
1

Quantum walks

Daniel J. Bernstein

University of Illinois at Chicago

Focusing on quantum walks

as an algorithm-design tool:

e.g. Grover’s algorithm.

e.g. Ambainis’s algorithm.

Can also study quantum walks

on much more general graphs.

2008 Childs, 2009 Lovett–

Cooper–Everitt–Trevers–Kendon:

Can view, e.g., Shor’s algorithm

as quantum walk on Shor graph.

2

Examples of applications to crypto

Minimum asymptotic ops known,

assuming plausible heuristics:

pre-q post-q problem

1 0.5 cipher

 =2 McEliece

0:791 : : : 0:462 : : : MQ

0:290 : : : 0:241 : : : subset sum

“Pre-q” e: as n→∞, 2(e+o(1))n

simple non-quantum ops.

“Post-q” e: as n→∞, 2(e+o(1))n

simple quantum ops.

“Cipher”: find n-bit cipher key.

0:5: 1996 Grover.

1

Quantum walks

Daniel J. Bernstein

University of Illinois at Chicago

Focusing on quantum walks

as an algorithm-design tool:

e.g. Grover’s algorithm.

e.g. Ambainis’s algorithm.

Can also study quantum walks

on much more general graphs.

2008 Childs, 2009 Lovett–

Cooper–Everitt–Trevers–Kendon:

Can view, e.g., Shor’s algorithm

as quantum walk on Shor graph.

2

Examples of applications to crypto

Minimum asymptotic ops known,

assuming plausible heuristics:

pre-q post-q problem

1 0.5 cipher

 =2 McEliece

0:791 : : : 0:462 : : : MQ

0:290 : : : 0:241 : : : subset sum

“Pre-q” e: as n→∞, 2(e+o(1))n

simple non-quantum ops.

“Post-q” e: as n→∞, 2(e+o(1))n

simple quantum ops.

“Cipher”: find n-bit cipher key.

0:5: 1996 Grover.

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

1

Quantum walks

Daniel J. Bernstein

University of Illinois at Chicago

Focusing on quantum walks

as an algorithm-design tool:

e.g. Grover’s algorithm.

e.g. Ambainis’s algorithm.

Can also study quantum walks

on much more general graphs.

2008 Childs, 2009 Lovett–

Cooper–Everitt–Trevers–Kendon:

Can view, e.g., Shor’s algorithm

as quantum walk on Shor graph.

2

Examples of applications to crypto

Minimum asymptotic ops known,

assuming plausible heuristics:

pre-q post-q problem

1 0.5 cipher

 =2 McEliece

0:791 : : : 0:462 : : : MQ

0:290 : : : 0:241 : : : subset sum

“Pre-q” e: as n→∞, 2(e+o(1))n

simple non-quantum ops.

“Post-q” e: as n→∞, 2(e+o(1))n

simple quantum ops.

“Cipher”: find n-bit cipher key.

0:5: 1996 Grover.

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

1

Quantum walks

Daniel J. Bernstein

University of Illinois at Chicago

Focusing on quantum walks

as an algorithm-design tool:

e.g. Grover’s algorithm.

e.g. Ambainis’s algorithm.

Can also study quantum walks

on much more general graphs.

2008 Childs, 2009 Lovett–

Cooper–Everitt–Trevers–Kendon:

Can view, e.g., Shor’s algorithm

as quantum walk on Shor graph.

2

Examples of applications to crypto

Minimum asymptotic ops known,

assuming plausible heuristics:

pre-q post-q problem

1 0.5 cipher

 =2 McEliece

0:791 : : : 0:462 : : : MQ

0:290 : : : 0:241 : : : subset sum

“Pre-q” e: as n→∞, 2(e+o(1))n

simple non-quantum ops.

“Post-q” e: as n→∞, 2(e+o(1))n

simple quantum ops.

“Cipher”: find n-bit cipher key.

0:5: 1996 Grover.

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

2

Examples of applications to crypto

Minimum asymptotic ops known,

assuming plausible heuristics:

pre-q post-q problem

1 0.5 cipher

 =2 McEliece

0:791 : : : 0:462 : : : MQ

0:290 : : : 0:241 : : : subset sum

“Pre-q” e: as n→∞, 2(e+o(1))n

simple non-quantum ops.

“Post-q” e: as n→∞, 2(e+o(1))n

simple quantum ops.

“Cipher”: find n-bit cipher key.

0:5: 1996 Grover.

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

2

Examples of applications to crypto

Minimum asymptotic ops known,

assuming plausible heuristics:

pre-q post-q problem

1 0.5 cipher

 =2 McEliece

0:791 : : : 0:462 : : : MQ

0:290 : : : 0:241 : : : subset sum

“Pre-q” e: as n→∞, 2(e+o(1))n

simple non-quantum ops.

“Post-q” e: as n→∞, 2(e+o(1))n

simple quantum ops.

“Cipher”: find n-bit cipher key.

0:5: 1996 Grover.

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

 = (1− R) log2(1=(1− R)):

1962 Prange.

2

Examples of applications to crypto

Minimum asymptotic ops known,

assuming plausible heuristics:

pre-q post-q problem

1 0.5 cipher

 =2 McEliece

0:791 : : : 0:462 : : : MQ

0:290 : : : 0:241 : : : subset sum

“Pre-q” e: as n→∞, 2(e+o(1))n

simple non-quantum ops.

“Post-q” e: as n→∞, 2(e+o(1))n

simple quantum ops.

“Cipher”: find n-bit cipher key.

0:5: 1996 Grover.

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

 = (1− R) log2(1=(1− R)):

1962 Prange.

=2: 2009 Bernstein (via Grover).

2

Examples of applications to crypto

Minimum asymptotic ops known,

assuming plausible heuristics:

pre-q post-q problem

1 0.5 cipher

 =2 McEliece

0:791 : : : 0:462 : : : MQ

0:290 : : : 0:241 : : : subset sum

“Pre-q” e: as n→∞, 2(e+o(1))n

simple non-quantum ops.

“Post-q” e: as n→∞, 2(e+o(1))n

simple quantum ops.

“Cipher”: find n-bit cipher key.

0:5: 1996 Grover.

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

 = (1− R) log2(1=(1− R)):

1962 Prange.

=2: 2009 Bernstein (via Grover).

“MQ”: solve system of n deg-2

equations in n variables over F2.

2

Examples of applications to crypto

Minimum asymptotic ops known,

assuming plausible heuristics:

pre-q post-q problem

1 0.5 cipher

 =2 McEliece

0:791 : : : 0:462 : : : MQ

0:290 : : : 0:241 : : : subset sum

“Pre-q” e: as n→∞, 2(e+o(1))n

simple non-quantum ops.

“Post-q” e: as n→∞, 2(e+o(1))n

simple quantum ops.

“Cipher”: find n-bit cipher key.

0:5: 1996 Grover.

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

 = (1− R) log2(1=(1− R)):

1962 Prange.

=2: 2009 Bernstein (via Grover).

“MQ”: solve system of n deg-2

equations in n variables over F2.

0:791 (modulo calculation errors):

2004 Yang–Chen–Courtois.

2

Examples of applications to crypto

Minimum asymptotic ops known,

assuming plausible heuristics:

pre-q post-q problem

1 0.5 cipher

 =2 McEliece

0:791 : : : 0:462 : : : MQ

0:290 : : : 0:241 : : : subset sum

“Pre-q” e: as n→∞, 2(e+o(1))n

simple non-quantum ops.

“Post-q” e: as n→∞, 2(e+o(1))n

simple quantum ops.

“Cipher”: find n-bit cipher key.

0:5: 1996 Grover.

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

 = (1− R) log2(1=(1− R)):

1962 Prange.

=2: 2009 Bernstein (via Grover).

“MQ”: solve system of n deg-2

equations in n variables over F2.

0:791 (modulo calculation errors):

2004 Yang–Chen–Courtois.

0:462: 2017 Bernstein–Yang

(via Grover), independently 2017

Faugère–Horan–Kahrobaei–

Kaplan–Kashefi–Perret.

2

Examples of applications to crypto

Minimum asymptotic ops known,

assuming plausible heuristics:

pre-q post-q problem

1 0.5 cipher

 =2 McEliece

0:791 : : : 0:462 : : : MQ

0:290 : : : 0:241 : : : subset sum

“Pre-q” e: as n→∞, 2(e+o(1))n

simple non-quantum ops.

“Post-q” e: as n→∞, 2(e+o(1))n

simple quantum ops.

“Cipher”: find n-bit cipher key.

0:5: 1996 Grover.

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

 = (1− R) log2(1=(1− R)):

1962 Prange.

=2: 2009 Bernstein (via Grover).

“MQ”: solve system of n deg-2

equations in n variables over F2.

0:791 (modulo calculation errors):

2004 Yang–Chen–Courtois.

0:462: 2017 Bernstein–Yang

(via Grover), independently 2017

Faugère–Horan–Kahrobaei–

Kaplan–Kashefi–Perret.

4

“Subset sum” (“hard” case):

find S ⊆ {1; 2; : : : ; n} given

x1; x2; : : : ; xn ∈ {0; 1; : : : ; 2n − 1}
and

P
i∈S xi .

2

Examples of applications to crypto

Minimum asymptotic ops known,

assuming plausible heuristics:

pre-q post-q problem

1 0.5 cipher

 =2 McEliece

0:791 : : : 0:462 : : : MQ

0:290 : : : 0:241 : : : subset sum

“Pre-q” e: as n→∞, 2(e+o(1))n

simple non-quantum ops.

“Post-q” e: as n→∞, 2(e+o(1))n

simple quantum ops.

“Cipher”: find n-bit cipher key.

0:5: 1996 Grover.

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

 = (1− R) log2(1=(1− R)):

1962 Prange.

=2: 2009 Bernstein (via Grover).

“MQ”: solve system of n deg-2

equations in n variables over F2.

0:791 (modulo calculation errors):

2004 Yang–Chen–Courtois.

0:462: 2017 Bernstein–Yang

(via Grover), independently 2017

Faugère–Horan–Kahrobaei–

Kaplan–Kashefi–Perret.

4

“Subset sum” (“hard” case):

find S ⊆ {1; 2; : : : ; n} given

x1; x2; : : : ; xn ∈ {0; 1; : : : ; 2n − 1}
and

P
i∈S xi .

2

Examples of applications to crypto

Minimum asymptotic ops known,

assuming plausible heuristics:

pre-q post-q problem

1 0.5 cipher

 =2 McEliece

0:791 : : : 0:462 : : : MQ

0:290 : : : 0:241 : : : subset sum

“Pre-q” e: as n→∞, 2(e+o(1))n

simple non-quantum ops.

“Post-q” e: as n→∞, 2(e+o(1))n

simple quantum ops.

“Cipher”: find n-bit cipher key.

0:5: 1996 Grover.

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

 = (1− R) log2(1=(1− R)):

1962 Prange.

=2: 2009 Bernstein (via Grover).

“MQ”: solve system of n deg-2

equations in n variables over F2.

0:791 (modulo calculation errors):

2004 Yang–Chen–Courtois.

0:462: 2017 Bernstein–Yang

(via Grover), independently 2017

Faugère–Horan–Kahrobaei–

Kaplan–Kashefi–Perret.

4

“Subset sum” (“hard” case):

find S ⊆ {1; 2; : : : ; n} given

x1; x2; : : : ; xn ∈ {0; 1; : : : ; 2n − 1}
and

P
i∈S xi .

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

 = (1− R) log2(1=(1− R)):

1962 Prange.

=2: 2009 Bernstein (via Grover).

“MQ”: solve system of n deg-2

equations in n variables over F2.

0:791 (modulo calculation errors):

2004 Yang–Chen–Courtois.

0:462: 2017 Bernstein–Yang

(via Grover), independently 2017

Faugère–Horan–Kahrobaei–

Kaplan–Kashefi–Perret.

4

“Subset sum” (“hard” case):

find S ⊆ {1; 2; : : : ; n} given

x1; x2; : : : ; xn ∈ {0; 1; : : : ; 2n − 1}
and

P
i∈S xi .

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

 = (1− R) log2(1=(1− R)):

1962 Prange.

=2: 2009 Bernstein (via Grover).

“MQ”: solve system of n deg-2

equations in n variables over F2.

0:791 (modulo calculation errors):

2004 Yang–Chen–Courtois.

0:462: 2017 Bernstein–Yang

(via Grover), independently 2017

Faugère–Horan–Kahrobaei–

Kaplan–Kashefi–Perret.

4

“Subset sum” (“hard” case):

find S ⊆ {1; 2; : : : ; n} given

x1; x2; : : : ; xn ∈ {0; 1; : : : ; 2n − 1}
and

P
i∈S xi .

0:5: easy.

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

 = (1− R) log2(1=(1− R)):

1962 Prange.

=2: 2009 Bernstein (via Grover).

“MQ”: solve system of n deg-2

equations in n variables over F2.

0:791 (modulo calculation errors):

2004 Yang–Chen–Courtois.

0:462: 2017 Bernstein–Yang

(via Grover), independently 2017

Faugère–Horan–Kahrobaei–

Kaplan–Kashefi–Perret.

4

“Subset sum” (“hard” case):

find S ⊆ {1; 2; : : : ; n} given

x1; x2; : : : ; xn ∈ {0; 1; : : : ; 2n − 1}
and

P
i∈S xi .

0:5: easy.

0:337: 2010 Howgrave-Graham–

Joux. Claimed 0:311; error

discovered by May–Meurer.

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

 = (1− R) log2(1=(1− R)):

1962 Prange.

=2: 2009 Bernstein (via Grover).

“MQ”: solve system of n deg-2

equations in n variables over F2.

0:791 (modulo calculation errors):

2004 Yang–Chen–Courtois.

0:462: 2017 Bernstein–Yang

(via Grover), independently 2017

Faugère–Horan–Kahrobaei–

Kaplan–Kashefi–Perret.

4

“Subset sum” (“hard” case):

find S ⊆ {1; 2; : : : ; n} given

x1; x2; : : : ; xn ∈ {0; 1; : : : ; 2n − 1}
and

P
i∈S xi .

0:5: easy.

0:337: 2010 Howgrave-Graham–

Joux. Claimed 0:311; error

discovered by May–Meurer.

0:291: 2011 Becker–Coron–Joux.

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

 = (1− R) log2(1=(1− R)):

1962 Prange.

=2: 2009 Bernstein (via Grover).

“MQ”: solve system of n deg-2

equations in n variables over F2.

0:791 (modulo calculation errors):

2004 Yang–Chen–Courtois.

0:462: 2017 Bernstein–Yang

(via Grover), independently 2017

Faugère–Horan–Kahrobaei–

Kaplan–Kashefi–Perret.

4

“Subset sum” (“hard” case):

find S ⊆ {1; 2; : : : ; n} given

x1; x2; : : : ; xn ∈ {0; 1; : : : ; 2n − 1}
and

P
i∈S xi .

0:5: easy.

0:337: 2010 Howgrave-Graham–

Joux. Claimed 0:311; error

discovered by May–Meurer.

0:291: 2011 Becker–Coron–Joux.

0:241: 2013 Bernstein–Jeffery–

Lange–Meurer, using HGJ and

quantum walks (not just Grover).

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

 = (1− R) log2(1=(1− R)):

1962 Prange.

=2: 2009 Bernstein (via Grover).

“MQ”: solve system of n deg-2

equations in n variables over F2.

0:791 (modulo calculation errors):

2004 Yang–Chen–Courtois.

0:462: 2017 Bernstein–Yang

(via Grover), independently 2017

Faugère–Horan–Kahrobaei–

Kaplan–Kashefi–Perret.

4

“Subset sum” (“hard” case):

find S ⊆ {1; 2; : : : ; n} given

x1; x2; : : : ; xn ∈ {0; 1; : : : ; 2n − 1}
and

P
i∈S xi .

0:5: easy.

0:337: 2010 Howgrave-Graham–

Joux. Claimed 0:311; error

discovered by May–Meurer.

0:291: 2011 Becker–Coron–Joux.

0:241: 2013 Bernstein–Jeffery–

Lange–Meurer, using HGJ and

quantum walks (not just Grover).

5

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

 = (1− R) log2(1=(1− R)):

1962 Prange.

=2: 2009 Bernstein (via Grover).

“MQ”: solve system of n deg-2

equations in n variables over F2.

0:791 (modulo calculation errors):

2004 Yang–Chen–Courtois.

0:462: 2017 Bernstein–Yang

(via Grover), independently 2017

Faugère–Horan–Kahrobaei–

Kaplan–Kashefi–Perret.

4

“Subset sum” (“hard” case):

find S ⊆ {1; 2; : : : ; n} given

x1; x2; : : : ; xn ∈ {0; 1; : : : ; 2n − 1}
and

P
i∈S xi .

0:5: easy.

0:337: 2010 Howgrave-Graham–

Joux. Claimed 0:311; error

discovered by May–Meurer.

0:291: 2011 Becker–Coron–Joux.

0:241: 2013 Bernstein–Jeffery–

Lange–Meurer, using HGJ and

quantum walks (not just Grover).

5

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

3

“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.

 = (1− R) log2(1=(1− R)):

1962 Prange.

=2: 2009 Bernstein (via Grover).

“MQ”: solve system of n deg-2

equations in n variables over F2.

0:791 (modulo calculation errors):

2004 Yang–Chen–Courtois.

0:462: 2017 Bernstein–Yang

(via Grover), independently 2017

Faugère–Horan–Kahrobaei–

Kaplan–Kashefi–Perret.

4

“Subset sum” (“hard” case):

find S ⊆ {1; 2; : : : ; n} given

x1; x2; : : : ; xn ∈ {0; 1; : : : ; 2n − 1}
and

P
i∈S xi .

0:5: easy.

0:337: 2010 Howgrave-Graham–

Joux. Claimed 0:311; error

discovered by May–Meurer.

0:291: 2011 Becker–Coron–Joux.

0:241: 2013 Bernstein–Jeffery–

Lange–Meurer, using HGJ and

quantum walks (not just Grover).

5

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

4

“Subset sum” (“hard” case):

find S ⊆ {1; 2; : : : ; n} given

x1; x2; : : : ; xn ∈ {0; 1; : : : ; 2n − 1}
and

P
i∈S xi .

0:5: easy.

0:337: 2010 Howgrave-Graham–

Joux. Claimed 0:311; error

discovered by May–Meurer.

0:291: 2011 Becker–Coron–Joux.

0:241: 2013 Bernstein–Jeffery–

Lange–Meurer, using HGJ and

quantum walks (not just Grover).

5

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

4

“Subset sum” (“hard” case):

find S ⊆ {1; 2; : : : ; n} given

x1; x2; : : : ; xn ∈ {0; 1; : : : ; 2n − 1}
and

P
i∈S xi .

0:5: easy.

0:337: 2010 Howgrave-Graham–

Joux. Claimed 0:311; error

discovered by May–Meurer.

0:291: 2011 Becker–Coron–Joux.

0:241: 2013 Bernstein–Jeffery–

Lange–Meurer, using HGJ and

quantum walks (not just Grover).

5

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this easily

wins for all sufficiently large n.

4

“Subset sum” (“hard” case):

find S ⊆ {1; 2; : : : ; n} given

x1; x2; : : : ; xn ∈ {0; 1; : : : ; 2n − 1}
and

P
i∈S xi .

0:5: easy.

0:337: 2010 Howgrave-Graham–

Joux. Claimed 0:311; error

discovered by May–Meurer.

0:291: 2011 Becker–Coron–Joux.

0:241: 2013 Bernstein–Jeffery–

Lange–Meurer, using HGJ and

quantum walks (not just Grover).

5

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this easily

wins for all sufficiently large n.

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

4

“Subset sum” (“hard” case):

find S ⊆ {1; 2; : : : ; n} given

x1; x2; : : : ; xn ∈ {0; 1; : : : ; 2n − 1}
and

P
i∈S xi .

0:5: easy.

0:337: 2010 Howgrave-Graham–

Joux. Claimed 0:311; error

discovered by May–Meurer.

0:291: 2011 Becker–Coron–Joux.

0:241: 2013 Bernstein–Jeffery–

Lange–Meurer, using HGJ and

quantum walks (not just Grover).

5

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this easily

wins for all sufficiently large n.

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

4

“Subset sum” (“hard” case):

find S ⊆ {1; 2; : : : ; n} given

x1; x2; : : : ; xn ∈ {0; 1; : : : ; 2n − 1}
and

P
i∈S xi .

0:5: easy.

0:337: 2010 Howgrave-Graham–

Joux. Claimed 0:311; error

discovered by May–Meurer.

0:291: 2011 Becker–Coron–Joux.

0:241: 2013 Bernstein–Jeffery–

Lange–Meurer, using HGJ and

quantum walks (not just Grover).

5

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this easily

wins for all sufficiently large n.

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

5

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this easily

wins for all sufficiently large n.

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

5

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this easily

wins for all sufficiently large n.

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

5

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this easily

wins for all sufficiently large n.

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

5

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this easily

wins for all sufficiently large n.

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

5

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this easily

wins for all sufficiently large n.

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

5

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this easily

wins for all sufficiently large n.

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

5

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this easily

wins for all sufficiently large n.

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

5

Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.

Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this easily

wins for all sufficiently large n.

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after Step 1:

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after Step 1 + Step 2:

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after Step 1 + Step 2 + Step 1:

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 2× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 3× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 4× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 5× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 6× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 7× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 8× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 9× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 10× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 11× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 12× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 13× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 14× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 15× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 16× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 17× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 18× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 19× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 20× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 25× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 30× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 35× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Good moment to stop, measure.

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 40× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 45× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 50× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Traditional stopping point.

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 60× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 70× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 80× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 90× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)2n=2 iterations.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)2n=2 iterations.

9

Ambainis’s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision {p; q}:
i.e., p 6= q, f (p) = f (q).

Problem: find this collision.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)2n=2 iterations.

9

Ambainis’s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision {p; q}:
i.e., p 6= q, f (p) = f (q).

Problem: find this collision.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)2n=2 iterations.

9

Ambainis’s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision {p; q}:
i.e., p 6= q, f (p) = f (q).

Problem: find this collision.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)2n=2 iterations.

9

Ambainis’s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision {p; q}:
i.e., p 6= q, f (p) = f (q).

Problem: find this collision.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)2n=2 iterations.

9

Ambainis’s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision {p; q}:
i.e., p 6= q, f (p) = f (q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f (S), sort.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)2n=2 iterations.

9

Ambainis’s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision {p; q}:
i.e., p 6= q, f (p) = f (q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f (S), sort.

Generalize to cost r ,

success probability ≈(r=2n)2:

Choose a set S of size r .

Compute f (S), sort.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)2n=2 iterations.

9

Ambainis’s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision {p; q}:
i.e., p 6= q, f (p) = f (q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f (S), sort.

Generalize to cost r ,

success probability ≈(r=2n)2:

Choose a set S of size r .

Compute f (S), sort.

10

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f (S);

the number of collisions in S.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)2n=2 iterations.

9

Ambainis’s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision {p; q}:
i.e., p 6= q, f (p) = f (q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f (S), sort.

Generalize to cost r ,

success probability ≈(r=2n)2:

Choose a set S of size r .

Compute f (S), sort.

10

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f (S);

the number of collisions in S.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)2n=2 iterations.

9

Ambainis’s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision {p; q}:
i.e., p 6= q, f (p) = f (q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f (S), sort.

Generalize to cost r ,

success probability ≈(r=2n)2:

Choose a set S of size r .

Compute f (S), sort.

10

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f (S);

the number of collisions in S.

9

Ambainis’s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision {p; q}:
i.e., p 6= q, f (p) = f (q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f (S), sort.

Generalize to cost r ,

success probability ≈(r=2n)2:

Choose a set S of size r .

Compute f (S), sort.

10

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f (S);

the number of collisions in S.

9

Ambainis’s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision {p; q}:
i.e., p 6= q, f (p) = f (q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f (S), sort.

Generalize to cost r ,

success probability ≈(r=2n)2:

Choose a set S of size r .

Compute f (S), sort.

10

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f (S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r , #(S ∩ T) = r − 1.

9

Ambainis’s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision {p; q}:
i.e., p 6= q, f (p) = f (q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f (S), sort.

Generalize to cost r ,

success probability ≈(r=2n)2:

Choose a set S of size r .

Compute f (S), sort.

10

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f (S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r , #(S ∩ T) = r − 1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

9

Ambainis’s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision {p; q}:
i.e., p 6= q, f (p) = f (q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f (S), sort.

Generalize to cost r ,

success probability ≈(r=2n)2:

Choose a set S of size r .

Compute f (S), sort.

10

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f (S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r , #(S ∩ T) = r − 1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

9

Ambainis’s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision {p; q}:
i.e., p 6= q, f (p) = f (q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f (S), sort.

Generalize to cost r ,

success probability ≈(r=2n)2:

Choose a set S of size r .

Compute f (S), sort.

10

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f (S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r , #(S ∩ T) = r − 1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

9

Ambainis’s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,

exactly one collision {p; q}:
i.e., p 6= q, f (p) = f (q).

Problem: find this collision.

Cost 2n: Define S as

the set of n-bit strings.

Compute f (S), sort.

Generalize to cost r ,

success probability ≈(r=2n)2:

Choose a set S of size r .

Compute f (S), sort.

10

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f (S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r , #(S ∩ T) = r − 1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

10

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f (S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r , #(S ∩ T) = r − 1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

10

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f (S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r , #(S ∩ T) = r − 1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

0 negations and 0 diffusions:

Pr[class (0; 0)] ≈ 0:938; +

Pr[class (0; 1)] ≈ 0:000; +

Pr[class (1; 0)] ≈ 0:000; +

Pr[class (1; 1)] ≈ 0:060; +

Pr[class (1; 2)] ≈ 0:000; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:001; +

Right column is sign of aS;T .

10

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f (S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r , #(S ∩ T) = r − 1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

0 negations and 0 diffusions:

Pr[class (0; 0)] ≈ 0:938; +

Pr[class (0; 1)] ≈ 0:000; +

Pr[class (1; 0)] ≈ 0:000; +

Pr[class (1; 1)] ≈ 0:060; +

Pr[class (1; 2)] ≈ 0:000; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:001; +

Right column is sign of aS;T .

10

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f (S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T) if T is an adjacent set:

#S = #T = r , #(S ∩ T) = r − 1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T)) with adjacent S; T .

By a quantum walk

find S containing a collision.

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

0 negations and 0 diffusions:

Pr[class (0; 0)] ≈ 0:938; +

Pr[class (0; 1)] ≈ 0:000; +

Pr[class (1; 0)] ≈ 0:000; +

Pr[class (1; 1)] ≈ 0:060; +

Pr[class (1; 2)] ≈ 0:000; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:001; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

0 negations and 0 diffusions:

Pr[class (0; 0)] ≈ 0:938; +

Pr[class (0; 1)] ≈ 0:000; +

Pr[class (1; 0)] ≈ 0:000; +

Pr[class (1; 1)] ≈ 0:060; +

Pr[class (1; 2)] ≈ 0:000; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:001; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

1 negation and 46 diffusions:

Pr[class (0; 0)] ≈ 0:935; +

Pr[class (0; 1)] ≈ 0:000; +

Pr[class (1; 0)] ≈ 0:000;−
Pr[class (1; 1)] ≈ 0:057; +

Pr[class (1; 2)] ≈ 0:000; +

Pr[class (2; 1)] ≈ 0:000;−
Pr[class (2; 2)] ≈ 0:008; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

2 negations and 92 diffusions:

Pr[class (0; 0)] ≈ 0:918; +

Pr[class (0; 1)] ≈ 0:001; +

Pr[class (1; 0)] ≈ 0:000;−
Pr[class (1; 1)] ≈ 0:059; +

Pr[class (1; 2)] ≈ 0:001; +

Pr[class (2; 1)] ≈ 0:000;−
Pr[class (2; 2)] ≈ 0:022; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

3 negations and 138 diffusions:

Pr[class (0; 0)] ≈ 0:897; +

Pr[class (0; 1)] ≈ 0:001; +

Pr[class (1; 0)] ≈ 0:000;−
Pr[class (1; 1)] ≈ 0:058; +

Pr[class (1; 2)] ≈ 0:002; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:042; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

4 negations and 184 diffusions:

Pr[class (0; 0)] ≈ 0:873; +

Pr[class (0; 1)] ≈ 0:001; +

Pr[class (1; 0)] ≈ 0:000;−
Pr[class (1; 1)] ≈ 0:054; +

Pr[class (1; 2)] ≈ 0:002; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:070; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

5 negations and 230 diffusions:

Pr[class (0; 0)] ≈ 0:838; +

Pr[class (0; 1)] ≈ 0:001; +

Pr[class (1; 0)] ≈ 0:001;−
Pr[class (1; 1)] ≈ 0:054; +

Pr[class (1; 2)] ≈ 0:003; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:104; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

6 negations and 276 diffusions:

Pr[class (0; 0)] ≈ 0:800; +

Pr[class (0; 1)] ≈ 0:001; +

Pr[class (1; 0)] ≈ 0:001;−
Pr[class (1; 1)] ≈ 0:051; +

Pr[class (1; 2)] ≈ 0:006; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:141; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

7 negations and 322 diffusions:

Pr[class (0; 0)] ≈ 0:758; +

Pr[class (0; 1)] ≈ 0:002; +

Pr[class (1; 0)] ≈ 0:001;−
Pr[class (1; 1)] ≈ 0:047; +

Pr[class (1; 2)] ≈ 0:007; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:184; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

8 negations and 368 diffusions:

Pr[class (0; 0)] ≈ 0:708; +

Pr[class (0; 1)] ≈ 0:003; +

Pr[class (1; 0)] ≈ 0:001;−
Pr[class (1; 1)] ≈ 0:046; +

Pr[class (1; 2)] ≈ 0:007; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:234; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

9 negations and 414 diffusions:

Pr[class (0; 0)] ≈ 0:658; +

Pr[class (0; 1)] ≈ 0:003; +

Pr[class (1; 0)] ≈ 0:001;−
Pr[class (1; 1)] ≈ 0:042; +

Pr[class (1; 2)] ≈ 0:009; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:287; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

10 negations and 460 diffusions:

Pr[class (0; 0)] ≈ 0:606; +

Pr[class (0; 1)] ≈ 0:003; +

Pr[class (1; 0)] ≈ 0:002;−
Pr[class (1; 1)] ≈ 0:037; +

Pr[class (1; 2)] ≈ 0:013; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:338; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

11 negations and 506 diffusions:

Pr[class (0; 0)] ≈ 0:547; +

Pr[class (0; 1)] ≈ 0:004; +

Pr[class (1; 0)] ≈ 0:003;−
Pr[class (1; 1)] ≈ 0:036; +

Pr[class (1; 2)] ≈ 0:015; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:394; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

12 negations and 552 diffusions:

Pr[class (0; 0)] ≈ 0:491; +

Pr[class (0; 1)] ≈ 0:004; +

Pr[class (1; 0)] ≈ 0:003;−
Pr[class (1; 1)] ≈ 0:032; +

Pr[class (1; 2)] ≈ 0:014; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:455; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

13 negations and 598 diffusions:

Pr[class (0; 0)] ≈ 0:436; +

Pr[class (0; 1)] ≈ 0:005; +

Pr[class (1; 0)] ≈ 0:003;−
Pr[class (1; 1)] ≈ 0:026; +

Pr[class (1; 2)] ≈ 0:017; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:513; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

14 negations and 644 diffusions:

Pr[class (0; 0)] ≈ 0:377; +

Pr[class (0; 1)] ≈ 0:006; +

Pr[class (1; 0)] ≈ 0:004;−
Pr[class (1; 1)] ≈ 0:025; +

Pr[class (1; 2)] ≈ 0:022; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:566; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

15 negations and 690 diffusions:

Pr[class (0; 0)] ≈ 0:322; +

Pr[class (0; 1)] ≈ 0:005; +

Pr[class (1; 0)] ≈ 0:004;−
Pr[class (1; 1)] ≈ 0:021; +

Pr[class (1; 2)] ≈ 0:023; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:623; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

16 negations and 736 diffusions:

Pr[class (0; 0)] ≈ 0:270; +

Pr[class (0; 1)] ≈ 0:006; +

Pr[class (1; 0)] ≈ 0:005;−
Pr[class (1; 1)] ≈ 0:017; +

Pr[class (1; 2)] ≈ 0:022; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:680; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

17 negations and 782 diffusions:

Pr[class (0; 0)] ≈ 0:218; +

Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:005;−
Pr[class (1; 1)] ≈ 0:015; +

Pr[class (1; 2)] ≈ 0:024; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:730; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

18 negations and 828 diffusions:

Pr[class (0; 0)] ≈ 0:172; +

Pr[class (0; 1)] ≈ 0:006; +

Pr[class (1; 0)] ≈ 0:005;−
Pr[class (1; 1)] ≈ 0:011; +

Pr[class (1; 2)] ≈ 0:029; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:775; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

19 negations and 874 diffusions:

Pr[class (0; 0)] ≈ 0:131; +

Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:006;−
Pr[class (1; 1)] ≈ 0:008; +

Pr[class (1; 2)] ≈ 0:030; +

Pr[class (2; 1)] ≈ 0:002; +

Pr[class (2; 2)] ≈ 0:816; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

20 negations and 920 diffusions:

Pr[class (0; 0)] ≈ 0:093; +

Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:007; +

Pr[class (1; 2)] ≈ 0:027; +

Pr[class (2; 1)] ≈ 0:002; +

Pr[class (2; 2)] ≈ 0:857; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

21 negations and 966 diffusions:

Pr[class (0; 0)] ≈ 0:062; +

Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:006;−
Pr[class (1; 1)] ≈ 0:004; +

Pr[class (1; 2)] ≈ 0:030; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:890; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

22 negations and 1012 diffusions:

Pr[class (0; 0)] ≈ 0:037; +

Pr[class (0; 1)] ≈ 0:008; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:002; +

Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:910; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

23 negations and 1058 diffusions:

Pr[class (0; 0)] ≈ 0:017; +

Pr[class (0; 1)] ≈ 0:008; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:002; +

Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:002; +

Pr[class (2; 2)] ≈ 0:930; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

24 negations and 1104 diffusions:

Pr[class (0; 0)] ≈ 0:005; +

Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:000; +

Pr[class (1; 2)] ≈ 0:030; +

Pr[class (2; 1)] ≈ 0:002; +

Pr[class (2; 2)] ≈ 0:948; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

25 negations and 1150 diffusions:

Pr[class (0; 0)] ≈ 0:000; +

Pr[class (0; 1)] ≈ 0:008; +

Pr[class (1; 0)] ≈ 0:008;−
Pr[class (1; 1)] ≈ 0:000; +

Pr[class (1; 2)] ≈ 0:031; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:952; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

26 negations and 1196 diffusions:

Pr[class (0; 0)] ≈ 0:002;−
Pr[class (0; 1)] ≈ 0:008; +

Pr[class (1; 0)] ≈ 0:008;−
Pr[class (1; 1)] ≈ 0:000;−
Pr[class (1; 2)] ≈ 0:035; +

Pr[class (2; 1)] ≈ 0:002; +

Pr[class (2; 2)] ≈ 0:945; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:001;−
Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:003; +

Pr[class (2; 2)] ≈ 0:938; +

Right column is sign of aS;T .

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:001;−
Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:003; +

Pr[class (2; 2)] ≈ 0:938; +

Right column is sign of aS;T .

13

Data structures

Moving from D(S) to D(T):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:001;−
Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:003; +

Pr[class (2; 2)] ≈ 0:938; +

Right column is sign of aS;T .

13

Data structures

Moving from D(S) to D(T):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:001;−
Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:003; +

Pr[class (2; 2)] ≈ 0:938; +

Right column is sign of aS;T .

13

Data structures

Moving from D(S) to D(T):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:001;−
Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:003; +

Pr[class (2; 2)] ≈ 0:938; +

Right column is sign of aS;T .

13

Data structures

Moving from D(S) to D(T):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:001;−
Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:003; +

Pr[class (2; 2)] ≈ 0:938; +

Right column is sign of aS;T .

13

Data structures

Moving from D(S) to D(T):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

Store set S and multiset f (S)

in, e.g., hash tables?

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:001;−
Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:003; +

Pr[class (2; 2)] ≈ 0:938; +

Right column is sign of aS;T .

13

Data structures

Moving from D(S) to D(T):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

Store set S and multiset f (S)

in, e.g., hash tables?

Minor problem: time to hash S

is huge for some sets S.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:001;−
Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:003; +

Pr[class (2; 2)] ≈ 0:938; +

Right column is sign of aS;T .

13

Data structures

Moving from D(S) to D(T):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

Store set S and multiset f (S)

in, e.g., hash tables?

Minor problem: time to hash S

is huge for some sets S.

Fix: randomize hash function

(1979 Carter–Wegman),

and specify big enough time for

whole algorithm to be reliable.

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:001;−
Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:003; +

Pr[class (2; 2)] ≈ 0:938; +

Right column is sign of aS;T .

13

Data structures

Moving from D(S) to D(T):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

Store set S and multiset f (S)

in, e.g., hash tables?

Minor problem: time to hash S

is huge for some sets S.

Fix: randomize hash function

(1979 Carter–Wegman),

and specify big enough time for

whole algorithm to be reliable.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:001;−
Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:003; +

Pr[class (2; 2)] ≈ 0:938; +

Right column is sign of aS;T .

13

Data structures

Moving from D(S) to D(T):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

Store set S and multiset f (S)

in, e.g., hash tables?

Minor problem: time to hash S

is huge for some sets S.

Fix: randomize hash function

(1979 Carter–Wegman),

and specify big enough time for

whole algorithm to be reliable.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).

12

Classify (S; T) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:001;−
Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:003; +

Pr[class (2; 2)] ≈ 0:938; +

Right column is sign of aS;T .

13

Data structures

Moving from D(S) to D(T):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

Store set S and multiset f (S)

in, e.g., hash tables?

Minor problem: time to hash S

is huge for some sets S.

Fix: randomize hash function

(1979 Carter–Wegman),

and specify big enough time for

whole algorithm to be reliable.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).

13

Data structures

Moving from D(S) to D(T):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

Store set S and multiset f (S)

in, e.g., hash tables?

Minor problem: time to hash S

is huge for some sets S.

Fix: randomize hash function

(1979 Carter–Wegman),

and specify big enough time for

whole algorithm to be reliable.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).

13

Data structures

Moving from D(S) to D(T):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

Store set S and multiset f (S)

in, e.g., hash tables?

Minor problem: time to hash S

is huge for some sets S.

Fix: randomize hash function

(1979 Carter–Wegman),

and specify big enough time for

whole algorithm to be reliable.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination

of a hash table and a skip list”.

Several pages of analysis.

13

Data structures

Moving from D(S) to D(T):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

Store set S and multiset f (S)

in, e.g., hash tables?

Minor problem: time to hash S

is huge for some sets S.

Fix: randomize hash function

(1979 Carter–Wegman),

and specify big enough time for

whole algorithm to be reliable.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination

of a hash table and a skip list”.

Several pages of analysis.

2013 Bernstein–Jeffery–Lange–

Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0; x) ∈ S}
if nonempty. Right subtree stores

{x : (1; x) ∈ S} if nonempty.

13

Data structures

Moving from D(S) to D(T):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

Store set S and multiset f (S)

in, e.g., hash tables?

Minor problem: time to hash S

is huge for some sets S.

Fix: randomize hash function

(1979 Carter–Wegman),

and specify big enough time for

whole algorithm to be reliable.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination

of a hash table and a skip list”.

Several pages of analysis.

2013 Bernstein–Jeffery–Lange–

Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0; x) ∈ S}
if nonempty. Right subtree stores

{x : (1; x) ∈ S} if nonempty.

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

13

Data structures

Moving from D(S) to D(T):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

Store set S and multiset f (S)

in, e.g., hash tables?

Minor problem: time to hash S

is huge for some sets S.

Fix: randomize hash function

(1979 Carter–Wegman),

and specify big enough time for

whole algorithm to be reliable.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination

of a hash table and a skip list”.

Several pages of analysis.

2013 Bernstein–Jeffery–Lange–

Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0; x) ∈ S}
if nonempty. Right subtree stores

{x : (1; x) ∈ S} if nonempty.

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

13

Data structures

Moving from D(S) to D(T):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

Store set S and multiset f (S)

in, e.g., hash tables?

Minor problem: time to hash S

is huge for some sets S.

Fix: randomize hash function

(1979 Carter–Wegman),

and specify big enough time for

whole algorithm to be reliable.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination

of a hash table and a skip list”.

Several pages of analysis.

2013 Bernstein–Jeffery–Lange–

Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0; x) ∈ S}
if nonempty. Right subtree stores

{x : (1; x) ∈ S} if nonempty.

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination

of a hash table and a skip list”.

Several pages of analysis.

2013 Bernstein–Jeffery–Lange–

Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0; x) ∈ S}
if nonempty. Right subtree stores

{x : (1; x) ∈ S} if nonempty.

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination

of a hash table and a skip list”.

Several pages of analysis.

2013 Bernstein–Jeffery–Lange–

Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0; x) ∈ S}
if nonempty. Right subtree stores

{x : (1; x) ∈ S} if nonempty.

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy

sublinear in distance moved?

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination

of a hash table and a skip list”.

Several pages of analysis.

2013 Bernstein–Jeffery–Lange–

Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0; x) ∈ S}
if nonempty. Right subtree stores

{x : (1; x) ∈ S} if nonempty.

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy

sublinear in distance moved?

2015 Intel presentation says that

moving 8 bytes on wire at 22nm

costs 11.20 pJ per 5mm.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination

of a hash table and a skip list”.

Several pages of analysis.

2013 Bernstein–Jeffery–Lange–

Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0; x) ∈ S}
if nonempty. Right subtree stores

{x : (1; x) ∈ S} if nonempty.

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy

sublinear in distance moved?

2015 Intel presentation says that

moving 8 bytes on wire at 22nm

costs 11.20 pJ per 5mm.

Lasers spread. Fibers lose. etc.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination

of a hash table and a skip list”.

Several pages of analysis.

2013 Bernstein–Jeffery–Lange–

Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0; x) ∈ S}
if nonempty. Right subtree stores

{x : (1; x) ∈ S} if nonempty.

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy

sublinear in distance moved?

2015 Intel presentation says that

moving 8 bytes on wire at 22nm

costs 11.20 pJ per 5mm.

Lasers spread. Fibers lose. etc.

I recommend algorithm analysis

on 2-dim mesh of tiny processors:

e.g. 0:472 for MQ (vs. 0:462)

from 2017 Bernstein–Yang.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination

of a hash table and a skip list”.

Several pages of analysis.

2013 Bernstein–Jeffery–Lange–

Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0; x) ∈ S}
if nonempty. Right subtree stores

{x : (1; x) ∈ S} if nonempty.

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy

sublinear in distance moved?

2015 Intel presentation says that

moving 8 bytes on wire at 22nm

costs 11.20 pJ per 5mm.

Lasers spread. Fibers lose. etc.

I recommend algorithm analysis

on 2-dim mesh of tiny processors:

e.g. 0:472 for MQ (vs. 0:462)

from 2017 Bernstein–Yang.

16

Many claimed quantum speedups

don’t seem to exist in this model.

e.g. 2009 Bernstein analysis:

fastest algorithm known for

random-collision search is

1994 van Oorschot–Wiener.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination

of a hash table and a skip list”.

Several pages of analysis.

2013 Bernstein–Jeffery–Lange–

Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0; x) ∈ S}
if nonempty. Right subtree stores

{x : (1; x) ∈ S} if nonempty.

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy

sublinear in distance moved?

2015 Intel presentation says that

moving 8 bytes on wire at 22nm

costs 11.20 pJ per 5mm.

Lasers spread. Fibers lose. etc.

I recommend algorithm analysis

on 2-dim mesh of tiny processors:

e.g. 0:472 for MQ (vs. 0:462)

from 2017 Bernstein–Yang.

16

Many claimed quantum speedups

don’t seem to exist in this model.

e.g. 2009 Bernstein analysis:

fastest algorithm known for

random-collision search is

1994 van Oorschot–Wiener.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination

of a hash table and a skip list”.

Several pages of analysis.

2013 Bernstein–Jeffery–Lange–

Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0; x) ∈ S}
if nonempty. Right subtree stores

{x : (1; x) ∈ S} if nonempty.

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy

sublinear in distance moved?

2015 Intel presentation says that

moving 8 bytes on wire at 22nm

costs 11.20 pJ per 5mm.

Lasers spread. Fibers lose. etc.

I recommend algorithm analysis

on 2-dim mesh of tiny processors:

e.g. 0:472 for MQ (vs. 0:462)

from 2017 Bernstein–Yang.

16

Many claimed quantum speedups

don’t seem to exist in this model.

e.g. 2009 Bernstein analysis:

fastest algorithm known for

random-collision search is

1994 van Oorschot–Wiener.

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy

sublinear in distance moved?

2015 Intel presentation says that

moving 8 bytes on wire at 22nm

costs 11.20 pJ per 5mm.

Lasers spread. Fibers lose. etc.

I recommend algorithm analysis

on 2-dim mesh of tiny processors:

e.g. 0:472 for MQ (vs. 0:462)

from 2017 Bernstein–Yang.

16

Many claimed quantum speedups

don’t seem to exist in this model.

e.g. 2009 Bernstein analysis:

fastest algorithm known for

random-collision search is

1994 van Oorschot–Wiener.

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy

sublinear in distance moved?

2015 Intel presentation says that

moving 8 bytes on wire at 22nm

costs 11.20 pJ per 5mm.

Lasers spread. Fibers lose. etc.

I recommend algorithm analysis

on 2-dim mesh of tiny processors:

e.g. 0:472 for MQ (vs. 0:462)

from 2017 Bernstein–Yang.

16

Many claimed quantum speedups

don’t seem to exist in this model.

e.g. 2009 Bernstein analysis:

fastest algorithm known for

random-collision search is

1994 van Oorschot–Wiener.

Further obstacles to Grover:

• Parallelization reduces speedup.

D× speedup needs depth D.

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy

sublinear in distance moved?

2015 Intel presentation says that

moving 8 bytes on wire at 22nm

costs 11.20 pJ per 5mm.

Lasers spread. Fibers lose. etc.

I recommend algorithm analysis

on 2-dim mesh of tiny processors:

e.g. 0:472 for MQ (vs. 0:462)

from 2017 Bernstein–Yang.

16

Many claimed quantum speedups

don’t seem to exist in this model.

e.g. 2009 Bernstein analysis:

fastest algorithm known for

random-collision search is

1994 van Oorschot–Wiener.

Further obstacles to Grover:

• Parallelization reduces speedup.

D× speedup needs depth D.

• Reversibility is expensive.

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy

sublinear in distance moved?

2015 Intel presentation says that

moving 8 bytes on wire at 22nm

costs 11.20 pJ per 5mm.

Lasers spread. Fibers lose. etc.

I recommend algorithm analysis

on 2-dim mesh of tiny processors:

e.g. 0:472 for MQ (vs. 0:462)

from 2017 Bernstein–Yang.

16

Many claimed quantum speedups

don’t seem to exist in this model.

e.g. 2009 Bernstein analysis:

fastest algorithm known for

random-collision search is

1994 van Oorschot–Wiener.

Further obstacles to Grover:

• Parallelization reduces speedup.

D× speedup needs depth D.

• Reversibility is expensive.

• Quantum ops are expensive.

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy

sublinear in distance moved?

2015 Intel presentation says that

moving 8 bytes on wire at 22nm

costs 11.20 pJ per 5mm.

Lasers spread. Fibers lose. etc.

I recommend algorithm analysis

on 2-dim mesh of tiny processors:

e.g. 0:472 for MQ (vs. 0:462)

from 2017 Bernstein–Yang.

16

Many claimed quantum speedups

don’t seem to exist in this model.

e.g. 2009 Bernstein analysis:

fastest algorithm known for

random-collision search is

1994 van Oorschot–Wiener.

Further obstacles to Grover:

• Parallelization reduces speedup.

D× speedup needs depth D.

• Reversibility is expensive.

• Quantum ops are expensive.

Grover risk to cryptography

is much smaller than Shor risk.

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy

sublinear in distance moved?

2015 Intel presentation says that

moving 8 bytes on wire at 22nm

costs 11.20 pJ per 5mm.

Lasers spread. Fibers lose. etc.

I recommend algorithm analysis

on 2-dim mesh of tiny processors:

e.g. 0:472 for MQ (vs. 0:462)

from 2017 Bernstein–Yang.

16

Many claimed quantum speedups

don’t seem to exist in this model.

e.g. 2009 Bernstein analysis:

fastest algorithm known for

random-collision search is

1994 van Oorschot–Wiener.

Further obstacles to Grover:

• Parallelization reduces speedup.

D× speedup needs depth D.

• Reversibility is expensive.

• Quantum ops are expensive.

Grover risk to cryptography

is much smaller than Shor risk.

17

Background slides : : :

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy

sublinear in distance moved?

2015 Intel presentation says that

moving 8 bytes on wire at 22nm

costs 11.20 pJ per 5mm.

Lasers spread. Fibers lose. etc.

I recommend algorithm analysis

on 2-dim mesh of tiny processors:

e.g. 0:472 for MQ (vs. 0:462)

from 2017 Bernstein–Yang.

16

Many claimed quantum speedups

don’t seem to exist in this model.

e.g. 2009 Bernstein analysis:

fastest algorithm known for

random-collision search is

1994 van Oorschot–Wiener.

Further obstacles to Grover:

• Parallelization reduces speedup.

D× speedup needs depth D.

• Reversibility is expensive.

• Quantum ops are expensive.

Grover risk to cryptography

is much smaller than Shor risk.

17

Background slides : : :

15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy

sublinear in distance moved?

2015 Intel presentation says that

moving 8 bytes on wire at 22nm

costs 11.20 pJ per 5mm.

Lasers spread. Fibers lose. etc.

I recommend algorithm analysis

on 2-dim mesh of tiny processors:

e.g. 0:472 for MQ (vs. 0:462)

from 2017 Bernstein–Yang.

16

Many claimed quantum speedups

don’t seem to exist in this model.

e.g. 2009 Bernstein analysis:

fastest algorithm known for

random-collision search is

1994 van Oorschot–Wiener.

Further obstacles to Grover:

• Parallelization reduces speedup.

D× speedup needs depth D.

• Reversibility is expensive.

• Quantum ops are expensive.

Grover risk to cryptography

is much smaller than Shor risk.

17

Background slides : : :

16

Many claimed quantum speedups

don’t seem to exist in this model.

e.g. 2009 Bernstein analysis:

fastest algorithm known for

random-collision search is

1994 van Oorschot–Wiener.

Further obstacles to Grover:

• Parallelization reduces speedup.

D× speedup needs depth D.

• Reversibility is expensive.

• Quantum ops are expensive.

Grover risk to cryptography

is much smaller than Shor risk.

17

Background slides : : :

16

Many claimed quantum speedups

don’t seem to exist in this model.

e.g. 2009 Bernstein analysis:

fastest algorithm known for

random-collision search is

1994 van Oorschot–Wiener.

Further obstacles to Grover:

• Parallelization reduces speedup.

D× speedup needs depth D.

• Reversibility is expensive.

• Quantum ops are expensive.

Grover risk to cryptography

is much smaller than Shor risk.

17

Background slides : : :
18

What do quantum computers do?

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

16

Many claimed quantum speedups

don’t seem to exist in this model.

e.g. 2009 Bernstein analysis:

fastest algorithm known for

random-collision search is

1994 van Oorschot–Wiener.

Further obstacles to Grover:

• Parallelization reduces speedup.

D× speedup needs depth D.

• Reversibility is expensive.

• Quantum ops are expensive.

Grover risk to cryptography

is much smaller than Shor risk.

17

Background slides : : :
18

What do quantum computers do?

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

16

Many claimed quantum speedups

don’t seem to exist in this model.

e.g. 2009 Bernstein analysis:

fastest algorithm known for

random-collision search is

1994 van Oorschot–Wiener.

Further obstacles to Grover:

• Parallelization reduces speedup.

D× speedup needs depth D.

• Reversibility is expensive.

• Quantum ops are expensive.

Grover risk to cryptography

is much smaller than Shor risk.

17

Background slides : : :
18

What do quantum computers do?

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

17

Background slides : : :
18

What do quantum computers do?

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

17

Background slides : : :
18

What do quantum computers do?

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

19

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

17

Background slides : : :
18

What do quantum computers do?

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

19

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

17

Background slides : : :
18

What do quantum computers do?

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

19

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

18

What do quantum computers do?

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

19

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

18

What do quantum computers do?

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

19

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

18

What do quantum computers do?

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

19

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

18

What do quantum computers do?

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

19

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

18

What do quantum computers do?

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

19

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

20

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

18

What do quantum computers do?

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

19

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

20

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

18

What do quantum computers do?

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

19

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

20

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

19

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

20

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

19

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

20

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

19

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

20

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

21

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

19

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

20

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

21

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

19

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

20

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

21

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

20

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

21

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

20

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

21

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

20

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

21

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

20

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

21

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

20

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

21

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

20

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1982 Feynman “Simulating

physics with computers”.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

21

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

21

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

21

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

21

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

21

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

21

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

21

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

21

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

21

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

21

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

22

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—

can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

• collecting venture capital;

• selling some machines;

• collecting possibly useful

engineering expertise;

• not being punished

for deceiving people.

Is D-Wave a bad investment?

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

25

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

25

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

23

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

25

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

25

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

25

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

25

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

25

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

25

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

26

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

25

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

26

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

24

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3; 1; 4; 1; 5; 9; 2; 6).

e.g.: (−2; 7;−1; 8; 1;−8;−2; 8).

e.g.: (0; 0; 0; 0; 0; 1; 0; 0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

(3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3).

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

25

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

26

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

25

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

26

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

25

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

26

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

25

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

26

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

25

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

26

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

25

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

26

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

27

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

25

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

26

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

27

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

25

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• destroys the state.

If n qubits have state

(a0; a1; : : : ; a2n−1) then

measurement produces q

with probability |aq|2=
P
r |ar |2.

State is then all zeros

except 1 at position q.

26

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

27

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

26

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

27

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

26

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

27

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

26

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

27

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

26

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

27

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

28

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

26

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

27

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

28

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

26

e.g.: Say 3 qubits have state

(1; 1; 1; 1; 1; 1; 1; 1).

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

27

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

28

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

27

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

28

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

27

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

28

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

27

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

28

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

27

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

28

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

27

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

28

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

27

e.g.: Say 3 qubits have state

(3; 1; 4; 1; 5; 9; 2; 6).

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

28

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

28

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

28

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

28

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

28

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

28

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

28

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

28

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. CNOT2;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. CNOT2;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. CNOT0;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. CNOT2;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. CNOT0;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

32

Toffoli gates

Also known as

controlled-controlled-NOT gates.

e.g. CCNOT2;1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. CNOT2;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. CNOT0;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

32

Toffoli gates

Also known as

controlled-controlled-NOT gates.

e.g. CCNOT2;1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. CNOT2;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. CNOT0;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

32

Toffoli gates

Also known as

controlled-controlled-NOT gates.

e.g. CCNOT2;1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. CNOT2;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. CNOT0;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

32

Toffoli gates

Also known as

controlled-controlled-NOT gates.

e.g. CCNOT2;1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. CNOT2;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. CNOT0;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

32

Toffoli gates

Also known as

controlled-controlled-NOT gates.

e.g. CCNOT2;1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. CNOT2;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. CNOT0;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

32

Toffoli gates

Also known as

controlled-controlled-NOT gates.

e.g. CCNOT2;1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. CCNOT0;1;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. CNOT2;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. CNOT0;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

32

Toffoli gates

Also known as

controlled-controlled-NOT gates.

e.g. CCNOT2;1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. CCNOT0;1;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

33

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. CNOT2;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. CNOT0;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

32

Toffoli gates

Also known as

controlled-controlled-NOT gates.

e.g. CCNOT2;1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. CCNOT0;1;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

33

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. CNOT2;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. CNOT0;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

32

Toffoli gates

Also known as

controlled-controlled-NOT gates.

e.g. CCNOT2;1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. CCNOT0;1;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

33

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

32

Toffoli gates

Also known as

controlled-controlled-NOT gates.

e.g. CCNOT2;1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. CCNOT0;1;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

33

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

32

Toffoli gates

Also known as

controlled-controlled-NOT gates.

e.g. CCNOT2;1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. CCNOT0;1;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

33

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss
CCNOT0;1;2

3 1

999994 6

�����
5 9

999992 1

�����
CNOT0;1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

32

Toffoli gates

Also known as

controlled-controlled-NOT gates.

e.g. CCNOT2;1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. CCNOT0;1;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

33

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss
CCNOT0;1;2

3 1

999994 6

�����
5 9

999992 1

�����
CNOT0;1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

32

Toffoli gates

Also known as

controlled-controlled-NOT gates.

e.g. CCNOT2;1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. CCNOT0;1;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

33

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss
CCNOT0;1;2

3 1

999994 6

�����
5 9

999992 1

�����
CNOT0;1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

32

Toffoli gates

Also known as

controlled-controlled-NOT gates.

e.g. CCNOT2;1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. CCNOT0;1;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 6; 5; 9; 2; 1).

33

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss
CCNOT0;1;2

3 1

999994 6

�����
5 9

999992 1

�����
CNOT0;1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

33

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss
CCNOT0;1;2

3 1

999994 6

�����
5 9

999992 1

�����
CNOT0;1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

33

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss
CCNOT0;1;2

3 1

999994 6

�����
5 9

999992 1

�����
CNOT0;1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

33

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss
CCNOT0;1;2

3 1

999994 6

�����
5 9

999992 1

�����
CNOT0;1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

33

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss
CCNOT0;1;2

3 1

999994 6

�����
5 9

999992 1

�����
CNOT0;1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

33

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss
CCNOT0;1;2

3 1

999994 6

�����
5 9

999992 1

�����
CNOT0;1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 2. Hadamard0:

1; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 3. Hadamard1:

1; 1; 1; 1; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 4. Hadamard2:

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe.

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 5. CNOT0;3:

1; 0; 1; 0; 1; 0; 1; 0;

0; 1; 0; 1; 0; 1; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 5b. More shuffling:

1; 0; 0; 0; 1; 0; 0; 0;

0; 1; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 1; 0;

0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 5c. More shuffling:

1; 0; 0; 0; 0; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

0; 0; 1; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 1:

Each column is a parallel universe

performing its own computations.

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 5d. More shuffling:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 0;

0; 0; 0; 1; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 5e. More shuffling:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 5f. More shuffling:

0; 0; 0; 0; 0; 1; 0; 0;

1; 0; 0; 0; 0; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0:

Each column is a parallel universe

performing its own computations.

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 5g. More shuffling:

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1:

Each column is a parallel universe

performing its own computations.

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 5h. More shuffling:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

1; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 5i. More shuffling:

0; 0; 0; 0; 0; 0; 1; 0;

0; 0; 0; 1; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 1;

0; 0; 1; 0; 0; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

1; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 5j. Final shuffling:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 1; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 0; 0; 0; 0; 1; 0; 0:

Each column is a parallel universe

performing its own computations.

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 5j. Final shuffling:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 1; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 0; 0; 0; 0; 1; 0; 0:

Each column is a parallel universe

performing its own computations.

Surprise: u and u ⊕ 101 match.

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 6. Hadamard0:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 1; 0; 0; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 1; 0; 0; 1; 1;

1; 1; 0; 0; 1; 1; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 0; 0; 1; 1; 0; 0:

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 7. Hadamard1:

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 1; 1; 1; 1; 1; 1;

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 1; 1; 1; 1; 1; 1:

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 8. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

34

Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

35

Simon’s algorithm

Step 8. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

