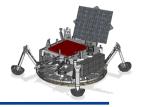
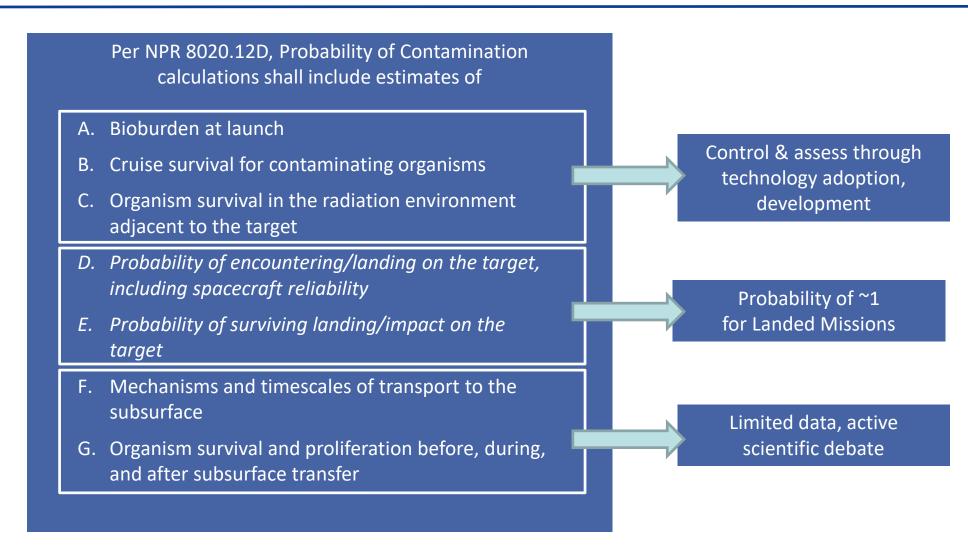



Planetary Protection for Europa Lander Concept

Brian Clement, Lead Planetary Protection Engineer

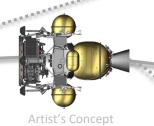
Planetary Protection Context




- Planetary Protection requirements for a landed Europa mission are more stringent than Mars
 - Metric is probability of delivering ≥1 organism to a liquid body
 - Includes all organisms not just bacterial spores
 - End point is death of all Earth organisms or 1000 years, whichever comes first
- Increased stringency drives adopting and developing new approaches
 - Technology adoption and development: Terminal Sterilization System, Biobarrier+Vapor Hydrogen Peroxide (VHP)
 - Organism-specific risk analyses: Microbial Genetics/Metagenomics
 - Lethality modeling: Bio-reduction due to spaceflight

	Mars – Cat IVa	Europa – Cat. IV*
Landed Hardware Metric	Microbial <u>Quota</u>	<u>Probability</u> of Contaminating a Liquid Body with ≥1 live organism
Organism Types Considered	Bacterial Spores	All
Value	<5x10 ⁵	<10 ⁻⁴
Period Considered	n/a	Until all Earth organisms are dead, up to 1000 years

Probability of Contamination Parameters



Planetary Protection Strategy

Cruise → Landing
In-flight bioburden
reduction

End of Mission,
Europa Orbit;
Radiation Sterilization
(10+ years)

Artist's Concept

Fabrication → Launch;

Bioburden assessment

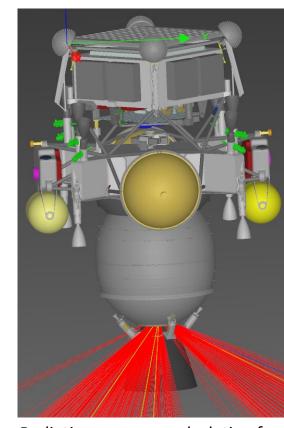
Bioburden reduction

End of Mission, Landed Elements; Vault and Propulsion Self-Sterilization


Clipper Planetary Protection Path

- Europa Clipper Project held a Planetary Protection workshop in November 2018
 - Accepted Probabilistic Risk Assessment met requirement on impact+resurfacing probability alone
 - Bioburden constraints are similar to Mars (numerical limits instead of probabilities)
 - Key parameter shifts
 - 1000 year period of biological exploration (after which PP constraints expire)
 - 2.5 Mrad sterility threshold for radiation exposure
- Implications for Europa Lander
 - Mission as designed may meet the P_C requirement without regard to bioburden, dependent on final trajectory and failure probabilities that are TBD
 - Bioburden control and characterization approach likely to remain in baseline for both science assurance and planetary contamination risk mitigation

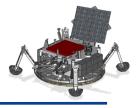
Ongoing Work



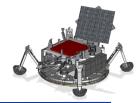
Predict Post-Launch Microbial Reduction

- Refine models and develop experimental data informing microbial reduction due to in-flight radiation (Jovian and Solar UV) vacuum and thermal environments
- Establish a data-driven sterilization threshold for heat; understand heating required for sterility from impacts, terminal sterilization systems

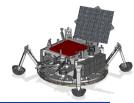
Develop an informed approach to bioburden risk


- Use existing DNA-based cleanroom datasets to predict the fraction of organisms with the potential to survive
- Work with current design iteration to estimate total bioburden at launch
- Combine the approaches to predict surviving fraction across the mission timeline

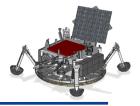
Radiation exposure calculation for De-Orbit Stage aft motor surface indicates 7-17 Mrad at separation from descent vehicle. Note: Preliminary design concept simplified for analysis purposes; not all system elements are shown.



Key Instrument Considerations


- Current baseline assumptions
 - All instruments behind radiation shielding likely to receive little to no credit for microbial reduction
 - Initial bioburden control and reduction will be required to facilitate terminal sterilization
- Sterile and biologically clean are fundamentally different for a biosignature detection mission
 - Even sterilized flight system surfaces and components will be contaminated with "dead bug bodies"
 - Biomolecular contamination constraints could drive bioburden management on disparate parts of the flight system
 - Useful to understand early what level of biomolecular contamination compromises each planned measurement

Thank You

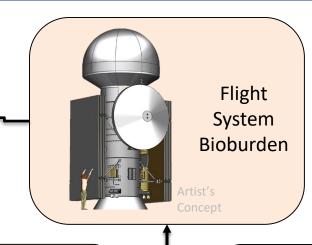


Additional Information

Probability of Contamination Approach

Requirement: ≤10⁻⁴ probability of 1 viable Earth organism reaching a liquid body

Approach: Assess organism-specific survival capacity via genetics, apply stringent pre-flight microbial reduction, model in-flight lethality and eliminate remaining bioburden at end of mission


Probability of Contamination Model

Probability a

P_C = Landing/Impact Site

Resurfaces in <1000 years

Probability of Non-Sterile Landed/Impacting Hardware

Contamination Risk Reduction

- Genetic data
- <u>Lethality after launch</u>

Traditional Microbial Control

- Dry/Ambient Heat
- Manufacturing credit
- Controlled environments

Novel Microbial Control

- Incineration Device
- VHP behind Biobarrier
- Gamma radiation