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Edgeconomics: Price Competition and Selfish
Computation Offloading in Multi-Server Edge
Computing Networks

Ziya Chen, Qian Ma, Lin Gao, and Xu Chen

Abstract—As edge computing provides crucial support for
delay-sensitive and computation-intensive applications, many
business entities deploy their own edge servers to compete for
users, which forms multi-server edge computing networks. How-
ever, no prior work studies the competition among heterogeneous
edge servers and how the competition affects users’ selfish
computation offloading behaviors in such a network from an
economic perspective. In this paper, we model the interactions
between edge servers and users as a two-stage game. In Stage 1,
edge servers with heterogeneous marginal costs set their service
prices to compete for users, and in Stage II, each user selfishly
offloads its task to one of the edge servers or the remote cloud.
Analyzing the equilibrium of the two-stage game is challenging
due to edge servers’ heterogeneity and the congestion effect
caused by resource sharing among users. We first prove that in
Stage I, users’ selfish computation offloading game is a potential
game and admits a unique Nash equilibrium (NE), for which we
derive the explicit expression. We then analyze edge servers’ price
competition game in Stage I and characterize the conditions for
the uniqueness of the NE. We show that at equilibrium, users
only choose low-priced edge servers, and hence edge servers with
low marginal costs can win the price competition, which reflects
the improvement of economic efficiency in competitive markets.
Moreover, it is surprising that the equilibrium prices do not
monotonically increase with the task execution delay. This is
because a long execution delay gives a chance to edge servers
with high marginal costs to win the competition, which results
in more fierce competition among edge servers.

I. INTRODUCTION

With the development of mobile devices and Internet of
Things (IoT) technologies, various applications (e.g., au-
tonomous driving, interactive gaming with virtual reality, and
face recognition) emerge and gain more and more popularity
among mobile users [1]. These applications are usually delay-
sensitive and computation-intensive. Cloud computing is a
traditional approach to execute these application tasks by using
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Fig. 1. An example of the multi-server edge computing network

ample computing resources on the cloud. However, transmit-
ting the input data of the application tasks to the remote cloud
over the backbone networks may lead to unbearable delays
to users [2]. Edge computing appears as a promising solution
to this dilemma. It performs data processing on edge servers
which are close to users, and hence avoids the transmission
delay at the backhaul of the network [3].

As an important technology to improve users’ experiences
of the delay-sensitive and computation-intensive applications,
edge computing becomes the focus of many companies. Major
telecom operators actively launch their edge computing plat-
forms, such as 5G Edge by Verizon and OpenSigma by China
Mobile. Tech giants also provide many commercial products
and services of edge computing, such as Azure Edge Zones
from Microsoft, EdgeGallery by HUAWEI, and Wavelength
framework by Amazon. According to IDC, a quarter of
organizations will integrate edge computing with applications
built on cloud platforms to improve business agility by 2024
[4]. As a result, in some areas with massive mobile users, there
may be multiple edge servers deployed by different business
entites [5] [6]. We show an example of the multi-server edge
computing network with a remote cloud and multiple edge
servers in Fig. 1. Despite the commercial success of edge
computing in practice, little work performs comprehensive
economic analysis for multi-server edge computing networks.

In a multi-server edge computing network, mobile users
who generate delay-sensitive and computation-intensive tasks
need to decide where to offload their tasks. If a user offloads its
task to the remote cloud, it will experience transmission delay
due to the congestion at the backhaul of the network. On the
other hand, if the user offloads its task to edge servers, it will
choose the edge server that minimizes its cost of completing
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Each edge server i € 7 sets its price p; to maximize its
profit.
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Fig. 2. Two-stage game

the task. Specifically, users need to pay to edge servers
for using their computation resources. Besides, users will
experience computation delay due to the limited computation
resource on each edge server. Furthermore, when a large
number of users choose the same edge server simultaneously,
users will share the computation resource on the edge server
which may cause congestion. In summary, each user selfishly
makes its computation offloading decision to minimize its cost
of completing the task considering the congestion caused by
other users. This motivates us to address the first fundamental
question in multi-server edge computing networks:

Key Question 1: How do mobile users selfishly make their
computation offloading decisions?

Considering users’ selfish computation offloading behaviors,
edge servers decide the prices charged to users. Since different
edge servers usually belong to different business entities, they
will compete for market shares to maximize their own profits.
We consider the competition among edge servers with hetero-
geneous marginal service costs due to, for example, different
power consumption levels or different operating costs. The
heterogeneity of edge servers makes the price competition
quite different from the traditional Bertrand competition [7].
Moreover, the congestion effect due to resource sharing among
users further complicates the price competition. Specifically,
if an edge server sets a low price, a large number of users will
choose to offload tasks to the low-priced edge server, which
leads to a high congestion level. This will increase users’ task
completion time, and hence discourage users from choosing
this edge server. Therefore, edge servers need to carefully
choose their prices to control the congestion levels and users’
offloading decisions. Furthermore, the existence of the remote
cloud also affects edge servers’ price competition. If the prices
charged by edge servers are high, users can choose to offload
their tasks to the remote cloud. In summary, this motivates
us to address the second fundamental question in multi-server
edge computing networks:

Key Question 2: How do heterogeneous edge servers set
their prices to maximize their profits?

As far as we know, we are the first to make the compre-
hensive economic analysis for multi-server edge computing
networks. We model the interactions between edge servers and
users as a two-stage game as shown in Fig. 2. In Stage I,
each edge server determines its service price to maximize its
profit. In Stage II, each user makes its computation offloading
decision to minimize its cost of completing the task. We list
the main contributions of this paper as follows:

e Novel Game Analysis in Multi-Server Edge Computing
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Networks: To the best of our knowledge, this is the
first paper that analyzes the price competition among
heterogeneous edge servers considering users’ selfish
computation offloading behaviors in multi-server edge
computing networks through a game-theoretic approach.
The heterogeneity of edge servers and the congestion
effect due to resource sharing among users complicate
the equilibrium analysis.

e Users’ Selfish Computation Offloading: We model users’
behaviors in Stage II as a selfish computation offloading
game, which is a population game. By carefully analyzing
the structural property of the game, we show that it is a
potential game. We discuss its Nash equilibrium (NE)
in two cases depending on whether the prices charged
by edge servers are high such that some users offload
tasks to the remote cloud at equilibrium. We prove the
uniqueness of the NE in both cases and derive the explicit
expression of the NE.

o Price Competition among Heterogeneous Edge Servers:
We model the behaviors of heterogeneous edge servers
in Stage I as a price competition game. Similarly, we
discuss the NE in two cases depending on whether edge
servers have high marginal costs. We characterize the
conditions for the uniqueness of the NE and derive its
explicit expression.

e Practical Insights: Our equilibrium analysis helps un-
derstand how users make their computation offloading
decisions, which facilitates edge servers to better decide
their prices. Specifically, users only choose low-priced
edge servers at equilibrium, and hence edge servers
with low marginal costs can win the price competition.
Furthermore, it is surprising that the equilibrium prices do
not monotonically increase with the task execution delay.

We organize the rest of the paper as follows. We review
the related work in Section II and introduce the system
model in Section III. In Section IV, we analyze users’ selfish
computation offloading game. In Section V, we analyze edge
servers’ price competition game. We show simulation results
in Section VI and conclude in Section VII.

II. RELATED WORK

Existing literature has extensively studied the computation
offloading problem in edge computing. In this following, we
review literature regarding the optimization-oriented compu-
tation offloading and the equilibrium-oriented computation
offloading, respectively.

A. Optimization-oriented Computation Offloading

A rich body of literature studies the optimization-oriented
computation offloading problem with different optimization
goals for different application scenarios [8] [9]. For example,
Ma et al. in [10] considered the impact of service caching
on computation offloading and jointly optimized these two
decisions to minimize the overall outsourcing traffic to the
cloud. Zhao et al. in [11] designed an offloading scheme for
dependent tasks that are executed in some order. Xu et al.
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in [12] proposed a distributed algorithm to optimize caching
and offloading strategies to minimize the average delay in a
long period of time. Li et al. in [13] optimized the cost of
task offloading while satisfying the service delay constraints
for tasks.

The papers for optimization-oriented computation offload-
ing usually aim to optimize the overall system performance
from the network operator’s point of view, and need a central
controller to schedule computation tasks. In our paper, how-
ever, we consider the multi-server edge computing networks
where each edge server aims to optimize its own benefit.

B. Equilibrium-oriented Computation Offloading

Few works study the equilibrium-oriented task offloading
problem where players selfishly optimize their own benefits.
Chen et al. in [14] studied users’ channel selection problem
for computation offloading in a multi-channel interference
environment and proposed a distributed approach to solve
it. Yan et al. in [15] proposed a two-stage dynamic game
to model and analyze users’ offloading decisions as well
as the edge server’s caching decision and pricing strategy
for each service. Since they consider one edge server, the
offloading decision is simply a binary variable. References
[3] and [16] studied users’ computation offloading problem
in a multi-server network. Specifically, Apostolopoulos et al.
in [3] analyzed users’ risk-seeking or loss-aversion behaviors
and Zhang et al. in [16] focused on the load balancing of
multiple servers. Furthermore, some papers, as summarized in
arecent survey [17], studied the computing resource allocation
problem in edge computing through the auction approach.
However, no prior work performs a comprehensive economic
analysis for multi-server edge computing networks.

In this paper, we focus on the price competition among
heterogeneous edge servers in a multi-server edge computing
network, considering users’ selfish computation offloading
behaviors. This problem has not been studied in the existing
literature. Our model incorporates the heterogeneity of edge
servers, the congestion effect due to resource sharing among
users, and the existence of the remote cloud, which makes our
model and the derived insights more practically significant.

III. SYSTEM MODEL

In this section, we introduce the system model as shown in
Fig. 1. We consider a multi-server edge computing network
with a remote cloud and a set Z = {1,2,...,1} of edge
servers in a densely populated area with a large number of
users in set N'= {1,2,..., N}. Each user needs to complete
a delay-sensitive and computation-intensive application task
(e.g., autonomous driving or interactive gaming on VR plat-
forms). Users can offload their tasks to the remote cloud or
one of the edge servers, where each edge server sets a price
for executing users’ tasks.

We model the interactions between edge servers and users
as a two-stage game, as shown in Fig. 2. In the following, we
first introduce users’ selfish computation offloading problem
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in Stage II, and then present edge servers’ price competition
problem in Stage I.

A. Users’ Selfish Computation Offloading Problem

Each user makes its computation offloading decision to
minimize its cost of completing the task. We denote s, €
{0,1,...,1} as the computation offloading decision of user
n € N. Specifically, s,, = 0 indicates that user n offloads its
task to the remote cloud, and s,, = ¢, Vi € 7 indicates that user
n offloads its task to edge server ¢. We denote user n’s task
by 7, = (bn,dy). Specifically, b,, represents the size of the
input data (in bits) required by the task (e.g., the input figures
or the machine learning models for the target detection task),
and d,, represents the computation workload (in CPU cycles)
of performing the task. For simplicity of analysis, we assume
that each user needs to complete the same task (e.g., target
detection in autonomous driving) [18], and hence b,, = b and
d, =dforallneN.

Next, we first introduce users’ costs of completing tasks, and
then formulate users’ selfish computation offloading game.

1) Users’ Cost Model: Users experience different costs
when offloading their tasks to edge servers and the remote
cloud. In the following, we first model users’ costs when
offloading tasks to edge servers, and then model users’ costs
when offloading tasks to the remote cloud.

Offloading Tasks to Edge Servers: When a user offloads
its task to edge server ¢ € Z, its cost of completing the task
is mainly due to the price p; charged by the edge server and
the delay of executing the task. For the task execution delay,
since the edge server is close to the user, the data transmission
from the user to the edge server does not suffer from the long
transmission delay at the backhaul of the network, and hence
the transmission delay is negligible [3]. Therefore, we focus on
the computation delay due to the limited computation resource
on the edge server.

The computation delay on edge server i depends on the
computation capacity f; (in CPU cycles per second) of edge
server ¢ and the amount of tasks offloaded to edge server
1. Since we consider the interactions among a large number
of users in a densely populated area, the amount of tasks
offloaded to each edge server depends on the distribution of
users’ offloading strategies. Specifically, given the computation
offloading strategy profile s = {s,, : ¥n € N'}, the proportion
of the user population offloading tasks to edge server ¢ is

2nen Lisu=i) 0
N )
where 1, —;3 = 1if s, =4, and 1, —j =0 if s, #i. We
denote the population state under the computation offloading
strategy profile s by @ = {z; : Vi € {0} UZ}. Note that when
the number of users N is large, the computation offloading
strategy of one user does not affect the population state [19].
Under the population state @, the computation delay [14]
[15] of user n who offloads its task to edge server ¢, i.e.,
Sp =1, 18

Ty =

{L‘ZNCZ
fi

t(sp =1,2) =

2
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Recall that d is the computation workload of a task. Eq. (2)
models the fact that users who offload tasks to the same edge
server share the computation resource together. Therefore,
when a large number of users choose the same edge server,
congestion occurs and leads to a long computation delay.
For simplicity of analysis, we assume that all edge servers
have the same computation capacity, i.e., f; = f,Vi € T
[20]. In this case, we denote TF = ]\}d, which is the
maximum computation delay incurred on an edge server when
all users offload tasks to the edge server. We can calculate the
computation delay on edge server i as

t(sp =i, x) = 2;TF. (3)

We define the total cost [14] of completing the task on edge
server ¢ € T as

F(s, =i,x) = p; + A\o;TF, )

where \ denotes users’ sensitivity to delay. A larger A indicates
that users are more sensitive to the delay of executing the task.

Offloading Tasks to the Remote Cloud: When a user
offloads its task to the remote cloud, its cost of completing
the task is mainly due to the delay of executing the task.
We assume that the remote cloud does not charge users
for executing tasks. For example, Tesla provides self-driving
services to its car owners and does not charge extra fees for
executing the self-driving tasks [21]. For the task execution
delay, since the remote cloud usually has ample computation
resources, the computation delay is negligible [10]. Therefore,
the task execution delay is mainly due to transmitting the input
data of the task from the user to the remote cloud through the
backbone network. We denote such latency as a constant 7'¢
[22]. In this case, we define the cost of completing the task
on the remote cloud as

F(sp =0,2) = \T°. (5)

2) Selfish Computation Offloading Game: Since each user’s
cost of completing the task depends on not only its own
offloading decision but also other users’ decisions, we for-
mulate users’ computation offloading problem as a selfish
computation offloading game. Since we consider the interac-
tions among a large number of users, the selfish computation
offloading game can be modeled as a population game [23]
as follows, where each user’s total cost depends on its own
strategy and the distribution of other users’ strategies.

Game 1 (Users’ Selfish Computation Offloading Game in
Stage 11):

o Players: the set N of users.

o Strategies: Each user n € N chooses its computation

offloading strategy s,, € {0,1,...,T}.

o Population state: The population state is represented
by the vector * = {xzg,z1,...,27}, where x; is the
proportion of the user population choosing edge server
1 as calculated in (1).

o Objectives: Each user n € N aims to minimize its total
cost F'(sp,x).

In Game 1, each user n € N selfishly makes its computa-
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tion offloading decision to minimize its own cost, given the
population state x. Specifically, given the population state x,
the best response of each user n € N is defined as

BR,(x) =arg min F(s,,x). (6)

sn€{0}UZL

We next define the Nash equilibrium (NE) of Game 1.

Definition 1 (Nash Equilibrium of Game 1): The population
state * is a Nash equilibrium of Game 1 if and only if the
strategy of each user belongs to its best response under x*,
i,e., sp, € BR,(x*),Vn e N.

The Nash equilibrium is a population state under which each
user’s strategy is the best response to the population state. We
will analyze the NE of Game 1 in Section IV.

B. Edge Servers’ Price Competition Problem

In this subsection, we first model the profit of each edge
server, and then formulate the interactions among edge servers
as a price competition game.

1) Edge Servers’ Profit Model: Edge servers in set Z belong
to different business entities, and they will compete for users
through price competition. Specifically, each edge server ¢ € 7
sets a price p; for executing users’ tasks. Furthermore, edge
servers are heterogeneous in their marginal service costs (e.g.,
power consumption levels or operating costs). We denote the
marginal cost of edge server ¢ € Z for serving a user as c;.
In this case, we can calculate the profit of each edge server
1€ as

H;(pi,p-i) = (pi — ci)zi(pi, p—i) N. @)

Here pP—i = {pl; vy Di—1yPit1y - - - 7p1}. Note that the
proportion of the user population x;(p;, p—;) choosing edge
server ¢ is the result of the price competition among edge
servers, and hence depends on the pricing strategies of all
edge servers.

2) Price Competition Game: We model the competition
among edge servers as a price competition game as follows.

Game 2 (Price Competition Game in Stage 1):

o Players: the set Z of edge servers.
« Strategies: Each edge server ¢ € 7 decides its price p;
charged to users.
o Payoffs: Each edge server ¢ € 7 aims to maximize its
profit H;(p;, p—;) calculated in (7).
Next we define the Nash equilibrium of Game 2.
Definition 2 (Nash Equilibrium of Game 2): A price profile
p* = {p; : Vi € I} is a Nash equilibrium of Game 2 if for
each edge server ¢ € Z,

H;(pi,p~;) > Hi(pi,p~;), for all p; > ¢;. ®)
We will solve the two-stage game between edge servers and
users through backward induction.
IV. STAGE II: USERS’ COMPUTATION OFFLOADING
DECISIONS

In this section, we analyze the Nash equilibrium of users’
selfish computation offloading game (i.e., Game 1). Solving
the NE of Game 1 by directly analyzing each user’s best
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response is difficult since it is challenging to compute the
fixed point of the best response mapping. Furthermore, the
congestion effect due to resource sharing among users on the
same edge server and the existence of the remote cloud couple
users’ decisions in a complicated manner.

Instead of directly analyzing users’ best response, we will
show that users’ selfish computation offloading game is a
potential game. In this case, all users’ costs depend on the
potential function, and we can characterize the NE by solving
an optimization problem.

Definition 3 (Potential Game): A game is a potential game
[24] if there exists a continuously differentiable potential
function G () such that for each feasible population state x,
8% (@) = F(i,z),Vi € {0} UT.

The key step to identify a potential game is to construct
the potential function, which requires careful analysis of
the specific structure of the game. Next in Theorem 1, we
find a potential function G(x) and show that users’ selfish
computation offloading game is a potential game.

Theorem 1: Users’ selfish computation offloading game is
a potential game with a potential function

G(z) =Y ,cr AANTFa? + pia;) + AT . 9)

Proof See Appendix A in the online technical report [25].

Since users’ selfish computation offloading game is a po-
tential game, the Nash equilibrium x* is the optimal solution
to the following optimization problem:

min G(x) (10a)

xT
subject to ZiE{O}UI x; =1, (10b)
x; >0,Vie {0} UZ. (10c)

Specifically, the Nash equilibrium x* satisfies the conditions
characterized in the following lemma.

Lemma 1: The computation offloading strategy profile a*
is the Nash equilibrium of Game 1 if and only if there exist
a={a;:Vie {0}UZ} € R’™! and B € R such that:

F(i,z*) = a; + B, Vie {0} UT, (11a)
a;x; =0,a; >0, Vie {0} UZ, (11b)
Zie{O}UI z; =1, (11¢)
2 >0, Vi e {0} UT. (11d)

Proof See Appendix B in the online technical report [25].

By analyzing the conditions in Lemma 1, we next show that
the NE of Game 1 is unique. Specifically, we derive the explicit
expression for the NE, which falls into two cases depending on
whether the prices set by edge servers are high such that some
users offload their tasks to the remote cloud at equilibrium.
Without loss of generality, we assume that edge servers are
ranked in an ascending order of their prices, i.e., p1 < p2 <
-++ < py. Given a price profile p = {p; : Vi € Z}, we find an
edge server i*" which satisfies

Pitn < ATC < Dith 1.
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Theorem 2: Users’ selfish computation offloading game
admits a unique Nash equilibrium «* = {z} : Vi € {0} UZ},
which falls into one of the following two cases.

o Case I: If the price profile p = {p; : Vi € Z} set by edge
servers satisfies

S i ATE > it ATC (12)
then the NE x* is
ATE 4 307 py —ittATC
\TE , ift=0,
z; =4 ATC —p; ,
TEP7 if 1 S 7 S Z’th,
0, if i > it
(13)

o Case II: If the price profile p = {p; : Vi € I} set by
edge servers satisfies

S pi+ ATE < ithATO, (14)

we find the edge server i which satisfies ip; — Zle p; <
NTE <iip;y —>i_, pi- In this case, the NE z* is

B g .

AT +Z_j:1p] 5
i M

I’* = 2 s

v N\TE
0, ifi=0o0ri>1.

if 1 <i<i, (15)

Proof See Appendix C in the online technical report [25].

Theorem 2 shows that when the Brices set by edge servers
are high (i.e., in Case I where Zi;l pi + ATF > ) TC),
there will be a positive proportion x; of the user population
offloading tasks to the remote cloud. Intuitively, some users
offload tasks to the remote cloud at equilibri}?m if the average
cost of offloading to edge servers (i.e., (22;1 pi + ATE) /ith)
is higher than the cost of offloading to the remote cloud
(.e., AT€). We can see that x; increases with the prices
pi,i < i'" charged by edge servers, and decreases with the task
execution delay T incurred on the cloud. Furthermore, users
who offload tasks to edge servers only choose the edge servers
with low prices, i.e., p; < p;en. The proportion 7,7 < ith of
the user population offloading tasks to edge server ¢ decreases
with the price p; and the maximum computation delay 7%
incurred on edge servers, and increases with the task execution
delay 7 incurred on the cloud. No user offloads its task to the
edge servers with high prices (i.e., p; > p;:) at equilibrium.
The number of edge servers i*" to which users offload tasks
increases with 7C. That is to say, when the task execution
delay incurred on the cloud is long, users choose more edge
servers for computation offloading.

When the p}rices set by edge servers are low (i.e., in Case
II where Zi;l pi + ATF < itPATC), users only offload
tasks to the edge servers with low prices, i.e., p; < p;.
The proportion z},i < i of the user population offloading
tasks to edge server ¢ decreases with edge server i’s price
p; and increases with the prices of other edge servers. No
user offloads its task to the remote cloud or the edge servers
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with high prices (i.e., p; > p;) at equilibrium. Besides, the
constraint ip; — > ;_, p; < AT® <'ip;,; — >_:_, p; implies
that the number of edge servers ¢ to which users offload tasks
increases with the maximum computation delay 7% = Nd/f.
This indicates that when the computation workload d of
executing a task is high or the computation capacity f of
edge servers is small, users tend to offload tasks to more edge
servers to ease the congestion on each edge server.

V. STAGE I: EDGE SERVERS’ PRICE DECISIONS

In this section, we analyze the Nash equilibrium of edge
servers’ price competition game (i.e., Game 2). The equilib-
rium analysis of Game 2 is challenging due to the following
reasons. First, the heterogeneity of edge servers makes the
price competition quite different from the traditional Bertrand
competition [7]. Second, the congestion effect due to users’
resource sharing and the existence of the remote cloud couple
edge servers’ price decisions in a complicated way.

Next we will discuss the NE of Game 2 in two cases
depending on whether the marginal costs of edge servers are
too high such that some users offload their tasks to the remote
cloud under the equilibrium prices. Without loss of generality,
we assume that edge servers are ranked in an ascending order
of their marginal costs, i.e., ¢c; < co < --- < ¢;. Later we will
show that edge servers’ equilibrium prices follow the same
order of their marginal costs, i.e., p7 < p5 < --- < p7. In the
following, we first discuss the case where the marginal costs
of edge servers are high. We then discuss the case where the
marginal costs of edge servers are low.

A. Case I: Edge Servers Have High Marginal Costs

When edge servers have high marginal costs, they can only
charge high prices to users at equilibrium, under which there
is a positive proportion of the user population offloading tasks
to the remote cloud.

Before characterizing the NE, we first calculate the profit
of each edge server in this case. According to Theorem 2,
under a price profile p, the proportion of the user population
offloading tasks to edge server 7 € 7 at equilibrium is z} =

C_,.
max{)‘T pi

T ,0} . Therefore, the profit of edge server i is

ATC — p,
H;(pi,p—i) = N(p; — ¢;) max {)\TEP

We find an edge server ¢ which satisfies

Cjc S )\TC S Cijc41-

,0}. (16)

The following theorem characterizes the unique NE of Game
2 when edge servers have high marginal costs.
Theorem 3: When the marginal costs of edge servers satisfy

S ¢ > iATC — 22TE, (17)
edge servers’ price competition game admits a unique Nash
equilibrium p* = {p} : Vi € T}, which is
c; + ATC

2 )
Ciy if i > 4.

. if i < i,
p; = = (18)
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Proof See Appendix D in the online technical report [25].

Theorem 3 shows that when edge servers have high marginal
costs that satisfy (17), Game 2 admits a unique NE. Specifi-
cally, at equilibrium, the edge server who has a low marginal
cost (i.e., ¢; < c¢je) sets its equilibrium price to be higher than
its marginal cost (i.e., p; = % > ¢;) and obtains a posi-
tive proportion of the user population (i.e., ] = ’\2T /\CT_ECZ' > 0).
Note that in this case, the price competition is mainly the
competition between edge servers and the remote cloud, and
hence edge servers’ equilibrium prices increase with the task
execution delay T incurred on the cloud. On the other hand,
the edge server who has a high marginal cost (i.e., ¢; > c;c)
sets its equilibrium price to be equal to its marginal cost (i.e.,
p; = ¢;) and obtains no user at equilibrium (i.e., z; = 0) due
to its high equilibrium price. The number of edge servers ¢ to
which users offload tasks increases with 7°C. That is, when the
execution delay incurred on the remote cloud increases, more
edge servers have the chance to win the price competition.

B. Case II: Edge Servers Have Low Marginal Costs

When edge servers have low marginal costs, they can charge
low prices to users at equilibrium, under which all users
offload their tasks to edge servers at equilibrium.

Before characterizing the NE, we first calculate the profit
of each edge server in this case. According to Theorem 2,
under a price profile p, the proportion of the user population
offloading tasks to edge server ¢+ € Z at equilibrium is

i
TP+ .y Dy .
* max {‘71 J B

¥ = —TF — )\TE,O}, where ¢ satisfies

ip; — 22:1 pi < NTE < ip;, — 22:1 p;. Therefore, the
profit of edge server ¢ is
ATE + > j=1Pi Di
H;(pi,p—i) = N(pi—ci) maX{ =TF ~ 5780
19)
The following theorem characterizes the NE of Game 2
when edge servers have low marginal costs.

Theorem 4: When the marginal costs of edge servers satisfy

S e SA°ATC — 2ATE, (20)

=
the Nash equilibrium p* = {p} : Vi € I} of edge servers’
price competition game exists and falls into one of the fol-
lowing two cases.

Case (a): If there exists an edge server i such that

_ 1 /: ;
] (7’6§+1 - Zj:l Cj) )

A‘fl . : 2
Z (Zcz =21 Cj) <ATP < Zﬁ
7= 2

2i—1
(2D
the equilibrium price profile p* is unique and
’Z -1 c; + 2_ Cj E ~
. ( )A 2j=1% AT . ifi<i,
p; = 2 — 1 i—1 (22)
Cis if i > 7.
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Fig. 3. The equilibrium decisions of users and edge servers under different
values of T'¢

Case (b): Otherwise, there exists an edge server 7 such that

i—1 (- i E
ﬁ (ZC'{_,’_l - ijl C]> < T

: (23)

< —_

21+1

In this case, edge servers’ price competition game admits

multiple Nash equilibria. Specifically, any price profile p* that
satisfies the following conditions is a NE:

i+1

VA
—C: + —C; < :‘ 24
2l Ty @4
- 7 7—1 l<i<i
—C; = Ci, S1Ss
2 —1 " 21
S pp =iz, — AP, (25)

Proof See Appendix E in the online technical report [25].

Theorem 4 shows that when edge servers have low marginal
costs that satisfy (20), the NE of Game 2 exits but may not be
unique. We characterize the condition (21) under which the NE
of Game 2 is unique and derive the explicit expression of the
NE in (22). Specifically, at equilibrium, the edge servers with
low marginal costs (i.e., ¢; < ¢;) win the price competition.
Since the price competition is mainly the competition between
edge servers with low marginal costs (i.e., ¢; < ¢;), the
equilibrium price p; of edge server ¢ where ¢; < c; increases
with its own marginal cost ¢; and other edge servers’ marginal
costs ¢j,j # 4,j < i. The edge servers who have high
marginal costs (i.e., ¢; > ¢;) obtain no user (i.e., zj = 0)
at equilibrium and set the equilibrium prices equal to their
marginal costs (i.e., pj = ¢;).

We then characterize Case (b) where there are multiple Nash
equilibria. At equilibrium, edge server ¢ whose marginal cost
is lower than c; wins the price competition. Edge servers
with marginal costs higher than c; set their prices equal to
their marginal costs (i.e., p; = ¢;) and obtain no user (i.e.,
27 = 0) at equilibrium. Different from the equilibrium in Case
(a), the equilibrium price profile in Case (b) can maximize
the profits of edge servers 1,2...,¢ without introducing edge
server i+ 1 to win the market competition. This is guaranteed
by (25), under which edge server i + 1 obtains no user under
its equilibrium price, and an arbitrarily small decrease in its
price enables it to acquire users. Moreover, the number of edge
servers 7 increases with the maximum computation delay 7%

ISBN 978-3-903176-37-9 © 2021 IFIP
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Fig. 4. The equilibrium decisions of users and edge servers under different
values of TF

to ease the congestion on each edge server.

VI. SIMULATION RESULTS

In this section, we verify our analysis of the equilibrium
behaviors of users and edge servers in the two-stage game
through numerical experiments.

We consider a multi-server edge computing network with
I = 4 edge servers. We assume that A = 1, 7¢ =7, TF = 3,
and the marginal costs of 4 edge servers are {2, 3,6,8} when
they are treated as fixed parameters.

We first show the equilibrium decisions of users and edge
servers under different values of 7 in Fig. 3. We can see that
when T¢ < 5.4, at equilibrium of the two-stage game, there
is a positive proportion x§ of the user population offloading
tasks to the remote cloud due to the small task execution delay
T incurred on the cloud, and x, decreases with T¢, which
is consistent with our analysis in Theorem 2. In this case,
edge servers with low marginal costs (i.e., ¢; < T) set their
equilibrium prices p; > ¢; and obtain a positive proportion
7 > 0 of the user population. Furthermore, p; increases
with T, which is consistent with our analysis in Theorem
3. When T > 5.4, at equilibrium of the two-stage game,
all users offload their tasks to edge servers due to the large
task execution delay T incurred on the cloud. In this case,
edge servers 1, 2, and 3 who have low marginal costs set their
equilibrium prices p; > ¢; independent of T and obtain a
positive proportion 7 > 0 of the user population, which is
consistent with our analysis in Theorem 4.

We then show the equilibrium decisions of users and edge
servers under different values of 7% in Fig. 4. We can see
that when TF < 5, at equilibrium of the two-stage game,
all users offload their tasks to edge servers due to the small
computation delay TF on edge servers. In this case, edge
servers with low marginal costs set their equilibrium prices
p; > c; and obtain a positive proportion z; > 0 of the
user population. Furthermore, p; generally increases with TEF,
which is consistent with our analysis in Case (a) in Theorem
4. Note that when TF increases from 0.2 to 0.4, edge server
1 decreases its equilibrium price pj due to the competition
with edge server 2 which joins the market in this process.
And when TF increases from 2.4 to 2.6, edge servers 1 and
2 decrease their equilibrium prices to prevent edge server 3
from joining the market. When T'¥ > 5, a positive proportion
xg of the user population offload tasks to the remote cloud
due to the large computation delay 77 on edge servers. Note
that z}; increases with T and -} decreases with T, which is
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consistent with our analysis in Theorem 2. In this case, edge
servers’ equilibrium prices are independent of 7%, which is
consistent with our analysis in Theorem 3.

We finally show the equilibrium decisions of users and edge
servers under different values of ¢; in Fig. 5. We can see that
when c; < 1.4, users only offload their tasks to edge servers 1
and 2 and the sum of their prices keeps unchanged until edge
server 3 joins in. It is consistent with the result in Case (b)
in Theorem 4. When 1.4 < ¢; < 5.8, all users offload their
tasks to edge servers 1, 2 and 3. The equilibrium prices of
edge servers 1, 2 and 3 increase with c¢;, which is consistent
with our analysis in Case (a) in Theorem 4. Furthermore,
the proportion 7 of users choosing edge server 1 decreases
with ¢; due to the increasing equilibrium price pj. However,
although p5 and p3 increase with c;, the proportions of users
x5 and x5 choosing edge servers 2 and 3 increase with c¢;. The
reason is that the price increases of edge servers 2 and 3 are
lower than the price increase of edge server 1. So even though
they increase their prices, they are more competitive than edge
server 1. And when ¢; > 5.8, some users offload their tasks
to the remote cloud. The equilibrium prices sharply decrease
due to the remote cloud obtaining some users. Afterwards, the
equilibrium price of each edge server only depends on its own
cost and the execution delay incurred on the cloud, which is
consistent with the analysis in Theorem 3.

VII. CONCLUSION

In this paper, we study the price competition of heteroge-
neous edge servers in multi-server edge computing networks,
considering users’ selfish computation offloading behaviors.
We model the interactions between edge servers and users
as a two-stage game and analyze its equilibrium. We derive
some useful insights that help understand how users make
their computation offloading decisions, which facilitates edge
servers to better decide their prices. For future work, there
are several interesting directions to explore. For example, it
would be interesting to study edge servers’ caching decisions
for heterogeneous tasks and analyze how the caching problem
affects edge servers’ pricing decisions and users’ computation
offloading decisions. It is also interesting to analyze the
incomplete information scenario where each user does not
know the strategies of other users.
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