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Abstract

We consider the estimation of a regression functional where the explanatory variables take
values in some abstract function space. The principal aim of the paper is to establish the
asymptotic normality of such estimates for dependent functional data.
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1. Introduction

Regression function estimation is an important problem in data analysis with a
wide range of applications in filtering and prediction in communications and control
systems, pattern recognition and classification, and econometrics (Gyorfi et al., [§],
Haérdle [10], Fukunaga [6], and Tjostheim [19]). There is an extensive literature on
regression estimation for i.i.d. data (see, for example, Rosenblatt [16], Schuster [18],
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Mack and Silverman [11] and the references therein) as well as for dependent data
(see, for example, Robinson [15], Collomb and Haérdle [2], Roussas [17], Tran [20]
and the references therein).

In this paper we consider the case of functional data. There has been an increasing
interest in this area in recent years. For an introduction to this field, the reader is
directed to the books of Ramsay and Silverman [13,14]. The latter provides some
basic methods of analysis along with diverse case studies in several areas including
criminology, economics, archaeology, and neurophysiology. It should be noted that
the extension of probability theory to random variables taking values in normed
spaces (e.g. Banach and Hilbert spaces), including extensions of certain classical
asymptotic limit theorems predates the recent literature on functional data; the
reader is referred to the books Araujo et al. [1] and Vakashnia et al. [21].

Gasser et al. [7] considers density and mode estimation for data taking values in a
normed vector space. The paper highlights the issue of the curse of dimensionality
for functional data and suggests methods to mitigate the problem. We shall revisit
this issue in Section 4. In the context of regression estimation nonparametric models
were considered by Ferraty and Vieu [4,5].

Let {Y;, X;}72, be random processes where Y is real-valued and X; takes values in
some abstract space . While # can be assumed to be a semi-metric vector space
with semi metric d(-,-), in most practical applications, # is a normed space (e.g.
Hilbert or a Banach space) with norm ||.|| so that d(u,v) = |ju — v||. Assume that
E|Y;]<oo and define the regression functional as

r(u) ;= E[Y|X;=u];, ueH,

which is assumed to be independent of i. We do not assume that the processes
{Y;, X;}2, are necessarily strictly stationary; it suffices to assume second-order
stationarity.

A Nadaraya—Watson type estimator for r was introduced in Ferraty and Vieu [5]
taking the form

Yo YiK(d(x, X ;) /h)
Yo K(d(x, X)) /h)

where K(-) is a real-valued kernel function and % = 4, is the bandwidth parameter.
Rates of almost sure convergence were established in Ferraty and Vieu [5] for
strongly mixing processes.

The purpose of this paper is to establish the asymptotic normality of the estimate
7(x) for strongly mixing processes. It should be noted that even for i.i.d. functional
data, no asymptotic normality has so far been established. We remark that
establishing central limit theorems utilizes different methods of analysis than those
used to obtain rates of a.s. convergence. For dependent data (functional or not) the
usual method for establishing rates of a.s. convergence for nonparametric
function(al) estimates employs upper bounds on moments of the estimate, an
exponential inequality, and the use of the Borel-Cantelli lemma (see for example
Masry [12]). This is indeed the method of analysis used in Ferraty and Vieu [5].
Establishing central limit theorems for nonparametric function estimates for

F(x) =

(1.1)
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dependent data utilizes appropriate form of Bernstein’s blocking argument and a
reduction analysis leading to the Lindeberg—Feller conditions for independent
variables (see for example Fan and Masry [3]); while the overall approach is the
same, the technical details of the proofs for functional data are more involved as can
be seen from the derivations in Section 5.

The organization of the paper is as follows. Section 2 establishes the quadratic-
mean convergence for certain estimates appearing in (1.1) along with convergence in
probability (with rates) of 7(x) (Theorems 2, 3 and Corollary 1). These are
subsequently used in Section 3 to establish the asymptotic normality of 7(x)
(Theorems 4 and 5). Section 4 is devoted to the discussion of the results, including
the issue of the curse of the dimensionality and an example. Derivations are
presented in Section 5.

2. Quadratic-mean convergence

We first introduce a suitable decomposition of the estimation error that greatly
facilitates the analysis. Set

Ai(x) == K(d(x, X;)/h)

and define

R . 1 ! A

F(x) == PYRES) ; Ai(x) 2.1)
and

e L N~y

P¥) = ; Y Ai(x) (2.2)

so that #(x) = F2(x)/F1(x). Now, define the “bias” term by
_ E[R(x)] = r(x)E[71(x)]

B, (x) := Eh o] (2.3)
and a centered variate

0,(x) == (F2(x) — E[F2(x)]) — r(x)(F1(x) — E[F1(x)]. (2.4)
Then it can be seen that

’f;(x) _ V(X) _ B,,(x) — Qn(x) — B”(X)(;'l(x) - E[fl(x)]) ) (25)

F1(x)

The relationship (2.5) is fundamental to our goal of establishing a central limit
theorem for 7(x): under certain regularity conditions, we will show that 7(x)
converges in quadratic mean to 1 as n — co. Moreover, the bias term B,,(x) = o(1) as
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n — oo. It then follows from (2.5) that

O
F1(x)
Thus, in order to obtain a central limit theorem for the left side of the
above equation, it suffices to establish asymptotic normality for the variate
0,(x).

We make the following assumptions which are subsequently discussed in
Remark 1.

() = r(x) = Bu(x) = (1 + 0p(1)).

Condition 1 (Kernel). K(f) is nonnegative bounded kernel with support [0, 1]
satisfying
O<ce<K(@)<cr<oo

for some constants ¢y, ¢s.

Condition 2 (Smoothness).

@ = rel<e duwo)’
for all u,v € # for some §>0.
(it) Let
go(u) ;= var[Y;|X; =u], ue A.
g-(u) is independent of j and is continuous in some neighborhood of x:

sup  |gr(u) — g2(x)| = o(1) ash— 0.
{u:d(x,u)<h}

Assume E|Y;|]" <oo for some v>2. Assume
g,w) = EN|Y; —rI" | Xi=u), ueH
is continuous in some neighborhood of x.
(ii1) Define
gu,v;x) = E[(Y; —r())Y; —r(O)X; =u, X; =v], i#j, u,ve H.

Assume that g(u,v;x) does not depend on i,j and is continuous in some
neighborhood of (x, x).

Let B(x,h) be a ball centered at x € # with radius /. Ferraty and Vieu [5]
assume uniform upper and lower bounds on P[X; € B(x, h)] of the form 0 <cs ¢p(h) <
PLX; € B(x,h)]<ce ¢(h). The uniformity was questioned by a referee. We adopt a
different condition consistent with the assumptions made in Gasser et al. [7] in the
context of density estimation for functional data: Let D; := d(x, X;) so that D; is a
real-valued nonnegative random variable and denote its distribution by F(u;x) =
P[D;<u]. One is interested in the behavior of F(u;x) as u — 0. Gasser et al. [7]
assume that F(; x) = ¢(h)f | (x) as h — 0 and refer to f';(x) as the probability density
(functional). When # = R™, then F(h; x) = P[||x — X;||<h] and it can be seen that
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in this case ¢p(h) = C(m)A™ (C(m) is the volume of a unit ball in R™) and f',(x) is the
probability density of the random variable X;. Indeed, it can be shown directly that
limy,—, o(1/A"™)F(h; x) = C(m)f | (x). Motivated by the work of Gasser et al. and the
above argument we make the following assumption:

Condition 3 (Distributions).
(1) For all i>1,
0<ces p(h)f | ()< PIX; € B(x, h)] = F(h; x)<ce p(h)f 1(x),
where ¢(h) — 0 as h — 0 and f(x) is a nonnegative functional in x € J#.

(ii) sup P[(X, X;) € B(x,h) x B(x, )] = sup P[D;<h, D;<h]<y(h)f5(x),
i£] i#]
where Y(h) — 0 as i — 0 and f,(x) is a nonnegative functional in x € #. We
assume that the ratio y(h)/ $*(h) is bounded.

Finally, we assume that the processes {Y;, X;} are strongly mixing: Let & Z be the
sigma algebra generated by the random variables {Y;, X ,-}f-’za. Set
o(/) = sup sup |P[AB]— P[A]P[B]|.

71
t Ae7l

BeF >
-+l

We assume

Condition 4 (Mixing).
> Plah]' <00
=1

for some v>2 and 6>1—2/v.

Remark 1. The above conditions are fairly mild. Condition 1 is standard except for
K(f) being bounded away from zero. This latter assumption can be dropped (see
Condition 1’ below). Condition 2 is a mild smoothness assumption on the regression
functional r(u) and continuity assumption on certain second-order moments. As was
discussed earlier, Condition 3(i) is consistent with the assumptions made by Gasser
et al. [7] in the context of density estimation for functional data. When J# is a
separable Hilbert space and is infinitely dimensional, ¢(%) could decrease to zero as
h — 0 exponentially fast [7]. Similar argument applies to Condition 3(ii) which gives
the behavior of the joint distribution of (D;, D;) near the origin. Condition 4 is a
standard assumption on the decay of the strongly mixing coefficient a(/). We note
that for Theorem 1, we can set v =00 and 6>1 since the kernel K is bounded;
however, in Theorems 2 and 3, the random variables {Y;} are not necessarily
bounded and there is a tradeoff between the decay of the mixing condition and the
order v of the moment E|Y|' <oo.

An alternative to Condition 3 is the following in which Condition 3(i) is modified.
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Condition 3’ (Distributions).

® F(u;x) = p(u)f (x) asu— 0,
where ¢(0) =0 and ¢(u) is absolutely continuous in a neighborhood of the
origin.

(i) sup;.;P[Di<u, Djéu]<lp(u)f2(x) asu — 0, where Y(u) >0 as u— 0. We
assume that the ratio y(h)/ $*(h) is bounded.

Before we state our first result, we remark on the asymptotic value of the
integral

I(h) == / K ()¢ (hvydv, j=1,2. (2.6)

¢(h)/ h

Note that if K(f) = 1j1j(¢) then I;(h) =1 for every h>0. If the kernel K satisfies
O<ci<K(f)<cr<oo, then c¢;</;j(h)<cy, again for every h>0. In order to
obtain an expression of the asymptotic variance (rather than wupper and
lower bounds), one can drop the lower bound on K and modify Condition 1
as follows:

Condition 1’ (Kernel and Approximation of the Identity). K(t) is a nonnegative
bounded kernel with compact support [0, 1] satisfying

(1) K(t)<cy<oo.
(1) Ij(h) = Cjas h — 0, j = 1,2, for some positive constant C;.

Theorem 1. Let n ¢(h,) — oo as n — oo. Under Conditions 1, 3(1), and 4 (or under
Conditions 1', 3'(i), and 4),

71(x) ey

for each x € # as n — oo.

Next we consider the variance of the centered variate Q,(x) defined in (2.4). Define

t(X) == E[(Y; — r(x))4,(x)] (2.7)
and

Zni(x) == (Y — r(x)A4i(x) — - (2.8)
Then,

1 n

0,(x) = WE[ ()] 1:21 Zy. (2.9)

Let
1
Ty (X) = mVaF[Zn,l]o (2.10)
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Theorem 2. Let Conditions 1-4 (with v =00 and 6>1 for Condition 4) hold. Let
ng(h,) — oo as n — oo. Then, for large n,

Gz(x) ga(x)
R S1(x)

Jfor some positive constants cg and c9 whenever f(x)>0.

(a) S Py, o(x) <o 72—

(b) Z Z cov{Z, (x), Zn,/(x)} = O(Jn o(x))

Il J\>0

© var[Q,(x)] = ~ Gn 2001+ o(1)).

nE? [A 1014z

If we use Conditions 1" and 3’ (instead of Conditions 1 and 3), then the rate of
quadratic-mean convergence and the asymptotic variance can be specified:

Theorem 3. Let Conditions 1,2, 3', 4 (withv = oo and 6> 1) hold. Let n(h,) — oo as
n— oo. Then,

Cag(x)
Cif1(x) B
whenever f(x)>0 and the constants Cy and C, are specified in Condition 1', and
g-(x) is defined in Condition 2(ii).
1
nE [ 41(x)] <

(a) D(hn)oo(x) — a*(x)

(b) Z Z COVEZ, (), Znj(x)} = 0(a7 5(X)).

li ]\ >0
(© n(hy) var[Q,(x)] — ¢*(x)

whenever f(x)>0.

Remark 2. When K(7) = 1j,1;(¢), Condition 1’ is automatically satisfied in which case

ga(x)

B)orax) ~ F S

whenever f(x)>0.

In Section 4 we need the asymptotic expression of the variance when # = R™: in this
case it is easy to see that f(x) is the probability density of the random variable X,
d(x,u) = |lx — u|| and ¢(h,) = C(m)h,. Then it can be shown directly that

92(x) Jyop<1 K20l do
fl(x) [f‘ ‘glK(HU”)dU 2

Hy'ano(x) — @2.11)

[v]
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Simple algebra shows that

1
[ Keido=con C,-=C(m>(m / Kf‘(u)u'"-ldu), j=12
ol <1 0

Theorems 1 and 2 (respectively 3) imply the convergence in probability of the
estimate 7(x).

Corollary 1. Let Conditions 1-4 (or Conditions 1', 2, 3, and 4) hold and
nd(hy)/log, n — oo as n — oo. Then,

(M

12 »
oz, n) [F(x) —r(x) — By(x)] — 0 asn— oo

where the “bias” term B,(x) = O(h,/f) and log, n 1= log log n.

3. Asymptotic normality

In this section we establish the asymptotic normality of the regression estimate #(x)
of (1.1). We first state the asymptotic normality of Q,(x) of (2.8). We remark that by
Theorem 2 we have for large n

Cg 2 C9
—— <0, ()< ————. (3.1
f1(0)p(hy) ~ 0 S1(x)p(hy)
This result is sufficient to establish a normalized central limit theorem of the form
nl/2 0,(x) L N, 1) (3.2)
Gn,O(x)

when the response variable Y; is bounded. Such an assumption may be viewed by
some as being restrictive (even though the bound A; in |Y;|<A4,<oco can be
arbitrarily large). We therefore proceed to establish in this section a central limit
theorem that avoids this restriction by utilizing the result of Theorem 3 which states
that

Crgo(x)

Che ™ o} (x), xeH (3.3)

P(hy)a o(x) —

whenever f(x)>0.
Condition 5 below is an assumption on the rate of decay of the mixing coefficient

o(7).

Condition 5. Let 4, — 0 and n¢(h,) - oo as n — oo. Let {v,} be a sequence of
positive integers satisfying 1, — oo such that v, = o((n$(h,))"*) and
(/) *o(tn) — 0 as n — 0.
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Theorem 4. Under Conditions 1,2, 3, 4, and 5 we have as n — oo,

(1)) > 0,(x) 5 N(0, 6 (),
where 62(x) is defined in (3.3). Finally we establish the asymptotic normality of 7(x).

Theorem 5. Under Conditions 1, 2, 3, 4, and 5, we have as n — oo,
(n(hn)'* (F(x) — H(x) — By(x)) = N(0, 6%(x).

If one imposes a stronger assumption on the bandwidth /,, then one can remove the
bias term B,(x) from Theorem 5.

Corollary 2. If in addition to the assumptions of Theorem 5, the bandwidth parameter
h, satisfies nhf,ﬁ¢(hn) — 0 as n — oo, then

(np(ha )" (F(x) — r(x)) > N(0, 62(x)).

Remark 3. We remark on the conditions imposed on the mixing coefficient o(y)
under which Theorem 5 holds. These are Conditions 4 and 5. Let a(j) = O(~“) for
some a>0. Then Condition 4 is satisfied if a>(2 —2/v)/(1 —2/v). Now select the
small block v, = (n¢(hn))l/2/log n. Since n¢(h,) — oo, suppose ¢(h,) = n~¢ for some
0<c<1. Then Condition 5 is satisfied provided a>(2/c) — 1. Thus, the strongly
mixing coefficient must satisfy

a(j) = O(G~%); a> max{%— 1 2= 2/V}.

1=2/

Note that there is a tradeoff between the moment order v in the assumption
E|Y;|"<oo and the decay rate of the mixing coefficient a(j): the larger v is, the
weaker the decay of a(j). Also note that if «(j) decays exponentially fast, a(j) = ™%,
then Conditions 4 and 5 are automatically satisfied.

4. Discussion

We discuss in this section the ramifications of the results of this paper.

When the data { Y, X;} isi.i.d., Conditions 2(iii), 3(ii) and 3'(ii), 4, and 5 are clearly
not needed and can be dropped.

Central limit theorems are normally used to establish confidence intervals for the
estimates. In the context of nonparametric estimation (covariance, spectral density,
probability density, regression), the asymptotic variance ¢*(x) in the central limit
theorem depends on certain functions possibly including the one being estimated; see
for example (3.3) where ¢,(x) and f;(x) are unknown a priori and have to be
estimated in practice (see also (2.11) for the case # = R™). This situation is classical
regardless of whether the data is i.i.d or dependent. As a consequence, only
approximate confidence intervals can be obtained in practice even when ¢*(x) is
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functionally specified. The usage is as follows: by Corollary 2, we have for every ¢>0
and large n

P[IF(x) — r(x)|<g] ~ 20 <‘°\/W> Ny

a(x)

Let 62(x) be any consistent estimate of ¢2(x). Then approximate confidence intervals
can be obtained from

PIIF) — rx)| <] ~ 20 (W) »

6(x)

Equivalently, as was pointed out by a referee, one can use the normalized central
limit theorem (3.2) to also obtain an approximate confidence interval: Let &,21’0 be a
consistent estimate of o2, = var[Z,,]/E*[4,(x)]. Then

8ﬁ>_l

6_n,O (X)

PIIF(Y) — r(x) <] ~ zq>(

Thus, in practice, the computation of confidence intervals requires the estimation of
the asymptotic variance regardless of whether the structure of ¢?(x) is specified or
not.

Next we examine the issue of the curse of dimensionality. It was noted earlier that
when # = R™, then ¢(h) = C(m)h™ and the central limit theorem has the form given
in Theorem 5 with convergence rate (nhZ’)l/ 2. When # is infinite dimensional, ¢(h)
could decrease to zero as 7 — 0 exponentially fast and the convergence rate becomes
effectively (n¢(h,))'/>. How does one mitigate the curse of dimensionality? This issue
was addressed by Gasser et al. [7], in the context of density estimation in functional
space, who suggested employing finite dimensional approximations. We adopt their
suggestion: Let 2 be a separable Hilbert space and let {¢;} be an orthonormal basis.
Approximate X; and x via the expansions

m

m
Xi= E Xije, X= E xjej,
=1 =1

where
Xij=Xe), x:=(x¢e).

It is then clear that the problem becomes finite dimensional in R” with X; =
Xits. s Xim),X=(x1,...,x,) and Theorem 5 is applicable with a’(x) given by
(2.11).

We finally provide an application in the context of prediction of real-valued
continuous-time stationary processes: Let {X(¢),z>0} be a zero mean stationary
mean-square continuous random process. Let #'= L,[0, 1]. Define

X;={X(@i+0,0<i<1}, i=0,...,n
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Define for 0<7<1

Y= X((i+1)+1).
Then by stationarity

r(x) = E[Y|X; = x] = E[X(1 + )| X(?) = x(¢), 0<t<1],
which is the predictor of X (1 + 1) from {X(¢),0<¢<1}. Note that

1/2

1
d(x, X;) = { /0 [x(1) — X (i + t)]zdt}

We now estimate r(x) for each x € L,[0,1] by (1.1) and the results of the paper are
then applicable. The problem is clearly infinitely dimensional. We now consider a
suitable reduction to a vector valued problem: let {e;(¢)} be an orthonormal basis in
L,[0, 1]; for example, the eigenfunctions satisfying

1
Jjei(t) = / R(t — 5)ej(s) ds,
0
where R is the covariance matrix of the process and the eigenvalues /; are arranged
to be non-increasing. Then {e;(¢)} are orthonormal in [0, 1]; they are also complete
if R is positive definite [the Karhunen—Loeve expansion]. Since FE fo X(H)de =

Zj_lxlj, one can retain the first m largest eigenfunctions leading to the finite
approximation

m
X = Z Xjei(), 0<t<1,
=

where

1
X; = /O X(t)e(r)dt.

5. Derivations

Proof of Theorem 1.
R 1 n ) _
Fi(x) = WEA ()] ; Ai(x);  Ai(x) = K(d(x, X;)/h).

By stationarity of order one of the X;’s,

E[fi(x)] =L (5.1)



166 E. Masry | Stochastic Processes and their Applications 115 (2005) 155-177

Next consider
R 1 n n
var[f1(x)] = m ; ; cov{d;(x), 4;(x)}

1
T nE A (x)] W E [, (x)] 4

Il /\>0

=J1+ J>.
Now,

_ L EAi] 1
T B
and by Conditions 1 and 3(1),

ciesf1 ()Pt 1 Gedf 1 ()Phy) 1
<J1 S .
nE’[Ai(x)]  n nEM(x)]  n

Also, by Conditions 1 and 3(i),
hesf 1()bl) < EL4, ()] < cheef (). j = 1.2
so that

(cFes)/(erc) 1, _(Geo)/(cacs)’ ]

_\Jl\ -

nf 1 (xX)d(hy)  n nf\(x)p(hy)  n’
whenever f(x)>0. Since ¢(h,) — 0 as n — oo, we have for large n,
constl const2
<Ji<

n f1(x)¢(hn) n 1Pk

Alternatively, under Condition 1" and 3'(i), we have as n — oo,

0 = 5 / K (uf ) F(dus )

¢(hn) d(hn)

SO g du — £,09C, = 1.2,

= b0l Jo

It follows that

no(h,)J| — as n — oo

G
Cf \(x)

var[4,(x)] + PR N Z Z cov{Ai(x), 4;(x)}

(5.2)

(5.3)

(5.4)

(5.5)

(5.4a)
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whenever f(x)>0. For J, decompose the sum in (5.2)

1 n n n n
I = RN ; ; cov{4(x), 4;(x)} + ; ; cov{4(x), 4;(x))
0<li—jl<an li—j1>ay

=Jy1 +J22, (5.6)

where a, = o(n) at a rate specified below. For J,; we have by Conditions 1 and 3(ii)
(or Conditions 1'(i) and 3'(ii))
cov{4i(x), 4;(x)} = E[4(x)4;(x)] = E*[41(x)]

<c3sup Pl(Xi, X)) € B(x, h) x B(x,h)] + E*[4,(x)]
i#j

<AL (hy) + EX[A1(x)].
Hence by (5.6),

1< const. [0 h) + EAA)] - const. [y ()ay L
215 2 E[A(x)] ! nE*[41(x)] n’

where const. is a generic finite positive constant. Using either the lower bound (5.3),
or the asymptotic value (5.5), of E[4(x)],

Jor< const. fH(xXW(h,)a, ey (5.7)

nf 1§ (hy) n

Using the lower bound on J; in (5.4), or its asymptotic value in (5.4a), we obtain

Jo S2(x) Y(hy)ay

< const

J_l b .fl(x) d)(hn)

We shall subsequently select a,, such that the above bound tends to zero as n — oo.
Now consider J,5. By Davydov’s lemma [9, Corollary A.2],

+ and(h)f 1 (). (5.8)

cov{d;(x), 4;(x)} < 8{E|Ai(x)|v}2/v[oc(|i _jl)]l—Z/v.

Now by Conditions 1 and 3(i), or Conditions 1'G) and 3'(G), E|4:(x)|"
<const. f(x)¢p(hy,). Thus,

cov{di(x), 4;(x)} < const. 7" () p(ha)} [oli — j] 7.

It follows that

h, 2/v n_ n
Jar< const,Z;IEz(z)l(d)x()] ) Z Z[O‘(“ e

i=1

\1—/|>an
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Using the lower bound (5.3) or the asymptotic value (5.5) for E[4;(x)] and reducing
the double sum above to a single sum, we find that

o0

const. N
Jra< — Plo(l))'=2".
nad[p(h,)PI1F 0 () zzaznﬂ

Using the lower bound on J; in (5.4), or its asymptotic value in (5.4a),

Joo const. s 1-2/v
— < —7 ITo(D)] . (5.9
Ti " @l f 7 () zmz,,;l

Now select a, as a, =1/ [¢p(h,)]"~>V/°. Then by Condition 4,

%eOasnaoo. (5.10)
1

With this choice of a,, Eq. (5.8) becomes
Jai S2(x) ()

—— < const.

Ji J1(x) ¢*(hy)
The first term on the right side tends to zero since y(h)/ ¢>(h) is assumed bounded
and ¢(h,)a, — 0 since (1 —2/v)/d<1. The second term tends to zero since
(1-2/v)/o<1. O

d(hy)ay + [p(h,)] ~1=2//8,

Proof of Theorem 2. We first obtain a bound on the rate of convergence of y, of
(2.6).

() := E[(Y; — r(x))4;(x)]. (5.11)
Conditioning on X,
ta(x) = E[(r(X ;) — r(x))4:(x)]

and using Condition 2(i),

1,(x)< sup  |r(u) — r(x)| E[41(x)] < const. WP |E[4;(x)]. (5.12)
ueB(x,h)
Now
nvar[Q,(x)] = m var[Z, (v)]

n

1 n
] & ;COV{Zn,,-(x),ZnJ(x)}

li—j|>0

=L+ (5.13)
and note that 1| = aﬁ,o(x). By (5.12), we have

Tro(¥) = E[(Y) — r(x))* 43(x)] + 0P,

E’[4,(x)]
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Conditioning on X,
1 E[(r(X)) — r(x))’ 41 ()]
E[4,(x)] E*[4,(x)]
Using Condition 2(i) the second term is O(hﬁﬁ). We now establish upper and lower
bounds on a; (x). Write
E[g,(X) A1 (0)] = g2(0) E[47(0)] + E[(92(X1) — g>(x) A7 (x)]
2211’1 +11’2. (514)

J;Zz,o(x) = E[gz(Xl)A%(x)] + + O(hi/f).

By Condition 2(ii)

0] < { _d(spgq} g2 (1) — go(X)| E[47(x)] = o(1)E[47(x)],
whereas 111 = g5(x)E[43(x)]. Thus, E[g>(X)43(x)] = g>(x)(1 + o(1)E[43(x)]. Tt
follows that

E[47(x)]

2 _ 1 28

T0(X) = g2(x)(1 + o(1)) + O(h,").
e E[A,(v)]

By (5.3), there exist positive constants c¢g and ¢g such that

g>(x) ga(x)
f1(x) f1(x)

which proves Part (a) of the theorem. To prove Parts (b) and (c) we consider next the
contribution of the term /I, defined in (5.13). Split the sum as follows:

e + O(P(h)P) < Ppha) a2 o () <o + O(p(h)H2P), (5.15)

1 iy
I, = m ; ; COV{Z,,i(X), Z,,,;(x)}

1< i—j|<ay

n n
+3 ) cov{Z,i(x), Zy (X))
=1 j=1
\i—jlian
=11+ I, (5.16)

where a, = o(n) at a rate specified in the sequel. For I,
COV{Z,i(x), Znj()} = E[(Y; = r()(Y; = rc)Aix) 4;(0)] = .
Conditioning on (X;, X;) and using Condition 2(iii),
COV{Z,i(x), Zj(X)} = E[g(X 1, X1 ) A:(0)A,(0)] = 4.

By Condition 1 (upper bound) and Condition 2(iii), there exists a finite constant such
that

OV Z (). Zuj ()} | < const. sup P(X;, X;) € Bx,h) x B(x, )] + 1.
i#j
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By Condition 3(ii) and (5.12),

1COV{Zi(x), Zunj(x)}| < const f5(x) Y(hy) + O )E*[41(x)).
Thus, using (5.16),
const.f ,(x)Y(hy) + O ) E*[41(x)] Z Z .

Ha1ls nE*[A1(x)]
1<|l Jl<an
const.f »(x) Y (hn)ay 28
ST Py
Finally, using the lower bound in (5.3),
const.f5(x) Y(hy)ay 28
FERTES 2209 0hn) + O(h,")ay. (5.17)
It now follows from the lower bound on o; in (5.15) that
LERTEY] fo(x)  h)ay LGP
. : oh"p(hy)ay,. 5.18
20 @000 bl T gy O G19

We shall subsequently select @, to make the right side of (5.18) tend to zero as
n — oo. Now consider the contribution of 75, of (5.16). By Davydov’s lemma (Hall
and Heyde [9], Corollary A.2),

|COV{Zi(x), Zyj N <BLEIY ;= r(e) Aol ¥ i = DI 2

By Condition 1 (upper bound) and the continuity of g, in Condition 2(ii),
E|(Y; — r(x)4i(x)|" = Elg,(X)4,(x)|" < const. P[X; € B(x,h)]

and by Condition 3(i) (upper bound),
€OV Z,i(x), Zuj(x)}| < const. {f (X))} [ox(li = j)T' .

It then follows from (5.16) that

2/v n n
o LI S 3t

i=
li— /\>an

Using the lower bound (5.3) for E[4;(x)] and reducing the double sum above into a
single sum, we find that
const. SN -2y
I, < —7 ' I la(D)] . (5.19)
af Oy zzuz,,;l

Now using the lower bound (5.15) on g, , we obtain

00

1 const. 5 -
Pl 5.20
Uﬁ,o(x) S g2(x)fl 2/v(x)[¢(hn)](1_2/") 1;1 [a(D)] (5.20)
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Now select a, as a, := Then by Condition 4,

1
[ =270
I,

oﬁﬂo(x)

— 0 asn— oo. (5.21)

Now Eq. (5.18) can be written as
I, So(x)  Y(hy)

_’<CO

Tr0 f 1()g2(x) $*(hy)

S

x)
x)

The first term on the right side tends to zero since y(h)/ $>(h) is assumed bounded
and ¢(h,)a, — 0 with the choice of a, above. The second term clearly tends to zero
asn— oo. [

0P p(hy)a.

¢(hp)a, +

Proof of Theorem 3. It is seen from the proof of Theorem 2 that the dominant term
for o} ((x) is given by

E[47(x)]

2( ) T2r 4 7N
EY M ()]

Let F(u; x) = P[D;<u]. Under Conditions 1’ and 3’(i), we have for large n (small £,)

1 ; 1
50 E[4(x)] = 50 o K (u/h,) dF (u; x)
hy )
~filx )tb(hn) K(u/h)¢'(w)du — Cif ((x), j=1,2.
It follows that
2 o G
()7, o(x) AR

which specifies the structure of the asymptotic variance and proves part (a) of the
theorem. The proof of part (b) follows the same steps as in the proof of Theorem 2

except that we use the asymptotic value of aio(x) given above instead of its lower
bound. O

Proof of Corollary 1. By (5.1) E[F;(x)] = 1 so that by (2.3),

BV
EhGl T Bl

By(x) = E[f>(x)] — r(x) =

by (5.11). Thus, by (5.12), B,(x)<const. hg. It follows that

0,(x)

;'(X) - V(X) Bn( ) ( )

(1 + 0,(1)). (5.22)
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Now by Theorem 1, ;’l(x)gl and by Theorem 2 or Theorem 3,
no(hy) var[Q,(x)|< const.g,(x)/f (x). Thus,

(ncﬁ(hn)

log,n

12
) [F(x) — r(x) — B,(x)] 250 asn—o o0, O

Proof of Theorem 4. In view of (5.22) and Theorem 1, it suffices to establish the
asymptotic normality of Q,(x). We normalize Z,; of (2.8) by

S Zni(0)9" ) s

Zai) ==y S = 2 Zaal) (5:23)
so that

var[Z,(x)] = 0, ,(x)p(hy) — 0°(x) as n — oo (5.24)

by Theorem 3. Also by Theorem 3,

> oV Zi(x), Zuj(x)} = o(n). (5.25)
=1 j=I
li=jl>0
Now,
(1) 20,(x) = -5, (5.26)
n \/h‘
We thus need to show that
1§, & N0,62 () (5.27)
ﬁ n 2 . .
We employ Bernstein’s big-block and small-block procedure. Partition the set
{1,...,n} into 2k, + 1 subsets with large blocks of size u = u,, and small blocks of
size v = v, and set
n
k=k, = . 5.28
\‘un + UnJ ( )

Condition 5 implies that there exists a sequence of positive integers {q,}, ¢, — o0,
such that

Gon = o((np(h)'?), g, (n/$(hn))'*a(vs) > 0 as n — oo, (5.29)
Now define the large block size as u, = L(nqb(h,,))l/z/qnj. Then using (5.29) and
simple algebra shows that as n — oo,

On u u

-0, 250 —% 0, iocv — 0. 5.30
ty n (n(,))'? w, (530
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Let 1;, ¢j, (; be defined as follows:

Ju+v)+u .

= Y Zus 0SSk, (5.31)
i=j(u+v)+1

G+1D(u+v) .

Gi= Y. Zun 0<j<k—1 (5.32)

i=j(utv)+u+1
and
n

b= D Zu (5.33)

i=k(u+v)+1

Write

E+l=S,+S/+S,. (5.34)

|I
M»

We show that as n — oo,

LRS- 0. ESE 0, (5352)
k—1
|Elexp(itn™"/2S;)] — [ [ Elexp(itn™"/*n))]l — 0, (5.35b)
j=0
- Z E[n?] > o*(x), (5.35¢)
=D L] >eo(x)v/n}] — 0, (5.35d)
j=0

for every ¢>0. Relation (5.35a) implies that S/, and Sn are asymptotically negligible,
(5.35b) shows that the summands {5;} in S, are asymptotically independent, and
(5.35¢)~(5.35d) are the standard Lindeberg—Feller conditions for asymptotic
normality of S’ under independence.

We first establish (5.35a).

k—1 —1 k—
ST = var [Z 5_,1 Z var[¢;] + Z Z cov{é, &) = Fi+F».  (5.36)
i=0 i=0
J l#;
Now by second-order stationarity,
var[g)] = vyvar[Z,,]+ Y 0 > cov{Zyi, Znj) = 0,67 (x)(1 + o(1) (5.37)

i=1 j=1
i#]
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by (5.24) and (5.25). Thus,
noy nuy,
Uy + v, Uy

by (5.30). Next consider the term F» in (5.36). With A4; = j(u, + v,) + u,, we have

Fy = kyuo”(x)(1 + o(1)) ~

= o(n), (5.38)

k=1 k=1 v, v,

F, = E E CoV{Zj+1,. Zni+h }s
1 b=l

i=0 j=0 /=
i#]

but since i#j, |4; — A4; + 11 — 2| >u,, it follows that

IFa <> > coviZyis Zug} = o(n) (5.39)
i=1 =0
\i—ﬂéun

by (5.25). Hence, by (5.36), (5.38), and (5.39), we have
1
ZE[SZ]2 — 0 asn— oo.

By a similar argument we find, using (5.24), (5.25), and (5.30),

1 1 ~
B[S, < [ — Kn(uy + v)var{Zy]
1 n—k,(u,+v,) n—k,(u,+v,) . .
+ p Z Z cov{Zyi, Znj}
i=1 J=1
li—=j1>0
Uy + vy 2
< — (x)+0(1) > 0 asn— oo. (5.40)
In order to establish (5.35b) we make use of the fact that the processes {Y;, X;} are
strongly mixing and of Volkonskii and Rozanov’s lemma stated in the appendix.
Note that 7, is %’jij-measurable with i, = a(u + v) + 1 and j, = a(u + v) + u. Hence,
with V; = exp(itn~'/?y;), we have
k=1
Elexp(itn™"28))] — [ | Elexp(in™"2n)]| <16 kya(v, + 1) ~ 16 uﬁa(un +1),
= "
which tends to zero by (5.30). Next we establish (5.35¢). By (5.37), with u, replacing
v,, we have

var[y;] = var[ng] = u,a*(x)(1 + o(1),

so that
P gy = Bt 2001 4 001 2
ZZ(; [nj]_To(x)( +o0(l)) > 0°(x) asn— oo
j:

since k,u,/n — 1.
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It remains to establish (5.35d). We need to employ a truncation argument since the
response variable Y; is not necessarily bounded. Let

ar(y) = yI{ly|<L}, (5.41)
where L is a fixed truncation point. Put
ri(x) = Elar(Y)|X; = x]. (5.42)
Define
Z% = (ar(Y;) — r(x0))Ai(x) — (5.43)
where pf is the mean of the first term on the right side, and
L ZEoV(hy) ) var[ZL ]
ni = - s O-nOL(x) = 5] —,
’ E[41(x)] - E°[41(x)]
so that for each fixed L>0, we have as in Theorem 3
Var[Z,ii] = aﬁ’o,L(x)q’)(hn) — oi(x) as n — 0o, (5.44)
where
Cs g3,1(x)
2 2921
07 (x) =— =2 s x) :=var[ Y I{|Y||<L} X, =x 5.45
7.(x) 1) gr.0(x) (Y I{|Y{I<L}X, =Xx] (5.45)

(compare with g,(x) defined in Condition 2(i)). Finally, set
. n AL I n R AL
Sh=>"27, and S,:=> (Zui—Z,) (5.46)
i=1 i=1
and let njL ‘tzeigiven by (5.31) WiE}l Zn,,- replaced by ZNfl It is now seen from (5.43) and
(5.3) that Z,; is bounded by |Z, | <const./¢'*(h,). Thus by (5.31)

L
max ; n<const.
Oerer ] |77] |/\/_\

L
(np(hy))'/?

by (5.30). Hence when 7 is large, the set {|njL| >¢or(x)4/n} becomes an empty set and
thus (5.35d) holds. Consequently, (5.35a)—(5.35d) hold for S,f so that

1 L
7 SE— N(0, 6%(x)). (5.47)

In order to complete the proof for the general case, it suffices to show

1 _
p Var[S,I;] — 0 as first n — oo and then L — oo. (5.48)

Indeed,
|Efexp(itn™"/2S,)] — exp(—6*(x)/2)|
= |Efexp(im™"2(SE + S)))] — exp(— 262 (x)/2)
+ exp(— 1207 (x)/2) — exp(—*6*(x)/2)|
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< |E[exp(iln_l/zS§)] — exp(—tzai(x)/2)| + E| exp(itn_wS’f) — 1]
+ lexp(—£2a2 (x)/2) — exp(—£26*(x)/2)|.

Letting n — oo, the first term goes to zero by (5.47) for every L>0; the second term
converges to zero by (5.48) as first n — oo and then L — oo; the third term goes to
zero as L — oo since 67(x) > 6%(x) as L — 00 (as g, (x) = go(x) as L — oo;
see (5.45)). Therefore, it remains to prove (5.48). Note that §, has the same
structure as S, except that Y; is replace by Y, I{|Y;|> L}. Hence by the argument of
Theorem 3

<L, Cags(x)

|
lim — var[S,] = —5—= ,
Py V=G

where
Ga.r(x) = var[ Y I{| Y| > L}| X = x]

(compare to ¢,(x) in Condition 2(ii)). By dominated convergence the right side
converges to 0 as L — oo. This establishes (5.35d) for the general case and completes
the proof of Theorem 4. [

Proofmoyf Theorem 5. The result follows from (5.22), Theorems 4 and 1 noting that
Filx)— 1. O
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Appendix A

Lemma (Volkonskii and Rozanov [22]). Let Vy,...,V be strongly mixing random
variables measurable with respect to the o-algebras fﬁ:,,ﬁg respectively with
I<ii<ji<ia<---<jr<n, iy —jizwzland |V;|<1 for j=1,...,L. Then

L L
E(H Vj) - HE(Vj) <16(L — Da(w),
=1 e

J

where a(w) is the strongly mixing coefficient.
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