
Best Practices for
WordPress on AWS

Reference architecture for scalable

WordPress-powered websites

First Published December 2014

Updated October 19, 2021

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Introduction .. 1

Simple deployment .. 1

Considerations ... 1

Available approaches ... 1

Amazon Lightsail .. 2

Improving performance and cost efficiency .. 4

Accelerating content delivery ... 4

Database caching... 7

Bytecode caching ... 7

Elastic deployment .. 8

Reference architecture ... 8

Architecture components ... 9

Scaling the web tier .. 9

Stateless web tier ... 11

WordPress high availability by Bitnami on AWS Quick Starts 14

Conclusion ... 16

Contributors ... 16

Document revisions ... 16

Appendix A: CloudFront configuration .. 17

Origins and behaviors .. 17

CloudFront distribution creation ... 17

Appendix B: Plugins installation and configuration... 20

AWS for WordPress plugin .. 20

Static content configuration.. 26

Appendix C: Backup and recovery.. 29

Appendix D: Deploying new plugins and themes ... 31

Abstract

This whitepaper provides system administrators with specific guidance on how to get

started with WordPress on Amazon Web Services (AWS) and how to improve both the

cost efficiency of the deployment and the end user experience. It also outlines a

reference architecture that addresses common scalability and high availability

requirements.

Amazon Web Services Best Practices for WordPress on AWS

 Page 1

Introduction

WordPress is an open-source blogging tool and content management system (CMS)

based on PHP and MySQL that is used to power anything from personal blogs to high-

traffic websites.

When the first version of WordPress was released in 2003, it was not built with modern

elastic and scalable cloud-based infrastructures in mind. Through the work of the

WordPress community and the release of various WordPress modules, the capabilities

of this CMS solution are constantly expanding. Today, it is possible to build a

WordPress architecture that takes advantage of many of the benefits of the AWS Cloud.

Simple deployment

For low-traffic blogs or websites without strict high availability requirements, a simple

deployment of a single server might be suitable. This deployment isn’t the most resilient

or scalable architecture, but it is the quickest and most economical way to get your

website up and running.

Considerations

This discussion starts with a single web server deployment. There may be occasions

when you outgrow it, for example:

• The virtual machine that your WordPress website is deployed on is a single point

of failure. A problem with this instance causes a loss of service for your website.

• Scaling resources to improve performance can only be achieved by “vertical

scaling;” that is, by increasing the size of the virtual machine running your

WordPress website.

Available approaches

AWS has a number of different options for provisioning virtual machines. There are

three main ways to host your own WordPress website on AWS:

• Amazon Lightsail

• Amazon Elastic Compute Cloud (Amazon EC2)

• AWS Marketplace

Amazon Web Services Best Practices for WordPress on AWS

 Page 2

Amazon Lightsail is a service that enables you to quickly launch a virtual private server

(a Lightsail instance) to host a WordPress website. Lightsail is the easiest way to get

started if you don’t need highly configurable instance types or access to advanced

networking features.

Amazon EC2 is a web service that provides resizable compute capacity so you can

launch a virtual server within minutes. Amazon EC2 provides more configuration and

management options than Lightsail, which is desirable in more advanced architectures.

You have administrative access to your EC2 instances and can install any software

packages you choose, including WordPress.

AWS Marketplace is an online store where you can find, buy, and quickly deploy

software that runs on AWS. You can use one-click deployment to launch preconfigured

WordPress images directly to Amazon EC2 in your own AWS account in just a few

minutes. There are a number of AWS Marketplace vendors offering ready-to-run

WordPress instances.

This whitepaper covers the Lightsail option as the recommended implementation for a

single-server WordPress website.

Amazon Lightsail

Lightsail is the easiest way to get started on AWS for developers, small businesses,

students, and other users who need a simple virtual private server (VPS) solution.

The service abstracts many of the more complex elements of infrastructure

management away from the user. It is, therefore, an ideal starting point if you have less

infrastructure experience, or when you need to focus on running your website and a

simplified product is sufficient for your needs.

With Amazon Lightsail, you can choose Windows or Linux/Unix operating systems and

popular web applications, including WordPress, and deploy these with a single click

from preconfigured templates.

As your needs grow, you have the ability to smoothly step outside of the initial

boundaries and connect to additional AWS database, object storage, caching, and

content distribution services.

Selecting an Amazon Lightsail pricing plan

A Lightsail plan defines the monthly cost of the Lightsail resources you use to host your

WordPress website. There are a number of plans available to cover a variety of use

https://aws.amazon.com/lightsail
https://aws.amazon.com/ec2/
https://aws.amazon.com/marketplace
https://amazonlightsail.com/pricing/

Amazon Web Services Best Practices for WordPress on AWS

 Page 3

cases, with varying levels of CPU resource, memory, solid state drive (SSD) storage,

and data transfer. If your website is complex, you may need a larger instance with more

resources. You can achieve this by migrating your server to a larger plan using the web

console or as described in the Amazon Lightsail CLI documentation.

Installing WordPress

Lightsail provides templates for commonly used applications such as WordPress. This

template is a great starting point for running your own WordPress website, as it comes

pre-installed with most of the software you need. You can install additional software or

customize the software configuration by using the in-browser terminal or your own SSH

client, or via the WordPress administration web interface.

Amazon Lightsail has a partnership with GoDaddy Pro Sites product to help WordPress

customers easily manage their instances for free. Lightsail WordPress virtual servers

are preconfigured and optimized for fast performance and security, making it easy to get

your WordPress site up and running in no time. Customers running multiple WordPress

instances find it challenging and time-consuming to update, maintain and manage all of

their sites. With this integration, you can easily manage your multiple WordPress

instances in minutes with only a few clicks.

For more information about managing WordPress on Lightsail, refer to Getting started

using WordPress from your Amazon Lightsail instance. Once you are finished

customizing your WordPress website, AWS recommends that you take a snapshot of

your instance.

A snapshot is a way to create a backup image of your Lightsail instance. It
is a copy of the system disk and also stores the original machine
configuration (that is, memory, CPU, disk size, and data transfer rate).
Snapshots can be used to revert to a known good configuration after a
bad deployment or upgrade.

This snapshot enables you to recover your server if needed, but also to launch new

instances with the same customizations.

Recovering from failure

A single web server is a single point of failure, so you must ensure that your website

data is backed up. The snapshot mechanism described earlier can also be used for this

purpose. To recover from failure, you can restore a new instance from your most recent

https://lightsail.aws.amazon.com/ls/docs/how-to/article/lightsail-how-to-create-instance-from-snapshot
https://lightsail.aws.amazon.com/ls/docs/how-to/article/lightsail-how-to-create-instance-from-snapshot
https://lightsail.aws.amazon.com/ls/docs/how-to/article/lightsail-how-to-create-larger-instance-from-snapshot-using-aws-cli
https://lightsail.aws.amazon.com/ls/docs/getting-started/article/getting-started-with-wordpress-and-lightsail
https://lightsail.aws.amazon.com/ls/docs/getting-started/article/getting-started-with-wordpress-and-lightsail
https://lightsail.aws.amazon.com/ls/docs/overview/article/understanding-instance-snapshots-in-amazon-lightsail

Amazon Web Services Best Practices for WordPress on AWS

 Page 4

snapshot. To reduce the amount of data that could be lost during a restore, your

snapshots must be as recent as possible.

To minimize the potential for data loss, ensure that snapshots are taken on a regular

basis. You can schedule automatic snapshots of your Lightsail Linux/Unix instances.

For instructions, refer to Enabling or disabling automatic snapshots for instances or

disks in Amazon Lightsail.

AWS recommends that you use a static IP—a fixed, public IP address that is dedicated

to your Lightsail account. If you need to replace your instance with another one, you can

reassign the static IP to the new instance. In this way, you don’t have to reconfigure any

external systems (such as DNS records) to point to a new IP address every time you

want to replace your instance.

Improving performance and cost efficiency

You may eventually outgrow your single-server deployment. In this case, you may need

to consider options for improving your website’s performance. Before migrating to a

multi-server, scalable deployment (discussed later in this whitepaper), there are a

number of performance and cost efficiencies you can apply. These are good practices

that you should follow anyway, even if you do move to a multi-server architecture.

The following sections introduce a number of options that can improve aspects of your

WordPress website’s performance and scalability. Some can be applied to a single-

server deployment, whereas others take advantage of the scalability of multiple servers.

Many of those modifications require the use of one or more WordPress plugins.

Although various options are available, W3 Total Cache is a popular choice that

combines many of those modifications in a single plugin.

Accelerating content delivery

Any WordPress website needs to deliver a mix of static and dynamic content. Static

content includes images, JavaScript files, or style sheets. Dynamic content includes

anything generated on the server side using the WordPress PHP code; for example,

elements of your site that are generated from the database or personalized to each

viewer.

An important aspect of the end user experience is the network latency involved when

delivering the previous content to users around the world. Accelerating the delivery of

the previous content improves the end user experience, especially users geographically

https://lightsail.aws.amazon.com/ls/docs/en_us/articles/amazon-lightsail-configuring-automatic-snapshots
https://lightsail.aws.amazon.com/ls/docs/en_us/articles/amazon-lightsail-configuring-automatic-snapshots
https://wordpress.org/plugins/w3-total-cache/

Amazon Web Services Best Practices for WordPress on AWS

 Page 5

spread across the globe. This can be achieved with a Content Delivery Network (CDN)

such as Amazon CloudFront.

Amazon CloudFront is a web service that provides an easy and cost-effective way to

distribute content with low latency and high data transfer speeds through multiple edge

locations across the globe. Viewer requests are automatically routed to a suitable

CloudFront edge location to lower the latency.

If the content can be cached (for a few seconds, minutes, or even days) and is already

stored in a particular edge location, CloudFront delivers it immediately. If the content

should not be cached, has expired, or isn’t currently in that edge location, CloudFront

retrieves content from one or more sources of truth, referred to as the origin(s) (in this

case, the Lightsail instance) in the CloudFront configuration. This retrieval takes place

over optimized network connections, which work to speed up the delivery of content on

your website. Apart from improving the end user experience, the model discussed also

reduces the load on your origin servers and has the potential to create significant cost

savings.

Static content offload

This includes CSS, JavaScript, and image files—either those that are part of your

WordPress themes or those media files uploaded by the content administrators. All

these files can be stored in Amazon Simple Storage Service (Amazon S3) using a

plugin such as W3 Total Cache and served to users in a scalable and highly available

manner. Amazon S3 offers a highly scalable, reliable, and low-latency data storage

infrastructure at low cost, which is accessible via REST APIs. Amazon S3 redundantly

stores your objects, not only on multiple devices, but also across multiple facilities in an

AWS Region, providing exceptionally high levels of durability.

This has the positive side effect of offloading this workload from your Lightsail instance

and letting it focus on dynamic content generation. This reduces the load on the server

and is an important step towards creating a stateless architecture (a prerequisite before

implementing automatic scaling).

You can subsequently configure Amazon S3 as an origin for CloudFront to improve

delivery of those static assets to users around the world. Although WordPress isn’t

integrated with Amazon S3 and CloudFront out of the box, a variety of plugins add

support for these services (for example, W3 Total Cache).

https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudfront/details/#edge-locations
https://aws.amazon.com/s3/

Amazon Web Services Best Practices for WordPress on AWS

 Page 6

Dynamic content

Dynamic content includes the output of server-side WordPress PHP scripts. Dynamic

content can also be served via CloudFront by configuring the WordPress website as an

origin. Since dynamic content includes personalized content, you need to configure

CloudFront to forward certain HTTP cookies and HTTP headers as part of a request to

your custom origin server. CloudFront uses the forwarded cookie values as part of the

key that identifies a unique object in its cache. To ensure that you maximize the caching

efficiency, configure CloudFront to forward only those HTTP cookies and HTTP headers

that actually vary the content (not cookies that are only used on the client side or by

third-party applications, for example, for web analytics).

Whole website delivery via Amazon CloudFront

The preceding figure includes two origins: one for static content and another for

dynamic content. For implementation details, refer to Appendix A: CloudFront

configuration and Appendix B: Plugins installation and configuration.

CloudFront uses standard cache control headers to identify if and for how long it should

cache specific HTTP responses. The same cache control headers are also used by web

browsers to decide when and for how long to cache content locally for a more optimal

end user experience (for example, a .css file that is already downloaded will not be

redownloaded every time a returning visitor views a page). You can configure cache

control headers on the web server level (for example, via .htaccess files or

modifications of the httpd.conf file) or install a WordPress plugin (for example, W3

Total Cache) to dictate how those headers are set for both static and dynamic content.

Amazon Web Services Best Practices for WordPress on AWS

 Page 7

Database caching

Database caching can significantly reduce latency and increase throughput for read-

heavy application workloads like WordPress. Application performance is improved by

storing frequently accessed pieces of data in memory for low-latency access (for

example, the results of input/output (I/O)-intensive database queries). When a large

percentage of the queries is served from the cache, the number of queries that need to

hit the database is reduced, resulting in a lower cost associated with running the

database.

Although WordPress has limited caching capabilities out-of-the-box, a variety of plugins

support integration with Memcached, a widely adopted memory object caching system.

The W3 Total Cache plugin is a good example.

In the simplest scenarios, you install Memcached on your web server and capture the

result as a new snapshot. In this case, you are responsible for the administrative tasks

associated with running a cache.

Another option is to take advantage of a managed service such as Amazon ElastiCache

and avoid that operational burden. ElastiCache makes it easy to deploy, operate, and

scale a distributed in-memory cache in the cloud. You can find information about how to

connect to your ElastiCache cluster nodes in the Amazon ElastiCache documentation.

If you are using Lightsail and wish to access an ElastiCache cluster in your AWS

account privately, you can do so by using VPC peering. For instructions to enable VPC

peering, refer to Set up Amazon VPC peering to work with AWS resources outside of

Amazon Lightsail.

Bytecode caching

Each time a PHP script is run, it gets parsed and compiled. By using a PHP bytecode

cache, the output of the PHP compilation is stored in RAM so the same script doesn’t

have to be compiled again and again. This reduces the overhead related to running

PHP scripts, resulting in better performance and lower CPU requirements.

A bytecode cache can be installed on any Lightsail instance that hosts WordPress and

can greatly reduce its load. For PHP 5.5 and later, AWS recommends the use of

OPcache, a bundled extension with that PHP version.

Note that OPcache is enabled by default in the Bitnami WordPress Lightsail template,

so no further action is required.

https://memcached.org/
https://aws.amazon.com/elasticache/
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/WhatIs.html
https://lightsail.aws.amazon.com/ls/docs/how-to/article/lightsail-how-to-set-up-vpc-peering-with-aws-resources
https://lightsail.aws.amazon.com/ls/docs/how-to/article/lightsail-how-to-set-up-vpc-peering-with-aws-resources
http://php.net/manual/en/book.opcache.php

Amazon Web Services Best Practices for WordPress on AWS

 Page 8

Elastic deployment

There are many scenarios where a single-server deployment may not be sufficient for

your website. In these situations, you need a multi-server, scalable architecture.

Reference architecture

The Hosting WordPress on AWS reference architecture available on GitHub outlines

best practices for deploying WordPress on AWS and includes a set of AWS

CloudFormation templates to get you up and running quickly. The following architecture

is based on that reference architecture. The rest of this section reviews the reasons

behind the architectural choices.

The based AMI in the GitHub was changed from Amazon Linux1 to
Amazon Linux2 in July 2021. However, deployment templates at S3 were
not changed yet. It is recommended to use templates at GitHub if there is
an issue to deploy the reference architecture with templates at S3.

Reference architecture for hosting WordPress on AWS

https://github.com/awslabs/aws-refarch-wordpress

Amazon Web Services Best Practices for WordPress on AWS

 Page 9

Architecture components

The preceding reference architecture illustrates a complete best practice deployment for

a WordPress website on AWS.

• It starts with edge caching in Amazon CloudFront (1) to cache content close to

end users for faster delivery.

• CloudFront pulls static content from an S3 bucket (2) and dynamic content from

an Application Load Balancer (4) in front of the web instances.

• The web instances run in an Auto Scaling group of Amazon EC2 instances

(6).

• An ElastiCache cluster (7) caches frequently queried data to speed up

responses.

• An Amazon Aurora MySQL instance (8) hosts the WordPress database.

• The WordPress EC2 instances access shared WordPress data on an Amazon

EFS file system via an EFS Mount Target (9) in each Availability Zone.

• An Internet Gateway (3) enables communication between resources in your

VPC and the internet.

• NAT Gateways (5) in each Availability Zone enable EC2 instances in private

subnets (App and Data) to access the internet.

Within the Amazon VPC there exist two types of subnets: public (Public Subnet) and

private (App Subnet and Data Subnet). Resources deployed into the public subnets

will receive a public IP address and will be publicly visible on the internet. The

Application Load Balancer (4) and a bastion host for administration are deployed

here. Resources deployed into the private subnets receive only a private IP address

and are not publicly visible on the internet, improving the security of those resources.

The WordPress web server instances (6), ElastiCache cluster instances (7),

Aurora MySQL database instances (8), and EFS Mount Targets (9) are all deployed

in private subnets.

The remainder of this section covers each of these considerations in more detail.

Scaling the web tier

To evolve your single-server architecture into a multi-server, scalable architecture, you

must use five key components:

Amazon Web Services Best Practices for WordPress on AWS

 Page 10

• Amazon EC2 instances

• Amazon Machine Images (AMIs)

• Load balancers

• Automatic scaling

• Health checks

AWS provides a wide variety of EC2 instance types so you can choose the best server

configuration for both performance and cost. Generally speaking, the compute-

optimized (for example, C4) instance type may be a good choice for a WordPress web

server. You can deploy your instances across multiple Availability Zones within an AWS

Region to increase the reliability of the overall architecture.

Because you have complete control of your EC2 instance, you can log in with root

access to install and configure all of the software components required to run a

WordPress website. After you are done, you can save that configuration as an AMI,

which you can use to launch new instances with all the customizations that you've

made.

To distribute end user requests to multiple web server nodes, you need a load

balancing solution. AWS provides this capability through Elastic Load Balancing, a

highly available service that distributes traffic to multiple EC2 instances. Because your

website is serving content to your users via HTTP or HTTPS, we recommend that you

make use of the Application Load Balancer, an application-layer load balancer with

content routing and the ability to run multiple WordPress websites on different domains,

if required.

Elastic Load Balancing supports distribution of requests across multiple Availability

Zones within an AWS Region. You can also configure a health check so that the

Application Load Balancer automatically stops sending traffic to individual instances that

have failed (for example, due to a hardware problem or software crash). AWS

recommends using the WordPress admin login page (/wp-login.php) for the health

check because this page confirms both that the web server is running and that the web

server is configured to serve PHP files correctly.

You may choose to build a custom health check page that checks other dependent

resources, such as database and cache resources. For more information, refer to

Health checks for your target groups in the Application Load Balancer Guide.

https://aws.amazon.com/elasticloadbalancing/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/target-group-health-checks.html

Amazon Web Services Best Practices for WordPress on AWS

 Page 11

Elasticity is a key characteristic of the AWS Cloud. You can launch more compute

capacity (for example, web servers) when you need it and run less when you don't.

AWS Auto Scaling is an AWS service that helps you automate this provisioning to scale

your Amazon EC2 capacity up or down according to conditions you define with no need

for manual intervention. You can configure AWS Auto Scaling so that the number of

EC2 instances you’re using increases seamlessly during demand spikes to maintain

performance and decreases automatically when traffic diminishes, so as to minimize

costs.

Elastic Load Balancing also supports dynamic addition and removal of Amazon EC2

hosts from the load balancing rotation. Elastic Load Balancing itself also dynamically

increases and decreases the load balancing capacity to adjust to traffic demands with

no manual intervention.

Stateless web tier

To take advantage of multiple web servers in an automatic scaling configuration, your

web tier must be stateless. A stateless application is one that needs no knowledge of

previous interactions and stores no session information. In the case of WordPress, this

means that all end users receive the same response, regardless of which web server

processed their request. A stateless application can scale horizontally since any request

can be serviced by any of the available compute resources (web server instances).

When that capacity is no longer required, any individual resource can be safely

terminated (after running tasks have been drained). Those resources do not need to be

aware of the presence of their peers—all that is required is a way to distribute the

workload to them.

When it comes to user session data storage, the WordPress core is completely

stateless because it relies on cookies that are stored in the client’s web browser.

Session storage isn’t a concern unless you have installed any custom code (for

example, a WordPress plugin) that instead relies on native PHP sessions.

However, WordPress was originally designed to run on a single server. As a result, it

stores some data on the server’s local file system. When running WordPress in a multi-

server configuration, this creates a problem because there is inconsistency across web

servers. For example, if a user uploads a new image, it is only stored on one of the

servers.

This demonstrates why we need to improve the default WordPress running

configuration to move important data to shared storage. The best practice architecture

https://aws.amazon.com/autoscaling/

Amazon Web Services Best Practices for WordPress on AWS

 Page 12

has a database as a separate layer outside the web server and makes use of shared

storage to store user uploads, themes, and plugins.

Shared storage (Amazon S3 and Amazon EFS)

By default, WordPress stores user uploads on the local file system and so isn’t

stateless. Therefore, you need to move the WordPress installation and all user

customizations (such as configuration, plugins, themes, and user-generated uploads)

into a shared data platform to help reduce load on the web servers and to make the web

tier stateless.

Amazon Elastic File System (Amazon EFS) provides scalable network file systems for

use with EC2 instances. Amazon EFS file systems are distributed across an

unconstrained number of storage servers, enabling file systems to grow elastically and

enabling massively parallel access from EC2 instances. The distributed design of

Amazon EFS avoids the bottlenecks and constraints inherent to traditional file servers.

By moving the entire WordPress installation directory onto an EFS file system and

mounting it into each of your EC2 instances when they boot, your WordPress site and

all its data is automatically stored on a distributed file system that isn’t dependent on

any one EC2 instance, making your web tier completely stateless. The benefit of this

architecture is that you don’t need to install plugins and themes on each new instance

launch, and you can significantly speed up the installation and recovery of WordPress

instances. It is also easier to deploy changes to plugins and themes in WordPress, as

outlined in the Deployment considerations section of this document.

To ensure optimal performance of your website when running from an EFS file system,

check the recommended configuration settings for Amazon EFS and OPcache on the

AWS Reference Architecture for WordPress.

You also have the option to offload all static assets, such as image, CSS, and

JavaScript files, to an S3 bucket with CloudFront caching in front. The mechanism for

doing this in a multi-server architecture is exactly the same as for a single-server

architecture, as discussed in the Static content section of this whitepaper. The benefits

are the same as in the single-server architecture—you can offload the work associated

with serving your static assets to Amazon S3 and CloudFront, enabling your web

servers to focus on generating dynamic content only and serve more user requests per

web server.

https://aws.amazon.com/efs/details/
https://github.com/awslabs/aws-refarch-wordpress#opcache

Amazon Web Services Best Practices for WordPress on AWS

 Page 13

Data tier (Amazon Aurora and Amazon ElastiCache)

With the WordPress installation stored on a distributed, scalable, shared network file

system, and static assets being served from Amazon S3, you can focus your attention

on the remaining stateful component: the database. As with the storage tier, the

database should not be reliant on any single server, so it cannot be hosted on one of

the web servers. Instead, host the WordPress database on Amazon Aurora.

Amazon Aurora is a MySQL and PostgreSQL compatible relational database built for

the cloud that combines the performance and availability of high-end commercial

databases with the simplicity and cost-effectiveness of open-source databases. Aurora

MySQL increases MySQL performance and availability by tightly integrating the

database engine with a purpose-built distributed storage system, backed by SSD. It is

fault-tolerant and self-healing, replicates six copies of your data across three Availability

Zones, is designed for greater than 99.99% availability, and nearly continuously backs

up your data in Amazon S3. Amazon Aurora is designed to automatically detect

database crashes and restart without the need for crash recovery or to rebuild the

database cache.

Amazon Aurora provides a number of instance types to suit different application profiles,

including memory-optimized and burstable instances. To improve the performance of

your database you can select a large instance type to provide more CPU and memory

resources.

Amazon Aurora automatically handles failover between the primary instance and Aurora

Replicas so that your applications can resume database operations as quickly as

possible without manual administrative intervention. Failover typically takes less than 30

seconds.

After you have created at least one Aurora Replica, connect to your primary instance

using the cluster endpoint to enable your application to automatically fail over in the

event the primary instance fails. You can create up to 15 low-latency read replicas

across three Availability Zones.

As your database scales, your database cache will also need to scale. As discussed

previously in the Database caching section of this document, ElastiCache has features

to scale the cache across multiple nodes in an ElastiCache cluster, and across multiple

Availability Zones in a Region for improved availability. As you scale your ElastiCache

cluster, ensure that you configure your caching plugin to connect using the configuration

endpoint so that WordPress can use new cluster nodes as they are added and stop

https://aws.amazon.com/rds/aurora
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Replication.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Replication.html

Amazon Web Services Best Practices for WordPress on AWS

 Page 14

using old cluster nodes as they are removed. You must also set up your web servers to

use the ElastiCache Cluster Client for PHP and update your AMI to store this change.

WordPress high availability by Bitnami on AWS Quick

Starts

Quick Starts are built by AWS solutions architects and partners to help you deploy

popular technologies on AWS, based on AWS best practices for security and high

availability. These accelerators reduce hundreds of manual procedures into just a few

steps, so you can build your production environment quickly and start using it

immediately. Each Quick Start includes AWS CloudFormation templates that automate

the deployment and a guide that discusses the architecture and provides step-by-step

deployment instructions.

WordPress High Availability by Bitnami on AWS Quick Starts sets up the following

configurable environment on AWS:

• A highly available architecture that spans two Availability Zones.*

• A virtual private cloud (VPC) configured with public and private subnets

according to AWS best practices. This provides the network infrastructure for

your deployment.*

• An internet gateway to provide access to the internet. This gateway is used by

the bastion hosts to send and receive traffic.*

• In the public subnets, managed NAT gateways to allow outbound internet access

for resources in the private subnets.*

• In the public subnets, Linux bastion hosts in an Auto Scaling group to allow

inbound Secure Shell (SSH) access to EC2 instances in public and private

subnets.*

• Elastic Load Balancing to distribute HTTP and HTTPS requests across multiple

WordPress instances.

• In the private subnets, EC2 instances that host the WordPress application on

Apache. These instances are provisioned in an Auto Scaling group to ensure

high availability.

• In the private subnets, Amazon Aurora DB instances administered by Amazon

Relational Database Service (Amazon RDS).

https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Appendix.PHPAutoDiscoverySetup.html
https://aws.amazon.com/quickstart/architecture/wordpress-high-availability-bitnami/

Amazon Web Services Best Practices for WordPress on AWS

 Page 15

• In the private subnets, Amazon Elastic File System (Amazon EFS) to share

assets (such as plugins, themes, and images) across WordPress instances.

• In the private subnets, Amazon ElastiCache for Memcached nodes for caching

database queries.

* The template that deploys the Quick Start into an existing VPC skips the tasks marked

by asterisks and prompts you for your existing VPC configuration.

WordPress high availability architecture by Bitnami

A detailed description of deploying WordPress High Availability by Bitnami on AWS is

beyond the scope of this document. For configuration and options, refer to WordPress

High Availability by Bitnami on AWS.

https://aws.amazon.com/quickstart/architecture/wordpress-high-availability-bitnami/
https://aws.amazon.com/quickstart/architecture/wordpress-high-availability-bitnami/

Amazon Web Services Best Practices for WordPress on AWS

 Page 16

Conclusion

AWS presents many architecture options for running WordPress. The simplest option is

a single server installation for low traffic websites. For more advanced websites, site

administrators can add several other options, each one representing an incremental

improvement in terms of availability and scalability. Administrators can select the

features that most closely match their requirements and their budget.

Contributors

Contributors to this document include:

• Paul Lewis, Solutions Architect, Amazon Web Services

• Ronan Guilfoyle, Solutions Architect, Amazon Web Services

• Andreas Chatzakis, Solutions Architect Manager, Amazon Web Services

• Jibril Touzi, Technical Account Manager, Amazon Web Services

• Hakmin Kim, Migration Partner Solutions Architect, Amazon Web Services

Document revisions

Date Description

October 19, 2021

Updated to modify Reference Architecture and

AWS for WordPress plugin.

October 2019

Updated to include new deployment approaches

and AWS for WordPress plugin.

February 2018 Updated to clarify Amazon Aurora product

messaging.

December 2017
Updated to include AWS services launched since

first publication.

December 2014 First publication.

Amazon Web Services Best Practices for WordPress on AWS

 Page 17

Appendix A: CloudFront configuration

To get optimal performance and efficiency when using Amazon CloudFront with your

WordPress website, it’s important to configure the website correctly for the different

types of content being served.

Origins and behaviors

An origin is a location where CloudFront sends requests for content that it distributes

through the edge locations. Depending on your implementation you can have one or

two origins. One for dynamic content (the Lightsail instance in the single-server

deployment option, or the Application Load Balancer in the elastic deployment option)

using a custom origin. You may have a second origin to direct CloudFront to for your

static content. In the preceding reference architecture, this is an S3 bucket. When you

use Amazon S3 as an origin for your distribution, you need to use a bucket policy to

make the content publicly accessible.

Behaviors enable you to set rules that govern how CloudFront caches your content,

and, in turn, determine how effective the cache is. Behaviors enable you to control the

protocol and HTTP methods your website is accessible by. They also enable you to

control whether to pass HTTP headers, cookies, or query strings to your backend (and,

if so, which ones). Behaviors apply to specific URL path patterns.

CloudFront distribution creation

Create a CloudFront web distribution by following the Distribution, the default Origin and

Behavior automatically created will be used for dynamic content. Create four additional

behaviors to further customize the way both static and dynamic requests are treated.

The following table summarizes the configuration properties for the five behaviors. You

can also skip this manual configuration and use the AWS for WordPress plugin covered

in Appendix B: Plugins Installation and Configuration, which is the easiest way to

configure CloudFront to accelerate your WordPress site.

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/DownloadDistS3AndCustomOrigins.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/WebsiteAccessPermissionsReqd.html#bucket-policy-static-site
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/RequestAndResponseBehavior.html

Amazon Web Services Best Practices for WordPress on AWS

 Page 18

Table 1: Summary of configuration properties for CloudFront behaviors

Property Static Dynamic (admin) Dynamic (front end)

Paths

(Behaviors)

wp-

content/*

wp-

includes/*

wp-admin/*

wp-login.php

default (*)

Protocols HTTP and

HTTPS

Redirect to HTTPS HTTP and HTTPS

HTTP methods GET, HEAD ALL ALL

HTTP headers NONE ALL Host

CloudFront-Forwarded-Proto

CloudFront-Is-Mobile-

Viewer

CloudFront-Is-Tablet-

Viewer

CloudFront-Is-Desktop-

Viewer

Cookies NONE ALL comment_*

wordpress_*

wp-settings-*

Query Strings YES

(invalidation)

YES YES

For the default behavior, AWS recommends the following configuration:

• Allow the Origin Protocol Policy to Match Viewer, so that if viewers connect to

CloudFront using HTTPS, CloudFront connects to your origin using HTTPS as

well, achieving end-to-end encryption. Note that this requires you install a trusted

SSL certificate on the load balancer. For details, refer to Requiring HTTPS for

Communication Between CloudFront and Your Custom Origin.

• Allow all HTTP methods since the dynamic portions of the website require both

GET and POST requests (for example, to support POST for the comment

submission forms).

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https-cloudfront-to-custom-origin.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https-cloudfront-to-custom-origin.html

Amazon Web Services Best Practices for WordPress on AWS

 Page 19

• Forward only the cookies that vary the WordPress output, for example,

wordpress_*, wp-settings-* and comment_*. You must extend that list if you

have installed any plugins that depend on other cookies not in the list.

• Forward only the HTTP headers that affect the output of WordPress, for

example, Host, CloudFront-Forwarded-Proto, CloudFront-is-Desktop-

Viewer, CloudFront-is-Mobile-Viewer, and CloudFront-is-Tablet-

Viewer:

o Host allows multiple WordPress websites to be hosted on the same origin.

o CloudFront-Forwarded-Proto allows different versions of pages to be

cached depending on whether they are accessed via HTTP or HTTPS.

o CloudFront-is-Desktop-Viewer, CloudFront-is-Mobile-Viewer,

and CloudFront-is-Tablet-Viewer allow you to customize the output of

your themes based on the end user’s device type.

• Forward all the query strings to cache based on their values because WordPress

relies on these, they can also be used to invalidate cached objects.

If you want to serve your website under a custom domain name (not

*.cloudfront.net), enter the appropriate URIs under Alternate Domain Names in

the Distribution Settings. In this case, you also need an SSL certificate for your custom

domain name. You can request SSL certificates via the AWS Certificate Manager and

configure them against a CloudFront distribution.

Now, create two more cache behaviors for dynamic content: one for the login page

(path pattern: wp-login.php) and one for the admin dashboard (path pattern: wp-

admin/*). These two behaviors have the exact same settings, as follows:

• Enforce a Viewer Protocol Policy of HTTPS Only.

• Allow all HTTP methods.

• Cache based on all HTTP headers.

• Forward all cookies.

• Forward and cache based on all query strings.

The reason behind this configuration is that this section of the website is highly

personalized and typically has just a few users, so caching efficiency isn’t a primary

concern. The focus is to keep the configuration simple to ensure maximum compatibility

with any installed plugins by passing all cookies and headers to the origin.

https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request.html

Amazon Web Services Best Practices for WordPress on AWS

 Page 20

The AWS for WordPress plugin covered in Appendix B automatically creates a

CloudFront distribution that meets the preceding configuration.

By default, WordPress stores everything locally on the web server, which is block

storage (Amazon EBS) for single server deployment, and file storage (Amazon EFS) for

elastic deployment. In addition to reducing storage and data transfer costs, moving

static assets to Amazon S3 offers scalability, data availability, security and performance.

There are several plugins that make it easy to move static content to Amazon S3; one

of them is W3 Total Cache, also covered in Appendix B.

Appendix B: Plugins installation and

configuration

AWS for WordPress plugin

The AWS for WordPress plugin is the only WordPress plugin written and actively

maintained by AWS. It enables customers to easily configure Amazon CloudFront and

AWS Certificate Manager (ACM) to WordPress websites for enhanced performance and

security. The plugin uses Amazon Machine Learning (ML) services to translate content

into one or more languages, produces audio versions of each translation, and reads

WordPress websites through Amazon Alexa devices.

The plugin is installed already in WordPress High Availability by Bitnami
on AWS Quick Start.

Plugin installation and configuration

To install the plugin:

1. To use the AWS for WordPress plugin, you must create an IAM user for the

plugin. An IAM user is a person or application under an AWS account that has

permission to make API calls to AWS services.

https://wordpress.org/plugins/w3-total-cache/
https://aws.amazon.com/cloudfront
https://aws.amazon.com/acm
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/quickstart/architecture/wordpress-high-availability-bitnami/
https://aws.amazon.com/quickstart/architecture/wordpress-high-availability-bitnami/

Amazon Web Services Best Practices for WordPress on AWS

 Page 21

2. You need an AWS Identity and Access Management (IAM) role or an IAM user

to control authentication and authorization for your AWS account. To prevent

unauthorized users from gaining these permissions, protect the IAM user's

credentials. Treat the secret access key like a password; store it in a safe place,

and don't share it with anyone. Like a password, rotate the access key

periodically. If the secret access key is accidentally leaked, delete it immediately.

Then you can create a new access key to use with the AWS for WordPress

plugin.

3. In the Plugins menu of the WordPress admin panel, search AWS for

WordPress and choose Install Now.

4. If the plugin installation is not working, there may be a user permission problem.

Connect to WordPress web server and complete the following instructions to

solve the issue.

a. Open The wp-config.php file in the WordPress install directory and write

the following code at the end of the wp-config.php file:

define('FS_METHOD','direct');

b. Launch the following command to give writing permission:

https://aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey

Amazon Web Services Best Practices for WordPress on AWS

 Page 22

chmod 777 <WordPress install directory>/wp-content

Warning: Keeping the writing permission as 777 is risky. If the
permission is kept as 777, anyone can edit or delete this folder.
Change the writing permission into 755 or below after completing
the plugin work.

c. If the reference architecture is used, the WordPress install directory is

`/var/www/wordpress/<site directory>`.

A detailed description of all AWS for WordPress settings is beyond
the scope of this document. For configuration and options, refer to
Getting started with the AWS for WordPress plugin.

Amazon CloudFront and AWS Certificate Manager

To set up CloudFront and AWS Certificate Manager:

1. On the plugin menu, choose CloudFront and enter the following parameters:

o Origin domain name: DNS domain of the HTTP origin server where

CloudFront gets your website's content (such as example.com).

o Alternate domain name (CNAME): domain name that your visitors use for

the accelerated website experience. AWS recommends using 'www' in front

of the domain (such as www.example.com).

2. Choose Initiate Setup to start the configuration.

The plugin automatically requests an SSL certificate for the CNAME via ACM,

once you validate the ACM token by updating the DNS records with the CNAME

entries, the plugin will create a CloudFront distribution that meets the best

practices defined in Appendix A.

Note: AWS for WordPress plugin requires HTTPS for communication
between CloudFront and your custom origin. Make sure your origin has an
SSL certificate valid for the Origin domain name. For more information,
refer to Using HTTPS with CloudFront.

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/WordPressPlugIn.html
https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-validate-dns.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https-cloudfront-to-custom-origin.html

Amazon Web Services Best Practices for WordPress on AWS

 Page 23

Translate and vocalize your content

The AWS for WordPress plugin enables you to automatically translate text in different

languages, and convert the written content into multilingual audio formats. These

features are powered by Amazon Machine Learning services.

Amazon Polly is a service that turns text into lifelike speech. With dozens of voices

across a variety of languages, you can select the ideal voice and build engaging

speech-enabled applications that work in many different countries. Use the plugin to

create audio files in any of the voices and languages supported by Amazon Polly. Your

visitors can stream the audio at their convenience using inline audio players and mobile

applications.

By default, the plugin stores new audio files on your web server. You can choose to

store the files on Amazon S3 or on Amazon CloudFront. Users have the same listening

experience regardless of where you store your audio files. Only the broadcast location

changes:

• For audio files stored on the WordPress server, files are broadcast directly from

the server.

• For files stored in an S3 bucket, files are broadcast from the bucket.

• If you use CloudFront, the files are stored on Amazon S3 and are broadcast with

CloudFront.

Broadcast location

https://aws.amazon.com/polly/

Amazon Web Services Best Practices for WordPress on AWS

 Page 24

Amazon Translate is a machine translation service that delivers fast, high-quality, and

affordable language translation. Providing multilingual content represents a great

opportunity for site owners. Although English is the dominant language of the web,

native English speakers are a mere 26% of the total online audience.

By offering written and audio versions of your WordPress content in multiple languages,

you can meet the needs of a larger international audience. You can configure the plugin

to do the following:

• Automatically translate into different languages and create audio recordings of

each translation for new content upon publication, or choose to translate and

create recordings for individual posts

• Translate into different languages and create audio recordings for each

translation of your archived content

• Use the Amazon Pollycast RSS feed to podcast audio content

Overview of content translation and text to speech

https://aws.amazon.com/translate/

Amazon Web Services Best Practices for WordPress on AWS

 Page 25

Podcasting with Amazon Pollycast

With Amazon Pollycast feeds, your visitors can listen to your audio content using

standard podcast applications. RSS 2.0-compliant Pollycast feeds provide the XML data

needed to aggregate podcasts by popular mobile podcast applications, such as iTunes,

and podcast directories.

When you install the AWS for WordPress plugin, you will find option to enable

generation of XML feed in the Podcast configuration tab. There, you will also find option

to configure multiple optional properties. After enabling the functionality, you will receive

a link do the feed.

Reading your content through Amazon Alexa devices

You can extend WordPress websites and blogs through Alexa devices. This opens new

possibilities for the creators and authors of websites to reach an even broader

audience. It also makes it easier for people to listen to their favorite blogs by just asking

Alexa to read them.

To expose the WordPress website to Alexa, you must enable:

• AWS for WordPress plugin.

• The text-to-speech and Amazon Pollycast functionalities. These functionalities

generate an RSS feed on your WordPress site which is consumed by Amazon

Alexa.

• Amazon S3 as the default storage for your files in text-to-speech, it’s important

that your website uses a secure HTTPS connection to expose its feed to Alexa.

The following diagram presents the flow of interactions and components that are

required to expose your website through Alexa.

Amazon Web Services Best Practices for WordPress on AWS

 Page 26

Flow of interactions required to expose WordPress websites through Alexa

1. The user invokes a new Alexa skill, for example by saying: “Alexa, ask Demo

Blog for the latest update”. The skill itself is created using one of the Alexa Skill

Blueprints. This enables you to expose your skill through Alexa devices even if

you don’t have deep technical knowledge.

2. The Alexa skill analyzes the call and RSS feed that was generated by the AWS

for WordPress plugin, and then returns the link to the audio version of the latest

article.

3. Based on the link provided by the feed, Alexa reads the article by playing the

audio file saved on Amazon S3.

Refer to the plugin page on WordPress marketplace for a detailed step-by-step guide

for installing and configuring the plugin and its functionalities.

Static content configuration

By default, WordPress stores everything locally on the web server, which is block

storage (Amazon EBS) for single server deployment, and file storage (Amazon EFS) for

elastic deployment. In addition to reducing storage and data transfer costs, moving

static asset to Amazon S3 offers scalability, data availability, security and performance.

In this example, the W3 Total Cache (W3TC) plugin is used to store static assets on

Amazon S3. However, there are other plugins available with similar capabilities. If you

want to use an alternative you can adjust the following steps accordingly. The steps

only refer to features or settings relevant to this example. A detailed description of all

settings is beyond the scope of this document. Refer to the W3 Total Cache plugin page

at wordpress.org for more information.

https://wordpress.org/plugins/amazon-polly
https://wordpress.org/plugins/w3-total-cache/
https://wordpress.org/

Amazon Web Services Best Practices for WordPress on AWS

 Page 27

IAM user creation

You need to create an IAM user for the WordPress plugin to store static assets in

Amazon S3. For instructions, refer to Creating an IAM User in Your AWS Account.

Note: IAM roles provide a better way of managing access to AWS
resources, but at the time of writing, the W3 Total Cache plugin does not
support IAM roles.

Take a note of the user security credentials and store them in a secure manner – you

need these credentials later.

Amazon S3 bucket creation

1. First, create an Amazon S3 bucket in the AWS Region of your choice. For

instructions, refer to Creating a bucket. Enable static website hosting for the

bucket by following the guide for Configuring a static website on Amazon S3.

2. Create an IAM policy to provide the IAM user created previously access to the

specified S3 bucket, and attach the policy to the IAM user. For instructions to

create the following policy, refer to Managing IAM Policies.

{

 "Version": "2012-10-17

 ",

"Statement": [

 {

 "Sid": "Stmt1389783689000",

 "Effect": "Allow",

 "Principal": "*",

 "Action": [

 "s3:DeleteObject",

 "s3:GetObject",

 "s3:GetObjectAcl",

 "s3:ListBucket",

 "s3:PutObject",

 "s3:PutObjectAcl"

],

 "Resource": [

 "arn:aws:s3:::wp-demo",

 "arn:aws:s3:::wp-demo/*"

]

 }

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html

Amazon Web Services Best Practices for WordPress on AWS

 Page 28

]

}

3. Install and activate the W3TC plugin from the WordPress admin panel.

4. Browse to the General Settings section of the plugin’s configuration, and ensure

that both Browser Cache and CDN are enabled.

5. From the dropdown list in the CDN configuration, choose Origin Push: Amazon

CloudFront (this option has Amazon S3 as its origin).

6. Browse to the Browser Cache section of the plugin’s configuration and enable

the expires, cache control, and entity tag (ETag) headers.

7. Also activate the Prevent caching of objects after settings change option so

that a new query string is generated and appended to objects whenever any

settings are changed.

8. Browse to the CDN section of the plugin’s configuration and enter the security

credentials of the IAM user you created earlier, as well as the name of the S3

bucket.

9. If you are serving your website via the CloudFront URL, enter the distribution

domain name in the relevant box. Otherwise, enter one or more CNAMEs for

your custom domain name(s).

10. Finally, export the media library and upload the wp-includes, theme files, and

custom files to Amazon S3 using the W3TC plugin. These upload functions are

available in the General section of the CDN configuration page.

Static origin creation

Now that the static files are stored on Amazon S3, go back to the CloudFront

configuration in the CloudFront console, and configure Amazon S3 as the origin for

static content. To do that, add a second origin pointing to the S3 bucket you created for

that purpose. Then create two more cache behaviors, one for each of the two folders

(wp-content and wp-includes) that should use the S3 origin rather than the default

origin for dynamic content. Configure both in the same manner:

• Serve HTTP GET requests only.

• Amazon S3 does not vary its output based on cookies or HTTP headers, so you

can improve caching efficiency by not forwarding them to the origin via

CloudFront.

Amazon Web Services Best Practices for WordPress on AWS

 Page 29

• Despite the fact that these behaviors serve only static content (which accepts no

parameters), you will forward query strings to the origin. This is so that you can

use query strings as version identifiers to instantly invalidate, for example, older

CSS files when deploying new versions. For more information, refer to the

Amazon CloudFront Developer Guide.

Note: After adding the static origin behaviors to your CloudFront
distribution, check the order to ensure the behaviors for wp-admin/* and

wp-login.php have higher precedence than the behaviors for static

content. Otherwise, you may see strange behavior when accessing your
admin panel.

Appendix C: Backup and recovery

Recovering from failure in AWS is faster and easier to do compared to traditional

hosting environments. For example, you can launch a replacement instance in minutes

in response to a hardware failure, or you can make use of automated failover in many of

our managed services to negate the impact of a reboot due to routine maintenance.

However, you still need to ensure you are backing up the right data in order to

successfully recover it. To re-establish the availability of a WordPress website, you must

be able to recover the following components:

• Operating system (OS) and services installation and configuration (Apache,

MySQL, and so on)

• WordPress application code and configuration

• WordPress themes and plugins

• Uploads (for example, media files for posts)

• Database content (posts, comments, and so on.)

AWS provides a variety of methods for backing up and restoring your web application

data and assets.

This whitepaper previously discussed making use of Lightsail snapshots to protect all

data stored on the instance’s local storage. If your WordPress website runs off the

Lightsail instance only, regular Lightsail snapshots should be sufficient for you to

recover your WordPress website in its entirety. However, you will still lose any changes

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/ReplacingObjects.html

Amazon Web Services Best Practices for WordPress on AWS

 Page 30

applied to your website since the last snapshot was taken if you do restore from a

snapshot.

In a multi-server deployment, you need to back up each of the components discussed

earlier using different mechanisms. Each component may have a different requirement

for backup frequency, for example, the OS and WordPress installation and configuration

will change much less frequently than user-generated content and, therefore, can be

backed up less frequently without losing data in the event of a recovery.

To back up the OS and services installation and configuration, and the WordPress

application code and configuration, you can create an AMI of a properly configured EC2

instance. AMIs can serve two purposes: to act as a backup of instance state, and to act

as a template when launching new instances.

To back up the WordPress application code and configuration, you need to make use of

AMIs and also Aurora backups.

To back up the WordPress themes and plugins installed on your website, back up the

Amazon S3 bucket or the Amazon EFS file system they are stored on.

• For themes and plugins stored in an S3 bucket, you can enable Cross-Region

Replication so that all objects uploaded to your primary bucket are automatically

replicated to your backup bucket in another AWS Region. Cross-Region

Replication requires that Versioning is enabled on both your source and

destination buckets, which provides you with an additional layer of protection and

enables you to revert to a previous version of any given object in your bucket.

• For themes and plugins stored on an EFS file system, you can create an AWS

Data Pipeline to copy data from your production EFS file system to another EFS

file system, as outlined in the documentation page Using AWS Backup with

Amazon EFS. You can also back up an EFS file system using any backup

application you are already familiar with.

• To back up user uploads you should follow the steps outlined earlier for backing

up the WordPress themes and plugins.

https://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html
https://docs.aws.amazon.com/efs/latest/ug/awsbackup.html
https://docs.aws.amazon.com/efs/latest/ug/awsbackup.html

Amazon Web Services Best Practices for WordPress on AWS

 Page 31

• To back up database content you need to make use of Aurora backup. Aurora

backs up your cluster volume automatically and retains restore data for the

length of the backup retention period. Aurora backups are nearly continuous and

incremental so you can quickly restore to any point within the backup retention

period. No performance impact or interruption of database service occurs as

backup data is being written. You can specify a backup retention period from 1 to

35 days. You can also create manual database snapshots, which persist until

you delete them. Manual database snapshots are useful for long-term backups

and archiving.

Appendix D: Deploying new plugins and themes

Few websites remain static. In most cases, you will periodically add publicly available

WordPress themes and plugins or upgrade to a newer WordPress version. In other

cases, you will develop your own custom themes and plugins from scratch.

Any time you are making a structural change to your WordPress installation there is a

certain risk of introducing unforeseen problems. At the very least, take a backup of your

application code, configuration, and database before applying any significant change

(such as installing a new plugin). For websites of business or other value, test those

changes in a separate staging environment first. With AWS, it’s easy to replicate the

configuration of your production environment and run the whole deployment process in

a safe manner. After you are done with your tests, you can simply tear down your test

environment and stop paying for those resources. Later, this whitepaper discusses

some WordPress-specific considerations.

Some plugins write configuration information to the wp_options database table (or

introduce database schema changes), whereas others create configuration files in the

WordPress installation directory. Because we have moved the database and storage to

shared platforms, these changes are immediately available to all of your running

instances without any further effort on your part.

When deploying new themes in WordPress, a little more effort may be required. If you

are only making use of Amazon EFS to store all your WordPress installation files, then

new themes will be immediately available to all running instances. However, if you are

offloading static content to Amazon S3, you must process a copy of these to the right

bucket location. Plugins like W3 Total Cache provide a way for you to manually initiate

that task. Alternatively, you could automate this step as part of a build process.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html#Aurora.Managing.Backups
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html

Amazon Web Services Best Practices for WordPress on AWS

 Page 32

Because theme assets can be cached on CloudFront and at the browser, you need a

way to invalidate older versions when you deploy changes. The best way to achieve this

is by including some sort of version identifier in your object. This identifier can be a

query string with a date-time stamp or a random string. If you use the W3 Total Cache

plugin, you can update a media query string that is appended to the URLs of media

files.

	Abstract
	Introduction
	Simple deployment
	Considerations
	Available approaches
	Amazon Lightsail
	Selecting an Amazon Lightsail pricing plan
	Installing WordPress
	Recovering from failure

	Improving performance and cost efficiency
	Accelerating content delivery
	Static content offload
	Dynamic content

	Database caching
	Bytecode caching

	Elastic deployment
	Reference architecture
	Architecture components
	Scaling the web tier
	Stateless web tier
	Shared storage (Amazon S3 and Amazon EFS)
	Data tier (Amazon Aurora and Amazon ElastiCache)

	WordPress high availability by Bitnami on AWS Quick Starts

	Conclusion
	Contributors
	Document revisions
	Appendix A: CloudFront configuration
	Origins and behaviors
	CloudFront distribution creation

	Appendix B: Plugins installation and configuration
	AWS for WordPress plugin
	Plugin installation and configuration
	Amazon CloudFront and AWS Certificate Manager
	Translate and vocalize your content
	Podcasting with Amazon Pollycast
	Reading your content through Amazon Alexa devices

	Static content configuration
	IAM user creation
	Amazon S3 bucket creation
	Static origin creation

	Appendix C: Backup and recovery
	Appendix D: Deploying new plugins and themes

