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Quantum walks

Daniel J. Bernstein

University of Illinois at Chicago

Focusing on quantum walks

as an algorithm-design tool:

e.g. Grover’s algorithm.

e.g. Ambainis’s algorithm.

Can also study quantum walks

on much more general graphs.

2008 Childs, 2009 Lovett–

Cooper–Everitt–Trevers–Kendon:

Can view, e.g., Shor’s algorithm

as quantum walk on Shor graph.

2

Examples of applications to crypto

Minimum asymptotic ops known,

assuming plausible heuristics:

pre-q post-q problem

1 0.5 cipher

 =2 McEliece

0:791 : : : 0:462 : : : MQ

0:290 : : : 0:241 : : : subset sum

“Pre-q” e: as n→∞, 2(e+o(1))n

simple non-quantum ops.

“Post-q” e: as n→∞, 2(e+o(1))n

simple quantum ops.

“Cipher”: find n-bit cipher key.

0:5: 1996 Grover.
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“McEliece”: in linear code of

length (1 + o(1))n log2 n and

dimension (R + o(1))n log2 n,

decode (1− R + o(1))n errors.
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and

P
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Grover’s algorithm

Assume: unique s ∈ {0; 1}n

has f (s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #inputs approaches 2n.
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Grover’s algorithm takes only 2n=2

reversible computations of f .

Typically: reversibility overhead

is small enough that this easily

wins for all sufficiently large n.

6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.
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Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.
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Step 2: “Grover diffusion”.
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This is also fast.
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This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 40× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0



6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 45× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0



6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 50× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Traditional stopping point.



6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 60× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0



6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 70× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0



6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 80× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0



6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 90× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0



6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.



6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.



6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.



6

Start from uniform superposition

a over q ∈ {0; 1}n: aq = 2−n=2.

Step 1: Set a← b where

bq = −aq if f (q) = 0,

bq = aq otherwise.

This is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 2n=2 times.

Measure the n qubits.

With high probability this finds s.

7

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.



7

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.



7

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.



7

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)2n=2 iterations.



7

Normalized graph of q 7→ aq
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

8

q 7→ aq is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) aq for roots q;

(2) aq for non-roots q.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)2n=2 iterations.

9

Ambainis’s algorithm

Unique-collision-finding problem:
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i.e., p 6= q, f (p) = f (q).

Problem: find this collision.
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How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.
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12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

0 negations and 0 diffusions:

Pr[class (0; 0)] ≈ 0:938; +

Pr[class (0; 1)] ≈ 0:000; +

Pr[class (1; 0)] ≈ 0:000; +

Pr[class (1; 1)] ≈ 0:060; +

Pr[class (1; 2)] ≈ 0:000; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:001; +

Right column is sign of aS;T .
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Very efficient to move from D(S)

to D(T ) if T is an adjacent set:

#S = #T = r , #(S ∩ T ) = r − 1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T )) with adjacent S; T .

By a quantum walk

find S containing a collision.

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

0 negations and 0 diffusions:

Pr[class (0; 0)] ≈ 0:938; +

Pr[class (0; 1)] ≈ 0:000; +

Pr[class (1; 0)] ≈ 0:000; +

Pr[class (1; 1)] ≈ 0:060; +

Pr[class (1; 2)] ≈ 0:000; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:001; +

Right column is sign of aS;T .



10

Data structure D(S) capturing

the generalized computation:

the set S; the multiset f (S);

the number of collisions in S.

Very efficient to move from D(S)

to D(T ) if T is an adjacent set:

#S = #T = r , #(S ∩ T ) = r − 1.

2003 Ambainis, simplified 2007

Magniez–Nayak–Roland–Santha:

Create superposition of states

(D(S); D(T )) with adjacent S; T .

By a quantum walk

find S containing a collision.

11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

0 negations and 0 diffusions:

Pr[class (0; 0)] ≈ 0:938; +

Pr[class (0; 1)] ≈ 0:000; +

Pr[class (1; 0)] ≈ 0:000; +

Pr[class (1; 1)] ≈ 0:060; +

Pr[class (1; 2)] ≈ 0:000; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:001; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

0 negations and 0 diffusions:

Pr[class (0; 0)] ≈ 0:938; +

Pr[class (0; 1)] ≈ 0:000; +

Pr[class (1; 0)] ≈ 0:000; +

Pr[class (1; 1)] ≈ 0:060; +

Pr[class (1; 2)] ≈ 0:000; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:001; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

1 negation and 46 diffusions:

Pr[class (0; 0)] ≈ 0:935; +

Pr[class (0; 1)] ≈ 0:000; +

Pr[class (1; 0)] ≈ 0:000;−
Pr[class (1; 1)] ≈ 0:057; +

Pr[class (1; 2)] ≈ 0:000; +

Pr[class (2; 1)] ≈ 0:000;−
Pr[class (2; 2)] ≈ 0:008; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

2 negations and 92 diffusions:

Pr[class (0; 0)] ≈ 0:918; +

Pr[class (0; 1)] ≈ 0:001; +

Pr[class (1; 0)] ≈ 0:000;−
Pr[class (1; 1)] ≈ 0:059; +

Pr[class (1; 2)] ≈ 0:001; +

Pr[class (2; 1)] ≈ 0:000;−
Pr[class (2; 2)] ≈ 0:022; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

3 negations and 138 diffusions:

Pr[class (0; 0)] ≈ 0:897; +

Pr[class (0; 1)] ≈ 0:001; +

Pr[class (1; 0)] ≈ 0:000;−
Pr[class (1; 1)] ≈ 0:058; +

Pr[class (1; 2)] ≈ 0:002; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:042; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

4 negations and 184 diffusions:

Pr[class (0; 0)] ≈ 0:873; +

Pr[class (0; 1)] ≈ 0:001; +

Pr[class (1; 0)] ≈ 0:000;−
Pr[class (1; 1)] ≈ 0:054; +

Pr[class (1; 2)] ≈ 0:002; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:070; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

5 negations and 230 diffusions:

Pr[class (0; 0)] ≈ 0:838; +

Pr[class (0; 1)] ≈ 0:001; +

Pr[class (1; 0)] ≈ 0:001;−
Pr[class (1; 1)] ≈ 0:054; +

Pr[class (1; 2)] ≈ 0:003; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:104; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

6 negations and 276 diffusions:

Pr[class (0; 0)] ≈ 0:800; +

Pr[class (0; 1)] ≈ 0:001; +

Pr[class (1; 0)] ≈ 0:001;−
Pr[class (1; 1)] ≈ 0:051; +

Pr[class (1; 2)] ≈ 0:006; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:141; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

7 negations and 322 diffusions:

Pr[class (0; 0)] ≈ 0:758; +

Pr[class (0; 1)] ≈ 0:002; +

Pr[class (1; 0)] ≈ 0:001;−
Pr[class (1; 1)] ≈ 0:047; +

Pr[class (1; 2)] ≈ 0:007; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:184; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

8 negations and 368 diffusions:

Pr[class (0; 0)] ≈ 0:708; +

Pr[class (0; 1)] ≈ 0:003; +

Pr[class (1; 0)] ≈ 0:001;−
Pr[class (1; 1)] ≈ 0:046; +

Pr[class (1; 2)] ≈ 0:007; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:234; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

9 negations and 414 diffusions:

Pr[class (0; 0)] ≈ 0:658; +

Pr[class (0; 1)] ≈ 0:003; +

Pr[class (1; 0)] ≈ 0:001;−
Pr[class (1; 1)] ≈ 0:042; +

Pr[class (1; 2)] ≈ 0:009; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:287; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

10 negations and 460 diffusions:

Pr[class (0; 0)] ≈ 0:606; +

Pr[class (0; 1)] ≈ 0:003; +

Pr[class (1; 0)] ≈ 0:002;−
Pr[class (1; 1)] ≈ 0:037; +

Pr[class (1; 2)] ≈ 0:013; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:338; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

11 negations and 506 diffusions:

Pr[class (0; 0)] ≈ 0:547; +

Pr[class (0; 1)] ≈ 0:004; +

Pr[class (1; 0)] ≈ 0:003;−
Pr[class (1; 1)] ≈ 0:036; +

Pr[class (1; 2)] ≈ 0:015; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:394; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

12 negations and 552 diffusions:

Pr[class (0; 0)] ≈ 0:491; +

Pr[class (0; 1)] ≈ 0:004; +

Pr[class (1; 0)] ≈ 0:003;−
Pr[class (1; 1)] ≈ 0:032; +

Pr[class (1; 2)] ≈ 0:014; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:455; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

13 negations and 598 diffusions:

Pr[class (0; 0)] ≈ 0:436; +

Pr[class (0; 1)] ≈ 0:005; +

Pr[class (1; 0)] ≈ 0:003;−
Pr[class (1; 1)] ≈ 0:026; +

Pr[class (1; 2)] ≈ 0:017; +

Pr[class (2; 1)] ≈ 0:000; +

Pr[class (2; 2)] ≈ 0:513; +

Right column is sign of aS;T .
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How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

14 negations and 644 diffusions:

Pr[class (0; 0)] ≈ 0:377; +

Pr[class (0; 1)] ≈ 0:006; +

Pr[class (1; 0)] ≈ 0:004;−
Pr[class (1; 1)] ≈ 0:025; +

Pr[class (1; 2)] ≈ 0:022; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:566; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

15 negations and 690 diffusions:

Pr[class (0; 0)] ≈ 0:322; +

Pr[class (0; 1)] ≈ 0:005; +

Pr[class (1; 0)] ≈ 0:004;−
Pr[class (1; 1)] ≈ 0:021; +

Pr[class (1; 2)] ≈ 0:023; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:623; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

16 negations and 736 diffusions:

Pr[class (0; 0)] ≈ 0:270; +

Pr[class (0; 1)] ≈ 0:006; +

Pr[class (1; 0)] ≈ 0:005;−
Pr[class (1; 1)] ≈ 0:017; +

Pr[class (1; 2)] ≈ 0:022; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:680; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

17 negations and 782 diffusions:

Pr[class (0; 0)] ≈ 0:218; +

Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:005;−
Pr[class (1; 1)] ≈ 0:015; +

Pr[class (1; 2)] ≈ 0:024; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:730; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

18 negations and 828 diffusions:

Pr[class (0; 0)] ≈ 0:172; +

Pr[class (0; 1)] ≈ 0:006; +

Pr[class (1; 0)] ≈ 0:005;−
Pr[class (1; 1)] ≈ 0:011; +

Pr[class (1; 2)] ≈ 0:029; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:775; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

19 negations and 874 diffusions:

Pr[class (0; 0)] ≈ 0:131; +

Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:006;−
Pr[class (1; 1)] ≈ 0:008; +

Pr[class (1; 2)] ≈ 0:030; +

Pr[class (2; 1)] ≈ 0:002; +

Pr[class (2; 2)] ≈ 0:816; +

Right column is sign of aS;T .
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How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

20 negations and 920 diffusions:

Pr[class (0; 0)] ≈ 0:093; +

Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:007; +

Pr[class (1; 2)] ≈ 0:027; +

Pr[class (2; 1)] ≈ 0:002; +

Pr[class (2; 2)] ≈ 0:857; +

Right column is sign of aS;T .
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How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

21 negations and 966 diffusions:

Pr[class (0; 0)] ≈ 0:062; +

Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:006;−
Pr[class (1; 1)] ≈ 0:004; +

Pr[class (1; 2)] ≈ 0:030; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:890; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

22 negations and 1012 diffusions:

Pr[class (0; 0)] ≈ 0:037; +

Pr[class (0; 1)] ≈ 0:008; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:002; +

Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:910; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

23 negations and 1058 diffusions:

Pr[class (0; 0)] ≈ 0:017; +

Pr[class (0; 1)] ≈ 0:008; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:002; +

Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:002; +

Pr[class (2; 2)] ≈ 0:930; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

24 negations and 1104 diffusions:

Pr[class (0; 0)] ≈ 0:005; +

Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:000; +

Pr[class (1; 2)] ≈ 0:030; +

Pr[class (2; 1)] ≈ 0:002; +

Pr[class (2; 2)] ≈ 0:948; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

25 negations and 1150 diffusions:

Pr[class (0; 0)] ≈ 0:000; +

Pr[class (0; 1)] ≈ 0:008; +

Pr[class (1; 0)] ≈ 0:008;−
Pr[class (1; 1)] ≈ 0:000; +

Pr[class (1; 2)] ≈ 0:031; +

Pr[class (2; 1)] ≈ 0:001; +

Pr[class (2; 2)] ≈ 0:952; +

Right column is sign of aS;T .



11

How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

26 negations and 1196 diffusions:

Pr[class (0; 0)] ≈ 0:002;−
Pr[class (0; 1)] ≈ 0:008; +

Pr[class (1; 0)] ≈ 0:008;−
Pr[class (1; 1)] ≈ 0:000;−
Pr[class (1; 2)] ≈ 0:035; +

Pr[class (2; 1)] ≈ 0:002; +

Pr[class (2; 2)] ≈ 0:945; +

Right column is sign of aS;T .
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How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:001;−
Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:003; +

Pr[class (2; 2)] ≈ 0:938; +

Right column is sign of aS;T .
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How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:001;−
Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:003; +

Pr[class (2; 2)] ≈ 0:938; +

Right column is sign of aS;T .

13

Data structures

Moving from D(S) to D(T ):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.
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How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:001;−
Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:003; +

Pr[class (2; 2)] ≈ 0:938; +

Right column is sign of aS;T .

13

Data structures

Moving from D(S) to D(T ):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.
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How the quantum walk works:

Start from uniform superposition.

Repeat ≈0:6 · 2n=r times:

Negate aS;T
if S contains collision.

Repeat ≈0:7 ·
√
r times:

For each T :

Diffuse aS;T across all S.

For each S:

Diffuse aS;T across all T .

Now high probability

that T contains collision.

Cost r + 2n=
√
r . Optimize: 22n=3.

12

Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:001;−
Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:003; +

Pr[class (2; 2)] ≈ 0:938; +

Right column is sign of aS;T .

13

Data structures

Moving from D(S) to D(T ):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.
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Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:001;−
Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:003; +

Pr[class (2; 2)] ≈ 0:938; +

Right column is sign of aS;T .

13

Data structures

Moving from D(S) to D(T ):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.
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e.g. n = 15, r = 1024, after
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Data structures
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But usually f is not so slow.

Store set S and multiset f (S)

in, e.g., hash tables?
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Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +
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Right column is sign of aS;T .
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Data structures
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But usually f is not so slow.

Store set S and multiset f (S)

in, e.g., hash tables?

Minor problem: time to hash S

is huge for some sets S.
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Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:001;−
Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:003; +

Pr[class (2; 2)] ≈ 0:938; +

Right column is sign of aS;T .

13

Data structures

Moving from D(S) to D(T ):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

Store set S and multiset f (S)

in, e.g., hash tables?

Minor problem: time to hash S

is huge for some sets S.

Fix: randomize hash function

(1979 Carter–Wegman),

and specify big enough time for

whole algorithm to be reliable.
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Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:

Pr[class (0; 0)] ≈ 0:011;−
Pr[class (0; 1)] ≈ 0:007; +

Pr[class (1; 0)] ≈ 0:007;−
Pr[class (1; 1)] ≈ 0:001;−
Pr[class (1; 2)] ≈ 0:034; +

Pr[class (2; 1)] ≈ 0:003; +

Pr[class (2; 2)] ≈ 0:938; +

Right column is sign of aS;T .

13

Data structures

Moving from D(S) to D(T ):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

Store set S and multiset f (S)

in, e.g., hash tables?

Minor problem: time to hash S

is huge for some sets S.

Fix: randomize hash function

(1979 Carter–Wegman),

and specify big enough time for

whole algorithm to be reliable.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).
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Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:
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Data structures

Moving from D(S) to D(T ):
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But usually f is not so slow.

Store set S and multiset f (S)

in, e.g., hash tables?

Minor problem: time to hash S

is huge for some sets S.

Fix: randomize hash function

(1979 Carter–Wegman),

and specify big enough time for

whole algorithm to be reliable.

14

Major problem: hash table
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S. Algorithm fails horribly.

Need history-independent D(S).
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Classify (S; T ) according to

(#(S ∩ {p; q});#(T ∩ {p; q}));

reduce a to low-dim vector.

Analyze evolution of this vector.

e.g. n = 15, r = 1024, after

27 negations and 1242 diffusions:
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But usually f is not so slow.

Store set S and multiset f (S)
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Minor problem: time to hash S

is huge for some sets S.

Fix: randomize hash function

(1979 Carter–Wegman),

and specify big enough time for

whole algorithm to be reliable.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).
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Data structures

Moving from D(S) to D(T ):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.
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Data structures
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14
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S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination

of a hash table and a skip list”.

Several pages of analysis.
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Data structures

Moving from D(S) to D(T ):

dominated by O(1) evaluations

of f if f is extremely slow.

But usually f is not so slow.

Store set S and multiset f (S)

in, e.g., hash tables?

Minor problem: time to hash S

is huge for some sets S.

Fix: randomize hash function

(1979 Carter–Wegman),

and specify big enough time for

whole algorithm to be reliable.

14

Major problem: hash table

depends on history, not just on

S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination

of a hash table and a skip list”.

Several pages of analysis.

2013 Bernstein–Jeffery–Lange–

Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0; x) ∈ S}
if nonempty. Right subtree stores

{x : (1; x) ∈ S} if nonempty.
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Data structures

Moving from D(S) to D(T ):
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But usually f is not so slow.
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15

Caveats

The 22n=3 analysis assumes

cheap random access to memory.

Justified by simplicity, not realism.
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Measurement produces
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29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).
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(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).
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(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).
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e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces
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010 = 2 with probability 0;
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100 = 4 with probability 0;

101 = 5 with probability 1;
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NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).



28

e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.
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e.g.: Say 3 qubits have state

(0; 0; 0; 0; 0; 1; 0; 0).
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001 = 1 with probability 0;
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(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
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(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.
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(0; 0; 0; 0; 0; 1; 0; 0).
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000 = 0 with probability 0;

001 = 1 with probability 0;
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011 = 3 with probability 0;

100 = 4 with probability 0;
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NOT gates

NOT0 gate on 3 qubits:
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(4; 1; 3; 1; 2; 6; 5; 9).
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(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).
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(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101
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Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.



29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

30
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(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.



29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).

30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).
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NOT gates
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rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.
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Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).



29

NOT gates

NOT0 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(1; 3; 1; 4; 9; 5; 6; 2).

NOT0 gate on 4 qubits:

(3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3) 7→
(1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9).

NOT1 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(4; 1; 3; 1; 2; 6; 5; 9).

NOT2 gate on 3 qubits:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(5; 9; 2; 6; 3; 1; 4; 1).
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rr
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(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).



30
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(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
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(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).



30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).



30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. CNOT2;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).



30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011
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rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. CNOT2;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. CNOT0;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).



30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 1; 4; 5; 9; 6; 2).

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. CNOT2;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 9; 5; 6; 2).

e.g. CNOT0;2:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 9; 4; 6; 5; 1; 2; 1).

32

Toffoli gates

Also known as

controlled-controlled-NOT gates.

e.g. CCNOT2;1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
(3; 1; 4; 1; 5; 9; 6; 2).



30

state measurement

(1; 0; 0; 0; 0; 0; 0; 0) 000 ll
rr

(0; 1; 0; 0; 0; 0; 0; 0) 001

(0; 0; 1; 0; 0; 0; 0; 0) 010 ll
rr

(0; 0; 0; 1; 0; 0; 0; 0) 011

(0; 0; 0; 0; 1; 0; 0; 0) 100 ll
rr

(0; 0; 0; 0; 0; 1; 0; 0) 101

(0; 0; 0; 0; 0; 0; 1; 0) 110 ll
rr

(0; 0; 0; 0; 0; 0; 0; 1) 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

31

Controlled-NOT gates

e.g. CNOT1;0:

(3; 1; 4; 1; 5; 9; 2; 6) 7→
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33

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.
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Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).
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Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).
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35

Simon’s algorithm

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:
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(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3
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FFFFFFF 2
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xxxxxxx
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35

Simon’s algorithm

Step 4. Hadamard2:

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe.
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Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).
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Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3
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35

Simon’s algorithm

Step 5. CNOT0;3:

1; 0; 1; 0; 1; 0; 1; 0;

0; 1; 0; 1; 0; 1; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.
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Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).
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Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3
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Simon’s algorithm

Step 5b. More shuffling:

1; 0; 0; 0; 1; 0; 0; 0;

0; 1; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 1; 0;

0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.
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Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).
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Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3
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FFFFFFF 4

xxxxxxx 1

xxxxxxx 5
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FFFFFFF 2

xxxxxxx 6
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35

Simon’s algorithm

Step 5c. More shuffling:

1; 0; 0; 0; 0; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

0; 0; 1; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 1:

Each column is a parallel universe

performing its own computations.
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Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).

3

4444 1






4

4444 1






5

4444 9






2

4444 6







4 2 5 3 14 −4 8 −4

Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3
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35

Simon’s algorithm

Step 5d. More shuffling:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 0;

0; 0; 0; 1; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.
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Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).
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Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3
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35

Simon’s algorithm

Step 5e. More shuffling:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.
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Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).
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Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3
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35

Simon’s algorithm

Step 5f. More shuffling:

0; 0; 0; 0; 0; 1; 0; 0;

1; 0; 0; 0; 0; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0:

Each column is a parallel universe

performing its own computations.
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Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).
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Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3
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Simon’s algorithm

Step 5g. More shuffling:

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1:

Each column is a parallel universe

performing its own computations.
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Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).
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Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3
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35

Simon’s algorithm

Step 5h. More shuffling:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

1; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.
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Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).
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Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3
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FFFFFFF 2
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35

Simon’s algorithm

Step 5i. More shuffling:

0; 0; 0; 0; 0; 0; 1; 0;

0; 0; 0; 1; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 1;

0; 0; 1; 0; 0; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

1; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.
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Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).
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Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3
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35

Simon’s algorithm

Step 5j. Final shuffling:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 1; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 0; 0; 0; 0; 1; 0; 0:

Each column is a parallel universe

performing its own computations.
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Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).
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Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3
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Simon’s algorithm

Step 5j. Final shuffling:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 1; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 0; 0; 0; 0; 1; 0; 0:

Each column is a parallel universe

performing its own computations.

Surprise: u and u ⊕ 101 match.
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Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).
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Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3
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35

Simon’s algorithm

Step 6. Hadamard0:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 1; 0; 0; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 1; 0; 0; 1; 1;

1; 1; 0; 0; 1; 1; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 0; 0; 1; 1; 0; 0:
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Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).
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Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).
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Simon’s algorithm

Step 7. Hadamard1:

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 1; 1; 1; 1; 1; 1;

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 1; 1; 1; 1; 1; 1:
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Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).
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Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3
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35

Simon’s algorithm

Step 8. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:
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Hadamard gates

Hadamard0:

(a; b) 7→ (a + b; a− b).
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Hadamard1:

(a; b; c; d) 7→
(a + c; b + d; a− c; b − d).

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6
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35

Simon’s algorithm

Step 8. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 9: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.


