
Evaluating Natural Language Descriptions Generated in a Workspace-Based
Architecture

George A. Wright1
1Cognitive Science Research Group

School of Electronic Engineering and Computer Science
Queen Mary University of London

george.a.wright@qmul.ac.uk

Matthew Purver1,2
2Department of Knowledge Technologies

Jožef Stefan Institute
Ljubljana, Slovenia

m.purver@qmul.ac.uk

Abstract

This paper concerns the evaluation of a workspace ar-
chitecture for generating natural language descriptions,
including methods for evaluating both its output and its
own self-evaluation. Herein are details of preliminary
results from evaluation of an early iteration of the archi-
tecture operating in the domain of weather. The domain
is not typically seen as creative, but provides a simple
testbed for the architecture and evaluation methodology.
The program does not yet match humans in terms of
fluency of language, factual correctness, and how com-
pletely the input is described, but human judges did find
the program’s output easier to read than human gener-
ated texts. Planned improvements to the program also
described in the paper will incorporate self-monitoring
and better self-evaluation with the aim of producing
descriptions that are more fluently written and more ac-
curate.

Introduction
This paper describes work towards a self-evaluating architec-
ture for language generation first described in (Wright and
Purver 2020) and a method for evaluating the architecture
by comparing human judgements of its output with its own
self-evaluation. This iteration of the architecture operates in
a toy domain: making simple descriptions of temperatures on
a static, two-dimensional map but serves as an initial frame-
work on which future versions performing more ambitious
tasks can be built.

Theoretical Background
According to Fauconnier (1994), linguistic meaning is or-
ganized in mental spaces and according to Fauconnier and
Turner (2002), creativity involves the projection of structures
across mental spaces, often with the help of frames. Such
processes cannot involve a deterministic search for an opti-
mum, but instead a constant competition between structures
evolving in a bubble chamber of mental spaces, only some
of which become available to consciousness (Fauconnier and
Turner 2002, p.321).

The architecture described below implements the projec-
tion of structures across spaces while making use of an
enzymes-in-cytoplasm metaphor of cognition similar to that

proposed by Barrett (2005) which allows for a chaotic inter-
action of processes in a shared workspace or bubble cham-
ber. These include processes of language production and
comprehension which also interact when humans use lan-
guage (Pickering and Garrod 2013). In this architecture, self-
comprehension and self-evaluation are important because
they help to determine which of the competing intermediate
structures are used in future processing. An overall satisfac-
tion score also affects how randomly processes occur. Eval-
uation of this architecture therefore takes into account not
only the finished outputs of the program, but also its method
for self-evaluation.

The Planned Architecture
The architecture has a bubble chamber and a coderack. The
bubble chamber contains a network of concepts, frames, and
their instantiations spread across a number of conceptual and
working spaces. These are the long- and short-term memory
of the program. The best, most useful structures bubble to the
top of the program’s attention as their activation increases.

The coderack, borrowed from Copycat (1993) and related
work (Hofstadter and FARG 1995) contains a collection of
codelets, (small tasks to be carried out), each of which has
an urgency influencing the likelihood it runs. Codelets cor-
respond to the enzymes of Barrett’s metaphor. They are
selected from the coderack with a degree of randomness de-
termined by the program’s satisfaction, a score of the quality
of active structures in the bubble chamber (a structure’s qual-
ity is determined by evaluation codelets). High satisfaction
leads to less random codelet selection thus more deterministic
processing whereas low satisfaction leads to more random-
ness and opens a broader set of pathways to be explored.
Self-evaluation is central to the architecture and is therefore
important to consider when judging its performance.

Most codelets make a small change to the bubble chamber,
for example by building a new node or link, or by changing
a structure’s activation. All structures, including represen-
tations of the input, parse trees, and output text are built
incrementally in this manner. Codelets also change the coder-
ack by adding a follow-up codelet. Some codelets operate
exclusively on the coderack by adding or removing codelets
in order to ensure that the coderack does not become empty
or overcrowded.

This style of architecture shares similarities with models

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

87



based on Baars’ (1997) Global Workspace Theory such as
(Misztal and Indurkhya 2014) which has experts performing
tasks in a shared workspace. But, where as codelets in this
architecture are restricted to performing small operations,
some experts in Miszatal and Indurkhya’s architecture such
as the metaphor expert operate at a much higher level and
perform tasks comparable in complexity to work performed
by a large collective of codelets.

Engagement and Reflection Cycles
According to Sharples (1998), the creative writing process
involves a cyclic alternation between engagement (producing
new ideas) and reflection (evaluating work so far). This has
been implemented in models of language generation (Pérez y
Pérez and Sharples 2001) as well as other models of creativ-
ity (Pérez y Pérez, de Cossı́o, and Guerrero 2013). The E-R
model is a relatively high-level view of cognition which does
not recognize the more intertwined nature of production and
comprehension described by Pickering and Garrod (2013).

This architecture contains something like an engagement-
reflection cycle but at multiple levels of abstraction and, due
to the stochasticity of the coderack, with less rigidity.

Codelet Cycles Most codelets operating in the bubble
chamber belong to one of four types: suggesters, builders,
evaluators, and selectors.

Suggesters find an element in the input such as a temper-
ature on a map and suggest a possible structure that can be
built for that element. For example, a temperature could be
labeled as HOT or in the SOUTH, two temperatures could be
combined into a single chunk if they are similar, two temper-
atures could be connected with a MORE or LESS relation, or
a SAMENESS correspondence could be recognized between a
chunk in the input and an item in a frame.

Having performed a classification, a suggester codelet
places a builder codelet on the coderack with an urgency
matching its confidence in its suggestion. If the builder
codelet is run, the relevant structure is built and the builder
codelet then places an evaluator codelet on the coderack.

Evaluator codelets determine the quality of the structure
according to the same classifier as the suggester. Since certain
classifications can be context dependent, for example a part-
of-speech label may depend on how a word is used in a
sentence, the classification of a structure by the time the
evaluator is run may differ from when the structure was
first suggested. The evaluator assigns a quality score to the
structure and then places a selector codelet on the coderack.

Selector codelets compare two competing structures, for
example two incompatible labels, and boost the activation
of one while depressing the activation of the other such that
only one structure is likely to be used in further processing.
Higher quality structures are more likely to receive a boost
in activation. Selector codelets also place another suggester
on the coderack thus completing a cycle at the fine-grained
level of workspace structures.

If a codelet fizzles because the bubble chamber does not
contain the right conditions or if a follow-up has low urgency
and never runs, the cycle breaks. Meanwhile new cycles are

created as factory codelets add new suggesters and evaluators
to the coderack so that processing does not stop prematurely.

Figure 1: The lowest-level “cycle of engagement and reflec-
tion” at the level of individual nodes and links in the bubble
chamber.

View Cycles The architecture implements the simplex net-
works of Fauconnier and Turner (2002, p.120-2), which con-
nect elements in an input space to elements in a frame and
then elements in both the input and the frame to new ele-
ments in an ouptut space. Since this is a language generating
program, the frames are templates with slots to be filled in
according to the input. The output is a text which describes
the original input using the template structure. Each network
exists within a view based upon the Worldview of the Table-
top model of analogy-making (French 1995). All structures
within a view must be consistent with one another.

The architecture also uses views for self-monitoring. Mon-
itoring views contain an output text, a semantic parse of the
text and a set of correspondences between elements of the
parse and the original input. The purpose of a monitoring
view is to check that a text both makes sense and is an accu-
rate description of at least part of the original input.

Texts which have been matched to part of the original input
are made available for further processing inside higher level
simplex networks using discourse frames. This allows for a
recursion of simplex networks as described by Fauconnier
and Turner (2002, p.151) and produces a cycle of engagement
and reflection at the higher level of fragments of text which
emerges from the cycles of engagement and reflection at the
lower level of individual nodes and links.

Figure 2: A higher level “cycle of engagement and reflection”
at the level of pieces of text.

The Current Implementation
The implementation of the architecture described above op-
erates within a simple domain, describing temperatures on
a map. This requires a small knowledge base and allows for
focus to be placed on the mechanisms of the architecture.

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

88



Implementation is still in an early stage and lacks much of
the self-monitoring provided by monitoring views.

In order to get the program to output text, a publisher
codelet occasionally runs, which finds templates that have
had their slots filled and outputs the resulting text. Current
outputs are therefore short and lack discourse structure, but
the evaluation of these outputs provides a base-line upon
which future iterations of the model can improve.

The current implementation’s satisfaction is calculated as
the mean of the product of each bubble chamber structure’s
quality and activation. This means the satisfaction is higher
when the most active structures have a high quality and lower
when active structures have a low quality or high quality
structures have a low activation. But, as discussed below, this
results in a satisfaction score which fails to take into account
a more global perspective on the bubble chamber.

Evaluating The Program
The relatively transparent nature of the program allows it to
be evaluated in a number of ways: the intermediate represen-
tations it builds when processing the input, its textual output,
its understanding of its own textual output (through syntactic
and semantic parses), and its satisfaction score for its output
can all be seen and evaluated by external observers.

Below is described a subjective and intrinsic evaluation
of outputs of the system implemented thus far - a survey
which evaluated the system in isolation from any practical
application and according to human value judgements. Such
surveys commonly focus on two main criteria: the quality
of a text, and its accuracy relative to the input (Gatt and
Krahmer 2018, p.124).

The Survey
Human subjects in the survey were asked to compare two of
the program’s outputs for each input. They had to answer
four questions for each pair:

1. Which text is easier to understand?

2. Which text is more fluent?

3. Which text is more factually correct?

4. Which text represents the map more completely?

Respondents could answer each question in one of three
ways: the first text is better than the second, the second text is
better than the first, or the two texts are approximately equal.

The aim of the first two questions was to capture the lin-
guistic quality of the texts, while the aim of the final two
questions was to capture their accuracy as descriptions of the
input map. Survey respondents only saw the map after the
first two questions so that any inaccuracies in the description
would not influence the quality score.

Human subjects had to compare two outputs rather than
score them on a scale as it is unclear what the criteria are
for high or low scores, especially when viewing the first few
outputs from a program. Furthermore, Belz and Kow (2010)
compared preference-based evaluation to score-based evalu-
ation and found that preference-based evaluation results in
less variance between respondents.

Since the computer program provides its own satisfaction
score for its work, human evaluation can also be used to
check if its internal measure of satisfaction matches with
human judgements or if its method for calculating satisfaction
could be improved. Since the program only has a single
number to describe its “satisfaction”, there is no one-to-one
correspondence with the questions used to judge linguistic
quality and factual accuracy. The score is also an absolute
number rather than a preference judgement. Nevertheless,
rankings based on human judgements and rankings based on
the program’s internal score ought roughly to align.

Methods for evaluating the creativity of computer pro-
grams commonly try to rate the novelty of outputs as well
as their quality, see for example (Ritchie 2007). This is not
attempted here since the domain is so simple and the outputs
are so short that no output is likely to be in any way novel.
It is hopefully clear though, that this architecture could in
theory be applied to a more complex domain that would al-
low for more exciting outputs where novelty would be worth
considering.

Generation of Texts for the Survey

Figure 3: The first input as displayed to survey respondents.
Numbers show temperatures in centigrade.

The survey was carried out using four different inputs to
the program. For each input, the program was run ten times,
and three outputs were randomly selected. Outputs all took
the form of simple statements of fact. Added to these outputs
were two human-generated descriptions which were gathered
from a separate survey. For each input, one description was
selected which was written with detailed, full sentences while
the second description was brief and often written in note-
form. At no point were the respondents told that they were
evaluating machine-generated or human-generated text. The
texts used for the first input were:

A (Human) “The temperature is cold in the north but progres-
sively warm moving south, reaching 24 degrees.”

B (Computer) “It is hot in the southeast.”
C (Computer) “It is mild in the northeast.”
D (Computer) “The north is mild.”
E (Human) “Cool in the north, warm in the south.”

The purpose of including human-generated outputs was
to check that respondents (on Amazon Mechanical Turk)

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

89



Easiness Fluency Correctness Completeness
1 B A* E* E*
2 D D A* A*
3 A* E* B B
4 C C D D
5 E* B C C

Table 1: Average rankings according to the pairwise pref-
erences of survey respondents for texts describing the first
input. *Human-generated texts.

understood the task and were not pressing random buttons.
A respondent who understands and pays attention to the task
ought at this point broadly to prefer the human-generated
texts. In future, improved iterations of the program ought to
surpass the briefer note-like human-generated texts. Outputs
of future iterations can also be compared to outputs of the
current iteration to check if changes to the architecture result
in improved results.

Results of the Survey
The results of the survey are unsurprising in that they show
that the program is overall below human-level performance,
but they also highlight certain issues that should be taken into
account in future evaluation.

It should first be noted that respondents of the survey did
not show a high degree of agreement. The Fleiss’ Kappa
scores were 0.342 for ease of understanding, 0.238 for flu-
ency, 0.484 for factual correctness, and 0.485 for complete-
ness (to calculate Fleiss’ Kappa the three possible answers
to each question were treated as a category). This may in
part be due to the fact that respondents had a different un-
derstanding of the questions they were being asked: future
surveys should make more clear what each of these terms
means, especially correctness and completeness which some
respondents seemed to treat as the same. Low agreement
may also have been caused by arbitrary decisions being made
when similar computer outputs were compared. The survey
also only had 7 respondents. In future, surveys using more
respondents may result in better agreement.

Respondents on average, ranked human-generated texts
above computer-generated texts along the dimensions of
fluency, correctness, and completeness. But they found
computer-generated texts easier to understand. A similar
result was found by Reiter et al (2005, p.138) who found that
readers preferred a computer program’s weather forecasts to
those written by human’s due to greater consistency in the
program’s word choices. It is likely to be the case that more
rigid and precise computer programs will always outperform
humans along this dimension within small data-to-text ap-
plications, but this should be less easy to achieve in more
complex domains requiring narrative or explanation. Achiev-
ing greater ease-of-understanding scores will therefore not
be a priority in future work on this architecture where the
aim is to achieve something closer to human-like creativity
in language generation.

For the most part, no preference was shown for one
text’s easiness or fluency over another when two computer-

generated outputs were displayed side-by-side. This is un-
derstandable given that computer-generated outputs all fol-
lowed one of two sentence patterns: the [location]
is [temperature] and it is [temperature]
in the [location]. Some computer-generated texts
used words which did not match well with the input map and
were therefore not preferred when it came to correctness and
completeness.

There may have been some confounding variables which
affected respondents’ evaluation of the text, for example the
length of the sentences being compared. Future evaluation
should consider the extent to which such variables influence
people’s preferences.

Evaluating the Program’s Self-Evaluation
The linguistic similarity of the outputs is reflected in the com-
puter program’s satisfaction scores. The 40 runs executed for
the purpose of evaluation had a mean satisfaction score of
0.704 with a standard deviation of 0.065. But, the program
even had similar satisfaction scores in the 12 cases when it
failed to produce an output before timing out after 30,000
codelets were run. This is because the satisfaction score is
based entirely on the quality and activation of individual,
low-level structures in the bubble chamber and does not take
into account more global criteria for satisfaction such as the
proportion of the input that has been described. It is clear
that an improved metric for the satisfaction of the program
is required but unfortunately it is difficult to compare differ-
ent metrics when the program consistently produces similar
outputs.

Future Work
There are many improvements that can be made to the archi-
tecture, most urgent of which is the implementation of mon-
itoring views in which codelets will build correspondences
between the semantic parse of a text and the original input
in order to check whether or not the text is factually correct
and also to measure the extent to which the input has been
described. This should reduce the incidence of inaccurate
outputs.

The addition of discourse frames which the program can
use to combine phrases and produce longer sentences should
result in more fluent and complete descriptions of the input.

Furthermore, changes in higher level structures such as
greater coverage of the input and improved discourse struc-
ture must be reflected in the program’s satisfaction score.
Future rounds of evaluation can consider alternative methods
for calculating satisfaction and compare human rankings with
the program’s scoring of its own output.

Conclusion
This paper has provided the outline of a planned architec-
ture for language generation and a method for evaluating
the architecture by eliciting human judgements of its output
and comparing those judgements to the program’s internal
self-evaluation. Described in the paper is an early iteration
of the architecture which lacks some of the core components
required for self-monitoring and more complex discourse

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

90



structuring. The program’s outputs are therefore still disap-
pointing, but outputs of future versions of the program can be
compared with its current outputs to see the extent to which
greater self-monitoring improves performance.

Acknowledgments
Purver is partially supported by the EPSRC under grant
EP/S033564/1, and by the European Union’s Horizon 2020
program under grant agreement 825153 (EMBEDDIA, Cross-
Lingual Embeddings for Less- Represented Languages in Eu-
ropean News Media). The results of this publication reflect
only the authors’ views and the Commission is not respon-
sible for any use that may be made of the information it
contains.

References
Baars, B. J. 1997. In the Theater of Consciousness: The
Workspace of the Mind. Oxford University Press.
Barrett, H. C. 2005. Enzymatic computation and cognitive
modularity. Mind & Language 20(3):259–287.
Belz, A., and Kow, E. 2010. Comparing rating scales and
preference judgements in language evaluation. In Proceed-
ings of the 6th International Conference on Natural Language
Generation, 7–15.
Fauconnier, G., and Turner, M. 2002. The Way We Think:
Conceptual Blending and the Mind’s Hidden Complexities.
Basic Books.
Fauconnier, G. 1994. Mental Spaces: Aspects of Meaning
Construction in Natural Langugae. Cambridge University
Press.
French, R. M. 1995. The Subtlety of Sameness: A Theory
and Computer Model of Analogy-Making. The MIT Press.
Gatt, A., and Krahmer, E. 2018. Survey of the state of the
art in natural language generation: Core tasks, applications,
and evaluation. Journal of Artificial Intelligence Research
61:65–170.
Hofstadter, D., and FARG. 1995. Fluid Concepts and Cre-
ative Analogies. Basic Books.
Misztal, J., and Indurkhya, B. 2014. Poetry generation
system with an emotional personality. In Proceddings of the
Fifth International Conference on Computational Creativity,
72–81.
Mitchell, M. 1993. Analogy-Making as Perception: A Com-
puter Model. The MIT Press.
Pickering, M. J., and Garrod, S. 2013. An integrated theory
of language production and comprehension. Behavioural and
Brain Sciences 36:329–392.
Pérez y Pérez, R., and Sharples, M. 2001. MEXICA: A
computer model of a cognitive account of creative writing.
Journal of Experimental and Theoretical Artificial Intelli-
gence 13.
Pérez y Pérez, R.; de Cossı́o, M. G.; and Guerrero, I. 2013.
A computer model for the generation of visual compositions.
In Proceedings of the Fourth International Conference on
Computational Creativity, 105–112.

Reiter, E.; Sripada, S.; Hunter, J.; Yu, J.; and Davy, I. 2005.
Choosing words in computer-generated weather forecasts.
Artificial Intelligence 167(1-2):137–169.
Ritchie, G. 2007. Some empirical criteria for attributing
creativity to a computer program. Minds & Machines 17:67–
99.
Sharples, M. 1998. How We Write: Writing as Creative
Design. Routledge.
Wright, G., and Purver, M. 2020. Creative language genera-
tion in a society of engagement and reflection. In Proccedings
of the 11th International Conference on Computational Cre-
ativity, 169–172.

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

91


