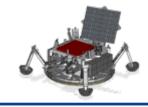


Mini-workshop on Instrumentation for the In Situ Exploration of Europa and Ocean Worlds

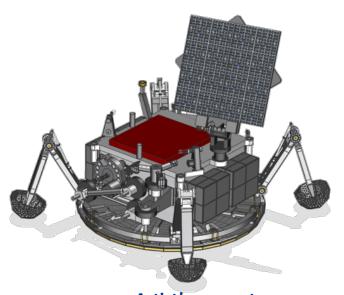
Europa Lander Pre-Project Science and Engineering teams

June 26, 2019


Mini-workshop Agenda

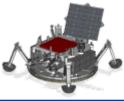
Time	Topic	Person(s)
12:20-12:35 (15 min)	Welcome and Introduction to Instrumentation for the In-situ Exploration of Europa and Ocean Worlds	Kevin Hand Cynthia Phillips Trina Ray Mitch Schulte
12:35-1:20 (45 min)	Europa Lander (including current mission architecture)	Grace Tan-Wang Steve Sell
1:20-1:35 (15 min)	Instrument Concepts for Europa Exploration (ICEE) 2	Joel Krajewski
1:35-2:10 (35 min)	Flash talks (1 min) from Instrument Providers	Attendees – give 1 slide/image to: Morgan Cable
2:10-2:30 (20 min)	Icy and cryogenic sample collection: Progress and prototypes.	Kristopher Kriechbaum, Cambria Logan, Matt Shekels, Brett Kennedy
2:30-3:15 (45 min)	Deeper dive on ICEE-2 (interactive)	Joel Krajewski
3:15-3:25 (10 min)	Planetary Protection	Brian Clement
3:25-4:00 (35 min)	Q&A and next steps.	All

Technology Development Direct-to-Earth Antenna



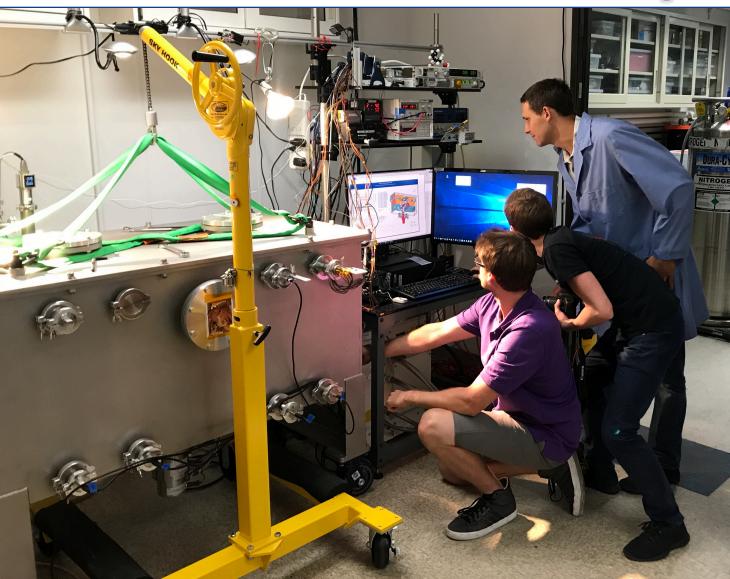
From TRL-1 to TRL-5 in 5 months

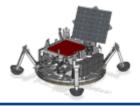
16x16 antenna

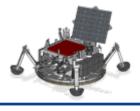


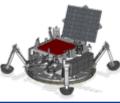


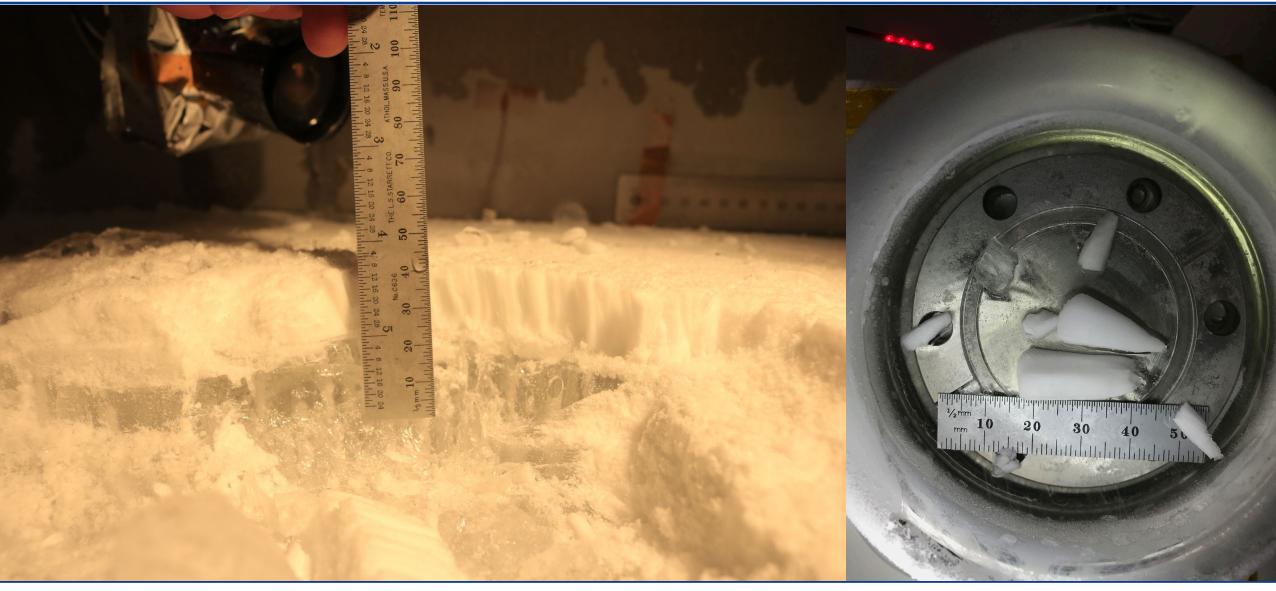
Artist's concept

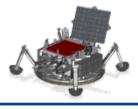




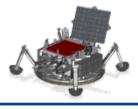







Europa Lander: Common Questions/Misconceptions

- To be clear: Europa Clipper does not have a lander as part of the mission.
 - Clipper orbits Jupiter and makes ~45+ flybys of Europa.
 - Launch date: ~2023. Arrival at Jupiter: mid- to late-2020's.
- "We do not know where to land."
 - Even if we transitioned today to Phase A there would be over 3 years for landing site selection using Europa Clipper data.
 - Result: Science team will have lots of time to deliberate on landing sites.
- "Its not safe to land until we have data back from Clipper."
 - Europa Lander mission concept was designed with Clipper data in mind.
 - The highest resolution Clipper data is ~0.5 m/pix and is insufficient to change the architecture and mechanical design of the lander (also minimal impact on cost).
 - Result: We would need to change Clipper payload if the above is taken as a true statement.
 - Landing close in time with respect to reconnaissance data reduces risk.
 - Result: Land as close in time relative to the recon data as you can.

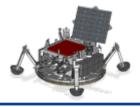

Europa Lander Status

- Europa Lander pre-Project status
 - Held delta-Mission Concept Review (MCR) in Nov. 2018
 - "The review board (chaired by Bobby Braun) cannot recall a pre-phase A planetary science concept at this advanced level of fidelity"
 - FY19 budget signed, but near-term budgets unlikely to include funding levels required for new start
- NASA selected 14 potential instruments for maturation under Instrument Concepts for Europa Exploration 2 (ICEE-2) @ ~\$2M each for 2 years
 - Funded out of FY18 budget
- High-priority Advanced Development maturation tasks have begun
 - Funded out of FY19 budget
 - Reduces flight development risk
 - Many tasks applicable to projects beyond Europa Lander

Europa Lander Next Steps

Transition to Phase A halted.

 Decisions likely deferred until next decadal survey (~2023).


Mini-workshop Agenda

Time	Topic	Person(s)
12:20-12:35 (15 min)	Welcome and Introduction to Instrumentation for the In-situ Exploration of Europa and Ocean Worlds	Kevin Hand Cynthia Phillips Trina Ray Mitch Schulte
12:35-1:20 (45 min)	Europa Lander (including current mission architecture)	Grace Tan-Wang Steve Sell
1:20-1:35 (15 min)	Instrument Concepts for Europa Exploration (ICEE) 2	Joel Krajewski
1:35-2:10 (35 min)	Flash talks (1 min) from Instrument Providers	Attendees – give 1 slide/image to: Morgan Cable
2:10-2:30 (20 min)	Icy and cryogenic sample collection: Progress and prototypes.	Kristopher Kriechbaum, Cambria Logan, Matt Shekels, Brett Kennedy
2:30-3:15 (45 min)	Deeper dive on ICEE-2 (interactive)	Joel Krajewski
3:15-3:25 (10 min)	Planetary Protection	Brian Clement
3:25-4:00 (35 min)	Q&A and next steps.	All

Advanced Development Activities

- Update launch opportunities and perform flight system impact assessment
 - Launch Period Survey and Interplanetary Trajectories
 - Navigating 3-body arrival with a short period
 - Support to Clipper Reconnaissance Focus Group
 - Assess DDL/Nav trade space
- De-orbit, Descent, and Landing (DDL)
 - DDL sensors
 - Reduce sensor hardware and algorithm development risk
 - Landing
 - Prototype and test landing system (legs, feet, bellypan) concepts for very rugged terrain
 - Propulsion
 - Prototype and test low-thrust throttleable engine
 - Environmentally test solid rocket motor propellant and ignition system

Advanced Development Activities

Surface

- Sampling
 - Prototype and environmentally test excavation, acquisition, and sample transfer techniques
 - Interact with ICEE-2 selectees to conduct rapid-prototype evaluation of interfaces
 - Develop approaches to maintain samples <150K
- Autonomy: Develop and test concepts for highly autonomous operations
 - Develop software simulation and hardware testbed for development of autonomy designs
 - Mature autonomy sensing, closed-loop control, and computational requirements
- Resources (size/weight/power/life/computation)
 - Develop and test lightweight, low-power motor controller
 - Continue radiation and life testing of primary batteries
 - Develop and test full-scale High-Gain Antenna
- Planetary Protection/Contamination Control
 - Conduct planetary protection/bioburden analyses to mature payload and flight system requirements
 - Continue development of Terminal Sterilization System
 - Evaluate outgassing properties of radiation-exposed materials
 - Assess plume product interaction and alteration with cryogenic ices