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Abstract

Our main result is a reduction from worst-case lattice problems such as GAPSVP and SIVP to a
certain learning problem. This learning problem is a natural extension of the ‘learning from parity with
error’ problem to higher moduli. It can also be viewed as the problem of decoding from a random linear
code. This, we believe, gives a strong indication that these problems are hard. Our reduction, however, is
quantum. Hence, an efficient solution to the learning problem implies a quantum algorithm for GAPSVP
and SIVP. A main open question is whether this reduction can be made classical (i.e., non-quantum).

We also present a (classical) public-key cryptosystem whose security is based on the hardness of the
learning problem. By the main result, its security is also based on the worst-case quantum hardness of
GAPSVP and SIVP. The new cryptosystem is much more efficient than previous lattice-based cryp-
tosystems: the public key is of size Õ(n2) and encrypting a message increases its size by a factor of
Õ(n) (in previous cryptosystems these values are Õ(n4) and Õ(n2), respectively). In fact, under the
assumption that all parties share a random bit string of length Õ(n2), the size of the public key can be
reduced to Õ(n).

1 Introduction

Main theorem. For an integer n ≥ 1 and a real number ε ≥ 0, consider the ‘learning from parity with
error’ problem, defined as follows: the goal is to find an unknown s ∈ Zn

2 given a list of ‘equations with
errors’

〈s,a1〉 ≈ε b1 (mod 2)

〈s,a2〉 ≈ε b2 (mod 2)
...

where the ai’s are chosen independently from the uniform distribution on Zn
2 , 〈s,ai〉 =

∑
j sj(ai)j is the

inner product modulo 2 of s and ai, and each equation is correct independently with probability 1 − ε.
More precisely, the input to the problem consists of pairs (ai, bi) where each ai is chosen independently and
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uniformly from Zn
2 and each bi is independently chosen to be equal to 〈s,ai〉 with probability 1 − ε. The

goal is to find s. Notice that the case ε = 0 can be solved efficiently by, say, Gaussian elimination. This
requires O(n) equations and poly(n) time.

The problem seems to become significantly harder when we take any positive ε > 0. For example, let us
consider again the Gaussian elimination process and assume that we are interested in recovering only the first
bit of s. Using Gaussian elimination, we can find a set S of O(n) equations such that

∑
S ai is (1, 0, . . . , 0).

Summing the corresponding values bi gives us a guess for the first bit of s. However, a standard calculation
shows that this guess is correct with probability 1

2 + 2−Θ(n). Hence, in order to obtain the first bit with
good confidence, we have to repeat the whole procedure 2Θ(n) times. This yields an algorithm that uses
2O(n) equations and 2O(n) time. In fact, it can be shown that given only O(n) equations, the s′ ∈ Zn

2 that
maximizes the number of satisfied equations is with high probability s. This yields a simple maximum
likelihood algorithm that requires only O(n) equations and runs in time 2O(n).

Blum, Kalai, and Wasserman [11] provided the first subexponential algorithm for this problem. Their
algorithm requires only 2O(n/ log n) equations/time and is currently the best known algorithm for the problem.
It is based on a clever idea that allows to find a small set S of equations (say, O(

√
n)) among 2O(n/ log n)

equations, such that
∑

S ai is, say, (1, 0, . . . , 0). This gives us a guess for the first bit of s that is correct
with probability 1

2 + 2−Θ(
√

n). We can obtain the correct value with high probability by repeating the whole
procedure only 2O(

√
n) times. Their idea was later shown to have other important applications, such as the

first 2O(n)-time algorithm for solving the shortest vector problem [23, 5].
An important open question is to explain the apparent difficulty in finding efficient algorithms for this

learning problem. Our main theorem explains this difficulty for a natural extension of this problem to higher
moduli, defined next.

Let p = p(n) ≤ poly(n) be some prime integer and consider a list of ‘equations with error’

〈s,a1〉 ≈χ b1 (mod p)

〈s,a2〉 ≈χ b2 (mod p)
...

where this time s ∈ Zn
p , ai are chosen independently and uniformly from Zn

p , and bi ∈ Zp. The error
in the equations is now specified by a probability distribution χ : Zp → R+ on Zp. Namely, for each
equation i, bi = 〈s,ai〉 + ei where each ei ∈ Zp is chosen independently according to χ. We denote the
problem of recovering s from such equations by LWEp,χ (learning with error). For example, the learning
from parity problem with error ε is the special case where p = 2, χ(0) = 1 − ε, and χ(1) = ε. Under a
reasonable assumption on χ (namely, that χ(0) > 1/p + 1/poly(n)), the maximum likelihood algorithm
described above solves LWEp,χ for p ≤ poly(n) using poly(n) equations and 2O(n log n) time. Under a
similar assumption, an algorithm resembling the one by Blum et al. [11] requires only 2O(n) equations/time.
This is the best known algorithm for the LWE problem.

Our main theorem shows that for certain choices of p and χ, a solution to LWEp,χ implies a quantum
solution to worst-case lattice problems.

Theorem 1.1 (Informal) Let n, p be integers and α ∈ (0, 1) be such that αp > 2
√

n. If there exists an
efficient algorithm that solves LWEp,Ψ̄α

then there exists an efficient quantum algorithm that approximates
the decision version of the shortest vector problem (GAPSVP) and the shortest independent vectors problem
(SIVP) to within Õ(n/α) in the worst case.
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The exact definition of Ψ̄α will be given later. For now, it is enough to know that it is a distribution on Zp

that has the shape of a discrete Gaussian centered around 0 with standard deviation αp, as in Figure 1. Also,
the probability of 0 (i.e., no error) is roughly 1/(αp). A possible setting for the parameters is p = O(n2)
and α = 1/(

√
n log2 n) (in fact, these are the parameters that we use in our cryptographic application).
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Figure 1: Ψ̄α for p = 127 with α = 0.05 (left) and α = 0.1 (right). The elements of Zp are arranged on a
circle.

GAPSVP and SIVP are two of the main computational problems on lattices. In GAPSVP, for instance,
the input is a lattice, and the goal is to approximate the length of the shortest nonzero lattice vector. The
best known polynomial time algorithms for them yield only mildly subexponential approximation factors
[24, 38, 5]. It is conjectured that there is no classical (i.e., non-quantum) polynomial time algorithm that
approximates them to within any polynomial factor. Lattice-based constructions of one-way functions, such
as the one by Ajtai [2], are based on this conjecture.

One might even conjecture that there is no quantum polynomial time algorithm that approximates
GAPSVP (or SIVP) to within any polynomial factor. One can then interpret the main theorem as say-
ing that based on this conjecture, the LWE problem is hard. The only evidence supporting this conjecture is
that there are no known quantum algorithms for lattice problems that outperform classical algorithms, even
though this is probably one of the most important open questions in the field of quantum computing.1

In fact, one could also interpret our main theorem as a way to disprove this conjecture: if one finds
an efficient algorithm for LWE, then one also obtains a quantum algorithm for approximating worst-case
lattice problems. Such a result would be of tremendous importance on its own. Finally, we note that it is
possible that our main theorem will one day be made classical. This would make all our results stronger and
the above discussion unnecessary.

The LWE problem can be equivalently presented as the problem of decoding random linear codes. More
specifically, let m = poly(n) be arbitrary and let s ∈ Zn

p be some vector. Then, consider the following
problem: given a random matrix Q ∈ Zm×n

p and the vector t = Qs + e ∈ Zm
p where each coordinate

of the error vector e ∈ Zm
p is chosen independently from Ψ̄α, recover s. The Hamming weight of e is

roughly m(1 − 1/(αp)) (since a value chosen from Ψ̄α is 0 with probability roughly 1/(αp)). Hence, the
Hamming distance of t from Qs is roughly m(1− 1/(αp)). Moreover, it can be seen that for large enough
m, for any other word s′, the Hamming distance of t from Qs′ is roughly m(1 − 1/p). Hence, we obtain
that approximating the nearest codeword problem to within factors smaller than (1 − 1/p)/(1 − 1/(αp))
on random codes is as hard as quantumly approximating worst-case lattice problems. This gives a partial

1If forced to make a guess, the author would say that the conjecture is true.
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answer to the important open question of understanding the hardness of decoding from random linear codes.
It turns out that certain problems, which are seemingly easier than the LWE problem, are in fact equiv-

alent to the LWE problem. We establish these equivalences in Section 4 using elementary reductions. For
example, being able to distinguish a set of equations as above from a set of equations in which the bi’s are
chosen uniformly from Zp is equivalent to solving LWE. Moreover, it is enough to correctly distinguish
these two distributions for some non-negligible fraction of all s. The latter formulation is the one we use in
our cryptographic applications.

Cryptosystem. In Section 5 we present a public key cryptosystem and prove that it is secure based on
the hardness of the LWE problem. We use the standard security notion of semantic, or IND-CPA, secu-
rity (see, e.g., [20, Chapter 10]). The cryptosystem and its security proof are entirely classical. In fact,
the cryptosystem itself is quite simple; the reader is encouraged to glimpse at the beginning of Section 5.
Essentially, the idea is to provide a list of equations as above as the public key; encryption is performed by
summing some of the equations (forming another equation with error) and modifying the right hand side
depending on the message to be transmitted. Security follows from the fact that a list of equations with error
is computationally indistinguishable from a list of equations in which the bi’s are chosen uniformly.

By using our main theorem, we obtain that the security of the system is based also on the worst-case
quantum hardness of approximating SIVP and GAPSVP to within Õ(n1.5). In other words, breaking
our cryptosystem implies an efficient quantum algorithm for approximating SIVP and GAPSVP to within
Õ(n1.5). Previous cryptosystems, such as the Ajtai-Dwork cryptosystem [4] and the one by Regev [36], are
based on the worst-case (classical) hardness of the unique-SVP problem, which can be related to GAPSVP
(but not SIVP) through the recent result of Lyubashevsky and Micciancio [26].

Another important feature of our cryptosystem is its improved efficiency. In previous cryptosystems,
the public key size is Õ(n4) and the encryption increases the size of messages by a factor of Õ(n2). In our
cryptosystem, the public key size is only Õ(n2) and encryption increases the size of messages by a factor of
only Õ(n). This possibly makes our cryptosystem practical. Moreover, using an idea of Ajtai [3], we can
reduce the size of the public key to Õ(n). This requires all users of the cryptosystem to share some (trusted)
random bit string of length Õ(n2). This can be achieved by, say, distributing such a bit string as part of the
encryption and decryption software.

We mention that learning problems similar to ours were already suggested as possible sources of cryp-
tographic hardness in, e.g., [10, 7], although this was done without establishing any connection to lattice
problems. In another related work [3], Ajtai suggested a cryptosystem that has several properties in common
with ours (including its efficiency), although its security is not based on worst-case lattice problems.

Why quantum? This paper is almost entirely classical. In fact, quantum is needed only in one step in
the proof of the main theorem. Making this step classical would make the entire reduction classical. To
demonstrate the difficulty, consider the following situation. Let L be some lattice and let d = λ1(L)/n10

where λ1(L) is the length of the shortest nonzero vector in L. We are given an oracle that for any point
x ∈ Rn within distance d of L finds the closest lattice vector to x. If x is not within distance d of L,
the output of the oracle is undefined. Intuitively, such an oracle seems quite powerful; the best known
algorithms for performing such a task require exponential time. Nevertheless, we do not see any way to
use this oracle classically. Indeed, it seems to us that the only way to generate inputs to the oracle is the
following: somehow choose a lattice point y ∈ L and let x = y+z for some perturbation vector z of length
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at most d. Clearly, on input x the oracle outputs y. But this is useless since we already know y!
It turns out that quantumly, such an oracle is quite useful. Indeed, being able to compute y from x allows

us to uncompute y. More precisely, it allows us to transform the quantum state |x,y〉 to the state |x, 0〉 in a
reversible (i.e., unitary) way. This ability to erase the contents of a memory cell in a reversible way seems
useful only in the quantum setting.

Techniques. Unlike previous constructions of lattice-based public-key cryptosystems, the proof of our
main theorem uses an ‘iterative construction’. Essentially, this means that instead of ‘immediately’ finding
very short vectors in a lattice, the reduction proceeds in steps where in each step shorter lattice vectors
are found. So far, such iterative techniques have been used only in the construction of lattice-based one-
way functions [2, 12, 27, 29]. Another novel aspect of our main theorem is its crucial use of quantum
computation. Our cryptosystem is the first classical cryptosystem whose security is based on a quantum
hardness assumption (see [30] for a somewhat related recent work).

Our proof is based on the Fourier transform of Gaussian measures, a technique that was developed in
previous papers [36, 29, 1]. More specifically, we use a parameter known as the smoothing parameter,
as introduced in [29]. We also use the discrete Gaussian distribution and approximations to its Fourier
transform, ideas that were developed in [1].

Open questions. The main open question raised by this work is whether Theorem 1.1 can be dequantized:
can the hardness of LWE be established based on the classical hardness of SIVP and GAPSVP? We see no
reason why this should be impossible. However, despite our efforts over the last few years, we were not able
to show this. As mentioned above, the difficulty is that there seems to be no classical way to use an oracle
that solves the closest vector problem within small distances. Quantumly, however, such an oracle turns out
to be quite useful.

Another important open question is to determine the hardness of the learning from parity with errors
problem (i.e., the case p = 2). Our theorem only works for p > 2

√
n. It seems that in order to prove

similar results for smaller values of p, substantially new ideas are required. Alternatively, one can interpret
our inability to prove hardness for small p as an indication that the problem might be easier than believed.

Finally, it would be interesting to relate the LWE problem to other average-case problems in the liter-
ature, and especially to those considered by Feige in [15]. See Alekhnovich’s paper [7] for some related
work.

Followup work. We now describe some of the followup work that has appeared since the original publi-
cation of our results in 2005 [37].

One line of work focussed on improvements to our cryptosystem. First, Kawachi, Tanaka, and Xa-
gawa [21] proposed a modification to our cryptosystem that slightly improves the encryption blowup to
O(n), essentially getting rid of a log factor. A much more significant improvement is described by Peikert,
Vaikuntanathan, and Waters in [34]. By a relatively simple modification to the cryptosystem, they managed
to bring the encryption blowup down to only O(1), in addition to several equally significant improvements
in running time. Finally, Akavia, Goldwasser, and Vaikuntanathan [6] show that our cryptosystem remains
secure even if almost the entire secret key is leaked.

Another line of work focussed on the design of other cryptographic protocols whose security is based
on the hardness of the LWE problem. First, Peikert and Waters [35] constructed, among other things, CCA-
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secure cryptosystems (see also [33] for a simpler construction). These are cryptosystems that are secure even
if the adversary is allowed access to a decryption oracle (see, e.g., [20, Chapter 10]). All previous lattice-
based cryptosystems (including the one in this paper) are not CCA-secure. Second, Peikert, Vaikuntanathan,
and Waters [34] showed how to construct oblivious transfer protocols, which are useful, e.g., for performing
secure multiparty computation. Third, Gentry, Peikert, and Vaikuntanathan [16] constructed an identity-
based encryption (IBE) scheme. This is a public-key encryption scheme in which the public key can be any
unique identifier of the user; very few constructions of such schemes are known. Finally, Cash, Peikert, and
Sahai [13] constructed a public-key cryptosystem that remains secure even when the encrypted messages
may depend upon the secret key. The security of all the above constructions is based on the LWE problem
and hence, by our main theorem, also on the worst-case quantum hardness of lattice problems.

The LWE problem has also been used by Klivans and Sherstov to show hardness results related to
learning halfspaces [22]. As before, due to our main theorem, this implies hardness of learning halfspaces
based on the worst-case quantum hardness of lattice problems.

Finally, we mention two results giving further evidence for the hardness of the LWE problem. In the
first, Peikert [32] somewhat strengthens our main theorem by replacing our worst-case lattice problems with
their analogues for the `q norm, where 2 ≤ q ≤ ∞ is arbitrary. Our main theorem only deals with the
standard `2 versions.

In another recent result, Peikert [33] shows that the quantum part of our proof can be removed, leading to
a classical reduction from GAPSVP to the LWE problem. As a result, Peikert is able to show that public-key
cryptosystems (including many of the above LWE-based schemes) can be based on the classical hardness
of GAPSVP, resolving a long-standing open question (see also [26]). Roughly speaking, the way Peikert
circumvents the difficulty we described earlier is by noticing that the existence of an oracle that is able to
recover y from y + z, where y is a random lattice point and z is a random perturbation of length at most d,
is by itself a useful piece of information as it provides a lower bound on the length of the shortest nonzero
vector. By trying to construct such oracles for several different values of d and checking which ones work,
Peikert is able to obtain a good approximation of the length of the shortest nonzero vector.

Removing the quantum part, however, comes at a cost: the construction can no longer be iterative,
the hardness can no longer be based on SIVP, and even for hardness based on GAPSVP, the modulus p

in the LWE problem must be exponentially big unless we assume the hardness of a non-standard variant
of GAPSVP. Because of this, we believe that dequantizing our main theorem remains an important open
problem.

1.1 Overview

In this subsection, we give a brief informal overview of the proof of our main theorem, Theorem 1.1. The
complete proof appears in Section 3. We do not discuss here the reductions in Section 4 and the cryptosystem
in Section 5 as these parts of the paper are more similar to previous work.

In addition to some very basic definitions related to lattices, we will make heavy use here of the discrete
Gaussian distribution on L of width r, denoted DL,r. This is the distribution whose support is L (which
is typically a lattice), and in which the probability of each x ∈ L is proportional to exp

(−π‖x/r‖2
)

(see Eq. (6) and Figure 2). We also mention here the smoothing parameter ηε(L). This is a real positive
number associated with any lattice L (ε is an accuracy parameter which we can safely ignore here). Roughly
speaking, it gives the smallest r starting from which DL,r ‘behaves like’ a continuous Gaussian distribution.
For instance, for r ≥ ηε(L), vectors chosen from DL,r have norm roughly r

√
n with high probability. In

6



contrast, for sufficiently small r, DL,r gives almost all its mass to the origin 0. Although not required for
this section, a complete list of definitions can be found in Section 2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: DL,2 (left) and DL,1 (right) for a two-dimensional lattice L. The z-axis represents probability.

Let α, p, n be such that αp > 2
√

n, as required in Theorem 1.1, and assume we have an oracle that solves
LWEp,Ψ̄α

. For concreteness, we can think of p = n2 and α = 1/n. Our goal is to show how to solve the
two lattice problems mentioned in Theorem 1.1. As we prove in Subsection 3.3 using standard reductions, it
suffices to solve the following discrete Gaussian sampling problem (DGS): Given an n-dimensional lattice
L and a number r ≥ √

2n · ηε(L)/α, output a sample from DL,r. Intuitively, the connection to GAPSVP
and SIVP comes from the fact that by taking r close to its lower limit

√
2n · ηε(L)/α, we can obtain short

lattice vectors (of length roughly
√

nr). In the rest of this subsection we describe our algorithm for sampling
from DL,r. We note that the exact lower bound on r is not that important for purposes of this overview, as
it only affects the approximation factor we obtain for GAPSVP and SIVP. It suffices to keep in mind that
our goal is to sample from DL,r for r that is rather small, say within a polynomial factor of ηε(L).

The core of the algorithm is the following procedure, which we call the ‘iterative step’. Its input consists
of a number r (which is guaranteed to be not too small, namely, greater than

√
2pηε(L)), and nc samples

from DL,r where c is some constant. Its output is a sample from the distribution DL,r′ for r′ = r
√

n/(αp).
Notice that since αp > 2

√
n, r′ < r/2. In order to perform this ‘magic’ of converting vectors of norm

√
nr

into shorter vectors of norm
√

nr′, the procedure of course needs to use the LWE oracle.
Given the iterative step, the algorithm for solving DGS works as follows. Let ri denote r · (αp/

√
n)i.

The algorithm starts by producing nc samples from DL,r3n . Because r3n is so large, such samples can be
computed efficiently by a simple procedure described in Lemma 3.2. Next comes the core of the algorithm:
for i = 3n, 3n− 1, . . . , 1 the algorithm uses its nc samples from DL,ri to produce nc samples from DL,ri−1

by calling the iterative step nc times. Eventually, we end up with nc samples from DL,r0 = DL,r and we
complete the algorithm by simply outputting the first of those. Note the following crucial fact: using nc

samples from DL,ri , we are able to generate the same number of samples nc from DL,ri−1 (in fact, we could
even generate more than nc samples). The algorithm would not work if we could only generate, say, nc/2
samples, as this would require us to start with an exponential number of samples.

We now finally get to describe the iterative step. Recall that as input we have nc samples from DL,r

and we are supposed to generate a sample from DL,r′ where r′ = r
√

n/(αp). Moreover, r is known and
guaranteed to be at least

√
2pηε(L), which can be shown to imply that p/r < λ1(L∗)/2. As mentioned

above, the exact lower bound on r does not matter much for this overview; it suffices to keep in mind that r
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is sufficiently larger than ηε(L), and that 1/r is sufficiently smaller than λ1(L∗).
The iterative step is obtained by combining two parts (see Figure 3). In the first part, we construct a

classical algorithm that uses the given samples and the LWE oracle to solve the following closest vector
problem, which we denote by CVPL∗,αp/r: given any point x ∈ Rn within distance αp/r of the dual lattice
L∗, output the closest vector in L∗ to x.2 By our assumption on r, the distance between any two points in
L∗ is greater than 2αp/r and hence the closest vector is unique. In the second part, we use this algorithm
to generate samples from DL,r′ . This part is quantum (and in fact, the only quantum part of our proof).
The idea here is to use the CVPL∗,αp/r algorithm to generate a certain quantum superposition which, after
applying the quantum Fourier transform and performing a measurement, provides us with a sample from
DL,r

√
n/(αp). In the following, we describe each of the two parts in more detail.

n
c samples

from DL,rn/(αp)2

n
c samples

from DL,r

n
c samples

from DL,r
√

n/(αp)

quant
um

quant
um

classical, uses LWE

classical, uses LWE

solve
CVPL∗,αp/r

solve
CVPL∗,(αp)2/(r

√

n)

Figure 3: Two iterations of the algorithm

Part 1: We start by recalling the main idea in [1]. Consider some probability distribution D on some
lattice L and consider its Fourier transform f : Rn → C, defined as

f(x) =
∑

y∈L

D(y)exp (2πi〈x,y〉) = Exp
y∼D

[exp (2πi〈x,y〉)]

where in the second equality we simply rewrite the sum as an expectation. By definition, f is L∗-periodic,
i.e., f(x) = f(x + y) for any x ∈ Rn and y ∈ L∗. In [1] it was shown that given a polynomial number of
samples from D, one can compute an approximation of f to within ±1/poly(n). To see this, note that by
the Chernoff-Hoeffding bound, if y1, . . . ,yN are N = poly(n) independent samples from D, then

f(x) ≈ 1
N

N∑

j=1

exp (2πi〈x,yj〉)

where the approximation is to within ±1/poly(n) and holds with probability exponentially close to 1,
assuming that N is a large enough polynomial.

By applying this idea to the samples from DL,r given to us as input, we obtain a good approximation of
the Fourier transform of DL,r, which we denote by f1/r. It can be shown that since 1/r ¿ λ1(L∗) one has
the approximation

f1/r(x) ≈ exp
(−π(r · dist(L∗,x))2

)
(1)

2In fact, we only solve CVPL∗,αp/(
√

2r) but for simplicity we ignore the factor
√

2 here.
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(see Figure 4). Hence, f1/r(x) ≈ 1 for any x ∈ L∗ (in fact an equality holds) and as one gets away from
L∗, its value decreases. For points within distance, say, 1/r from the lattice, its value is still some positive
constant (roughly exp (−π)). As the distance from L∗ increases, the value of the function soon becomes
negligible. Since the distance between any two vectors in L∗ is at least λ1(L∗) À 1/r, the Gaussians around
each point of L∗ are well-separated.

Figure 4: f1/r for a two-dimensional lattice

Although not needed in this paper, let us briefly outline how one can solve CVPL∗,1/r using samples
from DL,r. Assume that we are given some point x within distance 1/r of L∗. Intuitively, this x is located
on one of the Gaussians of f1/r. By repeatedly computing an approximation of f1/r using the samples from
DL,r as described above, we ‘walk uphill’ on f1/r in an attempt to find its ‘peak’. This peak corresponds to
the closest lattice point to x. Actually, the procedure as described here does not quite work: due to the error
in our approximation of f1/r, we cannot find the closest lattice point exactly. It is possible to overcome this
difficulty; see [25] for the details. The same procedure actually works for slightly longer distances, namely
O(
√

log n/r), but beyond that distance the value of f1/r becomes negligible and no useful information can
be extracted from our approximation of it.

Unfortunately, solving CVPL∗,1/r is not useful for the iterative step as it would lead to samples from
DL,r

√
n, which is a wider rather than a narrower distribution than the one we started with. This is not

surprising, since our solution to CVPL∗,1/r did not use the LWE oracle. Using the LWE oracle, we will
now show that we can gain an extra αp factor in the radius, and obtain the desired CVPL∗,αp/r algorithm.

Notice that if we could somehow obtain samples from DL,r/p we would be done: using the procedure
described above, we could solve CVPL∗,p/r, which is better than what we need. Unfortunately, it is not
clear how to obtain such samples, even with the help of the LWE oracle. Nevertheless, here is an obvious
way to obtain something similar to samples from DL,r/p: just take the given samples from DL,r and divide
them by p. This provides us with samples from DL/p,r/p where L/p is the lattice L scaled down by a factor
of p. In the following we will show how to use these samples to solve CVPL∗,αp/r.

Let us first try to understand what the distribution DL/p,r/p looks like. Notice that the lattice L/p

consists of pn translates of the original lattice L. Namely, for each a ∈ Zn
p , consider the set

L + La/p = {Lb/p | b ∈ Zn, b mod p = a}.
Then {L + La/p | a ∈ Zn

p} forms a partition of L/p. Moreover, it can be shown that since r/p is larger
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than the smoothing parameter ηε(L), the probability given to each L + La/p under DL/p,r/p is essentially
the same, that is, p−n. Intuitively, beyond the smoothing parameter, the Gaussian measure no longer ‘sees’
the discrete structure of L, so in particular it is not affected by translations (this will be shown in Claim 3.8).

This leads us to consider the following distribution, call it D̃. A sample from D̃ is a pair (a,y) where y
is sampled from DL/p,r/p, and a ∈ Zn

p is such that y ∈ L + La/p. Notice that we can easily obtain samples
from D̃ using the given samples from DL,r. From the above discussion we have that the marginal distribution
of a is essentially uniform. Moreover, by definition we have that the distribution of y conditioned on any
a is DL+La/p,r/p. Hence, D̃ is essentially identical to the distribution on pairs (a,y) in which a ∈ Zn

p is
chosen uniformly at random, and then y is sampled from DL+La/p,r/p. From now on, we think of D̃ as
being this distribution.

We now examine the Fourier transform of DL+La/p,r/p (see Figure 5). When a is zero, we already know
that the Fourier transform is fp/r. For general a, a standard calculation shows that the Fourier transform of
DL+La/p,r/p is given by

exp (2πi〈a, τ(x)〉/p) · fp/r(x) (2)

where τ(x) ∈ Zn
p is defined as

τ(x) := (L∗)−1κL∗(x) mod p,

and κL∗(x) denotes the (unique) closest vector in L∗ to x. In other words, τ(x) is the vector of coefficients
of the vector in L∗ closest to x when represented in the basis of L∗, reduced modulo p. So we see that the
Fourier transform DL+La/p,r/p is essentially fp/r, except that each ‘hill’ gets its own phase depending on
the vector of coefficients of the lattice point in its center. The appearance of these phases is as a result of
a well-known property of the Fourier transform, saying that translation is transformed to multiplication by
phase.

Figure 5: The Fourier transform of DL+La/p,r/p with n = 2, p = 2, a = (0, 0) (left), a = (1, 1) (right).

Equipped with this understanding of the Fourier transform of DL+La/p,r/p, we can get back to our task of
solving CVPL∗,αp/r. By the definition of the Fourier transform, we know that the average of exp (2πi〈x,y〉)
over y ∼ DL+La/p,r/p is given by (2). Assume for simplicity that x ∈ L∗ (even though in this case finding
the closest vector is trivial; it is simply x itself). In this case, (2) is equal to exp (2πi〈a, τ(x)〉/p). Since
the absolute value of this expression is 1, we see that for such x, the random variable 〈x,y〉 mod 1 (where
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y ∼ DL+La/p,r/p) must be deterministically equal to 〈a, τ(x)〉/p mod 1 (this fact can also be seen directly).
In other words, when x ∈ L∗, each sample (a,y) from D̃, provides us with a linear equation

〈a, τ(x)〉 = p〈x,y〉mod p

with a distributed essentially uniformly in Zn
p . After collecting about n such equations, we can use Gaussian

elimination to recover τ(x) ∈ Zn
p . And as we shall show in Lemma 3.5 using a simple reduction, the ability

to compute τ(x) easily leads to the ability to compute the closest vector to x.
We now turn to the more interesting case in which x is not in L∗, but only within distance αp/r of

L∗. In this case, the phase of (2) is still equal to exp (2πi〈a, τ(x)〉/p). Its absolute value, however, is no
longer 1, but still quite close to 1 (depending on the distance of x from L∗). Therefore, the random variable
〈x,y〉mod 1, where y ∼ DL+La/p,r/p, must be typically quite close to 〈a, τ(x)〉/p mod 1 (since, as before,
the average of exp (2πi〈x,y〉) is given by (2)). Hence, each sample (a,y) from D̃, provides us with a linear
equation with error,

〈a, τ(x)〉 ≈ bp〈x,y〉emod p.

Notice that p〈x,y〉 is typically not an integer and hence we round it to the nearest integer. After collecting
a polynomial number of such equations, we call the LWE oracle in order to recover τ(x). Notice that a is
distributed essentially uniformly, as required by the LWE oracle. Finally, as mentioned above, once we are
able to compute τ(x), computing x is easy (this will be shown in Lemma 3.5).

The above outline ignores one important detail: what is the error distribution in the equations we pro-
duce? Recall that the LWE oracle is only guaranteed to work with error distribution Ψ̄α. Luckily, as we
will show in Claim 3.9 and Corollary 3.10 (using a rather technical proof), if x is at distance βp/r from L∗

for some 0 ≤ β ≤ α, then the error distribution in the equations is essentially Ψ̄β . (In fact, in order to get
this error distribution, we will have to modify the procedure a bit and add a small amount of normal error to
each equation.) We then complete the proof by noting (in Lemma 3.7) that an oracle for solving LWEp,Ψ̄α

can be used to solve LWEp,Ψ̄β
for any 0 ≤ β ≤ α (even if β is unknown).

Part 2: In this part, we describe a quantum algorithm that, using a CVPL∗,αp/r oracle, generates one
sample from DL,r

√
n/(αp). Equivalently, we show how to produce a sample from DL,r given a CVPL∗,

√
n/r

oracle. The procedure is essentially the following: first, by using the CVP oracle, create a quantum state
corresponding to f1/r. Then, apply the quantum Fourier transform and obtain a quantum state corresponding
to DL,r. By measuring this state we obtain a sample from DL,r.

In the following, we describe this procedure in more detail. Our first goal is to create a quantum state
corresponding to f1/r. Informally, this can be written as

∑

x∈Rn

f1/r|x〉. (3)

This state is clearly not well-defined. In the actual procedure,Rn is replaced with some finite set (namely, all
points inside the basic parallelepiped of L∗ that belong to some fine grid). This introduces several technical
complications and makes the computations rather tedious. Therefore, in the present discussion, we opt to
continue with informal expressions as in (3).

Let us now continue our description of the procedure. In order to prepare the state in (3), we first create
the uniform superposition on L∗, ∑

x∈L∗
|x〉.
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(This step is actually unnecessary in the real procedure, since there we work in the basic parallelepiped of
L∗; but for the present discussion, it is helpful to imagine that we start with this state.) On a separate register,
we create a ‘Gaussian state’ of width 1/r,

∑

z∈Rn

exp
(−π‖rz‖2

)|z〉.

This can be done using known techniques. The combined state of the system can be written as
∑

x∈L∗,z∈Rn

exp
(−π‖rz‖2

)|x, z〉.

We now add the first register to the second (a reversible operation), and obtain
∑

x∈L∗,z∈Rn

exp
(−π‖rz‖2

)|x,x + z〉.

Finally, we would like to erase, or uncompute, the first register to obtain
∑

x∈L∗,z∈Rn

exp
(−π‖rz‖2

)|x + z〉 ≈
∑

z∈Rn

f1/r(z)|z〉.

However, ‘erasing’ a register is in general not a reversible operation. In order for it to be reversible, we need
to be able to compute x from the remaining register x + z. This is precisely why we need the CVPL∗,

√
n/r

oracle. It can be shown that almost all the mass of exp
(−π‖rz‖2

)
is on z such that ‖z‖ ≤ √

n/r. Hence,
x + z is within distance

√
n/r of the lattice and the oracle finds the closest lattice point, namely, x. This

allows us to erase the first register in a reversible way.
In the final part of the procedure, we apply the quantum Fourier transform. This yields the quantum

state corresponding to DL,r, namely, ∑

y∈L

DL,r(y)|y〉.

By measuring this state, we obtain a sample from the distribution DL,r (or in fact from D2
L,r = DL,r/

√
2 but

this is a minor issue).

2 Preliminaries

In this section we include some notation that will be used throughout the paper. Most of the notation is
standard. Some of the less standard notation is: the Gaussian function ρ (Eq. (4)), the Gaussian distribution
ν (Eq. (5)), the periodic normal distribution Ψ (Eq. (7)), the discretization of a distribution on T (Eq. (8)),
the discrete Gaussian distribution D (Eq. (6)), the unique closest lattice vector κ (above Lemma 2.3), and
the smoothing parameter η (Definition 2.10).

General. For two real numbers x and y > 0 we define x mod y as x− bx/ycy. For x ∈ R we define bxe
as the integer closest to x or, in case two such integers exist, the smaller of the two. For any integer p ≥ 2,
we write Zp for the cyclic group {0, 1, . . . , p − 1} with addition modulo p. We also write T for R/Z, i.e.,
the segment [0, 1) with addition modulo 1.

We define a negligible amount in n as an amount that is asymptotically smaller than n−c for any constant
c > 0. More precisely, f(n) is a negligible function in n if limn→∞ ncf(n) = 0 for any c > 0. Similarly, a
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non-negligible amount is one which is at least n−c for some c > 0. Also, when we say that an expression is
exponentially small in n we mean that it is at most 2−Ω(n). Finally, when we say that an expression (most
often, some probability) is exponentially close to 1, we mean that it is 1− 2−Ω(n).

We say that an algorithm A with oracle access is a distinguisher between two distributions if its ac-
ceptance probability when the oracle outputs samples of the first distribution and its acceptance probability
when the oracle outputs samples of the second distribution differ by a non-negligible amount.

Essentially all algorithms and reductions in this paper have an exponentially small error probability, and
we sometimes do not state this explicitly.

For clarity, we present some of our reductions in a model that allows operations on real numbers. It
is possible to modify them in a straightforward way so that they operate in a model that approximates real
numbers up to an error of 2−nc

for arbitrary large constant c in time polynomial in n.
Given two probability density functions φ1, φ2 on Rn, we define the statistical distance between them

as
∆(φ1, φ2) :=

∫

Rn

|φ1(x)− φ2(x)|dx

(notice that with this definition, the statistical distance ranges in [0, 2]). A similar definition can be given for
discrete random variables. The statistical distance satisfies the triangle inequality, i.e., for any φ1, φ2, φ3,

∆(φ1, φ3) ≤ ∆(φ1, φ2) + ∆(φ2, φ3).

Another important fact which we often use is that the statistical distance cannot increase by applying a
(possibly randomized) function f , i.e.,

∆(f(X), f(Y )) ≤ ∆(X,Y ),

see, e.g., [28]. In particular, this implies that the acceptance probability of any algorithm on inputs from X

differs from its acceptance probability on inputs from Y by at most 1
2∆(X,Y ) (the factor half coming from

the choice of normalization in our definition of ∆).

Gaussians and other distributions. Recall that the normal distribution with mean 0 and variance σ2 is
the distribution on R given by the density function 1√

2π·σ exp
(−1

2(x
σ )2

)
where exp (y) denotes ey. Also

recall that the sum of two independent normal variables with mean 0 and variances σ2
1 and σ2

2 is a normal
variable with mean 0 and variance σ2

1 + σ2
2 . For a vector x and any s > 0, let

ρs(x) := exp
(−π‖x/s‖2

)
(4)

be a Gaussian function scaled by a factor of s. We denote ρ1 by ρ. Note that
∫
x∈Rn ρs(x)dx = sn. Hence,

νs := ρs/sn (5)

is an n-dimensional probability density function and as before, we use ν to denote ν1. The dimension n

is implicit. Notice that a sample from the Gaussian distribution νs can be obtained by taking n indepen-
dent samples from the 1-dimensional Gaussian distribution. Hence, sampling from νs to within arbitrarily
good accuracy can be performed efficiently by using standard techniques. For simplicity, in this paper
we assume that we can sample from νs exactly.3 Functions are extended to sets in the usual way; i.e.,

3In practice, when only finite precision is available, νs can be approximated by picking a fine grid, and picking points from the
grid with probability approximately proportional to νs. All our arguments can be made rigorous by selecting a sufficiently fine grid.
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ρs(A) =
∑

x∈A ρs(x) for any countable set A. For any vector c ∈ Rn, we define ρs,c(x) := ρs(x − c) to
be a shifted version of ρs. The following simple claim bounds the amount by which ρs(x) can shrink by a
small change in x.

Claim 2.1 For all s, t, l > 0 and x,y ∈ Rn with ‖x‖ ≤ t and ‖x− y‖ ≤ l,

ρs(y) ≥ (1− π(2lt + l2)/s2)ρs(x).

Proof: Using the inequality e−z ≥ 1− z,

ρs(y) = e−π‖y/s‖2 ≥ e−π(‖x‖/s+l/s)2 = e−π(2l‖x‖/s2+(l/s)2)ρs(x) ≥ (1− π(2lt + l2)/s2)ρs(x).

For any countable set A and a parameter s > 0, we define the discrete Gaussian probability distribution
DA,s as

∀x ∈ A, DA,s(x) :=
ρs(x)
ρs(A)

. (6)

See Figure 2 for an illustration.
For β ∈ R+ the distribution Ψβ is the distribution on T obtained by sampling from a normal variable

with mean 0 and standard deviation β√
2π

and reducing the result modulo 1 (i.e., a periodization of the normal
distribution),

∀r ∈ [0, 1), Ψβ(r) :=
∞∑

k=−∞

1
β
· exp

(
−π

(r − k

β

)2
)

. (7)

Clearly, one can efficiently sample from Ψβ . The following technical claim shows that a small change in
the parameter β does not change the distribution Ψβ by much.

Claim 2.2 For any 0 < α < β ≤ 2α,

∆(Ψα,Ψβ) ≤ 9
(β

α
− 1

)
.

Proof: We will show that the statistical distance between a normal variable with standard deviation α/
√

2π

and one with standard deviation β/
√

2π is at most 9(β
α−1). This implies the claim since applying a function

(modulo 1 in this case) cannot increase the statistical distance. By scaling, we can assume without loss of
generality that α = 1 and β = 1+ε for some 0 < ε ≤ 1. Then the statistical distance that we wish to bound
is given by
∫

R

∣∣∣∣e−πx2 − 1
1 + ε

e−πx2/(1+ε)2
∣∣∣∣dx ≤

∫

R

∣∣e−πx2 − e−πx2/(1+ε)2
∣∣dx +

∫

R

∣∣∣∣
(
1− 1

1 + ε

)
e−πx2/(1+ε)2

∣∣∣∣dx

=
∫

R

∣∣e−πx2 − e−πx2/(1+ε)2
∣∣dx + ε

=
∫

R

∣∣e−π(1−1/(1+ε)2)x2 − 1
∣∣ e−πx2/(1+ε)2dx + ε.
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Now, since 1− z ≤ e−z ≤ 1 for all z ≥ 0,
∣∣e−π(1−1/(1+ε)2)x2 − 1

∣∣ ≤ π(1− 1/(1 + ε)2)x2 ≤ 2πεx2.

Hence we can bound the statistical distance above by

ε + 2πε

∫

R
x2e−πx2/(1+ε)2dx = ε + ε(1 + ε)3 ≤ 9ε.

For an arbitrary probability distribution with density function φ : T → R+ and some integer p ≥ 1 we
define its discretization φ̄ : Zp → R+ as the discrete probability distribution obtained by sampling from φ,
multiplying by p, and rounding to the closest integer modulo p. More formally,

φ̄(i) :=
∫ (i+1/2)/p

(i−1/2)/p
φ(x)dx. (8)

As an example, Ψ̄β is shown in Figure 1.
Let p ≥ 2 be some integer, and let χ : Zp → R+ be some probability distribution on Zp. Let n be an

integer and let s ∈ Zn
p be a vector. We define As,χ as the distribution on Zn

p × Zp obtained by choosing a
vector a ∈ Zn

p uniformly at random, choosing e ∈ Zp according to χ, and outputting (a, 〈a, s〉+ e), where
additions are performed in Zp, i.e., modulo p. We also define U as the uniform distribution on Zn

p × Zp.
For a probability density function φ on T, we define As,φ as the distribution on Zn

p × T obtained by
choosing a vector a ∈ Zn

p uniformly at random, choosing e ∈ T according to φ, and outputting (a, 〈a, s〉/p+
e), where the addition is performed in T, i.e., modulo 1.

Learning with errors. For an integer p = p(n) and a distribution χ on Zp, we say that an algorithm solves
LWEp,χ if, for any s ∈ Zn

p , given samples from As,χ it outputs s with probability exponentially close to
1. Similarly, for a probability density function φ on T, we say that an algorithm solves LWEp,φ if, for any
s ∈ Zn

p , given samples from As,φ it outputs s with probability exponentially close to 1. In both cases, we
say that the algorithm is efficient if it runs in polynomial time in n. Finally, we note that p is assumed to be
prime only in Lemma 4.2; In the rest of the paper, including the main theorem, p can be an arbitrary integer.

Lattices. We briefly review some basic definitions; for a good introduction to lattices, see [28]. A lattice
inRn is defined as the set of all integer combinations of n linearly independent vectors. This set of vectors is
known as a basis of the lattice and is not unique. Given a basis (v1, . . . ,vn) of a lattice L, the fundamental
parallelepiped generated by this basis is defined as

P(v1, . . . ,vn) =

{
n∑

i=1

xivi

∣∣∣∣∣ xi ∈ [0, 1)

}
.

When the choice of basis is clear, we write P(L) instead of P(v1, . . . ,vn). For a point x ∈ Rn we define
x mod P(L) as the unique point y ∈ P(L) such that y − x ∈ L. We denote by det(L) the volume of the
fundamental parallelepiped of L or equivalently, the absolute value of the determinant of the matrix whose
columns are the basis vectors of the lattice (det(L) is a lattice invariant, i.e., it is independent of the choice
of basis). The dual of a lattice L in Rn, denoted L∗, is the lattice given by the set of all vectors y ∈ Rn
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such that 〈x,y〉 ∈ Z for all vectors x ∈ L. Similarly, given a basis (v1, . . . ,vn) of a lattice, we define the
dual basis as the set of vectors (v∗1, . . . ,v

∗
n) such that 〈vi,v∗j 〉 = δij for all i, j ∈ [n] where δij denotes the

Kronecker delta, i.e., 1 if i = j and 0 otherwise. With a slight abuse of notation, we sometimes write L for
the n × n matrix whose columns are v1, . . . ,vn. With this notation, we notice that L∗ = (LT )−1. From
this it follows that det(L∗) = 1/det(L). As another example of this notation, for a point v ∈ L we write
L−1v to indicate the integer coefficient vector of v.

Let λ1(L) denote the length of the shortest nonzero vector in the lattice L. We denote by λn(L) the
minimum length of a set of n linearly independent vectors from L, where the length of a set is defined as
the length of longest vector in it. For a lattice L and a point v whose distance from L is less than λ1(L)/2
we define κL(v) as the (unique) closest point to v in L. The following useful fact, due to Banaszczyk, is
known as a ‘transference theorem’. We remark that the lower bound is easy to prove.

Lemma 2.3 ([9], Theorem 2.1) For any lattice n-dimensional L, 1 ≤ λ1(L) · λn(L∗) ≤ n.

Two other useful facts by Banaszczyk are the following. The first bounds the amount by which the Gaussian
measure of a lattice changes by scaling; the second shows that for any lattice L, the mass given by the
discrete Gaussian measure DL,r to points of norm greater than

√
nr is at most exponentially small (the

analogous statement for the continuous Gaussian νr is easy to establish).

Lemma 2.4 ([9], Lemma 1.4(i)) For any lattice L and a ≥ 1, ρa(L) ≤ anρ(L).

Lemma 2.5 ([9], Lemma 1.5(i)) Let Bn denote the Euclidean unit ball. Then, for any lattice L and any
r > 0, ρr(L \

√
nrBn) < 2−2n · ρr(L), where L \ √nrBn is the set of lattice points of norm greater than√

nr.

In this paper we consider the following lattice problems. The first two, the decision version of the
shortest vector problem (GAPSVP) and the shortest independent vectors problem (SIVP), are among the
most well-known lattice problems and are concerned with λ1 and λn, respectively. In the definitions below,
γ = γ(n) ≥ 1 is the approximation factor, and the input lattice is given in the form of some arbitrary basis.

Definition 2.6 An instance of GAPSVPγ is given by an n-dimensional lattice L and a number d > 0. In
YES instances, λ1(L) ≤ d whereas in NO instances λ1(L) > γ(n) · d.

Definition 2.7 An instance of SIVPγ is given by an n-dimensional lattice L. The goal is to output a set of
n linearly independent lattice vectors of length at most γ(n) · λn(L).

A useful generalization of SIVP is the following somewhat less standard lattice problem, known as the
generalized independent vectors problem (GIVP). Here, ϕ denotes an arbitrary real-valued function on
lattices. Choosing ϕ = λn results in SIVP.

Definition 2.8 An instance of GIVPϕ
γ is given by an n-dimensional lattice L. The goal is to output a set of

n linearly independent lattice vectors of length at most γ(n) · ϕ(L).

Another useful (and even less standard) lattice problem is the following. We call it the discrete Gaussian
sampling problem (DGS). As before, ϕ denotes an arbitrary real-valued function on lattices.
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Definition 2.9 An instance of DGSϕ is given by an n-dimensional lattice L and a number r > ϕ(L). The
goal is to output a sample from DL,r.

We also consider a variant of the closest vector problem (which is essentially what is known as the bounded
distance decoding problem [25]): For an n-dimensional lattice L, and some d > 0, we say that an algorithm
solves CVPL,d if, given a point x ∈ Rn whose distance to L is at most d, the algorithm finds the closest
lattice point to x. In this paper d will always be smaller than λ1(L)/2 and hence the closest vector is unique.

The smoothing parameter. We make heavy use of a lattice parameter known as the smoothing parameter
[29]. Intuitively, this parameter provides the width beyond which the discrete Gaussian measure on a lattice
behaves like a continuous one. The precise definition is the following.

Definition 2.10 For an n-dimensional lattice L and positive real ε > 0, we define the smoothing parameter
ηε(L) to be the smallest s such that ρ1/s(L∗ \ {0}) ≤ ε.

In other words, ηε(L) is the smallest s such that a Gaussian measure scaled by 1/s on the dual lattice
L∗ gives all but ε/(1 + ε) of its weight to the origin. We usually take ε to be some negligible function
of the lattice dimension n. Notice that ρ1/s(L∗ \ {0}) is a continuous and strictly decreasing function of
s. Moreover, it can be shown that lims→0 ρ1/s(L∗ \ {0}) = ∞ and lims→∞ ρ1/s(L∗ \ {0}) = 0. So, the
parameter ηε(L) is well defined for any ε > 0, and ε 7→ ηε(L) is the inverse function of s 7→ ρ1/s(L∗\{0}).
In particular, ηε(L) is also a continuous and strictly decreasing function of ε.

The motivation for this definition (and the name ‘smoothing parameter’) comes from the following
result, shown in [29] (and included here as Claim 3.8). Informally, it says that if we choose a ‘random’
lattice point from an n-dimensional lattice L and add continuous Gaussian noise νs for some s > ηε(L)
then the resulting distribution is within statistical distance ε of the ‘uniform distribution on Rn’. In this
paper, we show (in Claim 3.9) another important property of this parameter: for s >

√
2ηε(L), if we

sample a point from DL,s and add Gaussian noise νs, we obtain a distribution whose statistical distance to
a continuous Gaussian ν√2s is at most 4ε. Notice that ν√2s is the distribution one obtains when summing
two independent samples from νs. Hence, intuitively, the noise νs is enough to hide the discrete structure of
DL,s.

The following two upper bounds on the smoothing parameter appear in [29].

Lemma 2.11 For any n-dimensional lattice L, ηε(L) ≤ √
n/λ1(L∗) where ε = 2−n.

Lemma 2.12 For any n-dimensional lattice L and ε > 0,

ηε(L) ≤
√

ln(2n(1 + 1/ε))
π

· λn(L).

In particular, for any superlogarithmic function ω(log n), ηε(n)(L) ≤
√

ω(log n)·λn(L) for some negligible
function ε(n).

We also need the following simple lower bound on the smoothing parameter.

Claim 2.13 For any lattice L and any ε > 0,

ηε(L) ≥
√

ln 1/ε

π
· 1
λ1(L∗)

≥
√

ln 1/ε

π
· λn(L)

n
.
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In particular, for any ε(n) = o(1) and any constant c > 0, ηε(n)(L) > c/λ1(L∗) ≥ cλn(L)/n for large
enough n.

Proof: Let v ∈ L∗ be a vector of length λ1(L∗) and let s = ηε(L). Then,

ε = ρ1/s(L
∗ \ {0}) ≥ ρ1/s(v) = exp

(−π(sλ1(L∗))2
)
.

The first inequality follows by solving for s. The second inequality is by Lemma 2.3.

The Fourier transform. We briefly review some of the important properties of the Fourier transform. In
the following, we omit certain technical conditions as these will always be satisfied in our applications. For
a more precise and in-depth treatment, see, e.g., [14]. The Fourier transform of a function h : Rn → C is
defined to be

ĥ(w) =
∫

Rn

h(x)e−2πi〈x,w〉dx.

From the definition we can obtain two useful formulas; first, if h is defined by h(x) = g(x + v) for some
function g and vector v then

ĥ(w) = e2πi〈v,w〉ĝ(w). (9)

Similarly, if h is defined by h(x) = e2πi〈x,v〉g(x) for some function g and vector v then

ĥ(w) = ĝ(w − v). (10)

Another important fact is that the Gaussian is its own Fourier transform, i.e., ρ̂ = ρ. More generally,
for any s > 0 it holds that ρ̂s = snρ1/s. Finally, we will use the following formulation of the Poisson
summation formula.

Lemma 2.14 (Poisson summation formula) For any lattice L and any function f : Rn → C,

f(L) = det(L∗)f̂(L∗).

3 Main Theorem

Our main theorem is the following. The connection to the standard lattice problems GAPSVP and SIVP
will be established in Subsection 3.3 by polynomial time reductions to DGS.

Theorem 3.1 (Main theorem) Let ε = ε(n) be some negligible function of n. Also, let p = p(n) be some
integer and α = α(n) ∈ (0, 1) be such that αp > 2

√
n. Assume that we have access to an oracle W that

solves LWEp,Ψα given a polynomial number of samples. Then there exists an efficient quantum algorithm
for DGS√2n·ηε(L)/α.

Proof: The input to our algorithm is an n-dimensional lattice L and a number r >
√

2n · ηε(L)/α. Our
goal is to output a sample from DL,r. Let ri denote r · (αp/

√
n)i. The algorithm starts by producing nc

samples from DL,r3n where c is the constant from the iterative step lemma, Lemma 3.3. By Claim 2.13,
r3n > 23nr > 22nλn(L), and hence we can produce these samples efficiently by the procedure described in
the bootstrapping lemma, Lemma 3.2. Next, for i = 3n, 3n − 1, . . . , 1 we use our nc samples from DL,ri

to produce nc samples from DL,ri−1 . The procedure that does this, called the iterative step, is the core of
the algorithm and is described in Lemma 3.3. Notice that the condition in Lemma 3.3 is satisfied since for
all i ≥ 1, ri ≥ r1 = rαp/

√
n >

√
2pηε(L). At the end of the loop, we end up with nc samples from

DL,r0 = DL,r and we complete the algorithm by simply outputting the first of those.
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3.1 Bootstrapping

Lemma 3.2 (Bootstrapping) There exists an efficient algorithm that, given any n-dimensional lattice L

and r > 22nλn(L), outputs a sample from a distribution that is within statistical distance 2−Ω(n) of DL,r.

Proof: By using the LLL basis reduction algorithm [24], we obtain a basis for L of length at most 2nλn(L)
and let P(L) be the parallelepiped generated by this basis. The sampling procedure samples a vector y from
νr and then outputs y − (y mod P(L)) ∈ L. Notice that ‖y mod P(L)‖ ≤ diam(P(L)) ≤ n2nλn(L).

Our goal is to show that the resulting distribution is exponentially close to DL,r. By Lemma 2.5, all
but an exponentially small part of DL,r is concentrated on points of norm at most

√
nr. So consider any

x ∈ L with ‖x‖ ≤ √
nr. By definition, the probability given to it by DL,r is ρr(x)/ρr(L). By Lemma 2.14,

the denominator is ρr(L) = det(L∗) · rnρ1/r(L∗) ≥ det(L∗) · rn and hence the probability is at most
ρr(x)/(det(L∗) · rn) = det(L)νr(x). On the other hand, by Claim 2.1, the probability given to x ∈ L by
our procedure is ∫

x+P(L)
νr(y)dy ≥ (1− 2−Ω(n)) det(L)νr(x).

Together, these facts imply that our output distribution is within statistical distance 2−Ω(n) of DL,r.

3.2 The iterative step

Lemma 3.3 (The iterative step) Let ε = ε(n) be a negligible function, α = α(n) ∈ (0, 1) be a real
number, and p = p(n) ≥ 2 be an integer. Assume that we have access to an oracle W that solves LWEp,Ψα

given a polynomial number of samples. Then, there exists a constant c > 0 and an efficient quantum
algorithm that, given any n-dimensional lattice L, a number r >

√
2pηε(L), and nc samples from DL,r,

produces a sample from DL,r
√

n/(αp).

Note that the output distribution is taken with respect to the randomness (and quantum measurements) used
in the algorithm, and not with respect to the input samples. In particular, this means that from the same set
of nc samples from DL,r we can produce any polynomial number of samples from DL,r

√
n/(αp).

Proof: The algorithm consists of two main parts. The first part is shown in Lemma 3.4. There, we de-
scribe a (classical) algorithm that using W and the samples from DL,r, solves CVPL∗,αp/(

√
2r). The second

part is shown in Lemma 3.14. There, we describe a quantum algorithm that, given an oracle that solves
CVPL∗,αp/(

√
2r), outputs a sample from DL,r

√
n/(αp). This is the only quantum component in this paper. We

note that the condition in Lemma 3.14 is satisfied since by Claim 2.13, αp/(
√

2r) ≤ 1/ηε(L) ≤ λ1(L∗)/2.

3.2.1 From samples to CVP

Our goal in this subsection is to prove the following.

Lemma 3.4 (First part of iterative step) Let ε = ε(n) be a negligible function, p = p(n) ≥ 2 be an
integer, and α = α(n) ∈ (0, 1) be a real number. Assume that we have access to an oracle W that solves
LWEp,Ψα given a polynomial number of samples. Then, there exist a constant c > 0 and an efficient
algorithm that, given any n-dimensional lattice L, a number r >

√
2pηε(L), and nc samples from DL,r,

solves CVPL∗,αp/(
√

2r).
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For an n-dimensional lattice L, some 0 < d < λ1(L)/2, and an integer p ≥ 2, we say that an algorithm
solves CVP(p)

L,d if, given any point x ∈ Rn within distance d of L, it outputs L−1κL(x) mod p ∈ Zn
p , the

coefficient vector of the closest vector to x reduced modulo p. We start with the following lemma, which
shows a reduction from CVPL,d to CVP(p)

L,d.

Lemma 3.5 (Finding coefficients modulo p is sufficient) There exists an efficient algorithm that given a
lattice L, a number d < λ1(L)/2 and an integer p ≥ 2, solves CVPL,d given access to an oracle for
CVP(p)

L,d.

Proof: Our input is a point x within distance d of L. We define a sequence of points x1 = x,x2,x3, . . .

as follows. Let ai = L−1κL(xi) ∈ Zn be the coefficient vector of the closest lattice point to xi. We define
xi+1 = (xi − L(ai mod p))/p. Notice that the closest lattice point to xi+1 is L(ai − (ai mod p))/p ∈ L

and hence ai+1 = (ai − (ai mod p))/p. Moreover, the distance of xi+1 from L is at most d/pi. Also note
that this sequence can be computed by using the oracle.

After n steps, we have a point xn+1 whose distance to the lattice is at most d/pn. We now apply an
algorithm for approximately solving the closest vector problem, such as Babai’s nearest plane algorithm [8].
This yields a lattice point La within distance 2n · d/pn ≤ d < λ1(L)/2 of xn+1. Hence, La is the lattice
point closest to xn+1 and we managed to recover an+1 = a. Knowing an+1 and an mod p (by using
the oracle), we can now recover an = pan+1 + (an mod p). Continuing this process, we can recover
an−1,an−2, . . . ,a1. This completes the algorithm since La1 is the closest point to x1 = x.

As we noted in the proof of Lemma 3.3, for our choice of r, αp/(
√

2r) ≤ λ1(L∗)/2. Hence, in order to
prove Lemma 3.4, it suffices to present an efficient algorithm for CVP(p)

L∗,αp/(
√

2r)
. We do this by combining

two lemmas. The first, Lemma 3.7, shows an algorithm W ′ that, given samples from As,Ψβ
for some

(unknown) β ≤ α, outputs s with probability exponentially close to 1 by using W as an oracle. Its proof
is based on Lemma 3.6. The second, Lemma 3.11, is the main lemma of this subsection, and shows how to
use W ′ and the given samples from DL,r in order to solve CVP(p)

L∗,αp/(
√

2r)
.

Lemma 3.6 (Verifying solutions of LWE) Let p = p(n) ≥ 1 be some integer. There exists an efficient
algorithm that, given s′ and samples from As,Ψα for some (unknown) s ∈ Zn

p and α < 1, outputs whether
s = s′ and is correct with probability exponentially close to 1.

We remark that the lemma holds also for all α ≤ O(
√

log n) with essentially the same proof.

Proof: The idea is to perform a statistical test on samples from As,Ψα that checks whether s = s′. Let ξ

be the distribution on T obtained by sampling (a, x) from As,Ψα and outputting x − 〈a, s′〉/p ∈ T. The
algorithm takes n samples y1, . . . , yn from ξ. It then computes z := 1

n

∑n
i=1 cos(2πyi). If z > 0.02, it

decides that s = s′, otherwise it decides that s 6= s′.
We now analyze this algorithm. Consider the distribution ξ. Notice that it be obtained by sampling e

from Ψα, sampling a uniformly from Zn
p and outputting e + 〈a, s− s′〉/p ∈ T. From this it easily follows

that if s = s′, ξ is exactly Ψα. Otherwise, if s 6= s′, we claim that ξ has a period of 1/k for some integer
k ≥ 2. Indeed, let j be an index on which sj 6= s′j . Then the distribution of aj(sj − s′j) mod p is periodic
with period gcd(p, sj − s′j) < p. This clearly implies that the distribution of aj(sj − s′j)/p mod 1 is
periodic with period 1/k for some k ≥ 2. Since a sample from ξ can be obtained by adding a sample from
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aj(sj − s′j)/p mod 1 and an independent sample from some other distribution, we obtain that ξ also has the
same period of 1/k.

Consider the expectation4

z̃ := Exp
y∼ξ

[cos(2πy)] =
∫ 1

0
cos(2πy)ξ(y)dy = Re

[ ∫ 1

0
exp (2πiy)ξ(y)dy

]
.

First, a routine calculation shows that for ξ = Ψα, z̃ = exp
(−πα2

)
, which is at least 0.04 for α < 1.

Moreover, if ξ has a period of 1/k, then
∫ 1

0
exp (2πiy)ξ(y)dy =

∫ 1

0
exp

(
2πi(y + 1

k )
)
ξ(y)dy = exp (2πi/k)

∫ 1

0
exp (2πiy)ξ(y)dy

which implies that if k ≥ 2 then z̃ = 0. We complete the proof by noting that by the Chernoff bound,
|z − z̃| ≤ 0.01 with probability exponentially close to 1.

Lemma 3.7 (Handling error Ψβ for β ≤ α) Let p = p(n) ≥ 2 be some integer and α = α(n) ∈ (0, 1).
Assume that we have access to an oracle W that solves LWEp,Ψα by using a polynomial number of samples.
Then, there exists an efficient algorithm W ′ that, given samples from As,Ψβ

for some (unknown) β ≤ α,
outputs s with probability exponentially close to 1.

Proof: The proof is based on the following idea: by adding the right amount of noise, we can transform
samples from As,Ψβ

to samples from As,Ψα (or something sufficiently close to it). Assume that the number
of samples required by W is at most nc for some c > 0. Let Z be the set of all integer multiplies of n−2cα2

between 0 and α2. For each γ ∈ Z, Algorithm W ′ does the following n times. It takes nc samples from
As,Ψβ

and adds to the second element of each sample a noise sampled independently from Ψ√
γ . This creates

nc samples taken from the distribution As,Ψ√
β2+γ

. It then applies W and obtains some candidate s′. Using

Lemma 3.6, it checks whether s′ = s. If the answer is yes, it outputs s′; otherwise, it continues.
We now show that W ′ finds s with probability exponentially close to 1. By Lemma 3.6, if W ′ outputs

some value, then this value is correct with probability exponentially close to 1. Hence, it is enough to show
that in one of the iterations, W ′ outputs some value. Consider the smallest γ ∈ Z such that γ ≥ α2 − β2.
Clearly, γ ≤ α2 − β2 + n−2cα2. Define α′ =

√
β2 + γ. Then,

α ≤ α′ ≤
√

α2 + n−2cα2 ≤ (1 + n−2c)α.

By Claim 2.2, the statistical distance between Ψα and Ψα′ is at most 9n−2c. Hence, the statistical distance
between nc samples from Ψα and nc samples from Ψα′ is at most 9n−c. Therefore, for our choice of γ, W

outputs s with probability at least 1 − 9n−c/2 − 2−Ω(n) ≥ 1
2 . The probability that s is not found in any of

the n calls to W is at most 2−n.

For the analysis of our main procedure in Lemma 3.11, we will need to following claims regarding
Gaussian measures on lattices. On first reading, the reader can just read the statements of Claim 3.8 and
Corollary 3.10 and skip directly to Lemma 3.11. All claims show that in some sense, when working above
the smoothing parameter, the discrete Gaussian measure behaves like the continuous Gaussian measure. We
start with the following claim, showing that above the smoothing parameter, the discrete Gaussian measure
is essentially invariant under shifts.

4We remark that this expectation is essentially the Fourier series of ξ at point 1 and that the following arguments can be explained
in terms of properties of the Fourier series.
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Claim 3.8 For any lattice L, c ∈ Rn, ε > 0, and r ≥ ηε(L),

ρr(L + c) ∈ rn det(L∗)(1± ε).

Proof: Using the Poisson summation formula (Lemma 2.14) and the assumption that ρ1/r(L∗ \ {0}) ≤ ε,

ρr(L + c) =
∑

x∈L

ρr(x + c) =
∑

x∈L

ρr,−c(x)

= det(L∗)
∑

y∈L∗
ρ̂r,−c(y)

= rn det(L∗)
∑

y∈L∗
exp (2πi〈c,y〉)ρ1/r(y)

= rn det(L∗)(1± ε).

The following claim (which is only used to establish the corollary following it) says that when adding a
continuous Gaussian of width s to a discrete Gaussian of width r, with both r and s sufficiently greater than
the smoothing parameter, the resulting distribution is very close to a continuous Gaussian of the width we
would expect, namely

√
r2 + s2. To get some intuition on why we need to assume that both Gaussians are

sufficiently wide, notice for instance that if the discrete Gaussian is very narrow, then it is concentrated on
the origin, making the sum have width s. Also, if the continuous Gaussian is too narrow, then the discrete
structure is still visible in the sum.

Claim 3.9 Let L be a lattice, let u ∈ Rn be any vector, let r, s > 0 be two reals, and let t denote
√

r2 + s2.
Assume that rs/t = 1/

√
1/r2 + 1/s2 ≥ ηε(L) for some ε < 1

2 . Consider the continuous distribution Y on
Rn obtained by sampling from DL+u,r and then adding a noise vector taken from νs. Then, the statistical
distance between Y and νt is at most 4ε.

Proof: The probability density function of Y can be written as

Y (x) =
1

snρr(L + u)

∑

y∈L+u

ρr(y)ρs(x− y)

=
1

snρr(L + u)

∑

y∈L+u

exp
(−π(‖y/r‖2 + ‖(x− y)/s‖2)

)

=
1

snρr(L + u)

∑

y∈L+u

exp
(
−π

(r2 + s2

r2 · s2
·
∥∥∥y − r2

r2 + s2
x
∥∥∥

2
+

1
r2 + s2

‖x‖2
))

= exp
(
− π

r2 + s2
‖x‖2

)
1

snρr(L + u)

∑

y∈L+u

exp
(
−π

(r2 + s2

r2 · s2
·
∥∥∥y − r2

r2 + s2
x
∥∥∥

2))

=
1
sn

ρt(x) · ρrs/t,(r/t)2x−u(L)
ρr,−u(L)

=
1
sn

ρt(x) · ̂ρrs/t,(r/t)2x−u(L∗)
ρ̂r,−u(L∗)

= ρt(x)/tn · (t/rs)n ̂ρrs/t,(r/t)2x−u(L∗)
(1/r)nρ̂r,−u(L∗)

(11)
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where in the next-to-last equality we used Lemma 2.14. Using Eq. (9),

̂ρrs/t,(r/t)2x−u(w) = exp
(−2πi〈(r/t)2x− u,w〉) · (rs/t)nρt/rs(w),

ρ̂r,−u(w) = exp (2πi〈u,w〉) · rnρ1/r(w).

Hence,
∣∣∣1− (t/rs)n ̂ρrs/t,(r/t)2x−u(L∗)

∣∣∣ ≤ ρt/rs(L
∗ \ {0}) ≤ ε

∣∣∣1− (1/r)nρ̂r,−u(L∗)
∣∣∣ ≤ ρ1/r(L

∗ \ {0}) ≤ ε

where the last inequality follows from 1/r ≤ t/rs. Hence, the quotient in (11) is between (1−ε)/(1+ε) ≥
1− 2ε and (1 + ε)/(1− ε) ≤ 1 + 4ε. This implies that,

|Y (x)− ρt(x)/tn| ≤ ρt(x)/tn · 4ε.

We complete the proof by integrating over Rn.

Corollary 3.10 Let L be a lattice, let z,u ∈ Rn be vectors, and let r, α > 0 be two reals. Assume that
1/

√
1/r2 + (‖z‖/α)2 ≥ ηε(L) for some ε < 1

2 . Then the distribution of 〈z,v〉 + e where v is distributed
according to DL+u,r and e is a normal variable with mean 0 and standard deviation α/

√
2π, is within

statistical distance 4ε of a normal variable with mean 0 and standard deviation
√

(r‖z‖)2 + α2/
√

2π. In
particular, since statistical distance cannot increase by applying a function, the distribution of 〈z,v〉 +
e mod 1 is within statistical distance 4ε of Ψ√

(r‖z‖)2+α2 .

Proof: We first observe that the distribution of 〈z,v〉 + e is exactly the same as that of 〈z,v + h〉 where
h is distributed as the continuous Gaussian να/‖z‖. Next, by Claim 3.9, we know that the distribution
of v + h is within statistical distance 4ε of the continuous Gaussian ν√

r2+(α/‖z‖)2 . Taking the inner
product of this continuous Gaussian with z leads to a normal distribution with mean 0 and standard deviation√

(r‖z‖)2 + α2/
√

2π, and we complete the proof by using the fact that statistical distance cannot increase
by applying a function (inner product with z in this case).

Lemma 3.11 (Main procedure of the first part) Let ε = ε(n) be a negligible function, p = p(n) ≥ 2 be
an integer, and α = α(n) ∈ (0, 1) be a real number. Assume that we have access to an oracle W that for all
β ≤ α, finds s given a polynomial number of samples from As,Ψβ

(without knowing β). Then, there exists
an efficient algorithm that given an n-dimensional lattice L, a number r >

√
2pηε(L), and a polynomial

number of samples from DL,r, solves CVP(p)

L∗,αp/(
√

2r)
.

Proof: We describe a procedure that given x within distance αp/(
√

2r) of L∗, outputs samples from the dis-
tribution As,Ψβ

for some β ≤ α where s = (L∗)−1κL∗(x) mod p. By running this procedure a polynomial
number of times and then using W , we can find s.

The procedure works as follows. We sample a vector v ∈ L from DL,r, and let a = L−1v mod p. We
then output

(a, 〈x,v〉/p + e mod 1) (12)
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where e ∈ R is chosen according to a normal distribution with standard deviation α/(2
√

π). We claim that
the distribution given by this procedure is within negligible statistical distance of As,Ψβ

for some β ≤ α.
We first notice that the distribution of a is very close to uniform. Indeed, the probability of obtaining

each a ∈ Zn
p is proportional to ρr(pL + La). Using ηε(pL) = pηε(L) < r and Claim 3.8, the latter

is (r/p)n det(L∗)(1 ± ε), which implies that the statistical distance between the distribution of a and the
uniform distribution is negligible.

Next, we condition on any fixed value of a and consider the distribution of the second element in (12).
Define x′ = x− κL∗(x) and note that ‖x′‖ ≤ αp/(

√
2r). Then,

〈x,v〉/p + e mod 1 = 〈x′/p,v〉+ e + 〈κL∗(x),v〉/p mod 1.

Now,
〈κL∗(x),v〉 = 〈(L∗)−1κL∗(x), L−1v〉

since L−1 = (L∗)T . In words, this says that the inner product between κL∗(x) and v (and in fact, between
any vector in L∗ and any vector in L) is the same as the inner product between the corresponding coefficient
vectors. Since the coefficient vectors are integer,

〈κL∗(x),v〉mod p = 〈s,a〉mod p

from which it follows that 〈κL∗(x),v〉/p mod 1 is exactly 〈s,a〉/p mod 1.
We complete the proof by applying Corollary 3.10, which shows that the distribution of the remaining

part 〈x′/p,v〉 + e is within negligible statistical distance of Ψβ for β =
√

(r‖x′‖/p)2 + α2/2 ≤ α, as re-
quired. Here we used that the distribution of v is DpL+La,r (since we are conditioning on a), the distribution
of e is normal with mean 0 and standard deviation (α/

√
2)/
√

2π, and that

1/

√
1/r2 + (

√
2‖x′‖/pα)2 ≥ r/

√
2 > ηε(pL).

3.2.2 From CVP to samples

In this subsection we describe a quantum procedure that uses a CVP oracle in order to create samples from
the discrete Gaussian distribution. We assume familiarity with some basic notions of quantum computa-
tion, such as (pure) states, measurements, and the quantum Fourier transform. See, e.g., [31] for a good
introduction. For clarity, we often omit the normalization factors from quantum states.

The following lemma shows that we can efficiently create a ‘discrete quantum Gaussian state’ of width
r as long as r is large enough compared with λn(L). It can be seen as the quantum analogue of Lemma 3.2.
The assumption that L ⊆ Zn is essentially without loss of generality since a lattice with rational coordinates
can always be rescaled so that L ⊆ Zn.

Lemma 3.12 There exists an efficient quantum algorithm that, given an n-dimensional lattice L ⊆ Zn and
r > 22nλn(L), outputs a state that is within `2 distance 2−Ω(n) of the normalized state corresponding to

∑

x∈L

√
ρr(x)|x〉 =

∑

x∈L

ρ√2r(x)|x〉. (13)
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Proof: We start by creating the ‘one-dimensional Gaussian state’
√

nr∑

x=−√nr

e−π(x/(
√

2r))2 |x〉. (14)

This state can be created efficiently using a technique by Grover and Rudolph [18] who show that in or-
der to create such a state, it suffices to be able to compute for any a, b ∈ {−√nr, . . . ,

√
nr} the sum∑b

x=a e−π(x/r)2 to within good precision. This can be done using the same standard techniques used in
sampling from the normal distribution.

Repeating the procedure described above n times, creates a system whose state is the n-fold tensor
product of the state in Eq. (14), which can be written as

∑

x∈{−√nr,...,
√

nr}n

ρ√2r(x)|x〉.

Since Zn ∩ √nrBn ⊆ {−√nr, . . . ,
√

nr}n, Lemma 2.5 implies that this state is within `2 distance 2−Ω(n)

of
∑

x∈Zn

ρ√2r(x)|x〉 (15)

and hence for our purposes we can assume that we have generated the state in Eq. (15).
Next, using the LLL basis reduction algorithm [24], we obtain a basis for L of length at most 2nλn(L)

and let P(L) be the parallelepiped generated by this basis. We now compute in a new register x mod P(L)
and measure it. Let y ∈ P(L) denote the result and note that ‖y‖ ≤ diam(P(L)) ≤ n2nλn(L). The state
we obtain after the measurement is ∑

x∈L+y

ρ√2r(x)|x〉.

Finally, we subtract y from our register, and obtain
∑

x∈L

ρ√2r(x + y)|x〉.

Our goal is to show that this state is within `2 distance 2−Ω(n) of the one in Eq. (13). First, by Lemma 2.5,
all but an exponentially small part of the `2 norm of the state in Eq. (13) is concentrated on points of norm
at most

√
n · r. So consider any x ∈ L with ‖x‖ ≤ √

n · r. The amplitude squared given to it in Eq. (13) is
ρr(x)/ρr(L). By Lemma 2.14, the denominator is ρr(L) = det(L∗) · rnρ1/r(L∗) ≥ det(L∗) · rn and hence
the amplitude squared is at most ρr(x)/(det(L∗) · rn) = det(L)νr(x).

On the other hand, the amplitude squared given to x by our procedure is ρr(x + y)/ρr(L + y). By
Lemma 2.14, the denominator is

ρr(L + y) = det(L∗) · rn
∑

z∈L∗
e2πi〈z,y〉ρ1/r(z) ≤ (1 + 2−Ω(n)) det(L∗) · rn.

To obtain this inequality, first note that by the easy part of Lemma 2.3, λ1(L∗) ≥ 1/λn(L) >
√

n/r, and
then apply Lemma 2.5. Moreover, by Claim 2.1, the numerator is at least (1 − 2−Ω(n))ρr(x). Hence, the
amplitude squared given to x is at least (1− 2−Ω(n)) det(L)νr(x), as required.
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For a lattice L and a positive integer R, we denote by L/R the lattice obtained by scaling down L by a
factor of R. The following technical claim follows from the fact that almost all the mass of ρ is on points of
norm at most

√
n.

Claim 3.13 Let R ≥ 1 be an integer and L be an n-dimensional lattice satisfying λ1(L) > 2
√

n. Let
P(L) be some basic parallelepiped of L. Then, the `2 distance between the normalized quantum states
corresponding to

|ϑ1〉 =
∑

x∈L/R,‖x‖<√n

ρ(x)|x mod P(L)〉, and

|ϑ2〉 =
∑

x∈L/R

ρ(x)|x mod P(L)〉 =
∑

x∈L/R∩P(L)

∑

y∈L

ρ(x− y)|x〉

is 2−Ω(n).

Proof: We think of |ϑ1〉 and |ϑ2〉 as vectors in Rn-dimensional space. Let Z be the `2 norm of |ϑ1〉. In the
following we show that the `2 distance between |ϑ1〉 and |ϑ2〉 is at most 2−Ω(n)Z. This is enough to establish
that the `2 distance between the normalized quantum states corresponding to |ϑ1〉 and |ϑ2〉 is exponentially
small.

We first obtain a good estimate of Z. Since λ1(L) > 2
√

n, each ‘ket’ in the definition of |ϑ1〉 appears
in the sum only once, and so

Z =
∑

x∈L/R,‖x‖<√n

ρ(x)2 = ρ(
√

2L/R ∩
√

2nBn).

By applying Lemma 2.5 to the lattice
√

2L/R, we obtain that

(1− 2−2n)ρ(
√

2L/R) ≤ Z ≤ ρ(
√

2L/R).

We complete the proof with an upper bound on the `2 distance between the two vectors. Using the mono-
tonicity of norms,

‖|ϑ1〉 − |ϑ2〉‖2 ≤ ‖|ϑ1〉 − |ϑ2〉‖1

=
∑

x∈L/R,‖x‖≥√n

ρ(x)

≤ 2−2nρ(L/R) (by Lemma 2.5)

≤ 2−2n2n/2ρ(
√

2L/R) (by Lemma 2.4)

≤ 2−nρ(
√

2L/R).

We now prove the main lemma of this subsection.

Lemma 3.14 (Second part of iterative step) There exists an efficient quantum algorithm that, given any
n-dimensional lattice L, a number d < λ1(L∗)/2, and an oracle that solves CVPL∗,d, outputs a sample
from DL,

√
n/(

√
2d).

26



Proof: By scaling, we can assume without loss of generality that d =
√

n. Let R ≥ 23nλn(L∗) be a large
enough integer. We can assume that log R is polynomial in the input size (since such an R can be computed
in polynomial time given the lattice L). Our first step is to create a state exponentially close to

∑

x∈L∗/R∩P(L∗)

∑

y∈L∗
ρ(x− y)|x〉. (16)

This is a state on n log R qubits, a number that is polynomial in the input size. To do so, we first use
Lemma 3.12 with r = 1/

√
2 and the lattice L∗/R to create the state

∑

x∈L∗/R

ρ(x)|x〉.

By Lemma 2.5, this is exponentially close to
∑

x∈L∗/R,‖x‖<√n

ρ(x)|x〉.

Next, we compute x mod P(L∗) in a new register and obtain
∑

x∈L∗/R,‖x‖<√n

ρ(x)|x,x mod P(L∗)〉.

Using the CVP oracle, we can recover x from x mod P(L∗). This allows us to uncompute the first register
and obtain ∑

x∈L∗/R,‖x‖<√n

ρ(x)|x mod P(L∗)〉.

Using Claim 3.13, this state is exponentially close to the required state (16).
In the second step, we apply the quantum Fourier transform. First, using the natural mapping between

L∗/R ∩ P(L∗) and Zn
R, we can rewrite (16) as

∑

s∈Zn
R

∑

r∈Zn

ρ(L∗s/R− L∗r)|s〉.

We now apply the quantum Fourier transform on Zn
R. We obtain a state in which the amplitude of |t〉 for

t ∈ Zn
R is proportional to

∑

s∈Zn
R

∑

r∈Zn

ρ(L∗s/R− L∗r) exp(2πi〈s, t〉/R)

=
∑

s∈Zn

ρ(L∗s/R) exp(2πi〈s, t〉/R)

=
∑

x∈L∗/R

ρ(x) exp(2πi〈(L∗)−1x, t〉)

=
∑

x∈L∗/R

ρ(x) exp(2πi〈x, Lt〉)

= det(RL)
∑

y∈RL

ρ(y − Lt)

27



where the last equality follows from Lemma 2.14 and Eq. (10). Hence, the resulting state can be equivalently
written as ∑

x∈P(RL)∩L

∑

y∈RL

ρ(y − x)|x〉.

Notice that λ1(RL) = Rλ1(L) ≥ R/λn(L∗) ≥ 23n. Hence, we can apply Claim 3.13 to the lattice RL,
and obtain that this state is exponentially close to

∑

x∈L,‖x‖<√n

ρ(x)|x mod P(RL)〉.

We measure this state and obtain x mod P(RL) for some vector x with ‖x‖ <
√

n. Since x mod P(RL)
is within

√
n of the lattice RL, and λ1(RL) ≥ 23n, we can recover x by using, say, Babai’s nearest plane

algorithm [8]. The output of the algorithm is x.
We claim that the distribution of x is exponentially close to DL,1/

√
2. Indeed, the probability of obtaining

any x ∈ L, ‖x‖ <
√

n is proportional to ρ(x)2 = ρ1/
√

2(x). It remains to notice that by Lemma 2.5, all but
an exponentially small fraction of the probability distribution DL,1/

√
2 is on points of norm less than

√
n.

3.3 Standard lattice problems

We now complete the proof of the main theorem by reducing the standard lattice problems GAPSVP and
SIVP to DGS. We start with SIVP. The basic idea of the reduction is simple: we call the DGS oracle
enough times. We show that with high probability, there are n short linearly independent vectors among the
returned vectors. We prove this by using the following lemma, which appeared in the preliminary version
of [29]. We include the proof since only a proof sketch was given there.

Lemma 3.15 Let L be an n-dimensional lattice and let r be such that r ≥ √
2ηε(L) where ε ≤ 1

10 . Then
for any subspace H of dimension at most n− 1 the probability that x /∈ H where x is chosen from DL,r is
at least 1

10 .

Proof: Assume without loss of generality that the vector (1, 0, . . . , 0) is orthogonal to H . Using Lemma 2.14,

Exp
x∼DL,r

[exp
(−π(x1/r)2

)
] =

1
ρr(L)

∑

x∈L

exp
(
−π(

√
2x1/r)2

)
exp

(−π(x2/r)2
) · · · exp

(−π(xn/r)2
)

=
det(L∗) rn

√
2ρr(L)

∑

y∈L∗
exp

(
−π(ry1/

√
2)2

)
exp

(−π(ry2)2
) · · · exp

(−π(ryn)2
)

≤ det(L∗) rn

√
2ρr(L)

ρ√2/r(L
∗)

≤ det(L∗) rn

√
2ρr(L)

(1 + ε).

By using Lemma 2.14 again, we see that ρr(L) = det(L∗) rnρ1/r(L∗) ≥ det(L∗) rn. Therefore, the
expectation above is at most 1√

2
(1 + ε) < 0.9 and the lemma follows.

Corollary 3.16 Let L be an n-dimensional lattice and let r be such that r ≥ √
2ηε(L) where ε ≤ 1

10 . Then,
the probability that a set of n2 vectors chosen independently from DL,r contains no n linearly independent
vectors is exponentially small.
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Proof: Let x1, . . . ,xn2 be n2 vectors chosen independently from DL,r. For i = 1, . . . , n, let Bi be the
event that

dim span(x1, . . . ,x(i−1)n) = dim span(x1, . . . ,xin) < n.

Clearly, if none of the Bi’s happens, then dim span(x1, . . . ,xn2) = n. Hence, in order to complete the
proof it suffices to show that for all i, Pr[Bi] ≤ 2−Ω(n). So fix some i, and let us condition on some fixed
choice of x1, . . . ,x(i−1)n such that dim span(x1, . . . ,x(i−1)n) < n. By Lemma 3.15, the probability that

x(i−1)n+1, . . . ,xin ∈ dim span(x1, . . . ,x(i−1)n)

is at most (9/10)n = 2−Ω(n). This implies that Pr[Bi] ≤ 2−Ω(n), as required.

In the following lemma we give the reduction from SIVP (in fact, GIVP) to DGS. It shows that under
the assumptions of Theorem 3.1, there exists an efficient quantum algorithm for GIVP2

√
2nηε(L)/α. By

Lemma 2.12, this algorithm also solves SIVPÕ(n/α).

Lemma 3.17 For any ε = ε(n) ≤ 1
10 and any ϕ(L) ≥ √

2ηε(L), there is a polynomial time reduction from
GIVP2

√
nϕ to DGSϕ.

Proof: As mentioned above, the idea of the reduction is to simply call the DGS oracle in an attempt to find
n short linearly independent vectors. One technical complication is that the function ϕ is not necessarily
efficiently computable, and hence we do not know which parameter r to give the DGS oracle. The solution
is easy: we just try many values of r and take the shortest set of n linearly independent vectors found.

We now present the reduction in detail. The input to the reduction is a lattice L. We first apply the LLL
algorithm [24] to obtain n linearly independent vectors of length at most 2nλn(L). Let S denote the resulting
set, and let λ̃n be the length of the longest vector in S. By construction we have λn(L) ≤ λ̃n ≤ 2nλn(L).
For each i ∈ {0, . . . , 2n} call the DGS oracle n2 times with the pair (L, ri) where ri = λ̃n2−i, and let
Si be the resulting set of vectors. At the end, look for a set of n linearly independent vectors in each of
S, S0, S1, . . . , S2n, and output the shortest set found.

We now prove correctness. If ϕ(L) ≥ λ̃n then S is already shorter than 2
√

nϕ(L) and so we are done.
Otherwise, let i ∈ {0, . . . , 2n} be such that ϕ(L) < ri ≤ 2ϕ(L). Such an i must exist by Claim 2.13. By
Corollary 3.16, Si contains n linearly independent vectors with probability exponentially close to 1. More-
over, by Lemma 2.5, all vectors in Si are of length at most ri

√
n ≤ 2

√
nϕ(L) with probability exponentially

close to 1. Hence, our reduction outputs a set of n linearly independent vectors of length at most 2
√

nϕ(L),
as required.

We now present the reduction from GAPSVP to DGS. We first define the decision version of the closest
vector problem (GAPCVP) and a slight variant of it.

Definition 3.18 An instance of GAPCVPγ is given by an n-dimensional lattice L, a vector t, and a number
d > 0. In YES instances, dist(t, L) ≤ d, whereas in NO instances, dist(t, L) > γ(n) · d.

Definition 3.19 An instance of GAPCVP′γ is given by an n-dimensional lattice L, a vector t, and a number
d > 0. In YES instances, dist(t, L) ≤ d. In NO instances, λ1(L) > γ(n) · d and dist(t, L) > γ(n) · d.
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In [17] it is shown that for any γ = γ(n) ≥ 1, there is a polynomial time reduction from GAPSVPγ

to GAPCVP′γ (see also Lemma 5.22 in [29]). Hence, it suffices to show a reduction from GAPCVP′ to
DGS. This reduction is given in the following lemma. By using Lemma 2.11, we obtain that under the
assumptions of Theorem 3.1 there exists an efficient quantum algorithm for GAPCVP′O(n/α) (and hence
also for GAPSVPO(n/α)).

Lemma 3.20 For any γ = γ(n) ≥ 1, there is a polynomial time reduction from GAPCVP′100
√

n·γ(n) to
DGS√nγ(n)/λ1(L∗).

Proof: The main component in our reduction is the NP verifier for COGAPCVP shown in [1]. In more
detail, [1] present an efficient algorithm, call it V , whose input consists of an n-dimensional lattice L, a
vector t, a number d > 0, and a sequence of vectors w1, . . . ,wN in L∗ for some N = poly(n). When
dist(t, L) ≤ d, the algorithm is guaranteed to reject. When dist(t, L) > 100

√
nd, and w1, . . . ,wN are

chosen from the distribution DL∗,1/(100d), then the algorithm accepts with probability exponentially close to
1.

The input to the reduction is an n-dimensional lattice L, a vector t, and a number d > 0. We call the
DGS oracle N times with the lattice L∗ and the value 1

100d to obtain vectors w1, . . . ,wN ∈ L∗. We then
apply V with L, t, d, and the vectors w1, . . . ,wN . We accept if and only if V rejects.

To prove correctness, notice first that in the case of a YES instance, dist(t, L) ≤ d, and hence V must
reject (irrespective of the w’s). In the case of a NO instance we have that 1

100d >
√

nγ(n)/λ1(L), and hence
w1, . . . ,wN are guaranteed to be valid samples from DL∗,1/(100d). Moreover, dist(t, L) > 100

√
nγ(n)d ≥

100
√

nd, and hence V accepts with probability exponentially close to 1.

4 Variants of the LWE problem

In this section, we consider several variants of the LWE problem. Through a sequence of elementary
reductions, we prove that all problems are as hard as LWE. The results of this section are summarized in
Lemma 4.4.

Lemma 4.1 (Average-case to Worst-case) Let n, p ≥ 1 be some integers and χ be some distribution on
Zp. Assume that we have access to a distinguisher W that distinguishes As,χ from U for a non-negligible
fraction of all possible s. Then there exists an efficient algorithm W ′ that for all s accepts with probability
exponentially close to 1 on inputs from As,χ and rejects with probability exponentially close to 1 on inputs
from U .

Proof: The proof is based on the following transformation. For any t ∈ Zn
p consider the function ft :

Zn
p × Zp → Zn

p × Zp defined by
ft(a, b) = (a, b + 〈a, t〉).

It is easy to see that this function transforms the distribution As,χ into As+t,χ. Moreover, it transforms the
uniform distribution U into itself.

Assume that for n−c1 of all possible s, the acceptance probability of W on inputs from As,χ and on
inputs from U differ by at least n−c2 . We construct W ′ as follows. Let R denote the unknown input
distribution. Repeat the following nc1+1 times. Choose a vector t ∈ Zn

p uniformly at random. Then
estimate the acceptance probability of W on U and on ft(R) by calling W O(n2c2+1) times on each of
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the input distributions. By the Chernoff bound, this allows us to obtain an estimate that with probability
exponentially close to 1 is within ±n−c2/8 of the true acceptance probabilities. If the two estimates differ
by more than n−c2/2 then we stop and decide to accept. Otherwise we continue. If the procedure ends
without accepting, we reject.

We now prove that W ′ distinguishes As,χ from U for all s. First, we claim that when R is U , the
acceptance probability of W ′ is exponentially close to 0. Indeed, in this case, ft(U) = U and therefore
the two estimates that W ′ performs are of the same distribution. The probability that the estimates differ by
more than n−c2/2 > 2 · n−c2/8 is exponentially small. Next, consider the case that R is As,χ for some s.
In each of the nc1+1 iterations, we are considering the distribution ft(As,χ) = As+t,χ for some uniformly
chosen t. Notice that the distribution of s+ t is uniform on Zn

p . Hence, with probability exponentially close
to 1, in one of the nc1+1 iterations, t is such that the acceptance probability of W on inputs from As+t,χ

and on inputs from U differ by at least n−c2 . Since our estimates are within ±n−c2/8, W ′ accepts with
probability exponentially to 1.

Lemma 4.2 (Decision to Search) Let n ≥ 1 be some integer, 2 ≤ p ≤ poly(n) be a prime, and χ be
some distribution on Zp. Assume that we have access to procedure W that for all s accepts with probability
exponentially close to 1 on inputs from As,χ and rejects with probability exponentially close to 1 on inputs
from U . Then, there exists an efficient algorithm W ′ that, given samples from As,χ for some s, outputs s
with probability exponentially close to 1.

Proof: Let us show how W ′ finds s1 ∈ Zp, the first coordinate of s. Finding the other coordinates is
similar. For any k ∈ Zp, consider the following transformation. Given a pair (a, b) we output the pair (a +
(l, 0, . . . , 0), b + l · k) where l ∈ Zp is chosen uniformly at random. It is easy to see that this transformation
takes the uniform distribution into itself. Moreover, if k = s1 then this transformation also takes As,χ to
itself. Finally, if k 6= s1 then it takes As,χ to the uniform distribution (note that this requires p to be prime).
Hence, using W , we can test whether k = s1. Since there are only p < poly(n) possibilities for s1 we can
try all of them.

Lemma 4.3 (Discrete to Continuous) Let n, p ≥ 1 be some integers, let φ be some probability density
function on T, and let φ̄ be its discretization to Zp. Assume that we have access to an algorithm W that
solves LWEp,φ̄. Then, there exists an efficient algorithm W ′ that solves LWEp,φ.

Proof: Algorithm W ′ simply takes samples from As,φ and discretizes the second element to obtain samples
from As,φ̄. It then applies W with these samples in order to find s.

By combining the three lemmas above, we obtain

Lemma 4.4 Let n ≥ 1 be an integer and 2 ≤ p ≤ poly(n) be a prime. Let φ be some probability density
function on T and let φ̄ be its discretization to Zp. Assume that we have access to a distinguisher that
distinguishes As,φ̄ from U for a non-negligible fraction of all possible s. Then, there exists an efficient
algorithm that solves LWEp,φ.

5 Public Key Cryptosystem

We let n be the security parameter of the cryptosystem. Our cryptosystem is parameterized by two integers
m, p and a probability distribution χ on Zp. A setting of these parameters that guarantees both security
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and correctness is the following. Choose p ≥ 2 to be some prime number between n2 and 2n2 and let
m = (1 + ε)(n + 1) log p for some arbitrary constant ε > 0. The probability distribution χ is taken to
be Ψ̄α(n) for α(n) = o(1/(

√
n log n)), i.e., α(n) is such that limn→∞ α(n) · √n log n = 0. For example,

we can choose α(n) = 1/(
√

n log2 n). In the following description, all additions are performed in Zp, i.e.,
modulo p.

• Private key: Choose s ∈ Zn
p uniformly at random. The private key is s.

• Public Key: For i = 1, . . . , m, choose m vectors a1, . . . ,am ∈ Zn
p independently from the uniform

distribution. Also choose elements e1, . . . , em ∈ Zp independently according to χ. The public key is
given by (ai, bi)m

i=1 where bi = 〈ai, s〉+ ei.

• Encryption: In order to encrypt a bit we choose a random set S uniformly among all 2m subsets of
[m]. The encryption is (

∑
i∈S ai,

∑
i∈S bi) if the bit is 0 and (

∑
i∈S ai, bp

2c+
∑

i∈S bi) if the bit is 1.

• Decryption: The decryption of a pair (a, b) is 0 if b − 〈a, s〉 is closer to 0 than to bp
2c modulo p.

Otherwise, the decryption is 1.

Notice that with our choice of parameters, the public key size is O(mn log p) = Õ(n2) and the encryp-
tion process increases the size of a message by a factor of O(n log p) = Õ(n). In fact, it is possible to
reduce the size of the public key to O(m log p) = Õ(n) by the following idea of Ajtai [3]. Assume all users
of the cryptosystem share some fixed (and trusted) random choice of a1, . . . ,am. This can be achieved by,
say, distributing these vectors as part of the encryption and decryption software. Then the public key need
only consist of b1, . . . , bm. This modification does not affect the security of the cryptosystem.

We next prove that under a certain condition on χ, m, and p, the probability of decryption error is small.
We later show that our choice of parameters satisfies this condition. For the following two lemmas we need
to introduce some additional notation. For a distribution χ on Zp and an integer k ≥ 0, we define χ?k as the
distribution obtained by summing together k independent samples from χ, where addition is performed in
Zp (for k = 0 we define χ?0 as the distribution that is constantly 0). For a probability distribution φ on T
we define φ?k similarly. For an element a ∈ Zp we define |a| as the integer a if a ∈ {0, 1, . . . , bp

2c} and as
the integer p− a otherwise. In other words, |a| represents the distance of a from 0. Similarly, for x ∈ T, we
define |x| as x for x ∈ [0, 1

2 ] and as 1− x otherwise.

Lemma 5.1 (Correctness) Let δ > 0. Assume that for any k ∈ {0, 1, . . . ,m}, χ?k satisfies that

Pr
e∼χ?k

[
|e| <

⌊p

2

⌋
/2

]
> 1− δ.

Then, the probability of decryption error is at most δ. That is, for any bit c ∈ {0, 1}, if we use the protocol
above to choose private and public keys, encrypt c, and then decrypt the result, then the outcome is c with
probability at least 1− δ.

Proof: Consider first an encryption of 0. It is given by (a, b) for a =
∑

i∈S ai and

b =
∑

i∈S

bi =
∑

i∈S

〈ai, s〉+ ei = 〈a, s〉+
∑

i∈S

ei.

Hence, b − 〈a, s〉 is exactly
∑

i∈S ei. The distribution of the latter is χ?|S|. According to our assumption,
|∑i∈S ei| is less than bp

2c/2 with probability at least 1 − δ. In this case, it is closer to 0 than to bp
2c and

therefore the decryption is correct. The proof for an encryption of 1 is similar.
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Claim 5.2 For our choice of parameters it holds that for any k ∈ {0, 1, . . . ,m},

Pr
e∼Ψ̄?k

α

[
|e| <

⌊p

2

⌋
/2

]
> 1− δ(n)

for some negligible function δ(n).

Proof: A sample from Ψ̄?k
α can be obtained by sampling x1, . . . , xk from Ψα and outputting

∑k
i=1 bpxiemod p.

Notice that this value is at most k ≤ m < p/32 away from
∑k

i=1 pxi mod p. Hence, it is enough to show
that |∑k

i=1 pxi mod p| < p/16 with high probability. This condition is equivalent to the condition that
|∑k

i=1 xi mod 1| < 1/16. Since
∑k

i=1 xi mod 1 is distributed as Ψ√
k·α, and

√
k · α = o(1/

√
log n), the

probability that |∑k
i=1 xi mod 1| < 1/16 is 1− δ(n) for some negligible function δ(n).

In order to prove the security of the system, we need the following special case of the leftover hash
lemma that appears in [19]. We include a proof for completeness.

Claim 5.3 Let G be some finite Abelian group and let l be some integer. For any l elements g1, . . . , gl ∈ G

consider the statistical distance between the uniform distribution on G and the distribution given by the sum
of a random subset of g1, . . . , gl. Then the expectation of this statistical distance over a uniform choice of
g1, . . . , gl ∈ G is at most

√
|G|/2l. In particular, the probability that this statistical distance is more than

4
√
|G|/2l is at most 4

√
|G|/2l.

Proof: For a choice g = (g1, . . . , gl) of l elements from G, let Pg be the distribution of the sum of a random
subsets of g1, . . . , gl, i.e.,

Pg(h) =
1
2l

∣∣∣
{
b ∈ {0, 1}l | ∑ibigi = h

}∣∣∣ .

In order to show that this distribution is close to uniform, we compute its `2 norm, and note that it is very
close to 1/|G|. From this it will follow that the distribution must be close to the uniform distribution. The
`2 norm of Pg is given by

∑

h∈G

Pg(h)2 = Pr
b,b′

[∑
bigi =

∑
b′igi

]

≤ 1
2l

+ Pr
b,b′

[∑
bigi =

∑
b′igi

∣∣∣b 6= b′
]
.

Taking expectation over g, and using the fact that for any b 6= b′, Prg[
∑

bigi =
∑

b′igi] = 1/|G|, we
obtain that

Exp
g

[∑
hPg(h)2

] ≤ 1
2l

+
1
|G| .

Finally, the expected distance from the uniform distribution is

Exp
g

[
∑

h |Pg(h)− 1/|G||] ≤ Exp
g

[
|G|1/2

(∑
h(Pg(h)− 1/|G|)2)1/2

]

=
√
|G|Exp

g

[(∑
hPg(h)2 − 1/|G|)1/2

]

≤
√
|G|

(
Exp

g

[∑
hPg(h)2

]− 1/|G|
)1/2

≤
√
|G|
2l

.
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We now prove that our cryptosystem is semantically secure, i.e., that it is hard to distinguish between
encryptions of 0 and encryptions of 1. More precisely, we show that if such a distinguisher exists, then
there exists a distinguisher that distinguishes between As,χ and U for a non-negligible fraction of all s.
If χ = Ψ̄α and p ≤ poly(n) is a prime, then by Lemma 4.4, this also implies an efficient (classical)
algorithm that solves LWEp,Ψα . This in turn implies, by Theorem 3.1, an efficient quantum algorithm for
DGS√2n·ηε(L)/α. Finally, by Lemma 3.17 we also obtain an efficient quantum algorithm for SIVPÕ(n/α)

and by Lemma 3.20 we obtain an efficient quantum algorithm for GAPSVPO(n/α).

Lemma 5.4 (Security) For any ε > 0 and m ≥ (1 + ε)(n + 1) log p, if there exists a polynomial time
algorithm W that distinguishes between encryptions of 0 and 1 then there exists a distinguisher Z that
distinguishes between As,χ and U for a non-negligible fraction of all possible s.

Proof: Let p0(W ) be the acceptance probability of W on input ((ai, bi)m
i=1, (a, b)) where (a, b) is an en-

cryption of 0 with the public key (ai, bi)m
i=1 and the probability is taken over the randomness in the choice

of the private and public keys and over the randomness in the encryption algorithm. We define p1(W ) sim-
ilarly for encryptions of 1 and let pu(W ) be the acceptance probability of W on inputs ((ai, bi)m

i=1, (a, b))
where (ai, bi)m

i=1 are again chosen according to the private and public keys distribution but (a, b) is chosen
uniformly from Zn

p × Zp. With this notation, our hypothesis says that |p0(W )− p1(W )| ≥ 1
nc for some

c > 0.
We now construct a W ′ for which |p0(W ′)− pu(W ′)| ≥ 1

2nc . By our hypothesis, either |p0(W )− pu(W )| ≥
1

2nc or |p1(W )− pu(W )| ≥ 1
2nc . In the former case we take W ′ to be the same as W . In the latter case, we

construct W ′ as follows. On input ((ai, bi)m
i=1, (a, b)), W ′ calls W with ((ai, bi)m

i=1, (a, p−1
2 + b)). Notice

that this maps the distribution on encryptions of 0 to the distribution on encryptions of 1 and the uniform
distribution to itself. Therefore, W ′ is the required distinguisher.

For s ∈ Zn
p , let p0(s) be the probability that W ′ accepts on input ((ai, bi)m

i=1, (a, b)) where (ai, bi)m
i=1

are chosen from As,χ, and (a, b) is an encryption of 0 with the public key (ai, bi)m
i=1. Similarly, define pu(s)

to be the acceptance probability of W ′ where (ai, bi)m
i=1 are chosen from As,χ, and (a, b) is now chosen

uniformly at random from Zn
p × Zp. Our assumption on W ′ says that |Exps[p0(s)]− Exps[pu(s)]| ≥ 1

2nc .
Define

Y =
{
s

∣∣∣∣ |p0(s)− pu(s)| ≥ 1
4nc

}
.

By an averaging argument we get that a fraction of at least 1
4nc of the s are in Y . Hence, it is enough to show

a distinguisher Z that distinguishes between U and As,χ for any s ∈ Y .
In the following we describe the distinguisher Z. We are given a distribution R that is either U or As,χ

for some s ∈ Y . We take m samples (ai, bi)m
i=1 from R. Let p0((ai, bi)m

i=1) be the probability that W ′

accepts on input ((ai, bi)m
i=1, (a, b)) where the probability is taken on the choice of (a, b) as an encryption

of the bit 0 with the public key (ai, bi)m
i=1. Similarly, let pu((ai, bi)m

i=1) be the probability that W ′ accepts
on input ((ai, bi)m

i=1, (a, b)) where the probability is taken over the choice of (a, b) as a uniform element of
Zn

p ×Zp. By applying W ′ a polynomial number of times, the distinguisher Z estimates both p0((ai, bi)m
i=1)

and pu((ai, bi)m
i=1) up to an additive error of 1

64nc . If the two estimates differ by more than 1
16nc , Z accepts.

Otherwise, Z rejects.
We first claim that when R is the uniform distribution, Z rejects with high probability. In this case,

(ai, bi)m
i=1 are chosen uniformly from Zn

p × Zp. Using Claim 5.3 with the group G = Zn
p × Zp, we obtain

that with probability exponentially close to 1, the distribution on (a, b) obtained by encryptions of 0 is
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exponentially close to the uniform distribution on Zn
p × Zp. Therefore, except with exponentially small

probability,
|p0((ai, bi)m

i=1)− pu((ai, bi)m
i=1)| ≤ 2−Ω(n).

Hence, our two estimates differ by at most 1
32nc + 2−Ω(n), and Z rejects.

Next, we show that if R is As,χ for s ∈ Y then Z accepts with probability 1/poly(n). Notice that p0(s)
(respectively, pu(s)) is the average of p0((ai, bi)m

i=1) (respectively, pu((ai, bi)m
i=1)) taken over the choice of

(ai, bi)m
i=1 from As,χ. From |p0(s)− pu(s)| ≥ 1

4nc we obtain by an averaging argument that

|p0((ai, bi)m
i=1)− pu((ai, bi)m

i=1)| ≥
1

8nc

with probability at least 1
8nc over the choice of (ai, bi)m

i=1 from As,χ. Hence, with probability at least 1
8nc , Z

chooses such a (ai, bi)m
i=1 and since our estimates are accurate to within 1

64nc , the difference between them
is more than 1

16nc and Z accepts.
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