Quantum walks

Daniel J. Bernstein
University of lllinois at Chicago

2
Examples of applications to crypto

Minimum asymptotic ops known,
assuming plausible heuristics:

Focusing on quantum walks
as an algorithm-design tool:
e.g. Grover's algorithm.

e.g. Ambainis’s algorithm.

Can also study quantum walks
on much more general graphs.

2008 Childs, 2009 Lovett—

Cooper—Everitt—Trevers—Kendon:

Can view, e.g., Shor’s algorithm

as quantum walk on Shor graph.

pre-g post-q |problem

1 0.5 cipher
0 p/2 McEliece
0.791...10.462...|MQ

0.290...(0.241 .. .|subset sum

“Pre-q” e: as n — oo, 2leto(l))n

simple non-quantum ops.

“Post-q” e: as n — oo, 2(eto(l))n
simple quantum ops.

“Cipher”: find n-bit cipher key.
0.5: 1996 Grover.

n walks

. Bernstein
ty of lllinois at Chicago

Examples of applications to crypto

Minimum asymptotic ops known,
assuming plausible heuristics:

r on quantum walks
rorithm-design tool:
ver's algorithm.
nainis’'s algorithm.

 study quantum walks

| more general graphs.
Ilds, 2009 Lovett—

Everitt—Trevers—Kendon:

v, e.g., Shor’s algorithm

‘um walk on Shor graph.

pre-g post-q |problem

1 0.5 cipher
0 p/2 McEliece
0.791...10.462...|MQ

0.290...10.241 .. .|subset sum

“Pre-q” e: as n — oo, 2leto(l))n

simple non-quantum ops.

“Post-q” e: as n — oo, 2leto(l))n
simple quantum ops.

“Cipher”: find n-bit cipher key.
0.5: 1996 Grover.

2

“McElie
length (|
dimensic
decode |

4
is at Chicago

Examples of applications to crypto

Minimum asymptotic ops known,
assuming plausible heuristics:

um walks
sign tool:
1thm.

yorithm.

antum walks
reral graphs.
Lovett—

evers—Kendon:

or's algorithm

on Shor graph.

pre-g post-q |problem

1 0.5 cipher
0 p/2 McEliece
0.791...10.462... | MQ

0.290...(0.241 .. .|subset sum

“Pre-q” e: as n — oo, 2leto(l))n

simple non-quantum ops.

“Post-q” e: as n — oo, 2(eto(l))n
simple quantum ops.

“Cipher”: find n-bit cipher key.
0.5: 1996 Grover.

2

"McEliece”: in lin
length (1 + o(1))
dimension (R + o
decode (1 — R + «

g0

Examples of applications to crypto

Minimum asymptotic ops known,
assuming plausible heuristics:

ks
1S.

ydon:

thm

aph.

pre-g post-q |problem

1 0.5 cipher
0 p/2 McEliece
0.791...10.462...|MQ

0.290...10.241 .. .|subset sum

“Pre-q” e: as n — oo, 2leto(l))n

simple non-quantum ops.

“Post-q” e: as n — oo, 2(eto(l))n
simple quantum ops.

“Cipher”: find n-bit cipher key.
0.5: 1996 Grover.

2

“McEliece”: in linear code ¢
length (1 + o(1))nlog, n ar
dimension (R + o(1))nlogs
decode (1 — R+ o(1))n errc

Examples of applications to crypto

Minimum asymptotic ops known,
assuming plausible heuristics:

pre-g post-q |problem

1 0.5 cipher

0 p/2 McEliece
0.791...10.462...|MQ
0.290...]0.241 .. .|subset sum

“Pre-q” e: as n — oo, 2leto(l))n

simple non-quantum ops.

“Post-q” e: as n — oo, 2(eto(l))n

simple quantum ops.

“Cipher”: find n-bit cipher key.

0.5: 1996 Grover.

2

“McEliece”: in linear code of

length (1 4+ o(1))nlogy n and
dimension (R 4 o(1))nlog, n,
decode (1 — R+ o(1))n errors.

Examples of applications to crypto

Minimum asymptotic ops known,
assuming plausible heuristics:

pre-g post-q |problem

1 0.5 cipher
0 p/2 McEliece
0.791...10.462... | MQ

0.290...(0.241 .. .|subset sum

“Pre-q” e: as n — oo, 2leto(l))n

simple non-quantum ops.

“Post-q” e: as n — oo, 2(eto(l))n

simple quantum ops.

“Cipher”: find n-bit cipher key.
0.5: 1996 Grover.

2

“McEliece”: in linear code of
length (1 4+ o(1))nlogy n and
dimension (R 4 o(1))nlog, n,
decode (1 — R+ o(1))n errors.
p = (1 R)logy(1/(1 — R))
1962 Prange.

Examples of applications to crypto

Minimum asymptotic ops known,
assuming plausible heuristics:

pre-g post-q |problem

1 0.5 cipher
0 p/2 McEliece
0.791...10.462... | MQ

0.290...(0.241 .. .|subset sum

“Pre-q” e: as n — oo, 2leto(l))n

simple non-quantum ops.

“Post-q” e: as n — oo, 2(eto(l))n
simple quantum ops.

“Cipher”: find n-bit cipher key.
0.5: 1996 Grover.

2

“McEliece”: in linear code of
length (1 4+ o(1))nlogy n and
dimension (R 4 o(1))nlog, n,
decode (1 — R+ o(1))n errors.
p = (1 R)logy(1/(1 — R))
1962 Prange.

p/2: 2009 Bernstein (via Grover).

Examples of applications to crypto

Minimum asymptotic ops known,
assuming plausible heuristics:

pre-g post-q |problem

1 0.5 cipher
0 p/2 McEliece
0.791...10.462... | MQ

0.290...(0.241 .. .|subset sum

“Pre-q” e: as n — oo, 2leto(l))n

simple non-quantum ops.

“Post-q” e: as n — oo, 2(eto(l))n
simple quantum ops.

“Cipher”: find n-bit cipher key.
0.5: 1996 Grover.

2

“McEliece”: in linear code of
length (1 4+ o(1))nlogy n and
dimension (R 4 o(1))nlog, n,
decode (1 — R+ o(1))n errors.
p = (1 R)logy(1/(1 — R))
1962 Prange.

p/2: 2009 Bernstein (via Grover).

"MQ": solve system of n deg-2
equations in n variables over F».

Examples of applications to crypto

Minimum asymptotic ops known,
assuming plausible heuristics:

pre-g post-q |problem

1 0.5 cipher
0 p/2 McEliece
0.791...10.462... | MQ

0.290...(0.241 .. .|subset sum

“Pre-q” e: as n — oo, 2leto(l))n

simple non-quantum ops.

“Post-q” e: as n — oo, 2(eto(l))n
simple quantum ops.

“Cipher”: find n-bit cipher key.
0.5: 1996 Grover.

2

“McEliece”: in linear code of
length (1 4+ o(1))nlogy n and
dimension (R 4 o(1))nlog, n,
decode (1 — R+ o(1))n errors.
p = (1 R)logy(1/(1 — R))
1962 Prange.

p/2: 2009 Bernstein (via Grover).

"MQ": solve system of n deg-2

equations in n variables over F».
0.791 (modulo calculation errors):
2004 Yang—Chen—Courtois.

Examples of applications to crypto

Minimum asymptotic ops known,
assuming plausible heuristics:

pre-g post-q |problem

1 0.5 cipher

0 p/2 McEliece
0.791...10.462...|MQ
0.290...]0.241 .. .|subset sum

“Pre-q” e: as n — oo, 2leto(l))n

simple non-quantum ops.

“Post-q” e: as n — oo, 2(eto(l))n
simple quantum ops.

“Cipher”: find n-bit cipher key.
0.5: 1996 Grover.

2

“McEliece”: in linear code of
length (1 4+ o(1))nlogy n and
dimension (R 4 o(1))nlog, n,
decode (1 — R+ o(1))n errors.
p = (1 R)logy(1/(1 — R))
1962 Prange.

p/2: 2009 Bernstein (via Grover).

"MQ": solve system of n deg-2
equations in n variables over F».
0.791 (modulo calculation errors):
2004 Yang—Chen—Courtois.
0.462: 2017 Bernstein—Yang
(via Grover), independently 2017
Faugere—Horan—Kahrobaei—
Kaplan—Kasheti—Perret.

s of applications to crypto

n asymptotic ops known,
o plausible heuristics:

post-q |problem

0.5 cipher
p/2 McEliece
10.462 ... \MQ

.10.241 .. .|subset sum

e: as n — oo, 2leto(l))n

on-quantum ops.

e as n — oo, 2leto(l))n

uantum ops.

"+ find n-bit cipher key.
6 Grover.

2

“McEliece”: in linear code of
length (1 4+ o(1))nlog, n and
dimension (R 4 o(1))nlog, n,
decode (1 — R + o(1))n errors.
p= (1 R)logy(1/(1 — R))
1962 Prange.

p/2: 2009 Bernstein (via Grover).

"MQ": solve system of n deg-2
equations in n variables over F».

0.791 (modulo calculation errors):

2004 Yang—Chen—Courtois.
0.462: 2017 Bernstein—Yang
(via Grover), independently 2017
Faugere—Horan—Kahrobaei—
Kaplan—Kashefi—Perret.

“Subset
find S C

X1, X2, ..

and ZIG

“ations to crypto

tic ops known,
 heuristics:

problem

cipher
McEliece

I MQ

. |subset sum

, o0, 2(e+o(1))n
m ops.

L 00, 2leto(1))n
PS.

it cipher key.

2

“McEliece”: in linear code of
length (1 4 o(1))nlog, n and
dimension (R 4 o(1))nlog, n,
decode (1 — R+ o(1))n errors.
p = (1 R)logy(1/(1 - R))
1962 Prange.

p/2: 2009 Bernstein (via Grover).

"MQ": solve system of n deg-2
equations in n variables over F».

0.791 (modulo calculation errors):

2004 Yang—Chen—Courtois.
0.462: 2017 Bernstein—Yang
(via Grover), independently 2017
Faugere—Horan—Kahrobaei—
Kaplan—Kashefi—Perret.

“Subset sum” (“h
find S C{1,2,...

crypto

'own,

ey.

“McEliece”: in linear code of
length (1 4+ o(1))nlog, n and
dimension (R 4 o(1))nlog, n,
decode (1 — R+ o(1))n errors.
p= (1 R)logy(1/(1 — R))
1962 Prange.

p/2: 2009 Bernstein (via Grover).

"MQ": solve system of n deg-2
equations in n variables over F».

0.791 (modulo calculation errors):

2004 Yang—Chen—Courtols.
0.462: 2017 Bernstein—Yang
(via Grover), independently 2017
Faugere—Horan—Kahrobaei—
Kaplan—Kashefi—Perret.

“Subset sum” (“hard” case)

find $ C{1,2,..., n} given

“McEliece”: in linear code of
length (1 4+ o(1))nlog, n and
dimension (R 4 o(1))nlog, n,
decode (1 — R+ o(1))n errors.

p = (1 R)logy(1/(1 - R))
1962 Prange.

p/2: 2009 Bernstein (via Grover).

"MQ": solve system of n deg-2
equations in n variables over F».
0.791 (modulo calculation errors):
2004 Yang—Chen—Courtois.

0.462: 2017 Bernstein—Yang

(via Grover), independently 2017
Faugere—Horan—Kahrobaei—
Kaplan—Kashefi—Perret.

“Subset sum” (“hard” case):
find § C{1,2,..., n} given

“McEliece”: in linear code of
length (1 4+ o(1))nlog, n and
dimension (R 4 o(1))nlog, n,
decode (1 — R+ o(1))n errors.

p = (1 R)logy(1/(1 - R))
1962 Prange.

p/2: 2009 Bernstein (via Grover).

"MQ": solve system of n deg-2
equations in n variables over F».
0.791 (modulo calculation errors):
2004 Yang—Chen—Courtois.

0.462: 2017 Bernstein—Yang

(via Grover), independently 2017
Faugere—Horan—Kahrobaei—
Kaplan—Kashefi—Perret.

“Subset sum” (“hard” case):
find § C{1,2,..., n} given

“McEliece”: in linear code of
length (1 4+ o(1))nlog, n and
dimension (R 4 o(1))nlog, n,
decode (1 — R+ o(1))n errors.

p = (1 R)logy(1/(1 - R))
1962 Prange.

p/2: 2009 Bernstein (via Grover).

"MQ": solve system of n deg-2
equations in n variables over F».
0.791 (modulo calculation errors):
2004 Yang—Chen—Courtois.

0.462: 2017 Bernstein—Yang

(via Grover), independently 2017
Faugere—Horan—Kahrobaei—
Kaplan—Kashefi—Perret.

“Subset sum” (“hard” case):
find § C{1,2,..., n} given

0.337: 2010 Howgrave-Graham-—
Joux. Claimed 0.311: error
discovered by May—Meurer.

“McEliece”: in linear code of
length (1 4+ o(1))nlog, n and
dimension (R 4 o(1))nlog, n,
decode (1 — R+ o(1))n errors.
p = (1 R)logy(1/(1 - R))
1962 Prange.

p/2: 2009 Bernstein (via Grover).

"MQ": solve system of n deg-2
equations in n variables over F».

0.791 (modulo calculation errors):

2004 Yang—Chen—Courtois.
0.462: 2017 Bernstein—Yang
(via Grover), independently 2017
Faugere—Horan—Kahrobaei—
Kaplan—Kashefi—Perret.

“Subset sum” (“hard” case):
find § C{1,2,..., n} given

0.337: 2010 Howgrave-Graham-—
Joux. Claimed 0.311: error
discovered by May—Meurer.

0.291: 2011 Becker—Coron—Joux.

“McEliece”: in linear code of
length (1 4+ o(1))nlog, n and
dimension (R 4 o(1))nlog, n,
decode (1 — R+ o(1))n errors.
p = (1 R)logy(1/(1 - R))
1962 Prange.

p/2: 2009 Bernstein (via Grover).

"MQ": solve system of n deg-2
equations in n variables over F».

0.791 (modulo calculation errors):

2004 Yang—Chen—Courtois.
0.462: 2017 Bernstein—Yang
(via Grover), independently 2017
Faugere—Horan—Kahrobaei—
Kaplan—Kashefi—Perret.

“Subset sum” (“hard” case):
find § C{1,2,..., n} given

0.337: 2010 Howgrave-Graham-—
Joux. Claimed 0.311: error
discovered by May—Meurer.

0.291: 2011 Becker—Coron—Joux.

0.241: 2013 Bernstein—Jeffery—
Lange—Meurer, using HGJ and
quantum walks (not just Grover).

ce”: in linear code of
l + o(1))nlogy, n and
n (R 4+ o(1))nlog, n,
1— R+ o(1))n errors.
- R)logy(1/(1 - R))
ange.

)9 Bernstein (via Grover).

olve system of n deg-2
s In n variables over F».

1odulo calculation errors):

ng—Chen—Courtois.

017 Bernstein—Yang
ver), independently 2017
-Horan—Kahrobaei—
Kashefi—Perret.

“Subset sum” (“hard” case):
find $ C{1,2,..., n} given

0.337: 2010 Howgrave-Graham-—
Joux. Claimed 0.311: error

discovered by May—Meurer.
0.291: 2011 Becker—Coron—Joux.

0.241: 2013 Bernstein—Jeffery—
Lange—Meurer, using HGJ and
quantum walks (not just Grover).

Grover's

Assume:
has f(s)

Traditiol
compute
hope to

Success
until 1

ear code of
nlog, n and

(1))nlogy n,
(1)) n errors.

/(1 —R)):

in (via Grover).

m of n deg-2
lables over F».
culation errors):
Courtoils.
tein—Yang
endently 2017
ahrobael—

erret.

“Subset sum” (“hard” case):
find § C{1,2,..., n} given

0.337: 2010 Howgrave-Graham-—

Joux. Claimed 0.311: error
discovered by May—Meurer.

0.291: 2011 Becker—Coron—Joux.

0.241: 2013 Bernstein—Jeffery—
Lange—Meurer, using HGJ and
quantum walks (not just Grover).

Grover's algorithm

Assume: unique s
has f(s) = 0.

Traditional algorit
compute f for ma
hope to find outpt

Success probabilit
until #inputs appt

“Subset sum” (“hard” case):
find $ C{1,2,..., n} given

0.337: 2010 Howgrave-Graham-—
Joux. Claimed 0.311: error

discovered by May—Meurer.
0.291: 2011 Becker—Coron—Joux.

0.241: 2013 Bernstein—Jeffery—
Lange—Meurer, using HGJ and
quantum walks (not just Grover).

Grover's algorithm

Assume: un

ique s € {0,1}"

has f(s) = 0.

Traditional algorithm to finc

compute f
hope to finc

o~
=

or many Inputs,
output 0.

Success pro

nability 1s very Ic

until #inputs approaches 2"

“Subset sum” (“hard” case): Grover's algorithm
find § C{1,2,..., n} given

Assume: unique s € {0, 1}"

’ has f(s) = 0.
and ZIES X
Traditional algorithm to find s:
0.5: easy .
compute f for many inputs,
0.337: 2010 Howgrave-Graham-— hope to find output O.
Joux. Claimed 0.311; error Success probability is very low
discovered by May—Meurer. until #inputs approaches 2",

0.291: 2011 Becker—Coron—Joux.

0.241: 2013 Bernstein—Jeffery—
Lange—Meurer, using HGJ and
quantum walks (not just Grover).

“Subset sum” (“hard” case): Grover's algorithm
find § C{1,2,..., n} given

Assume: unique s € {0, 1}"

’ has f(s) = 0.

and ZIES X

Traditional algorithm to find s:
0.5: easy .

compute f for many inputs,
0.337: 2010 Howgrave-Graham-— hope to find output O.
Joux. Claimed 0.311; error Success probability is very low
discovered by May—Meurer. until #inputs approaches 2",
0.291: 2011 Becker—Coron—Joux. Grover's algorithm takes only 2n/2

0.241: 2013 Bernstein—Jeffery— reversible computations of f.

Lange—Meurer, using HGJ and

Typically: reversibility overhead

. Is small enough that this easll
quantum walks (not just Grover). 5 Y

wins for all sufficiently large n.

sum” (“hard” case): Grover's algorithm Start frc
{1,2,..., n} given
. xp€40,1,...,2" -1}

Assume: unique s € {0, 1}" s OveEr g

has f(s) = 0.
=G Xi-
Traditional algorithm to find s:
Y compute f for many inputs,
010 Howgrave-Graham— hope to find output O.
laimed 0.311; error Success probability is very low
ed by May—Meurer. until #inputs approaches 2",
011 Becker—Coron—Joux. Grover's algorithm takes only 2n/2

013 Bernstein—Jeffery— reversible computations of f.

fleurer, using HGJ and Typically: reversibility overhead

. Is small enough that this easil
1 walks (not just Grover). & Y

wins for all sufficiently large n.

ard” case):
., n} given
1,20 — 1)

rave-Graham-—
11: error
—Meurer.

s r—Coron—Joux.

tein—Jeffery—
ng HGJ and
ot just Grover).

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output O.

Success probability is very low

until #inputs approaches 2",

Grover's algorithm takes only on/2

reversi
Typica

ole computations of f.

ly: reversibility overhead

Is small enough that this easily

wins for all sufficiently large n.

Start from uniforn
a over g € {0,1}"

am—

Joux.

ry—

over).

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only 2n/2
reversible computations of f.
Typically: reversibility overhead

Is small enough that this easily
wins for all sufficiently large n.

Start from uniform superpos
aover g €{0,1}" ag =2

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output O.

Success pro

nability 1s very low

until #inputs approaches 2",

Grover's algorithm takes only on/2

reversible computations of f.

Typically: reversibility overhead

Is small enough that this easily

wins for all sufficiently large n.

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Grover's algorithm Start from uniform superposition
aover g €40,1}": ag = 2—n/2

Assume: unique s € {0, 1}"
has f(s) = 0. Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.

Typically: reversibility overhead
Is small enough that this easily
wins for all sufficiently large n.

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output O.

Success probability is very low

until #inputs approaches 2",

Grover's algorithm takes only on/2

reversi
Typica

ole computations of f.

ly: reversibility overhead

Is small enough that this easily

wins for all sufficiently large n.

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output O.

Success probability is very low

until #inputs approaches 2",

Grover's algorithm takes only on/2

reversi
Typica

ole computations of f.

ly: reversibility overhead

Is small enough that this easily

wins for all sufficiently large n.

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output O.

Success probability is very low

until #inputs approaches 2",

Grover's algorithm takes only on/2

reversi
Typica

ole computations of f.

ly: reversibility overhead

Is small enough that this easily

wins for all sufficiently large n.

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

“algorithm

unique s € {0, 1}"
= 0.

1al algorithm to find s:
 f for many inputs,
find output O.

probability is very low
1puts approaches 2.

algorithm takes only 2n/2
e computations of f.

/. reversibility overhead
enough that this easily

all sufficiently large n.

Start from uniform superposition
aover g €40,1}": ag = 2-n/2

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normali;
for an e
after O s

1.0—

-1.0—

|_ Start from uniform superposition Normalized graph
c {0, 1} aover g €40,1}": ag = 2—n/2. for an example wif
Step 1: Set a < b where after O steps:
hm to find s: bg = —aq if f(q) =0, -
. by = aq otherwise. '
Ny INputs, o _
t0 This is fast. 0.5
/ 1S very low Step 2: “Grover diffusion”. '
-0aches 2" Negate a around Its average. 00

takes only n/2 This is also fast.

itions of f. Repeat Step 1 4+ Step 2 05
ility overhead about 0.58 - 2"/2 times.
at this easily Measure the n qubits. 10!

ntly large n. With high probability this finds s.

| s:

W

Start from uniform superposition
aover g €40,1}": ag = 2-n/2

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — a,

for an example with n = 12

after O steps:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12

after O steps:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after Step 1:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after Step 1 + Step 2:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after Step 1 + Step 2 + Step 1:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 2 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 3 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 4 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 5 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 6 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 7 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 8 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 9 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 10 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 11 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 12 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 13 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 14 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 15 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 16 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 17 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 18 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 19 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 20 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 25 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 30 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition Normalized graph of g — aq
aover g €40,1}": ag = 2—n/2 for an example with n =12

Step 1: Set a < b where after 35 x (Step 1+ Step 2):

by = —aq If f(q) =0, 1.0
by = aq otherwise. '
This is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '
This is also fast. | |

Repeat Step 1 + Step 2 05
about 0.58 - 2/2 times. |

Measure the n qubits. 10!

With high probability this finds s.
Good moment to stop, measure.

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 40 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition Normalized graph of g — aq
aover g €40,1}": ag = 2—n/2 for an example with n =12

Step 1: Set a <— b where after 45 x (Step 1 + Step 2):

by = —aq If f(q) =0, 1.0
by = aq otherwise. '
This is fast. 05

Step 2: “Grover diffusion” .

Negate a around its average. 0.0
This is also fast. |

Repeat Step 1 + Step 2 05
about 0.58 - 2/2 times.

Measure the n qubits. 10!
With high probability this finds s.

Start from uniform superposition Normalized graph of g — aq
aover g €40,1}": ag = 2—n/2 for an example with n =12

Step 1: Set a < b where after 50 x (Step 1+ Step 2):

by = —aq If f(q) =0, 1.0
by = aq otherwise. '
This is fast. 05

Step 2: “Grover diffusion” .

Negate a around its average. 0.0/
This is also fast. |

Repeat Step 1 + Step 2 05
about 0.58 - 2/2 times.

Measure the n qubits. 10!

With high probability this finds s. o | _
Traditional stopping point.

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 60 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 70 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 80 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq

for an example with n = 12
after 90 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
a over g € {0,1}": dg = 2—n/2.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2/2 times.

Measure the n qubits.
With high probability this finds s.

Normalized graph of g — aq
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.5+

0.0 b o

-0.5+

-1.0

Very bad stopping point.

6 7
m uniform superposition Normalized graph of g — aq g — aqg
€{0,1}": ag = 2—n/2, for an example with n = 12 by a vec
Set 2 < b where after 100 x (Step 1 + Step 2): (\]/-VIth fl:
q if f(q) —0 1.0_ (2) dgq f(
otherwise. | (2) aq f
ast. 05 i
“Grover diffusion” .
3 around Its average. 00 e i
lso fast. | |
>tep 1 + Step 2 051 |
58 - 2M/2 times. | |
the n qubits. 10!
rh probability this finds s. | |

Very bad stopping point.

1 superposition Normalized graph of g — ag g — aq Is complet

L dg = 2—n/2 for an example with n = 12 by a vector of two

) where after 100 x (Step 1 + Step 2): (with fixed multip

_ 0 1.0 (1) ag for roots g;

| (2) ag for non-roo

0.5)

iffusion” .

ts average. 00 e |

Step 2 05 ;

Imes.

ItS. 10!

lity this finds s. | |
Very bad stopping point.

ition
n/2

1ds s.

Normalized graph of g — aq
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-1.0

Very bad stopping point.

g — aq Is completely descril
by a vector of two numbers
(with fixed multiplicities):
(1) ag for roots g;

(2) ag for non-roots q.

Normalized graph of g — ag g — aq Is completely described
for an example with n = 12 by a vector of two numbers
after 100 x (Step 1 + Step 2): (with fixed multiplicities):

10 (1) ag for roots g;

| |1 (2) aq for non-roots gq.

0.5+ -

00 e il

05 il

~1.0!

Very bad stopping point.

Normalized graph of g — ag g — aq Is completely described
for an example with n = 12 by a vector of two numbers
after 100 x (Step 1 + Step 2): (with fixed multiplicities):

10 (1) ag for roots g;

2) ag for non-roots q.
q

05| 1 Step 1 + Step 2
|| act linearly on this vector.

0.0 b o |

-0.5+ -

-1.0

Very bad stopping point.

Normalized graph of g — ag
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-0.5+

-1.0

Very bad stopping point.

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(m/4)2"/2 iterations.

zed graph of g — aq
cample with n = 12
) X (Step 1 + Step 2):

1 stopping point.

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map

to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after %(7'('/4)2”/2 iterations.

Ambaini

Unique-c
Say f h:
exactly «

e, pF#£

Problem

of g — aq
th n=12
1 4 Step 2):

point.

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(m/4)2"/2 iterations.

Ambalinis’s algorit!

Unique-collision-fii
Say f has n-bit in
exactly one collisic

e p#aq, F(p) =
Problem: find this

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map

to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after %(7'('/4)2”/2 iterations.

Ambainis’'s algorithm

Unique-collision-finding prok
Say f has n-bit inputs,
exactly one collision {p, q}:

e, p#q, f(p) = F(q)
Problem: find this collision.

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(m/4)2"/2 iterations.

Ambainis’'s algorithm

Unique-collision-finding problem:
Say f has n-bit inputs,
exactly one collision {p, q}:

e, p#q, f(p) = F(q)
Problem: find this collision.

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(m/4)2"/2 iterations.

Ambainis’'s algorithm

Unique-collision-finding problem:
Say f has n-bit inputs,
exactly one collision {p, q}:

e, p#q, f(p) = F(q)
Problem: find this collision.

Cost 2. Define S as
the set of n-bit strings.

Compute f(S), sort.

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(m/4)2"/2 iterations.

Ambainis’'s algorithm

Unique-collision-finding problem:
Say f has n-bit inputs,
exactly one collision {p, q}:

e, p#q, f(p) = F(q)
Problem: find this collision.

Cost 2. Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability ~(r/2")?:
Choose a set S of size r.
Compute f(S), sort.

Is completely described
tor of two numbers

ed multiplicities):

I roots q;

DI NON-roots q.

- Step 2
rly on this vector.

ympute eigenvalues
ers of this linear map

stand evolution

of Grover's algorithm.
ability I1s =1

7 /4)2"/2 iterations.

Ambainis’'s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,
exactly one collision {p, q}:

e, p#q, f(p) = F(q)
Problem: find this collision.

Cost 2™ Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability ~(r/2")?:
Choose a set S of size r.
Compute f(S), sort.

Data str
the gene

the set .
the num

ely described
numbers

licities):

ts q.

, vector.

renvalues

- linear map
lution

s algorithm.
-1
iterations.

Ambainis’'s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,
exactly one collision {p, q}:

e p#q. f(p) = f(q)
Problem: find this collision.

Cost 2. Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability ~(r/2")?:
Choose a set S of size r.
Compute f(S), sort.

Data structure D(
the generalized co

the set S: the mul
the number of coll

yed

Ambainis’'s algorithm

Unique-collision-finding problem:
Say f has n-bit inputs,
exactly one collision {p, q}:

e, p#q, f(p) = F(q)
Problem: find this collision.

Cost 2: Define S as

the set of n-bit strings.
Compute f(S), sort.

Generalize to cost r,

success probability ~(r/2")?:
Choose a set S of size r.
Compute f(S), sort.

Data structure D(S) captur
the generalized computation
the set S; the multiset (S)
the number of collisions in ¢

Ambainis’'s algorithm

Unique-collision-finding problem:
Say f has n-bit inputs,
exactly one collision {p, q}:

e, p#q, f(p) = F(q)
Problem: find this collision.

Cost 2: Define S as

the set of n-bit strings.
Compute f(S), sort.

Generalize to cost r,

success probability ~(r/2")?:
Choose a set S of size r.
Compute f(S), sort.

Data structure D(S) capturing
the generalized computation:
the set S; the multiset (S);
the number of collisions in S.

10

Ambainis’'s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,
exactly one collision {p, q}:

e, p#q, f(p) = F(q)
Problem: find this collision.

Cost 2. Define S as
the set of n-bit strings.

Compute f(S), sort.

Generalize to cost r,

success probability ~(r/2")?:
Choose a set S of size r.
Compute f(S), sort.

10
Data structure D(S) capturing

the generalized computation:
the set S; the multiset (S);
the number of collisions in S.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:
HS =H#T =r, #(SNT) =r—1.

Ambainis’'s algorithm

Unique-collision-finding problem:

Say f has n-bit inputs,
exactly one collision {p, q}:

e, p#q, f(p) = F(q)
Problem: find this collision.

Cost 2: Define S as

the set of n-bit strings.
Compute f(S), sort.

Generalize to cost r,

success probability ~(r/2")?:
Choose a set S of size r.
Compute f(S), sort.

10
Data structure D(S) capturing

the generalized computation:
the set S; the multiset (S);
the number of collisions in S.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:
HS =H#T =r, #(SNT) =r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland—Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T.
By a quantum walk

find S containing a collision.

s's algorithm

ollision-finding problem:

s n-bit Inputs,
one collision {p, g}:

q, f(p) = f(q).
- find this collision.

Define S as
f n-bit strings.
e (S), sort.

ze to cost r,
probability ~(r/2")?:
a set S of size r.

e (S), sort.

Data structure D(S) capturing
the generalized computation:
the set S; the multiset (S);
the number of collisions in S.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:

HS=HT =r, #S5NT)=r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland—Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T.
By a quantum walk

find S containing a collision.

10

How the

Start frc
Repeat
Negat

if S
Repes
For

[

For
1

Now hig
that T ¢
Cost r

hm

ding problem:

DUtS,

n {p, q}:
- 1(q).
- collision.

as
INgs.
rt.

r,
~(r/2M)?:
Size r.

rt.

Data structure D(S) capturing
the generalized computation:
the set S; the multiset (S);
the number of collisions in S.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:

HS=H#T =r, #5NT)=r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland—Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T.
By a quantum walk

find S containing a collision.

10

How the quantum

Start from uniforn
Repeat ~0.6 - 2"/
Negate ag T

if S contains

Repeat ~0.7 - 4,
For each T:

Diffuse ag -

For each S:
Diffuse as -

Now high probabil
that T contains cc
Cost r +2"/4/r.

em:

Data structure D(S) capturing
the generalized computation:
the set S; the multiset (S);
the number of collisions in S.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:

HS=HT =r, #5NT)=r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland—Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T.
By a quantum walk

find S containing a collision.

10

How the quantum walk worl

Start from uniform superpos
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 7 across a
For each S:

Diffuse ag 1 across a

Now high probability
that T contains collision.
Cost r +2"/,/r. Optimize:

Data structure D(S) capturing
the generalized computation:
the set S; the multiset (S);
the number of collisions in S.

Very efficient to move from D(S)
to D(T) if T is an adjacent set:

HS=H#HT =r, #(SNT)=r—1.

2003 Ambainis, simplified 2007
Magniez—Nayak—Roland-Santha:
Create superposition of states
(D(S), D(T)) with adjacent S, T.
By a quantum walk

find S containing a collision.

10

11
How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:

Diffuse ag 1 across all S.
For each S:

Diffuse ag 7 across all T.

Now high probability
that T contains collision.
Cost r +2"/,/r. Optimize: 227/3.

ucture D(S) capturing
ralized computation:
5; the multiset (S);
ber of collisions in S.

cient to move from D(S)
if T is an adjacent set:

T =r, #(S5NT)=r—1.

1bainis, simplified 2007
—Nayak—Roland—Santha:
uperposition of states
J)(T)) with adjacent S, T.
antum walk

ontaining a collision.

10

How the quantum walk works:

Start from uniform superposition.

Repeat ~0.6 - 2" /r times:
Negate ag T

if S contains collision.
Repeat ~0.7 - \/r times:

For each T:

Diffuse ag 1 across all S.

For each S:

Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 22/3.

11

Classify
(#(SN
reduce &
Analyze

e.g. n—=
0 negati

Pr|
Pr
Pr
Pr
Pr
Pr
Pr

dSS
dSS

dSS

dSS

dSS
dSS

dSS

0 0O 0O 0O 0o o 0

Right cc

S) capturing
mputation:
tiset £(S);
isions in S.

ove from D(S)
“adjacent set:

(SNT)=r—-1.

mplified 2007
oland—Santha:
on of states

) adjacent S, T.
Kk

a collision.

10

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.
For each §S:

Diffuse ag 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

Classify (S, T) acc
(#(SN{p. a}) #

reduce a to low-di

Analyze evolution

eg. n=15 r=1

0 negations and 0

Pr|

Pr
Pr
Pr
Pr
Pr
Pr

0 0O 0O o o o 0

~

Right column is si

ng

D(S)

- set:

)07
1tha:

S5, T.

10

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.
For each S:

Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

Classify (S, T) according to
(#(S NP q}), #(T N{p. g

reduce a to low-dim vector.
Analyze evolution of this ve

e.g. n =15, r = 1024, after
0 negations and O diffusions

Pr|class (0, 0)] ~ 0.938;

Prlclass (0, 1)] =~ 0.000; +
Pr[class (1,0)] ~ 0.000; +
Prlclass (1, 1)] =~ 0.060; +
Prlclass (1, 2)] =~ 0.000; +
Pr[class (2,1)] ~ 0.000; +
Pr[class (2,2)] ~ 0.001; +

Right column is sign of ag 1

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
0 negations and 0 diffusions:

Pr|class (0, 0)] ~ 0.938;

Pr[class (0, 1)] ~ 0.000; +
Pr|class (1,0)] ~ 0.000; +
Prlclass (1, 1)] ~ 0.060; +
Pr[class (1, 2)] ~ 0.000; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.001; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.
For each §S:

Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
1 negation and 46 diffusions:

Pr|class (0, 0)] ~ 0.935;

Pr[class (0, 1)] ~ 0.000; +
Pr|class (1,0)] ~ 0.000; —
Prlclass (1,1)] ~ 0.057; +
Pr[class (1, 2)] ~ 0.000; +
Pr|class (2,1)] ~ 0.000; —
Pr|class (2,2)] ~ 0.008; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
2 negations and 92 diffusions:

Pr|class (0, 0)] ~ 0.918;

Prlclass (0, 1)] ~ 0.001; +
Pr|class (1,0)] ~ 0.000; —
Prlclass (1,1)] ~ 0.059; +
Prlclass (1,2)] ~ 0.001; +
Pr|class (2,1)] ~ 0.000; —
Prlclass (2,2)] ~ 0.022; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
3 negations and 138 diffusions:

Pr|class (0, 0)] ~ 0.897;

Prlclass (0, 1)] ~ 0.001; +
Pr|class (1,0)] ~ 0.000; —
Prlclass (1,1)] ~ 0.058; +
Prlclass (1,2)] ~ 0.002; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.042; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
4 negations and 184 diffusions:

Pr|class (0, 0)] ~ 0.873;

Prlclass (0, 1)] ~ 0.001; +
Pr|class (1,0)] ~ 0.000; —
Prclass (1,1)] ~ 0.054; +
Prlclass (1,2)] ~ 0.002; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.070; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
5 negations and 230 diffusions:

Pr|class (0, 0)] ~ 0.838;

Prlclass (0, 1)] ~ 0.001; +
Pr[class (1,0)] ~ 0.001; —
Prclass (1,1)] ~ 0.054; +
Prlclass (1,2)] ~ 0.003; +
Pr|class (2,1)] ~ 0.000; +
Prclass (2,2)] ~ 0.104; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
6 negations and 276 diffusions:

Pr|class (0, 0)] ~ 0.800;

Prlclass (0, 1)] ~ 0.001; +
Pr[class (1,0)] ~ 0.001; —
Prlclass (1,1)] ~ 0.051; +
Pr[class (1, 2)] ~ 0.006; +
Pr|class (2,1)] ~ 0.000; +
Prclass (2,2)] ~ 0.141; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
[negations and 322 diffusions:

Pr|class (0, 0)] ~ 0.758;

Prlclass (0, 1)] ~ 0.002; +
Pr[class (1,0)] ~ 0.001; —
Pr[class (1,1)] ~ 0.047; +
Prlclass (1,2)] ~ 0.007; +
Pr|class (2,1)] ~ 0.000; +
Prclass (2,2)] ~ 0.184; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
8 negations and 368 diffusions:

Pr|class (0, 0)] ~ 0.708;

Prlclass (0, 1)] ~ 0.003; +
Pr[class (1,0)] ~ 0.001; —
Prlclass (1,1)] ~ 0.046; +
Prlclass (1,2)] ~ 0.007; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.234; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
O negations and 414 diffusions:

Pr|class (0, 0)] ~ 0.658;

Prlclass (0, 1)] ~ 0.003; +
Pr[class (1,0)] ~ 0.001; —
Prclass (1,1)] ~ 0.042; +
Prlclass (1,2)] ~ 0.009; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.287; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
10 negations and 460 diffusions:

Pr|class (0, 0)] ~ 0.606;

Prlclass (0, 1)] ~ 0.003; +
Prclass (1,0)] ~ 0.002; —
Prlclass (1,1)] ~ 0.037; +
Prlclass (1,2)] ~ 0.013; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.338; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
11 negations and 506 diffusions:

Pr|class (0, 0)] ~ 0.547;

Prlclass (0, 1)] ~ 0.004; +
Pr[class (1,0)] ~ 0.003; —
Prlclass (1,1)] ~ 0.036; +
Prlclass (1,2)] ~ 0.015; +
Prlclass (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.394; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
12 negations and 552 diffusions:

Pr|class (0, 0)] ~ 0.491;

Prlclass (0, 1)] ~ 0.004; +
Pr[class (1,0)] ~ 0.003; —
Prlclass (1,1)] ~ 0.032; +
Prlclass (1,2)] ~ 0.014; +
Prlclass (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.455; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
13 negations and 598 diffusions:

Pr|class (0, 0)] ~ 0.436;

Pr[class (0, 1)] =~ 0.005; +
Pr[class (1,0)] ~ 0.003; —
Prlclass (1,1)] ~ 0.026; +
Prlclass (1,2)] ~ 0.017; +
Pr|class (2,1)] ~ 0.000; +
Prlclass (2,2)] ~ 0.513; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
14 negations and 644 diffusions:

Pr|class (0, 0)] ~ 0.377;

Prlclass (0, 1)] ~ 0.006; +
Pr[class (1,0)] ~ 0.004; —
Prlclass (1,1)] ~ 0.025; +
Prlclass (1,2)] ~ 0.022; +
Prlclass (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.566; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
15 negations and 690 diffusions:

Pr|class (0, 0)] ~ 0.322;

Pr[class (0, 1)] =~ 0.005; +
Pr[class (1,0)] ~ 0.004; —
Prlclass (1,1)] ~ 0.021; +
Prlclass (1,2)] ~ 0.023; +
Prlclass (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.623; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
16 negations and 736 diffusions:

Pr|class (0, 0)] =~ 0.270;

Prlclass (0, 1)] ~ 0.006; +
Pr[class (1,0)] ~ 0.005; —
Prclass (1,1)] ~ 0.017; +
Prlclass (1,2)] ~ 0.022; +
Prlclass (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.680; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
17 negations and 782 diffusions:

Pr|class (0, 0)] ~ 0.218;

Prlclass (0, 1)] ~ 0.007; +
Pr[class (1,0)] ~ 0.005; —
Prlclass (1,1)] ~ 0.015; +
Prlclass (1,2)] ~ 0.024; +
Prlclass (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.730; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
18 negations and 828 diffusions:

Pr|class (0, 0)] ~ 0.172;

Prlclass (0, 1)] ~ 0.006; +
Pr[class (1,0)] ~ 0.005; —
Pr[class (1,1)] ~ 0.011; +
Prlclass (1,2)] ~ 0.029; +
Prlclass (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.775; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.
For each §S:

Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
19 negations and 874 diffusions:

Pr|class (0, 0)] ~ 0.131;

Prlclass (0, 1)] ~ 0.007; +
Pr[class (1,0)] ~ 0.006; —
Prlclass (1,1)] ~ 0.008; +
Prlclass (1,2)] ~ 0.030; +
Pr|class (2,1)] ~ 0.002; +
Prlclass (2,2)] ~ 0.816; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
20 negations and 920 diffusions:

Pr|class (0, 0)] ~ 0.093;

Prlclass (0, 1)] ~ 0.007; +
Pr[class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.007; +
Prlclass (1,2)] ~ 0.027; +
Pr|class (2,1)] ~ 0.002; +
Prlclass (2,2)] ~ 0.857; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
21 negations and 966 diffusions:

Pr|class (0, 0)] ~ 0.062;

Prlclass (0, 1)] ~ 0.007; +
Pr[class (1,0)] ~ 0.006; —
Prlclass (1,1)] ~ 0.004; +
Prlclass (1,2)] ~ 0.030; +
Prlclass (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.890; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
22 negations and 1012 diffusions:

Pr|class (0, 0)] ~ 0.037;

Pr[class (0, 1)] ~ 0.008; +
Pr[class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.002; +
Prlclass (1,2)] ~ 0.034; +
Prlclass (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.910; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
23 negations and 1058 diffusions:

Pr|class (0, 0)] ~ 0.017;

Pr[class (0, 1)] ~ 0.008; +
Pr[class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.002; +
Prlclass (1,2)] ~ 0.034; +
Pr|class (2,1)] ~ 0.002; +
Prlclass (2,2)] ~ 0.930; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
24 negations and 1104 diffusions:

Pr|class (0, 0)] ~ 0.005;

Prlclass (0, 1)] ~ 0.007; +
Pr[class (1,0)] ~ 0.007; —
Prlclass (1, 1)] ~ 0.000; +
Prlclass (1,2)] ~ 0.030; +
Pr|class (2,1)] ~ 0.002; +
Prlclass (2,2)] ~ 0.948; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
25 negations and 1150 diffusions:

Pr|class (0, 0)] ~ 0.000;

Pr[class (0, 1)] ~ 0.008; +
Pr[class (1,0)] ~ 0.008; —
Prlclass (1, 1)] ~ 0.000; +
Prlclass (1,2)] ~ 0.031; +
Prlclass (2,1)] ~ 0.001; +
Prlclass (2,2)] ~ 0.952; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.

For each S:
Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
26 negations and 1196 diffusions:

Pr|class (0,0)] ~ 0.002; —
Pr[class (0, 1)] ~ 0.008; +
Pr[class (1,0)] ~ 0.008; —
Prlclass (1,1)] ~ 0.000; —
Prlclass (1,2)] ~ 0.035; +
Pr|class (2,1)] ~ 0.002; +
Prclass (2,2)] ~ 0.945; +

Right column is sign of ag 1.

How the quantum walk works:

Start from uniform superposition.
Repeat ~0.6 - 2" /r times:
Negate ag T
if S contains collision.
Repeat ~0.7 - \/r times:
For each T:
Diffuse ag 1 across all S.
For each §S:

Diffuse as 7 across all T.

Now high probability
that T contains collision.

Cost r +2"/,/r. Optimize: 227/3.

11

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
27 negations and 1242 diffusions:

Pr|class (0,0)] ~ 0.011; —
Prlclass (0, 1)] ~ 0.007; +
Pr[class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.001; —
Prlclass (1,2)] ~ 0.034; +
Prlclass (2,1)] ~ 0.003; +
Prlclass (2,2)] ~ 0.938; +

Right column is sign of ag 1.

- quantum walk works:

m uniform superposition.
~0.6 - 2" /r times:

€ 4adsT
"~ contains collision.

t ~0.7 - /r times:
each T:
iffuse ag 7 across all S.

each S:
)iffuse ag 7 across all T.

h probability
ontains collision.
.27 /,/r. Optimize: 22"/3,

11

12
Classify (S, T) according to

(#(S N {p.q}). #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
27 negations and 1242 diffusions:

Pr|
Pr|

ass (2,1)] =~ 0.003; +
ass (2,2)] ~ 0.938; +

Pr|class (0,0)] ~ 0.011; —
Prlclass (0, 1)] =~ 0.007; +
Pr[class (1,0)] ~ 0.007; —
Prlclass (1,1)] =~ 0.001; —
Prlclass (1, 2)] ~ 0.034; +
class (
class (

Right column is sign of ag 1.

Data str

Moving
dominat
of fif f

But usu.

walk works:

1 superposition.
r times:

collision.
/r times:

r across all S.

r across all T.

Ity
llision.
Optimize: 221/3,

11

Classify (S, T) according to
(#(S N 4p. q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
27 negations and 1242 diffusions:

Pr|class (0,0)] ~ 0.011; —
Pr[class (0, 1)] ~ 0.007; +
Pr[class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.001; —
Prlclass (1, 2)] ~ 0.034;
Pr|class (2,1)] =~ 0.003;
Prlclass (2, 2)] ~ 0.938;

Right column is sign of ag 1.

12

Data structures

Moving from D(S
dominated by O(1
of f if f Is extrem

But usually f is nc

<S.

ition.

II'S.

1T,

22n/3_

11

Classify (S, T) according to
(#(S N {p. q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
27 negations and 1242 diffusions:

Pr|class (0,0)] ~ 0.011; —
Prlclass (0, 1)] =~ 0.007; +
Pr[class (1,0)] =~ 0.007; —
Prlclass (1,1)] ~ 0.001; —
Prlclass (1,2)] =~ 0.034; +
Pr[class (2,1)] ~ 0.003; +
Pr[class (2,2)] ~ 0.938; +

Right column is sign of ag 1.

12

Data structures

Moving from D(S) to D(T)
dominated by O(1) evaluati
of f if f Is extremely slow.

But usually f is not so slow.

12
Classify (S, T) according to

(#(S N {p.q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after
27 negations and 1242 diffusions:

Pr|class (0,0)] ~ 0.011; —
Pr[class (0, 1)] ~ 0.007; +
Pr[class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.001; —
Prlclass (1,2)] ~ 0.034; +
Pr|class (2,1)] ~ 0.003; +
Prlclass (2,2)] ~ 0.938; +

Right column is sign of ag 1.

13
Data structures

Moving from D(S) to D(T):
dominated by O(1) evaluations
of £ if f Is extremely slow.

But usually f is not so slow.

Classify (S, T) according to
(#(S N 4p. q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after

27 negations and 1242 diffusions:

Pr|class (0,0)] ~ 0.011; —
Pr[class (0, 1)] ~ 0.007; +
Pr[class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.001; —
Prlclass (1,2)] ~ 0.034; +
Pr|class (2,1)] ~ 0.003; +
Prlclass (2,2)] ~ 0.938; +

Right column is sign of ag 1.

12

13
Data structures

Moving from D(S) to D(T):
dominated by O(1) evaluations
of £ if f Is extremely slow.

But usually f is not so slow.
Store set S and multiset f(5)
in, e.g., hash tables?

Classify (S, T) according to
(#(S N 4p. q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after

27 negations and 1242 diffusions:

Pr|class (0,0)] ~ 0.011; —
Pr[class (0, 1)] ~ 0.007; +
Pr[class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.001; —
Prlclass (1,2)] ~ 0.034; +
Pr|class (2,1)] ~ 0.003; +
Prlclass (2,2)] ~ 0.938; +

Right column is sign of ag 1.

12

Data structures

Moving from D(S) to D(T):
dominated by O(1) evaluations
of £ if f Is extremely slow.

But usually f is not so slow.
Store set S and multiset f(5)
in, e.g., hash tables?

Minor problem: time to hash S
is huge for some sets S.

13

Classify (S, T) according to
(#(S N 4p. q}), #(T N {p. q}));

reduce a to low-dim vector.
Analyze evolution of this vector.

e.g. n =15, r = 1024, after

27 negations and 1242 diffusions:

Pr|class (0,0)] ~ 0.011; —
Pr[class (0, 1)] ~ 0.007; +
Pr[class (1,0)] ~ 0.007; —
Prlclass (1,1)] ~ 0.001; —
Prlclass (1,2)] ~ 0.034; +
Pr|class (2,1)] ~ 0.003; +
Prlclass (2,2)] ~ 0.938; +

Right column is sign of ag 1.

12

13
Data structures

Moving from D(S) to D(T):
dominated by O(1) evaluations
of £ if f Is extremely slow.

But usually f is not so slow.
Store set S and multiset f(5)
in, e.g., hash tables?

Minor problem: time to hash S
is huge for some sets S.

Fix: randomize hash function
(1979 Carter—Wegman),

and specify big enough time for
whole algorithm to be reliable.

(S, T) according to
1P q}), #(T N 1p. q}))

 to low-dim vector.
evolution of this vector.

15, r = 1024, after

rions and 1242 diffusions:

(0,0)] = 0.011; —
(0,1)] = 0.007; +
(1,0)] =~ 0.007; —
(1,1)] ~ 0.001; —
(1,2)] =~ 0.034; +
(2,1)] ~ 0.003; +
(2,2)] =~ 0.938; +

lumn is sign of ag 1.

12

Data structures

Moving from D(S) to D(T):
dominated by O(1) evaluations
of f if f Is extremely slow.

But usually f is not so slow.
Store set S and multiset f(5)
in, e.g., hash tables?

Minor problem: time to hash S
is huge for some sets S.

Fix: randomize hash function
(1979 Carter—-Wegman),

and specify big enough time for
whole algorithm to be reliable.

13

Major pi
depends
S. Algol

Need his

ording to

(T {p. q}));

m vector.
of this vector.

024, after

1242 diffusions:

).011; —
).007; +
).007; —
).001; —
).034; +
).003; +
).938; +

gn of ag 1.

12

Data structures

Moving from D(S) to D(T):
dominated by O(1) evaluations
of £ if f Is extremely slow.

But usually f is not so slow.
Store set S and multiset f(S)
in, e.g., hash tables?

Minor problem: time to hash S
is huge for some sets S.

Fix: randomize hash function
(1979 Carter—Wegman),

and specify big enough time for
whole algorithm to be reliable.

13

Major problem: h:
depends on histon
S. Algorithm fails

Need history-indey

1));

“tor.

SI0NS:

12

Data structures

Moving from D(S) to D(T):
dominated by O(1) evaluations
of f if f Is extremely slow.

But usually f is not so slow.
Store set S and multiset f(5)
in, e.g., hash tables?

Minor problem: time to hash S
is huge for some sets S.

Fix: randomize hash function
(1979 Carter—Wegman),

and specify big enough time for
whole algorithm to be reliable.

13

Major problem: hash table
depends on history, not just
S. Algorithm fails horribly.

Need history-independent D

Data structures

Moving from D(S) to D(T):
dominated by O(1) evaluations
of £ if f Is extremely slow.

But usually f is not so slow.
Store set S and multiset f(5)
in, e.g., hash tables?

Minor problem: time to hash S
is huge for some sets S.

Fix: randomize hash function
(1979 Carter—-Wegman),

and specify big enough time for
whole algorithm to be reliable.

13

14
Major problem: hash table

depends on history, not just on
S. Algorithm fails horribly.

Need history-independent D(S).

Data structures

Moving from D(S) to D(T):
dominated by O(1) evaluations
of £ if f Is extremely slow.

But usually f is not so slow.
Store set S and multiset f(5)
in, e.g., hash tables?

Minor problem: time to hash S
is huge for some sets S.

Fix: randomize hash function
(1979 Carter—-Wegman),

and specify big enough time for
whole algorithm to be reliable.

13

Major problem: hash table
depends on history, not just on
S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination
of a hash table and a skip list".

Several pages of analysis.

14

Data structures

Moving from D(S) to D(T):
dominated by O(1) evaluations
of £ if f Is extremely slow.

But usually f is not so slow.
Store set S and multiset f(5)
in, e.g., hash tables?

Minor problem: time to hash S
is huge for some sets S.

Fix: randomize hash function
(1979 Carter—-Wegman),

and specify big enough time for
whole algorithm to be reliable.

13

Major problem: hash table
depends on history, not just on
S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination
of a hash table and a skip list".

Several pages of analysis.

2013 Bernstein—Jetfery—Lange—
Meurer: radix tree.

Simplest radix tree: Left
subtree stores {x : (0,x) € S}

if nonempty. Right subtree stores

{x:(1,x) € S} if nonempty.

14

uctures

from D(S) to D(T):
ed by O(1) evaluations
Is extremely slow.

ally £ is not so slow.

t S and multiset 1(S)
hash tables?

oblem: time to hash S
‘or some sets S.

domize hash function
arter—Wegman),

“ify big enough time for
gorithm to be reliable.

13

Major problem: hash table
depends on history, not just on
S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination
of a hash table and a skip list".

Several pages of analysis.

2013 Bernstein—Jeffery—Lange—
Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0,x) € S}

if nonempty. Right subtree stores
{x:(1,x) € S} if nonempty.

14

Caveats

The 227,

cheap rz
Justified

) to D(T):
) evaluations
ely slow.

Ot so slow.

ultiset (S)
S 7

me to hash S
ets S.

sh function
man),

ough time for
) be reliable.

13

Major problem: hash table
depends on history, not just on
S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination
of a hash table and a skip list".
Several pages of analysis.

2013 Bernstein—Jetfery—Lange—
Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0,x) € S}

if nonempty. Right subtree stores
{x:(1,x) € S} if nonempty.

14

Caveats

The 22n/3 analysis
cheap random acc
Justified by simpli.

ONS

7))
N

h S

for
le.

13

Major problem: hash table
depends on history, not just on
S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination
of a hash table and a skip list".
Several pages of analysis.

2013 Bernstein—Jetfery—Lange—
Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0,x) € S}

if nonempty. Right subtree stores
{x:(1,x) € S} if nonempty.

14

Caveats

The 22n/3 analysis assumes
cheap random access to mel
Justified by simplicity, not re

Major problem: hash table
depends on history, not just on
S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination
of a hash table and a skip list".

Several pages of analysis.

2013 Bernstein—Jetfery—Lange—
Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0,x) € S}

if nonempty. Right subtree stores
{x:(1,x) € S} if nonempty.

14

Caveats

The 22n/3 analysis assumes
cheap random access to memory.
Justified by simplicity, not realism.

15

Major problem: hash table
depends on history, not just on
S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination
of a hash table and a skip list".
Several pages of analysis.

2013 Bernstein—Jetfery—Lange—
Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0,x) € S}

if nonempty. Right subtree stores
{x:(1,x) € S} if nonempty.

14

Caveats

The 22n/3 analysis assumes
cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy
sublinear in distance moved?

15

Major problem: hash table
depends on history, not just on
S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination
of a hash table and a skip list".

Several pages of analysis.

2013 Bernstein—Jetfery—Lange—
Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0,x) € S}

if nonempty. Right subtree stores
{x:(1,x) € S} if nonempty.

14

Caveats

The 22n/3 analysis assumes
cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy
sublinear in distance moved?
2015 Intel presentation says that
moving 8 bytes on wire at 22nm
costs 11.20 pJ per bmm.

15

Major problem: hash table
depends on history, not just on
S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination
of a hash table and a skip list".

Several pages of analysis.

2013 Bernstein—Jetfery—Lange—
Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0,x) € S}

if nonempty. Right subtree stores
{x:(1,x) € S} if nonempty.

14

Caveats

The 22n/3 analysis assumes
cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy
sublinear in distance moved?
2015 Intel presentation says that
moving 8 bytes on wire at 22nm
costs 11.20 pJ per bmm.

Lasers spread. Fibers lose. etc.

15

Major problem: hash table
depends on history, not just on
S. Algorithm fails horribly.

Need history-independent D(S).

2003 Ambainis: “combination
of a hash table and a skip list".

Several pages of analysis.

2013 Bernstein—Jetfery—Lange—
Meurer: radix tree.

Simplest radix tree: Left

subtree stores {x : (0,x) € S}

if nonempty. Right subtree stores
{x:(1,x) € S} if nonempty.

14

Caveats

The 22n/3 analysis assumes
cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy
sublinear in distance moved?
2015 Intel presentation says that
moving 8 bytes on wire at 22nm
costs 11.20 pJ per bmm.

Lasers spread. Fibers lose. etc.

| recommend algorithm analysis
on 2-dim mesh of tiny processors:
e.g. 0.472 for MQ (vs. 0.462)
from 2017 Bernstein—Yang.

15

-oblem: hash table
on history, not just on
rithm fails horribly.

tory-independent D(S).

“combination
h table and a skip list™.
pages of analysis.

1bainis:

rnstein—Jeffery—Lange—
radix tree.

- radix tree: Left

stores {x : (0,x) € S}
1pty. Right subtree stores
<) € S} if nonempty.

14

Caveats

The 22n/3 analysis assumes
cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy
sublinear in distance moved?
2015 Intel presentation says that
moving 8 bytes on wire at 22nm
costs 11.20 pJ per bmm.

L asers spread. Fibers lose. etc.

| recommend algorithm analysis
on 2-dim mesh of tiny processors:
e.g. 0.472 for MQ (vs. 0.462)
from 2017 Bernstein—Yang.

15

Many cl
don't se
e.g. 200
fastest a
random-

1994 vai

ash table
/, not just on
horribly.

endent D(S).

combination
d a skip list".
nalysis.

ffery—Lange—

)

: Left

(0,x) € S}
t subtree stores
honempty.

14

Caveats

The 22n/3 analysis assumes
cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy
sublinear in distance moved?
2015 Intel presentation says that
moving 8 bytes on wire at 22nm
costs 11.20 pJ per bmm.

Lasers spread. Fibers lose. etc.

| recommend algorithm analysis
on 2-dim mesh of tiny processors:
e.g. 0.472 for MQ (vs. 0.462)
from 2017 Bernstein—Yang.

15

Many claimed qua
don't seem to exis
e.g. 2009 Bernstel
fastest algorithm |

random-collision s
1994 van Oorscho

on

stores

4

14

Caveats

The 22n/3 analysis assumes
cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy
sublinear in distance moved?
2015 Intel presentation says that
moving 8 bytes on wire at 22nm
costs 11.20 pJ per bmm.

L asers spread. Fibers lose. etc.

| recommend algorithm analysis
on 2-dim mesh of tiny processors:
e.g. 0.472 for MQ (vs. 0.462)
from 2017 Bernstein—Yang.

15

Many claimed quantum spet
don’'t seem to exist in this n
e.g. 2009 Bernstein analysis:
fastest algorithm known for
random-collision search Is

1994 van QOorschot—Wiener.

Caveats

The 22n/3 analysis assumes
cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy
sublinear in distance moved?
2015 Intel presentation says that
moving 8 bytes on wire at 22nm
costs 11.20 pJ per bmm.

Lasers spread. Fibers lose. etc.

| recommend algorithm analysis
on 2-dim mesh of tiny processors:
e.g. 0.472 for MQ (vs. 0.462)
from 2017 Bernstein—Yang.

15

Many claimed quantum speedups

don’'t seem to exist in this model.

e.g. 2009 Bernstein analysis:
fastest algorithm known for

random-collision search is
1994 van Oorschot—Wiener.

16

Caveats

The 22n/3 analysis assumes
cheap random access to memory.
Justified by simplicity, not realism.

Can we move data using energy
sublinear in distance moved?
2015 Intel presentation says that
moving 8 bytes on wire at 22nm
costs 11.20 pJ per bmm.

Lasers spread. Fibers lose. etc.

| recommend algorithm analysis
on 2-dim mesh of tiny processors:
e.g. 0.472 for MQ (vs. 0.462)
from 2017 Bernstein—Yang.

15

Many claimed quantum speedups

don’'t seem to exist in this model.

e.g. 2009 Bernstein analysis:
fastest algorithm known for

random-collision search is
1994 van Oorschot—Wiener.

Further obstacles to Grover:

e Parallelization reduces speedup.

D x speedup needs depth D.

16

Caveats

The 22n/3 analysis assumes
cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy
sublinear in distance moved?
2015 Intel presentation says that
moving 8 bytes on wire at 22nm
costs 11.20 pJ per bmm.

Lasers spread. Fibers lose. etc.

| recommend algorithm analysis
on 2-dim mesh of tiny processors:
e.g. 0.472 for MQ (vs. 0.462)
from 2017 Bernstein—Yang.

15

Many claimed quantum speedups

don’'t seem to exist in this model.

e.g. 2009 Bernstein analysis:
fastest algorithm known for

random-collision search is
1994 van Oorschot—Wiener.

Further obstacles to Grover:

e Parallelization reduces speedup.

D x speedup needs depth D.

e Reversibility is expensive.

16

Caveats

The 22n/3 analysis assumes
cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy
sublinear in distance moved?
2015 Intel presentation says that
moving 8 bytes on wire at 22nm
costs 11.20 pJ per bmm.

Lasers spread. Fibers lose. etc.

| recommend algorithm analysis
on 2-dim mesh of tiny processors:
e.g. 0.472 for MQ (vs. 0.462)
from 2017 Bernstein—Yang.

15

Many claimed quantum speedups

don’'t seem to exist in this model.

e.g. 2009 Bernstein analysis:
fastest algorithm known for

random-collision search is
1994 van Oorschot—Wiener.

Further obstacles to Grover:

e Parallelization reduces speedup.

D x speedup needs depth D.
e Reversibility Is expensive.

e Quantum ops are expensive.

16

Caveats

The 22n/3 analysis assumes
cheap random access to memory.

Justified by simplicity, not realism.

Can we move data using energy
sublinear in distance moved?
2015 Intel presentation says that
moving 8 bytes on wire at 22nm
costs 11.20 pJ per bmm.

Lasers spread. Fibers lose. etc.

| recommend algorithm analysis
on 2-dim mesh of tiny processors:
e.g. 0.472 for MQ (vs. 0.462)
from 2017 Bernstein—Yang.

15

Many claimed quantum speedups

don’'t seem to exist in this model.

e.g. 2009 Bernstein analysis:
fastest algorithm known for

random-collision search is
1994 van Oorschot—Wiener.

Further obstacles to Grover:

e Parallelization reduces speedup.

D x speedup needs depth D.
e Reversibility Is expensive.
e Quantum ops are expensive.

Grover risk to cryptography
Is much smaller than Shor risk.

16

3 analysis assumes

ndom access to memory.

by simplicity, not realism.

move data using energy
- in distance moved?

el presentation says that
3 bytes on wire at 22nm
20 pJ per bmm.

oread. Fibers lose. etc.

nend algorithm analysis
1 mesh of tiny processors:

2 for MQ (vs. 0.462)
|7 Bernstein—Yang.

15

Many claimed quantum speedups

don’t seem to exist in this model.

e.g. 2009 Bernstein analysis:
fastest algorithm known for

random-collision search is
1994 van QOorschot—Wiener.

Further obstacles to Grover:

e Parallelization reduces speedup.

D x speedup needs depth D.
e Reversibility Is expensive.
e Quantum ops are expensive.

Grover risk to cryptography
Is much smaller than Shor risk.

16

Backgro

 assumes
ess to memory.

city, not realism.

) using energy
ce moved?
ation says that
“wire at 22nm
5bmm.

ers lose. etc.

‘ithm analysis
tiny processors:

(vs. 0.462)
In—Yang.

15

Many claimed quantum speedups

don’'t seem to exist in this model.

e.g. 2009 Bernstein analysis:
fastest algorithm known for

random-collision search is
1994 van QOorschot—Wiener.

Further obstacles to Grover:

e Parallelization reduces speedup.

D x speedup needs depth D.
e Reversibility Is expensive.
e Quantum ops are expensive.

Grover risk to cryptography
Is much smaller than Shor risk.

16

Background slides

nory.

2alism.

rgy
4

that

2nm

>{C.

VSIS
SSOrS:

)

15

Many claimed quantum speedups

don’'t seem to exist
e.g. 2009 Bernstein

In this model.

analysis:

fastest algorithm known for

random-collision search is
1994 van QOorschot—Wiener.

Further obstacles to Grover:

e Parallelization red

D x speedup neec

uces speedup.

s depth D.

e Reversibility I1s expensive.

e Quantum ops are

expensive.

Grover risk to cryptography

Is much smaller than Shor risk.

16

Background slides . . .

Many claimed quantum speedups

don’'t seem to exist in this model.

e.g. 2009 Bernstein analysis:
fastest algorithm known for

random-collision search is
1994 van Oorschot—Wiener.

Further obstacles to Grover:

e Parallelization reduces speedup.

D x speedup needs depth D.
e Reversibility Is expensive.
e Quantum ops are expensive.

Grover risk to cryptography
Is much smaller than Shor risk.

16

Background slides . ..

17

aimed quantum speedups
em to exist in this model.
0 Bernstein analysis:
lgorithm known for
collision search is

1 Oorschot—Wiener.

obstacles to Grover:

lization reduces speedup.

yeedup needs depth D.
1bility Is expensive.
UM OpS are expensive.

Isk to cryptography
smaller than Shor risk.

16

Background slides . . .

17

What dc

“Quantt
means a
a quantt

1.e. a Se
where e:
In a qua
supporte

How do
instruct
comput

ntum speedups

t

n

In this model.
analysis:

cnown for

carch 1s
t—\Wiener.

to Grover:

=C

=C

uces speedup.

s depth D.

Xpensive.

€

expensive.

ytography

an Shor risk.

16

Background slides . ..

17

What do quantum

“Quantum algoritl
means an algorith
a quantum compu

l.e. a sequence of
where each instruc
In @ quantum com
supported instruct

How do we know
instructions a qu
computer will su

2dups

1odel.

edup.

€.

sk.

16

Background slides . . .

17

What do quantum computel

“"Quantum algorithm”
means an algorithm that
a quantum computer can ru

i.e. a sequence of instructior
where each instruction Is
In a quantum computer's
supported instruction set.

How do we know which
instructions a quantum
computer will support?

Background slides . ..

17

What do quantum computers do?

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction Is
In a quantum computer’s
supported instruction set.

How do we know which
instructions a quantum
computer will support?

18

und slides . ..

17

What do quantum computers do?

“"Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction Is
In a quantum computer's
supported instruction set.

How do we know which
instructions a quantum
computer will support?

18

Quantur
contains
can effic
‘NOT g

“control

17

What do quantum computers do?

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction Is
In a quantum computer’s
supported instruction set.

How do we know which
instructions a quantum
computer will support?

18

Quantum compute
contains many “q|

can efficiently per
"NOT gate”, "Ha
“controlled NOT

17

What do quantum computers do?

“"Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction Is
In a quantum computer's
supported instruction set.

How do we know which
instructions a quantum
computer will support?

18

Quantum computer type 1 (
contains many “qubits”;

can efficiently perform
"NOT gate”, “Hadamard gz
“controlled NOT gate”, “T

What do quantum computers do?

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction Is
In a quantum computer’s
supported instruction set.

How do we know which
instructions a quantum
computer will support?

18

Quantum computer type 1 (QC1):

contains many “qubits”;
can efficiently perform
"‘NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

19

What do quantum computers do?

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction Is
In a quantum computer’s
supported instruction set.

How do we know which
instructions a quantum
computer will support?

18

19
Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

"‘NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

What do quantum computers do?

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction Is
In a quantum computer’s
supported instruction set.

How do we know which
instructions a quantum
computer will support?

18

19
Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

"‘NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”; etc.

What do quantum computers do?

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction Is
In a quantum computer’s
supported instruction set.

How do we know which
instructions a quantum
computer will support?

18

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"‘NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”; etc.

General belief: Traditional CPU

isn't QCI1; e.g. can't factor quickly.

19

) quantum computers do?

im algorithm”
n algorithm that

Im computer can run.

juence of instructions,
ych Instruction is
ntum computer’s
d Instruction set.

 we know which
ions a quantum
er will support?

18

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm” ; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.

19

Quantur
stores a
efficientl
laws of ¢
with as

This i1s t
quantun
by 1982
physics

computers do?

m
m that
ter can run.

Instructions,
“tion Is
puter’s
lon set.

r which
antum
pport?

18

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"‘NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.

19

Quantum compute
stores a simulated
efficiently simulate
laws of quantum g
with as much acclt

This Is the origina
quantum compute

by 1982 Feynman
physics with comg

s do?

1S,

18

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions
to compute “Toffoli gate”;
. “Simon’s algorithm”;

. “Shor’s algorithm”; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.

19

Quantum computer type 2 (
stores a simulated universe:
efficiently simulates the
laws of quantum physics
with as much accuracy as di

This Is the original concept
quantum computers introdu
by 1982 Feynman “Simulati
physics with computers’ .

19 20

Quantum computer type 1 (QC1): Quantum computer type 2 (QC2):
contains many “qubits”; stores a simulated universe:

can efficiently perform efficiently simulates the

"‘NOT gate”, “Hadamard gate”, laws of quantum physics
“controlled NOT gate”, “T gate". with as much accuracy as desired.
Making these instructions work This is the original concept of

iIs the main goal of quantum- quantum computers introduced
computer engineering. by 1982 Feynman “Simulating

: - : hysics with computers'.
Combine these instructions PRy P

to compute “Toffoli gate”;
. “Simon’s algorithm”;
. “Shor’s algorithm”; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"‘NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering.

Combine these instructions
to compute “Toffoli gate”;
. “Simon’s algorithm”;

. “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn't QCI1; e.g. can't factor quickly.

19

20
Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’.

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,

2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

n computer type 1 (QC1):
many “qubits’;
lently perform

ate”, "Hadamard gate’,
led NOT gate”, “T gate”.

these instructions work
1ain goal of quantum-
er engineering.

> these instructions
ute “Toffoli gate”;
1on’'s algorithm'™;
or's algorithm™ ; etc.

belief: Traditional CPU

1; e.g. can't factor quickly.

19

Quantum computer type 2 (QC2):
stores a simulated universe:
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,

2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories” .

20

Quantur
efficientl
that any
compute

r type 1 (QC1):
1bits” :

orm

damard gate’,
rate’, T gate’.

tructions work
of quantum-
ering.

tructions
|l gate’’;
rithm'

hm" : etc.

ditional CPU

1't factor quickly.

19

20
Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,

2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum compute
efficiently comput:
that any possible |
computer can con

QC1):

1te
gate” .

work
Im-

PU

quickly.

19

20
Quantum computer type 2 (QC2):

stores a simulated universe:
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,

2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 3 (
efficiently computes anythin

that any possible physica
computer can compute effic

Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

20

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

21

Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

20

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

21

Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced
by 1982 Feynman “Simulating

physics with computers’ .

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

20

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QCI.

21

n computer type 2 (QC2):

simulated universe;
y simulates the
juantum physics

much accuracy as desired.

he original concept of

' computers introduced
Feynman “Simulating

Nith computers’ .

belief: any QC1 is a QC2.

roof: see, e.g.,
dan—Lee—Preskill
im algorithms for
1 field theories™ .

20

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

21

A note ¢

Apparen
Current
from D-
can ber
simulate

r type 2 (QC2):

universe:
s the
hysics

Iracy as desired.

| concept of

rs introduced
“Simulating

uters’ .

vy QC1 is a QC2.

e.g.,
Preskill

1ms for
ories .

20

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

21

A note on D-Wave

Apparent scientific
Current “quantum
from D-Wave are
can be more cost-
simulated by tradi

QC2):

asired.

of
ced

ng

' QC2.

20

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

21

A note on D-Wave

Apparent scientific consensu
Current “quantum compute
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPl

21 22
Quantum computer type 3 (QC3): A note on D-Wave

efficiently computes anything

Apparent scientific consensus:

that any possible physica » ’
y P PRy Current “quantum computers

computer can compute efficiently. tom D-Wave are useless—
General belief: any QC2 is a QCS3. can be more cost-effectively
Argument for belief: simulated by traditional CPUs.
any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.

21 22
Quantum computer type 3 (QC3): A note on D-Wave

efficiently computes anything

Apparent scientific consensus:

that any possible physica » ’
y P PRy Current “quantum computers

computer can compute efficiently. tom D-Wave are useless—
General belief: any QC2 is a QCS3. can be more cost-effectively
Argument for belief: simulated by traditional CPUs.

any physical computer must But D-Wave ic

follow the laws of quantum . .
e collecting venture capital;

physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:

look, we're building a QC1.

21 22
Quantum computer type 3 (QC3): A note on D-Wave

efficiently computes anything

Apparent scientific consensus:

that any possible physica » ’
y P PRy Current “quantum computers

computer can compute efficiently. tom D-Wave are useless—
General belief: any QC2 is a QCS3. can be more cost-effectively
Argument for belief: simulated by traditional CPUs.

any physical computer must But D-Wave ic

follow the laws of quantum . .
e collecting venture capital;

physics, so a QC2 can efficiently

| | e selling some machines;
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

21

22
A note on D-Wave

Apparent scientific consensus:
Current “quantum computers”
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

21

22
A note on D-Wave

Apparent scientific consensus:
Current “quantum computers”
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

21

22
A note on D-Wave

Apparent scientific consensus:
Current “quantum computers”
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

n computer type 3 (QC3):
y computes anything

- possible physica
r can compute efficiently.

belief: any QC2 is a QC3.
1t for belief:

sical computer must

1e laws of quantum

so a QC2 can efficiently
any physical computer.

belief: any QC3 is a QC1.
1t for belief:
're building a QC1.

21

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—
can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

22

T he stat

Data (
a list of

e.g.. (0,

21 22

r type 3 (QC3): A note on D-Wave The state of a cor
eiar?ytfnng Apparent scientific consensus: Data (“state”) stc
’ ysmafr - Current “quantum computers” a list of 3 element
pute etmciently. from D-Wave are useless— e.g.: (0,0,0).

y QC2 is a QCS3. can be more cost-effectively

of simulated by traditional CPUs.

uter must But D-Wave is

quantum

e collecting venture capital;

can efficientl . .
Y e selling some machines;

cal computer. . .
P e collecting possibly useful

vy QC3 is a QC1. engineering expertise;
of e not being punished
g a QCI. for deceiving people.

Is D-Wave a bad investment?

21 22

QC3): A note on D-Wave The state of a computer

5 Apparent scientific consensus: Data (“state”) stored in 3 &
S Current “quantum computers” a list of 3 elements of {0, 1}
ently. from D-Wave are useless— e.g.: (0,0,0).

' QC3. can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;
ntly . .

e selling some machines;
Iter. . .

e collecting possibly useful
' QC1. engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

A note on D-Wave

Apparent scientific consensus:
Current “quantum computers”
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

22

The state of a computer

Data (“state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).

23

A note on D-Wave

Apparent scientific consensus:
Current “quantum computers”
from D-Wave are useless—
can be more cost-effectively
simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

22

The state of a computer

Data (“state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).

eg.: (1,1,1).

23

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—
can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

22

The state of a computer

Data (“state”) stored in 3 bits:
a list of 3 elements of {0, 1}.

e.g.. (0,0,0).
eg: (1,1,1)
e.g.. (0,1,1).

23

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—
can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

22

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.

e.g.. (0,0,0).
eg: (1,1,1)
e.g.: (0,1,1).

Data stored in 64 bits:
a list of 64 elements of {0, 1}.

23

A note on D-Wave

Apparent scientific consensus:

Current “quantum computers”

from D-Wave are useless—
can be more cost-effectively

simulated by traditional CPUs.

But D-Wave is

e collecting venture capital;

e selling some machines;

e collecting possibly useful
engineering expertise;

e not being punished

for deceiving people.

Is D-Wave a bad investment?

22

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.

e.g.. (0,0,0).
eg: (1,1,1)
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,0,00,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

23

n D-Wave

t scientific consensus:

“quantum computers”

\Wave are useless—
nore cost-effectively

d by traditional CPUs.

Vave Is

Ing venture capital;
some machines;
ing possibly useful
ering expertise;
ing punished
“elving people.

ve a bad investment?

22

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.

e.g.: (0,0,0).
eg: (1,1,1)
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,0,00,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
1,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

23

T he stat

Data stc
a list of

e.g.. (3

v

. consensus.

 computers”

useless—
effectively

tional CPUs.

e capital;
chines;

ly useful
rtise;

1ed

ople.

nvestment?

22

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg.: (1,1,1).
eg.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,0001,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
1,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

23

The state of a qus

Data stored in 3 ¢

a list of 8 number

e.g.:

(3,1,4,1,5,

S

Js.

22

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.: (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
1,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

23

The state of a quantum con

Data stored in 3 qubits:

a list of 8 numbers, not all :
e.g.:

(3,1,4,1,5,9,2,6).

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

23

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.:

(3,1,4,1,5,9,2,6).

24

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

23

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).

24

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

23

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

24

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

23

24
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

23

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—8,—2,8).

e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

24

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

3 list of 2°* numbers. not all zero.

The state of a computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
eg: (1,1,1).
e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

23

The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—8,—2,8).

e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

24

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

3 list of 2°* numbers. not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

e of a computer

state”) stored in 3 bits:

3 elements of {0, 1}.
0,0).
1,1).
1,1).

red in 64 bits:

64 elements of {0, 1}.
1,1,1,1,0,0,0, 1,
.0,0,1,1,0,0,0,
.1,0,0,0,0,0,1,
.0,0,1,0,0,0,1,
.1,0,0,1,0,0,0,
.1,0,0,1,0,0,1).

23

24
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:
3 list of 2°* numbers. not all zero.

Data stored in 1000 qubits: a list
of 21000 numbers, not all zero.

Measuri

Can sim
Cannot
of numb

nputer

red in 3 bits:

s of {0, 1}.

bits:

ts of {0, 1}.
),0,0,1,
0,0,0,
0,0,1,
0,0,1,
0,0,0,
0,0,1).

23

24
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:
3 list of 2°* numbers. not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quan

Can simply look a
Cannot simply loo
of numbers stored

1ts:

23

24
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list
of 21000 numbers, not all zero.

Measuring a quantum comp

Can simply look at a bit.
Cannot simply look at the |
of numbers stored in n qubr’

24
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

25

24
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

25

24
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(aog, a1, ..
measurement produces g

with probability |ag|?/ Y, |ar|?.

.,aQn_l) then

25

24
The state of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.
e.g.: (3,1,4,1,5,9,2,6).

eg.: (—2,7,—1,8,1,—-8,-2,8).
e.g.: (0,0,0,0,0,1,0,0).

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3).

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(aog, a1, ..
measurement produces g

with probability |ag|?/ Y, |ar|?.

.,aQn_l) then

State is then all zeros
except 1 at position q.

25

24
e of a quantum computer

red In 3 qubits:

8 numbers, not all zero.
1,4,1,5,9,2,6).
2,7,—1,8,1, -8, -2, 8).
0,0,0,0,1,0,0).

red in 4 qubits: a list of

vers, not all zero. e.g.:
,5,9,2,6,5,3,5,8,9,7,9, 3).

red In 64 qubits:

004 numbers, not all zero.

red In 1000 qubits: a list
numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(ao, a1, ..
measurement produces g

with probability |ag|?/ Y, |ar|?.

Y azn_l) then

State is then all zeros
except 1 at position q.

25

e.g.. Sa
(1,1,1,:

24
Intum_computer

ubits:

s, not all zero.
),2,06).

' 1,—-8,—-2,8).
1,0,0).

ubits: a list of

Il zero. e.g.:
.5,3,5,8,9,7,9, 3).

qubits:
ers, not all zero.

)0 qubits: a list
not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(ao, a1, ..
measurement produces g

with probability |ag|?/ Y, |ar|?.

Y aQn_l) then

State is then all zeros
except 1 at position q.

25

e.g.. Say 3 qubits
(1,1,1,1,1,1,1,1

24
1puter

’E€ro.

st of

| zero.

a list
ro.

Measuring a quantum computer

0,7,9,3).

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(ag, a1,...,a»_1) then
measurement produces g

with probability |ag|?/ Y, |ar|?.

State is then all zeros
except 1 at position q.

25

e.g.: Say 3 qubits have stat:
(1,1,1,1,1,1,1,1).

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(ag, a1,...,a»_1) then
measurement produces g

with probability |ag|?/ Y, |ar|?.

State is then all zeros
except 1 at position q.

25

e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).

26

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(a0, a1, ..., arn_1) then
measurement produces g

with probability |ag|?/ Y, |ar|?.

State is then all zeros
except 1 at position q.

25

26
e.g.: Say 3 qubits have state

(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probability 1/8;
001 = 1 with probability 1/8;
010 = 2 with probability 1/8;
011 = 3 with probability 1/8;
100 = 4 with probability 1/8;
101 = 5 with probability 1/8;
110 = 6 with probability 1/8;
111 = 7 with probability 1/8.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(a0, a1, ..., arn_1) then
measurement produces g

with probability |ag|?/ Y, |ar|?.

State is then all zeros
except 1 at position q.

25

26
e.g.: Say 3 qubits have state

(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probability 1/8;
001 = 1 with probability 1/8;
010 = 2 with probability 1/8;
011 = 3 with probability 1/8;
100 = 4 with probability 1/8;
101 = 5 with probability 1/8;
110 = 6 with probability 1/8;
111 = 7 with probability 1/8.

“Quantum RNG.”

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and
e destroys the state.

If n qubits have state

(a0, a1, ..., arn_1) then
measurement produces g

with probability |ag|?/ Y, |ar|?.

State is then all zeros
except 1 at position q.

25

26
e.g.: Say 3 qubits have state

(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probability 1/8;
001 = 1 with probability 1/8;
010 = 2 with probability 1/8;
011 = 3 with probability 1/8;
100 = 4 with probability 1/8;
101 = 5 with probability 1/8;
110 = 6 with probability 1/8;
111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold
today are measurably biased.

N1g a quantum computer

ply look at a bit.
simply look at the list
ers stored in n qubits.

iNng n qubits
“es n bits and
vs the state.

ts have state
e azn_l) then
ment produces g

bability |aq|?/S_, |ar|?.

then all zeros
at position g.

25

e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probability 1/8;
001 = 1 with probability 1/8;
010 = 2 with probability 1/8;
011 = 3 with probability 1/8;
100 = 4 with probability 1/8;
101 = 5 with probability 1/8;
110 = 6 with probability 1/8;
111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold
today are measurably biased.

26

e.g.. Sa
(3,1,4,:

(um_computer

t a bit.
k at the list
in n qubits.

ts
and
e.

ate
then
luces g

al?/ X rlarl?.

2ros

n q.

25

e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probability 1/8;
001 = 1 with probability 1/8;
010 = 2 with probability 1/8;
011 = 3 with probability 1/8;
100 = 4 with probability 1/8;
101 = 5 with probability 1/8;
110 = 6 with probability 1/8;
111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold
today are measurably biased.

26

e.g.. Say 3 qubits
(3,1,4,1,5,9,2,6

uter

St
[S.

25

e.g.: Say 3 qubits have state

(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probabi
001 = 1 with probabi

010 = 2 with probabi

011 = 3 with probabi
100 = 4 with probabi

101 = 5 with probabi

110 = 6 with probabi

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;

111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably

hlased.

26

e.g.: Say 3 qubits have stat:
(3,1,4,1,5,9,2,6).

e.g.: Say 3 qubits have state

(1,1,1,1,1,1,1,1).

Measurement produces

000 = 0 with probabi
001 = 1 with probabi

010 = 2 with probabi

011 = 3 with probabi
100 = 4 with probabi

101 = 5 with probabi

110 = 6 with probabi

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;

111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably

hlased.

26

e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6).

27

e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

orobability 1/8;
orobability 1/8;

orobability 1/8;

orobability 1/8;

n probability 1/8;

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 wit

101 = 5 with
110 = 6 with
111 = 7 with

orobability 1/8;

orobability 1/8;

orobability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold
today are measurably

hlased.

26

e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6).

Measurement produces

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 with
101 = 5 with
110 = 6 with
111 = 7 with

Dropanbil
Dropanil

Dropanil

DFroPaDl

probabi

DrFroPanl

DFroPanl

ility 9/173;
lity 1/173;
ility 16/173;
lity 1/173;
ility 25/173;
lity 81/173;
lity 4/173;
orobability 36/173.

27

e.g.: Say 3 qubits have state
(1,1,1,1,1,1,1,1).

Measurement produces

orobability 1/8;
orobability 1/8;

orobability 1/8;

orobability 1/8;

n probability 1/8;

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 wit

101 = 5 with
110 = 6 with
111 = 7 with

orobability 1/8;

orobability 1/8;

orobability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold
today are measurably

hlased.

26

e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6).

Measurement produces

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 with
101 = 5 with
110 = 6 with
111 = 7 with

Dropanbil
Dropanil

Dropanil

DFroPaDl

probabi

DrFroPanl

DFroPanl

ility 9/173;
lity 1/173;
ility 16/173;
lity 1/173;
ility 25/173;
lity 81/173;
lity 4/173;
orobability 36/173.

5 1s most likely outcome.

27

v 3 qubits have state

,1,1,1,1).

ment produces

wit
wit
wit
wit
wit
wit

wit

N

N

N

N

olge
olge

olge

Do

N pro

N

N

with

olgo
olge

Dd
Dd
Dd
Dd
Dd

Dd

Dd

DI
DI
DI
DI

DI

DI

DI

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;

orobability 1/8.

im RNG.”

- Quantum RNGs sold
e measurably

hlased.

26

e.g.: Say 3 qubits have state

(3,1,4,1,5,9,2,6).

Measurement produces

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 with
101 = 5 with
110 = 6 with
111 = 7 with

olge
olge

olge

Dro
pro
Oro
Oro

Dd
Dd
Dd
Dd
Dd

Dd

Dd

DI
DI
DI
DI

DI

DI

DI

ility 9/173;
lity 1/173;
ility 16/173;
lity 1/173;
ility 25/173;
lity 81/173;
lity 4/173;
orobability 36/173.

5 1s most likely outcome.

27

e.g.. Sa
(0,0,0,(

have state

luces

ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8.

n RNGs sold
bly biased.

26

e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6).

Measurement produces
000 = 0 with probability 9/173;
001 = 1 with probability 1/173;

010 = 2 with probability 16/173;

011 = 3 with probability 1/173;

100 = 4 with probability 25/173;
101 = 5 with probability 81/173;

110 = 6 with probability 4/173;

111 = 7 with probability 36/173.

5 1s most likely outcome.

21

e.g.. Say 3 qubits
(0,0,0,0,0,1,0,0

D

W GN WGWVV WGV WV VW W WV

old

26

e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6).

Measurement produces
000 = 0 with probability 9/173;
001 = 1 with probability 1/173;

010 = 2 with probability 16/173;

011 = 3 with probability 1/173;

100 = 4 with probability 25/173;
101 = 5 with probability 81/173;

110 = 6 with probability 4/173;

111 = 7 with probability 36/173.

5 1s most likely outcome.

27

e.g.: Say 3 qubits have stat:
(0,0,0,0,0,1,0,0).

e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6).

Measurement produces
000 = 0 with probability 9/173;
001 = 1 with probability 1/173;

010 = 2 with probability 16/173;

011 = 3 with probability 1/173;

100 = 4 with probability 25/173;
101 = 5 with probability 81/173;

110 = 6 with probability 4/173;

111 = 7 with probability 36/173.

5 1s most likely outcome.

21

e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

23

e.g.. Say 3 qubits have state : e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6). (0,0,0,0,0,1,0,0).
Measurement produces Measurement produces
000 = 0 with probability 9/173; 000 = O with probability O;
001 = 1 with probability 1/173; 001 = 1 with probability 0;
010 = 2 with probability 16/173; 010 = 2 with probability 0;
011 = 3 with probability 1/173; 011 = 3 with probability 0;
100 = 4 with probability 25/173; 100 = 4 with probability O
101 = 5 with probability 81/173; 101 = 5 with probability 1;
110 = 6 with probability 4/173; 110 = 6 with probability O;
111 = 7 with probability 36/173. 111 = 7 with probability 0.
5 1s most likely outcome.

e.g.. Say 3 qubits have state : e.g.: Say 3 qubits have state
(3,1,4,1,5,9,2,6). (0,0,0,0,0,1,0,0).
Measurement produces Measurement produces
000 = 0 with probability 9/173; 000 = O with probability O;
001 = 1 with probability 1/173; 001 = 1 with probability 0;
010 = 2 with probability 16/173; 010 = 2 with probability 0;
011 = 3 with probability 1/173; 011 = 3 with probability 0;
100 = 4 with probability 25/173; 100 = 4 with probability O
101 = 5 with probability 81/173; 101 = 5 with probability 1;
110 = 6 with probability 4/173; 110 = 6 with probability 0;
111 = 7 with probability 36/173. 111 = 7 with probability O.
5 is most likely outcome. b Is guaranteed outcome.

v 3 qubits have state

,5,9,2,6).

ment produces

wit
wit
wit
wit
wit
wit

wit

N

N

N

N

olge
olge

olge

Do

N pro

N

N

with

olgo
olge

Dd
Dd
Dd
Dd
Dd

Dd

Dd

DI
DI
DI
DI

DI

DI

DI

ility 9/173;
lity 1/173;
ility 16/173;
lity 1/173;
ility 25/173;
lity 81/173;
ility 4/173;
orobability 36/173.

t likely outcome.

27

e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces

000 = 0 with probability O;
001 = 1 with probability O;
010 = 2 with probability O;
011 = 3 with probability O;
100 = 4 with probability O;
101 = 5 with probability 1;
110 = 6 with probability O;
111 = 7 with probability O.

b Is guaranteed outcome.

28

NOT ga

NOTq g
(3,1,4,:
(1,3, 1,

have state

luces
ability 9/173;
ability 1/173;

ability 1/173;

ability 4/173;

ability 36/173.

tcome.

ability 16/173;

ability 25/173;
ability 81/173;

21

28
e.g.: Say 3 qubits have state

(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

NOT gates

NOTp gate on 3 ¢
(3,1,4,1,5,9,2,6
(1,3,1,4,9,5,6,2

D

73;
73;

/173;

|7 3:

/173;
/173;

[73;

/173.

27

e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

b Is guaranteed outcome.

28

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

23

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

29

e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

23

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

29

e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

23

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

29

e.g.: Say 3 qubits have state
(0,0,0,0,0,1,0,0).

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

23

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

29

v 3 qubits have state
),0,1,0,0).

ment produces
with probability O;
with probability O;

with probability O;

with probability O;
with probability 0O;

with probability 1;

with probability O;
with probability O.

-anteed outcome.

28 29
NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

Operatic
NOTy, s
Operatic

flipping
Flip: ou

have state

).

luces

abl
abl
abl
abl
abl

abl

abl

ity O;
ity O;
ity O;
ity O;
ity O;
ity 1;
ity O;
ability 0.

tcome.

28 29
NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

Sstate
(1,0,0,0,0,0,0, (
(0,1,0,0,0,0,0, (
(0,0,1,0,0,0,0, (
(0,0,0,1,0,0,0, (
(0,0,0,0,1,0,0, (
(0,0,0,0,0,1,0,
(0,0,0,0,0,0,1, (
(0,0,0,0,0,0,0,

Operation on quail
NOTp, swapping |
Operation after m

flipping bit 0 of re
Flip: output iIs nof

D

29

NOT gates state Measure
NOT, gate on 3 qubits: (1,0,0,0,0,0,0,0) 000
(3.1,4,1,5,9,2, 6) (0,1,0,0,0,0,0,0) 001
(1,3,1,4,9,5,6,2). (0,0,1,0,0,0,0,0) 010
NOTgy gate on 4 qubits: (0,0,0,1,0,0,0,0) 011
(314.1592653580793)— 0001000 100
(1,3,1,4,9,5.6.2,3,5,8,5,7,9,3,9) (0.0,0,0,0,1,0,0) 101

(0,0,0,0,0,0,1,0) 110
NOT; gate on 3 qubits: (0,0,0,0,0,0,0, 1) 111

(3,1,4,1,5,9,2,6) —

(4,1,3,1,2,6,5,9). Operation on quantum state

NOTp, swapping pairs.
NOT> gate on 3 qubits: Operation after measuremer
(3,1,4,1,5,9,2,6) — flipping bit O of result.
(5,9,2,6,3,1,4,1). Flip: output Is not input.

NOT gates

NOTy gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOTy gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4,1,3,1,2,6,5,9).

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(5,9,2,6,3,1,4,1).

29

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTp, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

30

tes

ate on 3 qubits:
,5,9,2,6) —
1,9,5,6,2).

ate on 4 qubits:
5,9,2,6,5,3,5,8,9,7,9,3) —
9,5,6,2,3,5,8,5,7,9,3,9).

ate on 3 qubits:
,5,9,2,6) —
[,2,6,5,9).

ate on 3 qubits:
,5,9,2,6) —
,3,1,4,1).

29

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTp, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

30

Controll

e.g. CN(
(3,1,4,:
(3,1,1,¢

ubits:
) —
).
ubits:

3,5,8,9,7,9,3)
5,8,5,7,9,3,9).

ubits:

29

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

30

Controlled-NOT g

eg.CNOTLm
(3,1,4,1,5,9,2,6
(3,1,1,4,5,9,6,2

29

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTp, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output Is not input.

30

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

30

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

31

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

30

31
Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

Operation after measurement:
flipping bit 0 /f bit 1 is set; i.e.,

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

30

31
Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

Operation after measurement:
flipping bit 0 /f bit 1 is set; i.e.,
eg.CNOTZm

(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

state measurement
(1,0,0,0,0,0,0,0) 000 >
(0,1,0,0,0,0,0,0) 001
(0,0,1,0,0,0,0,0) 010 >
(0,0,0,1,0,0,0,0) 011
(0,0,0,0,1,0,0,0) 100 >
(0,0,0,0,0,1,0,0) 101
(0,0,0,0,0,0,1,0) 110 >
(0,0,0,0,0,0,0,1) 111

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

30

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) — (92,91, g0 @ q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3.9,4,6,5,1,2,1).

31

state measurement
0,0,0,0,0 000
0,0,0,0, O; 001 >
0,0,0,0,0 010

1 0,0,0,0; 011 >
0,1,0,0,0 100

0 O,l,0,0; 101>
0,0,0,1,0)

)n on quantum state:
wapping pairs.

n after measurement:
bit 0 of result.

tput Is not Iinput.

30

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) = (92, 91, g0 @ q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3,9,4,6,5,1,2,1).

31

Toffoli g

Also knc
controlle

e.g. CCI
(3,1,4,:
(3,1,4,:

measurement

1tum state:
alrs.
easurement:
sult.

. Input.

30

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6)
(3,1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) — (92,91, 90 @ q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3.9.4,6,5,1,2,1).

31

Toffoli gates

Also known as
controlled-controll

eg.CCNOTZLm
(3,1,4,1,5,9,2,6
(3,1,4,1,5,9,6,2

30 31

Controlled-NOT gates Toffoli gates
ment
> e.g. CNOT1 o: Also known as
(3,1,4,1,5,9,2,6) — controlled-controlled-NOT ¢
— (L145896.2) e.g. CCNOTo 1 0:
Operation after measurement: (3,1,4,1,5,9,2,6) —
"> flipping bit 0 if bit 1 is set; i.e. (3,1,4,1,5,9,6,2).
(92,91, 90) — (92, g1, G0 @ q1).
:::> eg.CNOTZm

(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3,9,4,6,5,1,2,1).

—t

1T.

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6) —
(3.1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) — (92,91, g0 @ q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3,9.4,6,5,1,2,1).

31

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

32

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6) —
(3.1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) — (92,91, g0 @ q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3,1,4,1,5,9,2,6) —
(3,9.4,6,5,1,2,1).

31

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:
(92, 91, 90) — (g2, 91, 90 @ q192).

32

Controlled-NOT gates

eg.CNOTLm
(3,1,4,1,5,9,2,6) —
(3.1,1,4,5,9,6,2).

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,
(92,91, 90) — (92,91, g0 @ q1).

eg.CNOTZm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,9,5,6,2).

eg.CNOTQZ
(3.1,4,1,5,9,2,6) —
(3,9.4,6,5,1,2,1).

31

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6) —
(3,1,4,6,5,9,2,1).

32

ed-NOT gates

JT10:
,5,9,2,6) —
1,5,9,6,2).

n after measurement:

bit O /f bit 1 is set: i.e.,
70) — (g2, 91,90 ® q1).

JT>p:
,5,9,2,6) —
[,9,5,6,2).

)T 2:
,5,9,2,6) —
,5,1,2,1).

31

32
Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6, 2).

Operation after measurement:
(92, 91, 90) — (92, 91, 90 @ q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6) —
(3,1,4,6,5,9,2,1).

More sh

Combine
to build

ates

) —
).

easurement:

t 1 1s set; I.e..
.q1, G0 D q1).

31

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6) —
(3,1,4,6,5,9,2,1).

32

More shuffling

Combine NOT, CI
to build other pert

1t:

l.e.,
71)-

31

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6) —
(3,1,4,6,5,9,2,1).

32

More shuftfling

Combine NOT, CNOT, Toff
to build other permutations.

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6) —
(3,1,4,6,5,9,2,1).

32

More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

33

Toffoli gates

Also known as
controlled-controlled-NOT gates.

eg.CCNOTZLm
(3,1,4,1,5,9,2,6) —
(3,1,4,1,5,9,6,2).

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

eg.CCNOTQLZ
(3,1,4,1,5,9,2,6) —
(3,1,4,6,5,9,2,1).

32

33
More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CCNOTg 10
31465921

CNOTQl ><j ></

36415129

NO Ty >< >< >< ><

6 3141592

ates

Wn as
d-controlled-NOT gates.

NOT> 1 0:
,5,9,2,6) —
[,5,9,6,2).

n after measurement:

10) — (92,91, 90 ® q192).

NOTg 1 2:
,5,9,2,6) —
,5,9,2,1).

32

More shuftfling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CCNOTp 10
31465921

CNOTO’l >< ><

364151209

NO Ty >< >< >< ><

6 3141592

33

Hadama

Hadama

(a, b) —

3 1
X |
4 2

ed-NOT gates.

) —
).

easurement:

g1, 90 D q192).

) —

).

32

More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CCNOTO,LQ
31465921

CNOTO,l >< ><

36415129

NOTo >< >< >< ><

6 3141592

33

Hadamard gates

Hadamardp:

(a,b) — (a+ b, a

3 1 4 1
XX
4 2 5 3

ates.

1t
7192)-

32

More shuftfling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CCNOTp 10
31465921

CNOTO’l >< ><

364151209

NO Ty >< >< >< ><

6 3141592

33

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1
XX
4 2 5 3

ﬂ

5 0
X

14 —4 ¢

More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CCNOTO,LQ
31465921

CNOTO,l >< ><

364151209

NOTo >< >< >< ><

6 3141592

33

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1
XX
4 2 5 3

2

X TX

14 —4 8

6

—4

34

More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CCNOTO,LQ
31465921

X X

364151209

X XX X

6 3141592

CNOTO,l

NOT,

33

34
Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX IXT X
4 2 5 3 14 -4 38 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

k]

1

KK

S8

uffling

> NOT, CNOT, Toffoli

other

permutations.

s of gates to

positions by distance 1:

314159 26

P

659 21

i

3 1

%

o
@)
O

6 3141592

33

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
X IXT X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K]

34

Simon's

p
—t
o O
~ ©
p—

e
O OO O O O o O

O O 0O O O O o W
e e

33 34

Hadamard gates Simon'’s algorithm
NOT, Toffoli Hadamardp: Step 1. Set up pu
mutations. (a,b) > (a+ b,a— b). 1,0,0,0,0,0,0,0,
o 0,0,0,0,0,0,0,0,
by distance 1. 3 1 4 1 5 9 2 6 0,0,0,0,0,0,0,0,
XX IXE X eoasoo
4159 26

>< 4 2 5 3 14 —4 8 —4 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0
Hadamard;y: | T
Ao 92 0,0,0,0,0,0,0,0,
>< >< (a,b, ¢, d) = 0,0,0,0,0,0,0,0.

» 4 1 5129 (a+c,b+d,a—c,b—d)

1

' 141509 2 T>’<>‘<‘
!

S8

K]

oli

e
N

33

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX IXT X
4 2 5 3 14 -4 8 -4
Hadamards:
(a, b, c,d) —

(a+c,b+d,a—c,b—d).

K
KK

KK

K]

34

Simon’s algorithm

Step 1. Set up pure zero st:

1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,00,0,0,0,0,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0.

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

34

Simon’s algorithm

Step 1. Set up pure zero state:

O OO OO O O
& &

O OO OO O o o

O OO OO O o o

O OO OO O o o

O OO O O O o O

35

34
Hadamard gates Simon'’s algorithm

Hadamardp: Step 2. Hadamardp:
(a, b) — (a+ b,a— b). 1.1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
3 1 4 1 5 90 2 6 0,0,0,0,0,0,0,0,
NI IX] XX oonsoos
4 2 5 3 14 -4 8 —4 0,0,0,0,0,0,0,0,
Hadamardj: 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
(a,b,c,d)— 0,0,0,0,0,0,0,0.

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

34
Hadamard gates Simon'’s algorithm

Hadamardp: Step 3. Hadamardj:
(a, b) — (a+ b,a— b). 1 1,1,1,0,0,0,0,
0,0,0,0,0,0,0,0,
3 1 4 1 5 9 2 6 0,0,0,0,0,0,0,0,
NI IX] X IX] eesoooo
4 2 5 3 14 —4 8 —4 0,0,0,0,0,0,0,0,
Hadamard;: 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
(a,b,c,d)— 0,0,0,0,0,0,0,0.

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

34

Simon’s algorithm

Step 4. Hadamards:

1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0.

Each column is a parallel universe.

35

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

34

Simon’s algorithm

Step 5. CNOTg 3:
1,0, 1,
0,1,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,

p—t

O O O O O O +H O ;¢

O O O O O O O =+
O O O O O O = O
O O O O O O O
O O O O O O = O
O O O O O O O

Each column is a parallel universe
performing its own computations.

35

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

34

Simon’s algorithm

Step 5b. More shuffling:

1,0,0,0,1,0,0,0,
0,1,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,1,0,0,0,1,0,
0,0,0,10,0,0,1,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0.

Each column is a parallel universe
performing its own computations.

35

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

34

Simon’s algorithm

Step 5c. More shuffling:

1,0,0,0,0,0,0,0,
0,1,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,0,1,0,0,
0,0,1,0,0,0,0,0,
0,0,0,1,0,0,0,0,
0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,1.

Each column is a parallel universe
performing its own computations.

35

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

34

Simon’s algorithm

Step 5d. More shuffling:

1,0,0,0,0,0,0,0,
0,0,000,1,0,0,
0,0,0,0,1,0,0,0,
0,1,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,
0,0,00,0,0,0,1,
0,0,0,0,0,0,1,0,
0,0,0,1,0,0,0,0.

Each column is a parallel universe
performing its own computations.

35

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

34

Simon’s algorithm

Step 5e. More shuffling:

1,0,0,0,0,0,0,0,
0,0,000,1,0,0,
0,0,0,0,1,0,0,0,
0,1,0,0,0,0,0,0,
0,0,1,0,0,0,0,1,
0,0,00,0,0,0,0,
0,0,0,1,0,0,1,0,
0,0,0,0,0,0,0,0.

Each column is a parallel universe
performing its own computations.

35

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

34

Simon’s algorithm

Step 5f. More shuffling:
0,0,
1,0,
0,1,
0,0,
0,0,
0,0,
0,0,
0,0,

O O B O O O O O

Each column is a parallel universe
performing its own computations.

35

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

34

Simon’s algorithm

Step 5g. More shuffling:

0,1,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,0,1,0,0,
1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,010,0,1,0,
0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,1.

Each column is a parallel universe
performing its own computations.

35

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

34

Simon’s algorithm

Step 5h. More shuffling:
0,0,0,0,
0,0,
0,0,
0,0,
0,1,
0,0,
0,0,
1,0,

OO O O O rBr O O O
O O O O O O =
O O = O O O O O

Each column is a parallel universe
performing its own computations.

35

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

34

Simon’s algorithm

Step bi.
0,0,
0,0,
0,0,
0,0,
0,1,
0,0,
0,0,
1,0,

More shutfling:
,0,1,0,

O O O O +r O O O
O O O O O O = O
O O = O O O O O
O = O O O O O
O O O O O O O B
o O O O O = O

Each column is a parallel universe
performing its own computations.

35

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

34

Simon’s algorithm

Step 5j. Final shuffling:
0,0,0,0,0,0,0,0,
0,0,0,1,0,0,1,0,
0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,1,
0,1,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
1,0000,1,0,O0.

Each column is a parallel universe
performing its own computations.

35

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

34

Simon’s algorithm

Step 5j. Final shuffling:
0,0,0,0,0,0,0,0,
0,0,0,1,0,0,1,0,
0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,1,
0,1,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
1,0000,1,0,O0.

Each column is a parallel universe
performing its own computations.
Surprise: u and u @ 101 match.

35

34
Hadamard gates Simon'’s algorithm

Hadamardp: Step 6. Hadamardp:
0,0,0,0,0,0,0,0,

a,b) — (a+ b,a—b). T
(a, b) = () 001710011

0
3 1 4 1 5 90 2 6 0,0,0,0,0,0,0,0,
X IX] IXI IX] eontoont
4 2 5 3 14 —4 8 —4 1.1,0,0,1,1,0,0,
Hadamardl: O'O'O'O’O’O’O’O’
0,0,0,0,0,0,0,0,
(a,b,c,d)— 1.1,0,0,1,1,0,0.

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

34

Simon’s algorithm

Step 7. Hadamards:

0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1.

35

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

34

35
Simon’s algorithm

Step 8. Hadamardo:

0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0, 2.

Hadamard gates

Hadamardp:

(a, b) — (a+ b,a— b).

3 1 4 1 5 9 2 6
XX X IX
4 2 5 3 14 -4 8 -4
Hadamardy:
(a, b, c,d)—

(a+c,b+d,a—c,b—d).

K
KK

KK

K |

34

35
Simon’s algorithm

Step 8. Hadamardo:

0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0,2,
2,0,2,0,0,2,0,2,
0,0,00,0,0,0,0,
0,0,0,0,0,0,0,0,
2,0,2,0,0,2,0, 2.

Step 9: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

