

Monolithic to Microservice Journey
for .NET Applications
Technical Guide

November 7, 2022

Notices

Customers are responsible for making their own independent assessment of the information in this

document. This document: (a) is for informational purposes only, (b) represents current AWS product

offerings and practices, which are subject to change without notice, and (c) does not create any

commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or services

are provided “as is” without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements,

and this document is not part of, nor does it modify, any agreement between AWS and its customers.

© 2022 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

About this guide .. 1

Overview ... 1

Monolithic applications .. 2

Monolith vs. microservice approach ... 2

Monolithic application architecture benefits ... 2

Drawbacks of a monolith architecture.. 3

Microservices .. 4

Microservice architectures ... 4

Benefits of microservice architectures ... 5

When to avoid microservice-based architectures .. 6

Operational Considerations for Microservices ... 6

Team expertise .. 6

Operational complexity ... 7

Security ... 7

Monitoring and troubleshooting .. 7

Data consistency ... 8

Monolith to microservices .. 8

Challenges of decomposing a monolith into microservices ... 8

Strategies to split a monolith .. 9

Communication in microservices architecture ... 11

Decompose the database ... 12

Microservice technology choices.. 15

Compute .. 15

Database ... 18

Security considerations for microservices .. 19

Cost considerations .. 21

Decomposing a monolithic ASP.NET application .. 21

AWS Microservice Extractor for .NET ... 22

Analyze application ... 23

Visualize .. 24

Group .. 26

Extract ... 27

Next steps ... 28

Conclusion .. 28

Contributors .. 29

Document Revisions ... 29

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 1

About this guide
This guide covers considerations for refactoring a monolithic ASP.NET application into a microservice-based architecture.

Database refactoring is not in scope for this guide.

Overview
Application modernization is the process of progressively transforming existing applications and infrastructure to extend

to higher-value, cloud-based services to unlock new business capabilities, accelerate innovation, and reduce technical

debt. One industry trend is that IT decision makers are expecting their application portfolios to grow by 50% in the next

2 years. This is because businesses need to add functionality in their applications to support improved experience and

service for customers. Modernization provides a path for them to address challenges with their applications, such as

increasing costs, scalability, operational resiliency, and security.

Organizations that modernize Windows workloads use a combination of strategies, including rehosting, replatforming,

and refactoring to move applications to the cloud. These allow them to benefit from the economics, increased

innovation, and the ability to deliver new functionality for customers. Organizations with .NET Framework applications,

such as DraftKings, CoStar, and AgriDigital, plan to move their applications to the cloud by refactoring them to use the

cross-platform version of .NET, and replatforming them to the Linux operating system.

Customers like EposNow refactor applications to microservice-based architectures to help address business challenges

related to slow scaling and complex management caused by monolithic applications not built using modern architectural

practices.

The path to achieve modernization can be challenging. This guide will provide architects, developers, and IT

professionals with the information needed to assess and begin modernizing their monolithic .NET Framework

applications to the cross-platform .NET using a microservice-based architecture.

Starting with the first version of .NET Framework in 2002, over ten million developers have built applications using .NET-

based tools and frameworks. Initially, .NET applications could only run on the Windows operating system. This led to a

landscape of portfolios of enterprise applications running on Windows.

In the past 10 years, changes in the technology industry have influenced the way developers build applications. These

include trends such as increased adoption of Linux, the growing influence of open source, and DevOps practices, as well

as technologies like public cloud, containers, and serverless. These trends caused Microsoft to focus their .NET

investments on a new version of .NET, initially named .NET Core and now simply called “.NET” (versions 5 and greater).

This version of .NET is open source and cross-platform, adding the capability for .NET developers to run their

applications anywhere, using a lightweight, modular framework.

Benefits gained by businesses refactoring .NET Framework applications to cross-platform .NET on Linux include the

reduction of Windows licensing and access to the latest innovations from the .NET community. However, refactoring

.NET Framework applications to the latest version of .NET presents challenges, particularly for applications that depend

on libraries without cross-platform equivalents, including ASP.NET Web Forms, Windows Communication Foundation

(WCF), .NET Remoting, or Windows Workflow Foundation (WF).

https://aws.amazon.com/blogs/modernizing-with-aws/modernizing-legacy-net-applications-draftkings-principles-for-success/
https://aws.amazon.com/blogs/modernizing-with-aws/modernizing-legacy-net-applications-draftkings-principles-for-success/
https://aws.amazon.com/blogs/modernizing-with-aws/costar-reduced-compute-costs-by-modernizing-dotnet-applications-with-aws-serverless/
https://aws.amazon.com/blogs/modernizing-with-aws/costar-reduced-compute-costs-by-modernizing-dotnet-applications-with-aws-serverless/
https://aws.amazon.com/blogs/modernizing-with-aws/costar-reduced-compute-costs-by-modernizing-dotnet-applications-with-aws-serverless/
https://www.google.com/search?q=agridigital+aws&sxsrf=APq-WBu-NVE0nJ0M2WGgYq68C2Vd52UAog%3A1646453793627&source=hp&ei=IeQiYpKqIJa-kPIP5feXEA&iflsig=AHkkrS4AAAAAYiLyMTREoEQ7XnYe22M2iNYJjhiXwhx-&oq=agri&gs_lcp=Cgdnd3Mtd2l6EAMYADIECCMQJzIICAAQgAQQsQMyCAgAEIAEELEDMggIABCABBCxAzIICAAQgAQQsQMyBQgAEIAEMggIABCABBCxAzILCAAQgAQQsQMQgwEyEQguEIAEELEDEIMBEMcBEK8BMggIABCABBCxAzoKCC4QxwEQowIQJzoKCC4QxwEQ0QMQQzoECAAQQzoFCAAQkQI6CwguEIAEEMcBEKMCOhAILhCABBCHAhDHARCjAhAUOggILhCxAxCDAToICC4QgAQQsQM6DgguEIAEELEDEMcBEK8BOgUIABCxA1AAWL4EYMANaABwAHgAgAHAAYgBzwWSAQMwLjSYAQCgAQE&sclient=gws-wiz
https://www.google.com/search?q=agridigital+aws&sxsrf=APq-WBu-NVE0nJ0M2WGgYq68C2Vd52UAog%3A1646453793627&source=hp&ei=IeQiYpKqIJa-kPIP5feXEA&iflsig=AHkkrS4AAAAAYiLyMTREoEQ7XnYe22M2iNYJjhiXwhx-&oq=agri&gs_lcp=Cgdnd3Mtd2l6EAMYADIECCMQJzIICAAQgAQQsQMyCAgAEIAEELEDMggIABCABBCxAzIICAAQgAQQsQMyBQgAEIAEMggIABCABBCxAzILCAAQgAQQsQMQgwEyEQguEIAEELEDEIMBEMcBEK8BMggIABCABBCxAzoKCC4QxwEQowIQJzoKCC4QxwEQ0QMQQzoECAAQQzoFCAAQkQI6CwguEIAEEMcBEKMCOhAILhCABBCHAhDHARCjAhAUOggILhCxAxCDAToICC4QgAQQsQM6DgguEIAEELEDEMcBEK8BOgUIABCxA1AAWL4EYMANaABwAHgAgAHAAYgBzwWSAQMwLjSYAQCgAQE&sclient=gws-wiz
https://aws.amazon.com/partners/success/epos-now-kloia/
https://aws.amazon.com/partners/success/epos-now-kloia/

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 2

Besides porting to the latest version of .NET, many organizations also want to break down their monolithic applications

into a more manageable and scalable microservice-based architecture. The following sections of this guide walk through

the use cases, patterns, and considerations to modernize a monolithic ASP.NET application to a microservice-based

architecture.

Monolithic applications

Monolith vs. microservice approach
There are two categories of application architecture considered in this technical guide: monolithic and microservice-

based. A monolithic application is one in which all functionality lives in one source repository, and is deployed as a single

unit. Over time, architectural patterns emerged to help break up applications into smaller, independent units of

functionality, each delivered separately. The decomposition of applications into independent units of functionality

began with the concept of Service Oriented Architecture and eventually grew into the microservice pattern.

In the past, building monolithic applications was the primary means of developing software applications, regardless of

industry. An organization would develop a single application with sole control over all the data and functionality of the

solution. Complexity and functional overlap were introduced when there were multiple applications with similar

purpose or data in use by different groups within an organization.

Designing applications using a microservice-based architecture decomposes a system so that each part handles a single

business capability. Calls to the different microservices using well-defined interfaces comprise the entire system.

Approaching application design as a series of microservices requires an initial planning effort, but enables applications to

reap benefits of scaling, agility, and stability for the lifetime of the system.

Both of the approaches have considerations that help determine the suitability of each for a particular application.

Although this technical guide focuses on decomposing monolithic applications using microservices, that is not

necessarily the right path for all applications. Teams should choose the system architecture and design patterns for the

project with a long-term plan in mind. Since design patterns change over time, system designs that were optimal at a

project’s inception may need to evolve.

Monolithic application architecture benefits
An application is monolithic when it contains components such as a user interface (UI), business logic, and data access

code in a singular unit that is developed, tested, and deployed together. This guide considers two common types – the

single-tiered monolith and the modular monolith.

Single-tiered monolith

A single-tiered monolith has the UI, business logic, and data access logic written as a single application that connects to a

database. A change to any one part of the application requires testing and redeployment of the whole application. Such

applications do not require well-defined modules related to functionality or business domains.

Modular monolith

A modular monolith is like a single-tiered monolith because the entire application’s functionality is deployed together.

https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://aws.amazon.com/microservices/
https://aws.amazon.com/microservices/
https://aws.amazon.com/microservices/
https://aws.amazon.com/microservices/

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 3

However, modular monoliths have logical boundaries defined between modules that correspond to business or

functional requirements. Because of tight code coupling, modules can interact with each other. The database of a

modular monolith has similar structure and application access patterns as a single-tiered monolith.

There are some advantages to designing applications as monoliths. They include:

• Development Model - Many integrated development environments (IDEs) use a project structure that reflects

the monolithic architecture. These IDEs attempt to simplify the developer experience by combining the code

for an application as a single project or solution structure. For smaller projects, this structure offers the benefit

of being able to load the whole application into the development environment at once.

• Test and Debug - Developers can test and debug the entire application in the IDE. They can also use test

automation tools to run a single integration test or an entire suite to validate end-to-end functionality.

• Application Deployment - Deployment of monolithic applications is simple because there is only one

application that deploys as a single unit, eliminating the need to coordinate the deployment of multiple

applications and components at the same time.

• Operational Overhead - The operation of monolithic applications is straightforward, since there are few

external dependencies, communication between modules is internal to the application, and diagnosing issues

involves troubleshooting a single application.

Drawbacks of a monolith architecture
While the simplicity of the monolithic architecture initially provides some benefits, there are inherent drawbacks. These

become more pronounced as the application grows. Developers need to be increasingly diligent about the impact that

their changes may have. A change to one part of an application may cause unforeseen effects in other parts of the

application. If the developer of a module is not aware of all the usages of their code, then updating that code in a single

location can cause regressions in seemingly unrelated functionality. Even a minor change to a monolithic architecture

requires end to end testing of the entire application. As the application becomes more complicated, it is less likely that a

developer will be able to fully understand the impact on the entire code base.

Teams rarely design monolithic architectures with scaling as a primary concern. Monolithic applications run under the

assumption that all modules of the application are immediately available as a part of the application process. This means

that the way to scale out an application is to create a full copy on separate infrastructure. A load balancer or similar

mechanism is required to manage traffic distribution. This method of scaling can be inefficient since there is no way to

scale individual components. Parts of the application with low usage scale at the same rate as those that are heavily

used.

By keeping all functionality together, an application can suffer from “noisy neighbor syndrome”, in which the heavy

usage of one part of the application can cause performance bottlenecks for the entire application, starving unrelated

parts of the application of resources.

Monoliths are often stateful, relying on techniques like in-memory user session management. Applications may lose

some benefits of scaling if users must remain bound to a particular instance, such as through the use of “sticky sessions”.

If one instance of the application fails, then all the users tied to it must restart their sessions. Changing a monolithic

application to be stateless can involve a significant effort by developers, and may be prohibitively costly.

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 4

Because of the single codebase of a monolith, updating to new technologies or coding patterns becomes increasingly

risky as the application grows. Introduction of new technologies requires thorough testing of the entire application and

increases the risk of unexpected regressions. This results in delays for even minor changes, such as upgrading the

version of a library used by the application, or trivial database structure changes. Significant changes, such as shifting

from a relational database to a non-relational database, often become too risky to even attempt.

There are well-known limitations of a monolithic architecture. They include:

• Reduced agility - The application becomes too large and complex for the team to make changes quickly

without high risk of defects.

• Reduced performance - The size of the application can affect application start-up time and overall

performance characteristics.

• Deployment risk - The team must deploy the entire application for each change. The effects of minor changes

to the application have the risk of being wide-ranging.

• CI/CD - Large application size and specific runtime environment requirements make continuous deployment

difficult (if not impossible). It is not unusual for large monolithic applications to have manual steps required in

the deploy process.

Microservices

Microservice architectures
Microservice-based architectures comprise multiple fine-grained and loosely coupled services acting together as an

application. Each microservice has a bounded context for a single business domain. Services communicate with each

other either synchronously using REST or RPC, or asynchronously using an event bus or a publish and subscribe

(pub/sub) messaging model.

Figure 1: Asynchronous messaging and event passing between services

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 5

Each microservice has data storage independent of the other services. The data store is part of the service

implementation; other services cannot access it directly. Because data stores are specific to each service, the type of

database can vary based on the service needs, and it is common for each microservice to use a purpose-built database.

The data store-per-service model can cause some challenges, such as data duplication, the atomicity of distributed

transactions, and data consistency. When implementing transactions spanning services, the Saga pattern can help

manage data transactions and consistency, and API composition or Command Query Responsibility Segregation (CQRS)

can reduce the overhead of data retrieval.

Figure 2: Synchronous communication between services using REST. Each

service uses an independent purpose-built data store

Benefits of microservice architectures
Migrating to a microservice-based architecture addresses challenges related to monolithic architectures through a

combination of architectural changes and modern techniques, such as automated CI/CD processes.

A microservice-based architecture lets you configure your application to scale efficiently, as opposed to monolithic

architectures, which scale by creating additional copies of the entire application.

The ability to separate out the functionality of your application into components that can scale independently addresses

the “noisy neighbor syndrome” effect previously discussed. Consider the example in which the order processing portion

of an e-commerce application needs additional resources to accommodate the required load. The increased usage could

cause the order processing components to consume most of the system resources. This could cause other parts of the

system, such as the UI, to exhibit performance issues, despite not experiencing additional usage. In a microservice-based

architecture, the order processing service can scale out as needed, leaving the rest of the application components

unaffected.

The unit of deployment for each microservice is smaller than a full monolithic application. Each piece of functionality, a

subset of the overall application, can be deployed to lightweight compute infrastructure, such as containers or a

serverless service, such as AWS Lambda.

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/saga-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/saga-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/saga-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/saga-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/saga-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/saga-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/saga-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/saga-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/saga-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/saga-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/saga-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/saga-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/saga-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/saga-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/api-composition.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/api-composition.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/cqrs-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/cqrs-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/cqrs-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/cqrs-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/cqrs-pattern.html

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 6

Smaller units of deployment limit the scope of changes, reducing the risk of inadvertently affecting other areas of an

application, since functionality within the microservice is only accessible via well-defined interfaces. Microservices are

simpler than monoliths to build, test and deploy using automation, enabling more frequent delivery through CI/CD

pipelines.

When to avoid microservice-based architectures
The choice to use microservices must be intentional and required to achieve business outcomes. Some examples of

circumstances to avoid microservice architectures are:

• The application is small or simple - For less complex applications, the overhead and complexity of implementing

and maintaining a microservice-based architecture may overshadow any benefit from using it.

• The application domain does not fit in the microservice model - If it is not possible to model an application as

separate services represented by bounded contexts, then there may not be enough independence among

components to facilitate a microservice design.

• The application is static or has a limited life span - One benefit of the microservice architecture is the ability to

add additional services as the business domains change or increase. If the application is unlikely to change

substantially, or is temporary, then the additional effort of building and maintaining microservices may

outweigh the benefit.

• Lack of expertise to build and maintain microservices - If a team is small or does not have resources dedicated

to building and operating microservices, then the organization may want to avoid a microservice architecture.

Teams need adequate budget, skill, and capacity to build and operate microservice-based applications

effectively.

Operational Considerations for Microservices
Distributed microservice-based applications introduce many benefits for businesses. However, a microservice

architecture is not necessarily a “one size fits all” strategy. Along with the advantages that the pattern offers, there are

operational considerations for ensuring that microservices are the right option for the business, team, and application.

Team expertise
For teams that are experienced in traditional forms of software development, such as building single monolithic

applications, the transition to building microservices may present challenges. The distributed nature of the architectures

requires concepts and skills that may be unfamiliar to some development teams.

Building microservice applications requires the adoption of modern patterns such as CQRS, event sourcing, or Saga,

requiring additional training and skill sets. Because there is no requirement to use the same language or framework for

each microservice, teams could find themselves in a position where additional resources are required to maintain the

applications over the long term because of the diverse technologies.

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 7

Microservices running in the cloud may introduce additional concerns for teams, requiring new skills, such as

containerization, infrastructure as code, and a distributed security model.

When adopting microservice-based architectures for applications, the adoption of a DevOps culture within an

organization is important. Active adherence to it by team members is important to help maintain effective collaboration,

agility, and mechanisms needed to build and operate microservice-based applications successfully. A DevOps culture

requires support from every level of the organization to be successful.

Operational complexity
Microservice architectures comprise independent services that interact with each other. This introduces more moving

parts than are usually present with monolithic applications.

Continuous integration and continuous delivery (CI/CD) automation for the build, test, and deployment of individual

microservices is critical to minimize the risk of the deployment process. The complexity of CI/CD for a microservice-

based application increases both with the number of services and the different technologies used.

Inter-service communication poses separate challenges. Because many microservices will communicate via HTTP or

other network-based RPC protocols, latency may be an issue. Service discovery also becomes necessary, with

implementation of components such as a service mesh (e.g. Envoy) and a service discovery catalog (such as AWS Cloud

Map) allowing services to find and communicate with each other. This introduces yet another layer to operate and

monitor.

Security
In monolithic architectures, access to an application is controlled by a single security mechanism that provides

authorization for user access to functionality, usually through a single user interface or API. In microservice applications,

security plays an even more important role, since each independent service represents additional attack surface area.

Unauthorized access to one microservice must not enable unauthorized access to any other part of the system.

Microservice security design must be comprehensive and adhered to without exception. In microservice-based

architectures, security boundaries need to exist where none did previously, and a centralized security mechanism (such

as secure JWT validation or OIDC provider) is important to ensure the integrity of the application and its data.

Monitoring and troubleshooting
Traditional monitoring and troubleshooting techniques used in monolithic applications are not sufficient for

 microservice-based applications. The distributed nature of the applications can make pinpointing the cause of errors

and performance bottlenecks complex. Individual errors may be difficult or impossible to reproduce reliably, and

exception stack traces that display the entire call stack are not available.

Organizations need to implement observability tools that are suitable for microservice architectures. For application

logs, teams can use services such as Amazon CloudWatch or Logstash for log collection, and OpenSearch for log

aggregation and analysis. Distributed tracing tools such as AWS X-Ray can provide critical information about activity

https://aws.amazon.com/xray/
https://aws.amazon.com/xray/
https://aws.amazon.com/xray/
https://aws.amazon.com/xray/

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 8

that spans multiple microservices, increasing visibility and traceability. AWS Logging for .NET integrates popular

logging frameworks such as ASP.NET Core logging, Log4Net, and NLog with AWS logging systems.

Data consistency
One distinguishing characteristic of a microservice-based architecture is the use of an independent data source for each

service. Data for a single transaction will be in a consistent state only after all the involved microservices have completed

their work. This is in contrast to a monolithic application using a single relational database, in which ACID (atomic,

consistent, isolated, and durable) transactions and foreign key relationships help to maintain data consistency and

integrity.

Designers of microservice applications need to take special precautions to allow data to exist in a consistent state both

between and during transactions. Consider a microservice-based application where inventory and order data exist in

separate data sources. Decrementing the amount of an item before placing an order may be required to prevent

overselling that item. However, returning the item to inventory if the order is canceled is equally important to ensure

that the stock levels remain accurate.

Patterns such as Saga can help coordinate transactions in microservice-based architectures. These help teams to

maintain consistency of data stored across an entire distributed application. Implementing the Saga pattern can lead to

more complex workflows and testing scenarios.

Monolith to microservices

Challenges of decomposing a monolith into microservices
One of the first challenges that teams face when decomposing an application into microservices is a lack of firsthand

knowledge of the overall application. This lack of knowledge often manifests in three ways:

1) The original developers may no longer be with the company, so firsthand knowledge of the original design of the

application and its design patterns may be lost.

2) The application may have grown, with additional functionality added via “Scope Creep”. This often results in the

original design and architecture being compromised as the codebase expands and changes.

3) The lack of application knowledge results in outdated or non-existent application documentation. Poor

documentation often exacerbates missing application expertise.

As monolithic applications grow, modules are sometimes invoked in ways that were never intended. It becomes difficult

to identify boundaries in code that define a microservice candidate. An example of this is when some parts of an

application use a dependency injection (DI) framework to use a class, but other areas of the application use the

constructor to instantiate objects directly. When classes intended as internal to a code module get called directly by

other parts of the application, a “leaky abstraction” occurs. Because of these types of intra-connections, difficulties

arise with defining the calling patterns for the code to replace with a microservice.

https://github.com/aws/aws-logging-dotnet
https://github.com/aws/aws-logging-dotnet
https://github.com/aws/aws-logging-dotnet

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 9

Monolithic architectures frequently require that code is running as a single instance on a server. This “singleton”

behavior encourages coding practices in opposition to microservice decomposition. A monolithic web application front-

end may store session state data in process memory on the web server. Although this approach is simple to implement

and use, it results in an extracted microservice no longer having access to session data. Such design issues require

upfront development effort to prepare the monolithic application before decomposition can start. In this example,

moving the session state from process memory to external storage, such as a cache or a NoSQL database, can mitigate

the issue.

With microservice extraction from the monolithic application, new challenges with deploying and testing present

themselves. Because microservices are deployed separately, potentially by different teams or parts of the business, each

will have its own requirements for testing and deployment. Transitioning to microservice-based architectures increases

the number of deployments, so the automation of deployments is essential. For teams that do not use CI/CD, the

resources required by the additional deployment efforts can quickly outpace the resources available. Therefore, each

microservice should support a CI/CD process from the initial stages of development.

Test coverage

Test coverage for the existing codebase helps with code refactoring. Test coverage identifies defects and functional

anomalies during the refactoring process. An iterative refactor/test loop can reduce large refactoring tasks into smaller

steps, each validated with test cases. If a codebase does not have test coverage, developers can divide it into smaller

logical units. They can then write test cases for the most critical functional units first, repeating the process for the

remaining functional units.

Strategies to split a monolith
It is common for traditional ASP.NET applications to use an architecture with code organized in logical layers of

functionality, the most common ones being User Interface (UI), Business Logic/Application Logic, and Data Access layers.

Figure 3: Typical layers of a monolithic ASP.NET application.

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 10

Domain Driven Design

One way to decompose a monolithic application is to refactor the application’s functionality according to business

domains to create a bounded context for each model. A bounded context is the logical boundary of a business domain,

inside of which a domain model applies. Modeling an application in this way is known as Domain Driven Design (DDD).

Figure 4: Separating application functionality by business domain.

Strangler Fig pattern

The Strangler Fig pattern is a refactoring approach to replace the functionality of a legacy application incrementally

with new services, without affecting the overall functionality. This includes identifying existing components and

dependencies between them, grouping interdependent components into separate bounded contexts, and extracting

them as an independent service. The remaining monolithic application communicates with the extracted services using

asynchronous messaging or synchronous API calls.

Figure 5: Example of the Strangler Fig Pattern

The following best practices for component selection will help you choose components to extract into microservices that

will independently scale and deploy:

https://aws.amazon.com/blogs/mt/find-your-business-domains-to-start-refactoring-monolithic-applications
https://aws.amazon.com/blogs/mt/find-your-business-domains-to-start-refactoring-monolithic-applications
https://aws.amazon.com/blogs/mt/find-your-business-domains-to-start-refactoring-monolithic-applications

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 11

1. Select components that have good test coverage and low technical debt to reduce the upfront work required.

2. Select components that are likely to have scaling requirements independent of the rest of the monolithic

application.

3. Select components that have frequent business requirement changes and are apt to require frequent

deployments as a microservice.

The Strangler Fig pattern is a common pattern for decomposing existing monolithic applications into independent

services.

Communication in microservices architecture
Once a team begins decomposing a monolithic application into microservices, the next step is to define the methods of

communication between the services that compose the application. It is important to choose the right communication

methods for an application, both in the short and long term. Different communications protocols have different

requirements when considering them for a microservice application.

Monolithic applications implement synchronous communication between libraries because it is the natural

communication paradigm for an application deployed as a single binary codebase. When deploying an application as a

collection of microservices, communication that provides fault tolerance, high availability, and the possibility of

supporting scaling on a per-service basis should be considered.

A simple method for communicating between an application component and an extracted microservice is the adapter

pattern. This is how the AWS Microservice Extractor for .NET works. In this pattern, application logic makes calls to a

component (the adapter) that is a wrapper for calls to the microservice. The adapter makes synchronous calls over the

network to the microservice on behalf of the application logic.

One factor to consider when determining the method of communication to use is whether the microservice calls require

synchronous communication. If there is a requirement for synchronous communication, the default method of routing

communications is to implement an HTTP call directly to the microservice endpoint. Synchronous communications

provide the developer with a simple method of connecting to the microservice. However, some challenges associated

with a monolithic architecture remain. Direct network connections to a microservice result in a strongly coupled system,

which results in a single point of failure. Replacing a direct connection by placing the microservice behind a load

balancer helps to mitigate this. The load balancer routes traffic to the microservice instances that are in service, enabling

it to accommodate scaling actions automatically. Another technique that can be used is a service discovery model,

where the calling code looks up the endpoint of the microservice.

For communication that is not required to be a synchronous, developers can implement a loose coupling model for

interaction with the microservice. A typical method of loosely coupling microservices involves the use of a queuing

mechanism, such as Amazon Simple Queue Service (SQS). Developers integrate applications with SQS by placing items

into a queue for asynchronous processing by microservices, which periodically retrieve and process them. Implementing

loose coupling through a queuing mechanism insulates applications from failures in microservices. Microservices can

then independently scale based on the number of queued items. An event publication service such as Amazon Simple

Notification Service (SNS) can be used to asynchronously notify many subscribers.

https://aws.amazon.com/microservice-extractor/
https://aws.amazon.com/microservice-extractor/
https://aws.amazon.com/sqs/
https://aws.amazon.com/sqs/
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 12

Decompose the database
There are multiple ways to structure your databases as you go from monolith to microservice. Following are two

commonly used patterns.

Shared-database-per-service pattern

In the “shared-database-per-service” pattern, multiple microservices use a single database. This pattern is normally an

interim architecture choice before fully adopting independent data stores for each microservice. Teams should avoid

this pattern for new microservices, since it is anti-pattern in that scenario. Teams should carefully assess the application

data access patterns adopting the “shared-database-as-a-service” pattern, avoiding “hot tables“, which are frequently

accessed and shared among multiple microservices.

When using this pattern, database changes must also be backward-compatible to prevent unexpected application

failure, because there are potentially dependencies in multiple codebases. For example, developers can drop columns or

tables only if none of the running microservice versions reference them.

In Figure 6, all the microservices in a serverless AWS Lambda application share an insurance database, with an AWS

Identity and Access Management (IAM) role controlling access to each of them. A change in the “Sales” service that

requires a database schema change requires coordination with the developers of the “Customer” and “Compliance”

services to ensure compatibility of the code with the updated database structure.

Figure 6: Illustration of Shared-Database-Per-Service Pattern

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/iam
https://aws.amazon.com/iam/

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 13

This pattern does not reduce dependencies between development teams, and introduces runtime coupling because all

microservices share the same database. A long-running transaction in one service against one table, for instance

“Customer”, could indefinitely block access to that table by the other services.

Teams can consider the “shared-database-per-service pattern” in cases such as:

1. They cannot redesign the existing data access layer.

2. They need to maintain data consistency through ACID transactions and are not ready to implement patterns

such as Saga.

3. They want to maintain only one database server instance for the entire application.

4. They have complex data dependencies among the microservices that prevent implementation of an

independent database for each microservice.

One-database-per-service pattern

A defining characteristic of the microservice architecture pattern is the use of an independent data source for each

service. Decomposing a monolith’s database into multiple service-specific databases can achieve this. By design, only a

microservice that owns a database can access it. In the previous example, ideally the “Customer” service will be the only

one accessing a separate customer database, while the “Product” service will be the only one accessing the product

database and so on.

Figure 7.1: Illustration of One-Database-Per-Service Pattern

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 14

The “one database-per-service pattern” introduces advantages such as:

1. The ability to scale performance independently across separate data stores.

2. The choice of database engine based on the data structure and access patterns of each microservice.

3. The capability to independently restrict access to each data store.

Transforming an application to the “one-database-per-service” model allows teams to take advantage of these benefits,

but the database refactoring process requires a similar amount of planning and effort as with the applications

themselves. This guide does not cover database refactoring explicitly, but AWS offers prescriptive guidance to help

teams get started on that journey.

Saga pattern

When decomposing a monolith into independent services, there may be scenarios in which a service needs to use

multiple databases to complete a transaction. The Saga pattern is a workflow that can achieve this.

The Saga architectural pattern provides an approach to maintain data consistency in distributed applications by

coordinating transactions among multiple microservices. In the pattern, a microservice publishes an event for every

operation, and the next operation starts based on the event’s outcome. The overall transaction takes a path that

depends on the success or failure of the individual events.

Figure 8 illustrates how the Saga pattern can use AWS Step Functions to implement an order processing system. Steps

with multiple potential outcomes, such as “ProcessPayment”, have subsequent steps that handle both success and

failure conditions, in this example ”UpdateCustomerAccount” and “SetOrderFailure”, respectively.

Figure 8: Illustration of the Saga pattern

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 15

The Saga pattern may be useful for an application in the following cases:

1. The application needs to maintain data consistency across multiple microservices without tight coupling.

2. Long-lived transactions should not block operations on data by other microservices.

3. Transactions need to roll back if a single operation in the sequence fails.

Microservice technology choices
When moving to a cloud-based microservice architecture, it is important to make technology choices that will best meet

business and technical requirements for the workload. Teams may come with pre-conceived notions of what they

should choose, based on factors such as their own experience and current trends. This may cause situations such as a

team of developers selecting .NET solely because they have previous experience, or choosing Kubernetes for container

orchestration because of its popularity.

Compute
When building microservice-based applications in the cloud, the two most popular options are containers and serverless

function-as-a-service.

Containers

Containerizing workloads allows the packaging of application code and dependencies, such as runtime libraries,

together. Containerized applications have the benefit of portability and run the same regardless of the underlying host

infrastructure, because the application code is abstracted away from the underlying operating system. Containers are a

good choice for microservice-based applications, because they are lightweight, portable, and integrate natively with

modern DevOps tools.

The two most common types of containers that customers use for their applications are based on Linux and Windows,

denoting both the virtualized container operating systems and the container engine host operating system. The choice

of container type depends on the application code requirements.

Many runtimes, such as .NET 6.0 and Node.js support both Windows and Linux containers. If the application code has

dependencies on Microsoft Windows, such as .NET Framework, then Windows containers are necessary. If an

application also runs on Linux, there are advantages such as smaller container image size, faster startup time, and little

to no OS license costs. For applications running versions of .NET Framework there are modernization tools available to

help refactor the code to .NET 6.0 such as Porting Assistant for .NET.

On AWS customers have a choice of two ways of hosting containers, using Amazon Elastic Compute Cloud (EC2), or as

serverless containers using AWS Fargate. When using Amazon EC2, the customer provides (usually via automation)

instances on which the container orchestrator places new containers. When paired with local image caching, this

mechanism provides fast startup time for individual containers. In order to ensure there is always available capacity to

https://aws.amazon.com/porting-assistant-dotnet/
https://aws.amazon.com/porting-assistant-dotnet/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 16

place containers, excess capacity must always be available, or else container startup delays may occur while additional

hosts are provisioned. When using EC2 instances, application owners are responsible for OS patching.

AWS Fargate can run both Windows and Linux-based containers and eliminate the need to manage EC2 instances. The

startup time for containers that are provisioned using AWS Fargate may be longer than those running on Amazon EC2,

which can cache container images locally. AWS Fargate is often a good choice because of its efficient use of resources

and lower management overhead. However, if near-instant startup is required, then using EC2 as the container host

platform can help achieve that outcome.

Container orchestration

Each container should serve a single purpose, hosting a single application or component. Microservice-based

applications that use containers comprise images deployed for the various services. Orchestrating the image, quantity,

and connectivity of application containers is a critical aspect of operating microservice-based applications.

There are different container orchestration engines available to customers, such as Docker Swarm, Kubernetes, and

RedHat OpenShift. Teams that run container-based applications on AWS usually select one of the cloud-based container

orchestration services, rather than implementing container orchestration themselves.

Amazon Elastic Kubernetes Service (Amazon EKS) is a service that provides a managed Kubernetes control plane.

Kubernetes has capabilities such as storage management and orchestration, service discovery, load balancing, and

automatic scaling. Amazon EKS can use both the EC2- or Fargate-based container engines.

For smaller applications that use few individual container images, Amazon Elastic Container Service (Amazon ECS)

provides a simple orchestration mechanism. Microservices on Amazon ECS use one or more container images that run as

discrete tasks, such as a web application with a reverse proxy. Amazon ECS manages the health and scale of

containerized microservices and also integrates with other services that are useful in microservice-based applications,

such as Elastic Load Balancing and AWS Auto Scaling. Amazon ECS can use both EC2- or Fargate-based compute.

For customers building simpler microservice-based applications with fewer components, or who have little experience

running containerized workloads, then Amazon ECS is a good choice to run containerized microservices. For customers

that are already running Kubernetes, or are building large-scale applications with many microservices, then the

advanced orchestration capabilities and managed service aspects of Amazon EKS make it a good choice.

Serverless functions

Another common choice for microservice-based architectures in the cloud is serverless functions, with AWS Lambda as

an example of a technology enabling this pattern. Serverless functions provide a layer of abstraction on top of the

underlying infrastructure and runtime. When deploying serverless functions, the user supplies an application code

bundle and specifies a function entry point to be called upon invocation. In the serverless model, resources are allocated

only when needed.

Unlike containers, serverless functions do not run continuously and only incur charges when running. Instead, a function

will start up in response to an event. Each instance of a function processes one request at a time. If multiple requests for

a function occur simultaneously, the service scales automatically to handle them. Examples of events are: HTTP

requests, messages added to a message bus or queue, a scheduled timer, or uploading of a file to object storage.

https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/lambda/

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 17

Because of the higher level of abstraction of serverless functions, the platforms are more opinionated than other types

of compute, such as containers. For instance, in AWS Lambda, the managed runtime choice is limited to certain versions

supported by the platform, such as long-term support (LTS) versions of .NET that run on Linux, such as .NET 6.0. When

using serverless functions, the code must adhere to a prescribed structure that allows it be invoked by the service.

Teams will need to refactor code for compatibility with the serverless invocation model.

 Since serverless microservices use multiple cloud-based components acting together, automated deployment of both

code and cloud infrastructure is necessary. Serverless-specific Infrastructure as Code (IaC) tools, such as AWS Serverless

Application Model (SAM), Serverless Framework, and Chalice, provide mechanisms to automate the creation and

integration of serverless functions with other cloud-native services.

Making the choice of compute

When choosing a compute platform, there are both technology and business-based considerations to determine the

right choice for the application. Examples are:

1. Will the benefits to the business and customers from choosing this technology outweigh additional complexity

or management required for the chosen service?

2. Does the team already have the skillset to build applications with this compute service? Will there be training

or additional staff needed?

3. Is the technology being chosen able to accommodate future needs of the business, both in terms of

functionality and scale?

4. Will the selected compute platform meet the security and compliance requirements of the business?

5. Are automation tools available to simplify and eliminate the risk of human error when deploying applications,

and are they compatible with the team’s current CI/CD tools?

Containers and serverless technologies offer scalable and flexible options for building microservice architectures. Some

teams prefer to build applications to be entirely based on serverless functions, while others opt to use a more traditional

application model with containers, integrating cloud-based services with it.

If a team wants a traditional web application framework for their microservices, such as ASP.NET Core, Express.JS, or

Flask, then using containers for microservices makes sense. By using these with AWS Fargate with Amazon ECS or

Amazon EKS, then they get the resilience, scalability, and high availability of the cloud, while still being able to use other

AWS services. If the team is building an application that is highly distributed, event driven, or message-based, then using

serverless technologies such as AWS Lambda as the primary form of compute, along with one of the serverless

deployment frameworks, may be the right decision.

If a microservice-based application needs longer-running compute, and is also event based, then both containers and

serverless functions can be used for different parts of the application. For instance, the team may choose serverless

functions to process events related to uploading documents for OCR and publishing metadata to a database, with

containers used for background processing of the data extracted from the uploaded documents.

https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/serverless/sam/
https://serverless.com/
https://serverless.com/
https://serverless.com/
https://aws.github.io/chalice/

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 18

Database
A key characteristic of microservice-based architectures is the use of an independent data store for each individual

service. This is in contrast to monolithic architectures, in which one data store contains most or all of the data, usually in

a single relational database (RDBMS).

One advantage of building applications in the cloud is the variety of database options. The availability of purpose-built

databases allows teams to pick the right one for each microservice, optimized for the type of use case. This paradigm is

known as “polyglot persistence”. When choosing cloud-based databases (either relational or otherwise), teams use the

consumption-based pricing model of the cloud, removing the need to purchase commercial database licenses. Using

cloud-based managed database services also reduces operational overhead, because the cloud provider (e.g. AWS)

manages the underlying infrastructure and database platform, and the customer is only responsible for building

applications and managing data.

Following are some common choices of purpose-built and cloud-based databases commonly used in microservice-based

applications:

• Relational Database Management Systems (RDBMS) are usually chosen for use cases where data has a fixed

structure. Relational databases naturally maintain data consistency through ACID transactions. Examples:

MySQL, PostgreSQL, Amazon Aurora.

• Document Databases are NoSQL databases that store data without a prescribed structure or enforced

relationships to other data. They are often used for read-intensive workloads such as product catalogs.

Examples: MongoDB, Amazon DocumentDB, and CouchDB.

• Key-Value Databases are NoSQL databases that store data using a hash table data structure (hence the name

“key-value”). Key-value databases offer high performance storage and retrieval of unstructured data. Use cases

include user profiles, session state, and shopping cart data. Example: Amazon DynamoDB.

• In-Memory Databases are high performance NoSQL database that store unstructured data in memory, allowing

sub-millisecond access time. Teams use in-memory databases for frequently accessed, ephemeral data such as

user sessions, and as a caching layer in front of other, slower, data stores. Examples: Redis, Memcached,

Amazon ElastiCache (Redis/Memcached), or Amazon MemoryDB.

• Time Series Databases are NoSQL databases designed for high throughput data ingestion in temporal order. Use

cases include Internet of Things (IoT) applications and storing metrics or telemetry data. Example: Amazon

Timestream

• Graph Databases are NoSQL databases that hold both data and a representation of the connections among data

items. Some use cases are fraud detection, recommendation engines, and social applications. Examples: Neo4j,

Amazon Neptune.

• Ledger Databases store transaction data and provide cryptographical verification of each transaction, giving an

auditable, immutable history. Financial applications often use ledger databases when a single verifiable source

of truth is required. Example: Amazon Quantum Ledger Database.

https://aws.amazon.com/documentdb/
https://aws.amazon.com/documentdb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/memorydb/
https://aws.amazon.com/memorydb/
https://aws.amazon.com/timestream/
https://aws.amazon.com/timestream/
https://aws.amazon.com/timestream/
https://aws.amazon.com/neptune/
https://aws.amazon.com/neptune/
https://aws.amazon.com/qldb/
https://aws.amazon.com/qldb/

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 19

Selecting the right type of database for each microservice is important. Similar to the selection of the compute platform,

there are factors to consider when making a database choice.

1. Does the business value added by the database engine outweigh the additional expertise required and effort

needed to refactor the codebase that it introduces?

2. Will the functionality of the database being chosen for each microservice be able to accommodate future

needs of the business?

3. Will the performance of the database be able to accommodate the projected size of data?

4. Does the database have high availability and resilience that will allow the application to meet the required SLA

for customers?

Security considerations for microservices
Security is a critical consideration with any application, but the distributed nature of microservices introduces additional

considerations when designing and implementing them. By introducing security best practices and standards into the

foundation of the microservice-based application, companies can avoid the risk, cost, and complexity of a reactive

approach to security.

Authentication and authorization
Since monoliths get deployed as a single entity, there is usually a single authentication and authorization mechanism for

the entire application. This may include a username and password for a web application or API keys for a server-based

API. Even if a separate identity provider (IdP) handles authentication and authorization of consumers of an application,

there is still common code in the application to control access.

In microservice-based architectures, it is critical to implement access control for each service, for both end-user client

access and service-to-service communication. By ensuring that each call to a microservice is authorized, unintended

access to any service can be prevented.

For user-facing services, authorization frameworks such as OpenID Connect (OIDC) or OAuth 2.0 can be used to control

access. This enables limiting the scope of access for each identity to certain microservices. This can be accomplished

using an independent identity provider, such as Amazon Cognito, to control access to applications using both Cognito-

specific and federated user identities. One benefit of choosing Amazon Cognito for identity management is its ability to

integrate with other AWS services, such as Amazon API Gateway and an Application Load Balancer.

Service-to-service communication must also be secured to maintain defense in depth. One such technique for

communications is mutual TLS (mTLS), where x.509 certificates are used to both authenticate inter-service

communication and encrypt the traffic. Many service mesh products, such as Amazon App Mesh, support mTLS.

Another method is to use JSON web tokens to validate identity and authorize access. Using this technique, each service

will attempt to verify the token’s digital signature using a trusted certificate, in order to trust the data contained within

the JWT.

https://aws.amazon.com/cognito/
https://aws.amazon.com/cognito/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://aws.amazon.com/app-mesh/
https://aws.amazon.com/app-mesh/

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 20

Increased attack surface
In monolithic applications, there are usually only a few ways to access the system, such as a single web application or API

endpoint. For applications that accept external (Internet-facing) traffic, only certain network ports and protocols are

allowed by firewalls, either into the corporate data center or cloud-based virtual network. Using Network Address

Translation (NAT) avoids exposing services directly, limiting the public-facing part of the application to a single IP address

and port.

When designing microservice-based applications, using the principle of defense in depth enables teams to reduce the

number of attack vectors. Defense in depth includes securing the perimeter of the application at each layer, making it

more difficult for an attacker to gain unauthorized access to any services.

For example, when running microservices in an Amazon Virtual Private Cloud (VPC), the following steps can reduce the

risk of a larger attack surface area:

• Endpoints of services hosted in containers, and APIs that do not require a public-facing interface should be

placed in private subnets, disabling direct access from the Internet.

• Network Access Control Lists (NACLs) should restrict access between subnets, limiting only the required traffic

for the application.

• Security group rules should allow traffic to each service from the intended clients only.

• Non-public microservices called from on-premises clients should be accessible via a secure, dedicated network

connection, such as AWS Site-to-Site VPN or AWS Direct Connect.

• Services that need to be accessed directly from the public Internet should use perimeter security tools like AWS

Web Application Firewall (WAF) to detect and protect against malicious traffic, and AWS Shield to protect

against distributed denial of service attacks (DDoS).

Data encryption and protection
All traffic in a microservice-based application should be encrypted. This includes not only traffic between client

applications and the individual services, but also inter-service communication. Obsolete TLS protocols and cipher suites

should be avoided.

When running microservice-based applications in AWS, certificates can be issued, managed, and automatically renewed

using Amazon Certificate Manager (ACM) for public facing services, or AWS Certificate Manager Private Certificate

Authority (Private CA) for internal-only services. ACM and Private CA both integrate with many services commonly used

in microservice-based architectures, such as Amazon API Gateway, Amazon Cognito, and Elastic Load Balancing.

It is also important to enforce encryption at rest for all application data. Data should only be accessible by parties with

access to the correct encryption keys. Amazon Key Management Service (KMS) integrates with most other AWS services

and allows customers to either bring their own encryption keys or allow AWS to manage them.

Enforce isolation at the database layer

In monolithic applications, there is often no security boundary between different parts of the application or within its

database(s). This means that if a malicious actor gains access to the monolithic application, they can gain access to any

https://aws.amazon.com/vpc/
https://aws.amazon.com/vpc/
https://aws.amazon.com/vpn/site-to-site-vpn/
https://aws.amazon.com/vpn/site-to-site-vpn/
https://aws.amazon.com/vpn/site-to-site-vpn/
https://aws.amazon.com/vpn/site-to-site-vpn/
https://aws.amazon.com/vpn/site-to-site-vpn/
https://aws.amazon.com/vpn/site-to-site-vpn/
https://aws.amazon.com/directconnect/
https://aws.amazon.com/directconnect/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/shield/
https://aws.amazon.com/shield/
https://aws.amazon.com/certificate-manager/
https://aws.amazon.com/certificate-manager/
https://aws.amazon.com/certificate-manager/private-certificate-authority
https://aws.amazon.com/certificate-manager/private-certificate-authority
https://aws.amazon.com/certificate-manager/private-certificate-authority
https://aws.amazon.com/certificate-manager/private-certificate-authority
https://aws.amazon.com/certificate-manager/private-certificate-authority
https://aws.amazon.com/certificate-manager/private-certificate-authority
https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://aws.amazon.com/kms/

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 21

data in the application. An example of this is with SQL injection vulnerabilities, where an attacker runs arbitrary queries

against any table in the application database, regardless of the part of the application accessed.

Providing both application and database-level isolation in microservice applications reduces the “blast radius”. If an

attacker exploits a vulnerability in a microservice, they will only have access to data belonging to that service, reducing

the impact of a security event.

This adds additional complexity to microservice architectures, as opposed to monolithic applications, because there will

be many additional databases to maintain and monitor, along with access control for each unit of compute, by

controlling access to the data via database user or AWS IAM role.

Monitoring and logging
Logging and monitoring are central to detecting, understanding, and preventing security issues within microservice

applications. By collecting data related to microservice access and usage and by whom, teams can characterize usage

patterns across microservices and detect unusual activity.

Besides instrumenting microservice application with logging functionality, teams running cloud-based applications can

also analyze logs emitted by services, such as API gateways, container orchestration services, and cloud-based

databases, without having to write additional code.

There are many applications available to teams that enable the monitoring of entire microservice applications. When

operating microservice applications in AWS, Amazon CloudWatch is a common choice because of its ability to collect

both logs and performance metrics from applications and AWS services. Amazon CloudWatch logs and metrics can be

consumed by applications like Splunk, NewRelic, and Amazon OpenSearch Service for analysis and threat detection. AWS

services such as Amazon Managed Service for Prometheus offer a Prometheus-compatible monitoring service for

containers, and Amazon Managed Grafana can be used to visualize and analyze data from multiple sources

Cost considerations
With cloud computing, companies have access to a scalable platform, low-cost storage, database technologies, and tools

on which to build enterprise-grade solutions. Cloud computing helps businesses reduce costs and complexity, adjust

capacity on-demand, accelerate time to market, increase opportunities for innovation, and enhance security.

Weighing the financial considerations of operating an on-premises data center compared to using cloud infrastructure is

not as simple as comparing hardware, storage, and compute costs. Whether a company owns its own data centers or

rents space at a colocation facility, they have to manage investments that include capital expenditures, operational

expenditures, staffing, opportunity costs, licensing, and facilities overhead. AWS prescriptive guidance for cost can help

choose the right pricing model that works the best for organizations.

Decomposing a monolithic ASP.NET application
A monolith can be decomposed according to an organization’s business capabilities. A business capability is what a

business does to generate value (for example, sales, customer service, or marketing). This approach uses domain-driven

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/opensearch-service/
https://aws.amazon.com/opensearch-service/
https://docs.aws.amazon.com/prometheus/latest/userguide/what-is-Amazon-Managed-Service-Prometheus.html
https://docs.aws.amazon.com/prometheus/latest/userguide/what-is-Amazon-Managed-Service-Prometheus.html
https://docs.aws.amazon.com/grafana/latest/userguide/what-is-Amazon-Managed-Service-Grafana.html
https://docs.aws.amazon.com/grafana/latest/userguide/what-is-Amazon-Managed-Service-Grafana.html
https://docs.aws.amazon.com/whitepapers/latest/replatform-dotnet-apps-with-windows-containers/cost-considerations.html
https://docs.aws.amazon.com/whitepapers/latest/replatform-dotnet-apps-with-windows-containers/cost-considerations.html

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 22

design (DDD) to decompose monoliths and breaks down the organization’s domain model into separate subdomains

that are labeled as core (a key differentiator for the business). This pattern is appropriate for existing monolithic systems

that have well-defined boundaries between subdomain-related modules.

The other pattern is to decompose by transaction. In a distributed system, an application typically needs to call multiple

microservices to complete one business transaction. To avoid latency issues or two-phase commit problems,

microservices can be grouped based on transactions. This pattern is appropriate if response times are important and

different modules do not create a monolith after packaging.

Regardless of the decomposition strategy, breaking up a monolith requires understanding of the relationship between

various parts of the application and the refactoring of the code into independent services. This manual process can be

time-consuming for teams. Assistive refactoring tools such as AWS Microservice Extractor for .NET can simplify the

process of refactoring older monolithic applications into smaller code projects to build a microservices-based

architecture.

AWS Microservice Extractor for .NET
AWS Microservice Extractor for .NET is an assistive tool that can help with the process, providing an understanding of a

monolithic .NET application’s structure. It provides teams with information to help identify candidate microservice

functionality and will provide automated code transformation to help with the process.

Figure 9: Microservice Extractor for .NET steps

A typical monolithic application allows components to call other components, and does not limit access to the shared

data store (Figure 10).

https://aws.amazon.com/microservice-extractor/
https://aws.amazon.com/microservice-extractor/

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 23

Figure 10: Typical Monolith

Microservice Extractor can help model the monolith as one or more separate microservices. This includes the

understanding of dependencies and automation of migrating functionality to separate services (Figure 11).

Figure 11: Monolith Following Extraction

Analyze application
The supported use cases for AWS Microservice Extractor for .NET are in the product documentation. The first step in the

process is to onboard the monolithic application into the tool for analysis.

There are additional options available to assist in the analysis of the monolithic application. These include runtime

profiling data, which will add call count to the application visualization, providing an understanding of not only the

https://docs.aws.amazon.com/microservice-extractor/latest/userguide/microservice-extractor-supported-versions.html
https://docs.aws.amazon.com/microservice-extractor/latest/userguide/microservice-extractor-supported-versions.html

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 24

direction of class dependencies but also the relative importance. Information on collecting runtime information for IIS

based applications can be found in the documentation. Using runtime profiling data is optional.

If upgrading the new microservice from .NET Framework to .NET 6.0 is planned, then Microservice Extractor can also use

the Porting Assistant for .NET, to include information about .NET compatibility when visualizing the monolithic

application.

Visualize
AWS Microservice Extractor for .NET enables visualization of individual classes that comprise the monolith, along with

the dependencies that they have on each other. Microservices Extractor displays the visualization as a series of nodes

connected by edges. Each node represents a class or interface in the monolithic codebase.

The individual nodes provide information about the type of each component. These include things such as models, data

access code, and UI components. The edges connecting the nodes are directional, with the plain end showing the source

component (i.e. caller) and the arrow end showing the target component (i.e. the called). Nodes that are “starting

points”, meaning that they have dependencies but are not dependencies themselves, make suitable candidates for

microservice extraction.

Figure 12: Visualization Canvas

Visualization of the monolithic application serves several purposes when moving from a monolithic to a microservices-

based architecture.

https://docs.aws.amazon.com/microservice-extractor/latest/userguide/microservice-extractor-install.html#microservice-extractor-install-runtime-profiling
https://docs.aws.amazon.com/microservice-extractor/latest/userguide/microservice-extractor-install.html#microservice-extractor-install-runtime-profiling
https://aws.amazon.com/porting-assistant-dotnet/

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 25

Visualizing the entire structure of the application is helpful for planning the refactoring effort by providing information

about the current structure of the application. This type of structural information about the application may not

otherwise be available. Without an understanding of the application structure, determining how to decompose it may

be difficult.

Visualization enables the understanding of the dependencies between the components. This gives visibility to

dependencies that may not be obvious when browsing the monolith’s source code directly. For example, the tool shows

all code referencing an Entity Framework data context, which is normally accessed from a repository service. If there are

components that reference the data context directly, rather than through the repository, it will be clear, and a

refactoring plan can be put into place to update the client code to use the repository instead.

When visualizing the monolithic application structure, Microservice Extractor provides three views, each providing a

different insight into the application structure. The first is the standard visualization that gives a view of the entire

application.

The second is namespace view (Figure 13). This shows all the components grouped by top-level namespace. This

provides an understanding of the high-level organization of the codebase.

Figure 13: Namespace View

The third visualization type displays islands of functionality within the monolith (Figure 14). Islands are independent

pieces of functionality with no external dependencies. Island view is a useful way to find parts of the application that are

unused, or can be easily separated out into separate projects.

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 26

Figure 14: Island View

Although the Microservice Extractor does not support all project types for extraction, it does support any .NET project

written in C# for visualization.

Group
The grouping functionality of AWS Microservice Extractor for .NET (Figure 15) helps teams to plan what functionality to

separate as a microservice. Microservice extractor enables the manual grouping of components to prepare for

extraction. When you group classes together, they will display together in the visualization canvas, and remain together

during automated extraction.

Determining the groups for the individual microservices can be challenging for even moderately complex monolithic

applications. In order to help make the process simpler, Microservice Extractor provides machine-learning automated

recommendations to suggest component grouping. This provides a starting point for planning the decomposition of the

monolith into microservices. (Note: this feature is in preview at the time of this writing. To request access to it, please

contact microservice-extractor-preview@amazon.com and provide the ID of the AWS account to be used for

Microservice Extractor in either the subject line or the email body.)

When grouping classes, Domain Driven Design (DDD) is the general guiding principle followed. With DDD, functionality is

grouped according to business domain. In an e-Commerce example, functional domains might involve inventory

management, the shopping cart experience, or order management.

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 27

Figure 15: Grouping classes prior to extraction

Extract
When decomposing a monolithic application to a microservices architecture using the Strangler Fig pattern, functionality

is removed from the monolith and used to create a new service. When extracting components in this way, it can

eliminate some of the overhead of starting from scratch and allow the use of code that has already been written and

tested.

The extraction process (either automated or manual) includes the creation of the destination microservice plus the

modification of the monolith to make calls to it. For instance, in a monolith, business logic may exist in a .NET assembly

statically linked with the main application. Calls to the business logic occur natively within the process itself. However,

when replacing those calls with calls to an HTTP-based microservice, the monolith must be updated to include

functionality that can make the network calls.

When using the Microservice Extractor automated extraction feature, it will allow the extraction of the individual groups

into separate microservices, adding code to the original monolith for invocation of the microservice.

For example, if inventory data were accessed as a repository in monolithic code, the application might look like this:

Inventory inventory = new Inventory();

Microservice Extractor will produce code that implements the adapter pattern, demonstrating how to access the newly

extracted service:

IInventory inventory = InventoryEndpointFactory.GetEndPointAdapter();

The extraction process is only the beginning of breaking up a monolith into a microservice-based application. This

document mentions both the challenges and benefits of extracting microservices, and the business transformation

required. Although AWS Microservice Extractor for .NET is a way to accelerate adoption, it is just the starting point.

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 28

Next steps
Once a team has successfully extracted one or more separate microservices (either manually or by using a tool like

Microservice Extractor for .NET), they will need to adapt the applications to meet the needs and standards of the

organization. This includes the following tasks:

• The new microservice codebases need to be added to version control and integrated into the company’s CI/CD

strategy, automating as much of the process as possible.

• The teams responsible for the new microservices should familiarize themselves with the new codebase,

understand the business use cases, and plan for any additional refactoring required to use the microservices.

This includes updates to implement team code and security standards, using approved libraries, or the

refactoring of duplicated code into common packages, such as through a private team NuGet repository.

• The entire application - the monolith and extracted microservices - needs to be thoroughly tested for

functionality, performance, and security. Adding microservices will introduce additional factors to be aware of,

such as the latency introduced by HTTP communication. The entire application must be tested to verify that it

will run as expected in production.

• Teams should document the process used to separate microservices from the original monolith. The Strangler

Fig pattern intends for the pattern to be repeated for each microservice. Having a repeatable process for a

monolithic application will reduce the amount of work required to add future microservices.

To get hands-on experience with Microservice Extractor, an online workshop walks through the extraction of a

microservice from a monolith application from beginning to end, providing examples of several types of refactoring

required for implementation. It uses the Gadgets Online open source sample project to illustrate the entire process.

Conclusion
The benefits of using microservice architecture are scalability, optimized cost, adoption of modern software

development practices, and quicker time to market. While microservice-based applications have advantages over

monoliths, not every application is a suitable candidate for a microservice architecture. Developers should evaluate

tradeoffs between architectures before refactoring a monolithic application to microservice architecture. Anyone

considering refactoring a monolithic .NET application to independent services can use this guide to better understand

the patterns and process to accelerate the adoption of microservice architecture.

 AWS Microservice Extractor for .NET is a tool to help customers decompose monolithic ASP.NET applications into

smaller code projects that are deployed as independent services. It is primarily meant to help developers who will make

code changes and refactor applications. It also assists software architects and business analysts with identifying the

business processes that need to be modeled as separate services. AWS Microservice Extractor for .NET simplifies

refactoring older monolithic applications into smaller code projects to build a microservices-based architecture.

https://catalog.us-east-1.prod.workshops.aws/workshops/c8d702fa-5eb6-4b3e-98a6-539b1785cec0/
https://catalog.us-east-1.prod.workshops.aws/workshops/c8d702fa-5eb6-4b3e-98a6-539b1785cec0/
https://github.com/aws-samples/dotnet-modernization-gadgetsonline
https://github.com/aws-samples/dotnet-modernization-gadgetsonline
https://aws.amazon.com/microservice-extractor/
https://aws.amazon.com/microservice-extractor/
https://aws.amazon.com/microservice-extractor/

Amazon Web Services Monolithic to Microservice Journey for .NET Applications

 29

Contributors
Contributors to this document include:

• Aditi Sharma, WW GTM Specialist Sr Manager, Amazon Web Services.

• Craig Bossie, Specialist Sr Solutions Architect, Amazon Web Services.

• Runeet Vashisht, Principal Solutions Architect, Amazon Web Services.

• Tom Moore, Sr .NET Developer Advocate, Amazon Web Services.

Document Revisions
Date Description

October 2022 First Publication

November 2022 Minor changes to wording and grammatical updates

