
Building modern
applications using
AWS databases

CONTENT Preface . 4

Section 1: Key characteristics of modern applications 5

Built on cloud infrastructures . 5

Built using low-code and no-code technologies . 6

Built using loosely coupled microservices-based
application architectures . 6

Delivers fast time to value with DevOps automation
and practices that accelerate software delivery . 6

Built for global operation with local performance . 7

Delivers insights that use embedded machine learning
and artificial intelligence . 7

Built with the highest standards for security, identity,
and compliance . 7

Section 2: How AWS databases support
modern applications . 8

Section 3: Making best-fit database choices . 9

Section 4: Meeting performance requirements at scale 11

Automated capacity changes with serverless databases 11

Horizontal scaling that automatically distributes load
across multiple nodes . 14

Vertical scaling with a broad choice of instance types
and sizes . 17

In-memory benefits of low-latency, high-throughput
data access . 18

Section 5: Meeting users where they are with
global deployments . 19

Multi-Region read replicas . 19

Multi-active global tables . 19

2

CONTENT Section 6: Maintaining operational stability:
availability, upgrades, updates, patches, and security 20

High availability. 20

Recovering from Region-wide outages 20

Fully managed services 21

Blue/green deployments . 22

Section 7: Maintaining the highest levels of security,
governance, and compliance . 23

Section 8: Performing analytics and search
on operational data with zero-ETL . 24

The challenges with ETL . 24

AWS zero-ETL future . 25

Section 9: Unlocking vector search for
generative AI applications . 26

Adding domain specificity using databases with
vector capabilities . 26

Retrieval Augmented Generation to enhance
contextual relevance . 27

Storing vectors and operational data together . 28

Section 10: Bridging Kubernetes workloads
to AWS databases . 30

Section 11: Migrating your data to AWS . 32

Conclusion . 33

3

This whitepaper examines the role of the Amazon Web Services (AWS) operational
database portfolio in support of modern applications. We start by defining the
characteristics of modern applications and the vital technologies that are core to
modern applications. We share how the features and benefits of AWS operational
databases support these characteristics, while helping you reduce your total cost
of ownership. The right database choices can create new and engaging customer
experiences, process transactions faster, and spur innovation.

Topics include:

• Making the best-fit database choices for your microservices

• Support for internet scale performance, globally dispersed users,
and large data volumes

• Automated operations and capacity management

• High availability and operational stability

• Security, governance, and compliance

• Performing analytics and search on operational data with zero-ETL
(extract, transform, and load)

• Using operational databases in generative artificial intelligence (AI)
applications

• Deploying databases for container-based applications and Kubernetes

• Data migration for achieving application architecture modernization

Databases play a vital role in the modern application technology stack, and the
architecture decisions made today are an investment for the next decade. Making
the right choices on the technologies to future-proof your applications requires
an understanding of core application and database technologies and trends.

PREFACE

4

SECTION 1 Key characteristics
of modern applications
As organizations look to increase the pace of innovation and build new customer
experiences, modernizing how you build and operate applications is key. From
customer-centric applications that become the main connection points with
customers to enterprise software that controls back-office operations, applications
are the driving force behind every successful organization. Built with the latest
technologies, modern applications are the solution for organizations to innovate
faster and improve performance, security, and reliability while lowering their total
cost of ownership.

Before we delve into how AWS databases form a critical foundation upon
which modern applications are built, it is imperative for us to describe the key
characteristics of modern applications.

Built on cloud infrastructures

The move to cloud infrastructures is often motivated by the freedom gained
by offloading daily tasks related to maintenance, capacity adjustments,
availability, and stability. Organizations depend on cloud providers to handle
these undifferentiated tasks. Often, it is difficult to hire and train people in the
latest technologies across different geographies. Moving to a cloud infrastructure
mitigates this risk.

With cloud infrastructures, you also benefit from the continuous innovation of the
cloud provider. The services you use gain features with little or no effort on your
part. Also, pre-integration of services provides a faster path to value. For example,
cloud technologies like machine learning, analytics, and business intelligence
services are easily accessible so that organizations can benefit from these services
to compete and innovate.

Another expectation of cloud infrastructures is cloud effectiveness. Cloud
infrastructures offer a pricing structure that charges for capacity that is actually
used, with no long-term commitments. Moving to a public cloud infrastructure
reduces costs while exceeding on-premises performance.

5

Built using low-code and no-code technologies

Low-code or no-code software development abstracts away the complexity of
writing code by using a visual drag-and-drop interface to build and configure
applications. Applications can be built using pre-built visual components like user
interface elements, data connections, and building blocks for the underlying logic
and business rules. Application development will shift to application composition,
assembly, and integration by citizen developers within the teams that use
the application.

Built using loosely coupled microservices-based
application architectures

Microservices support incremental, rapid release of software, and reduce the risk
of failure inherent in the all-or-nothing monolithic approach. With microservices,
development teams can focus on a scope that is bounded by a business function,
which results in more optimized, hardened code with deeper functionality.
A bounded scope empowers each team to develop expertise on the business
function they are automating. Armed with this expertise and with agile software
development practices, development teams can add deeper functionality faster.
Because microservices are isolated services with minimal interdependence, each
microservice team can release their service on their own schedule.

However, building decoupled microservices-based applications requires
agreed upon interface contracts, governance, and data exchange formats for
inter-microservices communications. Adherence to these prerequisites offers
microservices development teams the autonomy and freedom to choose the
best-fit technology for their microservice. With agreed upon data exchange
formats, event-based architectures can serve as the connective tissue for
inter-microservice communications. These benefits can come together in
a way that accelerates the time to market for innovation.

Delivers fast time to value with DevOps automation
and practices that accelerate software delivery

Software development is only the beginning of the software development
lifecycle. Application code goes through a series of steps for integrating changes
and testing to improve the quality of software. Modern DevOps techniques, like
continuous integration and continuous deployment, reduce the time it takes to
deploy in production from months or weeks to hours.

SECTION 1

6

Built for global operation with local performance

Modern applications can scale to millions of globally dispersed users and to
petabytes of data—with near real-time response. For this to occur, modern
applications and their infrastructures must conquer traditional limitations related
to network and database latency with data volume capacity that can grow as
needed. Databases that support modern applications need to automatically
scale up or down both vertically and horizontally with automated load balancing.
In addition to scaling up, automatically scaling down is important for releasing
capacity that’s not being used and not paying for unused capacity.

Delivers insights that use embedded
machine learning and artificial intelligence

Modern applications offer analytical features that developers can incorporate
without machine learning expertise. These analytical features can provide
personalized recommendations, modernize contact centers, improve safety
and security, and increase customer engagement by delivering insights.

Built with the highest standards
for security, identity, and compliance

Modern applications offer a no-compromise security, identity, and compliance
posture. Authenticated users are only allowed to access data that they are
authorized to access. Data is protected through encryption, and potential
security misconfigurations, threats, or malicious behaviors are quickly identified
and remediated. Automated compliance checks provide visibility through ongoing
real-time reporting and monitoring. Modern applications use the automation of
advanced operational techniques to remove these risks and vulnerabilities and
facilitate safe and secure management of infrastructure changes.

SECTION 1

7

SECTION 2 How AWS databases
support modern applications
To deliver on their benefits, modern applications depend on some key
characteristics of AWS databases, such as the ability to:

• Choose the best-fit database technology for each microservice

• Meet performance requirements at scale

• Deploy globally to meet users where they are

• Maintain operational stability with high availability, automation of routine
maintenance, automated capacity changes with serverless databases, and
the highest levels of security, governance, and compliance

• Use pre-built zero-ETL integrations across data services

• Use vector data in operational databases to extend or build new applications
that incorporate generative AI

• Deploy with container-based microservices

• Use AWS tools and technologies for database migrations

The rest of the paper elaborates on each of these characteristics.

8

SECTION 3 Making best-fit database choices
Microservices teams work autonomously and are empowered to make their own
technology choices, including the choice of database. For this approach to prevail,
each team of microservices developers and DevOps professionals needs a rich set
of database choices.

Relational databases are no longer the single best answer for all database
workloads. While relational databases are still essential—in fact, they are
still growing—a relational-only approach no longer works in today’s world.
With the rapid growth of data—in volume, velocity, variety, complexity, and
interconnections—database requirements have changed. Many new applications
that have social, mobile, Internet of Things (IoT), and global access requirements
are unable to scale using a central relational database alone.

A modern UI is a symphony of workloads, each of which has its own unique
database requirements. Easy access to a portfolio of purpose-built databases is
now a critical success factor for modern applications.

In the example of an ecommerce shopping application, you can use an index-
optimized store like Amazon OpenSearch Service to help users quickly find
relevant information. Then, you can use a key-value database for showing
customer feedback that uses a five-star rating system. For the purchase button,
you can use a relational database to obtain the transactional integrity both for
inventory and financial accounting. Then, you can use a graph database like
Amazon Neptune to power personalization algorithms, such as recommendations
on what additional things the end customer might want to buy if they’re
purchasing this item. This is how modern applications are built using an array of
different technologies, all simultaneously within the same application, to provide
the performance and scale that the end users are seeking.

Search
Index-optimized store

Shopping cart
Relational database

Recommendations
Graph database

Customer reviews
Key-value database

9

https://aws.amazon.com/opensearch-service/
https://aws.amazon.com/neptune/

SECTION 3

AWS has the broadest set of managed database services of any cloud provider.
Altogether, AWS offers more than 15 types of database engines, each built to
uniquely address specific customer needs. In addition to relational databases, the
AWS database portfolio supports a full range of purpose-built databases including
key-value, document, graph, in-memory, search, wide-column, and time-series.

Broadest and deepest set of relational and purpose-built databases

Key-Value

Memory

Amazon
DynamoDB

Amazon
MemoryDB

for Redis

Wide-Column

Caching

Amazon
Keyspaces

Amazon
ElastiCache

Time-Series

Document

Amazon
Timestream

Amazon
DocumentDB

Ledger

Graph

Amazon
QLDB

Amazon
Neptune

Amazon
Aurora

Amazon
RDS

Relational Purpose-Built

10

https://aws.amazon.com/products/databases/?nc2=h_ql_prod_db_db
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/dynamodb/?nc2=h_ql_prod_db_ddb
https://aws.amazon.com/documentdb/?nc2=h_ql_prod_db_doc
https://aws.amazon.com/neptune/
https://aws.amazon.com/elasticache/?p=ft&c=db&z=3
https://aws.amazon.com/opensearch-service/
https://aws.amazon.com/keyspaces/?nc2=h_ql_prod_db_mcs
https://aws.amazon.com/timestream/?nc2=h_ql_prod_db_ts

SECTION 4 Meeting performance
requirements at scale
The need to change database capacity is a frequent occurrence. Often,
organizations have some seasonality or event triggers associated with their
workloads. Operating at the highest efficiency levels becomes a major challenge
when capacity requirements can vary based on time of day, time of year,
promotional events, and other factors, resulting in a complex multi-dimensional
decision matrix of when to scale each capacity dimension.

If the capacity is set too low, then databases can’t keep up, which impacts
application performance and is felt by customers and other users. If the capacity
is set to meet peak workloads, then the excess capacity is wasted during non-peak
time intervals, incurring unnecessary expense. Manual scaling burdens IT operations
teams with a series of detailed tasks to minimize system outages, taking up valuable
time and distracting from other higher value activities. In most cases, manual
scaling is not seamless and it involves some business disruption.

Automated capacity changes with serverless databases

With AWS serverless databases and on-demand capacity scaling modes, your
database scales automatically to match the workload. Over the years, our
customers have adopted serverless architectures for a range of use cases, such
as event processing, web applications, multi-tenant software-as-a-service (SaaS)
applications, new applications with unknown capacity requirements, and
lots more.

Case study: S&P Dow Jones Indices

S&P Dow Jones Indices (S&P DJI), a business segment of S&P Global Inc., offers
innovative indices and a range of leading-edge solutions to help investors
identify, measure, and capitalize on global investment opportunities. S&P DJI
has nearly 200 databases supporting its core applications, with sizes ranging
from 500GB to 15TB.

“ We began our migration journey with Amazon Web Services (AWS) migrating
from on-premises to MySQL on Amazon EC2 and then directly to Amazon
Aurora MySQL-Compatible Edition, utilizing AWS Database Migration
Services (AWS DMS). We recently adopted Aurora Serverless v2 for a new
application that includes machine learning capabilities using AWS SageMaker
for sector wide asset classification. Setting up AWS Glue jobs to ingest data
from Twitter feeds led to a very dynamic workload for this application.

11

https://aws.amazon.com/solutions/case-studies/sp-dow-jones-indices-case-study/

SECTION 4 Hence we adopted Aurora Serverless v2, which can scale the compute
resources dynamically to support processing all the AWS Glue jobs and AWS
Lambda functions, while being able to ingest massive volumes of data. We
have also enabled write forwarding to keep our application active in more
than one region, with Amazon Aurora Global Database.”

Shivakumar Bangalore, Sr. Director of Database Engineering, S&P Global Inc.

Automated capacity management is optimized for the specific AWS serverless
database, based on the way it allows you to interact with your data. In
Amazon Aurora Serverless v2, you deploy clusters with serverless instances.
With such instances, the compute capacity, amount of memory, and network
throughput of each instance scales automatically (vertical scaling) based on
demand. If the workload is read-heavy, you can scale out only reads by adding
instances in a serverless configuration (horizontal scaling). Each reader remains
within the minimum and maximum values you specify for the cluster. For batch
applications or business reporting that experience periodic spikes with a lot of
idle periods, this configuration provides better cost-efficiency without impacting
performance. Aurora continuously tracks the utilization of resources such as CPU,
memory, and network. When capacity is constrained by any of these, the database
scales incrementally, in a non-disruptive way, even when there are thousands of
active connections and transactions occurring.

Other AWS serverless databases, like Amazon DynamoDB, provide a different
experience for achieving the same objectives. For example, DynamoDB capacity
and utilization is measured in read and write capacity units. With on-demand
capacity mode, you pay for the amount of capacity units your workload consumes
at any given point in time, and the service simply adjusts the resources available
to match your desired capacity consumption.

Serverless options are available for Amazon Aurora, Amazon DynamoDB,
Amazon ElastiCache, Amazon Neptune, Amazon Keyspaces, and Amazon
Timestream. In each case, billing is based on usage and results in cost savings
as high as 90 percent when compared to provisioning for peak capacity.

Case study: Careem

“ We’re getting locations from millions of drivers every few seconds.
We needed a scalable solution for so much data, and Amazon DynamoDB
was just about perfect.”

Khurram Naseem, Senior Director of Engineering, Careem
(a wholly owned subsidiary of Uber)

12

https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
https://www.serverless.com/guides/dynamodb
https://aws.amazon.com/elasticache/features/#Serverless
https://aws.amazon.com/neptune/serverless/
https://docs.aws.amazon.com/keyspaces/latest/devguide/serverless_resource_management.html
https://aws.amazon.com/timestream/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc&amazon-timestream-blogs.sort-by=item.additionalFields.createdDate&amazon-timestream-blogs.sort-order=desc
https://aws.amazon.com/timestream/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc&amazon-timestream-blogs.sort-by=item.additionalFields.createdDate&amazon-timestream-blogs.sort-order=desc
https://aws.amazon.com/solutions/case-studies/careem-dynamodb-case-study/

SECTION 4 Applications

Compute Fleet

Automatically Scales

Storage Fleet

Automatically Scales

13

SECTION 4 Horizontal scaling that automatically
distributes load across multiple nodes

Sharding for scaling writes, reads, and data volume

Changing the capacity of an AWS database can be accomplished in multiple ways.
Vertical scaling re-hosts the database on a larger virtual machine. Horizontal
scaling adds nodes to a cluster to scale out. Either or both in combination can be
used to scale a database. Vertical scaling is often an easier choice with relational
databases, which have multiple tables with interrelationships and referential
integrity constraints across tables. It can be difficult to break up a relational data
model into slices of data to be spread across multiple virtual machines. However,
modern offerings like Amazon Aurora Limitless Database have conquered the
challenge of horizontally scaling a relational database within a Region.

Non-relational databases, on the other hand, are relatively unstructured and have
a simpler data model. The common practice with non-relational databases has
always been to scale them horizontally. Many of the serverless databases covered
earlier are also horizontally scalable. Because these databases are fully managed,
AWS takes care of horizontally scaling your databases by using techniques like
sharding and read replicas.

Vertical Scaling Horizontal Scaling

Increase size of instance
(RAM, CPU, etc.)

(Add more instances)

14

https://aws.amazon.com/about-aws/whats-new/2023/11/amazon-aurora-limitless-database/

SECTION 4 The data volume benefits of sharding

A common approach traditionally used by non-relational databases for scaling
the volume of data is a divide and conquer technique known as sharding. With
sharding, data is split into smaller subsets (shards) and distributed across a
number of physically separated nodes. All database shards usually have the same
type of hardware, database engine, and data structure to generate a similar level
of performance. However, they have no knowledge of each other, similar to a
shared-nothing architecture. Sharding takes advantage of built-in data mapping
and routing logic to send requests to the appropriate nodes, also known as shards.

Although sharding can be used with relational databases, it has traditionally been
much simpler to set up for non-relational databases. With the large number of
tables typical of relational databases, care must be taken to ensure that each
node or shard has the same key ranges that are needed for joining tables locally,
and to avoid queries that span multiple shards to the extent possible. These
challenges are being addressed with recent approaches, like Amazon Aurora
Limitless Database, by automating the process of creating and removing shards
as the data volume grows or shrinks.

Because each shard handles an independent subset of data, the overall capacity
of a cluster is a function of the number of shards. Adding capacity is simply a
matter of adding nodes or shards. When nodes are added or removed, sharding
automatically rebalances the data in a cluster. Sharding can increase the overall
capacity of a cluster into petabytes of data.

Sharding for increasing the write and read performance

In addition to increasing the overall capacity of a cluster, sharding is effective in
online transaction processing (OLTP) environments where the high volume of
writes or transactions can go beyond the capacity of a single database instance,
and write performance is of concern. Each shard only handles a subset of the
write requests, increasing the overall write requests a cluster can handle.

Sharding is also effective for read-intensive workloads, provided that the
queries are simple. Reading and joining data from multiple shards can erode the
performance benefits of sharding. The inability to offer a consistent, global image
of all data limits the sharded database architecture’s ability to play an active role
in an online analytic processing (OLAP) environment, where data analytic functions
are usually performed on the whole dataset.

As examples, Amazon Aurora Limitless Database, Amazon DocumentDB Elastic
Clusters, Amazon ElastiCache, and Amazon MemoryDB offer sharding across
Availability Zones (AZs).

15

https://aws.amazon.com/about-aws/whats-new/2023/11/amazon-aurora-limitless-database/
https://docs.aws.amazon.com/documentdb/latest/developerguide/docdb-using-elastic-clusters.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/docdb-using-elastic-clusters.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Shards.html
https://docs.aws.amazon.com/memorydb/latest/devguide/shards.html

Optimizing reads with read replicas

Most application workloads are read-intensive rather than write-intensive.
Improving the read performance of your database can go a long way toward
improving overall performance.

Any single instance of a database is throughput constrained. For most
applications, a majority of requests to the database are read requests. This
presents an opportunity to overcome the throughput constraints of a single
instance by scaling horizontally and adding secondary read replicas. Also,
geographically dispersed users suffer the impact of poor response time because
of network lag. Adding local read replica instances near end users significantly
reduces the impact from network lag.

Case study: Atlassian

Using Amazon RDS and Aurora, which can both automatically scale, the
company can improve performance and reduce costs. Atlassian uses both
Amazon Aurora Read Replicas and Amazon RDS Read Replicas—which make
it easy to elastically scale out beyond the capacity constraints of a single
database instance for read-heavy database workloads—during times of
peak traffic. The company can then downsize read replicas when they
aren’t needed, resulting in significant cost savings.

“ Using Amazon RDS for PostgreSQL and Amazon Aurora PostgreSQL-
Compatible Edition reduces the complexity of the scaling process.
It’s definitely been a positive experience for Atlassian.”

Arul Shaji Arulappan, Principal Engineer, Atlassian

AWS databases support the addition of read replica instances within a cluster
(across Availability Zones) or across Regions using multi-Region replication.
Reads from the database are distributed across read replicas to spread the

Read

Availability
Zone

Availability
Zone

Availability
Zone

Primary Region

Amazon
Aurora

Read

Amazon
Aurora

Read

Amazon
Aurora

WriteW
rit

e
W

rit
e W

rite

Availability
Zone

Availability
Zone

Availability
Zone

Secondary Region

Amazon
Aurora

Amazon
Aurora

Amazon
Aurora

Read ReadReadA
sy

nc
hr

on
us

 R
ep

lic
at

io
n

SECTION 4

16

https://aws.amazon.com/solutions/case-studies/atlassian-case-study-rds/
https://aws.amazon.com/rds/features/read-replicas/

SECTION 4 load and ensure high read performance. As replication lag is low, the read
replicas are a near real-time representation of the data at the primary with
little to no impact on your primary database. This approach also improves
write performance as reads are offloaded from the primary.

Vertical scaling with a broad choice
of instance types and sizes

With vertical scaling, the database’s instance type and size can be changed to scale
your database to the requirements of your target workload. You can vertically
scale up AWS database instances with the click of a button. AWS provides a broad
selection of instance types and sizes that are composed of varying combinations
of CPU, memory, storage, and networking capacity, which allows you to scale your
database to the requirement of your target workload. There is minimal downtime
when you’re scaling your instance up in a Multi-AZ environment because the
standby database gets upgraded first, then a failover occurs to the newly
sized database.

Each database engine offers different choices. You can access the pricing page
for your database engine of interest from the database category page to find
the available instance choices.

Selecting a serverless option is an attractive alternative for automated scaling
operations (see Automated capacity changes with serverless databases). With AWS
serverless databases and on-demand capacity scaling modes, your database scales
automatically to match the workload.

Vertical Scaling Horizontal Scaling

Increase size of instance
(RAM, CPU, etc.)

(Add more instances)

17

https://aws.amazon.com/products/databases/

SECTION 4 In-memory benefits of low-latency,
high-throughput data access

In-memory caches and databases provide a good solution for use cases that
require ultra-fast data access. AWS offers two options for in-memory data
access: Amazon ElastiCache and MemoryDB. Both have Redis-compatible
engines. In addition, ElastiCache has a Memcached engine.

For read performance, both ElastiCache and MemoryDB provide ultra-fast
microsecond response time and throughput improvements over disk storage.
ElastiCache recently achieved a notable performance record—the ability to
process one million requests per second per node and 500 million requests
per second for a cluster. The difference between ElastiCache and MemoryDB
has to do with durability. ElastiCache is a cache, while MemoryDB is an
in-memory database. Like other caches, ElastiCache is an ephemeral cache.
As such, it’s susceptible to data loss in the event of a cache failure. The high
availability feature in ElastiCache mitigates this exposure considerably. If the
primary instance of ElastiCache fails, a replica node that becomes the new
primary has most of the data from the failed primary. Only the data that was
not yet replicated from the failed primary is lost.

If any amount of data loss is not acceptable, then MemoryDB for Redis is a
better fit. MemoryDB is an in-memory database and offers both in-memory
performance and durability. When data is written to MemoryDB for Redis, it
also synchronously writes data to a durable Multi-AZ transaction log before
it acknowledges the write. These synchronous writes are slower than the
write performance of ElastiCache, which writes in microseconds, whereas
MemoryDB can take a few milliseconds.

18

https://aws.amazon.com/blogs/database/achieve-over-500-million-requests-per-second-per-cluster-with-amazon-elasticache-for-redis-7-1/
https://aws.amazon.com/memorydb/?nc2=h_ql_prod_db_memdb

SECTION 5 Meeting users where they
are with global deployments
Globally distributed users expect local response time from their databases, rather
than being subjected to network latency. Global data distribution can locate data
near users, so that they experience local response time. There are two approaches
to global data distribution: (1) maintaining local copies of data for read response
time and (2) using multi-active data distribution for the response time of both
reads and writes.

Global distribution of data also provides a mechanism for disaster recovery
by failing over to a secondary region if the application cannot connect to its
regional endpoint.

Multi-Region read replicas

Beyond Multi-AZ read replicas, the AWS operational databases that support
globally distributed read replicas are Amazon RDS, Amazon Aurora, Amazon
DocumentDB, and Amazon Neptune. Multi-Region read replicas eliminate the
need for a long network hop for retrieving data. Changes to data in the primary
region are continuously and asynchronously replicated to secondary regions.

Multi-active global tables

Multi-active global tables are a technique for scaling both reads and writes across
regions. Unlike sharding, multi-active global tables are copies of the entire dataset.

DynamoDB global tables use a multi-Region, multi-active approach—every
region’s replica is active. The local instance of an application communicates with
the local replica, resulting in single-digit-millisecond latency. The data that is
written to a local instance is asynchronously replicated across all regions selected
for a global table (the data is not sharded). This approach opens up the possibility
of update conflicts, which are resolved by using the “last writer wins” technique.

Cross-region replication usually occurs within one second. It is easy to convert
a table to a global table and add or remove regions from a global table. Data is
secure because it is encrypted in transit and at rest.

19

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.CrossRegionReadReplicas.html#Concepts.RDS_Fea_Regions_DB-eng.Feature.CrossRegionReadReplicas.sq
https://aws.amazon.com/rds/aurora/global-database/
https://docs.aws.amazon.com/documentdb/latest/developerguide/global-clusters.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/global-clusters.html
https://aws.amazon.com/neptune/global-database/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html

SECTION 6 Maintaining operational stability:
availability, upgrades, updates,
patches, and security
High availability

Modern organizations regard high availability of their IT infrastructure as a critical
requirement. Increasing levels of digital transformations create a mission-critical
dependence on the availability of IT. AWS databases are protected by fault
isolation boundaries that limit the blast radius of a failure to a limited number
of components.

Database clusters are deployed across multiple Availability Zones (AZs). An AZ
is a logical collection of data centers. AZs are isolated from each other. Data
redundancy is maintained through data replication across AZs.

Implementations vary, but all AWS databases are designed for high availability
and resilience. Amazon Aurora and Amazon DynamoDB serve as good examples.
Amazon Aurora supports Multi-AZ DB cluster deployments with readers deployed
in different AZs. Aurora makes your data durable across three AZs, but only
charges for one copy. Aurora automatically fails over to a reader in the event of a
writer database instance failure or an entire AZ failure. DynamoDB automatically
partitions, stores, and synchronously replicates data across three AZs within a
region in a multi-active configuration that does not require failover in the event
of a writer or AZ failure. Each database in the AWS database portfolio provides
similar mechanisms for high availability.

Recovering from Region-wide outages

AWS databases can be hosted in multiple locations worldwide. These locations are
composed of isolated AWS Regions. AWS Regions span multiple AZs. Databases
can be set up to replicate data from the primary Region to secondary Regions.

Amazon Aurora Global Database is designed for globally distributed applications,
allowing a single Aurora database to span multiple AWS Regions. It replicates
your data with no impact on database performance, enables fast local reads with
low latency in each Region, and provides disaster recovery from Region-wide
outages. If your primary Region suffers a performance degradation or outage, you
can promote one of the secondary Regions to take read/write responsibilities. An
Aurora cluster can recover in less than one minute, even in the event of a complete
regional outage.

20

SECTION 6 With Amazon DynamoDB global tables and Amazon Keyspaces Multi-Region
Replication, data is replicated across Regions in a multi-active configuration
that allows writers in multiple Regions. If an application is unable to connect to
a regional database endpoint, the full dataset can be accessed from a secondary
Region. Both DynamoDB global tables and Keyspaces Multi-Region Replication
are designed for up to 99.999 percent availability.

Fully managed services

With fully managed databases, your operational burden is significantly
reduced. Daily maintenance tasks can take up an inordinate amount of time
on undifferentiated heavy lifting. AWS managed databases handle all of the
fundamental operations—like provisioning, high availability and durability,
patching, and upgrades—without downtime, setup, configuration, automated
backups, and failover. AWS continuously monitors your clusters to keep your
workloads up and running with self-healing storage and automated scaling,
so that developers and database operators can focus on higher value tasks,
like new features, schema design, query optimization, and access control.

Fully managed services on AWS

Spend time innovating & building apps,
not managing infrastructure

Schema design

Query optimization

Automatic failover

Self-managed Fully managed

Backup & recovery

Isolation & security

Industry compliance

Push-button scaling

Automated patching

Advanced monitoring

Routine maintenance

Built-in best practices

Query construction

AWS

You

You

21

https://aws.amazon.com/dynamodb/global-tables/
https://aws.amazon.com/keyspaces/multi-region-replication/
https://aws.amazon.com/keyspaces/multi-region-replication/

SECTION 6 Blue/green deployments

Some changes, like major version upgrades and schema changes, are under your
control and subject to your timing requirements. New approaches to making
these changes follow a process that resembles a DevOps approach for managing
the software development lifecycle (SDLC).

One such DevOps-inspired process is blue/green deployments. This approach
can be applied to databases as part of making changes to production. Despite a
series of promotion steps and tests, the performance of a database in a real-life
production environment after a change is still somewhat unpredictable. In the
current atmosphere of 24/7 operations, downtime for major version upgrades,
schema changes, or data loss due to failed attempts at updates is not acceptable.

Amazon RDS Blue/Green Deployments, available for MySQL in both Amazon
RDS and Amazon Aurora, provide a simpler, safer, faster, and secure way to make
these changes. In this DevOps technique, the production environment is the blue
environment and the staging environment is the green environment. Typically,
organizations test new versions of software in a green environment under a
production load before putting it in production. But this requires advanced
operational knowledge, careful planning, and time. With Amazon RDS Blue/Green
Deployments, AWS provides a fully managed staging environment. When an
upgrade is deemed to be ready, the database can be updated in less than a
minute with zero data loss.

In addition, Amazon RDS Multi-AZ deployments with two readable standbys now
support minor version upgrades and system maintenance updates with typically
less than one second of downtime when using Amazon RDS Proxy. This capability
allows you to take advantage of the most recent performance improvements,
bug fixes, and any new security fixes or patches from the latest minor versions
of PostgreSQL and MySQL with minimal interruption to your application.

22

https://aws.amazon.com/blogs/aws/new-fully-managed-blue-green-deployments-in-amazon-aurora-and-amazon-rds/?sc_icampaign=launch_rds-blue-green-deployments_reinvent22&sc_ichannel=ha&sc_icontent=awssm-11913_launch_reinvent22&sc_iplace=banner&trk=b9abae70-d973-4c28-9ce2-09b3c0ecafc4~ha_awssm-11913_launch_reinvent22
https://aws.amazon.com/rds/features/multi-az/#Amazon_RDS_Multi-AZ_with_two_readable_standbys
https://aws.amazon.com/rds/proxy/

SECTION 7 Maintaining the highest levels of
security, governance, and compliance
AWS maintains the highest standards in security, governance, and compliance.
Data in your databases can be encrypted using encryption keys you manage
through AWS Key Management Service (AWS KMS). AWS databases also support
secure connections via Transport Layer Security (TLS) protocol. AWS databases
are integrated with Amazon CloudWatch for monitoring and logging, so that
customers can granularly monitor their consumed capacity to better understand
the cost of their fleet.

AWS Identity Services help you securely manage identities, resources, and
permissions at scale. With AWS, you have identity services for your workforce
and customer-facing applications to get started quickly and manage access to your
workloads and applications. AWS detection and response services help you identify
potential security misconfigurations, threats, or unexpected behaviors, so you can
quickly respond to potentially unauthorized or malicious activity occurring within
your environment.

Amazon GuardDuty is a threat detection service that continuously monitors your
AWS accounts and workloads for malicious activity and delivers detailed security
findings for visibility and remediation.

AWS complies with all major regulations, including PCI DSS, HIPAA/HITECH,
FedRAMP, GDPR, FIPS 140-2, and NIST 800-171.

23

https://aws.amazon.com/products/security/?nc2=h_ql_prod_se_ic
https://aws.amazon.com/guardduty/
https://aws.amazon.com/compliance/services-in-scope/

SECTION 8 Performing analytics and search on
operational data with zero-ETL
Databases that are optimized for operational workloads are usually not the optimal
choice for use cases like analytics and search. Operational databases are optimized
for processing transactions, updating records, and managing real-time business
operations. They touch small subsets of data, unlike analytical or search-oriented
data stores that process much larger volumes of data for each query. Performing
analytics or search on operational data often requires the process of moving
data from data stores optimized for operational workloads to those optimized
for analytics or search. Traditionally, this task is managed through an extract,
transform, and load (ETL) process, where data engineers build, test, and
maintain pipelines.

The challenges with ETL

ETL presents considerable challenges. First, developers have to design an ETL
pipeline architecture. They have to decide where to extract the data from—often
it comes from multiple sources. Then, they have to write code to transform the
data to remove duplicates, filter outliers, retrieve missing data, and identify
corrupted data. And after all that, they have to load their transformed data to
its new destination, which typically requires more custom coding. If something
changes, like a change to a table name or a new field, then all the custom code has
to be updated and redeployed. Data pipelines that are built using ETL are complex,
brittle, inflexible, and subject to scalability limits.

The time needed to create or modify data pipelines makes ETL unsuitable for near
real-time applications, such as those detecting fraudulent transactions, optimizing
online advertisements, or tracking supply chains. This creates significant barriers
to achieving business objectives, such as exploring new opportunities or reducing
risks. Also, the data movement lag associated with ETL carries a negative impact,
particularly when insights gleaned from analytics of transactional data have
relevance for only a limited time frame.

24

SECTION 8 AWS zero-ETL future

The complexities of ETL are why AWS is re-imagining the future with zero-ETL
integrations. AWS has a growing portfolio of seamless connections between data
services, reducing the dependency on ETL. Also, AWS has already built integrations
between our most popular data stores:

• Amazon Aurora MySQL zero-ETL integration with Amazon Redshift

• Amazon Aurora PostgreSQL zero-ETL integration with Amazon Redshift

• Amazon RDS for MySQL zero-ETL integration with Amazon Redshift

• Amazon DynamoDB zero-ETL integration with Amazon Redshift

• Amazon DynamoDB zero-ETL integration with Amazon OpenSearch Service

Zero-ETL integrations open up near real-time analytics and search use cases on
petabytes of operational data without maintaining data pipelines. You can use
these zero-ETL features to consolidate data from multiple instances of the source
database into a single Amazon Redshift data warehouse to derive holistic insights
across several applications, while also consolidating your core analytics assets and
gaining significant cost savings and operational efficiencies. Customers can also
access the machine learning capabilities of Amazon Redshift, such as materialized
views, data sharing, and federated access to multiple data stores and data lakes.
Zero-ETL integration with Amazon Redshift enables customers to combine near
real-time and core analytics to effectively derive time-sensitive insights that
inform business decisions. Similarly, multiple instances of the source database
can be consolidated into OpenSearch Service, providing a holistic search
experience across several applications.

25

https://aws.amazon.com/redshift/
https://aws.amazon.com/opensearch-service/

SECTION 9 Unlocking vector search
for generative AI applications
Generative AI holds the promise of ushering in a new wave of innovation.
Generative AI applications rely on foundation models (FMs), including large
language models (LLMs). These models are trained on vast datasets, such as all
of the content accessible on the internet, and serve as foundational models for
various use cases.

While a generative AI application relying purely on an FM has access to broad real-
world knowledge, it needs to be augmented with domain-specific data to produce
accurate and relevant results. These requests often contain inaccuracies, referred
to as hallucinations, which occur more frequently the more domain-specific the
interaction is. Customizing generative AI applications for domain-specific
accuracy is crucial, often requiring additional context.

Adding domain specificity using
databases with vector capabilities

One approach to adding domain specificity to generative AI applications relies on
encoding domain-specific data into n-dimensional vectors. A vector, which is an
array of numbers, symbolizes data in a mathematical form. Each dimension in the
array corresponds to a specific feature or attribute of the data. Vectors are derived
through embedding models applied to raw data. Vectors serve as a structured data
format that is easily readable by machine learning models such as FMs, enabling
you to use diverse data types—such as text, images, videos, and audio—as part of
your generative AI applications.

Vectors facilitate the representation of complex relationships between data
elements in machine learning. They allow your models to more easily find
relationships between similar words or phrases. For instance, “cat” is closer to
“kitten,” whereas “dog” is closer to “puppy.” This means your FMs can produce
more relevant responses to prompts from your end users. Such semantically
meaningful vectors are termed embeddings, where words, phrases, sentences,
images, audio, video, or other data elements are mapped to vectors, allowing for
enhanced contextual analysis. Similarity searches involve the process of grouping
these embeddings to find similar items. For instance, ecommerce platforms
transform product images into vectors that embed context, enabling accurate
recommendations based on customer preferences. Vectors enable efficient
nearest-neighbor searches in multi-dimensional spaces. Powered by algorithms
like k-nearest neighbor (k-NN), Hierarchical Navigable Small World (HNSW),
and Inverted File Index (IVF), AWS databases that support vectors as a data type
offer rapid lookup capabilities, along with core database features like scalability,
availability, and security.

26

SECTION 9

Many use cases, including natural language processing and recommendation
systems, rely upon databases with vector capabilities for their applications.
These use cases necessitate both semantic understanding and precise data
matching. Vector storage and similarity search are vital for addressing the
limitations of LLMs related to relevance and accuracy. Vector search can
also add more current information that is absent from LLMs, giving LLMs
an external memory.

Retrieval Augmented Generation
to enhance contextual relevance

Retrieval Augmented Generation (RAG) is a technique for building context around
a query based on vector similarity searches. The vector similarity searches find
vectors that represent related and up-to-date information from your private
data sources and augment the user’s prompt with this information as added
context. RAG involves the conversion of the user’s prompt into a vector, which
can then be used to search for contextually similar vectors in a database with
vector capabilities. The outcome of these searches typically yields a ranked list of
vectors with the highest similarity scores to the vector that represents the prompt.
Subsequently, the original source or index linked to each vector can also be
retrieved. The retrieved vectors enrich the user’s prompt, grounding the LLM

Insurance
regulations

Policy premium
Auto insurance

Car insurance

2-Dimensional vector space (simpli�cation)

Collision coverage

Uninsured motorist
Personal property

Fire zone

Umbrella policy

Dwelling coverage

Collision coverage

Policy premium]

0.23 0.58 0.45[], , ,

0.56 0.71 0.36[, , ,

27

SECTION 9 in the specific domain context and increasing the accuracy and contextual
relevance of the LLM’s output based on the desired context. By augmenting
prompts with contextual data, LLMs can respond more accurately, reducing
the likelihood of generating irrelevant or inaccurate content.

Knowledge Bases for Amazon Bedrock

Amazon Bedrock is a fully managed service that simplifies the process of building
and scaling generative AI applications with FMs. Knowledge Bases for Amazon
Bedrock automates the RAG workflow, including both the ingestion workflow
(fetching documents, chunking, creating embeddings, and storing them in a
vector-enabled database) and the runtime orchestration (creating embeddings
for the end-user’s query, finding relevant chunks from the vector database, and
passing them to an FM).

The Knowledge Bases for Amazon Bedrock setup process involves key decisions
around the specific FM and the integrated database to use for the knowledge
base. A number of database options are available. For example, you can choose
Amazon Aurora or Amazon OpenSearch Service within the Amazon Bedrock
console, and Amazon Bedrock will automatically store your vectors in the
database of your choice and pull vectors to augment queries with contextually
relevant data in support of RAG.

Storing vectors and operational data together

Vectors, as a data type, can seamlessly integrate into the databases that
customers currently use. This eliminates the need to migrate data to a
specialized vector database while still harnessing vector capabilities within
existing architectures. AWS databases with vector capabilities allow the storage
of vast amounts of vector embeddings, perform similarity searches without data
movement, and use RAG use cases. This integration not only preserves your
data but also grants you access to the advantages of a fully managed database,
including cost savings and the elimination of undifferentiated heavy lifting.

In contrast, standalone or specialized vector-enabled databases necessitate data
migration, leading to significant changes in your existing applications. Moving to
a new data source and managing it on your own can be cumbersome. Opting for a
separate specialized database creates challenges related to redundant data, data
consistency, specialized skills, and additional licensing costs. On the other hand,
vector enablement of familiar operational databases benefits operations teams
significantly. Storing vectors alongside your application data eliminates the need
for data processing pipelines or complex application logic to combine data across
different systems, and reduces overhead and licensing costs.

28

https://aws.amazon.com/bedrock/

AWS provides a range of databases with vector capabilities, including:

• Amazon Aurora PostgreSQL

• Amazon RDS for PostgreSQL

• Amazon DynamoDB (via zero-ETL integration
with Amazon OpenSearch Service)

• Amazon Neptune

• Amazon MemoryDB for Redis

• Amazon DocumentDB

• Amazon OpenSearch Service

You can fully unlock the benefits of generative AI with your existing database,
avoiding the operational complexity of learning and managing a new database.
Plus, you gain access to database performance, scalability, availability, and
security tailored to your application’s requirements.

SECTION 9

29

SECTION 10 Bridging Kubernetes
workloads to AWS databases
As AWS managed services, AWS databases mirror Kubernetes (K8s) by providing
a similarly fluid ability to scale their workload. But how do the worlds of K8s and
fully managed services on AWS come together? Fortunately, you can manage AWS
databases as external AWS managed resources directly from K8s. The key cluster
management actions are supported, like scaling up, down, in, or out, and scaling
the number of read replicas; as well as creating other database resources such as
snapshots, parameter groups, and subnet groups. Managing AWS databases in
a K8s world relies on controllers that extend K8s. Controllers use the K8s API to
control the lifecycle of custom resources that are not built into K8s, like databases
and caches. By using a controller for an AWS database, the management of the
database can be automated, much like a native K8s resource.

AWS Controllers for Kubernetes (ACK) adopt the approach of managing AWS
databases as external resources. With ACK, you can take advantage of AWS
managed services for your K8s applications without needing to define resources
outside of the K8s cluster or run services that provide supporting capabilities like
databases, caches, or message queues within the K8s cluster. Each ACK service
controller manages resources for a particular AWS service and is packaged into a
separate container image that is published in a public repository.

Developers can use their knowledge of the K8s resource model to work with AWS
databases, just like any other K8s resource. ACK enables K8s users to describe the
desired state of AWS resources using the K8s API and configuration language. ACK
resources are defined using YAML-formatted manifest files to both initially define
the resource configuration and to modify it. After the manifest file is created,
the resource it defines is created by using the file name as the input argument to
the Kubernetes “kubectl apply” command. To change a resource configuration,
you simply edit the appropriate parameters in the existing resource manifest file,
then call the “kubectl apply” command in the same manner as the initial resource
creation. Manifest files can be version controlled, alongside your application
code, so that changes over time are easily tracked and attributed to changes to
application code.

30

https://kubernetes.io/docs/concepts/architecture/controller/
https://aws-controllers-k8s.github.io/community/docs/community/services/

SECTION 10 Also, ACK is declarative, so you can define the desired state and allow the
controller to take the necessary steps without defining an imperative list of steps.
The K8s control loop manages the state of your cluster as well the configuration
you passed in for your AWS resource. Periodically, an ACK service controller will
look for any drift and attempt to remediate. A single consolidated approach
using ACK makes it easier to adopt a GitOps based approach to automating
your deployments.

ACK service controllers run in a container on any K8s distribution on premises
or in the cloud. Hence, they are not limited to Amazon Elastic Kubernetes Service
(Amazon EKS).

Controllers are currently available for Amazon RDS, Amazon Aurora, Amazon
ElastiCache, Amazon MemoryDB, Amazon DynamoDB, Amazon Keyspaces,
and more.

31

https://aws-controllers-k8s.github.io/community/docs/community/services/

SECTION 11 Migrating your data to AWS
Migrating databases is a delicate process. Organizations need a practical approach
to migrating their existing on-premises database to the same type of database in
the cloud (homogeneous migration) or switching to a different type of database
in the cloud (heterogeneous migration). Cloud-to-cloud database migrations are
other important evolutionary paths.

AWS offers tools and experts to help assess, plan, and build the right migration
path for your company. AWS Database Migration Service (AWS DMS), which
includes integrated schema conversion, helps users migrate databases to AWS
while maintaining uninterrupted operations on the source database. AWS DMS
supports an extensive list of sources and targets. This method is useful when you
have to migrate the database code objects—including views, stored procedures,
and functions—as part of the database migration, or have to convert between
different database engines or data models. This solution is applicable to databases
of any size. It keeps the database available for the application during migration
and allows you to perform validation of the migrated data while the data is getting
replicated from source to target, thereby saving time on data validation.

Case study: Samsung Electronics

In less than 18 months, Samsung Electronics migrated its global Samsung
Account data to Amazon Aurora. “AWS had lots of tools and services to help
the migration—AWS DMS is one example,” says Salva Jung, Principal Architect
and Engineering Manager, Samsung. Samsung Electronics used AWS Database
Migration Service (AWS DMS) to initiate the transition of the data and ensure
the source database remained operational so that end users could still access
their Samsung Accounts as usual. In addition, AWS DMS replicated the large-
scale heterogeneous database, duplicated 2 or 3 TB of user data in 3–4
days, and routed user traffic one by one from the IDC to the cloud. Samsung
Electronics completed the migration with minimal downtime. “We had some
downtime but not much,” says Jung. “The important thing is that we detected
problems quickly and minimized the user impact.”

AWS also offers programs and services, ranging from AWS Professional Services
that taps into the deep expertise of tenured professionals for migration assistance
to Database Migration Accelerator (DMA), where for a fixed fee, a team of AWS
professionals handles the conversion of both the database and application for you.
Database Freedom provides expert advice and migration assistance to qualified
customers. Additionally, AWS DMS Partners have knowledge, expertise, and
experience with migrations.

32

https://aws.amazon.com/dms/
https://aws.amazon.com/blogs/aws/new-a-fully-managed-schema-conversion-in-aws-database-migration-service/
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.html
https://aws.amazon.com/solutions/case-studies/samsung-migrates-off-oracle-to-amazon-aurora/
https://aws.amazon.com/solutions/case-studies/samsung-migrates-off-oracle-to-amazon-aurora/
https://aws.amazon.com/professional-services/
https://aws.amazon.com/solutions/databasemigrations/database-migration-accelerator/
https://aws.amazon.com/solutions/databasemigrations/database-freedom/
https://aws.amazon.com/dms/partners/?partner-solutions-cards.sort-by=item.additionalFields.partnerNameLower&partner-solutions-cards.sort-order=asc&awsf.partner-solutions-filter-partner-type-storage=*all&awsf.partner-solutions-filter-partner-location-storage=*all

CONCLUSION Modern applications mark a shift in how applications are designed and built.
Unlike applications built on monolithic architectures, these applications are based
on distributed microservices-based architectures. The decomposition of monoliths
into microservices facilitates an independent best-fit database choice for each
microservice, and AWS offers the broadest choice. The workload-specific focus of
each database is key to how AWS can optimize each database for performance at
scale. In addition, each database is future-proofed with the seamless addition of
features that support emerging use cases like generative AI and ample headroom
for growth in the number of users, the geographical dispersion of users, and data
capacity. Because every AWS database is fully managed, database operations,
maintenance, and capacity adjustments are automated and non-disruptive. AWS
continues to invest in making the maintenance of your databases the least of
your concerns.

The AWS database portfolio is the result of an ongoing, focused investment
strategy to provide customers with feature-rich and cost-effective database
products. Our commitment to innovation is motivated by our belief that our
innovation can clear the path for your innovation.

To get started, you can gain free hands-on experience with many of our
databases—check out AWS Free Tier. AWS also offers Optimization and Licensing
Assessment (OLA) to help you evaluate options to migrate to the cloud. When
you complete this form to request an assessment, the AWS OLA team can help you.
You can also learn more about AWS databases by heading over to the database
category page where you’ll find related content, additional documentation, and
links to each of the database service pages.

33©️ 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://aws.amazon.com/free/?all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%20Types=*all&awsf.Free%20Tier%20Categories=categories%23databases
https://aws.amazon.com/windows/optimization-and-licensing-assessment/
https://aws.amazon.com/windows/optimization-and-licensing-assessment/
https://pages.awscloud.com/windows-ola-contact-us.html
https://aws.amazon.com/products/databases/?nc2=h_ql_prod_db_db
https://aws.amazon.com/products/databases/?nc2=h_ql_prod_db_db

