1 DEEP LEARNING OVERVIEW SUPPORTING INFORMATION

2 1.1 Activation Functions

1. Sigmoid:

$$F(X) = \frac{1}{1 + e^{\left(-\sum_{j} w_{j} x_{j} - b\right)}} \tag{1}$$

Simplified to:

$$f(X) = \frac{1}{1 + e^{-x}} \tag{2}$$

The shape of sigmoid function is shown in 1(b).

Figure S1: Sigmoid function

6 2. ReLU and Leaky ReLU:

$$ReLU(x) = \frac{0ifx < 0}{xifx > 0} \tag{3}$$

This equation can be written as:

$$f(x) = \max(0, x) \tag{4}$$

Leaky ReLU is defined as:

$$f(x) = \max(0.01, x) \tag{5}$$

3. Tanh: hyperbolic tangent:

$$f(x) = tanh(x) = \frac{2}{1 + e^{-2x}} - 1 \tag{6}$$

1.2 MinMax scaler equation

MinMax scaler can be calculated as shown in the following equation:

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}} \tag{7}$$

Table S1: Final number of attributes (descriptors

Descriptor type	Number of descriptors	Tool	Final Count
1D and 2D	3874	Alvadesc (noa)	
3D	306	Ochem (3)	•
MACCS	166	Alvadesc (noa)	•
Hashed (ECFP)	1024	Alvadesc (noa)	6394 descriptors
Hashed (Path)	1024	Alvadesc (noa)	•

1.3 Outliers

- Eight compounds descriptors failed to be calculated. Those records had null values for all descriptors.
- The remaining eight compounds are outliers from other descriptors pairs in the dataset as illustrated in Figure 3 and 4. 13
- Using Panda library in Python, these SMILES records were located and dropped. The list of the 14 dropped SMILES is show below: 15
 - Cc1cc(nnc1NCCN1CCOCC1) = C1C = CC(=0) C = C1
- O=C1C=CC=C\C1=c1\nnco1 17
- CCCC1 (C) COB (OC1) C1=CC=C (C) C=C1
- [Kr]

16

29 30

31

32

33

- [Ne]
- [Ar]
- [Xe] 22
- [Rn] 23

1.4 Descriptors calculation

The final number of attributes (descriptors) in our dataset is 6394 as shown in Table S1.

1.5 Validation measures

- Four main accuracy measures are used across BBB permeability studies and QSAR research in general,
- namely: Accuracy, Specificity, Sensitivity and Mathew Correlation Coefficient (MCC).

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \tag{8}$$

$$Specificity = \frac{TN}{TN + FP} \tag{9}$$

$$Sensitivity = \frac{TP}{TP + FN} \tag{10}$$

$$MCC = \frac{(TP \times TN) - (FP \times FN)}{\sqrt{(FP + TN)(FP + TP)(FN + TN)(FN + TP)}}$$
(11)

Where TP is true positive of the number of compounds correctly classified as "positive" or BBB+; TN is true negative of compounds correctly classified as BBB- by the classifier; FP is false positive which indicate number of compounds mistakenly classified as BBB+; and FN is false negative which is number of compounds that penetrate BBB but mistakenly classified as BBB-.

5 1.5.1 Results of Baseline FFDNN Model

- Prior to scaling the network or applying a resampling technique, we experimentally tested all the combi-
- nations of hyper-parameter tuning. The initial results of the different activation functions on the FFDNN
- model is presented in Table S3. The final hyperparameters set is shown in Table S3.
- Table S4 demonstrates the effect of the right regularizing and tuning of the model in the overall performance.

1 2 DATASET

- A downloadable link to the dataset can be obtained from (Git): https://github.com/S-A-A-BBB/BBB-
- 43 Prediction.git.

44 REFERENCES

- ⁴⁵ [noa] Alvascience Srl, alvaDesc (software for molecular descriptors calculation, visited: 2019-10-16).
- ⁴⁶ [Git] Github, septermber 2020 https://github.com/s-a-a-bbb/bbb-prediction.git.
- ⁴⁷ Sushko, I., Novotarskyi, S., Körner, R., Pandey, A. K., Rupp, M., Teetz, W., Brandmaier, S., Abdelaziz,
- 48 A., Prokopenko, V. V., Tanchuk, V. Y., et al. (2011). Online chemical modeling environment (ochem):
- web platform for data storage, model development and publishing of chemical information. J. Comput.
- 50 Aided Mol., 25(6):533–554.

Figure S2: ReLU and Tanh

Table S2: Model hyper-parameter

hyper-parameter	Value					
Number of hidden layers	3					
Number of hidden layers nodes	256,128,64					
Activation function	Input layer: ReLU					
Activation function	Tanh					
Batch size	200					
Number of epochs	100					
Optimizer	Adam					
Regularization	2 layers of Batch Normalization					
Scaler	MinMax scaler					
Learning rate	0.01					
Validation	10 fold cross validation					
Loss	Binary crossentropy					
Resampling technique	SMOTE					
Feature extraction	Kernel PCA					

Table S3: FFDNN with with different Activation Functions

(Act. Function= Activation Function, Sens= Sensitivity scores, Spec= Specificity scores, ACC= Overall accuracy, MCC= Matheow correlation coefficient, AUC= Area under the curves).

Activation	Trainin	ıg set		Test set					
Function	Acc	Sens.	Spec.	Acc	Sens.	Spec.	ROC	MCC	
RelU	76.96	100.0	0.0	75.74	100.0	0.0	50.0	0	
Tanh	83.45	95.39	45.19	86.17	95.94	50.0	81.50	54.47	
LeakyRelu	76.59	100.0	0.0	77.23	100.0	0.0	50.0	0.0	
Tanh+ ReLU	82.18	92.96	47.29	80.63	91.28	42.71	76.20	38.20	

Table S4: FFDNN with different Optimizers

Model	Trainin	ig set		Test set					
(optimizer)	ACC	Sens.	Spec.	ACC	Sens.	Spec.	ROC	MCC	
Tanh + Adam	99.78	99.79	99.77	91.21	94.69	80.35	94.46	75.75	
Tanh + SGD	80.79	81.70	77.69	77.65	77.936	76.85	86.41	49.8	
ReLU+ Tanh + Adam	99.78	99.93	99.33	91.06	93.04	83.35	92.00	73.68	
ReLU+ Tanh + SGD	82.92	82.51	84.30	75.95	77.71	70.85	81.92	44.47	

Figure S3: Outier 1

Figure S4: Outier 2

Table S5: FFDNN with SMOTE

Act.	SMOTE	Trainin	g set		Test se	et			
Func.	Num of K		Sens.	Spec.	ACC	Sens.	Spec.	ROC	MCC
Tanh	9	99.86	99.82	99.97	95.86	93.26	98.42	98.65	91.85
	12	99.86	99.78	99.94	96.25	93.84	98.66	98.53	92.62
ReLU+ Tanh	9	99.86	99.88	99.77	96.17	93.72	98.61	98.61	92.46
	12	99.89	99.79	100	96.20	93.51	98.89	98.73	92.54

Table S6: Performance comparison of K-fold validation vs. fixed split

(ACC= Overall accuracy, Sens= Sensitivity scores, Spec= Specificity scores, MCC= Matheow correlation coefficient, AUC= Area under the curves, ACC-Ext= Overall accuracy on external dataset, Valid= Validation method).

Model	Training	set			Test set						
Model	Valid.	ACC	Sens.	Spec.	ACC	Sens.	Spec.	AUC	MCC	CI(95%)	ACC-Ext
FFDNN	10-fold	100	96.78	98.11	97.11	97.35	98.42	97.7	95.55	.020072	0.965
FFDNN	80/20	100	95.76	97.77	96.95	94.76	98.94	98.6	93.95	0.21 - 0.074	0.965
CNN	10-fold	100	98.76	99.87	97.76	94.50	98.31	98.00	92.85	.043097	0.97
CNN	80-20	100	94.72	98.65	96.78	96.14	97.39	98.9	93.57	0.39 - 0.92	0.97