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Abstract

We consider the estimation of a regression functional where the explanatory variables take

values in some abstract function space. The principal aim of the paper is to establish the

asymptotic normality of such estimates for dependent functional data.
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1. Introduction

Regression function estimation is an important problem in data analysis with a
wide range of applications in filtering and prediction in communications and control
systems, pattern recognition and classification, and econometrics (Györfi et al., [8],
Härdle [10], Fukunaga [6], and Tjostheim [19]). There is an extensive literature on
regression estimation for i.i.d. data (see, for example, Rosenblatt [16], Schuster [18],
see front matter r 2004 Elsevier B.V. All rights reserved.
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Mack and Silverman [11] and the references therein) as well as for dependent data
(see, for example, Robinson [15], Collomb and Härdle [2], Roussas [17], Tran [20]
and the references therein).
In this paper we consider the case of functional data. There has been an increasing

interest in this area in recent years. For an introduction to this field, the reader is
directed to the books of Ramsay and Silverman [13,14]. The latter provides some
basic methods of analysis along with diverse case studies in several areas including
criminology, economics, archaeology, and neurophysiology. It should be noted that
the extension of probability theory to random variables taking values in normed
spaces (e.g. Banach and Hilbert spaces), including extensions of certain classical
asymptotic limit theorems predates the recent literature on functional data; the
reader is referred to the books Araujo et al. [1] and Vakashnia et al. [21].
Gasser et al. [7] considers density and mode estimation for data taking values in a

normed vector space. The paper highlights the issue of the curse of dimensionality
for functional data and suggests methods to mitigate the problem. We shall revisit
this issue in Section 4. In the context of regression estimation nonparametric models
were considered by Ferraty and Vieu [4,5].
Let fY i;X ig

1
i¼1 be random processes where Y i is real-valued and X i takes values in

some abstract space H: While H can be assumed to be a semi-metric vector space
with semi metric dð�; �Þ; in most practical applications, H is a normed space (e.g.
Hilbert or a Banach space) with norm k:k so that dðu; vÞ ¼ ku 	 vk: Assume that
EjY ijo1 and define the regression functional as

rðuÞ :¼ E½Y ijX i ¼ u�; u 2 H;

which is assumed to be independent of i: We do not assume that the processes
fY i;X ig

1
i¼1 are necessarily strictly stationary; it suffices to assume second-order

stationarity.
A Nadaraya–Watson type estimator for r was introduced in Ferraty and Vieu [5]

taking the form

r̂ðxÞ ¼

Pn
i¼1Y iKðdðx;X iÞ=hÞPn

i¼1Kðdðx;X iÞ=hÞ
; (1.1)

where Kð�Þ is a real-valued kernel function and h ¼ hn is the bandwidth parameter.
Rates of almost sure convergence were established in Ferraty and Vieu [5] for
strongly mixing processes.
The purpose of this paper is to establish the asymptotic normality of the estimate

r̂ðxÞ for strongly mixing processes. It should be noted that even for i.i.d. functional
data, no asymptotic normality has so far been established. We remark that
establishing central limit theorems utilizes different methods of analysis than those
used to obtain rates of a.s. convergence. For dependent data (functional or not) the
usual method for establishing rates of a.s. convergence for nonparametric
function(al) estimates employs upper bounds on moments of the estimate, an
exponential inequality, and the use of the Borel–Cantelli lemma (see for example
Masry [12]). This is indeed the method of analysis used in Ferraty and Vieu [5].
Establishing central limit theorems for nonparametric function estimates for
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dependent data utilizes appropriate form of Bernstein’s blocking argument and a
reduction analysis leading to the Lindeberg–Feller conditions for independent
variables (see for example Fan and Masry [3]); while the overall approach is the
same, the technical details of the proofs for functional data are more involved as can
be seen from the derivations in Section 5.
The organization of the paper is as follows. Section 2 establishes the quadratic-

mean convergence for certain estimates appearing in (1.1) along with convergence in
probability (with rates) of r̂ðxÞ (Theorems 2, 3 and Corollary 1). These are
subsequently used in Section 3 to establish the asymptotic normality of r̂ðxÞ

(Theorems 4 and 5). Section 4 is devoted to the discussion of the results, including
the issue of the curse of the dimensionality and an example. Derivations are
presented in Section 5.
2. Quadratic-mean convergence

We first introduce a suitable decomposition of the estimation error that greatly
facilitates the analysis. Set

DiðxÞ :¼ Kðdðx;X iÞ=hÞ

and define

r̂1ðxÞ :¼
1

nE½D1ðxÞ�

Xn

i¼1

DiðxÞ (2.1)

and

r̂2ðxÞ :¼
1

nE½D1ðxÞ�

Xn

i¼1

Y i DiðxÞ (2.2)

so that r̂ðxÞ ¼ r̂2ðxÞ=r̂1ðxÞ: Now, define the ‘‘bias’’ term by

BnðxÞ :¼
E½r̂2ðxÞ� 	 rðxÞE½r̂1ðxÞ�

E½r̂1ðxÞ�
(2.3)

and a centered variate

QnðxÞ :¼ ðr̂2ðxÞ 	 E½r̂2ðxÞ�Þ 	 rðxÞðr̂1ðxÞ 	 E½r̂1ðxÞ�Þ: (2.4)

Then it can be seen that

r̂ðxÞ 	 rðxÞ 	 BnðxÞ ¼
QnðxÞ 	 BnðxÞðr̂1ðxÞ 	 E½r̂1ðxÞ�Þ

r̂1ðxÞ
: (2.5)

The relationship (2.5) is fundamental to our goal of establishing a central limit
theorem for r̂ðxÞ: under certain regularity conditions, we will show that r̂1ðxÞ

converges in quadratic mean to 1 as n ! 1:Moreover, the bias term BnðxÞ ¼ oð1Þ as
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n ! 1: It then follows from (2.5) that

r̂ðxÞ 	 rðxÞ 	 BnðxÞ ¼
Qn

r̂1ðxÞ
ð1þ opð1ÞÞ:

Thus, in order to obtain a central limit theorem for the left side of the
above equation, it suffices to establish asymptotic normality for the variate
QnðxÞ:
We make the following assumptions which are subsequently discussed in

Remark 1.

Condition 1 (Kernel). KðtÞ is nonnegative bounded kernel with support ½0; 1�
satisfying

0oc1pKðtÞpc2o1

for some constants c1; c2:

Condition 2 (Smoothness).
(i)
 jrðuÞ 	 rðvÞjpc3 dðu; vÞb

for all u; v 2 H for some b40:

(ii)
 Let

g2ðuÞ :¼ var½Y jjX j ¼ u�; u 2 H:

g2ðuÞ is independent of j and is continuous in some neighborhood of x:

sup
fu:dðx;uÞphg

jg2ðuÞ 	 g2ðxÞj ¼ oð1Þ as h ! 0:

Assume EjY ij
no1 for some n42: Assume

gnðuÞ :¼ E½jY i 	 rðxÞjn jX i ¼ u�; u 2 H

is continuous in some neighborhood of x:

(iii)
 Define

gðu; v; xÞ :¼ E½ðY i 	 rðxÞÞðY j 	 rðxÞÞjX i ¼ u;X j ¼ v�; iaj; u; v 2 H:

Assume that gðu; v; xÞ does not depend on i; j and is continuous in some
neighborhood of ðx;xÞ:
Let Bðx; hÞ be a ball centered at x 2 H with radius h: Ferraty and Vieu [5]
assume uniform upper and lower bounds on P½X j 2 Bðx; hÞ� of the form 0oc5 fðhÞp
P½X j 2 Bðx; hÞ�pc6 fðhÞ: The uniformity was questioned by a referee. We adopt a
different condition consistent with the assumptions made in Gasser et al. [7] in the
context of density estimation for functional data: Let Di :¼ dðx;X iÞ so that Di is a
real-valued nonnegative random variable and denote its distribution by F ðu; xÞ ¼

P½Dipu�: One is interested in the behavior of F ðu; xÞ as u ! 0: Gasser et al. [7]
assume that F ðh; xÞ ¼ fðhÞf 1ðxÞ as h ! 0 and refer to f 1ðxÞ as the probability density
(functional). When H ¼ Rm; then F ðh;xÞ ¼ P½kx 	 X ikph� and it can be seen that
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in this case fðhÞ ¼ CðmÞhm (CðmÞ is the volume of a unit ball in Rm) and f 1ðxÞ is the
probability density of the random variable X 1: Indeed, it can be shown directly that
limh!0ð1=hm

ÞF ðh;xÞ ¼ CðmÞf 1ðxÞ: Motivated by the work of Gasser et al. and the
above argument we make the following assumption:

Condition 3 (Distributions).
(i)
(ii)
For all iX1;

0oc5 fðhÞf 1ðxÞpP½X i 2 Bðx; hÞ� ¼ F ðh; xÞpc6 fðhÞf 1ðxÞ;

where fðhÞ ! 0 as h ! 0 and f 1ðxÞ is a nonnegative functional in x 2 H:
sup
iaj

P½ðX i;X jÞ 2 Bðx; hÞ � Bðx; hÞ� ¼ sup
iaj

P½Diph;Djph�pcðhÞf 2ðxÞ;

where cðhÞ ! 0 as h ! 0 and f 2ðxÞ is a nonnegative functional in x 2 H: We
assume that the ratio cðhÞ=f2ðhÞ is bounded.
Finally, we assume that the processes fY i;X ig are strongly mixing: Let F
b
a be the

sigma algebra generated by the random variables fY i;X ig
b
i¼a: Set

aðlÞ ¼ sup
t

sup
A2Ft

	1
B2F1

tþl

jP½AB� 	 P½A�P½B�j:

We assume

Condition 4 (Mixing).

X1
l¼1

ld½aðlÞ�1	2=no1

for some n42 and d41	 2=n:

Remark 1. The above conditions are fairly mild. Condition 1 is standard except for
KðtÞ being bounded away from zero. This latter assumption can be dropped (see
Condition 1’ below). Condition 2 is a mild smoothness assumption on the regression
functional rðuÞ and continuity assumption on certain second-order moments. As was
discussed earlier, Condition 3(i) is consistent with the assumptions made by Gasser
et al. [7] in the context of density estimation for functional data. When H is a
separable Hilbert space and is infinitely dimensional, fðhÞ could decrease to zero as
h ! 0 exponentially fast [7]. Similar argument applies to Condition 3(ii) which gives
the behavior of the joint distribution of ðDi;DjÞ near the origin. Condition 4 is a
standard assumption on the decay of the strongly mixing coefficient aðlÞ: We note
that for Theorem 1, we can set n ¼ 1 and d41 since the kernel K is bounded;
however, in Theorems 2 and 3, the random variables fY ig are not necessarily
bounded and there is a tradeoff between the decay of the mixing condition and the
order n of the moment EjY 1j

no1:

An alternative to Condition 3 is the following in which Condition 3(i) is modified.
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Condition 30 (Distributions).
(i)
 F ðu; xÞ ¼ fðuÞf 1ðxÞ as u ! 0;

where fð0Þ ¼ 0 and fðuÞ is absolutely continuous in a neighborhood of the
origin.
(ii)
 supiajP½Dipu;Djpu�pcðuÞf 2ðxÞ as u ! 0; where cðuÞ ! 0 as u ! 0: We
assume that the ratio cðhÞ=f2ðhÞ is bounded.
Before we state our first result, we remark on the asymptotic value of the
integral

I jðhÞ :¼
1

fðhÞ=h

Z 1

0

KjðuÞf0
ðhvÞdv; j ¼ 1; 2: (2.6)

Note that if KðtÞ ¼ 1½0;1�ðtÞ then I jðhÞ ¼ 1 for every h40: If the kernel K satisfies
0oc1pKðtÞpc2o1; then c1pI jðhÞpc2; again for every h40: In order to
obtain an expression of the asymptotic variance (rather than upper and
lower bounds), one can drop the lower bound on K and modify Condition 1
as follows:

Condition 10 (Kernel and Approximation of the Identity). KðtÞ is a nonnegative
bounded kernel with compact support ½0; 1� satisfying
(i)
 KðtÞpc2o1:

(ii)
 I jðhÞ ! Cj as h ! 0; j ¼ 1; 2; for some positive constant Cj :
Theorem 1. Let nfðhnÞ ! 1 as n ! 1: Under Conditions 1, 3(i), and 4 (or under

Conditions 10; 30(i), and 4),

r̂1ðxÞ 	!
m:s:

1

for each x 2 H as n ! 1:

Next we consider the variance of the centered variate QnðxÞ defined in (2.4). Define

mnðxÞ :¼ E½ðY i 	 rðxÞÞDiðxÞ� (2.7)

and

Zn;iðxÞ :¼ ðY i 	 rðxÞÞDiðxÞ 	 mn: (2.8)

Then,

QnðxÞ ¼
1

nE½D1ðxÞ�

Xn

i¼1

Zn;i: (2.9)

Let

s2n;0ðxÞ :¼
1

E2½D1ðxÞ�
var½Zn;1�: (2.10)
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Theorem 2. Let Conditions 1–4 (with n ¼ 1 and d41 for Condition 4) hold. Let

nfðhnÞ ! 1 as n ! 1: Then, for large n;
(a)

(b)

(c)

(a)

(b)

(c)
c8
g2ðxÞ

f 1ðxÞ
pfðhnÞs2n;0ðxÞpc9

g2ðxÞ

f 1ðxÞ

for some positive constants c8 and c9 whenever f 1ðxÞ40:
1

nE2½D1ðxÞ�

Xn

i¼1

Xn

j¼1

ji	jj40

covfZn;iðxÞ;Zn;jðxÞg ¼ oðs2n;0ðxÞÞ:
var½QnðxÞ� ¼
1

n
s2n;0ðxÞð1þ oð1ÞÞ:
If we use Conditions 10 and 30 (instead of Conditions 1 and 3), then the rate of
quadratic-mean convergence and the asymptotic variance can be specified:

Theorem 3. Let Conditions 10; 2, 30; 4 (with n ¼ 1 and d41) hold. Let nfðhnÞ ! 1 as

n ! 1: Then,
fðhnÞs2n;0ðxÞ !
C2

C2
1

g2ðxÞ

f 1ðxÞ
¼: s2ðxÞ

whenever f 1ðxÞ40 and the constants C1 and C2 are specified in Condition 10; and

g2ðxÞ is defined in Condition 2(ii).
1

nE2½D1ðxÞ�

Xn

i¼1

Xn

j¼1

ji	jj40

covfZn;iðxÞ;Zn;jðxÞg ¼ oðs2n;0ðxÞÞ:
nfðhnÞ var½QnðxÞ� ! s2ðxÞ
whenever f 1ðxÞ40:

Remark 2. When KðtÞ ¼ 1½0;1�ðtÞ; Condition 1
0 is automatically satisfied in which case

fðhnÞs2n;0ðxÞ !
g2ðxÞ

f 1ðxÞ

whenever f 1ðxÞ40:

In Section 4 we need the asymptotic expression of the variance whenH ¼ Rm: in this
case it is easy to see that f 1ðxÞ is the probability density of the random variable X 1;
dðx; uÞ ¼ kx 	 uk and fðhnÞ ¼ CðmÞhm

n : Then it can be shown directly that

hm
n s

2
n;0ðxÞ !

g2ðxÞ

f 1ðxÞ

R
kvkp1 K2ðkvkÞdvR
kvkp1 KðkvkÞdv

h i2 : (2.11)
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Simple algebra shows thatZ
kvkp1

KjðkvkÞdv ¼ CðmÞCj ¼ CðmÞ m

Z 1

0

KjðuÞum	1 du

� �
; j ¼ 1; 2:

Theorems 1 and 2 (respectively 3) imply the convergence in probability of the
estimate r̂ðxÞ:

Corollary 1. Let Conditions 1–4 (or Conditions 10; 2, 30; and 4) hold and

nfðhnÞ=log2 n ! 1 as n ! 1: Then,

nfðhnÞ

log2 n

� �1=2
½r̂ðxÞ 	 rðxÞ 	 BnðxÞ� 	!

P
0 as n ! 1

where the ‘‘bias’’ term BnðxÞ ¼ Oðhb
nÞ and log2 n :¼ log log n:
3. Asymptotic normality

In this section we establish the asymptotic normality of the regression estimate r̂ðxÞ

of (1.1). We first state the asymptotic normality of QnðxÞ of (2.8). We remark that by
Theorem 2 we have for large n

c8

f 1ðxÞfðhnÞ
ps2n;0ðxÞp

c9

f 1ðxÞfðhnÞ
: (3.1)

This result is sufficient to establish a normalized central limit theorem of the form

n1=2
QnðxÞ

sn;0ðxÞ
!
L

Nð0; 1Þ (3.2)

when the response variable Y i is bounded. Such an assumption may be viewed by
some as being restrictive (even though the bound A1 in jY ijpA1o1 can be
arbitrarily large). We therefore proceed to establish in this section a central limit
theorem that avoids this restriction by utilizing the result of Theorem 3 which states
that

fðhnÞs2n;0ðxÞ !
C2

C2
1

g2ðxÞ

f 1ðxÞ
¼: s2ðxÞ; x 2 H (3.3)

whenever f 1ðxÞ40:
Condition 5 below is an assumption on the rate of decay of the mixing coefficient

aðjÞ:

Condition 5. Let hn ! 0 and nfðhnÞ ! 1 as n ! 1: Let fvng be a sequence of
positive integers satisfying vn ! 1 such that vn ¼ oððnfðhnÞÞ

1=2
Þ and

ðn=fðhnÞÞ
1=2aðvnÞ ! 0 as n ! 1:
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Theorem 4. Under Conditions 10; 2, 30; 4, and 5 we have as n ! 1;

ðnfðhnÞÞ
1=2 QnðxÞ!

L
Nð0; s2ðxÞÞ;

where s2ðxÞ is defined in (3.3). Finally we establish the asymptotic normality of r̂ðxÞ:

Theorem 5. Under Conditions 10; 2, 30; 4, and 5, we have as n ! 1;

ðnfðhnÞÞ
1=2

ðr̂ðxÞ 	 rðxÞ 	 BnðxÞÞ!
L

Nð0; s2ðxÞÞ:

If one imposes a stronger assumption on the bandwidth hn; then one can remove the
bias term BnðxÞ from Theorem 5.

Corollary 2. If in addition to the assumptions of Theorem 5, the bandwidth parameter

hn satisfies nh2bn fðhnÞ ! 0 as n ! 1; then

ðnfðhnÞÞ
1=2

ðr̂ðxÞ 	 rðxÞÞ!
L

Nð0; s2ðxÞÞ:

Remark 3. We remark on the conditions imposed on the mixing coefficient aðjÞ
under which Theorem 5 holds. These are Conditions 4 and 5. Let aðjÞ ¼ Oðj	aÞ for
some a40: Then Condition 4 is satisfied if a4ð2	 2=nÞ=ð1	 2=nÞ: Now select the
small block vn ¼ ðnfðhnÞÞ

1=2= log n: Since nfðhnÞ ! 1; suppose fðhnÞ ¼ n	c for some
0oco1: Then Condition 5 is satisfied provided a4ð2=cÞ 	 1: Thus, the strongly
mixing coefficient must satisfy

aðjÞ ¼ Oðj	aÞ; a4max
2

c
	 1;

2	 2=n
1	 2=n

	 

:

Note that there is a tradeoff between the moment order n in the assumption
EjY ij

no1 and the decay rate of the mixing coefficient aðjÞ: the larger n is, the
weaker the decay of aðjÞ: Also note that if aðjÞ decays exponentially fast, aðjÞ ¼ e	aj ;
then Conditions 4 and 5 are automatically satisfied.
4. Discussion

We discuss in this section the ramifications of the results of this paper.
When the data fY i;X ig is i.i.d., Conditions 2(iii), 3(ii) and 3

0(ii), 4, and 5 are clearly
not needed and can be dropped.
Central limit theorems are normally used to establish confidence intervals for the

estimates. In the context of nonparametric estimation (covariance, spectral density,
probability density, regression), the asymptotic variance s2ðxÞ in the central limit
theorem depends on certain functions possibly including the one being estimated; see
for example (3.3) where g2ðxÞ and f 1ðxÞ are unknown a priori and have to be
estimated in practice (see also (2.11) for the caseH ¼ Rm). This situation is classical
regardless of whether the data is i.i.d or dependent. As a consequence, only
approximate confidence intervals can be obtained in practice even when s2ðxÞ is
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functionally specified. The usage is as follows: by Corollary 2, we have for every e40
and large n

P½jr̂ðxÞ 	 rðxÞjpe� � 2F
e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nfðhnÞ

p
sðxÞ

 !
	 1:

Let ŝ2ðxÞ be any consistent estimate of s2ðxÞ: Then approximate confidence intervals
can be obtained from

P½jr̂ðxÞ 	 rðxÞjpe� � 2F
e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nfðhnÞ

p
ŝðxÞ

 !
	 1:

Equivalently, as was pointed out by a referee, one can use the normalized central
limit theorem (3.2) to also obtain an approximate confidence interval: Let ŝ2n;0 be a
consistent estimate of s2n;0 ¼ var½Zn;1�=E2½D1ðxÞ�: Then

P½jr̂ðxÞ 	 rðxÞjpe� � 2F
e
ffiffiffi
n

p

ŝn;0ðxÞ

� �
	 1:

Thus, in practice, the computation of confidence intervals requires the estimation of
the asymptotic variance regardless of whether the structure of s2ðxÞ is specified or
not.
Next we examine the issue of the curse of dimensionality. It was noted earlier that

whenH ¼ Rm; then fðhÞ ¼ CðmÞhm and the central limit theorem has the form given
in Theorem 5 with convergence rate ðnhm

n Þ
1=2: When H is infinite dimensional, fðhÞ

could decrease to zero as h ! 0 exponentially fast and the convergence rate becomes
effectively ðnfðhnÞÞ

1=2: How does one mitigate the curse of dimensionality? This issue
was addressed by Gasser et al. [7], in the context of density estimation in functional
space, who suggested employing finite dimensional approximations. We adopt their
suggestion: LetH be a separable Hilbert space and let fejg be an orthonormal basis.
Approximate X i and x via the expansions

~X i ¼
Xm

j¼1

X i;jej ; ~x ¼
Xm

j¼1

xjej ;

where

X i;j :¼ ðX i; ejÞ; xj :¼ ðx; ejÞ:

It is then clear that the problem becomes finite dimensional in Rm with ~Xi ¼

ðX i;1; . . . ;X i;mÞ; ~x ¼ ðx1; . . . ; xmÞ and Theorem 5 is applicable with s2ðxÞ given by
(2.11).
We finally provide an application in the context of prediction of real-valued

continuous-time stationary processes: Let fX ðtÞ; tX0g be a zero mean stationary
mean-square continuous random process. Let H¼ L2½0; 1�: Define

X i :¼ fX ði þ tÞ; 0ptp1g; i ¼ 0; . . . ; n:
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Define for 0otp1

Y i :¼ X ðði þ 1Þ þ tÞ:

Then by stationarity

rðxÞ :¼ E½Y ijX i ¼ x� ¼ E½X ð1þ tÞjX ðtÞ ¼ xðtÞ; 0ptp1�;

which is the predictor of X ð1þ tÞ from fX ðtÞ; 0ptp1g: Note that

dðx;X iÞ ¼

Z 1

0

½xðtÞ 	 X ði þ tÞ�2 dt

	 
1=2
:

We now estimate rðxÞ for each x 2 L2½0; 1� by (1.1) and the results of the paper are
then applicable. The problem is clearly infinitely dimensional. We now consider a
suitable reduction to a vector valued problem: let fejðtÞg be an orthonormal basis in
L2½0; 1�; for example, the eigenfunctions satisfying

ljejðtÞ ¼

Z 1

0

Rðt 	 sÞejðsÞds;

where R is the covariance matrix of the process and the eigenvalues lj are arranged
to be non-increasing. Then fejðtÞg are orthonormal in L2½0; 1�; they are also complete
if R is positive definite [the Karhunen–Loeve expansion]. Since E

R 1
0

X 2ðtÞdt ¼P1

j¼1lj ; one can retain the first m largest eigenfunctions leading to the finite
approximation

~X ðtÞ ¼
Xm

j¼1

X jejðtÞ; 0ptp1;

where

X j ¼

Z 1

0

X ðtÞejðtÞdt:

5. Derivations

Proof of Theorem 1.

r̂1ðxÞ ¼
1

nE½D1ðxÞ�

Xn

i¼1

DiðxÞ; DiðxÞ ¼ Kðdðx;X iÞ=hÞ:

By stationarity of order one of the X i’s,

E½r̂1ðxÞ� ¼ 1: (5.1)
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Next consider

var½r̂1ðxÞ� ¼
1

n2E2½D1ðxÞ�

Xn

i¼1

Xn

j¼1

covfDiðxÞ;DjðxÞg

¼
1

nE2½D1ðxÞ�
var½D1ðxÞ� þ

1

n2E2½D1ðxÞ�

Xn

i¼1

Xn

j¼1

ji	jj40

covfDiðxÞ;DjðxÞg

¼:J1 þ J2: ð5:2Þ

Now,

J1 ¼
1

n

E½D21ðxÞ�
E2½D1ðxÞ�

	
1

n

and by Conditions 1 and 3(i),

c21 c5f 1ðxÞfðhnÞ

nE2½D1ðxÞ�
	
1

n
pJ1p

c22 c6f 1ðxÞfðhnÞ

n E2½D1ðxÞ�
	
1

n
:

Also, by Conditions 1 and 3(i),

c
j
1c5f 1ðxÞfðhnÞpE½Dj

1ðxÞ�pc
j
2c6f 1ðxÞfðhnÞ; j ¼ 1; 2 (5.3)

so that

ðc21 c5Þ=ðc2 c6Þ
2

nf 1ðxÞfðhnÞ
	
1

n
pJ1p

ðc22 c6Þ=ðc1c5Þ
2

nf 1ðxÞfðhnÞ
	
1

n
;

whenever f 1ðxÞ40: Since fðhnÞ ! 0 as n ! 1; we have for large n;

const1

n f 1ðxÞfðhnÞ
pJ1p

const2

n f 1ðxÞfðhnÞ
: (5.4)

Alternatively, under Condition 10 and 30(i), we have as n ! 1;

1

fðhnÞ
E½Dj

1ðxÞ� ¼
1

fðhnÞ

Z hn

0

Kjðu=hnÞF ðdu; xÞ

�
f 1ðxÞ

fðhnÞ=hn

Z 1

0

KjðuÞf0
ðhnuÞdu ! f 1ðxÞCj ; j ¼ 1; 2: ð5:5Þ

It follows that

nfðhnÞJ1 !
C2

C2
1f 1ðxÞ

as n ! 1 (5.4a)
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whenever f 1ðxÞ40: For J2 decompose the sum in (5.2)

J2 ¼
1

n2E2½D1ðxÞ�

Xn

i¼1

Xn

j¼1

0oji	jjpan

covfDiðxÞ;DjðxÞg þ
Xn

i¼1

Xn

j¼1

ji	jj4an

covfDiðxÞ;DjðxÞg

8>><
>>:

9>>=
>>;

¼:J2;1 þ J2;2; ð5:6Þ

where an ¼ oðnÞ at a rate specified below. For J2;1 we have by Conditions 1 and 3(ii)
(or Conditions 10(i) and 30(ii))

covfDiðxÞ;DjðxÞg ¼ E½DiðxÞDjðxÞ� 	 E2½D1ðxÞ�

pc22 sup
iaj

P½ðX i;X jÞ 2 Bðx; hÞ � Bðx; hÞ� þ E2½D1ðxÞ�

pc22 f 2ðxÞcðhnÞ þ E2½D1ðxÞ�:

Hence by (5.6),

J2;1p
const: f 2ðxÞcðhnÞ þ E2½D1ðxÞ�

n2E2½D1ðxÞ�
nan ¼

const: f 2ðxÞcðhnÞan

nE2½D1ðxÞ�
þ

an

n
;

where const: is a generic finite positive constant. Using either the lower bound (5.3),
or the asymptotic value (5.5), of E½D1ðxÞ�;

J2;1p
const: f 2ðxÞcðhnÞan

nf 21ðxÞf
2
ðhnÞ

þ
an

n
: (5.7)

Using the lower bound on J1 in (5.4), or its asymptotic value in (5.4a), we obtain

J2;1

J1
pconst:

f 2ðxÞ

f 1ðxÞ

cðhnÞan

fðhnÞ
þ anfðhnÞf 1ðxÞ: (5.8)

We shall subsequently select an such that the above bound tends to zero as n ! 1:
Now consider J2;2: By Davydov’s lemma [9, Corollary A.2],

covfDiðxÞ;DjðxÞgp8 EjDiðxÞj
n� �2=n

½aðji 	 jjÞ�1	2=n:

Now by Conditions 1 and 3(i), or Conditions 10(i) and 30(i), EjDiðxÞj
n

pconst: f 1ðxÞfðhnÞ: Thus,

covfDiðxÞ;DjðxÞgpconst: f
2=n
1 ðxÞffðhnÞg

2=n½aðji 	 jjÞ�1	2=n:

It follows that

J2;2p
const:f

2=n
1 ðxÞ½fðhnÞ�

2=n

n2E2½D1ðxÞ�

Xn

i¼1

Xn

j¼1

ji	jj4an

½aðji 	 jjÞ�1	2=n:
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Using the lower bound (5.3) or the asymptotic value (5.5) for E½D1ðxÞ� and reducing
the double sum above to a single sum, we find that

J2;2p
const:

nad
n½fðhnÞ�

2ð1	1=nÞf
2ð1	1=nÞ
1 ðxÞ

X1
l¼anþ1

ld½aðlÞ�1	2=n:

Using the lower bound on J1 in (5.4), or its asymptotic value in (5.4a),

J2;2

J1
p

const:

ad
n½fðhnÞ�

ð1	2=nÞf
1	2=n
1 ðxÞ

X1
l¼anþ1

ld½aðlÞ�1	2=n: (5.9)

Now select an as an :¼ 1=½fðhnÞ�
ð1	2=nÞ=d: Then by Condition 4,

J2;2

J1
! 0 as n ! 1: (5.10)

With this choice of an; Eq. (5.8) becomes

J2;1

J1
pconst:

f 2ðxÞ

f 1ðxÞ

cðhnÞ

f2ðhnÞ
fðhnÞan þ ½fðhnÞ�

1	ð1	2=nÞ=d:

The first term on the right side tends to zero since cðhÞ=f2ðhÞ is assumed bounded
and fðhnÞan ! 0 since ð1	 2=nÞ=do1: The second term tends to zero since
ð1	 2=nÞ=do1: &

Proof of Theorem 2. We first obtain a bound on the rate of convergence of mn of
(2.6).

mnðxÞ :¼ E½ðY i 	 rðxÞÞDiðxÞ�: (5.11)

Conditioning on X i;

mnðxÞ ¼ E½ðrðX iÞ 	 rðxÞÞDiðxÞ�

and using Condition 2(i),

mnðxÞp sup
u2Bðx;hÞ

jrðuÞ 	 rðxÞjE½D1ðxÞ�pconst: hb
jE½D1ðxÞ�: (5.12)

Now

n var½QnðxÞ� ¼
1

E2½D1ðxÞ�
var½Zn;1ðxÞ�

þ
1

nE2½D1ðxÞ�

Xn

i¼1

Xn

j¼1

ji	jj40

covfZn;iðxÞ;Zn;jðxÞg

¼: I1 þ I2 ð5:13Þ

and note that I1 ¼ s2n;0ðxÞ: By (5.12), we have

s2n;0ðxÞ ¼
1

E2½D1ðxÞ�
E½ðY 1 	 rðxÞÞ2D21ðxÞ� þ Oðh2bn Þ:
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Conditioning on X 1;

s2n;0ðxÞ ¼
1

E2½D1ðxÞ�
E½g2ðX 1ÞD21ðxÞ� þ

E½ðrðX 1Þ 	 rðxÞÞ2D21ðxÞ�
E2½D1ðxÞ�

þ Oðh2bn Þ:

Using Condition 2(i) the second term is Oðh2bn Þ: We now establish upper and lower
bounds on s2n;0ðxÞ: Write

E½g2ðX ÞD21ðxÞ� ¼ g2ðxÞE½D21ðxÞ� þ E½ðg2ðX 1Þ 	 g2ðxÞÞD
2
1ðxÞ�

¼:I1;1 þ I1;2: ð5:14Þ

By Condition 2(ii)

jI1;2jp sup
fu:dðx;uÞphg

jg2ðuÞ 	 g2ðxÞjE½D21ðxÞ� ¼ oð1ÞE½D21ðxÞ�;

whereas I1;1 ¼ g2ðxÞE½D21ðxÞ�: Thus, E½g2ðX ÞD21ðxÞ� ¼ g2ðxÞð1þ oð1ÞÞE½D21ðxÞ�: It
follows that

s2n;0ðxÞ ¼ g2ðxÞð1þ oð1ÞÞ
E½D21ðxÞ�
E2½D1ðxÞ�

þ Oðh2bn Þ:

By (5.3), there exist positive constants c8 and c9 such that

c8
g2ðxÞ

f 1ðxÞ
þ OðfðhnÞh

2b
n ÞpfðhnÞs2n;0ðxÞpc9

g2ðxÞ

f 1ðxÞ
þ OðfðhnÞh

2b
n Þ; (5.15)

which proves Part (a) of the theorem. To prove Parts (b) and (c) we consider next the
contribution of the term I2 defined in (5.13). Split the sum as follows:

I2 ¼
1

nE2½D1ðxÞ�

Xn

i¼1

Xn

j¼1

1pji	jjpan

covfZn;iðxÞ;Zn;jðxÞg

8>><
>>:

þ
Xn

i¼1

Xn

j¼1

ji	jj4an

covfZn;iðxÞ;Zn;jðxÞg

9>>=
>>;

¼: I2;1 þ I2;2; ð5:16Þ

where an ¼ oðnÞ at a rate specified in the sequel. For I2;1;

covfZn;iðxÞ;Zn;jðxÞg ¼ E ðY i 	 rðxÞÞðY j 	 rðxÞÞDiðxÞDjðxÞ
� �

	 m2n:

Conditioning on ðX i;X jÞ and using Condition 2(iii),

covfZn;iðxÞ;Zn;jðxÞg ¼ E½gðX i;X j ; ; xÞDiðxÞDjðxÞ� 	 m2n:

By Condition 1 (upper bound) and Condition 2(iii), there exists a finite constant such
that

jcovfZn;iðxÞ;Zn;jðxÞgjpconst: sup
iaj

P½ðX i;X jÞ 2 Bðx; hÞ � Bðx; hÞ� þ m2n:
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By Condition 3(ii) and (5.12),

jcovfZn;iðxÞ;Zn;jðxÞgjpconst:f 2ðxÞcðhnÞ þ Oðh2bn ÞE2½D1ðxÞ�:

Thus, using (5.16),

jI2;1jp
const:f 2ðxÞcðhnÞ þ Oðh2bn ÞE2½D1ðxÞ�

nE2½D1ðxÞ�

Xn

i¼1

Xn

j¼1

1pji	jjpan

1

p
const:f 2ðxÞcðhnÞan

E2½D1ðxÞ�
þ Oðh2bÞan:

Finally, using the lower bound in (5.3),

jI2;1jp
const:f 2ðxÞcðhnÞan

f 21ðxÞf
2
ðhnÞ

þ Oðh2bn Þan: (5.17)

It now follows from the lower bound on s2n;0 in (5.15) that

jI2;1ðxÞj

s2n;0ðxÞ
pconst:

f 2ðxÞ

f 1ðxÞg2ðxÞ

cðhnÞan

fðhnÞ
þ const:

f 1ðxÞ

g2ðxÞ
Oðh2bn ÞfðhnÞan: (5.18)

We shall subsequently select an to make the right side of (5.18) tend to zero as
n ! 1: Now consider the contribution of I2;2 of (5.16). By Davydov’s lemma (Hall
and Heyde [9], Corollary A.2),

jcovfZn;iðxÞ;Zn;jðxÞgjp8fEjðY i 	 rðxÞÞDiðxÞj
ng2=n½aðji 	 jjÞ�1	2=n:

By Condition 1 (upper bound) and the continuity of gn in Condition 2(ii),

EjðY i 	 rðxÞÞDiðxÞj
n ¼ EjgnðX iÞDiðxÞj

npconst:P½X i 2 Bðx; hÞ�

and by Condition 3(i) (upper bound),

jcovfZn;iðxÞ;Zn;jðxÞgjpconst: ff 1ðxÞfðhnÞg
2=n½aðji 	 jjÞ�1	2=n:

It then follows from (5.16) that

I2;2p
const:f 2=n1 ðxÞ½fðhnÞ�

2=n

nE2½D1ðxÞ�

Xn

i¼1

Xn

j¼1

ji	jj4an

½aðji 	 jjÞ�1	2=n:

Using the lower bound (5.3) for E½D1ðxÞ� and reducing the double sum above into a
single sum, we find that

I2;2p
const:

ad
nf
2ð1	1=nÞ
1 ðxÞ½fðhnÞ�

2ð1	1=nÞ

X1
l¼anþ1

ld½aðlÞ�1	2=n: (5.19)

Now using the lower bound (5.15) on s2n;0; we obtain

I2;2

s2n;0ðxÞ
p

const:

ad
ng2ðxÞf

1	2=n
1 ðxÞ½fðhnÞ�

ð1	2=nÞ

X1
l¼anþ1

ld½aðlÞ�1	2=n: (5.20)
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Now select an as an :¼ 1
½fðhnÞ�

ð1	2=nÞ=d : Then by Condition 4,

I2;2

s2n;0ðxÞ
! 0 as n ! 1: (5.21)

Now Eq. (5.18) can be written as

I2;1

s2n;0
pconst:

f 2ðxÞ

f 1ðxÞg2ðxÞ

cðhnÞ

f2ðhnÞ
fðhnÞan þ

f 1ðxÞ

g2ðxÞ
Oðh2bn ÞfðhnÞan:

The first term on the right side tends to zero since cðhÞ=f2ðhÞ is assumed bounded
and fðhnÞan ! 0 with the choice of an above. The second term clearly tends to zero
as n ! 1: &

Proof of Theorem 3. It is seen from the proof of Theorem 2 that the dominant term
for s2n;0ðxÞ is given by

g2ðxÞ
E½D21ðxÞ�
E2½D1ðxÞ�

:

Let F ðu; xÞ ¼ P½Dipu�: Under Conditions 1’ and 3’(i), we have for large n (small hn)

1

fðhnÞ
E½Dj

1ðxÞ� ¼
1

fðhnÞ

Z hn

0

Kjðu=hnÞdF ðu; xÞ

� f 1ðxÞ
1

fðhnÞ

Z hn

0

Kjðu=hnÞf
0
ðuÞdu ! Cjf 1ðxÞ; j ¼ 1; 2:

It follows that

fðhnÞs2n;0ðxÞ !
C2

C2
1

g2ðxÞ

f 1ðxÞ
;

which specifies the structure of the asymptotic variance and proves part (a) of the
theorem. The proof of part (b) follows the same steps as in the proof of Theorem 2
except that we use the asymptotic value of s2n;0ðxÞ given above instead of its lower
bound. &

Proof of Corollary 1. By (5.1) E½r̂1ðxÞ� ¼ 1 so that by (2.3),

BnðxÞ ¼ E½r̂2ðxÞ� 	 rðxÞ ¼
E½Y 1D1ðxÞ�

E½D1ðxÞ�
	 rðxÞ ¼

mnðxÞ

E½D1ðxÞ�

by (5.11). Thus, by (5.12), BnðxÞpconst: hb
n : It follows that

r̂ðxÞ 	 rðxÞ 	 BnðxÞ ¼
QnðxÞ

r̂1ðxÞ
ð1þ opð1ÞÞ: (5.22)
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Now by Theorem 1, r̂1ðxÞ 	!
m:s:

1 and by Theorem 2 or Theorem 3,
nfðhnÞ var½QnðxÞ�pconst:g2ðxÞ=f 1ðxÞ: Thus,

nfðhnÞ

log2n

� �1=2
½r̂ðxÞ 	 rðxÞ 	 BnðxÞ� 	!

P
0 as n ! 1: &

Proof of Theorem 4. In view of (5.22) and Theorem 1, it suffices to establish the
asymptotic normality of QnðxÞ: We normalize Zn;i of (2.8) by

~Zn;iðxÞ :¼
Zn;iðxÞf

1=2
ðhnÞ

E½D1ðxÞ�
; SnðxÞ :¼

Xn

i¼1

~Zn;iðxÞ (5.23)

so that

var½ ~Zn;iðxÞ� ¼ s2n;0ðxÞfðhnÞ ! s2ðxÞ as n ! 1 (5.24)

by Theorem 3. Also by Theorem 3,

Xn

i¼1

Xn

j¼1

ji	jj40

covf ~Zn;iðxÞ; ~Zn;jðxÞg ¼ oðnÞ: (5.25)

Now,

ðnfðhnÞÞ
1=2QnðxÞ ¼

1ffiffiffi
n

p Sn: (5.26)

We thus need to show that

1ffiffiffi
n

p Sn !
L

Nð0; s2ðxÞÞ : (5.27)

We employ Bernstein’s big-block and small-block procedure. Partition the set
f1; . . . ; ng into 2kn þ 1 subsets with large blocks of size u ¼ un and small blocks of
size v ¼ vn and set

k ¼ kn :¼
n

un þ vn

� �
: (5.28)

Condition 5 implies that there exists a sequence of positive integers fqng; qn ! 1;
such that

qnvn ¼ oððnfðhnÞÞ
1=2

Þ; qnðn=fðhnÞÞ
1=2aðvnÞ ! 0 as n ! 1: (5.29)

Now define the large block size as un ¼ bðnfðhnÞÞ
1=2=qnc: Then using (5.29) and

simple algebra shows that as n ! 1;

vn

un

! 0;
un

n
! 0;

un

ðnfðhnÞÞ
1=2

! 0;
n

un

aðvnÞ ! 0: (5.30)
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Let Zj ; xj ; zj be defined as follows:

Zj :¼
XjðuþvÞþu

i¼jðuþvÞþ1

~Zn;i; 0pjpk 	 1; (5.31)

xj :¼
Xðjþ1ÞðuþvÞ

i¼jðuþvÞþuþ1

~Zn;i; 0pjpk 	 1 (5.32)

and

zk :¼
Xn

i¼kðuþvÞþ1

~Zn;i: (5.33)

Write

Sn ¼
Xk	1
j¼0

Zj þ
Xk	1
j¼0

xj þ zk ¼: S0
n þ S00

n þ S
000

n : (5.34)

We show that as n ! 1;

1

n
E½S00

n�
2 ! 0;

1

n
E½S

000

n �
2 ! 0; (5.35a)

jE½expðitn	1=2S0
nÞ� 	

Yk	1
j¼0

E½expðitn	1=2ZjÞ�j ! 0; (5.35b)

1

n

Xk	1
j¼0

E½Z2j � ! s2ðxÞ; (5.35c)

1

n

Xk	1
j¼0

E½Z2j IfjZjj4esðxÞ
ffiffiffi
n

p
g� ! 0; (5.35d)

for every e40: Relation (5.35a) implies that S00
n and S

000

n are asymptotically negligible,
(5.35b) shows that the summands fZjg in S0

n are asymptotically independent, and
(5.35c)–(5.35d) are the standard Lindeberg–Feller conditions for asymptotic
normality of S0

n under independence.
We first establish (5.35a).

E½S
000

n �
2 ¼ var

Xk	1
j¼0

xj

" #
¼
Xk	1
j¼0

var½xj � þ
Xk	1
i¼0

Xk	1
j¼0

iaj

covfxi; xjg ¼: F 1 þ F2: (5.36)

Now by second-order stationarity,

var½xj � ¼ vnvar½ ~Zn;1� þ
Xvn

i¼1

Xvn

j¼1

iaj

covf ~Zn;i; ~Zn;jg ¼ vns2ðxÞð1þ oð1ÞÞ (5.37)
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by (5.24) and (5.25). Thus,

F1 ¼ knvns2ðxÞð1þ oð1ÞÞ �
nvn

un þ vn

�
nvn

un

¼ oðnÞ; (5.38)

by (5.30). Next consider the term F2 in (5.36). With lj ¼ jðun þ vnÞ þ un; we have

F2 ¼
Xk	1
i¼0

Xk	1
j¼0

iaj

Xvn

l1¼1

Xvn

l2¼1

covf ~Zn;liþl1;
~Zn;ljþl2g;

but since iaj; jli 	 lj þ l1 	 l2jXun; it follows that

jF 2jp
Xn

i¼1

Xn

j¼0

ji	jjXun

covf ~Zn;i; ~Zn;jg ¼ oðnÞ (5.39)

by (5.25). Hence, by (5.36), (5.38), and (5.39), we have

1

n
E½S00

n�
2 ! 0 as n ! 1:

By a similar argument we find, using (5.24), (5.25), and (5.30),

1

n
E½S

000

n �
2p

1

n
½n 	 knðun þ vnÞ�var½ ~Zn;0�

þ
1

n

Xn	knðunþvnÞ

i¼1

Xn	knðunþvnÞ

j¼1

ji	jj40

covf ~Zn;i; ~Zn;jg

p
un þ vn

n
s2ðxÞ þ oð1Þ ! 0 as n ! 1: ð5:40Þ

In order to establish (5.35b) we make use of the fact that the processes fY i;X ig are
strongly mixing and of Volkonskii and Rozanov’s lemma stated in the appendix.
Note that Za is F

ja

ia
-measurable with ia ¼ aðu þ vÞ þ 1 and ja ¼ aðu þ vÞ þ u: Hence,

with Vj ¼ expðitn	1=2ZjÞ; we have

E½expðitn	1=2S0
nÞ� 	

Yk	1
j¼0

E½expðitn	1=2ZjÞ�

�����
�����p16 knaðvn þ 1Þ � 16

n

un

aðvn þ 1Þ;

which tends to zero by (5.30). Next we establish (5.35c). By (5.37), with un replacing
vn; we have

var½Zj � ¼ var½Z0� ¼ uns2ðxÞð1þ oð1ÞÞ;

so that

1

n

Xkn	1

j¼0

E½Z2j � ¼
knun

n
s2ðxÞð1þ oð1ÞÞ ! s2ðxÞ as n ! 1

since knun=n ! 1:
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It remains to establish (5.35d). We need to employ a truncation argument since the
response variable Y i is not necessarily bounded. Let

aLðyÞ ¼ yIfjyjpLg; (5.41)

where L is a fixed truncation point. Put

rLðxÞ ¼ E½aLðY iÞjX i ¼ x�: (5.42)

Define

ZL
n;i :¼ ðaLðY iÞ 	 rLðxÞÞDiðxÞ 	 mL

n ; (5.43)

where mL
n is the mean of the first term on the right side, and

~Z
L

n;i :¼
ZL

n;if
1=2

ðhnÞ

E½D1ðxÞ�
; s2n;0;LðxÞ :¼

var½ZL
n;i�

E2½D1ðxÞ�
;

so that for each fixed L40; we have as in Theorem 3

var½ ~Z
L

n;i� ¼ s2n;0;LðxÞfðhnÞ ! s2LðxÞ as n ! 1; (5.44)

where

s2LðxÞ ¼
C2

C2
1

g2;LðxÞ

f 1ðxÞ
; g2;LðxÞ :¼ var½Y 1IfjY 1jpLgjX 1 ¼ x� (5.45)

(compare with g2ðxÞ defined in Condition 2(i)). Finally, set

SL
n :¼

Xn

i¼1

~Z
L

n;i and �S
L

n :¼
Xn

i¼1

ð ~Zn;i 	 ~Z
L

n;iÞ (5.46)

and let ZL
j be given by (5.31) with

~Zn;i replaced by ~Z
L

n;i: It is now seen from (5.43) and
(5.3) that ~Z

L

n;i is bounded by j ~Z
L

n;ijpconst:=f1=2ðhnÞ: Thus by (5.31)

max
0pjpk	1

jZL
j j=

ffiffiffi
n

p
pconst:

un

ðnfðhnÞÞ
1=2

! 0

by (5.30). Hence when n is large, the set fjZL
j jXesLðxÞ

ffiffiffi
n

p
g becomes an empty set and

thus (5.35d) holds. Consequently, (5.35a)–(5.35d) hold for SL
n so that

1

n1=2
SL

n 	!
L

Nð0;s2LðxÞÞ: (5.47)

In order to complete the proof for the general case, it suffices to show

1

n
var½ �S

L

n � ! 0 as first n ! 1 and then L ! 1: (5.48)

Indeed,

jE½expðitn	1=2SnÞ� 	 expð	t2s2ðxÞ=2Þj

¼ jE½expðitn	1=2ðSL
n þ �S

L

n ÞÞ� 	 expð	t2s2LðxÞ=2Þ

þ expð	t2s2LðxÞ=2Þ 	 expð	t2s2ðxÞ=2Þj
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pjE½expðitn	1=2SL
n Þ� 	 expð	t2s2LðxÞ=2Þj þ Ej expðitn	1=2 �S

L

n Þ 	 1j

þ j expð	t2s2LðxÞ=2Þ 	 expð	t2s2ðxÞ=2Þj:

Letting n ! 1; the first term goes to zero by (5.47) for every L40; the second term
converges to zero by (5.48) as first n ! 1 and then L ! 1; the third term goes to
zero as L ! 1 since s2LðxÞ ! s2ðxÞ as L ! 1 (as g2;LðxÞ ! g2ðxÞ as L ! 1;
see (5.45)). Therefore, it remains to prove (5.48). Note that �S

L

n has the same
structure as Sn except that Y i is replace by Y iIfjY ij4Lg: Hence by the argument of
Theorem 3

lim
n!1

1

n
var½ �S

L

n � ¼
C2

C2
1

�g2;LðxÞ

f 1ðxÞ
;

where

�g2;LðxÞ :¼ var½Y 1IfjY 1j4LgjX 1 ¼ x�

(compare to g2ðxÞ in Condition 2(ii)). By dominated convergence the right side
converges to 0 as L ! 1: This establishes (5.35d) for the general case and completes
the proof of Theorem 4. &

Proof of Theorem 5. The result follows from (5.22), Theorems 4 and 1 noting that
r̂1ðxÞ 	!

m:s:
1: &
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Appendix A
Lemma (Volkonskii and Rozanov [22]). Let V 1; . . . ;VL be strongly mixing random

variables measurable with respect to the s-algebras F
j1
i1
; . . . ;FjL

iL
respectively with

1pi1oj1oi2o � � �ojLpn; ilþ1 	 jlXwX1 and jVjjp1 for j ¼ 1; . . . ;L: Then

E
YL
j¼1

V j

 !
	
YL
j¼1

EðV jÞ

�����
�����p16ðL 	 1ÞaðwÞ;

where aðwÞ is the strongly mixing coefficient.



ARTICLE IN PRESS

E. Masry / Stochastic Processes and their Applications 115 (2005) 155–177 177
References

[1] A. Araujo, E. Gine, The Central Limit Theorem for Real and Banach Valued Random Variables,

Wiley, New York, 1980.
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