

MySQL Security Best Practices
Securing Amazon Aurora MySQL and Amazon RDS for MySQL resources

on AWS

First published August 28, 2024

Last updated August 28, 2024

Notices

Customers are responsible for making their own independent assessment of the information in this
document. This document: (a) is for informational purposes only, (b) represents current AWS product
offerings and practices, which are subject to change without notice, and (c) does not create any
commitments or assurances from AWS and its affiliates, suppliers, or licensors. AWS products or services
are provided “as is” without warranties, representations, or conditions of any kind, whether express or
implied. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements,
and this document is not part of, nor does it modify, any agreement between AWS and its customers.

© 2024 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Abstract and introduction ... 5

Abstract ... 5

Introduction .. 5

Shared responsibility model ... 6

Security in the cloud alongside the security of the cloud ... 6

Infrastructure .. 6

AWS Nitro–based instances .. 6

Internodal encryption ... 7

Identity and access management (IAM) ... 7

Networking.. 9

Network isolation .. 9

VPC flow logs ... 10

VPC endpoints ... 10

Encryption ... 10

AWS KMS ... 10

Encryption at rest .. 11

Secrets Manager and password rotation .. 11

Auditing and monitoring ... 11

CloudTrail integration ... 11

Event notifications .. 12

Configuration .. 12

Master user ... 12

Parameter groups ... 12

Deletion protection ... 12

RDS recommendations .. 13

Patch management ... 13

Protecting data in transit .. 13

Secure connections ... 13

Certificate authority .. 14

Authentication and authorization ... 14

Password management ... 14

Kerberos authentication ... 15

IAM authentication ... 15

Authentication plugins .. 15

Auditing and logging ... 16

Aurora MySQL advanced auditing .. 16

Database Activity Streams .. 16

MySQL-specific logs .. 16

CloudWatch logging .. 17

Intrusion detection and prevention .. 17

Performance Insights .. 17

Data isolation techniques ... 17

Conclusion ... 18

Contributors .. 18

Document revisions .. 18

Amazon Web Services Whitepaper Title

5

Abstract and introduction

Abstract

Amazon Relational Database Service (Amazon RDS) provides a managed platform on which customers can
run a variety of relational databases, including MySQL, MariaDB, PostgreSQL, SQL Server, Oracle, Amazon
Aurora MySQL-Compatible Edition, and Amazon Aurora PostgreSQL-Compatible Edition. This whitepaper
outlines security best practices for securing databases running on Aurora MySQL and Amazon RDS for
MySQL. The target audience for this whitepaper includes database administrators, enterprise architects,
systems administrators, and developers who would like to run their database workloads on Amazon RDS.

Introduction

Securing databases is crucial for protecting sensitive customer and business data. As organizations
increasingly rely on cloud-based databases managed by services like Amazon RDS, it is important to
understand best practices for configuring security controls in these database as a service (DBaaS)
platforms. While database management services handle many complex security tasks behind the scenes,
customers are still responsible for implementing appropriate access controls and encryption to ensure
their data is protected.

This whitepaper outlines important security considerations and configuration steps for deploying MySQL
and Aurora MySQL databases using RDS. We will discuss the shared responsibility model and how it
applies to database security. Key topics covered include networking and access controls, encryption of
data at rest and in transit, authentication and authorization methods, auditing and monitoring
capabilities. Following the guidance in this whitepaper will help organizations maximize the security of
their database workloads managed by RDS.

Shared responsibility model

Security in the cloud alongside the security of the cloud

AWS implements a shared responsibility model with regard to resources in the cloud. In short, AWS is
responsible for the security of the cloud, and customers are responsible for security in the cloud.

Security of the cloud – AWS provides secure global facilities and infrastructure that spans regions,
availability zones and edge locations. Layered on top of this infrastructure are compute, storage,
database, and networking resources that serve as the foundation for every service offered by AWS. From
the data centers, all the way up to the software that manages these services, AWS provides a secure cloud
on which our customers can build secure and compliant applications.

Security in the cloud – Your responsibility is determined by the AWS service that you use. You are also
responsible for other factors including the sensitivity of your data, your organization's requirements, and
applicable laws and regulations. AWS provides a set of features and services to help you secure your data.
This paper helps you understand how to apply the shared responsibility model when using Amazon RDS.

Infrastructure

AWS Nitro–based instances

The AWS Nitro System breaks apart the traditional role of the hypervisor by providing dedicated hardware
and software to control the CPU, storage, networking, bios, and other physical hardware. The net result
is that virtually all of the actual server resources go toward running your workload rather than managing
a hypervisor.

From a security perspective, the AWS Nitro System provides a specific security chip. This chip is locked
down and does not allow administrative or human access, including from Amazon employees.
Furthermore, this chip is constantly monitoring the security of the instance hardware and firmware.

For a full list of Amazon EC2 instances that are built on the AWS Nitro System, see Instances built on the
AWS Nitro System. The Aurora instance types that use the AWS Nitro System include: T3, T4g, R7g, R6g,
R6i, R6gd, and R6id. The RDS instance types that use the AWS Nitro System include: T4g, M7g, M6g, M5,
R7g, R6i, R6g, R5, and Z1d.

Most new instance types are AWS Nitro enabled. If you are running your workload on older hardware, we
recommend moving to a newer AWS Nitro–enabled instance. There is no additional configuration
required to take advantage of the performance advantages AWS Nitro offers.

Internodal encryption

Communication between Aurora instances and Aurora storage is automatically encrypted and requires no
additional configuration on the part of the end user.

Identity and access management (IAM)

IAM is the cornerstone of resource management on AWS. IAM defines the access permissions granted to
entities to create, modify, and delete resources on AWS. In order to create an RDS instance, one must first
have the appropriate IAM permissions to do so.

Permissions within IAM are defined using policies. A policy is a document outlining a certain set of
operations (create, modify, delete) that can be applied to certain services or resources. Once a policy is
defined, that policy can be attached to an IAM identity (user, group, or role). These identities can be
assumed by people directly accessing AWS, or by other resources on AWS. For example, it is common for
an EC2 instance to assume a role that contains one or more policies. Let’s say that one of those policies
allows for writing files to an Amazon S3 bucket but does not allow for reading from the same bucket. In
this case, application code running on that EC2 instance can generate log files and write them to the
specified S3 bucket, but the application will not have access to read or delete those files. Similarly, let’s
say that a person has an AWS CloudFormation template that defines an Aurora cluster. In order to
provision that template, the user will need to assume a role associated with a policy that grants
permissions to create the cluster.

It is of critical importance to secure IAM identities and use restrictive policies. In order to secure IAM
identities, it is best practice to only use the AWS account root user to create other users, and then lock
away those root credentials. Likewise, when creating policies, it is best practice to only grant very narrow
and specific permissions required to accomplish the task at hand. For example, if you wish to create a
policy that allows a user to modify a single Aurora cluster, you can restrict access to the specific Amazon
Resource Name (ARN) of that cluster. Or perhaps you would like to grant access to create new Aurora
clusters, but not to delete them. This can be controlled with a restrictive policy. This is in contrast to
attaching the AmazonRDSDataFullAccess built-in policy to a given identity.

Beyond creating, modifying, and deleting database instances and clusters, IAM can also be used to
authenticate application users to your Aurora MySQL and RDS for MySQL databases. The general
procedure can be summed up as follows:

1. Create or modify an Aurora MySQL cluster or RDS for MySQL instance and set the Enable IAM
DB Authentication parameter to “yes.”

2. Create a local database user as follows: CREATE USER db_user_name IDENTIFIED WITH
AWSAuthenticationPlugin as 'RDS';

3. Create an IAM policy that specifies connection rights to the user created in step 2. For example:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "rds-db:connect"

],

 "Resource": [

"arn:aws:rds-db:region:account-id:dbuser:dbi-resource-id/database-user-name"

]

 }

]

}

region AWS Region (for example, us-east-2)

account-id AWS account ID (for example, 123456789012)

dbi-resource-id Resource ID of the cluster (for example, cluster-
OXA6X2XDA225H7PKKDB7FORNAY)

database-user-name Local database user created in step 2

At this point, the database is configured to authenticate the user specified above using IAM
authentication. The next step is to authenticate from your application. This authentication occurs using
the SDK of your choice and calling the generate-db-auth-token method to get a temporary authentication
token in lieu of a password. Subsequently, you would use the specified username that you created and
the temporary authentication token as the password.

Note that using IAM authentication initially places additional load on your database instance. However,
using connection pooling ensures that this increased load is only at application startup.

We recommend using IAM authentication when possible to remove the need for password management.
There are, however, caveats to using IAM authentication.

Networking

Network isolation

The main construct available to users to control network access to RDS resources is Amazon Virtual Private
Cloud (Amazon VPC). RDS databases exist inside of a VPC. With a VPC, one can establish various subnets
and define their connectivity to one another and the outside world. In nearly all circumstances, relational
databases should be inaccessible, and they should not have access to network resources outside of the
VPC. By adding your RDS databases to private subnets (with no direct route to an internet gateway),
devices outside of your VPC do not have direct access to your RDS database. So long as there is no network
address translation (NAT) device available to the subnet, your RDS databases do not have direct access to
devices outside of your VPC.

When creating an RDS instance, there is an option to specify if the instance should be publicly accessible
or not. If you choose that it should be publicly accessible, it will be granted a public IP address. If the
instance is also in a publicly accessible subnet within the VPC, the instance will be accessible from the
public internet. (However, in order to be given a routable hostname, the VPC must be configured to
support DNS.) In nearly all circumstances, however, database instances should not be publicly accessible,
and this parameter should be disabled.

VPCs also provide network access control lists (ACLs) to allow you to control network traffic at the subnet
level. Traffic can be filtered based on protocol, port, and source. For databases, the default network ACL
for a VPC is sufficient. However, there are often other considerations, based on the applications involved
and organizational factors. For those unique situations, network ACLs are another filtering tool in your
toolbelt.

A more commonly used tool for controlling network access to database resources is security groups.
Security groups also allow you to control access at the network level, enabling traffic to be filtered based
on protocol, port, and source. However, security groups also have the ability to filter another security
group. For example, if you have a fleet of EC2 instances that need to communicate with your RDS instance,
you can apply a security group named “ApplicationServers” to those EC2 instances and a second security
group named “RdsResource” to your RDS database. To allow the EC2 instances to communicate with the
RDS instance, you would add a rule to the RdsResource security group that allows ingress from the
ApplicationServers security group. Adding a rule is more convenient than limiting access based solely on
source IP ranges and provides more flexibility should underlying IP resources change.

Now you have deployed your RDS resources in a private subnet, inaccessible from external network
devices, you need to administratively connect to those RDS resources. In this case, the most common
approach is to use a bastion host. A bastion host is a compute resource that has access to both RDS
resources and the outside world. In this scenario, although the bastion host is publicly accessible, the

security group associated with this host should only allow access from known IP ranges. In turn, that
security group will be granted access to the RDS resources that are not publicly accessible. From a user’s
perspective, one can directly SSH to the bastion host and issue commands from the bastion host.
Alternatively, a user can opt to create an SSH tunnel that will allow them to use local applications on their
computer and tunnel communication through the bastion host.

VPC flow logs

Once controls are put into place to manage network isolation, the next step is to audit network traffic.
The primary tool to accomplish this is VPC flow logs. VPC flow logs identify network traffic flow. Flow logs
can be useful in diagnosing overly restrictive network ACLs or security groups, or they can help you
uncover gaps in your network controls that are allowing traffic that should be prohibited.

VPC flow logs have no impact on network performance and can be published to Amazon CloudWatch Logs,
Amazon Simple Storage Solution (Amazon S3), or Amazon Data Firehose. Each of these destinations
provides a different benefit. Amazon S3 is a cost-effective way to capture VPC flow logs as part of an audit
trail that might be infrequently accessed. CloudWatch Logs provides a common logging location along
with other log types, and it is straightforward to query from the AWS Management Console. Firehose is a
great tool for ongoing, near real-time analysis of your VPC flow log records.

VPC endpoints

VPC endpoints provide a mechanism for applications to access service endpoints from within a VPC, rather
than transmit data across the public internet. For example, you might run an EC2 instance that has
assumed a role that gives it the ability to stop RDS instances in your development environment during off
hours. Normally, the API call made to stop the RDS instance would need to travel on the public internet.
If your EC2 instance is on a private subnet without a NAT gateway, it will not be able to connect to the
RDS API to issue the command to stop the instance. By enabling AWS PrivateLink, your EC2 instance can
now issue the stop command without being on a public subnet or using an NAT gateway. Traffic remains
on the Amazon network, and neither your EC2 instance nor the relevant RDS instance is exposed to the
public internet.

Encryption

AWS KMS

One of the most basic necessities of security when working with databases is to encrypt your data. To
encrypt data requires encryption keys, and the management of those keys is a critical consideration when
securing your databases. Fortunately, the AWS Key Management Service (AWS KMS) is specifically
designed to create, manage, and rotate encryption keys, and it seamlessly integrates with the RDS
platform. AWS KMS allows users to create symmetric and asymmetric keys for encryption and decryption
purposes as well as HMAC authentication. AWS KMS is not specific to RDS and is integrated with a variety
of other AWS services. This integration allows for a unified key management system across AWS. AWS

KMS offers keys that are scoped to a single AWS Region to provide key isolation as well as keys that can
be replicated between Regions for seamless cryptographic functionality around the globe.

Encryption at rest

Encryption at rest is straightforward to implement on the RDS platform. Whenever you create an RDS
database instance or an Aurora cluster, you need only check the box that indicates that your volume is to
be encrypted, and then select the appropriate key to use for that encryption. From that point forward,
the RDS platform will encrypt the entire database volume using the specified key. Snapshots and
automated backups created from this volume will also be encrypted using the same key. When selecting
a key, you can either choose a customer managed key that you have created or the AWS KMS key. Using
a customer managed key offers you greater control with regard to key rotation, key material origin, and
Region. Additionally, if you are planning to share an encrypted snapshot, it is possible to grant access to a
customer managed key, but you cannot grant access to an AWS KMS key.

So far, we have discussed the encryption of on-disk data. If you wish to encrypt data at a more granular
level such as row or column, MySQL offers several built-in encryption functions. AES_ENCRYPT and
AES_DECRYPT enable symmetric encryption using a shared key. If your application has a secure way of
managing this shared key, a shared key can be a suitable solution for cell-level encryption. Alternately,
you can use AWS KMS. You can directly use the encrypt and decrypt functions of the AWS KMS SDK. If you
decide to use the native MySQL encryption functions (or other application-specific functions), you can use
GenerateDataKey to access keys securely stored by AWS KMS.

Secrets Manager and password rotation

Although there are various ways to authenticate to a database instance, perhaps the most common is
using a username and password. Often, these credentials are stored unencrypted in code or configuration
files. This presents a significant security risk. If your application requires username and password
authentication, you should consider storing those credentials in AWS Secrets Manager. Secrets Manager
allows you to encrypt these credentials and then access them using an IAM role, as previously discussed
in this whitepaper. Encryption ensures that usernames and passwords are never stored in plaintext and
are not embedded in application code. AWS provides tutorials on how to use Secrets Manager in your
organization.

Auditing and monitoring

CloudTrail integration

AWS CloudTrail allows users to log actions performed in an AWS account. Actions can be initiated by a
user, role, or AWS service. The actions logged include management events, including AWS API calls that
make modifications to resources within your AWS account, as well as data events such as Amazon S3
object-level activities and AWS Lambda invocations. Regardless of the source (the console, CLI, SDK), these
actions are recorded for future auditing, governance, and compliance of your AWS account. CloudTrail is
automatically enabled and does not require any manual setup.

CloudTrail is an important part of RDS security, as it provides an audit mechanism for changes made to
database resources. If, for example, an RDS instance is created and you need to know who created that
instance, that information can be identified using CloudTrail. Additionally, CloudTrail provides the AWS
CloudTrail Insights feature that helps you detect anomalies that CloudTrail discovers, alerting you to a
potential security risk.

Event notifications

RDS event notification provides a mechanism to invoke an Amazon Simple Notification Service (Amazon
SNS) topic when events related to RDS take place. For example, you might create an Amazon SNS topic
that sends an email when invoked. You could then tie this SNS topic to an RDS event that is invoked when
a database instance has an availability issue such as a shutdown or restart. Alternately, you can use a
Lambda SNS endpoint, so that programmatic action takes place in response to the invoked event.

Although there are many RDS events, certain events should be specifically monitored for security., These
include items related to credentials such as RDS-EVENT-0016 (reset master credentials), items related to
available updates such as RDS-EVENT-0230 (update available), items related to database security groups
such as RDS-EVENT-0038 (applied change to security group), and configuration changes such as RDS-
EVENT-0092 (finished updating database parameter group).

Configuration

Master user

The master user is the initial user created when any RDS instance is created. This account is the closest
login to root that is provided on an RDS instance. It is recommended best practice to provide a strong
password for this login, create other users with some subset of the master user’s permissions, and then
store the master user credentials in a secure location such as Secrets Manager. It is not possible to
authenticate as the master user using IAM. It is strongly recommended that the master user not be directly
used in any application. This practice helps ensure the principle of least privilege and keeps your database
secure.

Parameter groups

RDS parameter groups allow you to create a set of parameters that can be applied to one or many RDS
instances of the same database engine type. For example, you might create a parameter group for MySQL
8.0 that can then be applied to all MySQL 8.0 instances in your account in the specified Region. You benefit
here from centralized management and the standardization of parameters. Inside of the parameter group,
you can configure engine-specific security features. Those features are explored later in this whitepaper.

Deletion protection

For production database instances, it is important to take note of the enable deletion protection
parameter. By enabling this parameter, the instance or cluster you are creating cannot be deleted unless

the parameter is turned off. This provides an additional step to delete RDS resources to help prevent
accidental instance deletion.

RDS recommendations

At the bottom of the left navigation bar in the RDS console is a link to RDS recommendations. These are
recommendations that will occasionally appear to notify you of best practices for your specific RDS
resources. We advise that you periodically review these recommendations and consider implementing
them where it makes sense for your applications.

Patch management

Patch management is critical to database security. Over time, new patches are released for any given
database engine that can contain performance or stability improvements, but often contain additional
security fixes. In the case of RDS, patches are applied at the OS level and the database-engine level. In
most cases, it is best practice to enable the automatic minor version upgrades feature. This feature
ensures that your database instances are always kept up to date with the latest security patches. In order
to minimize disruption to existing workloads, the minor version upgrade happens during your specified
maintenance window.

Operating system updates come in two varieties. The first is optional updates. Get notified when an
optional operating system update is available by using the RDS event functionality discussed earlier and
specifically subscribing to RDS-EVENT-0230.

The second category of operating system updates is the mandatory category. Unlike optional updates,
which can be skipped at your discretion, mandatory updates come with an apply date. If you do not apply
the update by that date, it will be automatically applied for you during your specified maintenance
window.

Protecting data in transit

Secure connections

Both Aurora MySQL and RDS for MySQL support transport layer security (TLS), which allows you to
encrypt the communications between your application and the database instance. The specific TLS
versions and cipher suites in use can be specified at the parameter-group level using the tls_version and
tls_ciphersuites parameters respectively. It is recommended best practice to use either TLS version 1.2
or 1.3. Additionally, the ssl_cipher parameter allows for control of the symmetric algorithms used for
encryption. The specific values to use for these parameters will depend on your particular business and
regulatory requirements.

For many users, it is a requirement that all connections to the database are encrypted. In this case, you
can set the require_secure_transport parameter within the parameter group to ON. Since there is

computational overhead required to encrypt and decrypt traffic, the default value for this parameter is
OFF.

If your business requirements call for some unencrypted connections but require others to be
encrypted, this mix is achievable by specifying the REQUIRE SSL parameter when creating or altering a
user within the database. For example: ALTER USER 'encrypted_user'@'%' REQUIRE SSL;

When connecting to the database, the ssl-mode parameter governs whether and how to establish a
secure connection. By setting this parameter to DISABLED, no encryption is used. PREFERRED will
encrypt the connection if possible, but will fall back to unencrypted if encryption is unavailable.
REQUIRED ensures that encryption is used or the connection fails. VERIFY_CA is the same as REQUIRED,
but VERIFY_CA has the added requirement of ensuring the server certificate authority (CA) is verified
against the configured CA certificates. VERIFY_IDENTITY is the same as VERIFY_CA but with the
additional requirement of validating the hostname used by the client with the hostname of the
certificate installed on the database instance. If you are using a custom CNAME to point your application
to the database instance, this validation will fail, as the hostname specified in the application matches
the CNAME and not that of the database instance itself.

Ultimately, encrypting connections will require additional computational overhead, which might result
in a small impact to performance. However, it is recommended to encrypt all traffic between your
application and database instance if possible.

Certificate authority

A CA identifies the root of a certificate chain and is used to sign other certificates. In the case of Aurora
MySQL and RDS for MySQL, the CA is used when creating a certificate on the database instance. The
specified CA can be changed using the console, CLI, or SDK. For more detailed information regarding
specific CAs offered, see the documentation.

Authentication and authorization

Password management

Creating, altering, and granting permissions to users in Aurora MySQL and RDS for MySQL happens at
the engine level and is identical to user management in community MySQL. That said, both Aurora
MySQL and RDS for MySQL allow for the configuration of a default password lifetime controlled by the
default_password_lifetime parameter in the provided parameter group. A longer lifetime can be
specified for a complex password stored in Secrets Manager and used with an application. However,
shorter password lifetimes can be required of passwords belonging to individual users, where the risk of
exposure might be greater.

RDS for MySQL offers the password validation plugin for RDS for MySQL. This plugin enforces password
policies specified by way of the instance parameter group using the password validation parameters.
This plugin is helpful to ensure strong passwords for your database instances.

MySQL 8.14 introduced a new feature known as dual passwords. This feature allows for a login to have
two passwords at once. Dual passwords are helpful when updating a password across a fleet of
application servers or replicas. While the new password is being added, clients will still be able to
connect using the old password. Once all clients are updated, remove the old password by using the
“DISCARD” parameter of the ALTER USER command.

Kerberos authentication

Customers who currently use Kerberos authentication with Microsoft Active Directory might also wish to
use Kerberos authentication with their RDS resources. Aurora MySQL and RDS for MySQL support
Kerberos authentication. Kerberos authentication is recommended as a more secure approach to
credential management than managing standalone usernames and passwords. Kerberos authentication
shifts the management of users and passwords to a centralized Microsoft Active Directory and lifts that
burden from the database administrator.

IAM authentication

Applications running on Amazon EC2, Lambda, and other AWS services often assume an IAM role. This
role serves as the identity of the calling application and can be used to authenticate the application to
your RDS database with IAM authentication. The primary benefit to using IAM authentication to your
database is that no password management is required and there are very minimal code changes to the
authentication portion for an application that is already using a username and password. IAM
authentication allows you to create a user within the database and allocate permissions just as you
would any other user. The primary difference is that, instead of specifying a password, you create the
user with “IDENTIFIED WITH AWSAuthenticationPlugin as 'RDS';.” To connect to the database, connect
as you would with a username and password, but instead of providing a predetermined password, call
generate-db-auth-token, which will return a short-lived password token (15 minutes). There are some
limitations on the possible number of connection requests in a given time period, and the initial
connection call requires more resources than using a static password. IAM authentication is better
suited, therefore, for applications that use connection pooling.

Authentication plugins

When using username and password authentication in MySQL 5.7, the default authentication plugin is
mysql_native_password. This plugin uses the SHA1 hash algorithm. This is the least secure of the native
authentication plugins. The sha256_password plugin uses the SHA256 hash algorithm, which is more
secure but computationally expensive. The caching_sha2_password plugin offers the same SHA256
hashing algorithm, but uses a server-side cache for better performance. When possible, it is
recommended to use the caching_sha2_password plugin.

When working with IAM authentication, the appropriate plugin to use is AWSAuthenticationPlugin.

Auditing and logging

Once a secure connection has been established between the application and the database server and a
user has connected and performed granted activities, the next step is to audit what that user has done.

Aurora MySQL advanced auditing

Depending on the line of business, there are often compliance and regulatory requirements that
necessitate auditing database activity. These requirements include, but are not limited to, applications in
the financial sector. To support these compliance and regulatory requirements, Aurora MySQL offers an
advanced auditing feature that allows users to capture a variety of events and log them to the cluster’s
storage volume. Advanced auditing is useful for capturing events within your Aurora MySQL cluster
including:

 CONNECT – captures connections (success and failure), disconnects, and user information
 QUERY – captures all queries in plaintext
 QUERY_DCL – similar to QUERY, but only DCL commands
 QUERY_DDL – similar to QUERY, but only DDL commands
 QUERY_DML – similar to Query, but only DML commands
 TABLE – captures tables affected by query execution

Capturing this information comes with additional overhead. How much additional overhead depends on
which events are being captured and the overall traffic volume.

Your specific business requirements might only require this information to be captured for a subset of
users. In that case, you can filter what is captured by using the server_audit_incl_users and
server_audit_excl_users parameters. Doing so will also reduce overhead accordingly.

Database Activity Streams

Another mechanism that helps you capture changes made to your databases is Database Activity Streams.
Database Activity Streams allows you to stream changes in near real time to Amazon Kinesis Data Streams.
The data captured in your Database Activity Stream can be analyzed in, and provide near real-time
feedback about, the activity in your database. Furthermore, multiple third-party compliance applications,
such as IBM’s Security Guardium, can consume and monitor the data in your stream. The data captured
in your Database Activity Stream is encrypted using an AWS KMS key that you specify.

MySQL-specific logs

MySQL, and by extension Aurora MySQL, generate other logs that, while not specific to security concerns,
can still contain valuable security insights.

The error log contains error information, but it also captures other information such as mysqld startup
and shutdown times and various diagnostic messages.

The general query log captures details about what mysqld is doing while running. This includes recording
information about connections as well as capturing each SQL statement issued to the database engine.
This activity adds certain overhead costs, and so it is disabled by default. This general query log can be
useful to temporarily enable when attempting to track down specific activity from a specific source. If you
enable this log, be sure to set the log_output parameter to FILE and not TABLE, as TABLE will incur
significantly greater overhead.

The slow query log is used primarily to capture slow queries. You can set the long_query_time parameter
to a threshold, measured in seconds. Any query that takes longer than that threshold to run will be
captured in the log. Setting the long_query_time to 0 will capture all queries sent to the database.
Although the slow query log is not specifically a security feature, it provides another mechanism to capture
traffic to the database for further analysis.

CloudWatch logging

The audit log, error log, general query log, and slow query log are logged by default on storage local to
the database instance. When working with a large number of database instances, it is not practical to
connect to each instance to review these logs. Furthermore, processing these logs to find patterns or
anomalies is also not a trivial undertaking. Fortunately, RDS offers the ability to publish these logs to
CloudWatch Logs. By sending your logs to CloudWatch Logs, you now have a single, centralized repository
to view logs. What’s more, CloudWatch Logs offers the ability to query your logs through CloudWatch
Logs Insights when researching a specific issue and detect anomalies in your logs using log anomaly
detection to uncover unknown issues.

Intrusion detection and prevention

Amazon GuardDuty is an AWS service that can monitor CloudTrail event logs, CloudTrail management
events, VPC flow logs, and DNS logs in an effort to detect communication with known bad actors and
identify anomalous behavior. RDS is one of the many AWS services that GuardDuty supports. Aurora
MySQL and Aurora PostgreSQL are also currently supported. Aurora enables GuardDuty to access login
activity to your database clusters, identify anomalous behavior, and report the details to you. This is a
recommended feature to detect and prevent unauthorized access to your Aurora databases.

Performance Insights

Amazon RDS Performance Insights is a tool primarily designed for capturing and analyzing the
performance of your databases. However, anomalous behavior related to performance can be a tip-off
that there has been a security incident requiring deeper investigation. RDS Performance Insights can show
you the top SQL users and hosts, which might help you identify unanticipated behavior.

Data isolation techniques

While it is important to implement the correct features within a database to keep your data secure,
equally important is employing best practices for data isolation. For example, you might have a table for

which certain users should only have a filtered view. If the business requirement is that the table can be
accessed in the live database, then it might make sense to utilize a view. If the end user can use a snapshot
of the data, you might want to consider exporting a database snapshot to Amazon S3. With the database
snapshot feature, you can export either a full or a filtered view of a given RDS snapshot to Amazon S3 in
Parquet format. Consumers can then run their queries with Amazon Athena, Apache Spark, or any other
tool capable of consuming Parquet files.

Conclusion

This whitepaper outlines the most important security best practices for deploying and protecting Aurora
MySQL and RDS for MySQL databases. By using RDS security features like encryption at rest, IAM
authentication, and advanced auditing, organizations can safely run their critical relational workloads in
the cloud.

Contributors

Contributors to this document include:

 Steve Abraham, Principal Database Specialist Solutions Architect, AWS

Further reading

For additional information, refer to:

 AWS Architecture Center

 Security in Amazon Aurora

 Amazon Aurora security

 Security best practices for Amazon Aurora

 Security in Amazon RDS

 MySQL security on Amazon RDS

 Security best practices for Amazon RDS

Document revisions

Date Description

August 28, 2024 First publication

