
Source and Executable

Mike Lai, mikelai@microsoft.com
Microsoft Corp

main()
{

cout <<
"Hello World\n";

return 0;
}

HelloWorld.cpp

Human readable
C++ source code

file

HelloWorld.exe

Machine readable
(binary) executable

file

Compilation

Customer Question: Was the executable running in my machine really built
from the same source code files that I or your 3rd party evaluators / auditors have reviewed / analyzed ?

Microsoft Response: Would you feel more comfortable if there are additional artifacts
to resolve the Customer Question?

Is that really the source code for this software?

 A generic issue of software -- including Open Source Software
 https://blogs.kde.org/2013/06/19/really-source-code-software
 https://blog.torproject.org/blog/deterministic-builds-part-one-

cyberwar-and-global-compromise
 https://wiki.debian.org/ReproducibleBuilds
 https://reproducible-builds.org/
 Video: https://www.sfscon.it/talks/you-think-youre-not-a-target-

a-tale-of-three-developers/
 Video: Hardware implants in the supply-chain
https://media.ccc.de/v/35c3-9597-modchips_of_the_state#t=106

https://blogs.kde.org/2013/06/19/really-source-code-software
https://blog.torproject.org/blog/deterministic-builds-part-one-cyberwar-and-global-compromise
https://wiki.debian.org/ReproducibleBuilds
https://reproducible-builds.org/
https://www.sfscon.it/talks/you-think-youre-not-a-target-a-tale-of-three-developers/
https://media.ccc.de/v/35c3-9597-modchips_of_the_state#t=106

The source / executable correspondence
question is asked more often than we think

https://www.gov.uk/government/publications/huawei-cyber-security-evaluation-centre-oversight-board-annual-report-2019

Our approach
Based on the artifacts being generated by compiler/linker toolchains

Compiler Generated Artifacts
• Compiler reads source code files
• Compiler outputs a pair of files:

1.Executable (exe, dll, sys, etc) containing the machine
instructions

2.Program Database (PDB) storing the debugging information
• Compiler computes strong hash values of source files
• Complier stores the hash values and the path names of source

files in the PDB
• U computes the strong hash of the PDB or list of src hash values
• U stores the PDB or src hash list hash in a dir of the executable
 See https://msdn.microsoft.com/en-us/magazine/mt795185

https://msdn.microsoft.com/en-us/magazine/mt795185

Artifact Interrelationship (following ECMA-335)

Debug
Directory

PDB Checksum Entry
Debug Type 19

Hashing
of the whole
PDB or the
source hash

list

HelloWorld.exe

helloworld.cpp (SHA_256: 3DF4...
stdio.h (SHA_256: C45C...
wchar.h (SHA_256: 123...

HelloWorld.pdb
or the source hash list

Image
Header

On top of a stronger binding between the exe and PDB pair,
your digital signing of the exe enables the integrity and authenticity
of the PDB (which includes the source file hashes) as well as
the exe (which contains the actual compiled binary code)

Binary
code

See https://bit.ly/2EcdPEp for the detail of PDB checksum in Debug Directory

https://bit.ly/2EcdPEp

Confirm that a source file was used during
the compilation of an executable

• You compute the hash value of the source file in question
(certutil –hashfile from system32)

• You discover the PDB file pairing with the executable in
question (symchk from MSDN)

• You verify that the hash value that you just computed matches
the hash value with the same source file name in the PDB that
you just discovered

• See KB 3195907 (http://bit.ly/2gNthQk)
• Exactly what WinDbg does before using the source file

http://bit.ly/2gNthQk

Still not convinced ?

Customer request: I want to recompile your
sources to reproduce the executable files myself
and to compare the reproduced with the
original, as in the case of OSS

Microsoft Response: Please stop by
one of our Transparency Centers
See https://www.microsoft.com/en-us/securityengineering/gsp for details

https://www.microsoft.com/en-us/securityengineering/gsp

Not as easy as one thought (1) – hex compare

Not as easy as one thought (2) – machine
instruction compare

Need special support from compiler/linker
toolchains

• 1980’s Apollo DSEE (Domain Software Engineering
Environment) reproduced an executable in a bit-by-bit
identical manner

• Visual Studio 2019 C++ compiler/linker supports
“/experimental:deterministic” and
“/pathmap:<SOURCE>=<DEST>” flags

• Visual Studio 2019 CSC compiler supports
“-deterministic” and “-pathmap:<SOURCE>=<DEST>” flags

• LLVM Clang toolchain, GCC toolchain -- see
https://reproducible-builds.org/ for information

How do I discover that a Windows 10 based
executable file is reproducible?

Use “link /dump /headers” against the executable file in question
to inspect the Debug Directories in its image header

checksumshow only diffs

time stamp
rsrc size

PDB ID

rsrc diffs

Official build

Private build

confirmed by
link dump
headers

confirmed by
RSRC editor

VER_PRIVATE
(1 bit)

VER_FILEOS
(00040004)

show only diffs Official build Private build

Showing empty – i.e. no difference

Also works when private build
occurs in a remote machine

Private build
without deterministic
Option (no trimming)

More diffs
to explain

Private build
with deterministic
Option (trimming)

Usage scenarios

Source hash database for query

Compatible with SARIF (Static Analysis Results
Interchange Format)

According to https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html

https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html

Identify delta source files for an update

Implication to updates

 The more deterministic the executable
generation is, the smaller the delta between the
original and the update is

 The smaller the delta is, the tinier the
bandwidth is needed to distribute the update

A vision for
the software ecosystem

future

Compilation Location Irrelevancy

Helloworld.exe

elsewhere

Helloworld.exe

In Xanadu

Helloworld.cxx

bit by bit identical

Compile & link
in Xanadu

Compile & link
elsewhere

as confirmed by the “repro”
entry in their PE header

Implies:
1) support of business recovery,
2) potential detection of unauthorized modification,
3) security audit / evaluation may be based on easier comparison or matching,
4) new business models / processes

Final Suggestion in 4 Steps
1. From the original, identify all the pieces

2. Clone a copy of the pieces

3. Reproduce from the cloned pieces

4. Compare the reproduced with the original

And in the case of OSS development

 An archive of the development environment that
you originally used to build your project is critical

 A best practice described in
https://www.freecodecamp.org/news/put-your-
dev-env-in-github

https://www.freecodecamp.org/news/put-your-dev-env-in-github

Questions

	Source and Executable
	Slide Number 2
	Is that really the source code for this software?
	The source / executable correspondence question is asked more often than we think
	Our approach
	Compiler Generated Artifacts
	Artifact Interrelationship (following ECMA-335)
	Confirm that a source file was used during the compilation of an executable
	Still not convinced ?
	Not as easy as one thought (1) – hex compare
	Not as easy as one thought (2) – machine instruction compare
	Need special support from compiler/linker toolchains
	How do I discover that a Windows 10 based executable file is reproducible?
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Usage scenarios
	Source hash database for query
	Compatible with SARIF (Static Analysis Results Interchange Format)
	Identify delta source files for an update
	Implication to updates
	A vision for �the software ecosystem �future
	Compilation Location Irrelevancy
	Final Suggestion in 4 Steps
	And in the case of OSS development
	Questions

