
1

Detecting Hardware Trojans with Gate-Level
Information-Flow Tracking

Wei Hu, Baolei Mao, Jason Oberg, and Ryan Kastner, Member, IEEE

Abstract—Hardware trust is an emerging security threat due to the globalization of hardware supply chain. A major security concern is
Trojan horses inserted by an untrusted party. Hardware Trojans are carefully crafted to protect them from being identified, and detecting
them in third party intellectual property (IP) cores requires significant effort. This work employs information flow tracking to discover
hardware Trojans. It works by identifying Trojans that violate the confidentiality and integrity properties of these hardware components.
Our method is able to formally prove the existence of such types of Trojans without activating them. We demonstrate our techniques on
trust-HUB benchmarks and show that our method precisely detects the hardware Trojans that violate the information flow security
properties related to confidentiality and integrity.

Index Terms—Hardware security, hardware trust, Trojan horse, information flow tracking, formal methods

F

1 INTRODUCTION

THE hardware design and supply chain is now largely a
global undertaking. The design process typical involves

multiple teams spread around the world. Often it involves
integrating third party intellectual property (IP) products
from untrusted entities. As a result, hardware may be in-
tentionally or unintentionally built with unspecified func-
tionality. Such undocumented modifications may provide a
hidden channel to leak sensitive information or a back door
for attackers to compromise a system.

Hardware Trojans are a major security threat originating
from malicious design modifications. These are carefully
designed lightweight components that are activated under
rare conditions, which protects them from being detected
during the design phase. As a consequence, these hard-to-
detect hidden time bombs are often identified only after
severe damage has been inflicted.

Researchers have developed numerous methods for
hardware Trojan detection. Initial efforts focused on exhaus-
tive testing, which becomes intractable even for moderate
scale designs. More intelligent methods utilize integrated
circuit test methodologies to increase the transition probabil-
ity of the Trojan trigger [1] or to identify redundant circuit
with low switching probabilities [2]. However, testing is a
hard problem even when not considering intentionally dif-
ficult to activate logic. A number of methods seek to capture
the Trojan behaviors using side channel signal analysis [3],
[4], [5], [6], e.g., they attempt to detect transient power
and spurious delays added to the design due to the Trojan
design. The increasing amount of hardware manufacturing
process variation and decreases in the size of the Trojan
payload can mitigate the effectiveness of these techniques.

While a significant amount of work focuses on detecting
Trojans in fabricated hardware, this can be too late in the
design process. Ideally we catch any potentially vulnera-
bilities during the design phase as this makes eliminating
or mitigating them much easier. Modern hardware design
is a massive integration of in-house and external IP cores.
External vendors may provide IP cores with Trojans built
in. Even internal IP cores could have Trojans due to a rogue

employee. And in both cases, an IP core could have non-
malicious, but equally dangerous unintended functionality
that could be exploited by a hacker.

Detecting Trojans in IP cores is an extremely challenging
task [7]. Many existing methods for detecting Trojans in
IP cores rely on testing or verification methods to identify
suspicious signals, e.g., those with extremely low transition
probability [2]. However, these methods may still miss cer-
tain types of Trojans, e.g., a Trojan without a trigger signal.
Some methods detect Trojans by formally proving security
related properties. They indicate the existence of a Trojan
when a security property is violated [8]. However, these
methods typically require rewriting the hardware design in
a formal language, which comes at significant design cost.
Additionally, most of the existing methods may not provide
clues (e.g., revealing Trojan behavior) that will help pinpoint
the Trojan from the entire design.

In this work, we describe the use of information flow
tracking (IFT) for hardware Trojan detection. IFT is a for-
mal method that can be used to prove important security
properties related to confidentiality and integrity. Violation
of such security properties may indicate potential existence
of Trojans in hardware components; regardless if it was a
maliciously inserted Trojan, it tells the designer that there
is a security issue, which is equally important. IFT has
been widely deployed across the system stack including
at the programming language/compiler, operating system,
and instruction set architecture. Gate level information flow
tracking (GLIFT) [9] precisely measures and controls all
logical flows from the level of Boolean gates. Previous work
demonstrated the use of GLIFT in crafting secure hardware
architectures [10]. And it can detect security violations due
to timing side channels [11].

In this work, we show how GLIFT can be used to detect
hardware Trojans that violate confidentiality and integrity
of critical data. Our techniques provide a measure to cap-
ture harmful flows of information and reveal the malicious
Trojan behaviors, which can assist backtracking analysis in
order to identify the location of Trojan design. Our method



2

Hardware Trojans

Insertion phase Abstraction level Activation mechanism Effects Location

Specification

Design

Fabrication

Testing

Assembly and package

System level

Development environment

Register-transfer level

Gate level

Transistor level

Physical level

Always on

Triggered

Internally

Time-based

Condition-based

Externally

User input

Component output

Change the functionality

Downgrade performance

Leak information

Deny service

Processor

Memory

I/O

Power supply

Clock grid

Fig. 1. A taxonomy of hardware Trojans [12]. The techniques described in this work can detect those from the bold face categories.

can detect the specific types of Trojans that can cause leakage
of sensitive information and violation of data integrity. To
the best of our knowledge, this is the first work that employs
GLIFT for hardware Trojan detection. The contributions of
this paper are:

• Proposing a formal method for detecting hardware
Trojans that cause information flow security property
violations;

• Providing an approach that reveals Trojan behavior
and identifies the location of the Trojan in the design;

• Demonstrating the effectiveness of our techniques on
the trust-HUB benchmarks.

2 BACKGROUND

Existing hardware Trojan detection methods generally fall
into two categories: invasive and non-invasive. Invasive
methods either insert test points in the design for increased
observability or use reverse engineering techniques to check
for malicious design modification at the physical level.
These methods are relatively expensive since they require
highly specialized tool for physical access to the chip layout.
Non-invasive methods do not need to modify the design.
They look for clues, e.g., faulty output, downgraded per-
formance, and increased power consumption, which may
reveal the existence of a Trojan. Some methods try to capture
these clues by functional testing [1], [2], [8] while others
perform circuit parameter characterization [3], [4], [5], [6].

Salmani et al. employ a dummy scan flip-flop insertion
procedure to aid circuit transition generation and reduce the
Trojan activation time [1]. Zhang et al. take an alternative
approach to detect Trojans by identifying redundant circuit
with low transition probability [2]. Wang et al. propose
a current integration methodology to reveal Trojan activ-
ity and use localized current analysis for identifying the
Trojan [3]. Other work performs circuit parameter charac-
terization to generate fingerprints or watermarks for the
hardware design [4]. These fingerprints or watermarks are
then compared with those for a Trojan-free reference chip
for Trojan detection. However, side-channel signal analysis
methods are usually affected by manufacturing process vari-
ation. Narasimhan et al. [5] propose a multiple parameter
side channel analysis method, which makes use of the
relationship between dynamic current and maximum op-
erating frequency in order to minimize the effect of process
noise. Jin et al. [8] propose a method for detecting Trojan
in cryptography hardware by formally proving information
flow related security properties. While this method can be

promising in detecting Trojans in IP cores acquired from
a third party, it requires careful reasoning about where
information can be declassified so that the security label
from the Trojan payload can be revealed. This can be a
challenging task for hardware designers due to the lack of
expertise in security.

In this work, we present a new formal method for
detecting hardware Trojans by proving security properties
related to confidentiality and integrity. Our method lever-
ages a precise gate level information flow model that can
be described with standard hardware description language
(HDL) and verified using off-the-shelf electronic design
automation (EDA) tools, which minimizes the additional
design cost.

3 THREAT MODEL

We focus on third party IP cores and assume that they
may contain hardware Trojans that are activated only under
rare conditions to leak sensitive information (such as the
plaintext) or violate the integrity of critical data (e.g., the
secret key); otherwise they run normally and produce cor-
rect results. We also assume that these Trojans are carefully
designed and are hard to activate through pure functional
testing. Our analysis requires access to the RTL code or
gate level netlist of the IP cores. We assume no knowledge
about the implementation details of the trigger condition or
payload of the Trojans.

Figure 1 shows the types of Trojans we target. We adopt
the Trojan taxonomy from [12]. We focus on Trojans in-
serted in the specification and design phases at the register
transfer or gate level. The Trojans can be either always on
or triggered under specific conditions, e.g., single input,
input sequence, or counter. They can cause violation of
confidentiality or integrity properties of critical data. We
assume the attacker’s primary goal is to learn sensitive
information and do not account for Trojans that cause a
denial of service or downgrade performance. We focus on
Trojans that perform logical attacks and thus do not consider
those that leak information through power, electromagnetic,
and other side channels.

Our techniques will uncover cases where IP cores have
intended or unintended functionality that can be exploited
in an attack against the specified security property. We
primarily focus on malicious insertions of Trojans in our
examples and experiments. However, we note that design
errors can be just as dangerous in terms of the security of the



3

hardware. Our techniques are applicable for both malicious
(Trojans) and non-malicious (design flaw) scenarios.

4 MODELING SECURITY PROPERTIES WITH IN-
FORMATION FLOW

We focus on the confidentiality and integrity properties
of critical data in hardware designs. The confidentiality
property requires that secret information can never leak to
an unclassified domain. The integrity property requires that
untrusted data should never be written to a trusted location.
Hardware description languages are inadequate for enforc-
ing such security properties since they only specify func-
tionality. By contrast, information flow analysis provides a
better approach for modeling these security properties since
they are related to the movement of data.

To argue about security, additional sensitivity informa-
tion needs to be associated with data objects so that we
know what should be protected. In practice, data objects can
have multiple levels of security labels according to their sen-
sitivity. For example, data can be labeled as Unclassified,
Confidential, Secret and Top Secret in a military
information system. The partial order between different se-
curity classifications can be defined using a security lattice.
Let L(·) denote the function that returns the security label
of a variable. This can be formalized as follows:

A B ⇐⇒ L(A) v L(B) (1)

Equation (1) models the confidentiality and integrity
properties with allowed flows of information. Specifically,
information is allowed to flow from A to B if and only if
the security level of A is lower than or equal to that of B.
Under such a notion, both the confidentiality and integrity
properties can be modeled in a unified manner.

In this paper, we use a two level security lattice LOW v
HIGH. In confidentiality analysis, we label the sensitive data
as HIGH and unclassified data as LOW; in integrity analysis,
we mark the critical data as LOW and normal data as HIGH
(because integrity is a dual property of confidentiality). For
example, we label the key as HIGH in confidentiality analysis
while LOW in integrity analysis.

5 METHODOLOGY

5.1 Gate Level Information Flow Tracking
Gate level information flow tracking (GLIFT) is a hardware
IFT technique that models digital information flows at the
logical (Boolean) level [9]. GLIFT assigns each bit of data
in the hardware design a label (often called taint). GLIFT
provides a model for understanding how data propagates
through a design. We can write security properties about the
system, and use GLIFT to test or verify if the design adheres
to these properties. For example, if we wanted to under-
stand where information about the cryptographic key can
flow, we would label the bits of the key as Confidential.
We could then write a property that some part of the design
(e.g., an untrusted memory location) should never be able
to ascertain any confidential information (i.e., information
from the key). This is equivalent to proving that the label
of the untrusted memory location(s) can never be set as
Confidential.

GLIFT is a fine granularity IFT method. It precisely
accounts for the flow of information based upon the idea
that information flows from bit A to bit B if and only if the
value of A has an influence on B. GLIFT differs from other
IFT methods primarily in two aspects. First, it associates
each data bit with a security label while previous methods
typically use byte or word level labels. Second, GLIFT takes
into account the input data values when calculating the
label for the output. Other IFT methods mark the output
as HIGH if there is at least one HIGH input regardless of
the data values. Therefore, GLIFT provides a more precise
approach to determine the security label of the output. This
allows a more accurate measurement of the actual flows of
information.

For a better understanding of the ideas behind GLIFT,
consider the two-input AND gate (AND-2), whose Boolean
function can be described as O = A · B. Let At, Bt and Ot

denote the security labels (taints) of A, B and O respectively.
Here, A,B ∈ {0, 1} and At, Bt, Ot ∈ {LOW, HIGH}. Under
an encoding scheme (e.g., LOW = 0 and HIGH = 1) where

LOW · HIGH = LOW, LOW+ HIGH = HIGH (2)

Previous conservative IFT methods typically use the
label propagation policy shown in (3) for AND-2 and set
Ot to HIGH when either A or B is labeled as HIGH.

Ot = At +Bt (3)

This is safe since it accounts for all possible flows
of HIGH information. However, it can cause a significant
amount of false positives (non-existent flows) in information
flow measurement. Let Secret be a 32-bit HIGH value. After
performing the operation in (4), conservative methods will
mark the entire Public as HIGH, indicating there are 32 bits
of information flowing from Secret to Public.

Public = Secret · 0x01 (4)

GLIFT takes a more precise approach and uses (5) for
label propagation for AND-2 (we refer interested readers
to [9] for more details about deriving GLIFT tracking logic).

Ot = A ·Bt +B ·At +At ·Bt (5)

From (5), the output will be LOW (or HIGH) when both
inputs are LOW (or HIGH). Now consider the cases when only
one input is LOW. When the input is (LOW,0), the output
will be dominated by this input and will be LOW (the other
HIGH input does not flow to the output). When the input is
(LOW,1), the output will be determined by the other HIGH
input and thus will take a HIGH label.

Back to the example shown in (4), the constant (LOW,0)
bits in the second operand will dominate the corresponding
label bits of Public as LOW. Only the constant (LOW,1)
bit allows the least significant bit of Secret to flow to the
output. Thus, there is only 1 bit of information flow. GLIFT
considers both the security label and the actual value in label
propagation. In this way, it accounts for the influence of an
input value on the output and thus more precisely measures
the actual flows of information.



4

5.2 GLIFT for Hardware Trojan Detection

Our detection method identifies Trojans that violate infor-
mation flow properties, e.g., the leakage of sensitive infor-
mation or overwriting high integrity data. Figure 2 shows
the design flow of our method.

IP Core Gate level 
netlist

Logic 

synthesis
GLIFT 
logic

GLIFT logic 

generation

Formal 

verification

Functional 

testing

Trojan 
behavior

Trojan 

free

fail

pass Security 

property

Counter 

example

Fig. 2. The design flow of our method for hardware Trojan detection.

Given an IP core designed under test, we must first
generate GLIFT logic. This process is completely automated.
We first use a logic synthesis tool to compile the design
to a gate level netlist. We then discretely instantiate GLIFT
logic for each Boolean gate in the netlist by mapping these
gates to a GLIFT logic library. This process is similar to
mapping the synthesized design to a technology library
and can be completed in linear time. Both the gate level
netlist and GLIFT library can be described with standard
HDL. Thus, GLIFT logic can be verified or tested using off-
the-shelf EDA tools. This is a significant advantage of our
method over others that require the designer to construct
a formal model for the hardware design. And only after
that, can you specify and prove properties on the design.
GLIFT automatically provides that formal model making
the security verification process significantly easier.

In the meantime, one needs to specify security properties
that the IP core should adhere to. The security properties are
translated into standard HDL assertion statements and veri-
fication constraints. We provide those assertions, constraints
and the GLIFT logic to a standard hardware verification
tool. If the design satisfies all the properties, it is free of
Trojans that violate these security properties. Otherwise,
formal verification will fail and provide a counter example
that causes the security violation. With the counter example,
we can perform functional testing on GLIFT logic, which
enables us to determine the exact Trojan behavior and helps
identify it in the entire design.

It is important to understand the different types of
properties that can be checked by formal tools with and
without GLIFT. Without GLIFT, formal tools can only check
functional properties on netlists, e.g., if it is possible for
some signals to take certain values. It is difficult to express
security properties solely on the functional design. This is
due to fact that the values do not carry information about
how information flows. With GLIFT, data are associated
with additional security labels, which enable reasoning
about security of the design. GLIFT can precisely capture
when information flow security properties related to confi-
dentiality and integrity are violated, e.g., if sensitive data is
multiplexed to a publicly observable output.

5.3 Deriving Security Theorems for Formal Proof
The security theorems are derived in two steps. The first
step is classifying the signals in the hardware design into
different security levels. As an example, we label secret
data (such as the plaintext and key) as HIGH and publicly
observable data (such as the encryption done signal) as LOW
in confidentiality analysis; we label critical data (such as
program counter) as LOW and untrusted data (such as input
from UART port) as HIGH in integrity analysis.

The next step uses the labels to specify allowable (or
forbidden) flows of information. These security properties
are written to enforce that HIGH data should never flow to
LOW data. Take cryptographic cores as an example, a first
property to check for is that the key always flows to the
ciphertext. To derive a security theorem for this property,
we mark the key as HIGH while all the remaining inputs
as LOW and check that the ciphertext is always HIGH. The
following describes the security theorem for this property:
set key_t HIGH
set DEFAULT_LABEL LOW
assert cipher_t HIGH

Consider another case where the key should never be
altered. As a security theorem for this case, we label the
key as LOW and all the remaining inputs as HIGH since
this is a property related to integrity. We then check that
the security label of the key register is always LOW. The
following describes the security theorem for this case.
set key_t LOW
set DEFAULT_LABEL HIGH
assert key_reg_t LOW

Similarly, one can derive other theorems for properties to
be enforced. Since GLIFT logic can be described with stan-
dard HDL, the security theorems can be easily converted to
assertion language statements and checked on GLIFT logic
using standard hardware formal verification tools. This is
a significant advantage of our method over existing work
that requires description of the design in new semantics.
Our method prevents the semantic differences of design
and verification languages while minimizing the burden
imposed on programmers.

6 DESIGN EXAMPLES

We first use the AES-T1700 and RSA-T400 benchmarks from
trust-HUB.org to demonstrate how our method can detect
Trojans and reveal potentially malicious behaviors that may
not be captured in pure functional testing and verification.
We specify test and security constraints only for primary
inputs and observe the security labels of primary outputs.
We do not manipulate the internal registers within the
benchmarks. We also use several trust-HUB benchmarks to
show the performance and scalability of our method.

Normal 128-bit AES Core

ModulatorKey shift register

message
cipher

Antena

key

Trigger

128-bit counter Baud generator

Fig. 3. The AES-T1700 benchmark contains a Trojan that leaks the key.



5

���������	
���
�
�����		
�������

��������������������������������

���������	
���
�
�����		
������� ����

	�������������	
��
���
��� 

��	���	
����
�

������
�������

�������������������������������� �������������������������������� ��������������������������������




 

� 
�
 
�� �

 �
� ��
 ��� 


 

� 
�
 
�� �

 �
� ��
 ��� 


 

� 
�


�������

��� ���������	
���
�
�����		
�������

����� ��������������������������������

�������� ���������	
���
�
�����		
������� ����

	�������������	
��
���
��� 

��	���	
����
�

������
�������

���������� �������������������������������� �������������������������������� ��������������������������������

 
!�"�#$%%���&�� 


 

� 
�
 
�� �

 �
� ��
 ��� 


 

� 
�
 
�� �

 �
� ��
 ��� 


 

� 
�


$#��#


$#��#
��

Fig. 4. We want to understand what is happening when key flows to the Antena signal. This occurs when Antena t is HIGH which occurs during
the times noted by the red boxes.

6.1 The AES-T1700 Example

As shown in Fig. 3, the AES-T1700 benchmark contains
a Trojan that leaks the key bits through a modulated RF
channel. The Trojan is activated after 2129 − 1 successive
encryption operations. Once activated, the secret key is
loaded into a shift register, whose least significant bit is
modulated to leak through the RF channel. The probability
of activating such a Trojan in functional testing is quite low.

To check the confidentiality property against key leak-
age, we mark the key as HIGH and all the remaining inputs
as LOW. By asserting if an output can be HIGH, we can
determine if the key flows to that output. In an initial
analysis, we identify that both outputs of the benchmark,
namely the ciphertext and the Antena signal (note that this
is the spelling of the signal in the file), can have HIGH labels.
The subsequent analysis focuses on the Antena output since
it is normal for the key to flow to the ciphertext in a
cryptographic function. We then use a SAT tool to prove
if Antena t (Antena’s label) is always LOW. The proof fails
indicating that Antena t could be HIGH. In other words, the
Antena output can possibly leak information about the key.

We use the Mentor Graphics Questa Formal tool to check
if the internal registers in the model found by the SAT
solver can meet the required conditions (note that SAT
tools will stop at register boundary, i.e., it only performs
combinatorial checks). We focus on the SHIFTReg t register
since SHIFTReg is the only register that can carry HIGH
information in the model found by SAT solver. We formally
prove that the SHIFTReg t register is always type LOW using
the Questa tool. The proof fails when the control point signal
Tj Trig is asserted.

For a better understanding, we simulate the GLIFT logic
under the control point condition to capture how the key
leaks to the Antena output. The simulation result is shown
in Fig. 4.

From Fig. 4, GLIFT indicates that the key leaks
to the Antena output when BaudGenACC[25:23] =
010 (Two additional signals BaudGenACC[15] = 1 and
BaudGenACC[4] = 1 are not shown to simplify the figure)
since Antena t is 1 (indicating type HIGH). By observing the
Antena signal, we can see that in the first two red boxes, it is
leaking a logical zero while in the third box it is transmitting
a logical one. These are the lowest three bits of the key,
which leaks to Antena via a shift register, i.e., SHIFTReg.

With enough simulation time, the entire 128-bit key will leak
to the Antena output.

Apart from these red boxed periods, there are ad-
ditional transition activities in the Antena signal when
BaudGenACC[25:23] = 000. However, these are normal
behaviors; they do not leak any information about the key
since the taint label Antena t is logical 0 (indicating type
LOW). GLIFT precisely captures when and where key leak-
age happens while functional testing/verification cannot.
Further, the Trojan design can be identified by tracking
backwards from Antena to the key using formal proofs
upon the GLIFT logic.

6.2 The RSA-T400 Example
The BasicRSA-T400 benchmark contains a Trojan that re-
places the key. Afterward, only the attacker can decrypt
the ciphertext. This Trojan violates the integrity of the key,
and thus we can write an information flow property to
describe it formally. To check the integrity property against
key replacement, we mark the key as LOW while all the
remaining inputs are marked HIGH. By formally proving
that the key register is always LOW, we can ensure that no
such manipulation can be made. This is feasible but requires
sufficient knowledge about the implementation details of
the core, e.g., where the key registers are. We take a different
approach in our test and mark discrete key bits as HIGH
while the remaining inputs as LOW. By formally proving that
the ciphertext is always HIGH, we can also guarantee that
the key is never replaced. This is based on the observation
that each single key bit should always flow to all digits of
the ciphertext.

We then use the Questa Formal tool to prove that the taint
label of ciphertext is always HIGH when it is valid. Formal
proof results show that the taint label of the ciphertext
can be LOW indicating that the key can possibly have no
influence on the ciphertext, i.e., it has been replaced. The
verification results also show that the ciphertext ready out-
put of the RSA core can be HIGH. After a closer examination
of the design, we figured out that the key leaked to the
ready output through a timing channel. Although this is not
a malicious scenario (Trojan), it does indicate the existence
of a security flaw.

Table 1 summarizes the trust-HUB benchmarks that we
tested. It shows the time used for GLIFT logic generation



6

TABLE 1
Designs from trust-HUB tested using our method. The GLIFT logic generation times are denoted in seconds. The proof times are in min:sec.

Benchmarks Trojan behavior Trigger GLIFT gen. time Proof time
AES-T100 Leaks the key through CDMA covert channel Always on 2.22 06:48
AES-T1000 Leaks the key through CDMA covert channel Single input 2.25 06:49
AES-T1100 Leaks the key through CDMA covert channel Input sequence 2.25 06:46
AES-T1200 Leaks the key through CDMA covert channel Counter 2.27 06:50
AES-T400 Leaks the key through modulated RF signal Single input 2.45 06:44
AES-T1600 Leaks the key through modulated RF signal Input sequence 2.50 06:37
AES-T1700 Leaks the key through modulated RF signal Counter 2.51 06:51
RSA-T100 Leaks the key through ciphertext Single input 0.08 05:19
RSA-T200 Replaces the key to disable encryption Single input 0.08 05:36
RSA-T300 Leaks the key through ciphertext Counter 0.09 16:31
RSA-T400 Replaces the key to leak the plaintext Counter 0.08 14:01

and the proof time for Trojan detection. For the AES-T100,
T1000, T1100 and T1200 benchmarks, our method has suc-
cessfully bypassed the trigger conditions since the leakage
points are XOR gates, which always allow the security labels
to propagate independent of input values. For the AES-
T400, T1600, T1700 and RSA-T100, T200 benchmarks, our
method detects the Trojans and identifies the leakage points
in less than 10 minutes.

From Table 1, our method can efficiently detect the
Trojans in a number of trust-HUB benchmarks. It cannot
capture all types of Trojans. Our method detects Trojans that
can cause undesirable flow of information either through
a maliciously modified data path or covert side channel.
In addition, it only accounts for logical information flows
and does not consider those that leak information through
physical side channels. However, our approach represents
a unique solution in the entire hardware Trojan detection
method spectrum. It complements existing detection solu-
tions by finding those Trojans that can cause violation of
information flow security properties related to confidential-
ity and integrity.

7 CONCLUSION

We have demonstrated how information flow analysis can
be used to detect hardware Trojans. Trojans are identified
by formally proving information flow security properties
related to confidentiality and integrity. By checking these
security properties, we can uncover design flaws that can
reveal hardware Trojans and other potential attack surfaces.
Our techniques work directly on hardware described in
standard language (Verilog, VHDL) and leverage off-the-
shelf EDA tools for analysis.

The current method of specifying the security property
is less than ideal. The security design flow would be sig-
nificantly enhanced with a formal language that enables
the security assessment team to specify important security
properties, and maps those to information flow proper-
ties. Furthermore, many designs share common security
properties. A library of such properties that can be easily
leveraged across designs would be beneficial in enhancing
the overall hardware security design flow. Finally, while
Trojans represent a significant cause of concern for hardware
security, unintentional design flaws can be equally harmful.
Broadening the design techniques past the detection of
Trojans to identify and mitigate non-malicious flaws is an
important area of research.

8 ACKNOWLEDGMENTS

This work was supported by the NSF under grant CNS-
1527631.

REFERENCES

[1] H. Salmani, M. Tehranipoor, and J. Plusquellic, “A novel technique
for improving hardware trojan detection and reducing trojan
activation time,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 20, no. 1, pp. 112–125, Jan 2012.

[2] J. Zhang, F. Yuan, L. Wei, Z. Sun, and Q. Xu, “Veritrust: Verifi-
cation for hardware trust,” in Proc. of the 50th Design Automation
Conference (DAC). New York, NY, USA: ACM, 2013, pp. 61:1–61:8.

[3] X. Wang, H. Salmani, M. Tehranipoor, and J. Plusquellic, “Hard-
ware trojan detection and isolation using current integration and
localized current analysis,” in Defect and Fault Tolerance of VLSI
Systems (DFVS), 2008. IEEE International Symposium on, Oct 2008,
pp. 87–95.

[4] K. Hu, A. N. Nowroz, S. Reda, and F. Koushanfar, “High-
sensitivity hardware trojan detection using multimodal character-
ization,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2013, March 2013, pp. 1271–1276.

[5] S. Narasimhan, D. Du, R. Chakraborty, S. Paul, F. Wolff, C. Pa-
pachristou, K. Roy, and S. Bhunia, “Hardware trojan detection by
multiple-parameter side-channel analysis,” IEEE Trans. Comput.,
vol. 62, no. 11, pp. 2183–2195, Nov 2013.

[6] Y. Liu, K. Huang, and Y. Makris, “Hardware trojan detection
through golden chip-free statistical side-channel fingerprinting,”
in Proc. of the 51st Design Automation Conference (DAC). New
York, NY, USA: ACM, 2014, pp. 155:1–155:6.

[7] M. Tehranipoor, H. Salmani, X. Zhang, X. Wang, R. Karri, J. Rajen-
dran, and K. Rosenfeld, “Trustworthy hardware: Trojan detection
and design-for-trust challenges,” Computer, vol. 44, no. 7, pp. 66–
74, July 2011.

[8] Y. Jin and Y. Makris, “Proof carrying-based information flow
tracking for data secrecy protection and hardware trust,” in 2012
IEEE 30th VLSI Test Symposium (VTS), April 2012, pp. 252–257.

[9] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood, “Complete information flow tracking from the gates
up,” in Proc. of the 14th international conference on Architectural sup-
port for programming languages and operating systems, ser. ASPLOS
’09. New York, NY, USA: ACM, 2009, pp. 109–120.

[10] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hardekopf,
R. Kastner, F. T. Chong, and T. Sherwood, “Crafting a usable
microkernel, processor, and i/o system with strict and provable
information flow security,” in Proceedings of the 38th Annual Inter-
national Symposium on Computer Architecture, ser. ISCA ’11. New
York, NY, USA: ACM, 2011, pp. 189–200.

[11] J. Oberg, S. Meiklejohn, T. Sherwood, and R. Kastner, “Leverag-
ing gate-level properties to identify hardware timing channels,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 33, no. 9, pp. 1288–1301, Sept 2014.

[12] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trust-
worthy hardware: Identifying and classifying hardware trojans,”
Computer, vol. 43, no. 10, pp. 39–46, Oct 2010.


