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Detection of Inulin, a Prebiotic Polysaccharide in Maple Syrup

Jiadong Sun, Hang Ma, Navindra P. Seeram*, and David C. Rowley*

Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of 
Rhode Island, Kingston, RI 02881, USA

Abstract

Maple syrup is a widely consumed plant-derived natural sweetener produced by concentrating 

xylem sap collected from certain maple (Acer) species. During thermal evaporation of water, 

natural phytochemical components are concentrated in maple syrup. The polymeric components 

from maple syrup were isolated by ethanol precipitation, dialysis, and anion exchange 

chromatography and structurally characterized by glycosyl composition analysis, glycosyl linkage 

analysis, and nuclear magnetic resonance spectroscopy. Among the maple syrup polysaccharides, 

one neutral polysaccharide was characterized as inulin with a broad molecular weight distribution, 

representing the first isolation of this prebiotic carbohydrate from a xylem sap. In addition, two 

acidic polysaccharides with structural similarity were identified as arabinogalactans derived from 

rhamnogalacturonan type I pectic polysaccharides.
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INTRODUCTION

Maple syrup is a natural sweetener produced from concentrated xylem sap collected from 

certain maple (genus Acer) species, primarily the sugar maple (Acer saccharum Marsh).1,2 

The sugar maple is widely distributed in the northeastern region of North America with the 
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majority of maple syrup being commercially produced in this region, primarily in Quebec, 

Canada.2 Maple syrup is of great economical importance to the eastern North American 

region since it is the largest commercially produced and consumed tree-sap derived food 

product worldwide.3 As a commercial product that requires minimal processing (thermal 

evaporation), maple syrup contains several phytochemicals, primarily (poly)phenolics, 

which have been reported to impart a variety of biological effects. While sucrose is the 

major component in maple syrup, this plant-derived natural sweetener also contains simple 

sugars (glucose and fructose), amino acids, minerals (e.g. potassium, calcium, and 

magnesium), vitamins (e.g. B2 and niacin), organic acids (e.g. succinic and fumaric acid), 

and complex carbohydrates.1 Among the various chemical constituents reported from maple 

syrup, biological evaluation has primarily focused on its diverse phenolic components. For 

instance, phenolic-enriched extracts of maple syrup have been reported to show anti-oxidant, 

anti-mutagenic, anti-cancer, anti-inflammatory and anti-neurodegenerative effects.3–7

In contrast to the phenolic components of maple syrup, molecules of larger molecular 

weight, such as oligosaccharides and polysaccharides, have been less investigated. Previous 

reports have identified dextran, arabinogalactan and rhamnogalacturonan in maple syrup.8,9 

These biopolymers are derived from primary cell wall components of maple trees.

In this study, an inulin type fructan has been isolated for the first time from maple syrup. 

Inulins are commercially extracted from chicory root and used as dietary fiber in the food 

industry.10,11 As one type of poly-fructan, the inulin structure features a polydisperse 

molecular size and is a non-branched polymer consisting exclusively of β-1,2-frucosyl 

linkages between fructosyl residues and a terminal glucose.12,13 Inulin is generally believed 

to be synthesized from sucrose by fructosyltransferases and to serve as energy storage.10 

Because the linkage type within inulin is resistant to hydrolysis by human digestive 

enzymes, inulin is considered a non-digestive polysaccharide, which makes its biological 

effects reside in its interactions with the human lower gastrointestinal tract, primarily in the 

colon.10,14,15 Inulin-type fructans have been reported to benefit immune systems by 

interacting with gut lymphoid tissues,16,17 colon health by selectively promoting the growth 

of bifidobacteria and lactobacilli probiotic bacteria,18,19 and cardiovascular systems by 

decreasing cholesterol and triglyceride levels in serum.10,20

MATERIALS AND METHODS

Materials

Maple syrup (grade C, 40 L) was shipped frozen to our laboratory by the Federation of 

Maple Syrup Producers of Quebec (Longueuil, Quebec, Canada) and stored at −20 °C. 

Solvents for nuclear magnetic resonance (NMR) spectroscopy were purchased from 

Cambridge Isotope Laboratories, Inc. (Andover, MA). All other chemicals were purchased 

from Sigma-Aldrich (St. Louis, MO) unless otherwise specified.

Total carbohydrate content determination

Total carbohydrate content assay was performed in microtiter plates using a colorimetric 

assay as previously described.21 Briefly, in each well of a 96-well microtiter plate, 30 μL of 
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each fraction was added to 100 μL concentrated sulfuric acid and 20 μL 5% phenol solution. 

The microtiter plates were then incubated at 90 °C for 5 min and recorded for absorbance 

at490 nm using a Spectramax M2 microplate reader (Molecular Devices, Sunnyville, CA). 

Glucose was used as the standard for the total carbohydrate content assay.

Extraction of maple syrup polysaccharides

Maple syrup (300 mL, 412 g) was first diluted with 450 mL distilled water followed by 95% 

ethanol to achieve a 60% ethanol/water solution. Crude polysaccharides were precipitated at 

−20 °C overnight. Precipitates were centrifuged and dried by sequential solvent exchanges 

with 100% ethanol and ether. The supernatants were combined and diluted with 95% ethanol 

to create an 80% ethanol/water solution, resulting in additional precipitation of 

polysaccharides as described above. Dry precipitates were re-dissolved in 50 mL distilled 

water and dialyzed through a membrane with molecular weight cut-off (MWCO) of 

12,000-14,000 (Spectrum Laboratories, Inc., Rancho Dominguez, CA) against distilled 

water with stirring for 48 h. The retained polysaccharides were lyophilized to obtain Fr.1 (30 

mg) from the 60% ethanol precipitation and Fr.2 (23 mg) from the 80% ethanol 

precipitation, respectively.

Purification of polysaccharides

Polysaccharides were fractionated on a Hiprep Q Sepharose anion exchange column (100 

mm × 16 mm i.d., GE Healthcare Life Sciences, Pittsburgh, PA). 20 mg of Fr.1 were firstly 

eluted with 65 mL distilled water and then a linear gradient of NaCl (0-1 M) for 200 mL at 5 

mL/min (Figure 1). 20 mg of Fr.2 were subjected to the same anion exchange 

chromatography. The eluate was collected in 5 mL fractions and pooled by total 

carbohydrate content. All fractions were dialyzed (MWCO 12,000-14,000) against distilled 

water with stirring for 48 h and lyophilized to obtain Fr.1-1 (10.5 mg, 0.004%, w/w), Fr.1-2 

(5.5 mg, 0.002%, w/w), Fr.2-1 (1.1 mg, 0.0003%, w/w) and Fr.2-2 (8.3 mg, 0.002%, w/w).

Homogeneity and molecular size

The homogeneity and molecular sizes of polysaccharides were analyzed using a high 

performance size exclusion column TSK-gel G3000PW (300 mm × 7.5 mm i.d., TOSOH, 

Tokyo, Japan) at 40 °C on a Hitachi LaChrom Elite HPLC (Hitachi, Tokyo, Japan) equipped 

with a refractive index (RI) detector. Standard curves for molecular size determinations were 

generated using dextran standards (1000, 5000, 12,000, 25,000, 50,000, 80,000 and 150,000 

Da).

Glycosyl composition analysis

Glycosyl composition analysis was accomplished with polysaccharide acid hydrolysates 

using high performance anion exchange chromatograph with pulsed amperometric detection 

(HPAEC-PAD) as previously described.22 Briefly, 500 μg of Fr.1-1, Fr.1-2, Fr.2-1 and Fr.2-2 

were hydrolyzed with 200 μL of 2M trifluoroacetic acid (TFA) in sealed ampoules at 120 °C 

for 2 h. The resulting hydrolysates were dried with a stream of nitrogen gas. 200 μL of 

isopropanol was added and dried by nitrogen gas. This process was repeated twice to remove 

residual TFA. Due to the fragility of fructose under acidic conditions, an alternate mild acid 
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hydrolysis for Fr.1-1 was performed.23 200 μg Fr.1-1 were hydrolyzed with 200 μL 0.2% 

TFA in sealed ampoules at 90 °C for 1 h.

Hydrolysates from both hydrolytic reactions were separated on a Hamilton RCX-30 column 

(250 mm × 4.6 mm i.d., Metrohm, Herisau, Switzerland) on a 9600 Professional IC Vario 

ion chromatograph with a 945 Professional Vario IC pulsed amperometric detector 

(Metrohm, Herisau, Switzerland). Monosaccharide standard curves for fucose, arabinose, 

xylose, rhamnose, galactose, glucose, fructose, galacturonic acid and glucuronic acid were 

created by HPAEC-PAD on the same column. Each monosaccharide and uronic acid was 

dissolved in distilled water at six concentrations (10, 20, 50, 100, 500, and 1000 ppm) and 

an aliquot of 10 μL was injected. Standard curves were created by plotting area under curves 

(AUCs) with concentrations. For analyzing fucose, arabinose, xylose, rhamnose, galactose, 

and glucose, the column was eluted with isocratic 16 mM NaOH over 40 min. For analyzing 

fructose, the column was eluted with isocratic 100 mM NaOH over 20 min. For analyzing 

glucuronic and galacturonic acids, the column was eluted with isocratic 20 mM sodium 

acetate in 100 mM NaOH over 20 min.

Glycosyl linkage analysis

Glycosyl linkage analysis was performed as previously described.24 800 μg Fr.1-1, Fr.1-2, 

Fr.2-1 and Fr.2-2 were stirred overnight in 300 μL dimethyl sulfoxide (DMSO). Intact 

polysaccharides were thrice permethylated in anhydrous DMSO solution of NaOH and 

methyl iodide for 20 min. The permethylated polysaccharides were extracted with methylene 

chloride and then hydrolyzed with 200 μL of 2M TFA at 120 °C for 2 h. Permethylated Fr.

1-1 was hydrolyzed with 200 μL 0.2% TFA at 90 °C for 1 h. Hydrolysates were dried with 

N2 gas and residual TFA was removed by repeatedly drying with isopropanol. The partially 

methylated hydrolysates were reduced with NaBD4 and then acetylated with acetic 

anhydride. The resulting partially methylated acetic acetates (PMAAs) were analyzed on a 

Series 6890 gas chromatography (Agilent Technologies, Santa Clara, CA) coupled with a 

mass selective detector (MSD) on a Supelco SP-2330 capillary column (30 m × 0.25 mm 

i.d., Sigma-Aldrich). The oven temperature was held at 80 °C for 2 min and increased to 

170 °C at 30 °C/min, then to 240 °C at 4 °C/min, and held for 5 min.

Nuclear Magnetic Resonance (NMR)

The 1H and 13C NMR spectra and two-dimensional COSY, TOCSY, HSQC and HMBC data 

were recorded on a Varian 500 MHz NMR spectrometer equipped with a 5 mm OneNMR 

probe (Agilent Technologies). The samples were D2O exchanged twice and dissolved in 

D2O (0.5 mL, 99.96%). All spectra were recorded at 25 °C.

RESULTS AND DISCUSSION

Crude polysaccharides Fr.1 and Fr.2 were fractionated using a semi-preparative Q Sepharose 

anion exchange column and polysaccharide- enriched fractions were pooled based on a total 

carbohydrate content assay.21 While subject to few interferences, this colorimetric assay is 

highly sensitive and has wide applicability for estimating the carbohydrate contents of plant 

natural products.22 The elution profiles (Figure 1) showed that Fr.1 contained a neutral 
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polysaccharide fraction Fr.1-1 and an acidic polysaccharide fraction Fr.1-2. Similarly, Fr.2 

also contained a neutral polysaccharide fraction Fr.2-1 and an acidic polysaccharide fraction 

Fr.2-2.

The molecular sizes of the purified polysaccharide components were analyzed by HPSEC-

RI. The dispersal of Fr.1-1 across a broad region of elution volume indicated that Fr.1-1 was 

comprised of polydisperse and large molecular weight (>12,000 Da) polymers. Elution 

profiles of Fr.1-2 and Fr.2-2 showed symmetric peaks, indicating the molecular weights of 

Fr.1-2 and Fr.2-2 to be approximately 140,000 Da and 70,000 Da, respectively. Due to the 

limited quantity of Fr.2-1 and sensitivity of the RI detector, the molecular size of Fr.2-1 was 

not successfully measured.

The glycosyl and linkage compositions of the purified polysaccharides were evaluated as 

follows. Because fructose is easily degraded, Fr.1-1 was hydrolyzed with two hydrolytic 

conditions. Hydrolysis with 2M TFA at 120 °C for 2 h totally degraded fructose, leaving 

only glucose detectable in the HPAEC profile. Mild acid hydrolysis of Fr.1-1 using 0.2% 

TFA at 90 °C for 1 h was performed to hydrolyze the glycosidic bonds between fructose 

residues and preserve the resulting monosaccharides. By comparison to the standard curves, 

the glycosyl composition of Fr.1-1 (Table 1) contained primarily fructosyl (96%) and 

glucosyl (4%) residues, which suggested that Fr.1-1 is a poly-fructan with minor inclusion of 

glucose. The presence of 2-fructosyl residues indicated that the fructosyl residues were 

linked at position 2, which is characteristic for inulin. Inulin contains a non-branched 1,2-

linked fructosyl backbone and terminates with a glucosyl residue (GFn) (Figure 2).12 The 

neutral monosaccharide compositions of Fr.1-2, Fr.2-1 and Fr.2-2 were analyzed on HPAEC-

PAD and eluted with isocratic 16 mM NaOH for improved resolution. Neutral 

polysaccharide Fr.2-1 was composed of arabinosyl (25%), galactosyl (35%) and glucosyl 

(40%). Together with the presence of a terminal arabinosyl, 3- and 3,6-galactosyl, and 6-

glucosyl linkages, Fr.2-1 may be a mixture of arabinogalactan and dextran, which has been 

speculated to be a microbial derived polysaccharide.8 Acidic polysaccharides Fr.1-2 and Fr.

2-2 hydrolysates were also analyzed for their uronic acids (Table 1). Together with their 

neutral monosaccharide compositions, Fr.1-2 and Fr.2-2 appear to share structural similarity. 

The two polysaccharides were primarily composed of terminal and 5-arabinosyl and 3- and 

3,6-galactosyl with a lower percentage of 2,4-rhamnosyl and 4-galacturonic acid residues. 

These results suggest that Fr.1-2 and Fr.2-2 are arabinogalactans derived from degradation of 

acidic rhamnogalacturonan type I (RG-I) pectic polysaccharides. These molecules are 

important plant cell wall components and often contain alternate rhamnosyl and galacturonic 

acid backbones and arabinogalactan side chains.25

The structures of the polysaccharides were characterized by NMR analyses. The 1H NMR 

spectrum of Fr.1-1 (Figure 3) revealed seven major protons between 3.3 to 4.2 ppm and a 

very small anomeric proton signal at 4.8 ppm. The 13C NMR and HSQC spectra showed one 

quaternary carbon at 104.1 ppm, three CH and two CH2, which suggested characteristic 

structural features of the ketonic monosaccharide fructose, which lacks an anomeric proton 

but contains two methylenes at positions 1 and 6. The chemical shifts of Fr.1-1 were 

assigned using two-dimensional NMR experiments (Table 2). Briefly, with the correlations 

in COSY, the chemical shifts of proton 3–6 in the 2-fructosyl were assigned as H-3 at δ 4.02, 
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H-4 at δ 3.93, H-5 at δ 3.79 and H-6 at δ 3.40/3.74. The chemical shifts of carbon 3–6 in the 

2-fructosyl were assigned accordingly with correlations in HSQC spectra as C-3 at δ 76.4, 

C-4 at δ 75.3, C-5 at δ 80.2 and C-6 at δ 63.3. The two doublets at δ 3.52 and δ 3.60 

correlate to one carbon at δ 60.0, which were assigned as the proton and carbon chemical 

shifts of the H-1/C-1 methylene in 2-fructosyl. A correlation was observed between C2 and 

H1 in the HMBC spectrum, which further confirmed that the fructosyl residues were linked 

at position 2. The small proton signal at 4.8 ppm was attributed to the anomeric proton of 

glucose. The 1H NMR spectra of Fr.1-2, Fr.2-1 and Fr.2-2 showed only proton resonances 

belonging to carbohydrates (anomeric protons, 4.4-5.5 ppm; clustered resonances between 

3.4 ppm and 4.0 ppm)26, suggesting that only polysaccharides were present in the samples. 

The proton resonances appearing near 1.1 ppm for Fr.1-2 and Fr.2-2 are characteristic for the 

rhamnose methyl group at position 5. However, further investigations on these molecules by 

2D NMR analyses are needed to better define their complete structural features.

Maple syrup is widely consumed as a functional food in large part because of its phenolic 

constituents which are believed to impart health benefits. For example, quebecol is a 

phenolic compound from maple syrup27 that possesses anti-inflammatory28 and anti-

proliferative properties.29 A variety of phenolic derivatives from maple syrup demonstrate 

free radical scavenging activity superior to that of vitamin C.3 Several polyphenolic 

molecules present in maple syrup show anti-proliferative effects through arresting cell 

cycles, suggesting potential effects in cancer prevention.30 In addition, in vivo studies on 

phenolic-enriched maple syrup extracts have shown promising therapeutic potential for liver 

protection,31 anti-inflammation32 and anti-diabetes.33,34

The polysaccharides dextran, arabinogalactan, and rhamnogalacturonan have been 

previously identified from maple syrup.8,9 Dextran is a common polysaccharide synthesized 

from sucrose and prominently features repeating units of α-6-linked glucose.35 Previous 

studies8,9 have attributed the glycosyl compositions and glycosydic linkages of 

arabinogalactans and rhamnogalacturonans to partially degraded pectins. Pectins are 

heteropolysaccharides and are one of the major structural components of plant cell walls.36 

The heterogeneous backbone of pectin is composed of homogalacturonan (HG) with 

repeating 4)-α-GalpA-(1, and rhamnogalacturonan (RG) with the alternating disaccharide 

4)-α-GalpA-(1,2)-α-L-Rhap-(1,.37 Arabinogalactan, a major side chain branched at C-4 of 

rhamnosyl residues, contains a linear 6-linked galactan substituted at C-3 with arabinoses.38

Herein, inulin is being reported from maple syrup for the first time. Inulins are widely 

present in several plant families including Liliaceae, Amaryllidaceae, Gramineae, and 

Compositae. Many edible fruits and vegetables such as banana, onion, artichoke, chicory 

roots, garlic, and leek contain inulin.39 However, this study is the first report of inulin-type 

fructooligosaccharides isolated from xylem sap of higher plants. The identification of inulin 

in maple syrup, along with its presence in other natural plant-derived sweeteners including 

agave40 and stevia,41 raises the possibility of this prebiotic polysaccharide potentially 

contributing to the overall health benefits reported for these foods.

Ecologically, besides serving as an energy storage carbohydrate, plant cells regulate osmotic 

potential by quickly altering the degree of polymerization of inulin. This function allows 
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plants to withstand cold temperatures and dehydration.42,43 This phenomenon also 

encourages future investigations on the quantity of inulin present in maple sap collected at 

various times during the tapping season to potentially maximize its inclusion in maple-

derived food products.

In addition to its low caloric value, the prebiotic effects of inulin have been reported.19,44–46 

Because inulin passes through the human upper gastrointestinal tract (GIT) intact, it interacts 

primarily with human gut microbiota. Prebiotic molecules such as inulin47,48 have been 

shown to selectively enhance the growth of beneficial bacteria, such as species of 

Bifidobacterium and Lactobacillus, while suppressing the growth of pathogenic strains.

In this study, the presence of inulin in maple syrup potentially supports an investigation by 

Cochu et al.49 who compared the growth of probiotic Lactobacillus sp. when using raw 

maple sap and sucrose as carbon sources. Results showed that maple sap based media 

increased the viable cell counts of two strains of lactobacilli, Lactobacillus helveticus R0052 

and Lactobacillus acidophilus AC-10, and enhanced their lactic acid production. This study 

suggested that molecules in the raw maple sap possess prebiotic effects and potentially 

provide health benefits to the GIT. Evidence44,46 shows that bifidobacteria and lactobacilli 

have different preferences for utilizing inulin-type fructooligosaccharides of different chain 

lengths. This suggests that despite having the same repeating unit, maple syrup-derived 

inulin could potentially have unique effects on GIT bacteria. Thus, while our finding that 

maple syrup contains inulin adds to the potential health benefits of this food, the overall 

contribution of this inulin polysaccharide remains unclear given the lack of supporting in 

vivo data. Further investigation to clarify the contributions of inulin to the overall benefits of 

maple syrup is currently being pursued by our group.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The elution profile of Fr.1 by anion exchange chromatography.
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Figure 2. 
General chemical structure of inulin.
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Figure 3. 
1H NMR spectrum of Fr.1-1.
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Table 1

Glycosyl compositions of Fr.1-1, Fr.1-2, Fr.2-1 and Fr.2-2.

Glycosyl residue Fr.1-1 Fr.1-2 Fr.2-1 Fr.2-2

Mole %

Rhamnosyl 0 9 0 7

Arabinosyl 0 35 25 42

Galactosyl 0 47 35 40

Glucosyl 4 1 40 2

Mannosyl 0 1 0 2

Fructosyl 96 0 0 0

Galacturonic acid 0 7 0 7

J Agric Food Chem. Author manuscript; available in PMC 2018 February 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sun et al. Page 15

Ta
b

le
 2

1 H
 a

nd
 13

C
 N

M
R

 c
he

m
ic

al
 s

hi
ft

 a
ss

ig
nm

en
ts

 o
f 

Fr
.1

-1
 in

 p
ar

ts
 p

er
 m

ill
io

n 
(p

pm
).

R
es

id
ue

H
-1

/C
-1

H
-2

/C
-2

H
-3

/C
-3

H
-4

/C
-4

H
-5

/C
-5

H
-6

/C
-5

2-
Fr

uc
to

sy
l

3.
52

/3
.6

0
-

4.
02

3.
93

3.
79

3.
40

/3
.7

4

60
.0

10
4.

1
76

.4
75

.3
80

.2
63

.3

Te
rm

in
al

 G
lu

co
sy

l
4.

82
3.

42
3.

73
-

-
-

-
-

-
-

-
-

J Agric Food Chem. Author manuscript; available in PMC 2018 February 20.


	Detection of Inulin, a Prebiotic Polysaccharide, in Maple Syrup
	Citation/Publisher Attribution

	Detection of Inulin, a Prebiotic Polysaccharide, in Maple Syrup
	The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.
	Terms of Use

	Abstract
	TOC image
	INTRODUCTION
	MATERIALS AND METHODS
	Materials
	Total carbohydrate content determination
	Extraction of maple syrup polysaccharides
	Purification of polysaccharides
	Homogeneity and molecular size
	Glycosyl composition analysis
	Glycosyl linkage analysis
	Nuclear Magnetic Resonance (NMR)

	RESULTS AND DISCUSSION
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2

