CS 355 — Topics in Cryptography April 30, 2018
Lecture 9: Lattice Cryptography and the SIS Problem

Instructors: Henry Corrigan-Gibbs, Sam Kim, David J. Wu

1 Introduction

In the next few lectures, we are going to discuss lattice-based cryptography. Why might people find
lattice cryptography interesting?

1. Lattice problems allow cryptographic constructions to be based on worst-case problems as
opposed to average-case problems.

2. Many very advanced cryptographic primitives such as fully homomorphic encryption can be
based on lattice assumptions.

3. Lattice problems are conjectured to be secure against quantum computers.

Average vs. Worst-case problems. One of the key features that lattice cryptography provides
is that it allows cryptography to be based on worst-case problems. So far, all of the problems that
we have seen so far such as CDH, DDH, and Factor are all average-case problems. In order for an
adversary to break these problems, it must only succeed in solving the problem for some random
instance. Lattice cryptography can be based on worst-case problems such as GapSVP. In order for
an adversary to break these problems, it must succeed in solving the problem on all instance of the
problem.
Let’s consider the problem of factoring for example.

e Average-case factoring assumption: For all PPT algorithm A, we have
Pr [.A(N) — (p,q) ‘ p,q < Primesy, N = pq] = negl(\).

Here, the randomness is over the random coins of A, and the random coins to sample p, q.

e Worst-case factoring assumption: For all PPT algorithm A, there exists some N = pq
for p, q € Primes) such that

Pr [A(N) — (p, q)] = negl()).

Here, the randomness is just over the random coins of A.

There are many problems that are hard to solve in the worst-case, but easy to solve on average.
The fact that lattice cryptography can be based on worst-case problems gives strong evidence to its
security. In fact, even without any security implications, just the fact that cryptography can be based
on some worst-case hardness assumption alone is also quite interesting from a complexity-theoretic
perspective.

9-1

Lattice Problems. In order to construct crypto schemes, people do not actually use worst-case
problems such as GapSVP directly. Instead, people use average-case problems that have reductions
from GapSVP.! There are two main average-case problems that people use. The first problem is
called the short integers solutions (SIS) problem, which was introduced by Ajtai [1]. It gives rise
to one-way functions, collision-resistant hash functions, digital signatures, and other “minicrypt”
primitives. The second problem is called the learning with errors (LWE) problem, which was
introduced by Regev [3]. It gives rise to public-key encryption, fully homomorphic encryption,
identity-based encryption, and beyond.

The existence of an adversary that can break SIS or LWE can be directly translated to breaking
the GapSVP problem. Due to time constraints, in lecture, we will just focus on the average-case
problems of SIS and LWE. However, we provide a bit more detail on GapSVP and lattices in
Section 4.

2 Short Integers Solutions Problem

Today, we will focus on the short integers solutions (SIS) problem.?

SIS(n,m, q, B): Let n,m,q, B € N be positive integers. For a given adversary A, we define the
following experiment;:

e The challenger samples A & Zy*™, and gives A to the adversary A.
e The adversary A outputs some non-zero vector x € Ly

We define A’s advantage in solving the SIS problem for the set of parameters n,m, ¢, B, denoted
SISAdVy, m.q,8[A], to be the probability that A - x = 0 (mod ¢) and ||x[|,, < B.

So the SIS problem is parameterized by the matrix dimensions n,m € N, modulus ¢, and a norm
bound B on the solution. At first, it might be difficult to keep track of all these parameters.

e One should think of n as the security parameter A\ that defines the hardness of the problem.
The bigger the n is, the harder the problem becomes.

e The parameter m is set depending on the specific applications, but generally m >> n.
e The modulus ¢ can be set to be any ¢ = poly(n), but concretely, just think of ¢ = O(n?).
e The norm bound B << ¢ should also be set depending on the specific applications.

It is conjectured that for any sufficiently large n € N (this is the security parameter), for any
m,q, B € N, satisfying ¢ > B - poly(n) (for any polynomial poly), the SIS(n,m, g, B) is hard.
The SIS(n, m, ¢, B) problem can be used to construct a collision resistant hash function.

Defining CRHF. Let’s first define collision resistant hash functions.

Definition 2.1 (CRHF). An efficiently computable (deterministic) function H : K x X —) is a
collision resistant hash function if it satisfies the following properties:

n fact, these problems average-case problems can be viewed as the average-case versions of GapSVP.
2In lecture, we just set B = 1. We will talk more about this in the next lecture.

9-2

e Compressing: |V| < |X|

e Collision Resistance: For any efficient adversary A, we have

Pr | A(pk) — (x,2") Ax # 2’ A H(pk,z) = H(pk,2') ‘ pk&lC} = negl.

CRHF from SIS. For a fixed n, let’s set ¢ = n? and set m to be any positive integer satisfying
m > nlogq. Then, define the key space, input space, and output space as follows:

o K =17Zy*m
o X ={0,1}"
[] y:ZZ‘

Then, define a hash function H : L x X —) as follows:
H(A,x)=A-x modgq

where A € Zy*™, and x € {0,1}™.
Let’s see why this function is a collision-resistant hash function.

e Compressing: We can just calculate how many elements are contained in the input space
and output space. By simple calculation, we have |X| = 2™ and |Y| = ¢" = (2'°89)" = 2nlogq,
Now, since m > nlogq, we have |X| > |))|.

e Collision Resistance: If there exists an adversary A that can find collisions of H, then we
can construct an algorithm B that uses A to break SIS(n,m,q, 1) (here, the bound B = 1).
The reduction is very simple. B works as follows:

1. B receives a challenge A € Zp*™ from the SIS(n,m, ¢, 1) challenger. It forwards A to A.
2. A finds two elements x,x" € {0,1}" such that x # x’ and A -x= A - x".

3. B submits x — x’ € {—1,0,1}" as the solution to the SIS(n,m, g, 1) challenger. Clearly,
the vector x — x’ is non-zero and satisfies ||x — x'|| ., < 1. Furthermore, by linearity of
the hash function, we have

Ax=Ax=A (x-—x)=0.

Let’s discuss some useful properties that this SIS hash function satisfies.

Updatability. A useful property of the SIS hash function is that it is efficiently updatable. Let’s
consider a simple example of software distribution. Say you have a large software Py that you
want to distribute over a public channel. To prevent an attacker from tampering with the software,
you maintain a hash digest of the software y = Hp(Fp.0) in some read-only public space. Then, any
user that downloads the software P’ can verify whether it received the correct software by checking
if Ho(P') =y.

At a later point in time, let’s say you want to update the software Py g slightly to Py.1. Then, in
order for users to check integrity of P, you must update the hash digest in the read-only public
space. Hence, you must recompute the has y = Hp(Py0). If the software P; g is very large, then
this can be costly.

9-3

However, let’s say you originally used the SIS hash function Ha (-) to hash y = Ha(FPpp). Then,
to update the digest y, you do not need to recompute the hash Ha (P o), but simply add or subtract
the corresponding column vectors of A. As a simple example, let’s say Py and P only differ in
the first bit. Then, to update the y, you just need to subtract y — a; where a;j is the first column
vector of A: | | |

A= a; ay --- ap

Universality. The SIS hash function is also a good randomness extractor.

Definition 2.2 (Universal Hash Function). A hash function H : £ x X —) is universal if for
every two distinct elements x,x’ € X, we have

PRI‘ [H(pk,X) = H(pk,X,)] = m
pk<—K

The SIS hash function is, in fact, a universal hash function. Showing this is a simple exercise.

Definition 2.3 (Guessing Probability). Let X’ be a finite set and let Dy be some distribution on
X. Then, we define the guessing probability of Dy to be v = maxy«cx Pryc p, [x* = x].

Theorem 2.4 (Simplified Leftover Hash Lemma). Let X and) be two finite sets, and let H :
K xX — Y be a universal family of hash functions. Let Dy be some distribution on X with guessing
probability at most . Then, for any (unbounded) adversary A, the following distributions are
indistinguishable:

Pr [A(pk, H(pk,x)) = 1 | pk <= K,x « Dx| —Pr [A(pk,y) =1 | pk - K,y < V]| =~ V.

We will show how to use the leftover hash lemma next lecture.

3 Bonus Material: Worst-Case Lattice Problems

An n-dimensional lattice £ is any subset of R™ that is both:

1. an additive subgroup: 0 € L, and —x,x+y € L for every x,y € L
2. discrete: every x € L has a neighborhood in R™ in which x is the only lattice point.

They are generally defined with respect to some independent basis vectors by,...,b,. Then, a
lattice is defined to be all integer combinations of these vectors

L(by,...,b,) = { > b | ¢ ez}.

1€[n]
The minimum distance of a lattice £ is the length of a shortest nonzero lattice vector.

Definition 3.1. The minimum distance of a lattice L is the length of a shortest nonzero lattice
vector:

M() = mi .
10) xenéi?o}ux”

9-4

Lattice Problems. The most well-known computational problems on lattices is the shortest vector
problem:

Definition 3.2 (Shortest Vector Problem (SVP)). Given an arbitrary basis by, ..., by, of some lattice
L = L(bi,...,by), find the shortest nonzero lattice vector, i.e., a x € £ for which ||x|| = A;(L).

We can also define the approzimate version of the shortest vector problem. For a function of the
dimension n, 7 = y(n), define the approximate shortest vector problem as follows:

Definition 3.3 (Approximate Shortest Vector Problem (SVP)). Given a basis by,..., b, of an
n-dimensional lattice £ = L(by,...,by,), find a nonzero vector x € £ for which ||x|| < y(n) - A\ (L).

Finally we can define the decision version of the approximate shortest vector problem, which we
denote by GapSVP,,.

Definition 3.4 (Decisional Approximate SVP (GapSVP,)). Given a basis B of an n-dimensional
lattice £ = L£(B) where either A\;(£) <1 or A;(£) > v(n), determine which is the case.

When 7(n) is any polynomial or even subexponential, the Ga pSVP., problem is conjectured to be
hard. If you want to learn more about the background on lattice-based cryptography, there is a
really nice reference [2].

References

[1] Miklés Ajtai. Generating hard instances of lattice problems. In STOC, 1996.

[2] Chris Peikert et al. A decade of lattice cryptography. Foundations and Trends® in Theoretical
Computer Science, 10(4):283-424, 2016.

[3] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC,
2005.

	Introduction
	Short Integers Solutions Problem
	Bonus Material: Worst-Case Lattice Problems

