
Archived
Optimizing Electronic Design
Automation (EDA) Workflows

on AWS

September 2018

This version has been archived.

For the most recent version of this paper, see
https://docs.aws.amazon.com/whitepapers/latest/semiconductor-design-

on-aws/semiconductor-design-on-aws.html

https://docs.aws.amazon.com/whitepapers/latest/semiconductor-design-on-aws/semiconductor-design-on-aws.html

Archived

© 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments,

conditions or assurances from AWS, its affiliates, suppliers or licensors. The

responsibilities and liabilities of AWS to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

Archived

Contents

Abstract vi

Introduction 1

EDA Overview 1

Benefits of the AWS Cloud 2

Improved Productivity 2

High Availability and Durability 3

Matching Compute Resources to Requirements 3

Accelerated Upgrade Cycle 4

Paths for Migrating EDA Workflows to AWS 5

Data Access and Transfer 5

Consider what Data to Move to Amazon S3 5

Dependencies 6

Suggested EDA Tools for Initial Proof of Concept (POC) 7

Cloud-Optimized Traditional Architecture 7

Building an EDA Architecture on AWS 8

Hypervisors: Nitro and Xen 9

AMI and Operating System 9

Compute 11

Network 15

Storage 15

Licensing 23

Remote Desktops 25

User Authentication 27

Orchestration 27

Optimizing EDA Tools on AWS 29

Amazon EC2 Instance Types 29

Archived

Operating System Optimization 30

Networking 36

Storage 36

Kernel Virtual Memory 37

Security and Governance in the AWS Cloud 37

Isolated Environments for Data Protection and Sovereignty 38

User Authentication 38

Network 38

Data Storage and Transfer 40

Governance and Monitoring 42

Contributors 44

Document Revisions 44

Appendix A – Optimizing Storage 45

NFS Storage 45

Appendix B – Reference Architecture 47

Appendix C – Updating the Linux Kernel Command Line 49

Update a system with /etc/default/grub file 49

Update a system with /boot/grub/grub.conf file 50

Verify Kernel Line 50

Archived

Abstract
Semiconductor and electronics companies using electronic design automation

(EDA) can significantly accelerate their product development lifecycle and time

to market by taking advantage of the near infinite compute, storage, and

resources available on AWS. This whitepaper presents an overview of the EDA

workflow, recommendations for moving EDA tools to AWS, and the specific

AWS architectural components to optimize EDA workloads on AWS.

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 1

Introduction
The workflows, applications, and methods used for the design and verification of

semiconductors, integrated circuits (ICs), and printed circuit boards (PCBs) have been

largely unchanged since the invention of computer-aided engineering (CAE) and

electronic design automation (EDA) software. However, as electronics systems and

integrated circuits have become more complex, with smaller geometries, the computing

power and infrastructure requirements to design, test, validate, and build these systems

have grown significantly. CAE, EDA, and emerging workloads, such as computational

lithography and metrology, have driven the need for massive scale computing and data

management in next-generation electronic products.

In the semiconductor and electronics sector, a large portion of the overall design time is

spent verifying components, for example in the characterization of intellectual property

(IP) cores and for full-chip functional and timing verifications. EDA support

organizations—the specialized IT teams that provide infrastructure support for

semiconductor companies—must invest in increasingly large server farms and high-

performance storage systems to enable higher quality and faster turnaround of

semiconductor test and validation. The introduction of new and upgraded IC fabrication

technologies may require large amounts of compute and storage, for relatively short

times, to enable rapid completion of hardware regression testing or to recharacterize

design IP.

Semiconductor companies today use Amazon Web Services (AWS) to take advantage of

a more rapid, flexible deployment of CAE and EDA infrastructure, from the complete IC

design workflow, from register-transfer-level (RTL) design, to the delivery of GDSII files

to a foundry for chip fabrication. AWS compute, storage, and higher level services are

available on a dynamic, as-needed basis without the significant upfront capital

expenditure that is typically required for performance-critical EDA workloads.

EDA Overview

EDA workloads comprise workflows and a supporting set of software tools that enable

the efficient design of microelectronics, and in particular semiconductor integrated

circuits (ICs). Semiconductor design and verification relies on a set of commercial or

open-source tools, collectively referred to as EDA software, which expedites and reduces

time to silicon tape-out and fabrication. EDA is a highly iterative engineering process

that can take from months, and in some cases years, to produce a single integrated

circuit.

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 2

The increasing complexity of integrated circuits has resulted in an increased use of

preconfigured or semi-customized hardware components, collectively known as

intellectual property (IP) cores. These cores (provided by IP developers as generic gate-

level netlists) are either designed in-house by a semiconductor company, or purchased

from a third-party IP vender. IP cores themselves requires EDA workflows for design

and verification, and to characterize performance for specific IC fabrication

technologies. These IP cores are used in combination with IC-specific, custom-designed

components, to create a complete IC that often includes a complex system-on-chip

(SoC) making use of one of more embedded CPUs, standard peripherals, I/O, and

custom analog and/or digital components.

The complete IC itself, with all its IP cores and custom components, then requires large

amounts of EDA processing for full-chip verification—including modeling (that is,

simulating) all of the components within the chip. This modeling, which includes HDL

source-level validation, physical synthesis, and initial verification (for example, using

techniques such as formal verification), is known as the front-end design. The physical

implementation, which includes floor planning, place and route, timing analysis, design-

rule-check (DRC), and final verification, is known as the back-end design. When the

back-end design is complete, a file is produced in GDSII format. The production of this

file is known, for historical reasons, as tapeout. When completed, the file is sent to a

fabrication facility (a foundry), which may or may not be operated by the semiconductor

company, where a silicon wafer is manufactured. This wafer, containing perhaps

thousands of individual ICs, is then inspected, cut into dies that are themselves tested,

packaged into chips that are tested again, and assembled onto a board or other system

through highly automated manufacturing processes.

All of these steps in the semiconductor and electronics supply chain can benefit from the

scalability of cloud.

Benefits of the AWS Cloud
Before discussing the specifics of moving EDA workloads to AWS, it is worth noting the

benefits of cloud computing on the AWS Cloud.

Improved Productivity

Organizations that move to the cloud can see a dramatic improvement in development

productivity and time to market. Your organization can achieve this by scaling out your

compute needs to meet the demands of the jobs waiting to be processed. AWS uses per

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 3

second billing for our compute resources, allowing you to optimize cost by only paying

for what you use, down to the second. By scaling horizontally, you can run more

compute servers (that is, Amazon Elastic Compute Cloud [Amazon EC2] instances) for a

shorter period of time, and pay the same amount as if you were running fewer servers

for a longer period of time. For example, because the number of compute hours

consumed are the same, you could complete a 48-hour design regression in just two

hours by dynamically growing your cluster by 24X or more in order to run many

thousands of pending jobs in parallel.

These extreme levels of parallelism are commonplace on AWS, across a wide variety of

industries and performance-critical use cases.

High Availability and Durability

Amazon EC2 is hosted in multiple locations worldwide. These locations comprise

regions and Availability Zones (AZs). Each AWS Region is a separate geographic area

around the world, such as Oregon, Virginia, Ireland, and Singapore. Each AWS Region

where Amazon EC2 runs is designed to be completely isolated from the other regions.

This design achieves the greatest possible fault tolerance and stability. Resources are not

replicated across regions unless you specifically configure your services to do so.

Within each geographic region, AWS has multiple, isolated locations known as

Availability Zones. Amazon EC2 provides you the ability to place resources, such as EC2

instances, and data in multiple locations using these Availability Zones. Each

Availability Zone is isolated, but the Availability Zones in a region are connected

through low-latency links. By taking advantage of both multiple regions and multiple

Availability Zones, you can protect against failures and ensure you have enough capacity

to run even your most compute intensive workflows. Additionally, this large global

footprint enables you to position computing resources near your IC design engineers in

situations where low-latency performance is important. For more information, refer to

AWS Global Infrastructure.

Matching Compute Resources to Requirements

AWS offers many different configurations of hardware, called instance families, in order

to enable customers to match their compute needs with those of their jobs. Because of

this and the on-demand nature of the cloud, you can get the exact systems you need for

the exact job you need to perform for only the time you need it.

https://aws.amazon.com/about-aws/global-infrastructure/?hp=tile

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 4

Amazon EC2 instances come in many different sizes and configurations. These

configurations are built to support jobs that require both large and small memory

footprints, high core counts of the latest generation processors, and storage

requirements from high IOPS to high throughput. By right-sizing the instance to the

unit of work it is best suited for, you can achieve higher EDA performance at lower

overall cost. You no longer need to purchase EDA cluster hardware that is entirely

configured to meet the demands of just a few of your most demanding jobs. Instead, you

can choose servers, launch entire clusters of servers, and scale these clusters up and

down, uniquely optimizing each cluster for specific applications, and for specific stages

of chip development.

For example, consider a situation where you’re performing gate-level simulations for a

period of just a few weeks, such as during the development of a critical IP core. In this

example, you might need to have a cluster of 100 machines (representing over 2,000

CPU cores) with a specific memory-to-core ratio and a specific storage configuration.

With AWS, you can deploy and run this cluster, dedicated only for this task, for only as

long as the simulations require, and then terminate the cluster when that stage of your

project is complete.

Now consider another situation in which you have multiple semiconductor design teams

working in different geographic regions, each using their own locally installed EDA IT

infrastructure. This geographic diversity of engineering teams has productivity benefits

for modern chip design, but it can create challenges in managing large-scale EDA

infrastructure (for example, to efficiently utilize globally licensed EDA software). By

using AWS to augment or replace these geographically separated IT resources, you can

pool all of your global EDA licenses in a smaller number of locations using scalable, on-

demand clusters on AWS. As a result, you can more rapidly complete critical batch

workloads, such as static timing analysis, DRC, and physical verification.

Accelerated Upgrade Cycle

Another important reason to move EDA workloads to the cloud is to gain access to the

latest processor, storage, and network technologies. In a typical on-premises EDA

installation, you must select, configure, procure, and deploy servers and storage devices

with the assumption that they remain in service for multiple years. Depending on the

selected processor generation and time-of-purchase, this means that performance-

critical, production EDA workloads might be running on hardware devices that are

already multiple years, and multiple processor generations, out of date. When using

AWS, you have the opportunity to select and deploy the latest processor generations

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 5

within minutes and configure your EDA clusters to meet the unique needs of each

application in your EDA workflow.

Paths for Migrating EDA Workflows to AWS
When you begin the migration of EDA workflows to AWS, you will find there are many

parallels with managing traditional EDA deployments across multiple data centers.

Larger organizations in the semiconductor industry typically have multiple data centers

that are geographically segregated because of the distributed nature of their design

teams. These organizations typically choose specific workloads to run in specific

locations, or replicate and synchronize data to allow for multiple sites to take the load of

large-scale, global EDA workflows. If your organization uses this approach, you need to

consider that the specifics around topics such as data replication, caching, and license

server management depend on many internal and organizational factors.

Most of the same approaches and design decisions related to multiple data centers also

apply to the cloud. With AWS, you can build one or more virtual data centers that

mirror existing EDA data center designs. The foundational technologies that enable

things like compute resources, storage servers, and user workstations are available with

just a few keystrokes. However, the real power of using the AWS Cloud for EDA

workloads comes from the dynamic capabilities and enormous scale provided by AWS.

Data Access and Transfer

When you first consider running workloads in the cloud, you might envision a bursting

scenario where cloud resources are set up as an augmentation to your existing on-

premises compute cluster. Although you can use this model successfully, data

movement presents a significant challenge when building an architecture to support

bursting in a seamless way. Your organization might see the most benefit if you consider

bursting on a project-by-project basis and choose to run entire workflows on AWS,

thereby freeing up existing on-premises resources to handle other tasks. By approaching

cloud resources this way, you can use much simpler data transfer mechanisms because

you are not trying to sync data between AWS and your data centers.

Consider what Data to Move to Amazon S3

Prior to moving your EDA tools to AWS, consider the processes and methods that will

be in place as you move from initial experiments to full production. For example,

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 6

consider what data will be needed for an initial performance test, or for a first workflow

proof of concept (POC).

Data is gravity, and moving only the limited amount of data needed to run your EDA

tools to an Amazon Simple Storage Service (Amazon S3) bucket allows for flexibly and

agility when building and iterating your architecture on AWS. There are several benefits

to storing data in Amazon S3; for an EDA POC, using Amazon S3 allows you to iterate

quickly, as the S3 transfer speed to an EC2 instance is up to 25 Gbps. With your data

stored in an S3 bucket, you can more quickly experiment with different EC2 instance

types, and also experiment with different working-storage options, such as creating and

tuning temporary shared file systems.

Deciding what data to transfer is dependent on the tools or designs you are planning to

use for the POC. We encourage customers to start with a relatively small amount of POC

data; for example, only the data required to run a single simulation job. Doing so allows

you to quickly gain experience with AWS and build an understanding of how to build

production-ready architecture on AWS while in the process of running an initial EDA

POC workload.

Dependencies

Semiconductor design environments often have complex dependencies that can hinder

the process of moving workflows to AWS. We can work with you to build an initial proof

of concept or even a complex architecture. However, it is the designer’s or tool

engineer’s responsibility to unwind any legacy on-premises data dependencies. The

initial POC process requires effort to determine which dependencies, such as shared

libraries, need to be moved along with project data. There are tools available that help

you build a list of dependencies, and some of these tools yield a file manifest that

expedites the process of moving data to AWS. For example, one tool is Ellexus Container

Checker, which can be found on the AWS Marketplace.

Dependencies can include authentication methods (for example, NIS), shared file

systems, cross organization collaboration, and globally distributed designs. (Identifying

and managing such dependencies is not unique to cloud migration; semiconductor

design teams face similar challenges in any distributed EDA environment.)

Another approach may be to launch a net-new semiconductor project on AWS, which

should significantly reduce the number of legacy dependencies.

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 7

Suggested EDA Tools for Initial Proof of Concept (POC)

An HDL compile and simulation workflow may be the fastest approach to launching an

EDA POC on AWS, or creating a production EDA environment. HDL files are typically

not large, and the ability to use an on-premises license server (via VPN), reduces the

additional effort of moving your licensing environment to AWS. HDL compile and

simulation workflows are representative of other EDA workloads, including their need

for shared file systems and some form of job scheduling.

Cloud-Optimized Traditional Architecture

On AWS, compute and storage resources are available on-demand, allowing you to

launch on what you need and when you need it. This enables a different approach to

architecting your semiconductor design environment. Rather than having one large

cluster where multiple projects are running, you can use AWS to launch multiple

clusters. Because you can configure compute resources to increase or decrease on

demand, you can build clusters that are specific to different parts of the workflow, or

even specific projects. This allows for many benefits, including project-based cost

allocation, right-size compute and storage, and environment isolation.

Figure 1: Workload-specific EDA clusters on AWS

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 8

As seen in Figure 1, moving to AWS allows you to launch a separate set of resources for

each of your EDA workloads (for example, a cluster). This multi-cluster approach can

also be used for global and cross-organizational collaboration. The multi-cluster

approach can be used, for example, to dedicate and manage specific cloud resources for

specific projects, encouraging organizations to use only the resources required for their

project.

Job Scheduler Integration

The EDA workflow that you build on AWS can be a similar environment to the one you

have in your on-premises data center. Many, if not all, of the same EDA tools and

applications running in your data center, as well as orchestration software, can also be

run on AWS. Job schedulers, such as IBM Platform LSF, Adaptive PBS Pro, and Univa

Grid Engine (or their open source alternatives), are typically used in the EDA industry to

manage compute resources, optimize license usage, and coordinate and prioritize jobs.

When you migrate to AWS, you may choose to use these existing schedulers essentially

unchanged, to minimize the impact on your end-user workflows and processes. Most of

these job schedulers already have some form of native integration with AWS, allowing

you to use the master node to automatically launch cloud resources when there are jobs

pending in the queue. You should refer to the documentation of your specific job

management tool for the steps to automate resource allocation and management on

AWS.

Building an EDA Architecture on AWS
Building out your production-ready EDA workflow on AWS requires an end-to-end

examination of your current environment. This examination begins with the operating

system you are using for running your EDA tools, as well as your job scheduling and

user management environments. AWS allows for a mix of architectures when moving

semiconductor design workloads, and you can leverage some combination of the

following two approaches:

• Build an architecture similar to a traditional cluster, using traditional job

scheduling software, but ensuring that a cloud native approach is used.

• Use more cloud-native methods, such as AWS Batch, which uses

containerization of your applications.

Where needed, we will make the distinction when using AWS Batch can be

advantageous, for example when running massively parallel parameter sweeps.

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 9

Hypervisors: Nitro and Xen

Amazon EC2 instances use a hypervisor to divide resources on the server, so that each

customer has separate CPU, memory, and storage resources for just that customer’s

instance. We do not use the hypervisor to share resources between instances, except for

the T* family. On previous generation instance types, for example the C4 and R4

families, EC2 instances are virtualized using the Xen hypervisor. In current-generation

instances, for example C5, R5, and Z1d, we are using a specialized piece of hardware and

a highly customized hypervisor based on KVM. This new hypervisor system is called

Nitro. At the time of this writing, these are the Nitro based instances: Z1d, C5, C5d, M5,

M5d, R5, R5d.

Launching Nitro based instances requires that specific drivers for networking and

storage be installed and enabled before the instance can be launched. We provide the

details for this configuration in the next section.

AMI and Operating System

AWS has built-in support for numerous operating systems (OSs). For EDA users,

CentOS, Red Hat Enterprise Linux, and Amazon Linux 2 are used more than other

operating systems. The operating system and the customizations that you have made in

your on-premises environment are the baseline for building out your EDA architecture

on AWS. Before you can launch an EC2 instance, you must decide which Amazon

Machine Image (AMI) to use. An AMI contains the OS, any required OS and driver

customizations, and may also include the application software. For EDA, one approach

is to launch an instance from an existing AMI, customize the instance after launch, and

then save this updated configuration as a custom AMI. Instances launched from this

new custom AMI include the customizations that you made when you created the AMI.

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 10

Figure 2: Use Amazon provided AMI to build a Customized AMI

Figure 2 illustrates the process of launching an instance with an AMI. You can select the

AMI from the AWS Console or from the AWS Marketplace, and then customize that

instance with your EDA tools and environment. After that, you can use the customized

instance to create a new, customized AMI that you can then use to launch your entire

EDA environment on AWS. Note also that the customized AMI that you create using this

process can be further customized. For example, you can customize the AMI to add

additional application software, load additional libraries, or apply patches, each time the

customized AMI is launched onto an EC2 instance.

As of this writing, we recommend these OS levels for EDA tools (more detail on OS

versions is provided in following sections):

• Amazon Linux and Amazon Linux 2 (verify certification with EDA tool vendors)

• CentOS 7.4 or 7.5

• Red Hat Enterprise Linux 7.4 or 7.5

These OS levels have the necessary drivers already included to support the current

instance types, which include Nitro based instances. If you are not using one of these

levels, you must perform extra steps to take advantage of the features of our current

instances. Specifically, you must build and enable enhanced networking, which relies on

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 11

the elastic network adaptor (ENA) drivers. See Network and Optimizing EDA Tools on

AWS for more detailed information on ENA drivers and AMI drivers.

If you use an instance with Nitro (Z1d, C5, C5d, M5, M5d, R5, R5d), you must use an

AMI that has the AWS ENA driver built and enabled, and the NVMe drivers installed. At

this time, a Nitro based instance does not launch unless you have these drivers. These

OS levels include the required drivers:

• CentOS 7.4 or later

• Red Hat Enterprise Linux 7.4 or later

• Amazon Linux or Amazon Linux 2 (current versions)

To verify that you can launch your AMI on a Nitro based instance, first launch the AMI

on a Xen based instance type, and then run the c5_m5_checks_script.sh script found

on the awslabs GitHub repo at awslabs/aws-support-tools/EC2/C5M5InstanceChecks/

The script analyzes your AMI and determines if it can run on a Nitro based instance. If it

cannot, it displays recommended changes.

You can also import your own on-premises image to use for your AMI. This process

includes extra steps, but may result in time savings. Before importing an on-premises

OS image, you first require a VM image for your OS. AWS supports certain VM formats

(for example, Linux VMs that use VMware ESX) that must be uploaded to an S3 bucket,

and subsequently converted into an AMI. Detailed information and instructions can be

found at https://aws.amazon.com/ec2/vm-import/

The same operating system requirements mentioned above are also applicable to

imported images (that is, you should use CentOS/RHEL 7.4 or 7.5, Amazon Linux or

Amazon Linux 2).

Compute

Although AWS has many different types and sizes of instances, the instance types in the

compute-optimized and memory-optimized categories are typically best suited for EDA

workloads. When running EDA software on AWS, you should choose instances that

feature the latest generations of Intel Xeon processors, using a few different

configurations to meet the needs of each application in your overall workflow.

https://github.com/awslabs/aws-support-tools/blob/master/EC2/C5M5InstanceChecks/
https://aws.amazon.com/ec2/vm-import/

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 12

The compute-optimized instance family features instances that have the highest clock

frequencies available on AWS, and typically enough memory to run some memory

intensive workloads.

Typical EDA use cases for compute-optimized instance types:

• Simulations

• Synthesis

• Formal verification

• Regression tests

Z1d for EDA Tools

AWS has recently announced a powerful new instance type that is well optimized for

EDA applications. The faster clock speed on the Z1d instance, with up to 4 GHz

sustained Turbo performance, allows for EDA license optimization while achieving

faster-time to results. The Z1d uses an AWS specific Intel Xeon Platinum 8000-series

(Skylake) processor and is the fastest AWS instance type. The following list summarizes

the features of the Z1d instance:

• Sustained all core frequency of up to 4.0 GHz

• Six different instance sizes with up to 24 cores (48 threads) per instance

• Total memory of 384 GiB

• Memory to core ratio of 16 GiB RAM per core

• Includes local Instance Store NVMe storage (as much as 1.8 TiB)

• Optimized for EDA and other high performance workloads

Additional Compute-Optimized Instances

C5, C5d, C4

In addition to the Z1d, the C5 instance features up to 36 cores (72 threads) and up to 144

GiB of RAM. The processor used in the C5 is the same as the Z1d, the Intel Xeon

Platinum 8000-series (Skylake), but also includes a base clock speed of 3.0 GHz and the

ability to turbo boost up to 3.5 GHz.

The C5d instance is the same configuration as the C5, but offers as much as 1.8 TiB of

local NVMe SSD storage.

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 13

Previous generation C4 instances are also commonly used by EDA customers and still

remain a suitable option for certain workloads, such as those that are not memory-

intensive.

Memory Optimized Instances

Z1d, R5, R5d, R4, X1, X1e

The Z1d instance is not only compute-optimized, but memory optimized as well,

including 384 GiB of total memory. The Z1d has the highest clock frequency of any

instance, and with the exception of our X1 and X1e instances, is equal to the most

memory per core (16 GiB/core). If you require larger amounts of memory than what is

available on the Z1d, consider another memory-optimized instance, such as the R5, R5d,

R4, X1, or X1e.

Typical EDA use cases for memory-optimized instance types:

• Place and route

• Static timing analysis

• Physical verification

• Batch mode RTL simulation (multithread optimized tools)

The R5 and R5d have the same processor as the Z1d and C5, the Intel Xeon Platinum

8000-series (Skylake). With the largest R5 and R5d instance types having up to 768 GiB

memory, EDA workloads that could previously only run on the X1 or X1e, can now run

on the R5 and R5d instances. These recently released instances are serving as a drop-in

replacement for the R4 instance, for both place and route, as well as batch mode RTL

simulation. The R4.16xlarge instance is viable option, with a high core count (32) and 15

GiB/core ratio. For this reason, we see a large number of customers using the

R4.16xlarge instance type.

The X1 and X1e instance types can also be used for memory intensive workloads;

however, testing of EDA tools by Amazon internal silicon teams has indicated that most

EDA tools will run well on the Z1d, R4, R5, or R5d instances. The need for the amount of

memory provided on the X1 (1952 GiB) and X1d (3,904 GiB) has been relatively

infrequent for semiconductor design.

Hyper-Threading

Amazon EC2 instances support Intel Hyper-Threading Technology (HT Technology),

which enables multiple threads to run concurrently on a single Intel Xeon CPU core.

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 14

Each thread is represented as a virtual CPU (vCPU) on the instance. An instance has a

default number of CPU cores, which varies according to instance type. Each vCPU is a

hyperthread of an Intel Xeon CPU core, except for T2 instances. You can specify the

following CPU options to optimize your instance for semiconductor design workloads:

• Number of CPU cores: You can customize the number of CPU cores for the

instance. This customization may optimize the licensing costs of your software

with an instance that has sufficient amounts of RAM for memory-intensive

workloads but fewer CPU cores.

• Threads per core: You can disable Intel Hyper-Threading Technology by

specifying a single thread per CPU core. This scenario applies to certain

workloads, such as high performance computing (HPC) workloads.

You can specify these CPU options during instance launch (currently on support

through the AWS Command Line Interface [AWS CLI], an AWS software development

kit [SDK], or the Amazon EC2 API only). There is no additional or reduced charge for

specifying CPU options. You are charged the same amount as instances that are

launched with default CPU options. Refer to Optimizing CPU Options in the Amazon

Elastic Compute Cloud User Guide for Linux Instances for more details and rules for

specifying CPU options.

Divide the vCPU number by 2 to find the number of physical cores on the instance. You

can disable HT Technology if you determine that it has a negative impact on your

application’s performance. See Optimizing EDA Tools on AWS for details on disabling

Hyper-Threading.

Table 1 lists the instance types that are typically used for EDA tools.

Table 1: Instance specifications suitable for EDA workloads

Instance

Name

*Max Core

Count

CPU Clock Frequency Max Total

RAM

in GiB

Memory to

core ratio,

GiB / core

Local

NVMe

Z1d 24 4.0 GHz 384 16 Yes

R5 / R5d 48 Up to 3.1 GHz 768 16 Yes on R5d

R4 32 2.3 GHz 488 15.25

M5 / M5d 48 Up to 3.1 GHz 384 8 Yes on M5d

C5 / C5d 36 Up to 3.5 GHz 144 4 Yes on C5d

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 15

Instance

Name

*Max Core

Count

CPU Clock Frequency Max Total

RAM

in GiB

Memory to

core ratio,

GiB / core

Local

NVMe

X1 64 2.3 GHz 1,952 30.5 Yes

X1e 64 2.3 GHz 3,904 61 Yes

C4 18 2.9 GHz boost to 3.5 60 3.33

*NOTE: AWS uses vCPU (which is an Intel Hyper-Thread) to denote processors, for this table we are using cores.

Network

Amazon enhanced networking technology enables instances to communicate at up to

25 Gbps for current-generation instances and up to 10 Gbps for previous-generation

instances. In addition, enhanced networking reduces latency and network jitter.

Enhanced networking is enabled by default on these operating system levels:

▪ Amazon Linux

▪ Amazon Linux 2

▪ CentOS 7.4 and 7.5

▪ Red Hat Enterprise Linux 7.4 and 7.5

If you have an older version of CentOS or RHEL you can enable enhanced networking

by installing the network module and updating the enhanced network adapter (ENA)

support attribute for the instance. For more information about enhanced networking,

including build and install instructions, refer to the Enhanced Networking on Linux

page in the Amazon Elastic Compute Cloud User Guide for Linux Instances.

Storage

For EDA workloads running at scale on any infrastructure, storage can quickly become

the bottleneck for pushing jobs through the queue. Traditional centralized filers serving

network file systems (NFS) are commonly purchased from hardware vendors at

significant costs in support of high EDA throughout. However, these centralized filers

can quickly become a bottleneck for EDA, resulting in increased job run times and

correspondingly higher EDA license costs. Planned or unexpected increases in EDA

data, and the need to access that data across a fast-growing EDA cluster means that the

filers eventually run out of storage space, or become bandwidth constrained by either

the network or storage tier.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 16

EDA applications can take advantage of the wide array of storage options available on

the AWS, resulting in reduced run times for large batch workloads. Achieving these

benefits may require some amount of EDA workflow rearchitecting, but the benefits of

making these optimizations can be numerous.

Types of Storage on AWS

Before discussing the different options for deploying EDA storage, it is important to

understand the different types of storage services available on AWS.

Amazon EBS

Amazon Elastic Block Store (Amazon EBS) provides persistent block storage volumes

for use with Amazon EC2 instances in the AWS cloud. EBS volumes are attached to

instances over a high-bandwidth network fabric and appear as local block storage that

can be formatted with a file system on the instance itself. Each Amazon EBS volume is

automatically replicated within its Availability Zone to protect you from component

failure, offering high availability and durability. Amazon EBS volumes offer the

consistent and low-latency performance required to run semiconductor workloads.

When selecting your instance type, you should select an instance that is Amazon EBS-

optimized by default. An Amazon EBS optimized instance provides dedicated

throughput to Amazon EBS which is isolated from any other network traffic and an

optimized configuration stack to provide optimal Amazon EBS I/O performance. If you

choose an instance that is not Amazon EBS optimized, you can enable Amazon EBS-

optimization by using --ebs-optimized with the modify-instance-attribute

parameter in the AWS CLI, but additional charges may apply (cost is included with

instances where Amazon EBS is optimized by default).

Amazon EBS is the storage that backs all modern Amazon EC2 instances (with a few

exceptions) and is the foundation for creating high speed file systems on AWS. With

Amazon EBS, it is possible to achieve up to 80,000 IOPS and 1,750 MB/s from a single

Amazon EC2 instance.

It is important to choose the correct EBS volume types when building your EDA

architecture on AWS. Table 2 shows the EBS volumes types that you should consider.

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 17

Table 2: EBS Volume Types

 io1 gp2* st1 sc1

Volume Type
Provisioned IOPS

SSD

General Purpose

SSD

Throughput

Optimized HDD
Cold HDD

Volume Size 4 GB - 16 TB 1 GB - 16 TB 500 GB - 16 TB 500 GB - 16 TB

Max IOPS**/Volume 32,000 10,000 500 250

Max Throughput/Volume 500 MB/s 160 MB/s 500 MB/s 250 MB/s

 *Default volume type

 **io1/gp2 based on 16K I/O size, st1/sc1 based on 1 MB I/O size

When choosing your EBS volume types, consider the performance characteristics of

each EBS volume. This is particularly important when building a NFS server or another

file system solutions. Achieving the maximum capable performance of an EBS volume

depends on the size of the volume. Additionally, the gp2, st1, and sc1 volume types use a

burst credit system, and this should be taken in to consideration as well.

Each AWS EC2 instance type has a throughput and IOPS limit. For example, the

Z1d.12xlarge has EBS limits of 1.75 GB/s and 80,000 IOPS. (For a chart that shows the

Amazon EBS throughput expected for each instance type, refer to Instance Types that

Support EBS Optimization in the Amazon Elastic Compute Cloud User Guide for Linux

Instances.) To achieve these speeds, you must stripe multiple EBS volumes together as

each volume has its own throughput and IPOS limit. Refer to Amazon EBS Volume

Types in the Amazon Elastic Compute Cloud User Guide for Linux Instances for

detailed information about throughput, IOPS, and burst credits.

Enhancing Scalability with Dynamic EBS Volumes

Semiconductor design has a long history of over-provisioning hardware to meet the

demands of backend workloads that may not be run for months or years after the

customer specifications are received. On AWS, you provision only the resources you

need, when you need them. For the typical on-premises EDA cluster, IT teams are

accustomed to purchasing large arrays of network attached storage, even though their

initial needs are relatively small.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html#ebs-optimization-support
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html#ebs-optimization-support
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 18

A key feature of EBS storage is elastic volumes (available on all current generation EBS

volumes attached to current-generation EC2 instances). This feature allows you to

provision a volume that meets your application requirements today, and as your

requirements change, allows you to increase the volume size, adjust performance, or

change the volume type while the volume is in use. You can continue to use your

application while the change takes effect.

An on-premises installation normally requires manual intervention to adjust storage

configurations. Leveraging EBS elastic volumes and other AWS services, you can

automate the process of resizing your EBS volumes. Figure 3 shows the automated

process of increasing the volume size using Amazon CloudWatch (metrics and

monitoring service and AWS Lambda (an event-driven, serverless compute service). The

volume increase event is triggered (e.g. usage threshold) using a CloudWatch alarm and

a Lamba function. The resulting increase is automatically detected by the operating

system, and a subsequent file system grow operation resizes the file system.

Figure 3: Lifecycle for automatically resizing an EBS volume

Instance Storage

For use cases where the performance of Amazon EBS is not sufficient on a single

instance, Amazon EC2 instances with Instance Store are available. Instance Store is

block-level storage that is physically attached to the instance. As the storage is directly

attached to the instance, it can provide significantly higher throughput and IOPS than is

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 19

available through network based storage, similar to Amazon EBS. However, because the

storage is locally attached to the instance, data on the Instance Store does not persist

when you stop or terminate the instance. Additionally, hardware failures on the instance

would likely result in data loss. For these reasons, instance Store is recommended for

temporary scratch space or for data replicated off of the instance (for example, Amazon

S3). You can increase durability by choosing an instance with multiple NVMe devices,

and create a RAID set with one or more parity devices.

The I3 instance family and the recently announced Z1d, C5d, M5d and R5d instances are

well-suited for EDA workloads requiring a significant amount of fast local storage, such

as scratch data. These instances use NVMe based storage devices and are designed for

the highest possible IOPS. The Z1d and C5d instances each have up to 1.8 TiB of local

instance store, and the R5d and M5d instances each have up to 3.6 TiB of local instance

store.

The i3.16xlarge can deliver 3.3 million random IOPS at 4 KB block size and up to 16

GB/s of sequential disk throughput. This performance makes the i3.16xlarge well-suited

for serving file systems for scratch or temporary data over NFS.

Table 3 shows the instance types typically found in the semiconductor space that have

instance store.

Table 3: Instances typically found in the EDA space with Instance Store

Instance Name Max Raw Size TiB

Number and size of NVMe SSD (GiB)

I3 15.2 TiB 8 x 1920

Z1d 1.8 TiB 2 x 900

R5d 3.6 TiB 4 x 900

M5d 3.6 TiB 4 x 900

C5d 1.8 TiB 2 x 900

X1 3.840 TiB 2 x 920

X1e 3.840 TiB 2 x 1920

The data on NVMe instance storage is encrypted using an XTS-AES-256 block cipher

implemented in a hardware module on the instance. The encryption keys are generated

using the hardware module and are unique to each NVMe instance storage device. All

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 20

encryption keys are destroyed when the instance is stopped or terminated and cannot be

recovered. You cannot disable this encryption and you cannot provide your own

encryption key1.

NVMe on EC2 Instances

Amazon EC2 instances based on the Nitro hypervisor feature local NVMe SSD storage

and also expose Amazon Elastic Block Store (Amazon EBS) volumes as NVMe block

devices. This is why certain operating system levels are required for Nitro based

instances. In other words, only an AMI that has the required NVMe drives installed

allows you to launch a Nitro based instance. See AMI and Operating System for

instructions on verifying that your AMI will run on a Nitro based instance.

If you use EBS volumes on Nitro based instances, configure two kernel settings to

ensure optimal performance. Refer to the NVMe EBS Volumes page of the Amazon

Elastic Compute Cloud User Guide for Linux Instances for more information.

Amazon Elastic File System (Amazon EFS)

You can opt for building your own NFS file server on AWS (discussed in the “Traditional

NFS File System” section), or you can launch a shared NFS file system using Amazon

Elastic File System (Amazon EFS). Amazon EFS provides simple, scalable NFS based

file storage for use with Amazon EC2 instances in the AWS Cloud. A fully managed,

petabyte scale file system, Amazon EFS provides a simple interface that enables you to

create and configure file systems quickly and easily. With Amazon EFS, storage capacity

is elastic, increasing and decreasing automatically as you add and remove files, so your

applications have the storage they need, when they need it.

Amazon EFS is designed for high availability and durability, and can deliver high

throughput when deployed at scale. The data stored on an EFS file system is

redundantly stored across multiple Availability Zones. In addition, an EFS file system

can be accessed concurrently from all Availability Zones in the region where it is located.

However, because all Availability Zones must acknowledge file system actions (that is,

create, read, update, or delete), latency can be higher than traditional shared file

systems that do not span multiple Availability Zones. Because of this, it is important to

test your workloads at scale to ensure EFS meets your performance requirements.

Amazon S3

Amazon Simple Storage Service (Amazon S3) is object storage with a simple web service

interface to store and retrieve any amount of data from anywhere on the web. It is

designed to deliver 99.999999999% durability, and scale to handle millions of

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/nvme-ebs-volumes.html

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 21

concurrent requests and grow past trillions of objects worldwide. Amazon S3 offerings

include following range of storage classes.

• Amazon S3 Standard for general-purpose storage of frequently accessed data.

• Amazon S3 Standard – IA (for infrequent access) for long-lived, but less

frequently accessed data.

• Amazon Glacier for long-term data archival.

Amazon S3 also offers configurable lifecycle policies for managing your objects so that

they are stored cost effectively throughout their lifecycle.

Amazon S3 is accessed via HTTP REST requests typically through the AWS software

development kits (SDKs) or the AWS Command Line Interface (AWS CLI). You can use

the AWS CLI to copy data to and from Amazon S3 in the same way that you copy data to

other remote file systems, using ls, cp, rm, and sync command line operations.

For EDA workflows, we recommend that you consider Amazon S3 for your primary data

storage solution to manage data uploads and downloads, and to provide high data

durability. For example, you can quickly and efficiently copy data from Amazon S3 to

Amazon EC2 instances and Amazon EBS storage to populate a high performance shared

file system prior to launching a large batch regression test or timing analysis. However,

we recommend that you do not use Amazon S3 to directly access (read/write) individual

files during the runtime of a performance critical application. The best architectures for

high performance, data intensive computing available on AWS consist of Amazon S3,

Amazon EC2, Amazon EBS, and Amazon EFS to balance performance, durability,

scalability, and cost for each specific application.

Traditional NFS File Systems

For EDA workflow migration, the first and most popular option for migrating storage to

AWS is to build systems similar to your on-premises environment. This option enables

you to migrate applications quickly without having to rearchitect your applications or

workflow. With AWS, it’s simple to create a storage server by launching an Amazon EC2

instance with adequate bandwidth and Amazon EBS throughput, attaching the

appropriate EBS volumes, and sharing the file system to your compute nodes using NFS.

When building storage systems for the immense scale that EDA can require for large

scale regression and verification tests, there are a number of approaches you can take to

ensure your storage systems are able to handle the throughput.

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 22

The largest Amazon EC2 instances support 25 Gbps of network bandwidth and up to

80,000 IOPS and 1,750 MB/s to Amazon EBS. If the data is temporary or scratch data,

you can use an instance with NVMe volumes to optimize the backend storage. For

example, you can use the i3.16xlarge with 8 NVMe volumes that is capable of up to

16GB/s and 3M IOPS for local access. The 25 Gbps network connection to the

i3.16xlarge then becomes the bottleneck, and not the backend storage. This setup results

in an NFS that is capable of 2.5 GB/s.

For EDA workloads that require more performance in aggregate than can be provided

by a single instance, you can build multiple NFS servers that are delegated to specific

mount points. Typically, this means that you build servers for shared scratch, tools

directories, and individual projects. By building servers in this way, you can right size

the server and the storage allocated to it according to the demands of a specific

workload. When projects are finished, you can archive the data to a low cost, long term

storage solution like Amazon Glacier. Then, you can delete the storage server, thereby

saving additional cost.

When building the storage servers, you have many options. Linux software raid (mdadm)

is often a popular choice for its ubiquity and stability. However, in recent years ZFS on

Linux has grown in popularity and customers in the EDA space use it for the data

protection and expansion features that it provides. If you use ZFS, it’s relatively simple

to build a solution that pools a group of EBS volumes together to ensure higher

performance of the volume, set up automatic hourly snapshots to provide for point-in-

time rollbacks, and replicate data to backup servers that are in other Availability Zones

to provide for fault tolerance.

Although out of the scope of this document, if you want more automated and managed

solutions, consider AWS partner storage solutions. Examples of partners that provide

solutions for running high performance storage on AWS include SoftNAS, WekaIO, and

NetApp.

Cloud Native Storage Approaches

Because of its low cost and strong scaling behaviors, Amazon S3 is well-suited for EDA

workflows because you can adapt the workflows to reduce or eliminate the need for

traditional shared storage systems. Cloud-optimized EDA workflows use a combination

of Amazon EBS storage and Amazon S3 to achieve extreme scalability at very low costs,

without being bottlenecked by traditional storage systems.

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 23

To take advantage of a solution like this, your EDA organization and your supporting IT

teams might need to untangle many years of legacy tools, file system sprawl, and large

numbers of symbolic links in order to understand what data you need for specific

projects (or job deck) and pre-package the data along with the job that requires it. The

typical first step in this approach is to separate out the static data (for example,

application binaries, compilers, and so on) from dynamically changing data and IP in

order to build a front-end workflow that doesn’t require any shared file systems. This is

an important step for optimized cloud migration, and also provides the benefit of

increasing the scalability and reliability of legacy, on-premises EDA workflows.

By using this less NFS centric approach to manage EDA storage, operating system

images can be regularly updated with static assets so that they’re available when the

instance is launched. Then, when a job is dispatched to the instance, it can be configured

to first download the dynamic data from Amazon S3 to local or Amazon EBS storage

before launching the application. When complete, results are uploaded back to Amazon

S3 to be aggregated and processed when all jobs are finished. This method for

decoupling compute from storage can provide substantial performance and reliability

benefits, in particular for frontend RTL batch regressions.

Licensing

Application licensing is required for most EDA workloads, both on-premises and on

AWS. From a technical standpoint, managing and accessing licenses is unchanged when

migrating to AWS.

License Server Access

On AWS, each Amazon EC2 instance launched is provided with a unique hostname and

hardware (MAC) address using Amazon elastic network interfaces that cannot be cloned

or spoofed. Therefore, traditional license server technologies (such as Flexera) work

natively on AWS without any modification. The inability to clone license servers, which

is prevented by AWS by not allowing the duplication of MAC addresses, also provides

EDA software vendors with increased confidence that EDA software can be deployed

and used in a secure manner.

Because of the connectivity options available, which include the use of VPNs and AWS

Direct Connect, you can run your license servers on AWS using an Amazon EC2 instance

or within your own data centers. By allowing connectivity through a VPN or AWS Direct

Connect between cloud resources and on-premises license servers, AWS enables users to

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 24

seamlessly run workloads in any location without having to split licenses and dedicate

them to specific groups of compute resources.

Figure 4: License server deployment scenarios

Licensed applications are sometimes sensitive to network latency and jitter between the

execution host and the license server. Although internet-based VPN is often a good

choice for connecting to AWS from your corporate datacenter, network latency over the

Internet can vary, affecting performance and reliability of some licensed applications.

Alternatively, a private, dedicated connection from your on-premises network to the

nearest AWS Region using AWS Direct Connect can provide a reliable network

connection with consistent latency.

Improving License Server Reliability

License servers are critical components in almost any EDA computing infrastructure. A

loss of license services can bring engineering work to a halt across the enterprise.

Hosting licenses in the AWS Cloud can provide improved reliability of license services

with the use of a floating elastic network interface (ENI). These ENIs have a fixed,

immutable MAC address that can be associated with software license keys.

The implementation of this high availability solution begins with the creation of an ENI

that is attached to a license server instance. Your license keys are associated with this

network interface. If a failure is detected on this instance, you, or your custom

automation, can detach the ENI and attach it to a standby license server. Because the

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 25

ENI maintains its IP and MAC addresses, network traffic begins flowing to the standby

instance as soon as you attach the network interface to the replacement instance.

This unique capability enables license administrators to provide a level of reliability that

can be difficult to achieve using on-premises servers in a traditional datacenter. This is

another example of the benefits of the elastic and programmable nature of the cloud.

Working with EDA Vendors

AWS works closely with thousands of independent software vendors (ISVs) that deliver

solutions to customers on AWS using methods that may include software as a service

(SaaS), platform as a service (PaaS), customer self-managed, and bring your own license

(BYOL) models. In the semiconductor sector, AWS works closely with major vendors of

EDA software to help optimize performance, scalability, cost, and application security.

AWS can assist ISVs and your organization with deployment best practices as described

in this whitepaper.

EDA vendors that are members of the AWS Partner Network (APN) have access to a

variety of tools, training, and support that are provided directly to the EDA vendor,

which benefits EDA end-customers. These Partner Programs are designed to support

the unique technical and business requirements of APN members by providing them

with increased support from AWS, including access to AWS partner team members who

specialize in design and engineering applications. In addition, AWS has a growing

number of Consulting Partners who can assist EDA vendors and their customers with

EDA cloud migration.

Remote Desktops

While the majority of EDA workloads are executed as batch jobs (see Orchestration),

EDA users may at times require direct console access to compute servers, or use

applications that are graphical in nature. For example, it might be necessary to view

waveforms or step through a simulation to identify and resolve RTL regression errors, or

it might be necessary to view a 2D or 3D graphical representation of results generated

during signal integrity analysis. Some applications, such as printed circuit layout

software, are inherently interactive and require a high quality, low latency user

experience.

There are multiple ways to deploy remote desktops for such applications on AWS. You

have the option of using open-source software such as Virtual Network Computing

(VNC), or commercial remote desktop solutions available from AWS partners. You can

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 26

also make use of AWS solutions including NICE desktop cloud visualization (NICE

DCV) and Amazon WorkSpaces.

NICE DCV

NICE Desktop Cloud Visualization is a remote visualization technology that enables

users to securely connect to graphic-intensive 3D applications hosted on an Amazon

EC2 instance. With NICE DCV, you can provide high-performance graphics processing

to remote users by creating secure client sessions. This enables your interactive EDA

users to use resource-intensive applications with relatively low-end client computers by

using one or more EC2 instances as remote desktop servers, including GPU acceleration

of graphics rendered in the cloud.

In a typical NICE DCV scenario for EDA, a graphic-intensive application, such as a 3D

visualization of an electromagnetic field simulation, or a complex, interactive schematic

capture session, is hosted on a high-performance EC2 instance that provides a high-end

GPU, fast I/O capabilities, and large amounts of memory.

The NICE DCV server software is installed and configured on a server (an EC2 instance)

and it is used to create a secure session. You use a NICE DCV client to remotely connect

to the session and use the application hosted on the server. The server uses its hardware

to perform the high-performance processing required by the hosted application. The

NICE DCV server software compresses the visual output of the hosted application and

streams it back to you as an encrypted pixel stream. Your NICE DCV client receives the

compressed pixel stream, decrypts it, and then outputs it to your local display.

NICE DCV was specifically designed for high performance technical applications, and is

an excellent choice for EDA, in particular if you are using Red Hat Enterprise Linux or

CentOS operating systems on your remote desktop environment. NICE DCV also

supports modern Linux desktop environments including modern Linux desktops such

as Gnome 3 on RHEL 7.

NICE DCV uses the latest NVIDIA Grid SDK technologies, such as NVIDIA H.264

hardware encoding, to improve performance and reduce system load. NICE DCV also

supports lossless quality video compression when the network and processor conditions

allow, and it automatically adapts the video compression levels based on the network's

available bandwidth and latency.

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 27

Amazon Workspaces

Amazon WorkSpaces is a managed, secure cloud desktop service. You can use Amazon

WorkSpaces to provision either Windows or Linux desktops in just a few minutes and

quickly scale to provide thousands of desktops to workers across the globe. You can pay

either monthly or hourly, just for the WorkSpaces you launch, which helps you save

money when compared to traditional desktops and on-premises virtual desktop

infrastructure (VDI) solutions. Amazon WorkSpaces helps you eliminate the complexity

in managing hardware inventory, OS versions and patches, and VDI, which helps

simplify your desktop delivery strategy. With Amazon WorkSpaces, your users get a fast,

responsive desktop of their choice that they can access anywhere, anytime, from any

supported device.

Amazon WorkSpaces offers a range of CPU, memory, and solid-state storage bundle

configurations that can be dynamically modified so you have the right resources for your

applications. You don’t have to waste time trying to predict how many desktops you

need or what configuration those desktops should be, helping you reduce costs and

eliminate the need to over-buy hardware.

Amazon WorkSpaces is an excellent choice for organizations wanting to centrally

manage remote desktop users and applications, and for users that can make use of

Windows or Amazon Linux 2 for the remote desktop environment.

User Authentication

User authentication is covered in more detail in the Security and Governance in the

AWS Cloud section, but AWS offers several options for connecting with an on-premises

authentication server, migrating users to AWS, or architecting an entirely new

authentication solution.

Orchestration

Orchestration refers to the dynamic management of compute and storage resources in

an EDA cluster, as well as the management (scheduling and monitoring) of individual

jobs being processed in a complex workflow, for example during RTL regression testing

or IP characterization. For these and many other typical EDA workflows, the efficient

use of compute and storage resources—as well as the efficient use of EDA software

licenses—depends on having a well-orchestrated, well-architected batch computing

environment.

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 28

EDA workload management gains new levels of flexibility in the cloud, making resource

and job orchestration an important consideration for your workload. AWS provides a

range of solutions for workload orchestration: fully-managed services enable you to

focus more on job requests and output over provisioning, configuring and optimizing

the cluster and job scheduler, while self-managed solutions enable you to configure and

maintain cloud-native clusters yourself, leveraging traditional job schedulers to use on

AWS or in hybrid scenarios.

Describing all possible methods of orchestration for EDA is beyond the scope of this

document; however, it is important to know that the same orchestration methods and

job scheduling software used in typical, legacy EDA environments can also be used on

AWS. For example, commercial and open-source job scheduling software can be

migrated to AWS, and be enhanced by the addition of Auto Scaling (for dynamic resizing

of EDA clusters in response to demand or other triggers), CloudWatch (for monitoring

the compute environment, for example CPU utilization and server health), and other

AWS services to increase performance and security, while reducing costs.

CfnCluster

CfnCluster (cloud formation cluster) is a framework that deploys and maintains high

performance computing clusters on Amazon Web Services (AWS). Developed by AWS,

CfnCluster facilitates both quick start proof of concepts (POCs) and production

deployments. CfnCluster supports many different types of clustered applications,

including EDA, and can easily be extended to support different frameworks.

CfnCluster integrates easily with existing job scheduling software, and can automatically

launch servers in response to queue depths and other triggers. CfnCluster is also able to

launch shared file systems, cluster head nodes, license servers, and others resources.

CfnCluster is open-source and easily extensible for your unique workflow requirements.

AWS Batch

AWS Batch is a fully-managed service that enables you to easily run large-scale compute

workloads on the cloud, including EDA jobs, without having to worry about resource

provisioning or managing schedulers. Interact with AWS Batch via the web console,

AWS CLI, or SDKs. AWS Batch is an excellent alternative for managing massively

parallel workloads.

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 29

EnginFrame

EnginFrame is an HPC portal that can be deployed on the cloud, or on-premise.

EnginFrame is integrated with a wide range of open source and commercial batch

scheduling systems, and is a one-stop-shop for job submission, control and data

management.

All of the preceding options (CfnCluster, AWS Batch, and EnginFrame), as well as

partner-provided solutions, are being successfully deployed by EDA users on AWS.

Discuss your specific orchestration needs with an AWS technical specialist.

Optimizing EDA Tools on AWS
EDA software tools are critical for modern semiconductor design and verification.

Increasing the performance of EDA software—measured both as a function of individual

job run times and on the completion time for a complete set of EDA jobs—is important

to reduce time-to-results/time-to-tapeout, and to optimize EDA license costs.

To this point, we have covered the solution components for your architecture on AWS.

Now, in an effort to be more prescriptive, we present specific recommendations and

configuration parameters that should help you achieve expected performance for your

EDA tools.

Choosing the right Amazon EC2 instance type and the right OS level optimizations is

critical for EDA tools to perform well. This section provides a set of recommendations

that are based on actual daily use of EDA software tools on AWS—usage by AWS

customers and by Amazon internal silicon design teams. The recommendations include

such factors as instance type and configuration, as well as OS recommendations and

other tunings for a representative set of EDA tools. These recommendations have been

tested and validated internally at AWS and with EDA customers and vendors.

Amazon EC2 Instance Types

The following table highlights EDA tools and provides corresponding Amazon EC2

instance type recommendations.

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 30

Table 4: EDA tools and corresponding instance type

Instance

Name

*Max Core

Count

CPU Clock

Frequency

Max Total RAM

in GiB &

(GiB/core)

Local

NVMe

Typical EDA Application

Z1d 24 4.0 GHz 384 (16) Y Formal verification

RTL Simulation Batch

RTL Simulation Interactive

RTL Gate Level Simulation

R5 / R5d 48 Up to 3.1 GHz 768 (16) Y (R5d) RTL Simulation Multi-Threaded

R4 32 2.3 GHz 488 (15.25) RTL Simulation Multi-Threaded

Place & Route

M5 / M5d 48 Up to 3.1 GHz 384 (16) Y (M5d) Remote Desktop Sessions

C5 / C5d 36 Up to 3.5 GHz 144 (4) Y (C5d) RTL Simulation Interactive

RTL Gate Level Simulation

X1 64 2.3 GHz 1,952 (30.5) Y Place & Route

Static Timing Analysis

X1e 64 2.3 GHz 3,904 (61) Y Place & Route

Static Timing Analysis

C4 18 2.9 GHz

(boost to 3.5)

60 (3.33) Formal verification

RTL Simulation Interactive

*NOTE: AWS uses vCPU (which is an Intel Hyper-Thread) to denote processors, for this table we are using cores.

Operating System Optimization

After you have chosen the instance types for your EDA tools, you need to customize and

optimize your OS to maximize performance.

Use a Current Generation Operating System

If you are running a Nitro based instance, you need to use certain operating system

levels. If you run a Xen based instance instead, you should still use one of these OS

levels for EDA workloads (specifically required for ENA and NVMe drivers):

• Amazon Linux or Amazon Linux 2

• CentOS 7.4 or 7.5

• Red Hat Enterprise Linux 7.4 or 7.5

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 31

Disable Hyper-Threading

On current generation Amazon EC2 instance families (other than the T2 instance

family), AWS instances have Intel Hyper-Threading Technology (HT Technology)

enabled by default. You can disable HT Technology if you determine that it has a

negative impact on your application’s performance.

You can run this command to get detailed information about each core (physical core

and Hyper-Thread):

$ cat /proc/cpuinfo

To view cores and the corresponding online Hyper-Threads, use the lscpu –extended

command. For example, consider the Z1d.2xlarge, which has 4 cores with 8 total Hyper-

Threads. If you run the lscpu –extended command before and after disabling Hyper-

Threading, you can see which threads are online and offline:

$ lscpu --extended

CPU NODE SOCKET CORE L1d:L1i:L2:L3 ONLINE

0 0 0 0 0:0:0:0 yes

1 0 0 1 1:1:1:0 yes

2 0 0 2 2:2:2:0 yes

3 0 0 3 3:3:3:0 yes

4 0 0 0 0:0:0:0 yes

5 0 0 1 1:1:1:0 yes

6 0 0 2 2:2:2:0 yes

7 0 0 3 3:3:3:0 yes

$./disable_ht.sh

$ lscpu --extended

CPU NODE SOCKET CORE L1d:L1i:L2:L3 ONLINE

0 0 0 0 0:0:0:0 yes

1 0 0 1 1:1:1:0 yes

2 0 0 2 2:2:2:0 yes

3 0 0 3 3:3:3:0 yes

4 - - - ::: no

5 - - - ::: no

6 - - - ::: no

7 - - - ::: no

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 32

Another way to view the vCPUs pairs (that is, Hyper-Threads) of each core is to view the

thread_siblings_list for each core. This list shows two numbers that indicate

Hyper-Threads for each core. To view all thread siblings, you can use the following

command, or substitute “*” with a CPU number:

$ cat/sys/devices/system/cpu/cpu*/topology/thread_siblings_list | sort -un

0,4

1,5

2,6

3,7

Disable HT Using the AWS feature - CPU Options

To disable Hyper-Threading using CPU Options, use the AWS CLI with run-instances

and the --cpu-options flag. The following is an example with the Z1d.12xlarge:

$ aws ec2 run-instances --image-id ami- asdfasdfasdfasdf \
 --instance-type z1d.12xlarge --cpu-options \

 "CoreCount=24,ThreadsPerCore=1" --key-name My_Key_Name

To verify the CpuOptions were set, use describe-instances:

$ aws ec2 describe-instances --instance-ids i-1234qwer1234qwer

...

"CpuOptions": {

 "CoreCount": 24,

 "ThreadsPerCore": 1

},

...

Disable HT on a Running System

You can run the following script on a Linux instance to disable HT Technology while the

system is running. This can be set up to run from an init script so that it applies to any

instance when you launch the instance. See the following example.

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 33

for cpunum in $(cat/sys/devices/system/cpu/cpu*/topology/thread_siblings_list | \

 sort -un | cut -s -d, -f2-)

do

 echo 0 | sudo tee /sys/devices/system/cpu/cpu${cpunum}/online

done

Disable HT Using the Boot File

You can also disable HT Technology by setting the Linux kernel to only initialize the first

set of threads by setting maxcpus in GRUB to be half of the vCPU count of the instance.

For example, the maxcpus value for a Z1d.12xlarge instance is 24 to disable Hyper-

Threading:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty0 console=ttyS0,115200n8

 net.ifnames=0 biosdevname=0 nvme_core.io_timeout=4294967295 maxcpus=24

Refer to Appendix C – Updating the Linux Kernel Command Line for instructions on

updating the kernel command line.

When you disable HT Technology, it does not change the workload density per server

because these tools are demanding on DRAM size and reducing the number of threads

only helps as GB/core increases.

Change Clocksource to TSC

On previous generation instances that are using the Xen hypervisor, consider updating

the clocksource to TSC, as the default is the Xen pvclock (which is in the hypervisor). To

avoid communication with the hypervisor and use the CPU clock instead, use tsc as the

clocksource.

The tsc clocksource is not supported on Nitro instances. The default kvm-clock

clocksource on these instance types provides similar performance benefits as tsc on

previous-generation Xen based instances.

To change the clocksource on a Xen based instance , run the following command:

$ sudo su -c "echo tsc > /sys/devices/system/cl*/cl*/current_clocksource"

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 34

To verify that the clocksource is set to tsc, run the following command:

$ cat /sys/devices/system/cl*/cl*/current_clocksource

tsc

You set the clock source in the initialization scripts on the instance. You can also verify

that the clocksource changed with the dmesg command, as shown below:

$ dmesg | grep clocksource

...

clocksource: Switched to clocksource tsc

Limiting Deeper C-states (Sleep State)

C-states control the sleep levels that a core may enter when it is inactive. You may want

to control C-states to tune your system for latency versus performance. Putting cores to

sleep takes time, and although a sleeping core allows more headroom for another core to

boost to a higher frequency, it takes time for that sleeping core to wake back up and

perform work.

GRUB_CMDLINE_LINUX_DEFAULT="console=tty0 console=ttyS0,115200n8 net.ifnames=0

 biosdevname=0 nvme_core.io_timeout=4294967295 intel_idle.max_cstate=1"

Refer to Appendix C – Updating the Linux Kernel Command Line for instructions on

updating the kernel command line.

For more information about Amazon EC2 instance processor states, refer to the

Processor State Control for Your EC2 Instance page in the Amazon Elastic Compute

Cloud User Guide for Linux Instances.

Enable Turbo Mode (Processor State) on Xen Based Instances

For our current Nitro based instance types, you cannot change turbo mode, as this is

already set to the optimized value for each instance.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 35

If you are running on a Xen based instance that is using an entire socket or multiple

sockets (for example, r4.16xlarge, r4.8xlarge, c4.8xlarge) you can take advantage of the

turbo frequency boost, especially if you have disabled HT Technology.

Amazon Linux and Amazon Linux 2 have turbo mode enabled by default, but other

distributions may not. To ensure that turbo mode is enabled, run the following

command:

sudo su -c "echo 0 > /sys/devices/system/cpu/intel_pstate/no_turbo"

For more information about Amazon EC2 instance processor states, refer to the

Processor State Control for Your EC2 Instance page in the Amazon Elastic Compute

Cloud User Guide for Linux Instances.

Change to Optimal Spinlock Setting on Xen Based Instances

For the instances that are using the Xen hypervisor (not Nitro), you should update the

spinlock setting. Amazon Linux, Amazon Linux 2, and other distributions, by default,

implement a paravirtualized mode of spinlock that is optimized for low-cost preempting

virtual machines (VMs). This can be expensive from a performance perspective because

it causes the VM to slow down when running multithreaded with locks. Some EDA tools

are not optimized for multi-core and consequently rely heavily on spinlocks.

Accordingly, we recommend that EDA customers disable paravirtualized spinlock on

EC2 instances.

To disable the paravirtualized mode of spinlock on a Xen based instnace, add

xen_nopvspin=1 to the kernel command line in /boot/grub/grub.conf and restart.

The following is an example kernel command:

kernel /boot/vmlinuz-4.4.41-36.55.amzn1.x86_64 root=LABEL=/

 console=tty1 console=ttyS0 selinux=0 xen_nopvspin=1

Refer to Appendix C – Updating the Linux Kernel Command Line for instructions on

updating the kernel command line.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 36

Networking

AWS Enhanced Networking

Make sure to use enhanced networking for all instances, which is a requirement for

launching our current Nitro based instances. For more information about enhanced

networking, including build and install instructions, refer to the Enhanced Networking

on Linux page in the Amazon Elastic Compute Cloud User Guide for Linux Instances.

Cluster Placement Groups

A cluster placement group is a logical grouping of instances within a single Availability

Zone. Cluster placement groups provide non-blocking, non-oversubscribed, fully

bisectional connectivity. In other words, all instances within the placement group can

communicate with all other nodes within the placement group at the full line rate of 10

Gpbs flows and 25 Gpbs aggregate without any slowing due to over-subscription. For

more information about placement groups refer to the Placement Groups page in the

Amazon Elastic Compute Cloud User Guide for Linux Instances.

Verify Network Bandwidth

One method to ensure you are configuring ENA correctly is to benchmark the instance

to instance network performance with iperf3. Refer to Network Throughput Benchmark

Linux EC2 for more information.

Storage

Amazon EBS Optimization

Make sure to choose your instance and EBS volumes to suit the storage requirements for

your workloads. Each EC2 instance type has an associated EBS limit, and each EBS

volume type has limits as well. For example, the m4.16xlarge instance type has a io1

volume type with a maximum throughput of 500MB/s.

NFS Configuration and Optimization

Prior to setting up an NFS server on AWS, you need to enable Amazon EC2 enhanced

networking. We recommend using Amazon Linux 2 for your NFS server AMI.

A crucial part of high performing NFS are the mount parameters on the client. For

example:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://aws.amazon.com/premiumsupport/knowledge-center/network-throughput-benchmark-linux-ec2/
https://aws.amazon.com/premiumsupport/knowledge-center/network-throughput-benchmark-linux-ec2/

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 37

rsize=1048576,wsize=1048576,hard,timeo=600,retrans=2

A typical EFS mount command is shown in following example:

$ sudo mount -t nfs4 –o \

 nfsvers=4.1,rsize=1048576,wsize=1048576,hard,timeo=600,retrans=2 \

 file-system-id.efs.aws-region.amazonaws.com:/ /efs-mount-point

When building an NFS server on AWS, choose the correct instance size and number of

EBS volumes. Within a single family, larger instances typically have more network and

Amazon EBS bandwidth available to them. The largest NFS servers on AWS are often

built using m4.16xlarge instances with multiple EBS volumes striped together in order

to achieve the best possible performance. Refer to Appendix A – Optimizing Storage for

more information and diagrams for building an NFS server on AWS.

Kernel Virtual Memory

Typical operating system distributions are not tuned for large machines like those

offered by AWS for EA workloads. As result, out of the box configurations often have

sub-optimal performance settings for kernel network buffers and storage page cache

background draining. While the specific numbers may vary by instance size and

applications runs, the AWS EDA team has found that these kernel configuration settings

and values are a good starting point to optimize memory utilization of the instances:

vm.min_free_kbytes=1048576

vm.dirty_background_bytes=107374182

Security and Governance in the AWS Cloud
The cloud offers a wide array of tools and configurations that enable your organization

to protect your data and IP in ways that are difficult to achieve with traditional on-

premises environments. This section outlines some of the ways you can protect data in

the AWS Cloud.

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 38

Isolated Environments for Data Protection and

Sovereignty

Security groups are similar to firewalls—they ensure that access to specific resources is

tightly controlled. Subnets containing compute and storage resources can be isolated so

that they do not have any direct access to the internet. Users who need to access the

environment must first connect to the Bastian Node (also referred to as a jump box)

through secure protocols, like SSH. From there, they can log into interactive desktops or

job schedulers as permitted through your organization’s security policies.

Often, secure FTP is required in isolated environments. Organizations commonly use

secure FTP to download tools from vendors, copy completed designs to fabrication

facilities, or to update IP from suppliers. To do this securely, you can set up an FTP

client in an isolated subnet that has limited access to external IP addresses as necessary.

Segment this client from the rest of the network, and configure strict controls and

monitoring to ensure that everything on that server is secure.

User Authentication

When managing users and access to compute nodes, you can adapt the technologies that

you use today to work in the same way on AWS. Many organizations already have

existing LDAP, Microsoft Active Directory, or NIS services that they use for

authentication. Almost all of these services provide replication and functionality to

support multiple data centers. With the appropriate network and VPN setup in place,

you can manage these systems on AWS using the same methods and configurations as

you do for any remote data center configuration.

If your organization wants to run an isolated directory on the cloud, you have a number

of options to choose from. If you want to use a managed solution, AWS Directory Service

for Microsoft Active Directory (Standard) is a popular choice.2 AWS Microsoft AD

(Standard Edition) is a managed Microsoft Active Directory (AD) that is optimized for

small and midsize businesses (SMBs). Other options include running your own LDAP or

NIS infrastructure on AWS, and more current solutions, like FreeIPA.

Network

AWS employs a number of technologies that allow you to isolate components from each

other and control access to the network.

https://aws.amazon.com/directoryservice/pricing/#editions
https://aws.amazon.com/directoryservice/pricing/#editions

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 39

Amazon VPC

Amazon Virtual Private Cloud (Amazon VPC) lets you provision a logically isolated

section of the AWS Cloud where you can launch AWS resources in a virtual network that

you define. You have complete control over your virtual networking environment,

including selection of your own IP address range, creation of subnets, and configuration

of route tables and network gateways. You can use both IPv4 and IPv6 in your VPC for

secure and easy access to resources and applications.

You can easily customize the network configuration for your Amazon VPC. For example,

you can create a public-facing subnet for your FTP and Bastian servers that has access to

the internet. Then, you can place your design and engineering systems in a private

subnet with no internet access. You can leverage multiple layers of security, including

security groups and network access control lists, to help control access to EC2 instances

in each subnet.

Additionally, you can create a hardware virtual private network (VPN) connection

between your corporate data center and your VPC and leverage the AWS Cloud as an

extension of your organization’s data center.

Security Groups

Amazon VPC provides advanced security features such as security groups and network

access control lists to enable inbound and outbound filtering at the instance level and

subnet level, respectively. A security group acts as a virtual firewall for your instance to

control inbound and outbound traffic. When you launch an instance in a VPC, you can

assign the instance to up to five security groups.

Network access control lists (ACLs) control inbound and outbound traffic for your

subnets. In most cases, security groups can meet your needs. However, you can also use

network ACLs if you want an additional layer of security for your VPC. For more

information, refer to the Security page in the Amazon Virtual Private Cloud User Guide.

You can create a flow log on your Amazon VPC or subnet to capture the traffic that flows

to and from the network interfaces in your VPC or subnet. You can also create a flow log

on an individual network interface. Flow logs are published to Amazon CloudWatch

Logs.

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Security.html

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 40

Data Storage and Transfer

AWS offers many ways to protect data, both in transit and at rest. Many third-party

storage vendors also offer additional encryption and security technologies in their own

implementations of storage in the AWS Cloud.

AWS Key Management Service (KMS)

AWS Key Management Service (KMS) is a managed service that makes it easy for you to

create and control the encryption keys used to encrypt your data. In addition, it uses

Hardware Security Modules (HSMs) to protect the security of your keys. AWS KMS is

integrated with other AWS services, including Amazon EBS, Amazon S3, Amazon

Redshift, Amazon Elastic Transcoder, Amazon WorkMail, Amazon Relational Database

Service (Amazon RDS), and others, to help you protect the data you store with these

services. AWS KMS is also integrated with AWS CloudTrail to provide you with logs of

all key usage to help meet your regulatory and compliance needs.

With AWS KMS, you can create master keys that can never be exported from the service.

You use the master keys to encrypt and decrypt data based on policies that you define.

Amazon EBS Encryption

Amazon Elastic Block Store (Amazon EBS) encryption offers you a simple encryption

solution for your EBS volumes requiring you to build, maintain, and secure your own

key management infrastructure. When you create an encrypted EBS volume and attach

it to a supported instance type, the following types of data are encrypted:

• Data at rest inside the volume

• All data in transit between the volume and the instance

• All snapshots created from the volume

The encryption occurs on the servers that host EC2 instances, providing encryption of

data in transit from EC2 instances to Amazon EBS storage.

EC2 Instance Store Encryption

The data on NVMe instance storage is encrypted using an XTS-AES-256 block cipher

implemented in a hardware module on the instance. The encryption keys are generated

using the hardware module and are unique to each NVMe instance storage device. All

encryption keys are destroyed when the instance is stopped or terminated and cannot be

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 41

recovered. You cannot disable this encryption and you cannot provide your own

encryption key.1

Amazon S3 Encryption

When you use encryption with Amazon S3, Amazon S3 encrypts your data at the object

level. Amazon S3 writes the data to disks in AWS data centers and decrypts your data

when you access it. As long as you authenticate your request and you have access

permissions, there is no difference in how you access encrypted or unencrypted objects.

AWS KMS uses customer master keys (CMKs) to encrypt your Amazon S3 objects. You

use AWS KMS via the Encryption Keys section in the AWS Identity and Access

management (AWS IAM) console or via AWS KMS APIs to create encryption keys,

define the policies that control how keys can be used, and audit key usage to ensure that

they are used correctly. You can use these keys to protect your data in Amazon S3

buckets.

Server-side encryption with AWS KMS-managed keys (SSE-KMS) provides the

following:

• You can choose to create and manage encryption keys yourself, or you can

choose to generate a unique, default service key on a customer/service/region

level.

• The ETag in the response is not the MD5 of the object data.

• The data keys used to encrypt your data are also encrypted and stored alongside

the data they protect.

• You can create, rotate, and disable auditable master keys in the IAM console.

• The security controls in AWS KMS can help you meet encryption-related

compliance requirements.

If you require server-side encryption for all objects that are stored in your bucket,

Amazon S3 supports bucket policies that can be used to enforce encryption of all

incoming S3 objects.

Because access to Amazon S3 is provided over HTTP endpoints, you can also leverage

bucket policies to ensure that all data transfer in and out occurs over a TLS connection

to guarantee that data is also encrypted in transit.

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 42

Governance and Monitoring

AWS provides several services that you can use to enforce governance and monitor your

AWS Cloud deployment:

AWS Identity and Access Management (IAM) – Enables you to securely control

access to AWS services and resources for your users. Using IAM, you can create and

manage AWS users and groups, and use permissions to allow and deny their access to

AWS resources. For more information, refer to the AWS IAM User Guide.

Amazon CloudWatch – Enables you to monitor your AWS resources in near real-time,

including EC2 instances, EBS volumes, and S3 buckets. Metrics such as CPU utilization,

latency, and request counts are provided automatically for these AWS resources. You

can also provide CloudWatch access to your own logs or custom application and system

metrics, such as memory usage, transaction volumes, or error rates, and CloudWatch

can monitor these too. For more information, refer to the Amazon CloudWatch User

Guide.

Amazon CloudWatch Logs – Use to monitor, store, and access your log files from EC2

instances, AWS CloudTrail, and other sources. You can then retrieve the associated log

data from CloudWatch Logs. You can create alarms in CloudWatch and receive

notifications of particular API activity as captured by CloudTrail and use the notification

to perform troubleshooting. For more information, refer to the Amazon CloudWatch

Log User Guide.

AWS CloudTrail – Enables you to log, continuously monitor, and retain events related

to API calls across your AWS infrastructure. CloudTrail provides a history of AWS API

calls for your account, including API calls made through the AWS Management Console,

AWS SDKs, command line tools, and other AWS services. For more information, refer to

the AWS CloudTrail User Guide.

Amazon Macie – Amazon Macie is a security service that uses machine learning to

automatically discover, classify, and protect sensitive data in AWS. Amazon Macie

recognizes sensitive data such as personally identifiable information (PII) or intellectual

property, and provides you with dashboards and alerts that give visibility into how this

data is being accessed or moved. The fully managed service continuously monitors data

access activity for anomalies, and generates detailed alerts when it detects risk of

unauthorized access or inadvertent data leaks.

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 43

AWS GuardDuty – Amazon GuardDuty is a threat detection service that continuously

monitors for malicious or unauthorized behavior to help you protect your AWS accounts

and workloads. It monitors for activity such as unusual API calls or potentially

unauthorized deployments that indicate a possible account compromise. GuardDuty

also detects potentially compromised instances or reconnaissance by attackers.

AWS Shield – AWS Shield is a managed Distributed Denial of Service (DDoS)

protection service that safeguards applications running on AWS. AWS Shield provides

always-on detection and automatic inline mitigations that minimize application

downtime and latency, so there is no need to engage AWS Support to benefit from DDoS

protection.

AWS Config – Use to assess, audit, and evaluate the configurations of your AWS

resources. AWS Config continuously monitors and records your AWS resource

configurations and allows you to automate the evaluation of recorded configurations

against desired configurations. For more information, refer to the AWS Config

Developer Guide.

AWS Organizations – Offers policy-based management for multiple AWS accounts.

With Organizations, you can create Service Control Policies (SCPs) that centrally control

AWS service use across multiple AWS accounts. Organizations helps simplify the billing

for multiple accounts by enabling you to setup a single payment method for all the

accounts in your organization through consolidated billing. You can ensure that entities

in your accounts can use only the services that meet your corporate security and

compliance policy requirements. For more information, refer to the AWS Organizations

User Guide.

AWS Service Catalog – AWS Service Catalog allows organizations to create and

manage catalogs of IT services that are approved for use on AWS. These IT services can

include everything from virtual machine images, servers, software, and databases to

complete multi-tier application architectures. AWS Service Catalog allows you to

centrally manage commonly deployed IT services, and helps you achieve consistent

governance and meet your compliance requirements, while enabling users to quickly

deploy only the approved IT services they need.

http://docs.aws.amazon.com/config/latest/developerguide/WhatIsConfig.html
http://docs.aws.amazon.com/config/latest/developerguide/WhatIsConfig.html
http://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html
http://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 44

Contributors
The following individuals contributed to this document:

• Mark Duffield, Worldwide Tech Leader, Semiconductors, Amazon Web Services

• David Pellerin, Principal Business Development for Infotech/Semiconductor,

Amazon Web Services

• Matt Morris, Senior HPC Solutions Architect, Amazon Web Services

• Nafea Bshara, VP/Distinguished Engineer, Amazon Web Services

Document Revisions

Date Description

September 2018 2018 update

October 2017 First publication

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 45

Appendix A – Optimizing Storage
There are many storage options on AWS, and some have already been covered at a high

level. As semiconductor workloads rely on shared storage, building an NFS server may

be the first step to running EDA tools. This section includes two possible NFS

architectures that can achieve suitable performance for most workloads.

NFS Storage

NFS server capable of 1.75 GB/s with 75,000 IOPS

6 EBS Vol, 20K IOPS Each
ZFS RAID6 pool using EBS vols
25 Gpbs ENA connection

6 x EBS Provisioned IOPS

25 Gpbs

NFS Clients
Running EDA Tools

r4.16xlarge

NFS Server for Tools, Project Data, etc.

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 46

NFS server capable of 2.5 GB/s and > 100,000 IOPS

i3.16xlarge

8 x NVMe Volumes

RAID0 Pool with mdadm
EXT4 file system
25 Gpbs ENA connection

NFS Server for Temporary/Scratch data

25 Gpbs

NFS Clients
Running EDA Tools

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 47

Appendix B – Reference Architecture
The following diagram represents a common architecture for an elastic EDA computing

environment in AWS. This design provides the following key infrastructure

components:

• Amazon EC2 AutoScaling Group for elasticity

• AWS Direct Connect for dedicated connectivity to AWS

• Amazon Linux WorkSpaces for remote desktops

• Amazon EC2 based compute, license, and scheduler instances

• Amazon EC2 based NFS servers and Amazon EFS for sharing file systems

between compute instances

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 48

Figure 5: EDA architecture on AWS

 Corporate Data Center

EDA AutoScaling Group

Amazon AI
Services

EFS

S3 Bucket

Remote Desktop

Internet

Home Office, Coffee Shop, or Customer Site

AWS Direct
Connect

/tools (NFS) /project (NFS) /scratch (NFS)

License
Server

Job
Submit

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 49

Appendix C – Updating the Linux Kernel

Command Line

Update a system with /etc/default/grub file

1. Open the /etc/default/grub file with your editor of choice.

$ sudo vim /etc/default/grub

2. Edit the GRUB_CMDLINE_LINUX_DEFAULT line, and make necessary

changes. For example:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty0 console=ttyS0,115200n8

 net.ifnames=0 biosdevname=0 nvme_core.io_timeout=4294967295

 intel_idle.max_cstate=1"

3. Save the file and exit your editor.

4. Run the following command to rebuild the boot configuration.

$ grub2-mkconfig -o /boot/grub2/grub.cfg

5. Reboot your instance to enable the new kernel option.

$ sudo reboot

Archived

Amazon Web Services – Optimizing EDA Workflows on AWS

Page 50

Update a system with /boot/grub/grub.conf file

1. Open the /boot/grub/grub.conf file with your editor of choice.

$ sudo vim /boot/grub/grub.conf

2. Edit the kernel line, for example (some info removed for clarity)

created by imagebuilder

default=0

timeout=1

hiddenmenu

title Amazon Linux 2014.09 (3.14.26-24.46.amzn1.x86_64)

root (hd0,0)

kernel /boot/vmlinuz-ver.amzn1.x86_64 <other_info> intel_idle.max_cstate=1

initrd /boot/initramfs-3.14.26-24.46.amzn1.x86_64.img

3. Save the file and exit your editor.

4. Reboot your instance to enable the new kernel option.

$ sudo reboot

Verify Kernel Line

Verify that the setting by running dmesg or /proc/cmdline kernel command line:

$ dmesg | grep "Kernel command line"

[0.000000] Kernel command line: root=LABEL=/ console=tty1

console=ttyS0 maxcpus=18 xen_nopvspin=1

$ cat /proc/cmdline

root=LABEL=/ console=tty1 console=ttyS0 maxcpus=18 xen_nopvspin=1

1 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html

2 http://docs.aws.amazon.com/directoryservice/latest/admin-

guide/directory_simple_ad.html

Notes

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html
http://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_simple_ad.html
http://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_simple_ad.html

	Abstract
	Introduction
	EDA Overview

	Benefits of the AWS Cloud
	Improved Productivity
	High Availability and Durability
	Matching Compute Resources to Requirements
	Accelerated Upgrade Cycle

	Paths for Migrating EDA Workflows to AWS
	Data Access and Transfer
	Consider what Data to Move to Amazon S3
	Dependencies
	Suggested EDA Tools for Initial Proof of Concept (POC)
	Cloud-Optimized Traditional Architecture
	Job Scheduler Integration

	Building an EDA Architecture on AWS
	Hypervisors: Nitro and Xen
	AMI and Operating System
	Compute
	Z1d for EDA Tools
	Additional Compute-Optimized Instances
	C5, C5d, C4

	Memory Optimized Instances
	Z1d, R5, R5d, R4, X1, X1e

	Hyper-Threading

	Network
	Storage
	Types of Storage on AWS
	Amazon EBS
	Enhancing Scalability with Dynamic EBS Volumes
	Instance Storage
	NVMe on EC2 Instances
	Amazon Elastic File System (Amazon EFS)
	Amazon S3

	Traditional NFS File Systems
	Cloud Native Storage Approaches

	Licensing
	License Server Access
	Improving License Server Reliability
	Working with EDA Vendors

	Remote Desktops
	NICE DCV
	Amazon Workspaces

	User Authentication
	Orchestration
	CfnCluster
	AWS Batch
	EnginFrame

	Optimizing EDA Tools on AWS
	Amazon EC2 Instance Types
	Operating System Optimization
	Use a Current Generation Operating System
	Disable Hyper-Threading
	Disable HT Using the AWS feature - CPU Options
	Disable HT on a Running System
	Disable HT Using the Boot File

	Change Clocksource to TSC
	Enable Turbo Mode (Processor State) on Xen Based Instances
	Change to Optimal Spinlock Setting on Xen Based Instances

	Networking
	AWS Enhanced Networking
	Cluster Placement Groups
	Verify Network Bandwidth

	Storage
	Amazon EBS Optimization
	NFS Configuration and Optimization

	Kernel Virtual Memory

	Security and Governance in the AWS Cloud
	Isolated Environments for Data Protection and Sovereignty
	User Authentication
	Network
	Amazon VPC
	Security Groups

	Data Storage and Transfer
	AWS Key Management Service (KMS)
	Amazon EBS Encryption
	EC2 Instance Store Encryption
	Amazon S3 Encryption

	Governance and Monitoring

	Contributors
	Document Revisions
	Appendix A – Optimizing Storage
	NFS Storage
	NFS server capable of 1.75 GB/s with 75,000 IOPS
	NFS server capable of 2.5 GB/s and > 100,000 IOPS

	Appendix B – Reference Architecture
	Appendix C – Updating the Linux Kernel Command Line
	Update a system with /etc/default/grub file
	Update a system with /boot/grub/grub.conf file
	Verify Kernel Line

