
Uncoded Placement Optimization for Coded
Delivery

Sian Jin, Ying Cui, Hui Liu
Shanghai Jiao Tong University, China

Giuseppe Caire
Technical University of Berlin, Germany

Abstract— Existing coded caching schemes fail to simultane-
ously achieve efficient content placement for non-uniform file
popularity and efficient content delivery in the presence of
common requests, and hence may not achieve desirable average
load under a non-uniform, possibly very skewed, popularity
distribution. In addition, existing coded caching schemes usually
require the splitting of a file into a large number of subfiles, i.e.,
high subpacketization, and hence may cause huge implementation
complexity. To address the above two challenges, we first present
a class of centralized coded caching schemes consisting of a
general content placement strategy specified by a file partition
parameter, enabling efficient and flexible content placement,
and a specific content delivery strategy, enabling load reduction
by exploiting common requests of different users. Then we
consider two cases, namely, the case without considering the
subpacketization issue and the case considering the subpacke-
tization issue. In the first case, we formulate the coded caching
optimization problem over the considered class of schemes with
N2K variables to minimize the average load under an arbitrary
file popularity. Imposing some conditions on the file partition
parameter, we transform the original optimization problem into
a linear optimization problem with N(K+1) variables under an
arbitrary file popularity and a linear optimization problem with
K+1 variables under the uniform file popularity. We also show
that Yu et al.’s centralized coded caching scheme corresponds to
an optimal solution of our problem. In the second case, taking
into account the subpacketization issue, we first formulate the
coded caching optimization problem over the considered class of
schemes to minimize the average load under an arbitrary file
popularity subject to a subpacketization constraint involving the
�0-norm. By imposing the same conditions and using an exact
DC (difference of two convex functions) reformulation method,
we convert the original problem with N2K variables into a
simplified DC problem with N(K + 1) variables. Then, we use
a DC algorithm to solve the simplified DC problem.

I. INTRODUCTION

Recently, a new class of caching schemes for content

placement in user caches, referred to as coded caching [1],

have received significant interest. In [1], Maddah-Ali and

Niesen consider a system with one server connected through a

shared error-free link to K users. The server has a library of N
files, and each user has an isolated cache memory of M files.

They formulate a caching problem, consisting of two phases,

i.e., uncoded content placement and coded content delivery.

Each user can obtain the requested file based on the received

coded-multicast messages and the contents stored in its cache.

The work of Y. Cui was supported by National Science Foundation of
China under Grant 61401272 and Grant 61521062, Science and Technology
on Communication Networks Laboratory Foundation, as well as Shanghai
Key Laboratory Funding STCSM15DZ2270400.

The goal of [1] is to reduce the worst-case (over all possible

requests) load of the shared link in the delivery phase. In [2],

Jin et al. consider a different class of centralized coded caching

schemes specified by a general file partition parameter, and

optimize the parameter to minimize the average load within the

class under an arbitrary file popularity. In [3], the parameter-

based coded caching design approach in [2] is generalized

to minimize the average load in a heterogeneous setting with

nonuniform file popularity, cache size and file size. In [4],

Yu et al. propose a centralized coded caching scheme where

the delivery strategy exploits the chance of load reduction in

common requests of different users. The scheme devised by

Yu et al. is proved to be optimal for the worst-case load and

average load under the uniform popularity.

Note that the delivery strategies in [1]–[3] do not capture the

opportunity of load reduction in common requests of different

users, and the placement strategies in [1] and [4] allocate

the same fraction of memory to each file without reflecting

popularity difference. Therefore, the coded caching strategies

in [1]–[4] may not achieve desirable average load under a

non-uniform, possibly very skewed, popularity distribution. It

is not known how to simultaneously achieve efficient content

placement for non-uniform file popularity and efficient content

delivery in the presence of common requests.

Another limitation of previous works is the issue of high

subpacketization, i.e., the number of non-overlapping sub-

files for each file is large. In [5]–[8], the authors tackle

the subpacketization issue for decentralized coded caching.

Specifically, in [5], a user grouping method is proposed to

lower the subpacketization at the expense of larger worst-

case load. In [6], based on a novel user grouping idea, the

authors propose a new order-optimal decentralized random

coded caching scheme, which induces lower subpacketization

than that in [5] at the same worst-case load. To reduce the

average loads in practical regimes of finite subpacketization,

the authors in [7] and [8] propose decentralized coded caching

schemes based on hierarchy greedy local graph coloring.

In [9]–[11], the authors tackle the subpacketization issue for

centralized coded caching. Specifically, in [9], Tang et al.
connect coded caching to resolvable combinatorial designs

and propose a centralized coded caching scheme where the

subpacketization is exponential with respect to (w.r.t.) the

number of users but significantly lower than the centralized

coded caching scheme of [1] at the cost of a marginal

increase in the worst-case load. In [10], Shanmugam et al.

2
connect coded caching to Ruzsa-Szeméredi graphs and show

the existence of a centralized coded caching scheme where the

subpacketization grows linearly with the number of users when

the number of users is very large. In [11], the authors propose

a centralized coded caching scheme with low subpacketization

based on Pareto-optimal PDA (placement delivery array). Note

that the coded caching schemes in [5], [9]–[11] addressing the

subpacketization issue are applicable only for certain system

parameters (e.g., the number of users, the number of files,

cache size, etc.). Furthermore, the coded caching schemes

in [5], [6], [9]–[11] are not based on optimizations and can-

not guarantee desirable average loads under subpacketization

constraints.

In this paper, we would like to address the above challenges

in the same centralized setting as in [1]–[4], [9]–[11], with the

focus on minimizing the average load under an arbitrary file

popularity in two cases, namely, the case without consider-

ing the subpacketization issue and the case considering the

subpacketization issue. We present a class of coded caching

schemes consisting of a general content placement strategy

specified by a file partition parameter, enabling efficient and

flexible content placement, and a specific content delivery

strategy, enabling load reduction by exploiting common re-

quests of different users. Then, we focus on the average

load minimization irrespectively of the subpacketization issue.

In this case, we formulate the coded caching optimization

problem over the considered class of schemes with N2K

variables to minimize the average load under an arbitrary

file popularity. The average load expression is not tractable

due to the complex delivery strategy. Therefore, we impose

some conditions on the parameter to simplify the average load

expression under an arbitrary file popularity and the uniform

file popularity respectively, by connecting the file request event

to the “balls into bins” problem. Based on the simplified

expressions, we transform the original optimization problem

into a linear optimization problem with N(K + 1) variables

under an arbitrary file popularity and a linear optimization

problem with K+1 variables under the uniform file popularity,

which are much easier to solve than the original problem.

We also show that Yu et al.’s centralized coded caching

scheme corresponds to an optimal solution of our problem

and the imposed conditions are optimal properties for the

uniform file popularity. Next, we consider the average load

minimization subject to a constraint on subpacketization. In

this case, we first formulate the coded caching optimization

problem over the considered class of schemes to minimize the

average load under an arbitrary file popularity subject to a

subpacketization constraint in terms of the �0-norm of the file

partition parameter. To the best of our knowledge, this is the

first work explicitly considering a subpacketization constraint

in optimization based coded caching design. By imposing

the same conditions as in the case without considering the

subpacketization issue and using the exact DC (difference

of two convex functions) reformulation method in [12], we

convert the original problem with N2K variables into a

simplified DC problem with N(K + 1) variables. Then, we

Fig. 1: Problem setup for coded caching.

use a DC algorithm to solve the simplified DC problem.

Numerical results reveal that the imposed conditions do not

affect the optimality of the original problem under an arbitrary

file popularity in the case without considering the subpacke-

tization constraint. Furthermore, our results demonstrate that

the optimized coded caching scheme without considering

the subpacketization constraint outperforms those in [1], [2],

[4] in terms of the average load, and the optimized coded

caching scheme considering the subpacketization constraint

outperforms those in [9] and [11] in terms of both the average

load and application region.

II. CENTRALIZED CODED CACHING

A. Problem Setting

As in [1]–[4], [9]–[11], we consider a system with one

server connected through a shared error-free link to K ∈ N>0

users (see Fig. 1), where N>0 denotes the set of all positive

integers. The server has access to a library of N ∈ N>0

files, denoted by W1, . . . ,WN , each consisting of F ∈ N>0

indivisible data units. Let N � {1, 2, . . . , N} and K �
{1, 2, . . .K} denote the set of file indices and the set of user

indices, respectively. Each user has an isolated cache memory

of MF data units, for some real number M ∈ [0, N]. Let Zk

denote the cache content for user k. The system operates in

two phases, i.e., a placement phase and a delivery phase [1].

In the placement phase, each user is able to fill the content of

its cache using the library of N files. In the delivery phase,

each user randomly and independently requests one file in

N according to file popularity distribution p � (pn)
N
n=1,

where pn denotes the probability of a user requesting file Wn

and
∑N

n=1 pn = 1. Without loss of generality, we assume

p1 ≥ p2 ≥ . . . ≥ pN . Let Dk ∈ N denote the index of the file

requested by user k ∈ K, and let D � (D1, · · · , DK) ∈ NK

denote the requests of all the K users. The server replies to

these K requests by sending messages over the shared link,

which are observed by all the K users. Each user should be

able to recover its requested file from the messages received

over the shared link and its cache content. Our goal is to

minimize the average load of the shared link under an arbitrary

file popularity.

3
B. Centralized Coded Caching Scheme

In this part, we present a class of centralized coded caching

schemes utilizing a general uncoded placement strategy and

a specific coded delivery strategy, which are specified by a

general file partition parameter, as summarized in Alg. 1. The

general uncoded placement strategy is the same as that in [2].

We present it here for completeness. For all n ∈ N , file Wn is

partitioned into 2K nonoverlapping subfiles Wn,S , S ⊆ K, i.e.,

Wn = (Wn,S : S ⊆ K). If the number of data units in a subfile

is zero, then there is no need to consider this subfile. Thus, 2K

is the maximum number of non-overlapping subfiles of a file.

We say subfile Wn,S is of type s if |S| = s [2]. User k stores

Wn,S , n ∈ N , k ∈ S,S ⊆ K in its cache, i.e., Zk = (Wn,S :
n ∈ N , k ∈ S,S ⊆ K). Let xn,S denote the ratio between the

number of data units in Wn,S and the number of data units in

Wn (i.e., F). Let xn � (xn,S)S⊆K. Let x � (xn)n∈N denote

the file partition parameter (vector), which will be optimized

to minimize the average load in Section III. Thus, x satisfies

0 ≤ xn,S ≤ 1, ∀S ⊆ K, n ∈ N , (1)

K∑
s=0

∑
S∈{Ŝ⊆K:|Ŝ|=s}

xn,S = 1, ∀n ∈ N , (2)

N∑
n=1

K∑
s=1

∑
S∈{Ŝ⊆K:|Ŝ|=s,k∈Ŝ}

xn,S ≤ M, ∀k ∈ K, (3)

where (1) and (2) represent the file partition constraints and

(3) represents the cache memory constraint.
The coded delivery strategy is an extension of that in [4].

For all D ∈ NK , let D(D) � {Dk : k ∈ K} denote the

set of distinct files in D. For all n ∈ D(D), the server

arbitrarily selects user kn ∈ K such that Dkn = n. Let

K(D) � {kn : n ∈ D(D)} denote the set of representative

users that request |D(D)| different files. Each user k ∈ S
requests subfile WDk,S\{k}, for all subset S ⊆ K. The server

broadcasts coded-multicast message ⊕k∈SWDk,S\{k} for all

subset S ⊆ K that satisfies S ∩K(D) 	= ∅, and all subfiles in

the coded-multicast message are zero-padded to the length of

the longest subfile.1 By Lemma 1 of [4], we can conclude that

each user can decode the requested file based on the received

coded-multicast messages and the contents stored in its cache.
Remark 1: The uncoded placement in this paper is more

general than that in [1], [4], [9]–[11], and it can be optimized

to minimize the average load under an arbitrary file popularity

(see Section III and Section IV). The coded delivery in this

paper is more efficient than that in [1]–[3], [5], [6], [9]–

[11], since it avoids transmitting the redundant coded-multicast

messages ⊕k∈SWDk,S\{k}, S ⊆ K\K(D) in the presence of

common requests [4].

C. Average Load
Let Ravg(K,N,M,x) denote the average load for serving

the K users with cache size M under a given file partition

1Note that in [4], since all files are partitioned into subfiles of type t ∈
{0, 1, . . . ,K}, only coded-multicast messages ⊕k∈SWDk,S\{k} satisfying
S ⊆ K, S ∩ K(D) �= ∅ and |S| = t+ 1 are transimitted.

Algorithm 1 Parameter-based Centralized Coded Caching

placement procedure
1: for all k ∈ K do
2: Zk ← (Wn,S : n ∈ N , k ∈ S,S ⊆ K)
3: end for

delivery procedure
1: for s = K,K − 1, · · · , 1 do
2: for S ⊆ K : |S| = s,S ∩ K(D) 	= ∅ do
3: server sends ⊕k∈SWDk,S\{k}
4: end for
5: end for

parameter x, where the average is taken over random requests

D for N files, according to an arbitrary file popularity distri-

bution p. By Alg. 1, we have

Ravg(K,N,M,x)

=
∑

d∈NK

(
K∏

k=1

pdk

) ∑
S∈{Ŝ⊆K:Ŝ∩K(D) �=∅}

max
k∈S

xdk,S\{k}, (4)

where d � (d1, . . . , dK) ∈ NK and max
k∈S

xdk,S\{k} is the

length of the coded message ⊕k∈SWdk,S\{k} divided by F .

From (4), we can observe that the file partition parameter

x fundamentally affects the average load Ravg(K,N,M,x).
In Section III, we would like to find an optimal file partition

parameter to minimize the average load in (4). The optimal file

partition parameter may correspond to high subpacketization,

and hence a high file partition cost. To avoid high subpacke-

tization, in Section IV, we would like to find an optimal file

partition parameter to minimize the average load in (4) under

a subpacketization constraint.

III. AVERAGE LOAD MINIMIZATION WITHOUT

SUBPACKETIZATION CONSTRAINT

In this section, we minimize the average load by optimizing

the file partition parameter without considering any subpack-

etization constraint.

A. Problem Formulation

We would like to minimize the average load under the file

partition constraints in (1) and (2) as well as the cache memory

constraint in (3).

Problem 1 (Optimization for Arbitrary File Popularity):

R∗
avg(K,N,M) � min

x
Ravg(K,N,M,x)

s.t. (1), (2), (3),

where Ravg(K,N,M,x) is given by (4).

The objective function of Problem 1 is convex, as it is a

positive weighted sum of convex piecewise linear functions.

In addition, the constraints of Problem 1 are linear. Hence,

Problem 1 is a convex optimization problem. The number

of variables in Problem 1 is N2K . Thus, the complexity of

4
Problem 1 is huge, especially when K and N are large. In Sec-

tion III-B and Section III-C, we shall focus on deriving sim-

plified formulations for Problem 1 to facilitate low-complexity

optimal solutions under an arbitrary popularity distribution and

the uniform popularity distribution, respectively.

B. Optimization for Arbitrary Popularity without Subpacketi-
zation Constraint

First, we present two structural conditions on the file

partition parameter x to facilitate a low-complexity solution

of Problem 1.

Condition 1 (Symmetry w.r.t. Type): For all n ∈ N and s ∈
{0, 1, · · · ,K}, the values of xn,S ,S ∈ {Ŝ ⊆ K : |Ŝ| = s} are

the same.

Condition 1 indicates that, for all n ∈ N and s ∈
{0, 1, · · · ,K}, subfiles Wn,S , S ∈ {Ŝ ⊆ K : |Ŝ| = s}
have the same size. Recall that all subfiles in one coded-

multicast message are zero-padded to the length of the longest

subfile in the coded-multicast message, causing the “bit waste”

effect [2]. Thus, imposing Condition 1 can reduce the variance

of the lengths of messages involved in the coded-multicast

XOR operations, hence addressing “bit waste” problem and

increasing coded-multicasting opportunities. By Condition 1,

we can set

xn,S = yn,s, ∀S ⊆ K, n ∈ N , (5)

where s = |S| ∈ {0, 1, · · · ,K}. Here, yn,s can be viewed as

the ratio between the number of data units in each subfile of

type s of file Wn and the number of data units in file Wn

(i.e., F). Let yn � (yn,s)s∈{0,1,··· ,K} and y � (yn)n∈N .

Condition 2 (Monotonicity w.r.t. Popularity): For all n ∈
{1, 2, . . . , N − 1} and s ∈ {1, 2, · · · ,K}, when pn ≥ pn+1,

yn,s ≥ yn+1,s. (6)

Condition 2 indicates that, for all n ∈ {1, 2, . . . , N − 1}
and s ∈ {1, 2, · · · ,K}, when pn ≥ pn+1, the size of

subfiles Wn,S , S ⊆ {Ŝ ⊆ K : |Ŝ| = s} is no smaller

than that of subfiles Wn+1,S , S ⊆ {Ŝ ⊆ K : |Ŝ| = s}.

Intuitively, imposing Condition 2 can reduce the average load,

by dedicating more memory to a more popular file. Since the

expression of the objective function in (4) is complex, unlike

in [2], it is difficult to prove that Conditions 1 and 2 hold

for the optimal file partition parameter under any arbitrary

file popularity. Later, in Section V, the numerical results will

verify that the two conditions are optimal properties. That

is, imposing the two conditions will not lose optimality of

Problem 1.

Next, we simplify Problem 1 under Conditions 1 and 2.

First, we introduce some notations. Consider the number of

representative users |K(D)| = u. Let D̃u,〈1〉 ≤ D̃u,〈2〉 ≤
. . . ≤ D̃u,〈K−u〉 denote (Dk)k∈K\K(D) arranged in ascending

order, so that D̃u,〈i〉 is the i-th smallest. Let P ′
i,u,n �

Pr
[
D̃u,〈i〉 = n

]
, ∀i = 1, . . . ,K − u. By connecting the file

request event D̃u,〈i〉 = n to the “balls into bins problem”, i.e.,

K balls are placed i.i.d. into N bins and each into bin n with

probability pn, we can obtain P ′
i,u,n. The expression of P ′

i,u,n

is given in [13], and is omitted here due to page limitation.

Thus, by P ′
i,u,n and the simplification methods in [2] and [3],

we have2

Lemma 1 (Simplification for Arbitrary File Popularity):
Under Conditions 1 and 2, Problem 1 can be converted into:

Problem 2 (Simplified Problem of Problem 1):

R̃∗
avg(K,N,M) � min

y
R̃avg(K,N,M,y)

s.t. yn,s ≥ yn+1,s, ∀n ∈ {1, 2, . . . , N − 1}, s ∈ {1, 2, · · · ,K}
(7)

0 ≤ yn,s ≤ 1, ∀s ∈ {0, 1, · · · ,K}, n ∈ N , (8)

K∑
s=0

(
K

s

)
yn,s = 1, ∀n ∈ N , (9)

N∑
n=1

K∑
s=1

(
K − 1

s− 1

)
yn,s ≤ M, (10)

where

R̃avg(K,N,M,y)

�
K∑
s=1

(
K

s

) N∑
n=1

((
N∑

n′=n

pn′

)s

−
(

N∑
n′=n+1

pn′

)s)
yn,s−1

−
min{K,N}∑

u=1

K−u∑
s=1

(
K − u

s

)K−u∑
i=1

(
K − u− i

s− 1

) N∑
n=1

P ′
i,u,nyn,s−1.

(11)
Problem 2 is a linear optimization problem with N(K +

1) variables and can be solved by using linear optimization

techniques.

C. Optimization for Uniform Popularity without Subpacketi-
zation Constraint

In this part, we consider a special case, i.e., the uniform file

popularity (pn = 1
N , for all n ∈ N). First, we present another

structural condition on the file partition parameter.

Condition 3 (Symmetry w.r.t. File): For all n ∈
{1, 2, . . . , N − 1} and s ∈ {1, 2, · · · ,K}, when pn = pn+1,

yn,s = yn+1,s. (12)

Condition 3 indicates that for all n ∈ {1, 2, . . . , N −1} and

s ∈ {1, 2, · · · ,K}, when pn = pn+1, the size of subfiles

Wn,S , S ⊆ {Ŝ ⊆ K : |Ŝ| = s} is the same as that of

subfiles Wn+1,S , S ⊆ {Ŝ ⊆ K : |Ŝ| = s}. Condition 3

ensures zero variance of the lengths of messages involved

in the coded-multicast XOR operations, hence avoiding “bit

waste” effect and increasing coded-multicasting opportunities.

Later, we shall show that imposing this condition will not lose

optimality of Problem 2 under the uniform file popularity.

By Condition 3, we can set

yn,s = zs, ∀s ∈ {0, 1, · · · ,K}, n ∈ N . (13)

2We omit all the proofs due to page limitation. Please refer to [13] for
details.

5
Here, zs can be viewed as the ratio between the number of

data units in each subfile of type s of any file and the number

of data units in any file (i.e., F). Let z � (zs)s∈{0,1,··· ,K}.

Next, we simplify Problem 1 under Conditions 1 and

Condition 3. First, we introduce some notations. Let P ′′
u �

Pr [|K(D)| = u], where u ∈ {1, 2, . . . ,min{K,N}}. Note

that event |K(D)| = u corresponds to the event in the “balls

into bins” problem that there are u nonempty bins after placing

K balls uniformly at random into N bins. By using results

for the “balls into bins” problem in the uniform case [14] and

considering Conditions 1 and 3, we have the following result.

Lemma 2 (Simplification for Uniform File Popularity):
Under Conditions 1 and 3, Problem 1 can be converted into:

Problem 3 (Simplified Problem of Problem 1):

min
z

K−1∑
s=0

(
K

s+ 1

)
zs −

min{K,N}∑
u=1

P ′′
u

K−u−1∑
s=0

(
K − u

s+ 1

)
zs

s.t. 0 ≤ zs ≤ 1, s ∈ {0, 1, · · · ,K}, (14)

K∑
s=0

(
K

s

)
zs = 1, (15)

K∑
s=0

(
K

s

)
szs ≤ KM

N
. (16)

where

P ′′
u =

{
K
u

} (
N
u

)
u!

NK
, (17)

and

{
K
u

}
is the Stirling number of the second kind.

Problem 3 is a linear optimization problem with K + 1
variables and can be solved more efficiently than Problem 1.

Finally, we discuss the relation between an optimal solution

of Problem 3 and Yu et al.’s centralized coded caching

scheme [4].3 Let z∗ � (z∗s)s∈{0,1,··· ,K} denote an optimal

solution of Problem 3 and let R̂∗
avg(K,N,M) denote the

optimal value of Problem 3. Using KKT conditions, we have

Lemma 3 (Optimal Solution to Problem 3): For cache size

M ∈ {
0, N

K , 2N
K , . . . , N

}
, z∗ is an optimal solution to Prob-

lem 3, where

z∗s =

⎧⎨⎩
1

(K
KM
N

)
, s = KM

N

0, s ∈ {0, 1, · · · ,K} \ {KM
N },

(18)

and the optimal value of Problem 3 is given by4

R̂∗
avg(K,N,M)

=
K(1−M/N)

1 +KM/N
−

min{K,N}∑
u=1

P ′′
u

(
K − u
KM
N + 1

)/(K
KM
N

)
.

(19)

3Yu et al.’s centralized coded caching scheme focuses on cache size M ∈
{0, N

K
, 2N

K
, . . . , N}, so that KM

N
is an integer in {0, 1, . . . ,K}. For general

M ∈ [0, N], the worst-case load can be achieved by memory sharing.
4In this paper, we define

(n
k

)
= 0 when k > n [4].

Lemma 3 indicates that Yu et al.’s centralized coded caching

scheme corresponds to an optimal solution of Problem 3. In

addition, the optimal average load R̂∗
avg(K,N,M) in (19)

is equivalent to than that in [4]. Specifically, the first term

in (19) corresponds to the worst-case load in [1] and the

second term in (19) indicates the load reduction and is more

tractable than that in [4]. Note that it has been shown that Yu

et al.’s centralized coded caching scheme is optimal among

all uncoded placement and all delivery under the uniform file

popularity [4]. Thus, for the uniform file popularity, Conditions

1 and 3 are actually optimal properties.

IV. AVERAGE LOAD MINIMIZATION WITH

SUBPACKETIZATION CONSTRAINT

In this section, we minimize the average load by optimizing

the file partition parameter under a subpacketization constraint

which is given by

‖x‖0 ≤ F̂ , (20)

where ‖x‖0 �
∑

n∈N
∑

S∈K 1 [xn,S 	= 0] ∈ {0, 1, . . . , N2K}
denotes the �0-norm of the vector x, i.e., the total number of

subfiles for N files, and F̂ ∈ {N,N+1, . . . , N2K} represents

the subpacketization limit. To the best of our knowledge,

this is the first work explicitly considering a subpacketization

constraint in optimization based coded caching design.

A. Problem Formulation

In this part, we minimize the average load under the

file partition constraints in (1) and (2), the cache memory

constraint in (3), and the subpacketization constraint in (20).

Problem 4 (Optimization with Subpacketization Constraint):

R†
avg(K,N,M) � min

x
Ravg(K,N,M,x)

s.t. (1), (2), (3), (20),

where Ravg(K,N,M,x) is given by (4).

Compared with Problem 1, Problem 4 has an extra con-

straint, i.e., the subpacketization constraint in (20). There are

two main challenges in solving Problem 4. First, Problem 4

is an NP-Hard problem due to the discontinuous constraint

in (20) involving the �0-norm [12]. Second, the number of

variables in Problem 4 is N2K , which is huge, especially when

K and N are large.

B. Simplified Formulation

There are extensive research dealing with optimization prob-

lems involving the �0-norm. Those works can be divided into

three main categories according to the way of treating the �0-

norm, i.e., convex approximation, non-convex approximation,

and non-convex exact reformulation [15]. For the category

of convex approximation, one of the best known approaches

is approximating the �0-norm with the �1-norm (denoted as

‖x‖1) [15]. If the original optimization problem is convex

except the discontinuous constraint involving the �0-norm, this

convex approximation approach can transform the original NP-

Hard problem involving the �0-norm into a convex problem.

6
However, it has been shown that an optimal solution of the

approximated convex problem is not always sparse (may not

be a feasible solution of the original problem) [16]. For the

category of non-convex approximation, a variety of sparsity-

inducing penalty functions, e.g., the �p pseudo-norm with 0 <
p < 1 [17], exponential concave function [18], and logarithmic

function [19], have been proposed to approximate the �0-

norm. In general, non-convex approximation can provide better

sparsity than convex approximation, but may not provide an

optimal solution of the original problem. Few works focus

on non-convex exact reformulation, which is proposed to

guarantee the equivalence between the reformulated problem

and the original problem. Using exact penalty techniques, [15]

and [20] show that the reformulated problems with suitable

parameters are equivalent to the original problems. However,

the reformulated problems are quite convoluted as they rely

on too many parameters [12]. In recent work [12], the authors

propose an exact DC (difference of two convex functions)

reformulation which is simpler than the reformulated problems

proposed in [15] and [20] and then use a DC algorithm to

solve the DC problem. In the following, to obtain a simple

equivalent problem of the original one, we use the exact DC

reformulation method in [12].5

We first simplify Problem 4 to facilitate a low-complexity

solution. Using the method for obtaining Problem 2 and

Theorem 1 of [12] for simplifying the constraint in (20) under

Conditions 1 and 2, we have the following result.

Lemma 4 (Simplification for for Arbitrary File Popularity):
Under Conditions 1 and 2, Problem 4 can be converted into:

Problem 5 (Simplified Problem of Problem 4):

R̃†
avg(K,N,M) � min

y
R̃avg(K,N,M,y)

s.t. (7), (8), (9), (10),

‖Wy‖lgst,F̂ = N, (21)

where R̃avg(K,N,M,y) is given by (11),

W �

⎡⎢⎢⎢⎢⎢⎢⎣
J

J
·

·
·

J

⎤⎥⎥⎥⎥⎥⎥⎦ (22)

denotes the block matrix of the dimension N2K × (K+1)N ,

with N blocks of matrix J � (jm,n)m∈{1,...,2K},n∈{1,...,K+1}
as its diagonal blocks and zero matrices as its non-diagonal

blocks, and the element of row m and column n of J is

jm,n =

{
1,

∑n−1
i=1

(
K
i−1

)
< m ≤ ∑n

i=1

(
K
i−1

)
0, otherwise

. (23)

The number of variables in Problem 5 is N(K +1), which

is much smaller than that of Problem 4, i.e., N2K . In addition,

5Given the constraint in (9), the �1-norm of x is equal to a constant, i.e.,

‖x‖1 =
∑N2K

i=1 xi = N . Thus, replacing ‖x‖0 with ‖x‖1 in (20) results

in the constraint N ≤ F̂ , which always holds and cannot restrain x.

compared with Problem 2, Problem 5 has an extra constraint

in (21), which is non-convex but has two advantages over the

subpacketization constraint in (20): (i) ‖Wy‖lgst,F̂ in (21)

is a convex function which will enable the transformation of

the original problem into a DC programming problem that

can be solved by a DC algorithm in polynomial time; (ii)

a subgradient of ‖Wy‖lgst,F̂ can be efficiently computed,

making the DC algorithm an efficient one. In Section IV-C,

we will see the above two advantages clearly.

C. Penalized Formulation and DC Algorithm

To facilitate the solution, we transform Problem 5 into a DC

problem by using the exact DC reformulation method in [12].

Problem 6 (Penalized Formulation):

min
y

R̃avg(K,N,M,y)− ρ‖Wy‖lgst,F̂
s.t. (7), (8), (9), (10),

where R̃avg(K,N,M,y) is given by (11) and the penalty

parameter ρ > 0.

The objective function of Problem 6 is a difference of two

convex functions. In addition, the constraints of Problem 6

are linear. Thus, Problem 6 is a DC problem and an efficient

DC algorithm can be used to obtain a stationary point of

Problem 6.

Let Υ � {y : (7), (8), (9), (10)} and V(Υ) be the vertex set

of Υ. By Theorem 1 in [21], we show the equivalence between

Problem 5 and Problem 6.

Lemma 5 (Exact Penalty): For all ρ > ρ0 �
R̃†

avg(K,N,M)−R̃∗
avg(K,N,M)

min{N−‖Wy‖lgst,F̂ :(7),(8),(9),(10),N>‖Wy‖lgst,F̂} , where

R̃∗
avg(K,N,M) and R̃†

avg(K,N,M) are the optimal

values of Problem 2 and Problem 5, respectively, Problem 5

and Problem 6 have the same optimal solution.

Lemma 5 shows that Problem 5 is equivalent to Problem 6

if the penalty parameter ρ is sufficiently large. Thus, in the

following, we solve Problem 6 instead of Problem 5 by using

a DC algorithm. The main idea of the DC algorithm is to

iteratively solve a sequence of convex problems, each of which

is obtained by linearizing the second term of the objective

function of the DC problem. A subgradient of the second

term of the objective function is required in the linearization

in each iteration. Thus, to solve Problem 6, we first obtain

a subgradient of ‖Wy‖lgst,F̂ by extending the closed-form

expression of a subgradient of ‖y‖lgst,F̂ given in [12].

Lemma 6 (Subgradient of ‖Wy‖lgst,F̂): g(y) �
(gi)i∈{1,2,...,KN} is a subgradient of ‖Wy‖lgst,F̂ , where

g[i] =

⎧⎪⎨⎪⎩
(

K
([i]−1) mod (K+1)

)
, i ∈ {1, . . . , I − 1}

F̂ −∑I−1
i=1

(
K

([i]−1) mod (K+1)

)
, i = I

0, otherwise

,

(24)

[i] represents the index of i-th largest element in y,

and I satisfies
∑I−1

i=1

(
K

([i]−1) mod (K+1)

) ≤ F̂ and∑I
i=1

(
K

([i]−1) mod (K+1)

)
> F̂ .

7
Then, based on the subgradient g(y) given in Lemma 6,

we can obtain a stationary point of Problem 6 using the

DC algorithm as summarized in Algorithm 2. Note that the

obtained solution may not be a feasible solution of Problem 5.

As in [15], to approach the globally optimal solution of

Problem 5, we obtain multiple stationary points of Problem 6

by performing the DC algorithm multiple times, each with

a random initial feasible point of Problem 6, and adopt the

stationary point with the lowest average load among all the

obtained stationary points of Problem 6 that are also feasible

solutions of Problem 5.

Algorithm 2 DC Algorithm for Solving Problem 6

1: Find an initial feasible point y(0) of Problem 6 and set

t = 0
2: repeat
3: Set y(t+1) to be an optimal solution of the convex prob-

lem:

min
y

R̃avg(K,N,M,y)− ρg
(
y(t)

)T

y

s.t. (7), (8), (9), (10)

4: Set t = t+ 1
5: until

(
R̃avg(K,N,M,y(t−1))− ρ‖Wy(t−1)‖lgst,F̂

)
−(

R̃avg(K,N,M,y(t))− ρ‖Wy(t)‖lgst,F̂
)
≤ δ

V. NUMERICAL RESULTS

In the simulation, we assume the file popularity follows

Zipf distribution, i.e., pn = n−γ∑
n∈N n−γ for all n ∈ N , where

γ is the Zipf exponent. Fig. 2 (a) shows the optimal values

of Problems 1, 2 and 3, verifying that Conditions 1, 2 and

3 are optimal conditions when the subpacktization constraint

is not considered. Fig. 2 (b) compares the average load of

our optimized parameter-based scheme, the average loads of

the centralized coded caching schemes in [1], [2], [4], the

genie-aided converse bound in [2] and the conserve bound

in [22], all without considering the subpacketization issue.

From Fig. 2 (b), we can see that the optimized parameter-

based scheme outperforms the three baseline schemes. The

gain over Jin et al.’s optimized centralized coded caching

scheme follows by using an extended version of the improved

delivery strategy of Yu et al., that takes advantage of common

requests (which occur with positive probability in the case of

random demands). The gain over Yu et al.’s centralized coded

caching scheme is due to exploiting the explicit knowledge of

the file popularity in the optimization of content placement.6

In addition, the optimized average load is close to the converse

bounds, implying that the optimal value obtained by solving

Problem 2 is close to optimal.

Fig. 3 (a) and Fig. 3 (b) compare the average load of

our optimized parameter-based scheme considering the sub-

6It has been proved in [2] that the optimized parameter-based scheme in [2]
outperforms Maddah-Ali–Niesen’s centralized coded caching scheme [1].

0 1 2 3 4
Cache Size M

0

0.5

1

1.5

2

2.5

A
v
er
a
g
e
L
o
a
d

Optimal value of Problem 3, γ = 0

Optimal value of Problem 1, γ = 0

Optimal value of Problem 2, γ = 1.5

Optimal value of Problem 1, γ = 1.5

(a) K = 3, N = 4.

0 2.5 5 7.5 10
Cache Size M

0

1

2

3

4

A
v
er
a
g
e
L
o
a
d

Optimized parameter-based without subpack. constr.

Jin et al.’s centralized

Yu et al.’s centralized

Maddah-Ali–Niesen’s centralized

Genie-aided bound [2]

Converse bound [21]

(b) K = 4, N = 10, γ = 1.5.

Fig. 2: Average load versus M under Zipf distribution. Note that
Maddah-Ali–Niesen’s and Yu et al.’s centralized coded caching
schemes mainly focus on the cache size M ∈ {

0, N
K
, 2N

K
, . . . , N

}
.

For other M ∈ [0, N], the average loads of Maddah-Ali–Niesen’s
and Yu et al.’s centralized coded caching schemes are achieved by
memory sharing [1], [4].

packetization constraint, the average loads of Tang et al.’s
scheme [9] and Pareto-optimal PDA [11] both considering

the subpacketization issue as well as the average load of

our optimized parameter-based scheme without considering

the subpacketization constraint (serving as a lower bound of

the proposed one considering the subpacketization constraint).

Note that in Fig. 3 (a), for the considered K,N,M , Tang et
al.’s scheme is applicable only at F̂ = 20 and Pareto-optimal

PDA is applicable only at F̂ = 20 and F̂ = 100; in Fig. 3 (b),

for the considered K,N,M , Tang et al.’s scheme and Pareto-

optimal PDA are not applicable at any F̂ . From Fig. 3 (a)

and Fig. 3 (b), we can see that our optimized parameter-based

scheme outperforms Tang et al.’s scheme and Pareto-optimal

PDA in terms of both the average load and application region.

In addition, from Fig. 3 (b), we can see that our optimized

parameter-based scheme considering the subpacketization con-

straint can achieve significantly lower subpacketization than

the one without considering the subpacketization constraint,

at the cost of a small increase of the average load. This means

8

10 30 50 70 90 110
Subpacketization Limit F̂

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

A
v
er
a
g
e
L
o
a
d

Optimized parameter-based under subpack. constr.

Lower bound

Tang et al.’s centralized

Pareto-optimal PDA

(a) K = 6, N = 5, M = 2.5, γ = 1.3.

10 70 130 190 250 310 370
Subpacketization Limit F̂

1

1.2

1.4

1.6

1.8

2

2.2

2.4

A
v
er
a
g
e
L
o
a
d

Optimized parameter-based under subpack. constr.

Lower bound

(b) K = 6, N = 10, M = 4, γ = 0.5.

Fig. 3: Average load versus F̂ under Zipf distribution. To obtain
the average load of our optimized parameter-based scheme under
the subpacketization constraint, we solve Problem 6 with ρ = 500
by performing Algorithm 2 with δ = 0.001 100 times each with
a random initial feasible point and adopt the stationary point with
the lowest average load among all the obtained stationary points of
Problem 6 that are also feasible solutions of Problem 5.

that sacrificing a small average load gain can achieve a huge

subpacketization reduction under the considered setting.

VI. CONCLUSION

In this paper, we first presented a class of centralized coded

caching schemes consisting of a general content placement

strategy specified by a file partition parameter, enabling ef-

ficient and flexible content placement, and a specific con-

tent delivery strategy, enabling load reduction by exploiting

common requests of different users. Then, we considered

two cases: the case without considering the subpacketization

issue and the case considering the subpacketization issue. In

the first case, we formulated the coded caching optimization

problem over the considered class of schemes with N2K

variables to minimize the average load under an arbitrary

file popularity. Imposing some conditions on the file partition

parameter, we transformed the original optimization problem

into a linear optimization problem with N(K + 1) variables

under an arbitrary file popularity and a linear optimization

problem with K+1 variables under the uniform file popularity.

In the second case, we first formulated the coded caching

optimization problem over the considered class of schemes to

minimize the average load under an arbitrary file popularity

subject to a subpacketization constraint involving the �0-

norm. Next, imposing the same conditions and using the

exact DC reformulation method, we converted the original

problem with N2K variables into a simplified DC problem

with N(K + 1) variables. Then, we used a DC algorithm to

solve the simplified DC problem.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[2] S. Jin, Y. Cui, H. Liu, and G. Caire, “Structural properties of uncoded
placement optimization for coded delivery,” CoRR, vol. abs/1707.07146,
2017.

[3] A. M. Daniel and W. Yu, “Optimization of heterogeneous coded
caching,” CoRR, vol. abs/1708.04322, 2017.

[4] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-
memory tradeoff for caching with uncoded prefetching,” CoRR, vol.
abs/1609.07817, 2016.

[5] K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, and A. G. Dimakis.,
“Finite-length analysis of caching-aided coded multicasting,” IEEE
Trans. Inf. Theory, vol. 62, no. 10, pp. 5524–5537, Oct. 2016.

[6] S. Jin, Y. Cui, H. Liu, and G. Caire, “New order-optimal decentralized
coded caching schemes with good performance in the finite file size
regime,” CoRR, vol. abs/1604.07648, 2016.

[7] M. Ji, K. Shanmugam, G. Vettigli, J. Llorca, A. M. Tulino, and G. Caire,
“An efficient multiple-groupcast coded multicasting scheme for finite
fractional caching,” in IEEE ICC, Jun. 2015, pp. 3801–3806.

[8] K. Wan, D. Tuninetti, and P. Piantanida, “Novel delivery schemes for
decentralized coded caching in the finite file size regime,” in IEEE ICC
Workshops, May 2017, pp. 1183–1188.

[9] L. Tang and A. Ramamoorthy, “Coded caching with low subpacketiza-
tion levels,” in IEEE Globecom Workshops, Dec. 2016, pp. 1–6.

[10] K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded caching
with linear subpacketization is possible using ruzsa-szeméredi graphs,”
in IEEE ISIT, Jun. 2017, pp. 1237–1241.

[11] M. Cheng, Q. Yan, X. Tang, and J. Jiang, “Coded caching schemes with
low rate and subpacketizations,” CoRR, vol. abs/1708.06650, 2017.

[12] J.-y. Gotoh, A. Takeda, and K. Tono, “Dc formulations and algorithms
for sparse optimization problems,” Math Programming, pp. 1–36, 2017.

[13] S. Jin, Y. Cui, H. Liu, and G. Caire, “Uncoded placement optimization
for coded delivery,” CoRR, vol. abs/1709.06462, 2017. [Online].
Available: http://arxiv.org/abs/1709.06462

[14] P. Flajolet and R. Sedgewick, Analytic combinatorics, 2009.
[15] H. A. Le Thi, T. P. Dinh, H. M. Le, and X. T. Vo, “Dc approximation

approaches for sparse optimization,” European Journal of Operational
Research, vol. 244, no. 1, pp. 26–46, 2015.

[16] S. Shalev-Shwartz, N. Srebro, and T. Zhang, “Trading accuracy for
sparsity in optimization problems with sparsity constraints,” SIAM
Journal on Optimization, vol. 20, no. 6, pp. 2807–2832, 2010.

[17] W. Fu, “Penalized regressions: The bridge versus the lasso,” Journal of
Computational and Graphical Statistics, pp. 397–416, 1998.

[18] P. S. Bradley and O. L. Mangasarian, “Feature selection via concave
minimization and support vector machines.” in ICML, vol. 98, 1998.

[19] J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping, “Use of the zero
norm with linear models and kernel methods,” J. Mach. Learn. Res.,
vol. 3, pp. 1439–1461, Mar. 2003.

[20] T. Pham Dinh and H. A. Le Thi, “Recent advances in dc programming
and dca,” in Trans on Computational Intelligence, 2014, pp. 1–37.

[21] H. A. Le Thi, T. P. Dinh, and H. Van Ngai, “Exact penalty and error
bounds in dc programming,” Journal of Global Optimization, vol. 52,
no. 3, pp. 509–535, 2012.

[22] C. Wang, S. H. Lim, and M. Gastpar, “A new converse bound for coded
caching,” CoRR, vol. abs/1601.05690, 2016.

