the wavy distri-
bution with an unknown parameter s ∈ {−2n, . . . , 2n}n \ {0n}, find s. In fact, the hardness result
in [Reg03] even applies to the decision version of distinguishing wavy distributions from the uni-
form distribution over [0, 1)n, and as a result requires more effort to prove; for completeness, at
the end of this section we sketch the hardness proof of the search version.

We now sketch a reduction from the above problem to LWE by showing how to convert
samples from the wavy distribution to LWE samples. Assume we know an index i for which
si 6= 0; the reduction can obtain such an i be trying all n indices. Moreover, assume with-
out loss of generality that i = n. Then it follows from the definition of the wavy distribution
that x1, . . . , xn−1 are uniformly distributed, and conditioned on any fixed value of them, xn is
distributed according to a ‘one-dimensional wavy distribution’ with sn periods, whose phase is
shifted by s1x1 + · · ·+ sn−1xn−1 mod 1 (to see this, imagine taking vertical slices of Figure 4). Next,
assume we have an estimate s′n of sn to within a multiplicative error of at most 1± 1/nc for a large
enough c. The reduction can obtain such an estimate by trying all values on an exponential scale.
Consider now the distribution of (a = (x1, . . . , xn−1, xn + t/s′n), b = t) where x is a sample from the
wavy distribution and t is uniformly chosen in [0, 1). Then it is not hard to show that this distri-
bution is within statistical distance about n−c of distribution on pairs (a, b) obtained by choosing
a uniformly in [0, 1)n and then choosing b from a normal variable centered around 〈a, s〉 mod 1.
Now let a′ = bqae and similarly b′ = bqbe. If q is large enough, say, 22n, then the error introduced
by rounding is negligible, and the pairs (a′, b′) are essentially distributed like valid LWE samples,
as required.

For completeness, let us briefly sketch the idea of the reduction in [Reg03]. Assume v is the
unique shortest vector of the input lattice L(B). Let D be the dual basis to B. By definition, all
vectors u in the dual lattice L(B)∗ = L(D) satisfy 〈u, v〉 ∈ Z, i.e., all vectors in the dual lattice are
contained in a set of hyperplanes orthogonal to v and spaced 1/‖u‖ from each other. Moreover,
since the vector u is a unique shortest vector, the set of lattice points inside each such hyperplane
is quite dense. The main idea of the reduction is that by taking a random point in L(D) and
adding Gaussian noise to it, we eliminate the fine structure inside the hyperplanes, and end up
with a distribution that is essentially uniform on any hyperplane orthogonal to v and looks like a
periodic Gaussian in the direction of v. By considering the coefficients modulo 1 in the basis D of
a point chosen from this distribution, we end up with the wavy distribution whose parameter is
the vector of coefficients of v in the basis B.
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