
Implementation guide

QnABot on AWS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights
reserved.Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights
reserved.

QnABot on AWS Implementation guide

QnABot on AWS: Implementation guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.Copyright ©
2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

QnABot on AWS Implementation guide

Table of Contents

Solution overview .. 1
Use cases .. 2
Features and benefits .. 2
Concepts and definitions .. 5

Architecture overview ... 7
Architecture diagram ... 7
AWS Well-Architected pillars ... 9

Operational Excellence .. 10
Security ... 10
Reliability .. 11
Performance Efficiency .. 11
Cost Optimization ... 12
Sustainability .. 12

Architecture details ... 13
Amazon Lex web client ... 13
Amazon Alexa devices ... 13
Content designer UI .. 13
AWS services in this solution ... 14
How QnABot on AWS works .. 16

Plan your deployment ... 21
Cost ... 21

Option 1: Default basic deployment .. 21
Option 2a: SageMaker embeddings only ... 23
Option 2b: Amazon Bedrock embeddings only .. 23
Option 3a: SageMaker embeddings and LLMs ... 23
Option 3b: Amazon Bedrock embeddings and LLMs .. 24
Option 4a: SageMaker embeddings and LLM and RAG using Amazon Kendra 24
Option 4b: Amazon Bedrock embeddings and LLM and RAG using Amazon Bedrock
knowledge base .. 25
Option 5: Amazon Bedrock embeddings and LLM and RAG using Amazon Bedrock
knowledge base and Guardrails for Amazon Bedrock .. 25

Security ... 26
Security best practices ... 26
Amazon S3 access logging bucket configuration ... 26

iii

QnABot on AWS Implementation guide

Multi-factor authentication (MFA) in Amazon Cognito user pools ... 26
Single sign-on with AWS IAM Identity Center .. 26
AWS WAF for Amazon API Gateway ... 27
Creating a Custom Domain in Amazon API Gateway .. 27
Children Online Privacy Protection Act (COPPA) settings for Amazon Lex 27
AWS CloudFormation parameters ... 27
Amazon Cognito .. 28
AWS Lambda .. 28
IAM roles ... 28
CloudWatch Logs .. 28
Data storage and protection .. 28

Quotas .. 30
Quotas for AWS services in this solution .. 30
AWS CloudFormation quotas ... 31
AWS SageMaker endpoint quota ... 31
Amazon Lex quotas .. 31

Amazon DynamoDB backups ... 32
Supported AWS Regions ... 32

Deploy the solution ... 33
Deployment process overview ... 33
AWS CloudFormation templates ... 34

Deploy via main template .. 34
Deploy via VPC template .. 34

Step 1: Launch the stack .. 35
Step 2: Launch the chatbot content designer ... 45
Step 3: Populate the chatbot with your questions and answers .. 47

Table 1: Sample Q and A data .. 48
Step 4: Interact with the chatbot ... 50

Getting answers using an Amazon Lex web client user interface ... 50
Getting answers using Amazon Alexa .. 52

Monitor the solution with Service Catalog AppRegistry ... 53
Activate CloudWatch Application Insights .. 53
Confirm cost tags associated with the solution .. 55
Activate cost allocation tags associated with the solution .. 55
AWS Cost Explorer ... 56

Update the solution .. 57

iv

QnABot on AWS Implementation guide

Troubleshooting ... 59
Contact AWS Support ... 59

Create case ... 59
How can we help? .. 59
Additional information .. 59
Help us resolve your case faster ... 60
Solve now or contact us .. 60

Uninstall the solution ... 61
Using the AWS Management Console ... 61
Using AWS Command Line Interface ... 61

Advanced setup ... 62
Adding images to your answers .. 63
Displaying rich text answers .. 65
Using SSML to control speech synthesis ... 67
Using topics to support follow-up questions and contextual user journeys 68
Adding buttons to the web UI .. 69
Integrating Handlebars templates .. 71
Quizzes ... 72
Setting Amazon Lex session attributes ... 73
Specifying Lambda hook functions .. 74
Using keyword filters for more accurate answers and customizing “don’t know” answers 75

Keyword filters .. 75
Custom “Don’t Know” answers .. 76

Configuring intent and slot matching ... 76
Item ID setup ... 77
Creating custom intent with slots and slot types .. 77
Creating custom slot types ... 80
Accessing slot values .. 81
Import sample intent and slot types .. 82
Lex rebuild .. 82
Testing the experience ... 82
Notes and considerations .. 83

Configuring the chatbot to ask the questions and use response bots .. 84
Response bots .. 85
Advancing and branching through a series of questions ... 86

Bot routing .. 88

v

QnABot on AWS Implementation guide

Configuration ... 89
Message protocol for a new bot router implemented in Lambda .. 90
Sample bot router .. 90

Connecting QnABot on AWS to an Amazon Connect call center ... 91
Connecting QnABot on AWS to Genesys Cloud .. 92
Tuning, testing, and troubleshooting unexpected answers ... 93

Tuning answers using the content designer ... 93
Testing all your questions ... 93
Tuning the chatbot’s ASR .. 94
Monitoring QnABot on AWS usage and user feedback .. 95
Using Amazon CloudWatch to monitor and troubleshoot ... 98

Importing and exporting chatbot answers ... 99
Modifying configuration settings ... 101

Configure keyword filters feature ... 101
Configure words and phrases replacement in user questions ... 101
Configure pre-processing and post-processing Lambda hooks .. 102
Configure multi-language support ... 103
Using automatic translation ... 105
Configure personally identifiable information (PII) rejection and redaction 106

Integrating Amazon Kendra .. 108
Using Amazon Kendra FAQ for question matching ... 108
Using Amazon Kendra search as a fallback source of answers ... 109
Amazon Kendra redirect ... 110
Configuring an Item ID with Amazon Kendra redirect ... 110
Web page indexer ... 111

Semantic question matching using text embeddings LLM ... 112
Enabling embeddings support ... 114
Settings available for text embeddings ... 117
Recommendations for tuning with LLMs .. 120
Test using example phrases ... 121

Text generation and query disambiguation using LLMs .. 122
Enabling LLM support ... 124
Query disambiguation and conversation retrieval .. 129
Text generation for question answering .. 129
Settings available for text generation LLMs configuration .. 134

Guardrails for Amazon Bedrock Integration and Knowledge Base Integration 138

vi

QnABot on AWS Implementation guide

Settings for Guardrail in QnABot on AWS .. 138
Setting up a custom domain name for QnABot content designer and client 139

Step 1: Set up custom domain name for API Gateway .. 139
Step 2: Custom domain API mapping setup in API Gateway .. 140
Step 3: Update QnABot API Resources in API Gateway ... 140
Step 4: Update QnABot Cognito user pool ... 141
Update the callback URLs for app clients: UserPool-{stackname}-designer 142
Step 5: Deploy API ... 142
Step 6: Update the API Stage variables .. 143
Step 7: Test the updates using the custom domain name .. 144
Known limitation .. 144

Using QnABot on AWS Command Line Interface (CLI) .. 144
Setup prerequisites .. 144
IAM policy .. 145
Environment setup ... 145
Set environment variables .. 146
Available commands .. 146
Using the import command ... 146
Using the export command ... 148
Running qnabot_cli.py as a shell script ... 149

Developer guide ... 150
Source code ... 150

Reference .. 151
Anonymized data collection .. 151
Related AWS documentation .. 152

Blog posts .. 152
Workshop .. 153
YouTube demo .. 153

Contributors .. 153
Revisions ... 155
Notices .. 164

vii

QnABot on AWS Implementation guide

Create a custom question and answer chatbot

Publication date: September 2021 (last update: August 2024)

The QnABot on AWS solution is a generative AI-enabled multi-channel, multi-language
conversational chatbot that responds to your customer’s questions, answers, and feedback.
It is built on Amazon Lex, Amazon Polly, Amazon OpenSearch Service, Amazon Translate,
Amazon Comprehend, Amazon Kendra, and Amazon Bedrock. This solution helps you to quickly
deploy self-service conversational artificial intelligence (AI) on multiple channels, including your
contact centers, websites, social media channels, SMS text messaging, or Amazon Alexa without
programming.

This implementation guide provides an overview of the QnABot on AWS solution, its reference
architecture and components, considerations for planning the deployment, configuration steps
for deploying the solution to the Amazon Web Services (AWS) Cloud. It also includes a user’s guide
with prescriptive guidance for using QnABot on AWS.

Use this navigation table to quickly find answers to these questions:

If you want to . . . Read . . .

Know the cost for running this solution Cost

Understand the security considerations for this
solution

Security

Know how to plan for quotas for this solution Quotas

Know which AWS Regions are supported for
this solution

Supported AWS Regions

View or download the AWS CloudForm
ation template included in this solution
to automatically deploy the infrastructure
resources (the “stack”) for this solution

AWS CloudFormation template

Access the source code and optionally use the
AWS Cloud Development Kit (AWS CDK) (AWS
CDK) to deploy the solution

GitHub repository

1

https://aws.amazon.com/lex/
https://aws.amazon.com/polly/
https://aws.amazon.com/opensearch-service/
https://aws.amazon.com/translate/
https://aws.amazon.com/comprehend/
https://aws.amazon.com/kendra/
https://aws.amazon.com/bedrock/
https://github.com/aws-solutions/qnabot-on-aws

QnABot on AWS Implementation guide

Use cases

Contact centers – How can I help?

Virtual agents to automatically help resolve customer questions or guide customers to the right
agent.

Informational bots – Can I answer your question?

Chatbots for everyday requests and frequently asked questions.

Enterprise productivity bots – Can I help you get more done?

Streamline internal enterprise work activities and enhance productivity.

Features and benefits

With the solution’s content management environment and the Contact Center Integration wizard,
you can set up and customize an environment that provides the following benefits:

• Enhance your customer’s experience by providing personalized tutorials and question and answer
support with intelligent multi-part interaction.

• Uncover insights and business trends.

• Reduce call center wait times by automating customer support workflows.

• Expand existing channels and grow new ones.

• Implement the latest machine learning (ML) technology to create engaging, human-like
interactions for chatbots.

• Reduce customer support costs.

QnABot on AWS provides the following features:

High quality speech recognition and natural language understanding (NLU)

This solution uses automatic speech recognition (ASR) and NLU technologies to create a Speech
Language Understanding (SLU) system with Amazon Lex. Amazon Lex uses the same proven
technology that powers Alexa. Amazon Lex is able to learn the multiple ways users can express
their intent based on a few sample utterances provided by the developer. The SLU system takes

Use cases 2

QnABot on AWS Implementation guide

natural language speech and text input, understands the intent behind the input, and fulfills the
user intent by invoking the appropriate response.

Context management

As the conversation develops, being able to accurately classify utterances requires managing
context across multi-turn conversations. Amazon Lex supports context management natively, so
you can manage the context directly without the need for custom code. As the initial prerequisite
intents are filled, you can create “contexts” to invoke related intents. This simplifies bot design and
expedites the creation of conversational experiences.

Generative responses

Integration with the various large language models (LLMs) hosted on Amazon SageMaker or
Amazon Bedrock allows QnABot to:

• Disambiguate customer questions by considering conversational context

• Dynamically generate answers from relevant FAQs, Amazon Kendra search results, and Amazon
Bedrock knowledge bases

• Ask questions and summarize data from a single uploaded document

Generated responses reduce the number of FAQs you must maintain because the solution
synthesizes concise answers from existing documents. You can customize responses to be short,
concise, and suitable for voice channel contact center bots as well as website text bots. Text
generation is fully compatible with this solution's multi-language support, allowing users to
interact in their chosen languages and receive generated answers in the same language.

Note

By choosing to use the generative responses features, you acknowledge that QnABot
on AWS engages third-party generative AI models that AWS does not own or otherwise
has any control over (“Third-Party Generative AI Models”). Your use of the Third-Party
Generative AI Models is governed by the terms provided to you by the Third-Party
Generative AI Model providers when you acquired your license to use them (for example,
their terms of service, license agreement, acceptable use policy, and privacy policy).
You are responsible for ensuring that your use of the Third-Party Generative AI Models
comply with the terms governing them, and any laws, rules, regulations, policies, or
standards that apply to you.

Features and benefits 3

https://docs.aws.amazon.com/lexv2/latest/dg/conversation-contexts.html

QnABot on AWS Implementation guide

You are also responsible for making your own independent assessment of the Third-
Party Generative AI Models that you use, including their outputs and how Third-Party
Generative AI Model providers use any data that may be transmitted to them based on your
deployment configuration.
AWS does not make any representations, warranties, or guarantees regarding the Third-
Party Generative AI Models, which are “Third-Party Content” under your agreement with
AWS. QnABot on AWS is offered to you as “AWS Content” under your agreement with AWS.

8 kHz telephony audio support

This solution uses high fidelity with telephone speech interactions, such as through a contact
center application or helpdesk. This feature leverages the Amazon Lex speech recognition engine,
which has been trained on telephony audio (8 kHz sampling rate).

Multi-turn dialog

After the solution identifies an intent, it prompts users for information that is required for the
intent to be fulfilled (for example, if “Book hotel” is the intent, then the user is prompted for the
location, check-in date, number of nights, etc.). QnABot on AWS gives you an easy way to build
multi-turn conversations for your chatbots. You simply list the slots/parameters you want to collect
from your bot users, as well as the corresponding prompts, and the Amazon Lex component takes
care of orchestrating the dialogue by prompting for the appropriate slot.

Early implementation of intent and slot matching

This new capability supports creating dedicated custom Intents for a QnABot Item ID. You can
extend QnABot to support one or more related intents. For example, you might create an intent
that makes a car reservation, or assists an agent during a live chat or call (via Amazon Connect). For
more details, see the Intent and slot matching section in the GitHub repository.

Custom domain names in QnABot content designer and QnABot client

This solution supports using custom domain names for QnABot content designer and client
interfaces. For more details, see the Set up custom domain name for QnABot content designer and
client section in the GitHub repository.

Importing and exporting questions and answers using CLI

Features and benefits 4

https://aws.amazon.com/connect/
https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/intent_slot_matching/README.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/custom_domain_name_setup/README.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/custom_domain_name_setup/README.md

QnABot on AWS Implementation guide

You can import and export questions and answers using the AWS QnABot Command Line Interface
(CLI) command line. For more details, see the AWS QnABot Command Line Interface (CLI) section in
the GitHub repository.

Support for the Amazon Kendra Redirect feature

With the Amazon Kendra Redirect feature, you can now include an Amazon Kendra query within an
Item ID. For more details, see the Amazon Kendra Redirect section in the GitHub repository.

Enhanced functionality for Excel

This solution supports importing QnABot questions and answers from an Excel file when uploaded
to the Amazon Simple Storage Service (Amazon S3) data folder, as well as support for importing
session attributes via Excel.

Concepts and definitions

The following terms are specific to this document:

fulfillment

The process of performing actions based on user requests. It involves taking the information
gathered during the conversation and performing relevant tasks or providing appropriate
responses. For instance, Alexa uses fulfillment processes to run tasks such as setting reminders,
playing music, or providing weather updates.

intent

An action in response to user input in natural language. An intent represents the main purpose
or goal behind a user’s query. It captures what the user is trying to accomplish when interacting
with a chatbot. Intents are the building blocks that empower chatbots to understand and respond
effectively to user queries. For instance, if a user asks, “Show me the weather in Houston, Texas,” the
intent behind their query is to "get the weather information". If the user says, “Is it going to rain
today?” or “What’s the weather like today?”, the chatbot should be able to understand that both
these utterances have the same intent, which is to get the weather information.

slot

Slots are placeholders for specific pieces of information. For example, in the query “Book a flight
from New York to Los Angeles,” the slots are “departure city” (New York) and “destination city” (Los

Concepts and definitions 5

https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/qnabot_cli/README.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/kendra_redirect/README.md
https://aws.amazon.com/s3/

QnABot on AWS Implementation guide

Angeles). The slots are the specific input data extracted from the user's utterance and needed to
fulfill the intent. Slot filling helps extract relevant entities from the user’s input.

token

A token is the smallest unit into which text data can be broken down for an AI model to process.
It is similar to how we might break sentences into words or characters. For AI, especially in the
context of language models, tokens can represent a character, a word, or even larger chunks
of text, such as phrases, depending on the model and its configuration. Tokens are used to
characterize different models. For example, the more questions a user asks the chat bot, the more
it will cost because more tokens are processed.

utterance

Utterances are simply anything a user says to a chatbot or virtual assistant. These could be in the
form of text input, voice commands, or any other form of user input. For instance, if a user types
“Show me the weather in Houston, Texas,” the entire sentence is the utterance.

Note

For a general reference of AWS terms, see the AWS Glossary.

Concepts and definitions 6

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html

QnABot on AWS Implementation guide

Architecture overview

This section provides a reference implementation architecture diagram for the components
deployed with this solution.

Architecture diagram

Deploying this solution with the default parameters deploys the following components in your
AWS account (components with dotted line border are optional).

QnABot on AWS architecture on AWS

The high-level process flow for the solution components deployed with the AWS CloudFormation
template is as follows:

1. The admin deploys the solution into their AWS account, opens the content designer UI or
Amazon Lex web client, and uses Amazon Cognito to authenticate.

2. After authentication, Amazon API Gateway and Amazon S3 deliver the contents of the content
designer UI.

Architecture diagram 7

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/lex/
https://aws.amazon.com/cognito/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/s3/

QnABot on AWS Implementation guide

3. The admin configures questions and answers in the content designer and the UI sends requests
to Amazon API Gateway to save the questions and answers.

4. The Content designer AWS Lambda function saves the input in Amazon OpenSearch Service
in a question bank index. If using text embeddings, these request pass through LLMs hosted
on Amazon SageMaker or Amazon Bedrock to generate embeddings before being saved into
the question bank on OpenSearch. In addition, the Content designer saves default and custom
configuration settings in the AWS Systems Manager Parameter Store.

5. Chatbot users interact with Amazon Lex via the web client UI, Amazon Alexa, or Amazon
Connect.

6. Amazon Lex forwards requests to the Bot fulfillment Lambda function. Users can also send
requests to this Lambda function via Amazon Alexa devices.

7. The user and chat information is stored in Amazon DynamoDB to disambiguate follow-up
questions from previous question and answer context.

8. The Bot fulfillment AWS Lambda function takes the user’s input and uses Amazon
Comprehend and Amazon Translate (if necessary) to translate non-native language requests
to the native language selected during the deployment, and then looks up the answer in
OpenSearch Service. If using LLM features such as text generation and text embeddings,
these requests first pass through various LLMs hosted on SageMaker or Amazon Bedrock to
generate the search query and embeddings to compare with those saved in the question bank
on OpenSearch.

9. If no match is returned from the OpenSearch question bank, then the Bot
fulfillment Lambda function forwards the request as follows:

a. If an Amazon Kendra index is configured for fallback, then the Bot fulfillment
Lambda function forwards the request to Amazon Kendra if no match is returned from the
OpenSearch question bank. The text generation LLM can optionally be used to create the
search query and to synthesize a response from the returned document excerpts.

b. If an Amazon Bedrock Knowledge Base ID is configured, then the Bot fulfillment Lambda
function forwards the request to the Amazon Bedrock knowledge base. The Bot
Fulfillment Lambda function leverages the RetrieveAndGenerate API Gateway API to
fetch the relevant results for a user query, augment the foundational model's prompt, and
return the response.

10.User interactions with the Bot fulfillment Lambda function generate logs and metrics data,
which is sent to Amazon Data Firehose and then to Amazon S3 for later data analysis.

Architecture diagram 8

https://aws.amazon.com/lambda/
https://aws.amazon.com/opensearch-service/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/bedrock/
https://docs.aws.amazon.com/solutions/latest/qnabot-on-aws/modifying-configuration-settings.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://developer.amazon.com/en-US/alexa
https://aws.amazon.com/connect/
https://aws.amazon.com/connect/
https://developer.amazon.com/en-US/alexa
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/comprehend/
https://aws.amazon.com/comprehend/
https://aws.amazon.com/comprehend/
https://aws.amazon.com/kendra/
https://aws.amazon.com/bedrock/knowledge-bases/
https://aws.amazon.com/kinesis/data-firehose/

QnABot on AWS Implementation guide

11.The OpenSearch Dashboards can be used to view usage history, logged utterances, no hits
utterances, positive user feedback, and negative user feedback, and also provides the ability to
create custom reports.

AWS Well-Architected pillars

This solution uses the best practices from the AWS Well-Architected Framework, which helps
customers design and operate reliable, secure, efficient, and cost-effective workloads in the cloud.

This section describes how the design principles and best practices of the Well-Architected
Framework benefit this solution.

The machine-learning lifecycle is the iterative process, with instructions and best practices, to use
across defined phases while developing an ML workload. It adds clarity and structure for making a
machine learning project successful. The Well-Architected machine learning lifecycle superimposes
the Well-Architected Framework pillars to each of the machine learning lifecycle phases illustrated
in the center of the following figure.

AWS Well-Architected pillars 9

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/dashboards.html
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://docs.aws.amazon.com/wellarchitected/latest/machine-learning-lens/well-architected-machine-learning-lifecycle.html

QnABot on AWS Implementation guide

The Well-Architected machine learning lifecycle

Operational Excellence

This section describes how we architected this solution using the principles and best practices of
the operational excellence pillar.

The QnABot on AWS solution pushes metrics to Amazon CloudWatch at various stages to provide
observability into the infrastructure; Lambda functions, AI services, Amazon S3 buckets, and the
rest of the solution components. Continuous integration and continuous delivery (CI/CD) and
infrastructure deployment are managed in code through AWS Amplify. Data processing errors are
added to the Amazon Simple Queue Service (Amazon SQS) queue and displayed in the application
layer for user response.

Security

This section describes how we architected this solution using the principles and best practices of
the security pillar.

Operational Excellence 10

https://docs.aws.amazon.com/wellarchitected/latest/operational-excellence-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html

QnABot on AWS Implementation guide

• Content designer UI app users and the Amazon Lex client are authenticated and authorized with
Amazon Cognito.

• User permissions to app accounts are managed in the Amazon DynamoDB.

• All inter-service communications use AWS Identity and Access Management (IAM) roles.

• All multi-account communications use IAM roles.

• All roles used by the solution follows least-privilege access. That is, it only contains minimum
permissions required so the service can function properly.

• Communication end user and Amazon API Gateway uses Bearer token generated and handed by
Amazon Cognito.

• All data storage including Amazon S3 buckets have encryption at rest.

Reliability

This section describes how we architected this solution using the principles and best practices of
the reliability pillar.

• The solution uses AWS Serverless Services wherever possible (examples Lambda, API Gateway,
Amazon S3, and Amazon Lex) to ensure high availability and recovery from service failure.

• The solution protects against state machine definition errors by having automated tests
performed on the solution.

• Data processing uses AWS Lambda functions. Data is stored in DynamoDB and Amazon S3, so it
persists in multiple Availability Zones by default.

Performance Efficiency

This section describes how we architected this solution using the principles and best practices of
the performance efficiency pillar.

• The solution as mentioned earlier uses serverless architecture throughout this solution.

• The solution can be launched in any Region that supports AWS services in this solution such
as: AWS Lambda, Amazon API Gateway, AWS S3, Amazon Lex, Amazon Kendra, and Amazon
Comprehend.

• The solution is automatically tested and deployed every day. As well as reviewed by solutions
architects and subject matter experts for areas to experiment and improve.

Reliability 11

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/welcome.html

QnABot on AWS Implementation guide

• The QnABot on AWS CLI supports the capability to import and export questions and answers
from your QnABot setup are designed to reduce IT overhead for maintenance and upkeep.

Cost Optimization

This section describes how we architected this solution using the principles and best practices of
the cost optimization.

• The solution uses serverless architecture therefore, customers only get charged for what they
use.

• The compute layer defaults to AWS Lambda, so it provides pay per use. DynamoDB indexes are
selected to reduce throughput cost for queries.

• The solution provides an option to the user to use more advanced AI/ML services. Services such
as Amazon Kendra and Amazon SageMaker are optional and can be turned on or off to reduce
the cost for users who don’t intend to use these features.

Sustainability

This section describes how we architected this solution using the principles and best practices of
the sustainability pillar.

• The solution utilizes managed and serverless services, to minimize the environmental
impact of the backend services. A critical component for sustainability provided by the
solution is maximizing the usage of the AWS AI services. The solution Serverless design
(using Lambda and DynamoDB) and the use of managed services (such as AWS Amplify) are
aimed at reducing carbon footprint compared to the footprint of continually operating on-
premises servers.

Cost Optimization 12

https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/sustainability-pillar.html

QnABot on AWS Implementation guide

Architecture details

This section describes the components and AWS services that make up this solution and the
architecture details on how these components work together.

Amazon Lex web client

Amazon Lex allows conversational interfaces to be integrated into applications like the Amazon Lex
web client. An Amazon Lex chatbot uses intents to encapsulate the purpose of an interaction, and
slots to capture elements of information from the interaction. Since QnABot on AWS has a single
purpose, to answer a user’s question, it defines just one intent. This intent has a single slot which is
trained to capture the text of the question. QnABot on AWS also uses AMAZON.FallBackIntent
to ensure that all user input is processed. To learn more about how Amazon Lex bots work, and to
understand the concepts of intents, slots, sample values, fulfillment functions, see the Amazon Lex
Developer Guide.

The QnABot on AWS Amazon Lex web client is deployed to an Amazon S3 bucket in your account,
and accessed via Amazon API Gateway.

Amazon Alexa devices

Amazon Alexa devices interact with QnABot on AWS using an Alexa skill. Like an Amazon Lex
chatbot, an Alexa skill also uses intents to encapsulate the purpose of an interaction, and slots to
capture elements of information from the interaction.

The Alexa QnABot on AWS skill uses the same Bot fulfillment Lambda function as the Amazon
Lex chatbot. When you ask a question, for example, “Alexa, ask Q and A, How can I include pictures
in Q and A Bot answers?”, your Alexa device interacts with the skill you created, which in turn
invokes the Bot fulfillment Lambda function in your AWS account, passing the transcribed
question as a parameter.

Content designer UI

The QnABot on AWS content designer UI, like the Amazon Lex web client, is also deployed to an
Amazon S3 bucket and accessed via Amazon API Gateway, and it too retrieves configuration from
an API Gateway endpoint. The content designer UI requires the user to sign in with credentials
defined in a Cognito user pool.

Amazon Lex web client 13

https://docs.aws.amazon.com/lex/latest/dg/what-is.html
https://docs.aws.amazon.com/lex/latest/dg/what-is.html

QnABot on AWS Implementation guide

Using temporary AWS credentials from Cognito, the content designer UI interacts with secure
API Gateway endpoints backed by the content designer Lambda functions. All interactions with
Amazon OpenSearch Service and Amazon Lex are handled by these Lambda functions.

AWS services in this solution

The following AWS services are included in this solution:

AWS service Description

Amazon API gateway Core. Used for internal API management.

AWS CloudFormation Core. Used to deploy the solution.

Amazon CloudWatch Core. Used for monitoring and logs.

Amazon Cognito Core. Used for user management.

AWS Identity and Access Management Core. Used for user role and permissions
management.

AWS Key Management Service Core. Used for encryption.

AWS Lambda Core. Provides logic for chatbot interacti
ons and provides extension capabilities for
Amazon Translate before and after interaction
with Amazon Lex.

Amazon Lex Core. Provides the advanced deep learning
functionalities of ASR for converting speech
to text, and NLU to recognize the intent of the
text.

Amazon OpenSearch Service Core. Provides a question bank index that
LLMs search to generate responses.

Amazon SNS Core. Used for notifications, such as feedback.

Amazon Data Firehose Supporting. Delivers logs and metrics data to
an Amazon S3 bucket.

AWS services in this solution 14

https://aws.amazon.com/api-gateway/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cognito/
https://aws.amazon.com/iam/
https://aws.amazon.com/kms/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lex/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/pm/sns/
https://aws.amazon.com/kinesis/data-firehose

QnABot on AWS Implementation guide

AWS service Description

Amazon Polly Supporting. Used for Interactive Voice
Response systems. It provides text to speech
capabilities to relay the response back in the
voice of choice.

Amazon S3 Supporting. Provides object storage for
content designer UI data and logs and metrics
data.

AWS Systems Manager Parameter Store Supporting. Provides secure, hierarchical
storage for configuration data management
and secrets management.

Amazon Translate Supporting. Provides multi-language support
to your customer’s bot interactions. You can
maintain question and answer banks in a
single language while still offering support
to customers who interact with the bot in
other languages through the use of Amazon
Translate.

Amazon Bedrock Optional. Provides an optional host for LLMs

Amazon Connect Optional. Provides an omnichannel cloud
contact center. If you implement this
component, you can create personalized
experiences for your customers. For example,
you can dynamically offer chat and voice
contact, based on such factors as customer
preference and estimated wait times. Agents,
meanwhile, conveniently handle all customers
from just one interface. For example, they can
chat with customers, and create or respond to
tasks as they are routed to them.

AWS services in this solution 15

https://aws.amazon.com/polly/
https://aws.amazon.com/s3/
https://aws.amazon.com/systems-manager/features/#Parameter_Store
https://aws.amazon.com/translate/
https://aws.amazon.com/bedrock/
https://aws.amazon.com/connect/

QnABot on AWS Implementation guide

AWS service Description

Amazon Kendra Optional. Hosts unstructured datasets hosted
in an index. You can also use Amazon Kendra
to provide semantic search capabilities to your
question bank through the use of Amazon
Kendra FAQs.

Amazon SageMaker Optional. Provides an optional host for an
inference endpoint used to generate text
embeddings on your queries. These text
embeddings transform QnABot’s keyword
matching system to instead match on the
meaning or “semantic similarity” of two
different queries based on the similarity of
their embedding vectors.

How QnABot on AWS works

QnABot on AWS is powered by the same technology as Alexa. The Amazon Lex component
provides the tools that you need to tackle challenging deep learning problems, such as speech
recognition and language understanding, through an easy-to-use fully managed service. Amazon
Lex integrates with AWS Lambda, which you can use to initiate functions for running your backend
business logic for data retrieval and updates. Once built, your bot can be deployed directly to chat
platforms, mobile clients, and IoT devices. You can also use the reports provided to track metrics
for your bot. QnABot provides a scalable, secure, easy to use, end-to-end solution to build, publish,
and monitor your bots.

Intelligent contact centers leverage conversational UX engines like Amazon Lex in order to provide
proactive service to customers. Amazon Lex uses a deep learning engine that combines ASR and
NLU to manage the customer experience. This enables it to be natural and adaptable to customer
needs.

Chatbots are the starting point for many organizations. Amazon Lex comes with both voice and
text. Amazon Lex has many application integrations for popular messaging platforms such as Slack
and Facebook.

How QnABot on AWS works 16

https://aws.amazon.com/kendra/
https://aws.amazon.com/sagemaker/

QnABot on AWS Implementation guide

For Interactive Voice Response systems you can utilize the Text to speech capabilities of Amazon
Polly to relay the response back in the voice of your choice.

To help fulfill many self-service requests, you can integrate Amazon Lex with your data or
applications to retrieve information or use Amazon Kendra to search for the most accurate answers
from your unstructured data sets.

The following figure illustrates a reference architecture for how QnABot on AWS integrates with
external components.

Reference architecture for QnABot on AWS integrations with external components

The following figure illustrates how Amazon Lex and Amazon OpenSearch Service help power the
QnABot on AWS solution.

How QnABot on AWS works 17

QnABot on AWS Implementation guide

Solution architecture and data flow

Asking QnABot on AWS questions initiates the following processes:

1. The question gets processed and transcribed by Amazon Lex using NLU and Natural Language
Processing (NLP) engines.

2. The solution initially trains the NLP engine to match a wide variety of possible questions and
statements so that the Amazon Lex chatbot can accept almost any question a user asks. The
Amazon Lex interaction model is set up with the following:

• intents – An intent represents an action that fulfills a user's spoken request. Intents can
optionally have arguments called slots. The solution uses slots to capture user input and fulfill
the intent via a Lambda function.

• sample utterances – A set of likely spoken phrases mapped to the intents. This should include
as many representative phrases as possible. The sample utterances specify the words and
phrases users can say to invoke your intents. The solution updates the sample utterances with
the various questions to train the chatbot to understand different end user’s input.

3. This question is then sent to Amazon OpenSearch Service. The solution attempts to match an
end user’s request to the list of questions and answers stored in Amazon OpenSearch Service.

• The QnABot on AWS uses full-text search to find the most relevant ranked document from the
searchable index. Relevancy ranking is based on a few properties:

How QnABot on AWS works 18

QnABot on AWS Implementation guide

• count – How many search terms appear in a document.

• frequency – How often the specified keywords occur in a given document.

• importance – How rare or new the specified keywords are and how closely the keywords
occur together in a phrase.

• The closer the alignment between a question associated with an item and a question asked
by the user, the greater the probability that the solution will choose that item as the most
relevant answer. Noise words such as articles and prepositions in sentence construction have
lower weighting than unique keywords.

• The keyword filter feature helps the solution to be more accurate when answering questions,
and to admit more readily when it doesn’t know the answer. The keyword filter feature works
by using Amazon Comprehend to determine the part of speech that applies to each word you
say to QnABot on AWS. By default, nouns (including proper nouns), verbs, and interjections
are used as keywords. Any answer returned by QnABot on AWS must have questions that
match these keywords, using the following (default) rule:

• If there are one or two keywords, then all keywords must match.

• If there are three or more keywords, then 75% of the keywords must match.

• If QnABot on AWS can’t find any answers that match these keyword filter rules, then it will
admit that it doesn’t know the answer rather than guessing an answer that doesn’t match
the keywords. QnABot on AWS logs every question that it can’t answer so you can see them
in the included Kibana Dashboard.

• The Bot fulfillment Lambda function generates an Amazon OpenSearch Service query
containing the transcribed question. The query attempts to find the best match from all
the questions and answers you’ve previously provided, filtering items to apply the keyword
filters and using Amazon OpenSearch Service relevance scoring to rank the results. Scoring
is based on 1) matching the words in the end user’s question against the unique set of
words used in the stored questions (quniqueterms), 2) matching the phrasing of the user’s
question to the text of stored questions (nested field questions.q), and 3) matching the
topic value assigned to the previous answer (if any) to increase the overall relevance score
when the topic value (field t) matches. The following example code shows an Amazon
OpenSearch query:

"query":{
 "bool": {
 "filter": {
 "match": {

How QnABot on AWS works 19

QnABot on AWS Implementation guide

 "quniqueterms": {
 "query": "<LIST_OF_IDENTIFIED_KEYWORDS>",
 "minimum_should_match":
 "<ES_MINIMUM_SHOULD_MATCH SETTING>",
 "zero_terms_query": "all"
 }
 }
 },
 "should": [
 {
 "match": {
 "quniqueterms": {
 "query": "<USER QUESTION>",
 "boost": 2
 }
 }
 },
 {
 "nested": {
 "score_mode": "max",
 "boost": "<ES_PHRASE_BOOST SETTING>",
 "path": "questions",
 "query": {
 "match_phrase": {
 "questions.q": "<USER QUESTION>"
 }
 }
 }
 },
 {
 "match": {
 "t": "<PREVIOUS_TOPIC>"
 }
 }
]
 }
}

How QnABot on AWS works 20

QnABot on AWS Implementation guide

Plan your deployment

This section describes the cost, network security, quotas, and other considerations prior to
deploying the solution.

Cost

You are responsible for the cost of the AWS services used while running this solution. As of this
latest revision, the cost for running the default basic implementation of this solution in the US East
(N. Virginia) Region is approximately $547.33 per month.

Note

Amazon Kendra and Amazon Connect are not part of the default solution implementation,
but the solution does provide the capability to integrate with them. Because the solution
does not create resources for Amazon Kendra or Amazon Connect automatically, they are
not included in the example cost table. If you intend to integrate Amazon Kendra and
Amazon Connect, review the Amazon Kendra pricing and Amazon Connect pricing to adjust
your cost estimate accordingly.

We recommend creating a budget through AWS Cost Explorer to help manage costs. Prices are
subject to change. For full details, see the pricing webpage for each AWS service used in this
solution. For additional information, see Creating a cost budget in the AWS Cost Management User
Guide.

Option 1: Default basic deployment

The following table provides a sample cost breakdown for deploying this solution with the default
parameters in the US East (N. Virginia) Region for one month.

Amazon API Gateway 1,000,000 REST API calls per
month

$3.50

Amazon Cognito 1,000 active users per month
without the advanced security
feature

$0.00

Cost 21

https://aws.amazon.com/kendra/pricing/
https://aws.amazon.com/connect/pricing/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-create.html
https://aws.amazon.com/aws-cost-management/aws-cost-explorer/
https://docs.aws.amazon.com/cost-management/latest/userguide/create-cost-budget.html

QnABot on AWS Implementation guide

Amazon S3 100 GB data transfer +
1,000,000 requests (100
records x 100 KB from
Amazon Kinesis)

$3.27

AWS Lambda 2,000,000 requests with 200
ms duration

$1.23

Systems Manager Parameter
Store

2,000,000 requests with 10
standard parameters

$0.00

Amazon Lex 100,000 text requests per
month

$75.00

Amazon Data Firehose 100,000 records per month
with 100 KB per record

$0.28

Amazon DynamoDB 1 GB storage + 1 read and 1
write per second + 20 hours
peak read/write per month

$11.41

Amazon Polly 10,000 requests + 50
characters per request

$4.00

Amazon Translate 100,000 requests + 50
characters per request
(OPTIONAL for non-English)

$75.00

Amazon Comprehend 100,000 requests + 50
characters per request

$5.00

Amazon OpenSearch Service m6g.large.search instance
running all hours in a month
for 4 nodes

$368.64

Total for a default basic deployment: $547.33

Option 1: Default basic deployment 22

QnABot on AWS Implementation guide

Option 2a: SageMaker embeddings only

AWS service Dimensions Cost [$USD]

Amazon SageMaker Endpoint
for text embeddings (optional
)

ml.g4dn.xlarge instance
running all hours in a month
for 1 node

$165.60

Total with SageMaker embeddings only ($547.33 + $165.60): $712.93

Option 2b: Amazon Bedrock embeddings only

AWS service Dimensions Cost [$USD]

Amazon Bedrock for text
embeddings (optional)

Daily average of 8,000
requests of 2,000 input
tokens estimated using
Amazon Titan Embeddings
Text

$48.00

Total with Amazon Bedrock embeddings only ($547.33 +
$48.00):

$595.33

Option 3a: SageMaker embeddings and LLMs

AWS service Dimensions Cost [$USD]

Amazon SageMaker Endpoint
for LLM question answering
 (optional)

ml.g5.12xlarge instance
running all hours in a month
for 1 node

$5,104.80

Total with SageMaker embeddings and LLMs ($712.93 +
$5,104.80):

$5,817.73

Option 2a: SageMaker embeddings only 23

QnABot on AWS Implementation guide

Option 3b: Amazon Bedrock embeddings and LLMs

AWS service Dimensions Cost [$USD]

Amazon Bedrock for LLM
question answering (optional)

Daily average of 8,000
requests each made of 2,000
input tokens and 200 output
tokens estimated using
Anthropic Claude 3 Haiku
(lower cost LLM option) or
Anthropic Claude 3 Sonnet
(higher cost LLM option)

$180.00 (Haiku) to $2,160.00
(Sonnet)

Total with Amazon Bedrock embeddings and LLMs ($595.33
+ $180.00 to $2,160.00):

$775.33 to $2,755.33

Option 4a: SageMaker embeddings and LLM and RAG using Amazon
Kendra

AWS service Dimensions Cost [$USD]

Amazon Kendra index 0-8,000 queries a day and up
to 100,000 documents with
Amazon Kendra Enterpris
e Edition with 0-50 data
sources

$1,008.00

Total with SageMaker embeddings and LLM and RAG using
Amazon Kendra ($5,817.73 + $1,008.00):

$6,825.73

Option 3b: Amazon Bedrock embeddings and LLMs 24

https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1&/providers%3Fmodel=anthropic.claude-3-haiku-20240307-v1%3A0#/models
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1&/providers%3Fmodel=anthropic.claude-3-sonnet-20240229-v1%3A0#/models

QnABot on AWS Implementation guide

Option 4b: Amazon Bedrock embeddings and LLM and RAG using
Amazon Bedrock knowledge base

AWS service Dimensions Cost [$USD]

Amazon Bedrock knowledge
base (optional)

8,000 questions a day with 5
GB of data stored in Amazon
OpenSearch Service Serverles
s vector store and using
Anthropic Claude 3 Haiku
(lower cost LLM option) or
Anthropic Claude 3 Sonnet
(higher cost LLM option)

$733.00 (Haiku) to $2,713.00
(Sonnet)

Total with Amazon Bedrock embeddings and LLM and
RAG using Amazon Bedrock knowledge base ($775.33 to
$2,755.33 + $733.00 to $2,713.00):

$1,508.33 to $5,468.33

Option 5: Amazon Bedrock embeddings and LLM and RAG using
Amazon Bedrock knowledge base and Guardrails for Amazon Bedrock

AWS service Dimensions Cost [$USD]

Guardrails for Amazon
Bedrock (optional)

8,000 requests a day (1 text
unit user query and 1 unit
FM response) with content
filters, denied topics, sensitive
information filters, and the
word filters policy enabled

$888.00

Total with Amazon Bedrock embeddings and LLM and
RAG using Amazon Bedrock knowledge base ($2,084.77 to
$5,468.33 + $888.00):

$2,972.77 to $6,356.33

Option 4b: Amazon Bedrock embeddings and LLM and RAG using Amazon Bedrock knowledge base 25

QnABot on AWS Implementation guide

Security

When you build systems on AWS infrastructure, security responsibilities are shared between you
and AWS. This shared responsibility model reduces your operational burden because AWS operates,
manages, and controls the components including the host operating system, the virtualization
layer, and the physical security of the facilities in which the services operate. For more information
about AWS security, visit AWS Cloud Security.

Security best practices

QnABot on AWS is designed with security best practices in mind. However, the security of a
solution differs based on your specific use case. Adding additional security measures can add to
the cost of the solution. The following are additional recommendations to enhance the security
posture of QnABot on AWS in production environments.

Amazon S3 access logging bucket configuration

We recommend having a central access logging Amazon S3 bucket, and updating the S3 buckets
that this solution creates to allowing access logging. QnABot on AWS by default configures a
central access logging Amazon S3 bucket to store access logging. For more information about
Amazon S3 access logging see Enabling Amazon S3 server access logging in the Amazon Simple
Storage Service User Guide.

Multi-factor authentication (MFA) in Amazon Cognito user pools

This solution creates only one user in its Cognito user pools. MFA is not activated by default;
however, we recommend using MFA for users in Cognito for a stronger security posture in
production workloads. For more information about setting up MFA in Cognito, see Adding MFA to a
user pool and Adding advanced security to a user pool in the Amazon Cognito Developer Guide.

Single sign-on with AWS IAM Identity Center

Solution administrators can also federate into the content designer UI and OpenSearch Dashboards
using single sign-on with AWS IAM Identity Center. In this case, IAM Identity Center serves as the
identity provider for the Cognito user pool. Additionally, using Cognito, you can configure a SAML
or OpenID Connect identity provider to federate with as well.

When users federate into Cognito, a user profile is dynamically provisioned for them, but they will
not be granted access to QnABot on AWS until they are added to the Admins group. For more

Security 26

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/enable-server-access-logging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-mfa.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-mfa.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pool-settings-advanced-security.html

QnABot on AWS Implementation guide

information about automating using a Lambda trigger see Customizing User Pool Workflows with
Lambda in the Amazon Cognito Developer Guide.

AWS WAF for Amazon API Gateway

When the chatbot application is open to public access in production, we recommend allowing AWS
WAF for API Gateway. For guidance about setting up AWS WAF, see Using AWS WAF to protect your
APIs in the Amazon API Gateway Developer Guide. We also recommend reviewing the AWS Best
Practices for DDoS Resiliency whitepaper for information about protecting your AWS applications
from Distributed Denial of Service (DDoS) attacks.

For best security practices, we recommend adding rules/rule groups when creating your web access
control list (ACL) in AWS WAF. AWS WAF provides the ability to set AWS managed rules and custom
rule groups which the customer creates and maintains. We recommend adding Core rule set and
Known bad inputs managed rule groups when setting up your web ACL. See AWS WAF rule groups
in the AWS WAF, AWS Firewall Manager, and AWS Shield Advanced Guide for more information on
setting up managed and created rule groups.

Creating a custom domain in Amazon API Gateway

By default, QnABot deploys the default domain in API Gateway. The default domain uses a TLS
version 1.0 security policy, which uses outdated encryption protocols and weak encryption cyphers.
We recommend that the customer sets up a custom domain name and uses a TLS version 1.2
security policy. See Choosing a security policy for your custom domain in API Gateway in the
Amazon API Gateway Guide.

Children Online Privacy Protection Act (COPPA) settings for Amazon
Lex

When using this solution to create or update an Amazon Lex chatbot, set the Amazon Lex API
childDirected parameter to true if the bot’s users are subject to COPPA. For more information, see
DataPrivacy in the Amazon Lex API Reference.

AWS CloudFormation parameters

Before deployment, we recommend reviewing the PublicOrPrivate parameter. It has two possible
values: Public or Private. We recommend choosing Private unless the use case for this
solution dictates having the chatbot open to the public without needing to sign up or register. If
you select Public, we recommend enabling AWS WAF for Amazon API Gateway.

AWS WAF for Amazon API Gateway 27

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools-working-with-aws-lambda-triggers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools-working-with-aws-lambda-triggers.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-control-access-aws-waf.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-control-access-aws-waf.html
https://docs.aws.amazon.com/whitepapers/latest/aws-best-practices-ddos-resiliency/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/aws-best-practices-ddos-resiliency/welcome.html
https://docs.aws.amazon.com/waf/latest/developerguide/aws-managed-rule-groups-baseline.html#aws-managed-rule-groups-baseline-crs
https://docs.aws.amazon.com/waf/latest/developerguide/aws-managed-rule-groups-baseline.html#aws-managed-rule-groups-baseline-known-bad-inputs
https://docs.aws.amazon.com/waf/latest/developerguide/waf-rule-groups.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-custom-domain-tls-version.html
https://docs.aws.amazon.com/lexv2/latest/APIReference/API_DataPrivacy.html

QnABot on AWS Implementation guide

Amazon Cognito

The solution uses a Cognito user pool for controlling administrative access to the QnABot on AWS
content designer UI, Amazon Lex web client, and OpenSearch Dashboards. Users are also required
to be members of the Admins group in the Cognito user pool.

The content designer UI requires that you sign in with credentials defined in an Amazon Cognito
user pool. Using temporary AWS credentials from Cognito, the content designer UI interacts with
secure API Gateway endpoints backed by the content designer’s Lambda functions.

The Amazon Lex web client is deployed to an Amazon S3 bucket in your account, and accessed via
API Gateway. An API Gateway endpoint provides run time configuration. Using this configuration,
the web client connects to Cognito to obtain temporary AWS credentials, and then connects with
the Amazon Lex service.

AWS Lambda

The solution uses Lambda functions. Depending on your use case, we recommend that you
configure Lambda function-level concurrency run limits. Adding concurrency limits can prevent a
rapid spike in usage and costs, while also increasing or lowering the default concurrency limit.

IAM roles

IAM roles allow customers to assign granular access policies and permissions to services and users
on the AWS Cloud. This solution creates IAM roles with least privileges that grant the solution’s
resources with needed permissions.

CloudWatch Logs

For QnABot on AWS, CloudWatch Logs are set by default to never expire. You can Export log data
to Amazon S3.

Data storage and protection

The solution uses multiple services to store and protect your data. This solution defaults to the
following when storing and protecting the customer’s data:

Amazon Cognito 28

https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/S3Export.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/S3Export.html

QnABot on AWS Implementation guide

Service/Resource Default

CloudWatch Logs - Default CloudWatch Logs set to Never
Expire.

DynamoDB - User table stores chat message history (per
user) – never expires.

- Data fully encrypted at rest (managed by
DynamoDB).

- Point-in-time recovery enabled by default.

- Continuous backups disabled.

- Does not store PII data.

OpenSearch Dashboards index - Default expiry set to 30 days.

Amazon S3 - Default Never Expire for Metrics bucket and
Export bucket.

- All buckets are enabled with server-side
encryption (SSE) by default. See Setting
default server-side encryption behavior for
Amazon S3 buckets for additional guidance.

- Access logging is disabled, customer can
configure. For additional guidance, see Setting
default server-side encryption for Amazon S3
buckets in the Amazon Simple Storage Service
User Guide.

Amazon Lex - Default, logs not enabled. For additiona
l guidance, see Conversation Logs in the
Amazon Lex V2 Developer Guide.

- Encrypting conversation logs is optional, but
can be implemented if needed. For additional

Data storage and protection 29

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html
https://docs.aws.amazon.com/lexv2/latest/dg/conversation-logs-configure.html

QnABot on AWS Implementation guide

Service/Resource Default

guidance, see Encrypting Conversation Logs in
the Amazon Lex V2 Developer Guide.

- Audio logs are stored in Amazon S3 (default
encryption).

- The childDirected parameter for COPPA
defaults to false. For additional guidance,
see DataPrivacy in the Amazon Lex API
Reference.

- PII reduction capability is implemented on
logs.

AWS Key Management Service - The solution does not enforce the use of
customer managed keys. It uses SSE-S3
and AWS Managed Keys for DynamoDB,
SageMaker, and other relevant services. For
additional guidance, see the utility_scripts
section in the GitHub repository.

Amazon Data Firehose - SSE enabled via AWS KMS key.

Quotas

Service quotas, also referred to as limits, are the maximum number of service resources or
operations for your AWS account.

Quotas for AWS services in this solution

Make sure you have sufficient quota for each of the services implemented in this solution. For more
information, see AWS service quotas.

Select one of the following links to go to the page for that service. To view the service quotas for
all AWS services in the documentation without switching pages, view the information in the Service
endpoints and quotas page in the PDF instead.

Quotas 30

https://docs.aws.amazon.com/lexv2/latest/dg/conversation-logs-configure.html#conversation-logs-enable
https://docs.aws.amazon.com/lexv2/latest/APIReference/API_DataPrivacy.html
https://github.com/aws-solutions/qnabot-on-aws/tree/main/source/utility_scripts
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/aws-general.pdf#aws-service-information
https://docs.aws.amazon.com/general/latest/gr/aws-general.pdf#aws-service-information

QnABot on AWS Implementation guide

AWS CloudFormation quotas

Your AWS account has AWS CloudFormation quotas that you should be aware of when launching
the stack in this solution. By understanding these quotas, you can avoid limitation errors that
would prevent you from deploying this solution successfully. For more information, see AWS
CloudFormation quotas in the AWS CloudFormation User’s Guide.

AWS SageMaker endpoint quota

The provided LLM SageMaker API requires an ml.g5.12xlarge SageMaker instance type, which
is not enabled in AWS accounts by default and must be requested on a per Region basis. If you
are planning on deploying the default LLM SageMaker API model then you must request a quota
increase before deploying the solution.

Sign in to the AWS Management Console, access AWS Service Quotas and search for Amazon
SageMaker under the AWS services list. Once selected, search for the quota called ml.g5.12xlarge
for endpoint usage. At a minimum, you must request a quota increase to one (you can request
more to accommodate high-volume production deployments).

Note

The ml.g5.12xlarge instance type is not available in the ap-southeast-1 Region.

Amazon Lex quotas

Your AWS account has Amazon Lex quotas, which you can view by following these steps:

1. Sign in to the AWS Service Quotas console.

2. Choose AWS services from the left navigation menu.

3. Enter Amazon Lex in the Find services field.

4. Choose Amazon Lex.

Amazon Lex V2 requires the fulfillment Lambda’s maximum output size to be set to 50 KB. You
cannot adjust this setting through the AWS account’s Service endpoints and quotas. You might
reach this quota when you are trying to return very large responses by increasing the number
of words or context in the response. Additionally, when you use RAG with Amazon Kendra or

AWS CloudFormation quotas 31

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html
https://console.aws.amazon.com/servicequotas

QnABot on AWS Implementation guide

Knowledge Bases for Amazon Bedrock, you might want to limit your output by customizing the
settings such as prompt templates, max retrieved results, or documents.

Amazon DynamoDB backups

Backups for Amazon DynamoDB Tables are not set up by default. If you require backups for
the data that is stored in DynamoDB Tables, see Backing Up a DynamoDB Table in the Amazon
DynamoDB Developer Guide.

For recovery of backed up data, see Restoring a DynamoDB table from a backup in the Amazon
DynamoDB Developer Guide. Alternatively, you can use Point-in-time recovery for DynamoDB as
your backup and recovery method.

Supported AWS Regions

This solution uses AWS services that are not currently available in all AWS Regions. You
must launch this solution in an AWS Region where Amazon Lex is available. See the services
implemented in this solution for more details on core services needed for the solution. Note
that the solution is not supported in AWS GovCloud (US) or China Regions. For the most current
availability by Region, see the AWS Services by Region list.

Note

The default SageMaker LLM model cannot be deployed into the Asia Pacific (Singapore)
Region (ap-southeast-1) due to unavailability of the ml.g5.12xlarge instance type.
However, users who are interested in the LLM features can still use the Custom Lambda
function option.

Amazon DynamoDB backups 32

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Backup.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/PointInTimeRecovery.html
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

QnABot on AWS Implementation guide

Deploy the solution

This solution uses AWS CloudFormation templates and stacks to automate its deployment. The
CloudFormation templates to describe the AWS resources included in this solution and their
properties. The CloudFormation stack provisions the resources that are described in the template.

Deployment process overview

Before you launch the solution, review the cost, architecture, security, and other considerations
discussed in this guide. Follow the step-by-step instructions in this section to configure and deploy
the solution into your account.

Time to deploy: Approximately 30-45 minutes

Step 1: Launch the stack

• Launch the AWS CloudFormation template into your AWS account.

• Enter values for the required parameters.

• Review the template parameters, and adjust if necessary.

Step 2. Launch the chatbot content designer

• Update password and sign in to the content designer.

Step 3: Populate the chatbot with your questions and answers

• Enter question and answer pairs.

Step 4: Interact with the chatbot

• Interact with the chatbot through voice or text.

Important

This solution includes an option to send anonymized operational metrics to AWS. We use
this data to better understand how customers use this solution and related services and

Deployment process overview 33

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html

QnABot on AWS Implementation guide

products. AWS owns the data gathered though this survey. Data collection is subject to the
AWS Privacy Policy.
To opt out of this feature, download the template, modify the AWS CloudFormation
mapping section, and then use the AWS CloudFormation console to upload your updated
template and deploy the solution. For more information, see the Anonymized data
collection section of this guide.

AWS CloudFormation templates

You can download the AWS CloudFormation templates for this solution before deploying it.

Deploy via main template

qnabot-on-aws-main.template - Use this template to launch the solution and all associated
components. The default configuration deploys the core and supporting services found in the AWS
services in this solution section but you can customize the template to meet your specific needs.

Deploy via VPC template

qnabot-on-aws-vpc.template - Use this template to launch the solution and all associated
components. The default configuration deploys the core and supporting services found in the AWS
services in this solution section but you can customize the template to meet your specific needs.

This template is made available for use as a separate installation mechanism. It is not the default
template utilized in the public distribution. Take care in deploying QnABot in VPC. The OpenSearch
Cluster becomes private to the VPC. In addition, the QnABot Lambda functions installed by the
stack will be attached to subnets in the VPC. The OpenSearch cluster is no longer available outside
of the VPC. The Lambda functions attached to the VPC allow communication with the cluster.

Two additional parameters are required by this template.

AWS CloudFormation templates 34

https://aws.amazon.com/privacy/
https://solutions-reference.s3.amazonaws.com/qnabot-on-aws/latest/qnabot-on-aws-main.template
https://solutions-reference.s3.amazonaws.com/qnabot-on-aws/latest/qnabot-on-aws-vpc.template

QnABot on AWS Implementation guide

• VPCSubnetIdList

Important

You should specify two private subnets, spread over two Availability Zones.

• VPCSecurityGroupIdList

More information on how to deploy can be read in the VPC Support section of the GitHub
repository. Additionally, we recommend following the best practices for securing the VPC.

Note

If you have previously deployed this solution, see Update the stack for update instructions.

Step 1: Launch the stack

This automated AWS CloudFormation template deploys the QnABot on AWS solution in the AWS
Cloud. You must set up an AWS account before launching the stack.

Note

You are responsible for the cost of the AWS services used while running this solution. For
more details, see the the section called “Cost” section in this guide, and reference to the
pricing webpage for each AWS service used in this solution.

1. Sign in to the AWS Management Console and select the button to launch the qnabot-on-aws-
main.template AWS CloudFormation template.

2. The template launches in the US East (N. Virginia) Region by default. To launch the solution in a
different AWS Region, use the Region selector in the console navigation bar.

Step 1: Launch the stack 35

https://github.com/aws-solutions/qnabot-on-aws/tree/main/source/docs/VPC_support
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-best-practices.html
https://aws.amazon.com/console/
https://us-east-1.console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/create?templateURL=https://solutions-reference.s3.amazonaws.com/qnabot-on-aws/latest/qnabot-on-aws-main.template

QnABot on AWS Implementation guide

Note

This solution uses Amazon Lex, which is not currently available in all AWS Regions. You
must launch this solution in an AWS Region where Amazon Lex is available. For the most
current availability by Region, see the AWS Services by Region list.

3. On the Create stack page, verify that the correct template URL is in the Amazon S3 URL text
box and choose Next.

4. On the Specify stack details page, assign a name to your solution stack. For information about
naming character limitations, see IAM and AWS STS quotas in the AWS Identity and Access
Management User Guide.

5. Under Parameters, review the parameters for this solution template and modify them as
necessary. This solution uses the following default values.

Note

Amazon Lex V1 has been deprecated and removed from QnABot v6.1.0. Amazon Lex V2
is used by default.

Parameter Default Description

Authentication

Email <Requires input> Email address for the admin
user. This email address
will receive a temporary
password to access the
QnABot on AWS content
designer.

Username <Requires input> This username will be used
to sign in to the QnABot
on AWS content designer
console and client if the
client is private.

Step 1: Launch the stack 36

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-limits.html

QnABot on AWS Implementation guide

Parameter Default Description

PublicorPrivate PUBLIC Choose whether access to
the QnABot on AWS client
should be publicly available
or restricted to users in the
QnABot in the Cognito user
pool.

Language English The primary language
for your QnABot on AWS
deployment.

Note

Selecting non-
English might
correspond with
limited functiona
lities.

Amazon Kendra Integration

Amazon KendraWeb
PageIndexId

<Optional input> ID of the Amazon Kendra
index to use for the web
crawler. A custom data
source will automatically be
added to the specified index.

Amazon KendraFaqIndexId <Optional input> ID of the Amazon Kendra
index to use for syncing
OpenSearch questions and
answers.

Step 1: Launch the stack 37

QnABot on AWS Implementation guide

Parameter Default Description

AltSearchAmazon
KendraIndexes

<Optional input> A comma separated string
value specifying IDs of one
or more Amazon Kendra
indexes to be used for
Amazon Kendra fallback.

AltSearchAmazon
KendraIndexAuth

FALSE Choosing TRUE enables the
solution to send an OpenID
token to Amazon Kendra
index(es) to limit results to
which the user is entitled.

Amazon OpenSearch Service

OpenSearchInstanceType m6g.large.search OpenSearch instance type
to use for the domain.
Default recommendation
for production deploymen
ts is m6g.large.search .
For details, see Supported
instance types in Amazon
OpenSearch Service in the
Amazon OpenSearch Service
Developer Guide.

OpenSearchNodeCount 4 Number of nodes in Amazon
OpenSearch Service domain.
We recommend 4 for
fault-tolerant production
deployments.

OpenSearchEBSVolumeSize 10 The size in GB of the
OpenSearch node instances
. 10 is the minimum default
volume size.

Step 1: Launch the stack 38

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/supported-instance-types.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/supported-instance-types.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/supported-instance-types.html

QnABot on AWS Implementation guide

Parameter Default Description

OpenSearchDashboar
dsRetentionMinutes

43200 To conserve storage in
Amazon OpenSearch Service,
metrics and feedback
data used to populate the
OpenSearch Dashboards
are automatically deleted
after this period (default
43200 minutes = 30 days).
Monitor the free storage
space for your OpenSearc
h Service domain to ensure
that you have sufficient
space available to store data
for the desired retention
period.

OpenSearchFineGrai
nAccessControl

TRUE Set to FALSE if fine-grained
access control does not need
to be enabled by default.
Once fine-grained access
control is enabled, it cannot
be disabled. Note that it may
take an additional 30-60
minutes for OpenSearc
h Service to apply these
settings to the OpenSearc
h domain after the stack
has been deployed. For
details, see Fine-grained
access control in Amazon
OpenSearch Service in the
Amazon OpenSearch Service
Developer Guide.

Amazon LexV2

Step 1: Launch the stack 39

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/fgac.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/fgac.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/fgac.html

QnABot on AWS Implementation guide

Parameter Default Description

LexV2BotLocaleIds en_US,es_US,fr_CA Languages for QnABot on
AWS voice interaction using
LexV2. Specify as a comma-
separated list of valid
locale IDs without empty
spaces. For details, see the
Supported languages section
in the GitHub repository.

Semantic Search and Embeddings

EmbeddingsApi DISABLED Enable QnABot semantics
search using embedding
s from a pre-trained LLM.
If set to SAGEMAKER ,
an ml.g4dn.xlarge
SageMaker endpoint is
automatically provision
ed with Hugging Face
intfloat/e5-large
model. Selecting LAMBDA
allows for configuration with
other models. Disabled by
default.

SagemakerInitialIn
stanceCount

1 Required when Embedding
sApi is set to SAGEMAKER .
Sets the number of instances
to deploy. Default instance
size is ml.m5.xlarge .

Step 1: Launch the stack 40

https://github.com/aws-solutions/aws-qnabot/blob/main/source/docs/multilanguage_support/README.md

QnABot on AWS Implementation guide

Parameter Default Description

EmbeddingsLambdaArn <Requires input> Required when Embedding
sApi is set to LAMBDA.
Provide the ARN for a
Lambda function that
takes JSON {"inputte
xt":"string"}, and
returns JSON {"embeddi
ng":[...]}.

EmbeddingsLambdaDi
mensions

1536 Required when Embedding
sApi is set to LAMBDA.
Provides the number of
dimensions for embedding
s returned from the Lambda
function.

EmbeddingsBedrockM
odelId

amazon.titan-embed-
text-v1

Required when Embedding
sApi is set to BEDROCK.
Select the embedding
s model from the list of
available models. Check
account and Region availabil
ity and ensure that the
model is enabled in the
Amazon Bedrock console
before deploying. For details,
see Model support by AWS
Region in the Amazon
Bedrock User Guide.

LLM Integration

Step 1: Launch the stack 41

https://docs.aws.amazon.com/bedrock/latest/userguide/models-regions.html
https://docs.aws.amazon.com/bedrock/latest/userguide/models-regions.html

QnABot on AWS Implementation guide

Parameter Default Description

LLMApi DISABLED Enable question disambigu
ation and generative
responses using an LLM
model. If set to SAGEMAKER

, a SageMaker endpoint is
automatically provisioned.
Selecting the LAMBDA option
allows for configuration with
other LLMs.

LLMSagemakerInstan
ceType

ml.g5.12xlarge Required if LLMApi is set
to SAGEMAKER . Provide
the SageMaker endpoint
instance type. Defaults
to ml.g5.12xlarge. Check
account and Region availabil
ity through AWS service
quotas before deploying.

LLMSagemakerInitia
lInstanceCount

1 Required if LLMApi is set to
SAGEMAKER . Provide initial
instance count. Serverles
s Inference is not currently
available for the built-in LLM
model.

LLMBedrockModelId anthropic.claude-i
nstant-v1

Required when LLMApi
is set to BEDROCK. Select
the LLM model from the
list of available models.
Check account and Region
availability and ensure that
the model is enabled in the
Amazon Bedrock console
before deploying.

Step 1: Launch the stack 42

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

QnABot on AWS Implementation guide

Parameter Default Description

LLMLambdaArn <Requires input> Required if LLMApi is set to
LAMBDA. Provide the ARN
for a Lambda function that
takes JSON {"prompt"
:"string", "settings
":{key:value,..}},

 and returns JSON
{"generated_text":
"string"}.

BedrockKnowledgeBaseId <Optional input> ID of an existing Amazon
Bedrock knowledge base.
This setting enables the
use of Amazon Bedrock
knowledge bases as a
fallback mechanism when
a match is not found in
OpenSearch.

BedrockKnowledgeBa
seModel

anthropic.claude-i
nstant-v1

Required if BedrockKn
owledgeBaseId is not
empty. Sets the preferred
LLM model to use with the
Amazon Bedrock knowledge
base.

Other parameters

Step 1: Launch the stack 43

QnABot on AWS Implementation guide

Parameter Default Description

InstallLexResponseBots TRUE Configures your chatbot to
ask questions and process
your end user's answers for
surveys and quizzes. If the
Elicit Response feature is not
needed, choose FALSE to
skip the installation of the
sample Lex response bots.
For details, see Configuri
ng the chatbot to ask the
questions and use response
bots.

FulfillmentConcurrency 0 The amount of provision
ed concurrency for the
Fulfillment Lambda
function. For details, see
Configuring reserved
concurrency.

VPCSubnetIdList <Optional input> Set to a comma delimited list
of subnet IDs belonging to
the target VPC you want to
deploy QnABot on AWS in.

VPCSecurityGroupIdList <Optional input> Set to a comma delimited list
of security group IDs used
by QnABot when deployed
within a VPC.

XraySetting FALSE Configure Lambda functions
with AWS X-Ray enabled.

LogRetentionPeriod 0 The number of days that logs
are kept before expiring. By
default, logs never expire.

Step 1: Launch the stack 44

https://docs.aws.amazon.com/solutions/latest/qnabot-on-aws/configuring-the-chatbot-to-ask-the-questions-and-use-response-bots.html
https://docs.aws.amazon.com/solutions/latest/qnabot-on-aws/configuring-the-chatbot-to-ask-the-questions-and-use-response-bots.html
https://docs.aws.amazon.com/solutions/latest/qnabot-on-aws/configuring-the-chatbot-to-ask-the-questions-and-use-response-bots.html
https://docs.aws.amazon.com/solutions/latest/qnabot-on-aws/configuring-the-chatbot-to-ask-the-questions-and-use-response-bots.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://aws.amazon.com/xray/

QnABot on AWS Implementation guide

6. Choose Next.

7. On the Configure stack options page, keep the default settings.

8. On the Review and create page, review and confirm the settings. Check the box acknowledging
that the template might create IAM resources with custom names, and the box acknowledging
that AWS CloudFormation might require the CAPABILITY_AUTO_EXPAND capability.

9. Choose Submit to deploy the stack.

You can view the status of the stack in the AWS CloudFormation console in the Status column. You
should receive a CREATE_COMPLETE status in approximately 30-45 minutes.

When the stack deployment is complete, the Output tab displays the following information:

• ContentDesignerURL – URL to launch the content designer UI

• ClientURL – URL to launch the end user client webpage

• DashboardUrl – URL to launch the CloudWatch dashboard for monitoring

• FeedbackSNSTopic – Topic name to allow feedback notifications

• LexV2 bot information – Data for configuring integration with contact centers and web clients.

Note

In addition to the primary AWS Lambda functions,this solution includes the solution-
helper Lambda function, which runs only during initial configuration or when resources
are updated or deleted.
When you run this solution, the solution-helper Lambda function is not regularly
active; however, you must not delete it because it is necessary to manage associated
resources.

Step 2: Launch the chatbot content designer

After successfully deploying the stack, you will receive an email at the email address listed in the
deployment parameters with the subject QnABot on AWS Signup Verification Code. This email
contains a generated temporary password that you can use to sign in to the content designer and
create your own password.

Step 2: Launch the chatbot content designer 45

QnABot on AWS Implementation guide

Use the following procedure to launch the content designer, reset your password, and sign in to the
content designer UI.

1. Open the verification email and select the link. Alternatively, sign in to the CloudFormation
console, choose this solution’s stack, select the Outputs tab, then select the
ContentDesignerURL link. The content designer opens in a separate browser tab.

2. Sign in with your username and temporary password.

a. Enter the username that you specified in the deployment parameters.

b. Enter the temporary password from the verification email.

3. Follow the prompts to change your password and sign in. Your new password must have a
length of at least eight characters, and contain at least one of each of the following: upper-case
and lower-case characters, numbers, and special characters.

4. Sign in with your username and new password.

To reset the user password using the Forgot your password option on the sign in page, verify the
user email.

AWS Management Console method for verifying user email

1. Sign in to the Amazon Cognito console.

2. Choose User Pools and select the user pool belonging to the QnABot stack.

3. Choose Users and select the user for which the password needs to be reset.

4. Choose Edit User attributes, select Mark email address as verified.

5. Choose Save.

AWS CLI method for verifying user email

To verify email, run:

aws cognito-idp admin-update-user-attributes \
 --user-pool-id <qnabot user pool id> \
 --username <username> \
 --user-attributes Name="email_verified",Value="true"

To get the user pool ID, run:

Step 2: Launch the chatbot content designer 46

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cognito/

QnABot on AWS Implementation guide

aws cognito-idp list-user-pools --max-results 10

Step 3: Populate the chatbot with your questions and answers

Create or upload question and answer data through the content designer before sharing the
QnABot on AWS with your end users. Your data is stored in Amazon OpenSearch Service, which
allows the data to be crawled when end users ask questions using either an Amazon Lex client UI or
an Amazon Alexa hands-free device.

Use the following procedure to get started with customizing your chatbot using the solution’s
sample questions. You can edit the sample questions to customize the data to meet your needs.

1. From the AWS CloudFormation console, launch the content designer user interface by selecting
the ContentDesignerURL link from the Outputs tab of the primary CloudFormation stack.

2. Enter the administrator username you provided when you launched the stack and your new
password.

QnABot on AWS content designer web user interface — QUESTIONS tab

3. Choose Add.

4. Enter the ID: AWS-QnABot.001

Note

Use a naming convention to identify your items within categories.

Step 3: Populate the chatbot with your questions and answers 47

QnABot on AWS Implementation guide

5. Enter the question: What is Q and A bot?

6. Enter the answer: The Q and A Bot uses Amazon Lex and Alexa to provide a
natural language interface for your FAQ knowledge base, so your users can
just ask a question and get a quick and relevant answer.

7. Select CREATE.

8. Repeat steps 3-7, entering the items from the following table (Table 1: Sample Q and A data).

Alternatively, you can import the items directly from a file. Select Import from the top left
tools menu (☰), then choose Examples/Extensions, find the package called blog-samples,
and choose LOAD.

Note

We recommend that you always import the QnaUtility example of questions set because
it enables support of no_hits, no_verified_identity, help, repeat, and thumbs
up and down feedback.

9. When the import is complete, choose Edit from the top left tools menu (☰), and then choose
LEX REBUILD from the top right edit card menu (⋮).

Table 1: Sample Q and A data

Id Question Answer

AWS-QnABot.002 How do I use Q and A Bot? Create and administer your
questions and answers using
the QnABot content designer
UI. End users ask questions
using the Amazon Lex web UI
that supports voice or chat, or
using Alexa devices for hands
free voice interaction.

Admin.001 How do I modify Q and A Bot
content?

Use the content designer
Question and Test tools to
find your existing documents

Table 1: Sample Q and A data 48

QnABot on AWS Implementation guide

Id Question Answer

and edit them directly in the
console. You can also export
existing documents as a JSON
file, make changes to the file,
and re-import.

Admin.002 Can I back up Q and A Bot
content?

Yes. Use the content designer
to export your content as a
JSON file. Maintain this file in
your version control system
or in an S3 bucket. Use the
content designer UI import
feature to restore content
from the JSON file.

Admin.003 Can I import Q and A Bot
content from a file?

Yes, the content designer
has an import function that
lets you load items from a
formatted JSON file. You can
create JSON files using the
export feature, or you can
write your own tools to create
JSON files from existing
content such as a website FAQ
page.

Table 1: Sample Q and A data 49

QnABot on AWS Implementation guide

Id Question Answer

Admin.004 How do I troubleshoot and fix
problems with Q and A Bot?

Use the content designer
test tool to test a question,
and check what items are
returned, ranked in order
of score. If the desired item
does not have the highest
score, then add the question
to the item and run the
test again. The desired item
should now have the highest
score. Ensure that you aren’t
creating items with duplicate
questions to avoid unpredict
able responses.

Admin.005 How can I find specific Q and
A items in the Designer UI?

Use the filter feature in the
Questions tab to filter the
items list based on the ID
field. Or use the Test tab to
list all the items that match a
question.

Media.001 How can I include pictures in
Q and A Bot answers?

Add an image attachment to
the item using the content
designer.

Step 4: Interact with the chatbot

Getting answers using an Amazon Lex web client user interface

You can launch QnABot on AWS from a Chrome, Firefox, or Microsoft Edge browser on your PC,
Mac OS, Chromebook, or Android tablet.

Step 4: Interact with the chatbot 50

QnABot on AWS Implementation guide

1. From the AWS CloudFormation console, select the main QnABot on AWS stack, choose Output,
and then select the link to the ClientURL. Alternatively, launch the client by choosing QnABot
on AWS Client from the content designer tools menu (☰).

2. When your browser requests access to the microphone on behalf of the web application, allow it.
The QnABot on AWS chat window opens.

QnABot on AWS web user interface chat window

3. Interact with the chatbot through the chat window. You can communicate through voice or text.

Select the microphone icon (bottom right) and say, “What is Q and A Bot?”

The chatbot responds with the answer you programmed in Step 3: Create chatbot content and load
sample Q and A data.

Getting answers using an Amazon Lex web client user interface 51

https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks?filter=active

QnABot on AWS Implementation guide

Getting answers using Amazon Alexa

The QnABot on AWS solution also works with Amazon Alexa, allowing your end users to get
answers from your programmed content via any Amazon Alexa device, including Amazon FireTV,
and any of the Amazon Echo family of devices.

Note

To integrate with Amazon Alexa, you must first use the Amazon Developer Console to
create an Alexa skill for QnABot on AWS. This solution doesn’t automatically create Alexa
skills. You can use the content designer to launch a walkthrough for creating an Alexa skill.

Use the following procedure to create an Alexa skill.

1. Sign in to the QnABot on AWS content designer, open the tools menu (☰), and choose Alexa.

2. Follow the instructions in the console.

3. (Optional) Test your new skill in the Amazon Developer Console, even if you don’t have an Alexa
device nearby.

When testing the skill, invoke the skill with the invocation name before asking questions and
answers. For example, if your invocation name is my qnabot, in the Alexa skill test console, first say,
“Open my Q and A Bot.” Alexa will reply with “Hello, please ask a question,” then you can ask your
QnABot a question.

Note

If you want to publish your new QnABot on AWS skill to the Alexa skills store so that other
users can access it, see Submitting an Alexa Skill for Certification. Unpublished skills are
accessible only to Alexa devices registered to your Amazon account; published skills are
available to anyone.

Getting answers using Amazon Alexa 52

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/publishing-an-alexa-skill

QnABot on AWS Implementation guide

Monitor the solution with Service Catalog AppRegistry

This solution includes a Service Catalog AppRegistry resource to register the CloudFormation
template and underlying resources as an application in both Service Catalog AppRegistry and AWS
Systems Manager Application Manager.

AWS Systems Manager Application Manager gives you an application-level view into this solution
and its resources so that you can:

• Monitor its resources, costs for the deployed resources across stacks and AWS accounts, and logs
associated with this solution from a central location.

• View operations data for the resources of this solution (such as deployment status, CloudWatch
alarms, resource configurations, and operational issues) in the context of an application.

The following figure depicts an example of the application view for the solution stack in
Application Manager.

Solution stack in Application Manager

Activate CloudWatch Application Insights

1. Sign in to the Systems Manager console.

2. In the navigation pane, choose Application Manager.

Activate CloudWatch Application Insights 53

https://docs.aws.amazon.com/servicecatalog/latest/arguide/intro-app-registry.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager.html
https://console.aws.amazon.com/systems-manager

QnABot on AWS Implementation guide

3. In Applications, search for the application name for this solution and select it.

The application name will have App Registry in the Application Source column, and will have a
combination of the solution name, Region, account ID, or stack name.

4. In the Components tree, choose the application stack you want to activate.

5. In the Monitoring tab, in Application Insights, select Auto-configure Application Insights.

Monitoring for your applications is now activated and the following status box appears:

Activate CloudWatch Application Insights 54

QnABot on AWS Implementation guide

Confirm cost tags associated with the solution

After you activate cost allocation tags associated with the solution, you must confirm the cost
allocation tags to see the costs for this solution. To confirm cost allocation tags:

1. Sign in to the Systems Manager console.

2. In the navigation pane, choose Application Manager.

3. In Applications, choose the application name for this solution and select it.

4. In the Overview tab, in Cost, select Add user tag.

5. On the Add user tag page, enter confirm, then select Add user tag.

The activation process can take up to 24 hours to complete and the tag data to appear.

Activate cost allocation tags associated with the solution

After you confirm the cost tags associated with this solution, you must activate the cost allocation
tags to see the costs for this solution. The cost allocation tags can only be activated from the
management account for the organization.

Confirm cost tags associated with the solution 55

https://console.aws.amazon.com/systems-manager

QnABot on AWS Implementation guide

To activate cost allocation tags:

1. Sign in to the AWS Billing and Cost Management and Cost Management console.

2. In the navigation pane, select Cost Allocation Tags.

3. On the Cost allocation tags page, filter for the AppManagerCFNStackKey tag, then select the
tag from the results shown.

4. Choose Activate.

AWS Cost Explorer

You can see the overview of the costs associated with the application and application components
within the Application Manager console through integration with AWS Cost Explorer. Cost Explorer
helps you manage costs by providing a view of your AWS resource costs and usage over time.

1. Sign in to the AWS Cost Management console.

2. In the navigation menu, select Cost Explorer to view the solution's costs and usage over time.

AWS Cost Explorer 56

https://console.aws.amazon.com/billing/home
https://console.aws.amazon.com/cost-management/home

QnABot on AWS Implementation guide

Update the solution

If you have previously deployed the solution, follow this procedure to update the QnABot on AWS
CloudFormation stack to get the latest version of the solution’s framework.

1. Sign in to the AWS CloudFormation console, select your existing QnABot on AWS
CloudFormation stack, and choose Update.

2. Select Replace current template.

3. Enter the appropriate Amazon S3 URL:

• If using the default main template: https://solutions-reference.s3.amazonaws.com/qnabot-
on-aws/latest/qnabot-on-aws-main.template

• If using the VPC template: https://solutions-reference.s3.amazonaws.com/qnabot-on-aws/
latest/qnabot-on-aws-vpc.template

4. Under Parameters, review the parameters for the template and modify them as necessary. Refer
to Step 1: Launch the stack for details about the parameters.

5. Choose Next.

6. On the Configure stack options page, choose Next.

7. On the Review page, review and confirm the settings. Be sure to check the box acknowledging
that the template might create AWS Identity and Access Management (IAM) resources.

8. Choose View change set and verify the changes.

9. Choose Update stack to deploy the stack.

Note

For those upgrading from v5.4.X
If you are upgrading from a deployment with LLMApi set to SAGEMAKER then set this value
to DISABLED before upgrading. After upgrading, return this value back to SAGEMAKER.

You can view the status of the stack in the AWS CloudFormation console in the Status column. You
should receive a UPDATE_COMPLETE status in approximately 30 minutes.

57

https://console.aws.amazon.com/cloudformation/home?
https://solutions-reference.s3.amazonaws.com/qnabot-on-aws/latest/qnabot-on-aws-main.template
https://solutions-reference.s3.amazonaws.com/qnabot-on-aws/latest/qnabot-on-aws-main.template
https://solutions-reference.s3.amazonaws.com/qnabot-on-aws/latest/qnabot-on-aws-vpc.template
https://solutions-reference.s3.amazonaws.com/qnabot-on-aws/latest/qnabot-on-aws-vpc.template

QnABot on AWS Implementation guide

Note

For those upgrading to v6.1.X and above
You might not see your previous executions on the Import, Export, and Test All
pages disappear. To restore them, go to the respective S3 buckets and copy all the
folders containing the data or status for each function (Import, Export, Test All) to the
ContentDesignerOutputBucket. Rename them as ‘data-{function}’ or ‘status-
{function}’. Omitting this step doesn't effect your QandAs and only impacts these
specific pages.

58

QnABot on AWS Implementation guide

Troubleshooting

If you need help with this solution, contact AWS Support to open a support case for this solution.

Contact AWS Support

If you have AWS Developer Support, AWS Business Support, or AWS Enterprise Support, you can
use the Support Center to get expert assistance with this solution. The following sections provide
instructions.

Create case

1. Sign in to Support Center.

2. Choose Create case.

How can we help?

1. Choose Technical.

2. For Service, select Solutions.

3. For Category, select Other Solutions.

4. For Severity, select the option that best matches your use case.

5. When you enter the Service, Category, and Severity, the interface populates links to common
troubleshooting questions. If you can’t resolve your question with these links, choose Next step:
Additional information.

Additional information

1. For Subject, enter text summarizing your question or issue.

2. For Description, describe the issue in detail.

3. Choose Attach files.

4. Attach the information that AWS Support needs to process the request.

Contact AWS Support 59

https://aws.amazon.com/premiumsupport/plans/developers/
https://aws.amazon.com/premiumsupport/plans/business/
https://aws.amazon.com/premiumsupport/plans/enterprise/
https://support.console.aws.amazon.com/support/home#/

QnABot on AWS Implementation guide

Help us resolve your case faster

1. Enter the requested information.

2. Choose Next step: Solve now or contact us.

Solve now or contact us

1. Review the Solve now solutions.

2. If you can’t resolve your issue with these solutions, choose Contact us, enter the requested
information, and choose Submit.

Help us resolve your case faster 60

QnABot on AWS Implementation guide

Uninstall the solution

You can uninstall the QnABot on AWS solution from the AWS Management Console or by using the
AWS Command Line Interface.

Using the AWS Management Console

1. Sign in to the AWS CloudFormation console.

2. Select this solution’s installation stack.

3. Choose Delete.

Note

Some IAM Roles are retained after stack deletion. You can find and delete them by
searching AdminRole, OpenSearchDashboardsRole, UnauthenticatedRole, and
UserRole. You can also find all the roles by taking the first portion of your deleted Stack
ID found in CloudFormation.

Using AWS Command Line Interface

Determine whether the AWS Command Line Interface (AWS CLI) is available in your environment.
For installation instructions, see What Is the AWS Command Line Interface in the AWS CLI User
Guide. Optionally, you can use the AWS CloudShell service to run AWS CLI commands. After
confirming that the AWS CLI is available, run the following command:

$ aws cloudformation delete-stack --stack-name <installation-stack-name>

Using the AWS Management Console 61

https://console.aws.amazon.com/cloudformation/home?
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://aws.amazon.com/cloudshell/

QnABot on AWS Implementation guide

Advanced setup

This section provides detailed instructions on how to set up QnABot to perform the following
tasks:

• Adding images to your answers

• Displaying rich text answers

• Using SSML to control speech synthesis

• Using topics to support follow-up questions and contextual user journeys

• Adding buttons to the web UI

• Integrating Handlebars templates

• Quizzes

• Setting Amazon Lex session attributes

• Specifying Lambda hook functions

• Using keyword filters for more accurate answers and customizing “don’t know” answers

• Configuring intent and slot matching

• Configuring the chatbot to ask the questions and use response bots

• Bot routing

• Connecting QnABot on AWS to an Amazon Connect call center

• Connecting QnABot on AWS to Genesys Cloud

• Tuning, testing, and troubleshooting unexpected answers

• Importing and exporting chatbot answers

• Modifying configuration settings

• Integrating Amazon Kendra

• Semantic question matching using text embeddings LLM

• Text generation and query disambiguation using LLMs

• Setting up a custom domain name for QnABot content designer and client

• Using QnABot on AWS Command Line Interface (CLI)

62

QnABot on AWS Implementation guide

Adding images to your answers

You can augment your answers with image attachments that can be displayed on an end user’s
Amazon Lex web client user interface, Alexa smartphone app, or Amazon Echo Show device touch
screen. For example, you can use images to display maps, diagrams, or photographs to depict
places and products relevant to a question.

1. Sign in to the content designer, and choose Add.

2. Enter ID: Alexa.001.

3. Enter question: What is an Amazon Echo Show?

4. Enter answer: Echo Show brings you everything you love about Alexa, and now
she can show you things. She is the perfect companion for Q and A Bot.

5. Choose Advanced.

6. Under Response Card, enter the following:

a. Card Title: Echo Show

b. Card ImageUrl: https://images-na.ssl-images-amazon.com/images/I/
61OddH8ddDL._SL1000_.jpg

7. Choose CREATE to save the new item.

8. Use the web UI chat window to ask: “What is an Echo Show?”

The photograph is displayed in the web UI chat.

Adding images to your answers 63

https://images-na.ssl-images-amazon.com/images/I/61OddH8ddDL._SL1000_.jpg
https://images-na.ssl-images-amazon.com/images/I/61OddH8ddDL._SL1000_.jpg

QnABot on AWS Implementation guide

Example image response in the web UI chat window

9. Optionally, you can use an Amazon Echo or Echo Dot to say: “Ask Q and A, What is an Echo
Show?”

The card shown in the Alexa smartphone app shows the photo attachment.

10.Optionally, you can use an Amazon Echo Show to say: “Ask Q and A, What is an Echo Show?”

The photo attachment is displayed on the Echo Show’s touch screen.

Adding images to your answers 64

QnABot on AWS Implementation guide

Displaying rich text answers

QnABot on AWS supports Markdown, allowing you to create rich text versions of your answers
for displaying on the web user interface, or on Slack. To use this feature, populate the Alternate
Markdown answer field in the content designer.

1. From the content designer, edit item AWS-QnABot001 (What is Q and A bot?) by opening the
Advanced section and entering the following text in the Markdown Answer field:

AWS QnABot
The Q and A Bot uses [Amazon Lex](https://aws.amazon.com/lex) and [Alexa](https://
developer.amazon.com/alexa) to provide a natural language interface for your FAQ
 knowledge base.
Now your users can just ask a *question* and get a quick and relevant *answer*.

2. Choose UPDATE to save the modification.

3. Use the web user interface to ask: "What is Q and A bot?".

The answer now displays the heading, links, and emphasis specified in your markdown text.

Displaying rich text answers 65

https://daringfireball.net/projects/markdown/syntax

QnABot on AWS Implementation guide

Example Markdown text

QnABot on AWS also supports inline HTML in the markdown field:

4. Choose ADD to create a new item in HTML:

a. Enter ID: FireTV.001

b. Enter question: What is Amazon Fire TV?

c. Enter answer:

Fire TV brings all the live TV and streaming content you love, and Alexa, onto
 the big screen. Use Alexa on the Fire TV to bring QnABot on AWS into your living
 room!

d. Enter markdown answer:

 Fire TV brings all the live TV and streaming content you love, and Alexa,
 onto the big screen. Use Alexa on the Fire TV to bring QnABot on AWS into your
 living room!

Displaying rich text answers 66

QnABot on AWS Implementation guide

<iframe src="https://www.youtube.com/embed/OE4MrFx2XCs"></iframe

5. Choose CREATE to save the item.

Using SSML to control speech synthesis

The solution supports Speech Synthesis Markup Language (SSML) reference—providing additional
control over the speech generation for your response. To use this feature, populate the SSML
answer field in the content designer.

1. From the content designer, edit item AWS-QnABot001 (“What is Q and A Bot”) by selecting the
Advanced section and entering the following text in the SSML Answer field:

<speak>AWS _{QnA} Bot is <amazon:effect name="drc">great</
amazon:effect>. _{QnA} Bot supports <sub alias="Speech
 Synthesis Markup Language ">SSML</sub> using Polly's neural voice. <prosody
 rate="150%">I can speak very fast</prosody>, <prosody rate="75%">or very
 slowly</prosody>. <prosody volume="-16dB">I can speak quietly</prosody>,
 <amazon:effect name="drc">or speak loud and clear</amazon:effect>. I can say
 <phoneme alphabet="ipa" ph="tə#m##tə#">tomato</phoneme> and tomato. Visit
 docs.aws.amazon.com/polly/latest/dg/supportedtags for more information.</speak>

2. Choose UPDATE to save the modification.

3. Use the web UI to ask, using voice: “What is Q and A bot?”, and listen to the whispered response.

4. Choose UPDATE to save the item.

5. Choose ADD to create a new item for our first follow-up question:

a. Enter ID: Alexa.Cost

b. Enter question: How much does it cost?

c. Enter answer: For latest prices on the Echo Show, see the Amazon retail
site or

d. Enter topic: EchoShow

Using SSML to control speech synthesis 67

https://docs.aws.amazon.com/polly/latest/dg/supportedtags.html

QnABot on AWS Implementation guide

Using topics to support follow-up questions and contextual
user journeys

The solution remembers the topic from the last question you asked, which allows you to ask
follow-up questions, for example: “How much does it cost?” The correct answer depends on the
context set by the previous question. To use this feature, you must assign a value to the Topic field
in the content designer.

1. From the content designer, edit item Alexa.001 ("What is an Amazon Echo Show?"), and enter
EchoShow as the topic in the Advanced section.

2. Choose UPDATE to save the item.

3. Edit item AWS-QnABot.001 ("What is Q and A bot?"), and enter AWS-QnABot as the topic.

4. Choose UPDATE to save the item.

5. Choose ADD to create a new item for our first follow-up question:

a. Enter ID: Alexa.Cost

b. Enter question: How much does it cost?

c. Enter answer: For latest prices on the Echo Show, see the Amazon retail
site or shopping app.

d. Enter topic: EchoShow

6. Choose CREATE to save the item.

7. Choose ADD to create a new item for our next follow-up question. Enter the following values:

a. Enter ID: QnABot on AWS.Cost

b. Enter question: How much does it cost?

c. Enter answer: Q and A Bot is priceless

d. Enter topic: QnABot on AWS

8. Choose CREATE to save the item.

9. Use the web UI to ask the following questions and observe the context appropriate answers:

a. “What is an Echo Show?”

b. The answer to this question now sets the conversation topic to: ‘EchoShow’.

c. “How much does it cost?”

d. The topic disambiguates this question, so it responds with the answer for the Echo Show.

e. “What is the Q and A bot?”

Using topics to support follow-up questions and contextual user journeys 68

QnABot on AWS Implementation guide

f. This question changes the Topic to: ‘QnABot on AWS’.

g. “How much does it cost?”

h. The new topic allows the QnABot on AWS to respond with the correct answer.

Adding buttons to the web UI

You can add buttons to your chatbot’s answers to help guide your end user by suggesting what
they might want to do next.

1. From the content designer, edit item Alexa.001 (“What is an Amazon Echo Show?”)

2. From the Advanced section, under Response card, enter a card title.

3. Under Lex Buttons enter the following:

a. Display text: AWS-QnABot

b. Button value: What is Q and A bot?

4. Select ADD LEX BUTTON to add another button.

a. Display text: FireTV

b. Button value: What is Amazon Fire TV?

5. Select UPDATE to save the item with your new buttons.

6. Use the web UI to ask: "What is an Echo Show?"

Adding buttons to the web UI 69

QnABot on AWS Implementation guide

Example buttons for sending the next question

7. Choose one of the buttons to automatically send the next question to QnABot on AWS.

Note

When integrating with Connect, QnABot on AWS maps to the Connect List Picker
Template. The client sets limits on the number of characters in a field and enforces
formatting using text from the QnABot on AWS plaintext response. You might need to

Adding buttons to the web UI 70

https://docs.aws.amazon.com/connect/latest/adminguide/interactive-messages.html#list-picker

QnABot on AWS Implementation guide

modify the QnABot on AWS plaintext response to accommodate these limitations with
the Connect chat client.

Integrating Handlebars templates

This solution supports the Handlebars simple templating language in your answers (including in
the markdown and SSML fields) which allows you to include variable substitution and conditional
elements. Use the following procedure to integrate Handlebars.

1. From the content designer, choose Add.

a. Enter ID: Handlebars.001

b. Enter question: What is my interaction count?

c. Enter answer: So far, you have interacted with me
{{UserInfo.InteractionCount}} times.

2. Save the new item.

3. Use the web UI, or any Alexa device to say, “What is my interaction count?” to your chatbot, and
listen to it respond.

4. Ask a few more questions, and then ask “What is my interaction count?” again. Notice that the
value has increased.

5. From the content designer, edit item Handlebars.001

6. Modify the answer to:

So far, you have interacted with me {{UserInfo.InteractionCount}} times.
{{#ifCond UserInfo.TimeSinceLastInteraction '>' 60}}
It’s over a minute since I heard from you last.. I almost fell asleep!
{{else}}
Keep those questions coming fast.. It’s been {{UserInfo.TimeSinceLastInteraction}}
 seconds since your last interaction.
{{/ifCond}}

7. Use the web UI, or Alexa, to interact with the chatbot again. Wait over a minute between
interactions and observe the conditional answer in action.

Integrating Handlebars templates 71

https://handlebarsjs.com/

QnABot on AWS Implementation guide

There’s a lot more that you can do with Handlebars, such as randomly selecting content from a
list, setting and accessing session attributes, and generating Amazon S3 presigned URLs. For more
information see the Handlebars section in the GitHub repository.

Quizzes

The solution’s content designer allows you to set up QnABot on AWS to use its Questionnaire Bot
feature to create simple quizzes for your users.

QnABot on AWS comes with a simple quiz example that you can customize:

1. From the content designer, choose Import from the tools menu (☰).

2. Select Examples/Extensions, and then choose LOAD from the Quiz example.

3. After the import job has completed, return to the edit page, and examine the items
ExampleQuiz & QuizEntry.

4. Use the web UI to say, “Start the example quiz.” or “Take the example quiz.” to begin the quiz.

Quizzes 72

https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/handlebars/README.md

QnABot on AWS Implementation guide

Example quiz

For more detailed information about how you can create and customize quizzes, see the QnABot
Workshop.

Setting Amazon Lex session attributes

The QnABot on AWS solution provides support for a question in the content designer UI to set an
Amazon Lex session attribute.

In early versions (v5.0.0 and earlier), using Handlebars in an answer would set a session attribute.
For example, the following code can set an attribute called attributeName to the value
attributeValue.

Setting Amazon Lex session attributes 73

https://catalog.us-east-1.prod.workshops.aws/workshops/20c56f9e-9c0a-4174-a661-9f40d9f063ac/en-US/qna/optional/quiz
https://catalog.us-east-1.prod.workshops.aws/workshops/20c56f9e-9c0a-4174-a661-9f40d9f063ac/en-US/qna/optional/quiz

QnABot on AWS Implementation guide

"{{setSessionAttr 'attributeName' 'attributeValue'}}"

Now, you can optionally use a question in the content designer UI to define a set of name/value
pairs as session attributes when the answer is returned. There is a field to set a name/value pair, an
Add button, and a Delete button.

The attribute name can be a simple name, such as myAttribute or a complex name, such as
myAttribute.subAttribute. You can also use the dot notation to set an attribute several levels
deep.

Note

Avoid using appContext or qnabotcontext as attribute names. Setting these might have
adverse effects on the system.

Specifying Lambda hook functions

The solution’s content designer allows you to dynamically generate answers by specifying your
own Lambda hook function for any item. When you specify the name, or ARN, of a Lambda
function in the Lambda hook field for an item, QnABot on AWS will call your function any time
that item is matched to an end user’s question. Your Lambda function can run code to integrate
with other services, perform actions, and generate dynamic answers.

QnABot on AWS comes with a simple Lambda hook function example that you can customize:

1. From the content designer, choose Import from the tools menu (☰).

2. Select Examples/Extensions, and then choose LOAD from the GreetingHook example.

3. After the import job has completed, return to the edit page, and examine the item
GreetingHookExample. The Lambda hook field is populated with a Lambda function name.

4. Use the web UI to say, “What are Lambda hooks?”. Note that the answer is prepended with a
dynamic greeting based on the current time of day – in this case ‘good afternoon’.

Specifying Lambda hook functions 74

QnABot on AWS Implementation guide

Example Lambda hook function

5. Inspect the ExampleJSLambdahook Lambda function using the AWS Lambda console.

6. Choose Lambda Hooks from the content designer tools menu (☰) to display additional
information to help you create your own Lambda hook functions.

For more information about how you can package Lambda hooks, see the Extending QnABot with
Lambda hook functions section in the GitHub repository.

Using keyword filters for more accurate answers and
customizing “don’t know” answers

The keyword filter feature helps the solution to be more accurate when answering questions with
OpenSearch Service, and to admit more readily when it doesn’t know the answer.

Keyword filters

The keyword filter feature works by using Amazon Comprehend to determine the part of speech
that applies to each word you say to QnABot on AWS. By default, nouns (including proper nouns),
verbs, and interjections are used as keywords. Any answer returned by QnABot on AWS must have
questions that match these keywords, using the following (default) rule:

• If there are one or two keywords, then all keywords must match.

• If there are three or more keywords, then 75% of the keywords must match.

Using keyword filters for more accurate answers and customizing “don’t know” answers 75

https://console.aws.amazon.com/lambda/home?region=us-east-1#/functions/qna-QnABot-hello?tab=graph
https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/lambda_hooks/README.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/lambda_hooks/README.md
https://docs.aws.amazon.com/comprehend/latest/dg/how-syntax.html

QnABot on AWS Implementation guide

If you have selected a non-English language for you deployment, then it will use Amazon Translate
to translate these keywords back to the language your user is using for interaction. If QnABot on
AWS can’t find any answers that match these keyword filter rules, then it will admit that it doesn’t
know the answer rather than guessing an answer that doesn’t match the keywords. The solution
logs every question that it can’t answer so you can see them in OpenSearch Dashboards.

Custom “Don’t Know” answers

When QnABot on AWS can’t find an answer, by default you’ll see or hear the response, “You
stumped me! Sadly, I don’t know how to answer your question”. You can customize this answer by
creating a new item in the content designer, called the no_hits item:

1. From the content designer, choose ADD to create a new item:

a. Enter ID: CustomNoMatches

b. Enter question: no_hits

c. Enter answer: Terribly sorry, but I don’t know that one. Ask me another.

2. Choose CREATE to save the item.

3. Use the web UI to ask: “What are Echo Buds?”

Configuring intent and slot matching

The solution supports different types of question and answer workflows. For example:

• You can create a question and answer experience to help answer frequently asked questions.
In this model, the user asks a question and QnABot on AWS responds with the most relevant
answer to the question (from the list of created Item IDs). For more information, see Step 3.
Populate the chatbot with your questions and answers.

• Build a diagnostic or questionnaire-based workflow, where a question from a user can result with
QnABot on AWS asking follow-up questions. If you are creating a survey or building a diagnostic
workflow where you may require inputs to different questions, you can use the ResponseBots
and Document Chaining capabilities of QnABot on AWS. For more information, see the section
called “Configuring the chatbot to ask the questions and use response bots”.

Both of these options provide flexibility in creating an interactive chat experience. For example:

• Accepting dynamic user input in a question.

Custom “Don’t Know” answers 76

https://docs.aws.amazon.com/translate/latest/APIReference/API_TranslateText.html

QnABot on AWS Implementation guide

• Automatically asking a question for a given input without needing to setup document chaining.

• Validating user input against an available list of options.

With this early implementation of the intent and slot matching capability in QnABot on AWS, you
can now build a richer conversational experiences. For example, you might create an intent that
makes a car reservation, or assists an agent during a live chat or call (via Amazon Connect). You
can use intent and slot matching also for cases where you might want better intent matching via
Amazon Lex NLU engine, as an alternative to QnABot on AWS default OpenSearch Service queries.

Note

The intent and slot matching capability in QnABot on AWS was initially implemented in
version 5.2.0. The content and step-by-step procedures in this section apply to QnABot on
AWS versions 5.2.0 and later.

Item ID setup

The Item ID setup is made of the following attributes:

• Intent – Represents an action that the user wants to perform. For each intent, provide the
following required information:

• Intent name – Descriptive name for the intent by providing an Item ID, for example,
IntentSlotMatching.Example.Q1.

• Sample utterances – The intent a user might convey. For example, a user might say, "book a
car" or "make a car reservation".

• Slot – An intent can require zero or more slots, or parameters. You add slots as part of the Item
ID configuration. At runtime, Amazon Lex V2 prompts the user for specific slot values. The user
must provide values for all required slots before Amazon Lex V2 can fulfill the intent.

• Slot type – Define the values that users can supply for your intent slots. Each slot has a type. You
can create your own slot type, or you can use built-in slot types.

Creating custom intent with slots and slot types

To create a custom intend with slots and slot types:

Item ID setup 77

https://docs.aws.amazon.com/lexv2/latest/dg/built-in-slots.html

QnABot on AWS Implementation guide

1. Create a QnABot question as you would normally do by providing an Item ID and questions/
utterances.

2. Expand the Advanced option.

3. Select the option for Create a dedicated bot intent for this item during LEX REBUILD.

Slots can be configured to be either required or optional. If a conversation flow requires user input,
choose the Slot required option.

For each slot, provide the slot type and one or more prompts that Amazon Lex V2 sends to the
client to elicit values from the user. A user can reply with a slot value when input might be needed.
You can create your own custom slot type, or you can use built-in slot types.

Creating custom intent with slots and slot types 78

https://docs.aws.amazon.com/lexv2/latest/dg/built-in-slots.html

QnABot on AWS Implementation guide

Intent and slot configuration

Additional Slots attributes:

• Cache slot value for re-use during a session? – The slot value can be stored in session
variables and accessed via qnabotcontext.slots.slotName. When a slot value is stored in a
session attribute, it is used automatically as the value for other slots with the same name
without reprompting the user. This can be beneficial when you are capturing a user's profile
information to support different conversational workflows, and don't want to ask the same
profile information again from the user.

Creating custom intent with slots and slot types 79

QnABot on AWS Implementation guide

• Slot sample utterances – A slot can also include optional sample utterances. These are phrases
that a user might use to provide the slot value. A comprehensive set of pre-defined utterances
is included (via built-in slot type or a custom slot type). You can add more if required. In most
cases, Amazon Lex can understand user utterances. If you know a specific pattern that users
might respond to an Amazon Lex request for a slot value, you can provide those utterances to
improve accuracy. In most cases, you won't need to provide any utterances.

Creating custom slot types

In addition to using built-in slot types, you can also create custom slot types. If an intent requires a
custom slot type, you can create a custom slot type by creating a new item and choosing the type
slottype. Similar to built-in slot types, a custom slot type can be used across more than one intent.

• Slot type values – The values for the slot. If you chose Restrict to slot values, you can
add synonyms for the value. For example, for the value football you can add the synonym
soccer. If the user enters soccer in a conversation with your bot, the actual value of the slot is
football.

• Slot value resolution – Determines how slot values are resolved. If you don’t choose Restrict
to slot values, Amazon Lex V2 uses the values as representative values for training. If you choose
Restrict to slot values, the allowed values for the slot are restricted to the ones that you
provide.

Creating custom slot types 80

QnABot on AWS Implementation guide

Creating a custom slot type

Accessing slot values

To support a conversational experience, you might want to:

• Display what the user provided as slot values, such as workflows that require confirming user
input.

• Use the slot values to support conditional branching via document chaining.

• Display a summary such as an order summary.

There are several ways to access slot values within an Item ID and/or Lambda hook. Using
Handlebars you can access slot values using:

Accessing slot values 81

QnABot on AWS Implementation guide

• getSlot – A new helper function that returns named slot value if it is defined, or default value.
For example: {{getSlot '_slotName_' '_default_'}}.

• Session attribute {{qnabotcontext.slots._slotName_}} – A value in a session attribute, where
slotName is the name of the slot defined in an Item ID. If the slot value is cached for re-use,
the value is available in a session attribute, and can be used across Item IDs.

• {{Slots._slotName_}} – A slot name, where _slotName_ is the name of the slot defined in an
Item ID.

Import sample intent and slot types

In the QnABot content designer, select the Tools menu link on the top left and select Import. From
the Examples/Extensions section, select Load for IntentSlotMatching to load sample intent and
slot types. This example imports:

• IntentSlotMatching.Example.Q1 – An Item ID of type qna with custom intent and slot.

• IntentSlotMatching_Example_slottype_CarType and
IntentSlotMatching_Example_slottype_Confirmation Item ID of type slottype with sample
slot values.

Lex rebuild

Once you have loaded the questions, choose Edit from the Tools menu and choose LEX REBUILD
from the top right edit card menu (⋮). This re-trains Amazon Lex using the newly added questions
as training data.

Testing the experience

On the Tools menu and choose QnABot Client from the options. Try the following conversation
flow:

User: Book a car
 Bot: In what city do you need to rent a car?

 User: Seattle
 Bot: What day do you want to start your rental?

 User: Today

Import sample intent and slot types 82

QnABot on AWS Implementation guide

 Bot: What day do you want to return this car?

 User: Next Sunday
 Bot: What type of car would you like to rent? Our most popular options are economy,
 midsize, and luxury.

 User: Economy
 Bot: Okay, should I go ahead and book the reservation?

 User: Yes
 Bot: Okay, I have confirmed your reservation. The reservation details are below:
 Car Type: economy
 Pick up City: Seattle
 Pick up Date: 2022-05-30
 Return Date: 2022-06-12

Notes and considerations

• Utterances must be unique across intents. Duplicate utterances across intents will cause the
Amazon Lex build to fail. Suppose you have two intents OrderPizza and OrderDrink in your
bot and both are configured with an I want to order utterance. This utterance does not map
to a specific intent that Amazon Lex V2 can learn from while building the language model for the
bot at build time. As a result, when a user inputs this utterance at runtime, Amazon Lex V2 can't
pick an intent with a high degree of confidence.

• Topics and ClientFilters are not supported when an Item ID is activated with custom
intent.

• Bot locale must be set to user's locale for QnABot on AWS multi-language text interactions.

• Always initiate a LEX REBUILD when activating Item IDs with custom intent and slots. This
creates the custom intents, slots, and slot types in Amazon Lex V2, and also trains Amazon Lex
using the added/updated Item IDs as training data.

• To take advantage of the additional features supported by Amazon Lex, such as confirmation
prompts and regular expression to validate the value of a slot, you can also create the Amazon
Lex intents and slot types in the QnABot Lex bot using the Amazon Lex console. For more
information, see Adding intents in the Amazon Lex V2 Developer Guide.

• Even if the Amazon Lex intents and slot types are created in the Amazon Lex console (created
outside of the QnABot content designer), you can reference any SlotType defined in the bot in
a QnABot Item ID, and also map a QID to a manually created Amazon Lex intent in QnABot on
AWS.

Notes and considerations 83

https://docs.aws.amazon.com/lexv2/latest/dg/build-intents.html

QnABot on AWS Implementation guide

• The Test All or Test options don’t work correctly for Item IDs with custom intent.

• While you are building your knowledge bank of questions, you might have a combination of FAQ-
based questions and intent-based questions. There may be instances where a wrong intent gets
matched or a FAQ question is matched instead. To troubleshoot this issue, try the following:

Enable the ENABLE_DEBUG_RESPONSES setting in QnABot on AWS. This setting provides debug
information to help understand what is processing the request, such as, Intent, OpenSearch, or
Amazon Kendra.

Configuring the chatbot to ask the questions and use response
bots

You can configure your chatbot to ask questions and process your end user’s answers. Use
this feature for data collection and validation; to implement surveys, quizzes, personalized
recommendations; or triage chatbot applications.

Use the following procedure to configure the chatbot to ask questions.

1. Sign in to the content designer and choose Add.

2. Enter ID: ElicitResponse.001

3. Enter question: Ask my name

4. Enter answer: Hello. Can you give me your First Name and Last Name please?

5. Choose Advanced.

6. Under Elicit Response, enter the following:

a. Elicit Response: ResponseBot Hook: QNAName

Alternatively for Lex V2 bots, you can use the syntax lexv2::BotId/BotAliasId/
LocaleId. This allows you when you are combining elicit responses with multi-language to
use a specific language for the elicit response bot.

b. Elicit Response: Response Session Attribute Namespace: name_of_user

7. Choose CREATE to save the new item.

8. Use the web UI to say: “Ask my name”

9. Respond by entering your name. Try responding naturally and see if chatbot confirms your name
correctly. If not, you can choose NO and try again.

Configuring the chatbot to ask the questions and use response bots 84

QnABot on AWS Implementation guide

The ResponseBot Hook field specifies the name of an Amazon Lex chatbot. In this case we
specified the name of a chatbot, QNAName, that was automatically created for us when the
solution was installed. QNAName is a built-in response chatbot designed to process names (first
and last name). It handles a variety of ways the user might state their name, and it will prompt
the user to confirm or to try again. If the user confirms by choosing YES, the response chatbot
will return the FirstName and LastName values back to the solution as slot values in a fulfilled
response.

The solution stores the returned FirstName and LastName values in a session attribute. The
name of the session attribute is determined by the value you provided for Response Session
Attribute Namespace (in this case name_of_user) and the slot name(s) returned by the
response chatbot (in this case FirstName and LastName).

The session attribute set by Elicit Response can be used in other items to provide conditional or
personalized responses.

10.Sign in to the content designer, and choose Add.

a. Enter ID: ElicitResponse.002

b. Enter question: Ask my age

c. Enter answer: Hello {{SessionAttributes.name_of_user.FirstName}} – What is
your age in years?

11.Choose Advanced.

a. Enter Elicit Response: ResponseBot Hook: QNAAge

b. Enter Elicit Response: Response Session Attribute Namespace: age_of_user

12.Choose CREATE to save the new item.

13.Use the web UI to say: “Ask my age.”

Response bots

The solution provides a set of built-in response bots that you can use out of the box:

• QNAYesNo - Returns slot Yes_No with value either Yes or No

• QNAYesNoExit - Returns slot Yes_No_Exit with value either Yes, No, or Exit

• QNADate - Returns slot Date with value of date (YYYY-MM-DD)

• QNADayOfWeek - Returns slot DayOfWeek

Response bots 85

QnABot on AWS Implementation guide

• QNAMonth - Returns slot Month

• QNANumber - Returns slot Number

• QNAAge - Returns slot Age

• QNAPhoneNumber - Returns slot PhoneNumber

• QNATime - Returns slot Time with value of time (hh:mm)

• QNAEmailAddress - Returns slot EmailAddress

• QNAName - Returns slots FirstName and LastName

• QNAFreeText - Returns slots FreeText and Sentiment

You can also add your own Amazon Lex bots and use them as response bots. Response chatbot
names must start with the letters QNA. The solution calls your chatbot with the user’s response,
and captures all the slot names and values returned when your chatbot sends back a fulfilled
message.

Advancing and branching through a series of questions

The following example configures the solution to automatically ask your age after you provide your
name.

1. Sign in to the content designer and edit item ElicitResponse.00.1

2. Choose Advanced.

3. Enter Document Chaining: Chaining Rule: ask my age

4. Choose UPDATE to save the modified item.

5. Use the web UI to say: “Ask my name”

• Enter and confirm your name.

• Enter and confirm your age.

The solution automatically asks you for your age after you confirm your name. Because you
specified the next question, ask my age, as the chaining rule, the solution automatically found
and advanced to the matching item.

Next, create a conditional chaining rule that will branch to different items depending on previous
answers.

1. Sign in to the content designer and add two new items:

Advancing and branching through a series of questions 86

QnABot on AWS Implementation guide

• ID: ElicitResponse.003, question: "Under 18", answer:"Under 18 answer".

• ID: ElicitResponse.004, question: "Over 18", answer: "Over 18 answer".

2. Edit item ElicitResponse.002

a. Add Chaining Rule: (SessionAttributes.age_of_user.Age< 18) ? "Under 18" :
"Over 18"

b. Choose UPDATE to save the modified item.

3. Use the web UI to ask: “Ask my name”.

• Enter and confirm your name.

• Enter and confirm your age.

When you confirm your age, the solution automatically branches to one of the two new items you
added, depending on your age. The chaining rule is a JavaScript programming expression used to
test the value of the session attribute set by elicit response; if it is less than 18 then advance to the
item matching the question "Under 18", otherwise advance to the item matching the question
"Over 18".

Combine expressions with logical operators to test multiple session attributes in a single rule, and
use nested expressions to implement more than two branches in a chaining rule. Use the alternate
syntax SessionAttributes('age_of_user.Age') to avoid a processing error if the referenced
session attribute does not exist.

You can also apply chaining rule expressions to all the context variables supported by the
Handlebars feature including UserInfo fields, Settings fields, and more. For a list of available
variables, see the Handlebars section in GitHub repository.

Identify the next document using its QID value instead of a question using a string that starts
with QID:: followed by the QID value of the document, for example, a rule that evaluates to
QID::Admin001 will chain to item Admin.001.

You can optionally specify an AWS Lambda function instead of a JavaScript expression when
you need to evaluate complex chaining rule logic. Your Lambda function is invoked with the
full user request context and should evaluate and return the next question as a simple string.
Alternatively, the Lambda function may return an event object where the event.req.question
key was updated to specify the next question – by returning an event object, your chaining
rule Lambda function can modify session attributes, similar to Lambda hooks. Use Lambda
functions to implement chaining rules that require complex logic and data lookup. A chaining

Advancing and branching through a series of questions 87

https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/handlebars/README.md

QnABot on AWS Implementation guide

rule Lambda function name must start with the letters “QNA”, and is specified in the Document
Chaining:Chaining Rule field as Lambda::FunctionNameOrARN.

Note

If the chaining rule has an error, the solution will return the message, “Unfortunately I
encountered an error when searching for your answer. Please ask me again later.”

Bot routing

Bots come in many shapes and sizes, and exist to perform a variety of automation tasks. Usually,
they take input from a human and respond by performing a task. Bots might ask for additional
input, verify the input, and respond with completion. You can implement bots by using Amazon Lex
or other toolsets. An example is the nutritionix bot – where you can tell the bot what you've had for
breakfast and it responds with nutrition information.

QnABot on AWS coordinates (routes) bot requests through a supervisory bot, to the appropriate
bot based on questions or tasks.

Content designers associate questions or tasks (QIDs) that identify a BotRouter to target for the
question. This is performed using the QnABot content designer UI. Once configured, if a user asks
a question or directs the bot with some instruction, QnABot on AWS responds with an answer and
sets up a channel to communicate with the specialty bot. From that point, messages or responses
from the user are delivered to the specialty bot. Specialty bots respond to actions and QnABot on
AWS delivers the answers.

This flow continues until one of these events occurs:

1. The user cancels the conversation with the specialty bot by uttering "exit", "quit", "bye", or a
configurable phrase defined in the settings configuration of QnABot on AWS.

2. The specialty BotRouter (custom code) responds with a message indicating the conversation
should be discontinued (QNABOT_END_ROUTING).

3. The specialty bot is a LexBot (non QnABot on AWS) that indicates fulfillment is complete.

4. If the target bot is another QnABot on AWS, session attributes can be set by the
specialty QnABot on AWS set indicating the conversation should be discontinued
(QNABOT_END_ROUTING).

Bot routing 88

https://www.nutritionix.com/natural-demo?q=for%20breakfast%20i%20ate%203%20eggs,%20bacon%20and%20cheese

QnABot on AWS Implementation guide

Specialty bots can be developed for specific parts of an organization like IT, or Finance, or Project
Management, or Documentation. A supervisory bot at an enterprise level can direct users to
answers from any of their bots.

Configuration of bot routing

Configuration of bot routing is simple. Each question in QnAbot on AWS contains an optional
section which allows configuration of a BotRouter.

Note

This is optional. Leave empty and QnABot on AWS will not act as a BotRouter for the
question being edited.

Bot routing

The example image shows an integration we've developed which communicates with the
Nutritionix bot.

• Bot name or Lambda function - You can configure and existing Lex bot or configure a specialty
BotRouter implemented via a Lambda function.

• Simple name - A short string that we expect web user interfaces to use as a breadcrumb to
identify where in an enterprise the user is interacting.

Configuration 89

QnABot on AWS Implementation guide

Note

When integrating with other Amazon Lex bots or Lambda functions, the permission to
communicate with the target Amazon Lex bot or with a new BotRouter Lambda function
need to be added to the solution’s Fulfillment Lambda role.

Message protocol for a new bot router implemented in Lambda

The input JSON payload to the target Lambda function is as follows:

req: {
 request: "message",
 inputText: <String>,
 sessionAttributes: <Object>),
 userId: <String>
 }

The expected response payload from the target Lambda function is the following:

{
 response: "message",
 status: "success", "failed"
 message: <String>,
 messageFormat: "PlainText", "CustomPayload", "SSML", "Composite"
 sessionAttributes: Object,
 sessionAttributes.appContext.altMessages.ssml: <String>,
 sessionAttributes.appContext.altMessages.markdown: <String>,
 sessionAttributes.QNABOT_END_ROUTING: <AnyValue>
 responseCard: <standard Lex Response Card Object>
}

Sample bot router

The Nutrionix node.js based sample BotRouter is provided as a zip file in the GitHub repository.
To use this sample you'll need to provision an API account with Nutritionix and configure the source
to use your own x-app-id and x-app-key from Nutritionix.

'x-app-id': process.env.xAppId,

Message protocol for a new bot router implemented in Lambda 90

https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/nutritionix_botrouter.zip
https://www.nutritionix.com/business/api

QnABot on AWS Implementation guide

 'x-app-key': process.env.xAppKey

Next, you must build and deploy the code into Lambda using your favorite techniques and grant
permission within the QnABot Fulfillment Lambda role using IAM to invoke this Lambda.

Tip

If you name the Lambda function starting with qna, QnABot on AWS is already configured
with permissions to invoke this Lambda.

Connecting QnABot on AWS to an Amazon Connect call center

The solution can automate data collection and answer frequently asked questions using QnABot on
AWS within an Amazon Connect contact flow. Optionally, you can also configure the solution to use
Amazon Connect to make outbound calls; your users can use the web UI or the Alexa skill to ask
QnABot on AWS to call their phone so they can speak to a human.

Using the Amazon Connect integration wizard, follow these steps to connect QnABot on AWS to a
call center.

1. Sign in to the content designer, select the tools menu (☰), and then choose Connect.

2. Follow the step-by-step directions in the wizard to create a contact center using the solution to
answer caller’s questions.

Connecting QnABot on AWS to an Amazon Connect call center 91

QnABot on AWS Implementation guide

Amazon Connect integration wizard

Connecting QnABot on AWS to Genesys Cloud

Note

While QnABot on AWS provides integration with Genesys Cloud CX, you are responsible for
integration testing and ensuring QnABot connectivity to Genesys Cloud works as expected.
Work with a specialist if you have further questions.

1. Sign in to the content designer, select the tools menu (☰), and then choose Genesys Cloud.

2. Follow the step-by-step directions in the wizard to create a contact center using the solution to
answer caller’s questions.

Connecting QnABot on AWS to Genesys Cloud 92

QnABot on AWS Implementation guide

Tuning, testing, and troubleshooting unexpected answers

You can use the content designer to tune, test, and troubleshoot answers to fix problems.

Tuning answers using the content designer

By default, QnABot on AWS attempts to match an end user’s question to the list of questions and
answers stored in Amazon OpenSearch Service. QnABot on AWS uses full text search to find the
item that is the best match for the question asked. Words that are used infrequently score higher
than words that are used often, so sentence constructs such as prepositions have lower weighting
than unique keywords. The closer the alignment between a question associated with an item and a
question asked by the user, the greater the probability that QnABot on AWS will choose that item
as the most relevant answer.

The solution tries to find the best answer to questions by applying the keyword filters, and by
matching the words used in the end user’s question to the words used in the question fields of the
stored answers—giving preference when the same words are used in the same order.

You might find that end users ask questions in ways that you haven’t anticipated, resulting in
unexpected answers being returned by QnABot on AWS. When this happens, you can use the
content designer to troubleshoot and fix the problem.

For more information, see the Tuning Recognition Accuracy section in the GitHub repository.

Testing all your questions

Use the following procedure to test your questions.

1. Sign in to the content designer, and choose TEST ALL.

2. Use the default filename, or enter your own.

3. Optionally, if you want to test only a subset of questions, you can filter by the qid prefix. Leave
this field blank to test all the questions.

4. Select TEST ALL, and wait for the tests to complete.

5. Select the view results icon on the bottom right to view the test results. Any incorrect matches
are highlighted in red. Test results can be viewed in the browser, or downloaded to your
computer as a CSV file.

Tuning, testing, and troubleshooting unexpected answers 93

https://github.com/aws-solutions/qnabot-on-aws/tree/main/source/docs/tuning_accuracy_guide

QnABot on AWS Implementation guide

Tuning the chatbot’s ASR

When you ask QnABot on AWS a question, it is processed and transcribed by either Amazon Lex
or Alexa using an ASR engine. QnABot on AWS initially trains the ASR to match a wide variety of
possible questions and statements, so that the Amazon Lex chatbot and Alexa skill will accept
almost any question a user asks.

This solution supports AMAZON.FallbackIntent in both Amazon Lex and Alexa, which allows it
to process anything end users say without needing to retrain and rebuild the Amazon Lex chatbot
or Alexa skill.

Occasionally, the transcription shown in the web client or the Alexa app isn’t accurate. This can
happen with unusual words that are confused for other more common words or phrases. Use one
of the following approaches to troubleshoot this error:

• Use the content designer to add additional question variants that match the actual transcription
shown in the web client or in the Alexa app; this allows QnABot on AWS to anticipate the
transcription accuracy problem, and respond anyway.

• Retrain the Amazon Lex and Alexa ASR with examples to influence the transcription to more
closely match what you want – see Retrain Amazon Lex for more information.

Retrain Amazon Lex

QnABot on AWS can automatically generate additional ASR training data for Amazon Lex using
questions from the data you have added.

1. Sign in to the content designer and choose LEX REBUILD from the top right edit menu (⋮).

2. Wait for the rebuild to complete.

Retrain Alexa

QnABot on AWS can generate additional ASR training data for Alexa using questions from the data
you have added.

1. Sign in to the content designer and choose ALEXA UPDATE from the top right edit menu (⋮).

2. Select COPY SCHEMA to copy the updated Alexa skill schema.

3. Sign in to the Alexa Developer Console, open your QnABot on AWS skill, and then use the JSON
editor to paste the new schema, replacing the existing one.

Tuning the chatbot’s ASR 94

QnABot on AWS Implementation guide

4. Save and then build the updated model.

Monitoring QnABot on AWS usage and user feedback

The solution logs everything that end users say to the chatbot. Amazon Data Firehose stores
logged utterances to a new index in Amazon OpenSearch Service.

You can also allow your end users to provide feedback about the chatbot’s answers. Use the
following procedure to set up the feedback mechanism.

1. From the content designer’s top left tools menu (☰), select Import.

2. Open Examples/Extensions, and select the LOAD for the QnAUtility demo.

3. From the top left tools menu (☰), select EDIT and examine the newly imported items,
Feedback.001 and Feedback.002; observe the list of default expressions that the end
user can input to invoke feedback. (The example QnAUtility demo package also loads Help,
CustomNoMatches, CustomNoVerifiedIdentity items.)

4. Test the feedback mechanism.

Use the web UI to ask a question, such as: "What happens if I ask an unanticipated question?".
Because we have not entered a suitable answer for this question, QnABot on AWS responds with
the newly imported CustomNoMatches response—indicating that it doesn’t know the answer.

From the web UI, say or type "Thumbs down", or select the Thumbs down icon beside the answer.

The solution publishes Thumbs down feedback messages to the Amazon Simple Notification
Service (SNS) topic identified by the FeedbackSNSTopic on the Outputs tab of the CloudFormation
stack. To learn how to subscribe to the SNS topic, and receive a message from the each time a
user provides feedback, see Subscribing to an Amazon SNS topic in the Amazon Simple Service
Notification Developer Guide.

If you have selected a non-English language for your QnABot on AWS deployment and have multi-
language enabled then you should do the following steps:

1. Use the AWS Translate API to translate Thumbs up and Thumbs down to your deployment
language, if it is not English.

2. Add the translation of the Thumbs up and down as a question in your QnABot on AWS
deployment.

Monitoring QnABot on AWS usage and user feedback 95

https://docs.aws.amazon.com/sns/latest/dg/sns-create-subscribe-endpoint-to-topic.html

QnABot on AWS Implementation guide

3. Go to the content, select the top left tools menu (☰), and choose Settings.

4. Find the PROTECTED_UTTERANCES variable and insert that phrase in by adding a comma, then
enter the translation.

Use the following process to visualize the usage logs and feedback using OpenSearch Dashboards.
Note that it can take up to 5 minutes for new utterances and end user feedback to become visible
in the dashboard.

1. From the content designer, select the top left tools menu (☰), and choose OpenSearch
Dashboards and it opens in a new browser tab.

2. Choose the QnABot on AWS dashboard to visualize usage history and sentiment, all logged
utterances, no hits utterances, positive user feedback, and negative user feedback.

Monitoring QnABot on AWS usage and user feedback 96

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/dashboards.html

QnABot on AWS Implementation guide

Sample OpenSearch Dashboard

3. Edit OpenSearch Dashboards to change the time span, customize and build your own
visualizations, or to run your own queries.

Monitoring QnABot on AWS usage and user feedback 97

https://opensearch.org/docs/latest/dashboards/

QnABot on AWS Implementation guide

Using Amazon CloudWatch to monitor and troubleshoot

The solution’s metrics and logs are available in an Amazon CloudWatch dashboard. Use the
following procedure to launch the dashboard and visualize the solution’s AWS resources.

1. From the CloudFormation stack’s Outputs tab, select the DashboardUrl link.

2. When troubleshooting the chatbots responses to your questions, trace the request and response
using the logs created by the Fulfillment Lambda function.

a. Choose the menu tool in the upper right of the Fulfillment Lambda widget, select View
logs, then and choose the AWS Lambda function.

FulfillmentLambda function

b. Inspect the log messages. Each interaction with the solution is delimited by START and END
messages. Between these messages are insights into how the solution processes the question.

Use Log Insights to query logs from CloudWatch groups

1. Go to Log Insights in Amazon CloudWatch and select the log group you would like to query.

2. Create your query in Log Insights.

Example query for Fulfillment Lambda logs to query for any errors:

filter @message like /(?i)(Exception|error|KeyError)/
| fields @timestamp, @message
| sort @timestamp desc

Using Amazon CloudWatch to monitor and troubleshoot 98

QnABot on AWS Implementation guide

| limit 200

Importing and exporting chatbot answers

The solution’s content designer allows you to export and import your content using JSON and
Excel files.

Use the export feature to create backup versions of your content that you can use to restore if you
accidentally delete items or need to go back to a previous version. You can also use the exported
files to load content into another instance of your chatbot to help with test deployments.

Follow these steps to export all the items that are in the QnABot on AWS category (Item IDs
starting with AWS-QnABot).

1. Sign in to the content designer, choose the tools menu (☰), and then choose Export.

2. Enter AWS-QnABot in the optional filter field, and then choose EXPORT to generate a JSON file
containing the filtered items.

3. After the export has completed, choose the download tool (bottom right) to download the
exported file.

4. Open the exported file in a text editor and inspect the JSON structure.

Sample JSON file for importing and exporting chatbot answers:

{
 "qna": [
 {
 "q": [
 "What is Q and A Bot"
],
 "a": "The Q and A Bot uses Amazon Lex and Alexa to provide a natural language
 interface for your FAQ knowledge base, so your users can just ask a question and get
 a quick and relevant answer.",
 "r": {
 "title": "",
 "imageUrl": ""
 },
 "qid": "QnABot.001"
 },
 {

Importing and exporting chatbot answers 99

QnABot on AWS Implementation guide

 "q": [
 "How do I use Q and A Bot"
],
 "a": "Create and administer your questions and answers using the Q and A Bot
 Content Designer UI. End users ask questions using the Lex web UI, which supports
 voice or chat, or using Alexa devices for hands free voice interaction. ",
 "r": {
 "title": "",
 "imageUrl": ""
 },
 "qid": "QnABot.002"
 }
]
}

5. Add a new item to the qna list, as shown in the following example, and save the file.

{
 "qid": "AWS-QnABot.003",
 "q": ["What can Q and A bot do"],
 "a": "You can integrate it with your website to provide quick and easy access
 to frequently asked questions. Use it with Alexa to provide hands free answers in
 the kitchen, in the factory or in the car. Since it can display images too, use it
 to provide illustrations and photographs to enrich your answers.",
 "r": {
 "title": "",
 "imageUrl": ""
 }
}

6. From the content designer, select Import/Export, and then choose From File.

7. Import your modified JSON file. Importing items with the same ID as an existing item will
overwrite the existing item with the definition contained in the JSON file.

8. From the content designer, enter AWS-QnABot in the filter field, and inspect the newly imported
item, AWS-QnABot.003.

For a step-by-step procedure on importing Excel (.xlsx) workbooks, see Excel workbooks import
in the GitHub repository.

Importing and exporting chatbot answers 100

https://github.com/aws-solutions/qnabot-on-aws/tree/main/source/docs/excel_import

QnABot on AWS Implementation guide

Modifying configuration settings

The solution uses AWS Systems Manager Parameter Store to hold default and custom
configuration settings. You can view and edit these settings using the Settings menu in the content
designer.

Explore the available configuration settings, and override the defaults to configure the solution’s
customize keyword filtering, answer field scoring, messages, redaction from logs and metrics
(ENABLE_REDACTING and REDACTING_REGEX), and more. You can also enable the debug mode
(ENABLE_DEBUG_RESPONSES), initiate fuzzy matching (ES_USE_FUZZY_MATCH), and experiment
with score boosting for exact phrase matches (ES_PHRASE_BOOST). Follows are a set of example
of settings frequently use. For more complete information on the settings, see QnABot Settings in
the GitHub repository.

Note

Custom settings are kept when you upgrade the solution.

Configure keyword filters feature

1. Sign in to the content designer, select the tools menu (☰), and then choose Settings.

2. Change the value of the ES_USE_KEYWORD_FILTERS setting from true to false.

3. Scroll to the bottom and select Save. This turns off the new keyword filters feature.

You can further customize how the keyword filters feature works by changing the following
settings:

• ES_KEYWORD_SYNTAX_TYPES - A list of tokens representing parts of speech identified by
Amazon Comprehend.

• ES_MINIMUM_SHOULD_MATCH - A query rule used to determine how many keywords must
match an item question in a valid answer.

Configure words and phrases replacement in user questions

If you want to replace words or phrases in user questions, for example, you want Thumbs up
rewritten to be a direct match by question ID, you can use the

Modifying configuration settings 101

https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/settings.md
https://docs.aws.amazon.com/comprehend/latest/dg/how-syntax.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-minimum-should-match.html

QnABot on AWS Implementation guide

SEARCH_REPLACE_QUESTION_SUBSTRINGS setting.

1. Sign in to the content designer, select the tools menu (☰), and then choose Settings.

2. Change the value of the SEARCH_REPLACE_QUESTION_SUBSTRINGS setting to a
JSON object, such as {"Thumbs Down": "QID::Feedback.001", "Thumbs Up":
"QID::Feedback.002"}. You can add additional pairs separated by commas.

3. Scroll to the bottom and select Save. This will now rewrite all input matching "Thumbs Down"
to "QID::Feedback.001".

Configure pre-processing and post-processing Lambda hooks

The content designer enables you to dynamically generate answers by letting you specify your own
Lambda hook function for any item/question defined in the content designer (hook). In addition,
a Lambda hook can be called as the first step in the fulfillment pipeline (PREPROCESS) or after
processing has completed (POSTPROCESS) and before the userInfo is saved to DynamoDB and the
result has been sent back to the client.

You can add pre-processing and post-processing Lambda hooks (that run before preprocessing and
after every question is run) via the Settings page.

1. Sign in to the content designer, select the tools menu (☰), and then choose Settings.

2. Find the LAMBDA_PREPROCESS_HOOK setting and set its value to your hook name. The
name of the Lambda must start with qna- or QNA- to comply with the permissions of the role
attached to the Fulfillment Lambda, for example, QNA-ExampleJSLambdahook.

3. Scroll to the bottom and select Save. The Lambda function specified will now be run before each
question is processed.

Note

For more information on Lambda hooks, see the Extending QnABot with Lambda hook
functions and the QnABot Settings sections in the GitHub repository.

Configure pre-processing and post-processing Lambda hooks 102

https://github.com/aws-solutions/qnabot-on-aws/tree/main/source/docs/lambda_hooks
https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/lambda_hooks/README.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/lambda_hooks/README.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/settings.md

QnABot on AWS Implementation guide

Configure multi-language support

QnABot on AWS supports both voice and text interactions in multiple languages. QnABot can
detect the predominant language in an interaction by using Amazon Comprehend, a NLP service
that uses machine learning to find insights and relationships in text. The bot then uses Amazon
Translate, a neural machine translation service to convert questions and answers across languages
from a single shared set of FAQs and documents.

By default the multi-language feature is disabled. QnABot on AWS uses a property named
ENABLE_MULTI_LANGUAGE_SUPPORT with a default value of false. You can change this setting
using the content designer Settings page. Set it to true to enable multi-language support.

QnABot on AWS uses Amazon Translate to convert the question posed by the user to your core
language that was chosen during your deployment. It performs a lookup of the answer in Amazon
OpenSearch Service just as it normally does, using the native language translation of the question.

Searches are done in the language you have selected for your deployment only since QnABot on
AWS documents are indexed using the language analyzer and their corresponding text analyzer for
example, stemming and stop words. Once it finds the question, QnABot serves up the configured
answer.

When you are in multi-language mode, consider letting the user choose their preferred language
at the beginning of the chat and then have the whole conversation session from that point on to
be only in the preferred language. Use Handlebars to do this. For details, see the section called
“Integrating Handlebars templates”.

You must enter a question into the QnA question bank with an utterance that is the name of the
language that you are trying to set as preference, such as Spanish, coupled with the #setLang
Handlebar in the answer of that utterance. This utterance or question must be invoked at the
point where you want to set the conversation to the preferred language. For example, you can
import the Language / Multiple Language Support sample or extension from the QnABot Import
menu option. This adds two questions to the system: Language.000 and Language.001. The
first question allows the end user to set their preferred language explicitly to a list of supported
languages; the latter resets the preferred language and allows QnABot to choose the locale based
on the automatically detected predominant language.

Configure multi-language support 103

QnABot on AWS Implementation guide

Note

Button values in the response cards are still displayed with their original value as input in
the chat conversation.

When deploying the QnABot on AWS solution (version 5.5.0 and higher) CloudFormation
template, there will be a Language parameter in which you have the option of selecting one of
the 33 languages. This Language parameter is used as the core language for your QnABot on
AWSdeployment. The Language Analyzer for your Opensearch index setting uses the language
that you have specified in this parameter. In the case that your input has a low confidence rate, it
defaults to English since that is the backup language.

• Custom terminology also supports your NATIVE_LANGUAGE.

• For the SageMaker LLM, Llama-2-13b-chat is supported in English. If you want to use the
multi-language feature with an LLM, we encourage you to use Bedrock with a model that can
support other languages. If you are using a language other than English as your core language,
then make sure to change your LLM prompt settings to match your core language. If your
preferred core language is not supported by any Bedrock model, then you must use your own
Lambda function and LLM.

• For the embeddings, the SageMaker intfloat/e5-large-v2 JumpStart model only
supports English. If you are using a non-English native language, then you should use your own
embeddings model and provide the Lambda function in your deployment.

• If using the thumbs up and down feature, you should translate thumbs up and thumbs down into
your native language and put that phrase in the PROTECTED_UTTERANCES setting. This is to
prevent it from being treated as a question by the solution. To do this, complete the following
steps:

1. Use the AWS translate API to translate thumbs up and thumbs down to your deployment
language, if it is not English.

2. Add the translation of thumbs up and thumbs down in the website client config file inside your
QnABot on AWS code and deploy.

3. Add the translation of the thumbs up and thumbs down as a question in your QnABot
deployment.

4. Go to the content designer, navigate to the top left and select Settings.

Configure multi-language support 104

QnABot on AWS Implementation guide

5. Find the PROTECTED_UTTERANCES variable and insert that phrase in by adding a comma, and
then enter the translation.

• PII redaction will still be for English, since that is still accurate with other languages.

• Changing the NATIVE_LANGUAGE should always be done from the CloudFormation stack by
changing the Language parameter.

When creating an Amazon Kendra web crawling data source from the QnABot UI, it will be created
in the native language specified in your CloudFormation parameters. If the specified native
language is not supported by Amazon Kendra, English will be used as the default language.

When querying within your Amazon Kendra data source, the following logic will be applied to
determine the language used for querying:

1. The algorithm will determine the user's locale and use the
`shouldUseOriginalLanguageQuery()` function to decide whether to query in the user's
native language or the locale's language.

2. Based on the result from `shouldUseOriginalLanguageQuery()`, it will either:

• Use the locale's language if it is supported by Amazon Kendra.

• If the locale's language is not supported, it will check if the native language (the language
chosen in the CloudFormation parameters) is supported by Amazon Kendra.

3. If neither the locale's language nor the native language is supported by Amazon Kendra, English
will be used as the default language for querying.

In summary, the algorithm tries to use the user's preferred language (either the locale or the native
language specified in the CloudFormation parameters) if it is supported by Amazon Kendra. If
neither language is supported, English is used as the fallback language for querying the Amazon
Kendra data source.

For more information, see the MultiLanguage Support section in the GitHub repository or the Multi
Language section in the QnABot Workshop.

Using automatic translation

This solution supports automatic translation to the end user’s language using Amazon Translate.

1. Turn on multiple-language support by setting: ENABLE_MULTI_LANGUAGE_SUPPORT to TRUE.

Using automatic translation 105

https://github.com/aws-solutions/qnabot-on-aws/tree/main/source/docs/multilanguage_support
https://catalog.us-east-1.prod.workshops.aws/workshops/20c56f9e-9c0a-4174-a661-9f40d9f063ac/en-US/deployment/optional-configurations/multi-language
https://catalog.us-east-1.prod.workshops.aws/workshops/20c56f9e-9c0a-4174-a661-9f40d9f063ac/en-US/deployment/optional-configurations/multi-language
https://aws.amazon.com/translate/

QnABot on AWS Implementation guide

2. In the web UI, ask: Qu’est-ce que q et a bot?

3. The chatbot replies to you in French.

The solution also supports speech recognition and voice interaction in multiple languages. When
you install or update QnABot on AWS, specify the languages using the LexV2BotLocaleIds
CloudFormation parameter. The default languages are US English, US Spanish, and Canadian
French, but you can customize the list to use any of the languages supported by Amazon LexV2.

Use the ENABLE_DEBUG_RESPONSES setting to see how local language questions are translated
to English by QnABot on AWS. Use this translation to tune the content as needed to ensure that
QnABot on AWS finds the best answer to a non-English question.

The solution also supports Amazon Translate custom terminology to provide additional control
over the translation of entities and phrases. Custom terminology supports the language that you
are deploying with. For more information on how to use the Import Custom Terminology tool in
the content designer, see the Using Custom Terminologies with Amazon Translate section in the
GitHub repository.

Configure personally identifiable information (PII) rejection and
redaction

QnABot on AWS can detect and redact personally identifiable information (PII) using Amazon
Comprehend and regular expressions.

If ENABLE_REDACTING is set to true, the Comprehend detected PII entities will also be redacted
from Amazon CloudWatch logs and OpenSearch Service logs.

Configure personally identifiable information (PII) rejection and redaction 106

https://docs.aws.amazon.com/lexv2/latest/dg/how-languages.html
https://docs.aws.amazon.com/translate/latest/dg/how-custom-terminology.html
https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/custom_terminology_guide/README.md

QnABot on AWS Implementation guide

PII rejection and redaction

For more information, see QnABot Settings in the GitHub repository.

Configure personally identifiable information (PII) rejection and redaction 107

https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/settings.md

QnABot on AWS Implementation guide

Integrating Amazon Kendra

Amazon Kendra is an intelligent search service powered by machine learning. There are two ways
to take advantage of Amazon Kendra’s NLP model to enhance the solution’s ability to understand
human questions:

1. Use Amazon Kendra’s FAQ queries to match users’ questions to the answers in the solution’s
knowledge base. Amazon Kendra’s machine learning models can handle many variations in how
users phrase their questions, and this can reduce the amount of tuning needed for the solution
to find the right answer from your knowledge base.

2. Use Amazon Kendra’s document index as a fallback source of answers when a question/answer
is not found in the solution’s knowledge base.

For more information, see Amazon Kendra Pricing and Getting started in the Amazon Kendra
Developer Guide to create your Amazon Kendra index.

Using Amazon Kendra FAQ for question matching

Use the following procedure to configure the solution to use your Amazon Kendra index to answer
questions from the data populated in the content designer:

1. Set the KendraFaqIndexId CloudFormation parameter to the ID of the Amazon Kendra index to
use. Find the index ID in the Amazon Kendra console.

2. Replicate all items from the content designer to the Amazon Kendra index:

a. Select the menu (⋮) from the top right in the content designer.

b. Choose SYNC KENDRA FAQ and wait for it to complete – it might take a few minutes.

The solution will now use Amazon Kendra FAQ queries to find matches to end users’ questions. Use
the ALT_SEARCH_KENDRA_FAQ_CONFIDENCE_SCORE setting to adjust the confidence threshold
for Amazon Kendra FAQ answers used by QnABot on AWS.

If Amazon Kendra FAQ cannot find an answer that meets the confidence threshold, the solution
will revert by default to using an Amazon OpenSearch Service query. The combination of Amazon
Kendra FAQ and Amazon OpenSearch Service gives you the best of both worlds.

Integrating Amazon Kendra 108

https://aws.amazon.com/kendra/
https://aws.amazon.com/kendra/pricing/
https://docs.aws.amazon.com/kendra/latest/dg/getting-started.html

QnABot on AWS Implementation guide

Note

When adding your Amazon KendraFaqIndexId in CloudFormation, also add the index ID in
AltSearchAmazon KendraIndexes.

Using Amazon Kendra search as a fallback source of answers

You can add one or more data sources to your Amazon Kendra index, and configure the solution to
query your index any time it gets a question that it doesn’t know how to answer.

• Set the AltSearchAmazon KendraIndexes CloudFormation parameter to specify one or more
Amazon Kendra indexes to use for fallback searches.

The value of AltSearchAmazon KendraIndexes parameter should be specified as a string
containing index IDs separated by comma, for example:

857710ab-example-do-not-copy

– Or –

857710ab-example1-do-not-copy,857710ab-example2-do-not-copy

QnABot on AWS also supports Amazon Kendra index authentication token pass through.

• Set the AltSearchAmazon KendraIndexes CloudFormation parameter to specify one or more
Amazon Kendra indexes to use for fallback searches. You must control user access to documents
with tokens using OpenID. For more information, see the Amazon Kendra Fallback Function
section in the GitHub repository.

• Set the AltSearchAmazon KendraIndexAuth CloudFormation parameter to TRUE. This enables
QnABot to send an OpenID Token to Amazon Kendra index(es) to limit Amazon Kendra results to
which the user is entitled.

• Input the IDENTITY_PROVIDER_JWKS_URLS QnABot content designer settings parameter. Find
your token key signing URL from the Cognito user pool of QnABot or Lex-Web-Ui.

Note

When configuring your Amazon Kendra index with user access control, Amazon Kendra
only allows you to specify one signing key URL from one Cognito user pool. Having

Using Amazon Kendra search as a fallback source of answers 109

https://docs.aws.amazon.com/kendra/latest/dg/create-index-access-control.html
https://docs.aws.amazon.com/kendra/latest/dg/create-index-access-control.html
https://github.com/aws-solutions/qnabot-on-aws/tree/main/source/docs/kendra_fallback

QnABot on AWS Implementation guide

multiple Cognito pools, including Lex-Web-Ui, requires you to set up multiple Amazon
Kendra indexes.

Amazon Kendra redirect

QnABot on AWS supports multiple mechanisms for dynamic interaction flows. For example:

• Using Lambda hooks in a given Item ID to perform additional actions, such as creating a ticket,
resetting a password, and saving data to a data store.

• Using an Amazon Kendra index as a fallback mechanism to look for answers to user's questions.

There are various options to process Amazon Kendra queries. One option is to create a custom
Lambda hook and map it to an Item ID. The Lambda hook then includes the business logic to use
an Amazon Kendra index and process the query.

The Amazon Kendra redirect feature provides a much simpler option. You can include an Amazon
Kendra query within an Item ID, and QnABot will do the rest to process the Amazon Kendra request
and respond back with the results.

Configuring an Item ID with Amazon Kendra redirect

You can configure an Item ID with Amazon Kendra Redirect UI.

Amazon Kendra redirect configuration

1. Create a QnABot question as you would normally do by providing an Item ID and questions and
utterances.

2. Expand the Advanced option.

Amazon Kendra redirect 110

QnABot on AWS Implementation guide

3. Amazon Kendra Redirect: Query Text accepts a QueryText to search for (for example what
is q and a bot) and retrieve the answer from the Amazon Kendra fallback index specified
in the CloudFormation stack parameters. Amazon Kendra searches your index for text content,
question, and answer (FAQ) content. You can also use Handlebars to substitute values using
session attributes or slots to support dynamic queries.

4. Amazon Kendra Redirect: Confidence score threshold provides a relative ranking that indicates
how confident Amazon Kendra is that the response matches the query. This is an optional field
having one of the values of: LOW, MEDIUM, HIGH, VERY HIGH. If no value is provided, the value
for the ALT_KENDRA_FALLBACK_CONFIDENCE_THRESHOLD setting is used.

5. Amazon Kendra query arguments is an optional field that allows filtered searches based
on document attributes, for example, "AttributeFilter": {"EqualsTo": {"Key":
"City", "Value": {"StringValue": "Seattle"}}}. You can also use Handlebars to
substitute values using session attributes or slots to support dynamic queries.

For more information on using Amazon Kendra query arguments, see the Amazon Kendra Query
API in the Amazon Kendra API Reference.

Note

• Answer fields are ignored when Amazon KendraRedirect query is used.

• Use this feature for use cases where you have Item IDs that directly need to interact with
an Amazon Kendra index as configured in the CloudFormation stack parameters.

• When applying Amazon Kendra query arguments, check if the document fields are
searchable. Searchable determines whether the field is used in the search. For more
information, see Mapping data source fields in the Amazon Kendra Developer Guide.

Web page indexer

This solution can answer questions based on the content of web pages.

1. In the CloudFormation stack, set the Amazon KendraWebPageIndexId parameter to Existing
Amazon Kendra Index ID. Add the same index ID for the AltSearchAmazon KendraIndexes
parameter.

2. From the content designer, select the tools menu (☰), and then choose Settings.

Web page indexer 111

https://docs.aws.amazon.com/kendra/latest/dg/API_Query.html
https://docs.aws.amazon.com/kendra/latest/dg/API_Query.html
https://docs.aws.amazon.com/kendra/latest/dg/field-mapping.html

QnABot on AWS Implementation guide

3. Modify the following settings:

a. ENABLE_WEB_INDEXER: true

b. KENDRA_INDEXER_URLS: https://aws.amazon.com/lex/faqs/

c. KENDRA_INDEXER_SCHEDULER: rate (1 day)

4. From the content designer, select the tools menu (☰), and then choose Amazon Kendra Web
Crawler.

a. Choose START INDEXING.

b. Wait for indexing to complete. It can take several minutes.

5. Open the web UI, and ask “What is Lex?”. QnABot on AWS provides an answer with a link to the
Amazon Lex FAQ page.

For more information on web page indexing, see the README.md file in the GitHub repository.

Semantic question matching using text embeddings LLM

Note

This is an optional feature available as of v5.3.0. We encourage you to try it out on non-
production instances initially to validate expected accuracy improvements and to test for
any regression issues. See the Cost section to see estimates of how this feature affects
pricing.

QnABot on AWS can use text embeddings to provide semantic search capabilities by using LLMs.
The goals of these features are to improve question matching accuracy while reducing the amount
of tuning required when compared to the default OpenSearch keyword-based matching. Some of
the benefits include:

• Improved FAQ accuracy due to semantic matching compared to keyword matching (comparing
the meaning of questions as opposed to comparing the individual words).

• Fewer training utterances are required to match a diverse set of queries. This results in
significantly less tuning to get and maintain good results.

• Better multi-language support because translated utterances only need to match the original
question’s meaning, not the exact wording.

Semantic question matching using text embeddings LLM 112

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html#RateExpressions
https://github.com/aws-solutions/qnabot-on-aws/tree/main/source/docs/kendra_crawler_guide

QnABot on AWS Implementation guide

For example, with semantic matching activated, “What’s the address of the Whitehouse?” matches
to “Where does the president live?” and “How old are you?” would match with “What is your age?”.
These examples won’t match using the default keywords because they don’t share any of the same
words.

To enable these expanded semantic search capabilities, QnABot can use:

• Select from several embeddings models provided by Amazon Bedrock using the
EmbeddingsBedrockModelId Cloudformation parameter. These models provide the best
performance and operate on a pay-per-request model. To learn more about supported regions
for Bedrock, please refer to Bedrock Model support by AWS Region in the Amazon Bedrock user
guide.

• Embeddings from a text embedding model hosted on a pre-built Amazon SageMaker endpoint.

• Embeddings from a user provided custom Lambda function.

Note

By choosing to use the generative responses features, you acknowledge that QnABot
on AWS engages third-party generative AI models that AWS does not own or otherwise
has any control over (“Third-Party Generative AI Models”). Your use of the Third-Party
Generative AI Models is governed by the terms provided to you by the Third-Party
Generative AI Model providers when you acquired your license to use them (for example,
their terms of service, license agreement, acceptable use policy, and privacy policy).
You are responsible for ensuring that your use of the Third-Party Generative AI Models
comply with the terms governing them, and any laws, rules, regulations, policies, or
standards that apply to you.
You are also responsible for making your own independent assessment of the Third-
Party Generative AI Models that you use, including their outputs and how Third-Party
Generative AI Model providers use any data that may be transmitted to them based on your
deployment configuration.
AWS does not make any representations, warranties, or guarantees regarding the Third-
Party Generative AI Models, which are “Third-Party Content” under your agreement with
AWS. QnABot on AWS is offered to you as “AWS Content” under your agreement with AWS.

Semantic question matching using text embeddings LLM 113

https://docs.aws.amazon.com/bedrock/latest/userguide/models-regions.html

QnABot on AWS Implementation guide

Enabling embeddings support

Using Amazon Bedrock model (Preferred)

Utilizes one of the Amazon Bedrock foundation models to generate text embeddings. Currently,
the following embeddings models are supported by QnABot on AWS:

• Amazon Titan embeddings G1

• Cohere English

• Cohere Multilingual

• Amazon Titan Text Embeddings V2

Note

Access must be requested for the Amazon Bedrock embeddings model that you want to
use. This step must be performed for each account and Region where QnABot on AWS is
deployed. To request access, navigate to Model Access in the Amazon Bedrock console.
Select the models you need access to and request access.

Request Amazon Bedrock embeddings

From the CloudFormation console, set the following parameters:

• Set EmbeddingsAPI to BEDROCK.

Enabling embeddings support 114

https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=amazon.titan-embed-text-v1
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=cohere.embed-english-v3
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=cohere.embed-multilingual-v3
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers%3Fmodel=amazon.titan-embed-text-v2:0
https://docs.aws.amazon.com/bedrock/latest/userguide/model-access.html

QnABot on AWS Implementation guide

• Set EmbeddingsBedrockModelId to one of the three options.

Configure Amazon Bedrock embeddings

Using the built-in Amazon SageMaker model

QnABot on AWS comes bundled with the ability to manage the lifecycle of a pre-built embeddings
model hosted on Amazon SageMaker. In this mode, the solution provisions a SageMaker inference
endpoint running the SageMaker Jumpstart intfloat/e5-large-v2 model which is offered
from HuggingFace.

To enable, deploy a stack and set EmbeddingsAPI to SAGEMAKER. By default, a one node
ml.m5.xlarge endpoint automatically provisions. For large volume deployments, users can add
nodes by setting the SagemakerInitialInstanceCount CloudFormation parameter. See the Cost
section for pricing details.

Semantic search with embeddings

Enabling embeddings support 115

QnABot on AWS Implementation guide

Note

• These settings cannot be changed through the content designer Settings page.
To provision and deprovision the SageMaker instances, you must update your
CloudFormation stack.

• The embeddings model provided by SageMaker for QnABot is intfloat/e5-large-
v2. This only supports English, so if you are trying to work with a non-English language
then you should use your own embeddings model and provide that Lambda ARN in your
deployment. For more information, read the Using a custom Lambda function section.

Using a custom Lambda function

Users that want to explore alternate pre-trained or fine-tuned embeddings models can integrate
a custom built Lambda function. By using a custom Lambda function, you can build your own
embeddings model or even choose to connect to an external embeddings API.

Note

If integrating your Lambda function with external resources, evaluate the security
implications of sharing data outside of AWS.

To begin, you must create a Lambda function. Your custom Lambda function should accept a JSON
object containing the input string and return an array, which contains the embeddings. Record the
length of your embeddings array because you need it to deploy the stack (this is also referred to as
the dimensions).

Lambda event input:

{
 // inputtype has either a value of 'q' for question or 'a' for answer
 "inputType": "string",

 // inputtext is the string on which to generate your custom embeddings
 "inputText":"string"
}

Expected Lambda JSON return object:

Enabling embeddings support 116

QnABot on AWS Implementation guide

{“embedding”: [...] }

When your Lambda function is ready, you can deploy the stack. To activate your Lambda
function for embeddings, deploy the stack with EmbeddingsAPI set to LAMBDA. You
must also set EmbeddingsLambdaArn to the ARN of your Lambda function and
EmbeddingsLambdaDimensions to the dimensions returned by your Lambda function.

Semantic search with Lambda function

Note

You can't change these settings through the content designer Settings page. To correctly
reconfigure your deployment, update your CloudFormation stack to modify these values.

Settings available for text embeddings

Note

Many of these settings depend on the underlying infrastructure being correctly configured.
Follow the instructions found at the section called “Using the built-in Amazon SageMaker
model” or the section called “Using a custom Lambda function” before modifying any of
the following settings.

Settings available for text embeddings 117

QnABot on AWS Implementation guide

When your QnABot stack is installed with EmbeddingsApi enabled, you can manage several
different settings through the content designer Settings page:

• EMBEDDINGS_ENABLE - To turn on and off use of semantic search using embeddings:

• Set to FALSE to turn off the use of embeddings-based queries.

• Set to TRUE to activate the use of embeddings-based queries after previously setting it to
FALSE.

Note

• Setting TRUE when the stack has EmbeddingsAPI set to DISABLED will cause failures
since the QnABot on AWS stack isn't provisioned to support generation of embeddings.

• EMBEDDINGS_ENABLE will be set default to TRUE, if EmbeddingsAPI is provisioned to
SAGEMAKER or LAMBDA. If not provisioned, EMBEDDINGS_ENABLE will be set default to
FALSE.

If you disable embeddings, you will likely also want to re-enable keyword filters by
setting ES_USE_KEYWORD_FILTERS to TRUE.

If you add, modify, or import any items in the content designer when EMBEDDINGS_ENABLE is set
to FALSE, then embeddings won't get created and you'll need to re-import or re-save those items
after re-enabling embeddings.

This setting allows you to toggle embeddings on and off, it does not manage the underlying
infrastructure. If you choose to permanently turn off embeddings, update the stack as well. This
will allow you to deprovision the SageMaker instance to prevent incurring additional costs.

Important

If you update or change your embeddings model, for example, from Amazon Titan
Embeddings G1 to Cohere English, or change EmbeddingsApi the embedding dimensions
need to be recalculated. QnABot on AWS will need to export and re-import the Q&As
in your content designer; however, we recommend backing up the Q&As using export
before making this change. If any discrepancies occur, they can be addressed by import of
exported Q&As.

Settings available for text embeddings 118

QnABot on AWS Implementation guide

• ES_USE_KEYWORD_FILTERS - This setting should now default to FALSE. Although you can
use keyword filters with embeddings based semantic queries, they limit the power of semantic
search by forcing keyword matches (preventing matches based on different words with similar
meanings).

• ES_SCORE_ANSWER_FIELD - If set to TRUE, QnABot on AWS runs embedding vector searches
on embeddings generated on answer field if no match is found on question fields. This allows
QnABot to find matches based on the contents on the answer field as well as the questions. Only
the plaintext answer field is used (not the Markdown or SSML alternatives). Tune the individual
thresholds for questions and answers using the additional settings of:

• EMBEDDINGS_SCORE_THRESHOLD

• EMBEDDINGS_SCORE_ANSWER_THRESHOLD

• EMBEDDINGS_SCORE_THRESHOLD - Change this value to customize the score threshold on
question fields. Unlike regular OpenSearch queries, embeddings queries always return scores
between 0 and 1, so we can apply a threshold to separate good from bad results.

• If no question has a similarity score above the threshold set, the match gets rejected and
QnABot reverts to:

1. Trying to find a match using the answer field (only if ES_SCORE_ANSWER_FIELD is set to
TRUE).

2. Amazon Kendra fallback (only if enabled)

3. no_hits

The default threshold is 0.7 for BEDROCK and 0.85 for SAGEMAKER, but you can modify this
based on your embeddings model and your experiments.

Tip

Use the content designer TEST tab to see the hits ranked by score for your query results.

• EMBEDDINGS_SCORE_ANSWER_THRESHOLD - Change this value to customize the score
threshold on answer fields. This setting is only used when ES_SCORE_ANSWER_FIELD is set to
TRUE and QnABot has failed to find a suitable response using the question field.

• If no answer has a similarity score above the threshold set, the match gets rejected and
QnABot reverts to:

1. Amazon Kendra fallback (only if enabled)

Settings available for text embeddings 119

QnABot on AWS Implementation guide

2. no_hits

The default threshold is 0.8, but you can modify this based on your embeddings model and
your experiments.

Tip

Use the content designer TEST tab and select the Score on answer field checkbox to see
the hits ranked by score for your answer field query results.

• EMBEDDINGS_TEXT_PASSAGE_SCORE_THRESHOLD - Change this value to customize the
passage score threshold. This setting is only used if ES_SCORE_TEXT_ITEM_PASSAGES is TRUE.

• If no answer has a similarity score above the threshold set, the match gets rejected and
QnABot reverts to:

1. Amazon Kendra fallback (only if enabled)

2. no_hits

The default threshold is 0.65 for BEDROCK and 0.8 for SAGEMAKER, but you can modify this
based on your embeddings model and your experiments.

Tip

Use the content designer TEST tab and select the Score on answer field checkbox to see
the hits ranked by score for your answer field query results.

Recommendations for tuning with LLMs

When using embeddings in QnABot, we recommend generalizing questions because more user
utterances will match a general statement. For example, the embeddings model will cluster
checkings and savings with account, so if you want to match both account types, just see account in
your questions.

Similarly for the question and utterance of transfer to an agent, consider using transfer to someone
as it will better match with agent, representative, human, person, etc.

Recommendations for tuning with LLMs 120

QnABot on AWS Implementation guide

In addition for LLMs, we recommend tuning the EMBEDDINGS_SCORE_THRESHOLD,
EMBEDDINGS_SCORE_ANSWER_THRESHOLD, and
EMBEDDINGS_TEXT_PASSAGE_SCORE_THRESHOLD settings. The default values are generalized
to all multiple models but you might need to modify this based on your embeddings model and
your experiments.

Test using example phrases

 Add Q&As using the QnABot content designer

1. Choose Add to add a new question of QnA type with an Item ID: EMBEDDINGS.WhiteHouse

a. Add a single example question/utterance: What is the address of the White House?

b. Add an Answer: The address is: 1600 Pennsylvania Avenue NW, Washington,
DC 20500

c. Choose CREATE to save the item.

2. Add another question with an Item ID of EMBEDDINGS.Agent

a. This time add a few questions/utterances:

• I want to speak to an agent

• Representative

• Operator please

• Zero (Zero handles when a customer presses “0” on their dial pad when integrated with a
contact center)

b. Add an answer: Ok. Let me route you to a representative who can assist
you. {{setSessionAttr 'nextAction' 'AGENT'}}

This Handlebars syntax will set a nextAction session attribute with the value AGENT.

c. Choose CREATE to save the item.

3. Select the TEST tab in the content designer UI.

a. Enter the question, Where does the President live? and choose SEARCH.

b. Observe that the correct answer has the top ranked score (displayed on the left), even though
it does not use any of the same words as the stored example utterance.

c. Try some other variations, such as, Where's the Whitehouse?, Where's the
whitehousw? (with a typo), or Where is the President’s mansion?

Test using example phrases 121

QnABot on AWS Implementation guide

d. To detect when a caller wants to speak with an agent, we entered only a few example phrases
into QnABot. Try some tests where you ask for an agent in a variety of different ways.

Text generation and query disambiguation using LLMs

Note

These are optional features available as of v5.4.0. We encourage you to try it out on non-
production instances initially to validate expected accuracy improvements and to test for
any regression issues. See the Cost section to see estimates of how these features affect
pricing.

QnABot on AWS can leverage LLMs to provide a richer, more conversational chat experience. The
goal of these features is to minimize the amount of individually curated answers administrators are
required to maintain, to improve question matching accuracy by providing query disambiguation,
and to enable the solution to provide more concise answers to users, especially when using the
Amazon Bedrock knowledge base or Amazon Kendra fallback features.

These benefits are provided through these primary features:

• Text Generation

• Generate answers to questions from text passages - In the content designer web interface,
administrators can store full text passages for QnABot on AWS to use. When a question gets
asked that matches against this passage, the solution can leverage LLMs to answer the user’s
question based on information found within the passage.

• Retrieval augmentation generation (RAG) from your data sources - By integrating with the
Amazon Bedrock knowledge base or Amazon Kendra index, QnABot on AWS can use an LLMs
to generate concise answers to user’s questions from your data source. This prevents the need
for users to sift through larger text passages to find the answer.

• Query Disambiguation - By leveraging an LLM, QnABot can take the user’s chat history and
generate a standalone question for the current utterance. This enables users to ask follow up
questions which on their own may not be answerable without context of the conversation.

Text generation and query disambiguation using LLMs 122

QnABot on AWS Implementation guide

Note

The ability to answer follow up questions is similar to what QnABot Topics aims to solve.
Consider that as an option if you’re unable to use the LLM features.

These features (together with embeddings) enable QnABot on AWS to serve end users with a more
conversational chat experience using various AI and NLP techniques. To enable the use of these
features, you must deploy the solution with the LLM selection of your choice. You can choose to
use any of the following LLM providers:

• Select LLM models provided by Amazon Bedrock and specify your Amazon Bedrock Knowledge
Base ID (preferred)

• An open-source model hosted on Amazon SageMaker

• Any other LLM model through a user provided custom Lambda function

Note

By choosing to use the generative responses features, you acknowledge that QnABot
on AWS engages third-party generative AI models that AWS does not own or otherwise
has any control over (“Third-Party Generative AI Models”). Your use of the Third-Party
Generative AI Models is governed by the terms provided to you by the Third-Party
Generative AI Model providers when you acquired your license to use them (for example,
their terms of service, license agreement, acceptable use policy, and privacy policy).
You are responsible for ensuring that your use of the Third-Party Generative AI Models
comply with the terms governing them, and any laws, rules, regulations, policies, or
standards that apply to you.
You are also responsible for making your own independent assessment of the Third-
Party Generative AI Models that you use, including their outputs and how Third-Party
Generative AI Model providers use any data that may be transmitted to them based on your
deployment configuration.
AWS does not make any representations, warranties, or guarantees regarding the Third-
Party Generative AI Models, which are “Third-Party Content” under your agreement with
AWS. QnABot on AWS is offered to you as “AWS Content” under your agreement with AWS.

Text generation and query disambiguation using LLMs 123

QnABot on AWS Implementation guide

Enabling LLM support

Amazon Bedrock (preferred)

Note

Access must be requested for the Amazon Bedrock foundation model that you want to
use. This step must be performed for each account and Region where QnABot on AWS is
deployed. To request access, navigate to Model Access in the Amazon Bedrock console.
Select the models you need access to and request access.

Utilize one of the Amazon Bedrock foundation models to generate text. Currently, the following
models are supported by QnABot on AWS:

• Amazon Titan Text G1 Lite

• Amazon Titan Text G1 Express

• Anthropic Claude Instant 1.2

• Anthropic Claude 2.1

• Anthropic Claude 3 Sonnet

• Anthropic Claude 3 Haiku

• AI21 Jurassic-2 Ultra

• AI21 Jurassic-2 Mid

• Cohere Command

• Meta Llama 3 8B Instruct

• Amazon Titan Text Premier

Access must be requested for the Amazon Bedrock model that you choose. This step needs to be
performed for each account and Region where the solution is deployed. To request access, navigate
to the Model Access in the Amazon Bedrock console. Select the models you need access to and
request access.

Enabling LLM support 124

https://docs.aws.amazon.com/bedrock/latest/userguide/model-access.html
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=amazon.titan-text-lite-v1
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=amazon.titan-text-express-v1
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=anthropic.claude-instant-v1
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=anthropic.claude-v2:1
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=anthropic.claude-3-sonnet-20240229-v1:0
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=anthropic.claude-3-haiku-20240307-v1:0
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=ai21.j2-ultra-v1
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=ai21.j2-mid-v1
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=cohere.command-text-v14
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=meta.llama3-8b-instruct-v1:0
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers%3Fmodel=amazon.titan-text-premier-v1:0
https://docs.aws.amazon.com/bedrock/latest/userguide/model-access.html

QnABot on AWS Implementation guide

Request model access in Amazon Bedrock

Configuring Amazon Bedrock

From the CloudFormation console, set the following parameters:

• Set LLMApi to BEDROCK.

• Set LLMBedrockModelId to one of the available options.

QnABot on AWS Amazon Bedrock models

Amazon SageMaker

In this mode, QnABot on AWS provisions a SageMaker endpoint running the SageMaker JumpStart
Llama-2-13b-chat model.

By default, a 1-node ml.g5.12xlarge endpoint is automatically provisioned. This is the
minimum instance deploy size which can support a SageMaker endpoint, therefore the
LLMSagemakerInitialInstanceType should only be set to an instance at least as big as
ml.g5.12xlarge. For large volume deployments, add additional nodes by setting the
LLMSagemakerInitialInstanceCount parameter accordingly.

Enabling LLM support 125

QnABot on AWS Implementation guide

See the SageMaker pricing documentation for relevant costs in your Region.

To deploy the stack using the SageMaker endpoint:

• Set LLMApi to SAGEMAKER.

• If using the Amazon Kendra fallback:

• Set the AltSearchAmazon KendraIndexes CloudFormation parameter to the index ID of your
existing Amazon Kendra index containing ingested documents.

• If using text passages:

• Enable text embeddings by setting the EmbeddingsApi parameter to the mechanism of your
choice. For options, see the section called “Semantic question matching using text embeddings
LLM”.

LLM SAGEMAKER integration

Note

The ml.g5.12xlarge instance type is not enabled by default in your AWS account and
must be requested on a per Region basis.
Before deploying the solution with this option, sign in to the AWS Management Console,
access AWS Service Quotas and search for Amazon SageMaker under the AWS services list.
Once selected, search for the ml.g5.12xlarge for endpoint usage quota. At a minimum,
you must request a quota increase to one (you can request more to accommodate high-
volume production deployments).

Enabling LLM support 126

https://aws.amazon.com/sagemaker/pricing/

QnABot on AWS Implementation guide

If using a language other than English, we recommend that you use a Bedrock model that
can support your language. If no Bedrock model supports the language you want to use,
you must use your own LLM model and use the Lambda option for your deployment.

Using a custom Lambda Function

If the pre-built options don’t work for your use case, or you want to experiment with other LLMs,
you can build a custom Lambda function to integrate with the LLM of your choice. The provided
Lambda function takes as input the prompt, model parameters, and the QnABot settings object.
Your Lambda function can invoke any LLM you choose, and return the prediction in a JSON object
containing the key generated_text. You provide the ARN for your Lambda function when you
deploy or update the solution.

Note

If integrating your Lambda with external resources, evaluate the security implications of
sharing data outside of AWS.

To deploy the stack using a custom Lambda function:

• Set LLMApi to LAMBDA.

• Set LLMLambdaArn to the ARN of your Lambda function.

• If using the Amazon Kendra fallback:

• Set the AltSearchAmazon KendraIndexes CloudFormation parameter to the index ID of your
existing Amazon Kendra index containing ingested documents.

• If using text passages:

• Enable text embeddings by setting EmbeddingsApi to the mechanism of your choice. For
options, see the section called “Semantic question matching using text embeddings LLM”.

Enabling LLM support 127

QnABot on AWS Implementation guide

LLM LAMBDA integration

Your Lambda function is passed as an event:

{
 // prompt for the LLM
 "prompt": "string",

 // object containing key/value pairs for the model parameters
 // these parameters are defined on the QnABot settings page
 "parameters":{"temperature":0,...},

 // settings object containing all default and custom QnAbot settings
 "settings":{"key1":"value1",...}
}

The Lambda function returns a JSON structure:

{"generated_text":"string"}

An example of a minimal Lambda function for testing, which you must extend to invoke your LLM:

def lambda_handler(event, context):

Enabling LLM support 128

QnABot on AWS Implementation guide

 print(event)
 prompt = event["prompt"]
 model_params = event["parameters"]
 settings = event["settings"]

 # REPLACE BELOW WITH YOUR LLM INFERENCE API CALL
 generated_text = f"This is the prompt: {prompt}"

 return {
 'generated_text': generated_text
 }

Query disambiguation and conversation retrieval

Query disambiguation is the process of taking an ambiguous question (having multiple meanings)
and transforming it into an unambiguous, standalone question.

The new disambiguated question can then be used as a search query to retrieve the best FAQ,
passage, or Amazon Kendra match.

For example, with the new LLM disambiguation feature enabled, given the chat history context:

[{"Human":"Who was Little Bo Peep?"},{"AI":"She is a character from a nursery rhyme who
 lost her sheep."}]

A follow up question:

Did she find them again?

The solution can rewrite (“disambiguate”) that question to provide all the context required to
search for the relevant FAQ or passage:

Did Little Bo Peep find her sheep again?

Text generation for question answering

Generate answers to questions from context provided by Amazon Kendra search results, or from
text passages created or imported directly into QnAbot. Some of the benefits include:

Query disambiguation and conversation retrieval 129

QnABot on AWS Implementation guide

• Generated answers allow you to reduce the number of FAQs you must maintain since you can
now synthesize concise answers from your existing documents in an Amazon Kendra index, or
from document passages stored in QnABot as text items.

• Generated answers can be short, concise, and suitable for voice channel contact center bots and
website and text bots.

• Generated answers are compatible with the solution’s multi-language support - users can
interact in their chosen languages and receive generated answers in the same language.

• With QnABot you can use three different data sources to generate responses from:

• Text passages within the content designer UI - Create your own text passages to generate
answers from using the content designer. We highly recommend you use this option with the
section called “Semantic question matching using text embeddings LLM”. It also requires an
LLM. In the content designer, choose Add, select the text, enter an Item ID and a passage, and
choose Create. You can also import your passages from a JSON file using the content designer
Import feature. From the tools menu (☰), choose Import, open Examples/Extensions, and
choose the LOAD button next to TextPassage-NurseryRhymeExamples to import two nursery
rhyme text items.

• Amazon Bedrock knowledge bases - You can also create your own knowledge base from
files stored in an S3 bucket. Amazon Bedrock knowledge bases do not require an LLM or
embeddings model to function, since the embeddings and generative response are already
provided by the knowledge base. Choose this option if you prefer not to manage and configure
an Amazon Kendra index or LLM models. To enable this option, create an Amazon Bedrock
knowledge base and copy your knowledge base ID into the BedrockKnowledgeBaseId
CloudFormation parameter. For more information, please refer to Retrieval Augmentation
Generation (RAG) using Amazon Bedrock Knowledge Base. For more information, refer to
Retrieval Augmentation Generation (RAG) using Amazon Bedrock Knowledge Base.

Important

If you want to enable S3 presigned URLs, S3 bucket names must start
with qna, for example, qnabot-mydocs, otherwise make sure IAM Role
...FulfillmentLambdaRole... has been granted S3:GetObject access
to the Bedrock knowledge base bucket (otherwise the signed URLS will not have
access). In addition, you can encrypt the transient messages using your own
AWS KMS key; ensure that when creating the AWS KMS key that the IAM Role
...FulfillmentLambdaRole... is a key user.

Text generation for question answering 130

https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base-create.html
https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base-create.html
https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/bedrock_knowledgebase_rag/README.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/bedrock_knowledgebase_rag/README.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/bedrock_knowledgebase_rag/README.md

QnABot on AWS Implementation guide

• Amazon Kendra - Generates responses from the webpages that you've crawled or documents
that you've ingested using an Amazon Kendra data source connector. If you're not sure how to
load documents into Amazon Kendra, see Ingesting Documents through the Amazon Kendra
S3 Connector in the Amazon Kendra Essentials Workshop.

Note

You can only use either Amazon Kendra or Amazon Bedrock knowledge bases as a
fallback data source, and not both. When AltSearchKendraIndexes is not empty (an
index is provided) Amazon Kendra will be the default data source even if a Bedrock
knowledge base is configured.

For example, with these LLM QA features enabled, QnABot on AWS can answer questions from
the AWS Whitepapers such as:

• "What is DynamoDB?" -> Amazon’s Highly Available Key-value Store.

• "What frameworks does AWS have to help people design good architectures?" -> Well-Architected
Framework.

RAG based text generation using Amazon Kendra fallback

Text generation for question answering 131

https://catalog.us-east-1.prod.workshops.aws/workshops/df64824d-abbe-4b0d-8b31-8752bceabade/en-US/200-ingesting-documents/230-using-the-s3-connector/231-ingesting-documents
https://catalog.us-east-1.prod.workshops.aws/workshops/df64824d-abbe-4b0d-8b31-8752bceabade/en-US/200-ingesting-documents/230-using-the-s3-connector/231-ingesting-documents

QnABot on AWS Implementation guide

It can even generate answers to yes or no questions, like:

• "Is Lambda a database service?" -> No, Lambda is not a database service.

Likewise, it can also answer questions with Context and Signed URLs with Amazon Bedrock
knowledge base, such as:

• "What services are available in AWS for container orchestration?"

• “Are there any upfront fees with ECS?”

RAG based text generation using Amazon Bedrock knowledge base

Even if you aren't using Amazon Kendra or Amazon Bedrock knowledge base, QnABot on AWS can
answer questions based on passages created or imported into the content designer, such as:

• "Where did Humpty Dumpty sit?" -> On the wall.

Text generation for question answering 132

QnABot on AWS Implementation guide

• "Did Humpty Dumpty sit on the wall?" -> Yes.

• "Were the king's horses able to fix Humpty Dumpty?" -> No.

all from a text passage item that contains the nursery rhyme.

LLM response from a passage within content designer UI

You can use disambiguation and generative question answering together:

Disambiguation and generative question answering

Text generation for question answering 133

QnABot on AWS Implementation guide

Settings available for text generation LLMs configuration

CloudFormation stack parameters:

• LLMApi - Optionally enable QnABot on AWS question disambiguation and generative
question answering using an LLM. If set to SAGEMAKER, a SageMaker endpoint is automatically
provisioned. Selecting the LAMBDA option allows for configuration with other LLMs.

• LLMBedrockModelId - Required when LLMApi is BEDROCK. Ensure you have requested access to
the LLMs in Bedrock console, before deploying.

• LLMLambdaArn - Required if LLMApi is LAMBDA. Provide the ARN for a Lambda function that
takes JSON {"prompt":"string", "settings":{key:value,..}} and returns JSON
{"generated_text":"string"}.

• LLMSagemakerInstanceType - Required if LLMApi is SAGEMAKER. Provide the SageMaker
endpoint instance type. Defaults to ml.g5.12xlarge. Check account and Region availability
through the Service Quotas service before deploying.

• LLMSagemakerInstanceType - Required if LLMApi is SAGEMAKER. Provide the SageMaker
endpoint instance type. Defaults to ml.g5.12xlarge. Check account and Region availability
through the Service Quotas service before deploying.

• BedrockKnowledgeBaseId - ID of an existing Amazon Bedrock knowledge base. This setting
enables the use of Amazon Bedrock knowledge bases as a fallback mechanism when a match is
not found in OpenSearch.

• BedrockKnowledgeBaseModel - Required if BedrockKnowledgeBaseId is not empty. Sets the
preferred LLM model to use with the Amazon Bedrock knowledge base. Ensure that you have
requested access to the LLMs in the Amazon Bedrock console.

• AltSearchAmazon KendraIndexes - Set to the ID (not the name) of your Amazon Kendra index
where you have ingested documents of web pages that you want to use as source passages for
generative answers. If you plan to use only text passage items instead of Amazon Kendra, leave
this parameter blank.

Note

It is only possible to use Amazon Kendra or Amazon Bedrock knowledge bases as a fallback
data source, and not both. When AltSearchKendraIndexes is not empty (an index is

Settings available for text generation LLMs configuration 134

https://docs.aws.amazon.com/bedrock/latest/userguide/model-access.html
https://docs.aws.amazon.com/bedrock/latest/userguide/model-access.html

QnABot on AWS Implementation guide

provided) Amazon Kendra will be the default data source even if a Amazon Bedrock
knowledge base is configured.

When the QnABot stack is installed, open the content designer Settings page and configure the
following settings:

• ENABLE_DEBUG_RESPONSES - Set to TRUE to add additional debug information to the
solution’s response, including any language translations (if using multi language mode), question
disambiguation (before and after), and inference times for your LLM model(s).

• ES_SCORE_TEXT_ITEM_PASSAGES - Should be TRUE to enable the new text passage items to be
retrieved and used as input context for generative QA Summary answers.

Note

qna items are queried first, and if none meet the score threshold, then the solution queries
the text field of text items.

• EMBEDDINGS_TEXT_PASSAGE_SCORE_THRESHOLD - Applies only when embeddings are
enabled (recommended) and if ES_SCORE_TEXT_ITEM_PASSAGES is TRUE. If embedding
similarity score on text item field is under threshold the match is rejected. Default threshold is
0.80.

• ALT_SEARCH_KENDRA_MAX_DOCUMENT_COUNT - The number of passages from Amazon
Kendra to provide in the input context for the LLM.

Scroll to the bottom of the settings page and observe the new LLM settings:

• LLM_API - Either SAGEMAKER or LAMBDA - Based on the value chosen when you last deployed or
updated the solution stack.

• LLM_GENERATE_QUERY_ENABLE - Set to TRUE or FALSE to enable or disable question
disambiguation.

• LLM_GENERATE_QUERY_PROMPT_TEMPLATE - The prompt template used to construct a
prompt for the LLM to disambiguate a follow-up question. The template can use the following
placeholders:

Settings available for text generation LLMs configuration 135

QnABot on AWS Implementation guide

• {history} - Placeholder for the last LLM_CHAT_HISTORY_MAX_MESSAGES messages in the
conversational history, to provide conversational context.

• {input} - Placeholder for the current user utterance or question.

• LLM_GENERATE_QUERY_MODEL_PARAMS - Parameters sent to the LLM model when
disambiguating follow-up questions. Default parameter: {"temperature":0}. Check model
documentation for additional values that your model provider accepts.

• LLM_QA_ENABLE - Set to TRUE or FALSE to enable or disable generative answers from passages
retrieved via embeddings or Amazon Kendra fallback (when no FAQ match is found).

Note

LLM based generative answers are not applied when an FAQ or QID matches the question.

• LLM_QA_PROMPT_TEMPLATE - The prompt template used to construct a prompt for the
LLM to generate an answer from the context of a retrieved passage (from Amazon Kendra or
embeddings). The template can use the following placeholders:

• {context} – Placeholder for passages retrieved from the search query – either a QnABot on
AWS text item passage, or the top ALT_SEARCH_KENDRA_MAX_DOCUMENT_COUNT Amazon
Kendra passages.

• {history} - Placeholder for the last LLM_CHAT_HISTORY_MAX_MESSAGES messages in the
conversational history, to provide conversational context.

• {input} - Placeholder for the current user utterance or question.

• {query} - Placeholder for the generated (disambiguated) query created by the generated
query feature.

• LLM_QA_NO_HITS_REGEX - When the pattern specified matches the response from the
LLM. For example: “Sorry, I don't know”, then the response is treated as no_hits, and the
default EMPTYMESSAGE or Custom Don't Know (no_hits) item is returned instead. Disabled by
default, since enabling it prevents easy debugging of LLM don't know responses.

• LLM_QA_MODEL_PARAMS - Parameters sent to the LLM model when generating answers to
questions. Default parameter: {"temperature":0}. Check model documentation for additional
values that your model provider accepts.

Settings available for text generation LLMs configuration 136

QnABot on AWS Implementation guide

• LLM_QA_PREFIX_MESSAGE - Message use to prefix LLM generated answer. Can be empty.

• LLM_QA_SHOW_CONTEXT_TEXT - Set to TRUE or FALSE to enable or disable inclusion of the
passages (from Amazon Kendra or Embeddings) used as context for LLM generated answers.

• LLM_QA_SHOW_SOURCE_LINKS - Set to TRUE or FALSE to enable or disable Amazon Kendra
source links or passage refMarkdown links (doc references) in markdown answers.

• LLM_CHAT_HISTORY_MAX_MESSAGES - The number of previous questions and answers (chat
history) to maintain (in the DynamoDB UserTable). Chat history is necessary for the solution to
disambiguate follow-up questions from previous question and answer context.

• KNOWLEDGE_BASE_PROMPT_TEMPLATE - The prompt template used to construct a prompt
for the LLM specified in the BedrockKnowledgeModel which is sent to the model to generate an
answer from the context of a retrieved results from Knowledge Bases for Amazon Bedrock. To
opt out of sending a prompt to the Knowledge Base model, leave this field empty. The template
can use the following placeholders:

• $query$ - The user query sent to the knowledge base.

• $search_results$ - The retrieved results for the user query.

• $output_format_instructions$ - The underlying instructions for formatting the response
generation and citations. Differs by model. If you define your own formatting instructions,
we suggest that you remove this placeholder. Without this placeholder, the response won't
contain citations.

• $current_time$ - The current time.

To learn more about prompt template and supported model for these placeholders, see
Knowledge base prompt template in Query configurations.

• KNOWLEDGE_BASE_MODEL_PARAMS - Parameters sent to the LLM specified in the
BedrockKnowledgeModel CloudFormation parameter when generating answers from
Knowledge Bases (For example, anthropic model parameters can be customized as
{"temperature":0.1} or {"temperature":0.3, "maxTokens": 262, "topP":0.9, "top_k": 240 }). To learn
more, see Inference parameters in Query configurations.

• KNOWLEDGE_BASE_MAX_NUMBER_OF_RETRIEVED_RESULTS - Sets the maximum number of
retrieved result where each result corresponds to a source chunk. When you query a knowledge
base, Amazon Bedrock returns up to five results by default. To learn more, see Maximum
number of retrieved results in Query configurations.

Settings available for text generation LLMs configuration 137

https://docs.aws.amazon.com/bedrock/latest/userguide/kb-test-config.html#kb-test-config-prompt-template
https://docs.aws.amazon.com/bedrock/latest/userguide/kb-test-config.html#:~:text=Query%20modifications-,Inference,-parameters
https://docs.aws.amazon.com/bedrock/latest/userguide/kb-test-config.html#kb-test-config-prompt-template

QnABot on AWS Implementation guide

• KNOWLEDGE_BASE_SEARCH_TYPE - The search type defines how data sources in the
knowledge base are queried. If you're using an Amazon OpenSearch Serverless vector store
that contains a filterable text field, you can specify whether to query the knowledge base with
a HYBRID search using both vector embeddings and raw text, or SEMANTIC search using only
vector embeddings. For other vector store configurations, only SEMANTIC search is available. To
learn more, see Search type in Query configurations.

• KNOWLEDGE_BASE_METADATA_FILTERS - Specifies the filters to use on the metadata in the
Knowledge Base data sources before returning results. (For example, filters can be customized as
{"filter1": { "key": "string", "value": "string" }, "filter2": { "key":
"string", "value": number }}). For more information, see Metadata and filtering in
Query configurations.

• KNOWLEDGE_BASE_PREFIX_MESSAGE - Message to append in the chat client when the
knowledge base generates a response

• KNOWLEDGE_BASE_SHOW_REFERENCES - Enables the knowledge base to provide full-text
references to the sources the knowledge base generated text from.

• KNOWLEDGE_BASE_S3_SIGNED_URLS - Enables the knowledge base to provide signed URLs
for the knowledge base documents.

• KNOWLEDGE_BASE_S3_SIGNED_URL_EXPIRE_SECS - The number of seconds the signed URL
will be valid for.

Guardrails for Amazon Bedrock Integration and Knowledge
Base Integration

QnABot on AWS allows you to use Guardrails for Amazon Bedrock for the Amazon Bedrock
Integration and Knowledge Base Integration. When you use this optional feature, this solution
allows passing pre-configured Amazon Bedrock Guardrail Identifier and Version in the requests
made to LLM models. To learn more about Guardrails for Amazon Bedrock, see How Guardrails for
Amazon Bedrock works.

In addition, if you’re interested looking to get started on this setup, please see Guardrails for
Amazon Bedrock Quick Setup.

Settings for Guardrail in QnABot on AWS

The following are the available settings to configure Guardrail in the Content designer's settings
page.

Guardrails for Amazon Bedrock Integration and Knowledge Base Integration 138

https://docs.aws.amazon.com/bedrock/latest/userguide/kb-test-config.html#kb-test-config-prompt-template
https://docs.aws.amazon.com/bedrock/latest/userguide/kb-test-config.html#kb-test-config-prompt-template
https://docs.aws.amazon.com/bedrock/latest/userguide/guardrails-how.html
https://docs.aws.amazon.com/bedrock/latest/userguide/guardrails-how.html
https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/bedrock_guardrails/README.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/source/docs/bedrock_guardrails/README.md

QnABot on AWS Implementation guide

• BEDROCK_GUARDRAIL_IDENTIFIER: Enter a pre-configured Amazon Bedrock Guardrail
identifier (for example, 4ojm24q0yada) to apply to the request made to the LLM models,
which were configured in the CloudFormation parameters LLMBedrockModelId and
BedrockKnowledgeBaseModel. If you don't provide a value, no guardrail is applied
to the LLM invocation. If you provide a guardrail identifier, you must also provide a
BEDROCK_GUARDRAIL_VERSION; otherwise, no guardrail will be applied.

• BEDROCK_GUARDRAIL_VERSION: Enter the version (for example, 1 or DRAFT) of the Amazon
Bedrock Guardrail specified in BEDROCK_GUARDRAIL_IDENTIFIER.

Setting up a custom domain name for QnABot content designer
and client

This section provides information on how to set up a custom domain name and configure the
QnABot on AWS solution to use the custom domain name for the content designer and client user
interfaces. The setup and configuration involve the following steps.

Step 1: Set up custom domain name for API Gateway

Use the AWS account and Region where you have deployed the QnABot on AWS solution for the
following steps. See Setting up custom domain names for REST APIs in the Amazon API Gateway
Developer Guide.

• Registering a domain name.

• Creating DNS records.

• Creating an SSL certificate for the custom domain name.

• Choosing a security policy. It is best security practice to specify a TLS 1.2 security policy.

• Creating a custom domain in API Gateway.

Note

Deactivate the default API gateway endpoint since the custom domain name is used.

Setting up a custom domain name for QnABot content designer and client 139

https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-custom-domains.html

QnABot on AWS Implementation guide

Step 2: Custom domain API mapping setup in API Gateway

When mapping the API to the custom domain in API Gateway for the QnABot deployment, use the
following settings:

Mapping 1

• API – Select the QnABot deployment you would like to use. The QnABot API takes on the same
name as the CloudFormation Stack name you used when you deployed the QnABot on AWS
solution.

• Stage – Use prod. This is the default stage created for the QnABot deployment.

Mapping 2

• API – Select the QnABot deployment you would like to use. The QnABot API takes on the same
name as the CloudFormation Stack name you used when you deployed the QnABot on AWS
solution.

• Stage – Use prod. This is the default stage created for the QnABot deployment.

• Path – Use prod. This is used for routing requests.

Step 3: Update QnABot API Resources in API Gateway

1. Navigate to the API Gateway console and select the QnABot API.

2. The QnABot API takes on the same name as the CloudFormation Stack name you used when you
deployed the QnABot on AWS solution.

3. Navigate to the Resources section from the menu.

Step 3a: Update the /pages/client resource

1. Select the GET method for the /pages/client resource.

2. Choose Integration Response.

3. Expand the 302 Method Response Status.

4. Edit the location Response header and replace the API Gateway endpoint with your custom
domain name The API Gateway endpoint has an endpoint such as: <api-id>.execute-
api.<region>.amazonaws.com.

Step 2: Custom domain API mapping setup in API Gateway 140

https://aws.amazon.com/api-gateway/

QnABot on AWS Implementation guide

5. Make a note of the URL encoding in the values.

6. Choose the {tick} icon to update the value.

7. Choose Save.

Step 3b: Update the /pages/designer resource

1. Select the GET method for /pages/designer resource.

2. Choose Integration Response.

3. Expand the 302 Method Response Status.

4. Edit the location Response header and replace the API Gateway endpoint with your custom
domain name The API Gateway endpoint will have the endpoint such as: <api-id>.execute-
api.<region>.amazonaws.com.

5. Make note of the URL encoding in the values.

6. Choose the {tick} icon to update the value.

7. Choose Save.

Step 4: Update QnABot Cognito user pool

To access the QnABot content designer user interface, the deployment sets up authentication
using Amazon Cognito. Update the user pool settings to update the Callback URLs to use the
custom domain name.

1. Navigate to the Amazon Cognito console.

2. Choose User Pools.

3. Choose the QnABot user pool.

4. The QnABot user pool takes on the same name as the CloudFormation stack name you used
when you deployed the QnABot on AWS solution. For example, UserPool-<stack-name>

5. Navigate to App Integration | App client settings.

6. Update the callback URLs for app clients: UserPool-<stack-name>-client.

7. Use the custom domain name instead of the API Gateway endpoint. For example:
https://<your-custom-domain-name>\/prod/static/client.html.

8. Choose Save Changes.

Step 4: Update QnABot Cognito user pool 141

https://console.aws.amazon.com/cognito/home

QnABot on AWS Implementation guide

Update the callback URLs for app clients: UserPool-{stackname}-
designer

1. Use the custom domain name instead of the API Gateway endpoint. For example:
https://<your-custom-domain-name>/prod/static/index.html.

2. Choose Save Changes.

Step 5: Deploy API

Now that we have updated the configurations, we will deploy the API for the changes to take
effect.

1. Choose Actions.

2. Choose Deploy API.

Deploy API action

3. Choose the following:

Update the callback URLs for app clients: UserPool-{stackname}-designer 142

QnABot on AWS Implementation guide

• Deployment stage: prod.

• Deployment description: Enter Updated <location> response header in the GET method for
the /pages/designer and the /pages/client resources.

4. Choose Deploy.

Step 6: Update the API Stage variables

Once the API is deployed, the Stage Editor page appears.

1. Choose the Stage Variables tab.

2. Update the values for ClientLoginUrl and DesignerLoginUrl variables to use the custom domain
name.

Step 6: Update the API Stage variables 143

QnABot on AWS Implementation guide

Update stage variables

Step 7: Test the updates using the custom domain name

Launch the QnABot content designer in a new browser session using the custom domain name
https://<your-custom-domain-name>/prod/pags/designer to test the updates.

Known limitation

A CloudFormation stack update of QnABot on AWS performed after the above steps, will overwrite
the changes made in Steps 3, 4, 5, and 6 above. We are looking at better ways to automate this
process, but in the meantime, if you perform a stack update after the above steps, you will need to
manually re-apply the above steps 3, 4, 5, and 6 again.

Using QnABot on AWS Command Line Interface (CLI)

The QnABot on AWS CLI supports the capability to import and export questions and answers from
your QnABot setup.

Setup prerequisites

To use the CLI, the following prerequisites are required:

• Download the source directory from code base of the QnABot on AWS solution (version 5.2.0 or
higher) in the GitHub repository.

• AWS Command Line Interface (CLI).

• Python version 3.7 or higher. For more information on installing Python, see Python Setup and
Usage.

• IAM permissions having the following IAM policy. Attach the following IAM policy to the IAM user
or IAM Role that you are using for the AWS CLI. Replace the following values when creating the
IAM policy:

AWS_REGION – The AWS Region where you have deployed the QnABot on AWS solution.

AWS_ACCOUNT_ID – The AWS Account ID where you have deployed the QnABot on AWS solution.

YOUR_QNABOT_IMPORT_BUCKET_NAME – The name of the QnABot on AWS import bucket
name. This can be found by navigating to the Resources section (in AWS CloudFormation) of the
deployed QnABot on AWS CloudFormation template.

Step 7: Test the updates using the custom domain name 144

https://aws.amazon.com/cli/
https://docs.python.org/3/using/index.html
https://docs.python.org/3/using/index.html

QnABot on AWS Implementation guide

YOUR_QNABOT_EXPORT_BUCKET_NAME – The name of the QnABot on AWS export bucket
name. This can be found by navigating to the Resources section (in AWS CloudFormation) of the
deployed QnABot on AWS CloudFormation template.

YOUR_QNABOT_STACK_NAME – The name of the QnABot on AWS stack that you deployed via
AWS CloudFormation.

IAM policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3ReadWriteStatement",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:AWS_REGION:AWS_ACCOUNT_ID:YOUR_QNABOT_IMPORT_BUCKET_NAME/
*",
"arn:aws:s3:AWS_REGION:AWS_ACCOUNT_ID:YOUR_QNABOT_EXPORT_BUCKET_NAME/*",
]
 },
 {
 "Sid": "CloudFormationDescribeStatement",
 "Effect": "Allow",
 "Action": "cloudformation:DescribeStackResource",
 "Resource": "arn:aws:cloudformation:AWS_REGION:AWS_ACCOUNT_ID:stack/
YOUR_QNABOT_STACK_NAME/*"
 }
]
}

Environment setup

Get started by creating a virtual environment and deploy the needed Python packages. From a
directory outside of the QnABot on AWS codebase, run the following commands:

pip3 install virtualenv
python3 -m virtualenv .venv

IAM policy 145

QnABot on AWS Implementation guide

source ./.venv/bin/activate
cd source
pip3 install -r requirements.txt

These commands set up a virtual environment and install the following Python packages:

• Boto3 Python module version 1.21.18. For more information, see AWS SDK for Python (Boto3).

• Choose Python module version 8.0.4. For more information, see the Python Click documentation.

Set environment variables

Set the code for your Region. For example, to use the us-east-1 Region, run the following
command:

export AWS_REGION='us-east-1'

Set the Python path using the following command:

export PYTHONPATH=${PWD}:$PYTHONPATH

Available commands

The qnabot_cli.py file is located in the source/aws_solutions/qnabot/cli directory. Run
python3 aws_solutions/qnabot/cli/qnabot_cli.py using the following syntax:

Usage: qnabot_cli.py [OPTIONS] COMMAND [ARGS]...

Options:

-h, --help Show this message and exit.

Commands:

export Export QnABot questions and answers from your QnABot setup.
import Import QnABot questions and answers to your QnABot setup.

Using the import command

Usage: qnabot_cli.py import [OPTIONS]

Set environment variables 146

https://aws.amazon.com/sdk-for-python/
https://pypi.org/project/click/

QnABot on AWS Implementation guide

Import QnABot questions and answers to your QnABot setup. This command requires two (2)
parameters: <cloudformation-stack-name>, and <source-filename>. The cloudformation-
stack-name parameter is used to know the QnABot on AWS deployment to use to support the
import process.

Options:

 -s, --cloudformation-stack-name TEXT
 Provide the name of the CloudFormation stack
 of your QnABot on AWS deployment [required]
 -f, --source-filename TEXT Provide the filename along with path where
 the file to be imported is located
 [required]
 -fmt, --file-format [JSON|JSONL|XLSX]
 Provide the file format to use for import
 [default: JSON]
 -d, --delete-existing-content BOOLEAN
 Use this parameter if all existing QnABot
 {qids} in your QnABot deployment should be
 deleted before the import process.
 [default: False]
 -h, --help Show this message and exit.

A successful import will output status with the following information:

{
 "number_of_qids_imported": <number>,
 "number_of_qids_failed_to_import": <number>,
 "import_starttime": <datetime in UTC>,
 "import_endtime": <datetime in UTC>",
 "status": "Complete",
 "error_code": "none"
}

Example:

{
 "number_of_qids_imported": 9,
 "number_of_qids_failed_to_import": 0,
 "import_starttime": "2022-03-20T21:39:28.455Z",
 "import_endtime": "2022-03-20T21:39:32.193Z",
 "status": "Complete",

Using the import command 147

QnABot on AWS Implementation guide

 "error_code": "none"
}

Using the export command

Usage: qnabot_cli.py export [OPTIONS]

Export QnABot questions and answers from your QnABot setup. This command requires two (2)
parameters: <cloudformation-stack-name>, and <export-filename>. The cloudformation-
stack-name parameter is used to know the QnABot on AWS deployment to use to support the
export process.

Options:

-s, --cloudformation-stack-name TEXT
 Provide the name of the CloudFormation stack
 of your QnABot on AWS deployment [required]
 -f, --export-filename TEXT Provide the filename along with path where
 the exported file should be downloaded to
 [required]
 -qids, --export-filter TEXT Export {qids} that start with this filter
 string. Exclude this option to export all
 {qids}
 -fmt, --file-format [JSON|JSONL]
 Provide the file format to use for export
 [default: JSON]
 -h, --help Show this message and exit.

A successful import will output status with the following information:

{
 "export_directory": <string>,
 "status": "Downloaded",
 "comments": <string>,
 "error_code": "none"
}

Example:

{

Using the export command 148

QnABot on AWS Implementation guide

 "export_directory": "../export/qna.json",
 "status": "Downloaded",
 "comments": "Check the export directory for the downloaded export.",
 "error_code": "none"
}

Running qnabot_cli.py as a shell script

Import example:

#!/bin/bash
export AWS_REGION='us-east-1'
shell_output=$(python3 qnabot_cli.py import -s qnabot-stack -f ../import/
qna_import.json -fmt json)
STATUS="${?}"
if ["${STATUS}" == 0];
then
 echo "AWS QnABot import completed successfully"
 echo "$shell_output"
else
 echo "AWS QnABot import failed"
 echo "$shell_output"
fi

Export example

#!/bin/bash
export AWS_REGION='us-east-1'
shell_output=$(python3 qnabot_cli.py export -s qnabot-stack -f ../export/
qna_export.json -fmt json)
STATUS="${?}"
if ["${STATUS}" == 0];
then
 echo "AWS QnABot export completed successfully"
 echo "$shell_output"
else
 echo "AWS QnABot export failed"
 echo "$shell_output"
fi

Running qnabot_cli.py as a shell script 149

QnABot on AWS Implementation guide

Developer guide

This section provides the source code for the solution.

Source code

Visit our GitHub repository to download the source files for this solution, and to share your
customizations with others. See the README.md file for more information.

Source code 150

https://github.com/aws-solutions/qnabot-on-aws
https://github.com/aws-solutions/qnabot-on-aws/blob/main/README.md

QnABot on AWS Implementation guide

Reference

This section includes information about an optional feature for collecting unique metrics for this
solution, pointers to related resources, and a list of builders who contributed to this solution.

Anonymized data collection

This solution includes an option to send anonymized operational metrics to AWS. We use this data
to better understand how customers use this solution and related services and products. When
invoked, the following information is collected and sent to AWS:

• Solution ID - The AWS solution identifier

• Unique ID (UUID) - Randomly generated, unique identifier for each solution deployment

• Timestamp - The UTC formatted timestamp of when the event occurred

• Data - The Region where the stack launched, request type (whether the stack was created,
updated, or deleted), and details about the option chosen (for example, language, OpenSearch
node count, OpenSearch EBS volume size, LLM API, etc.) For example:

{'InstallLexResponseBots': 'true', 'EmbeddingsBedrockModelId': 'amazon.titan-embed-
text-v1', 'PublicOrPrivate': 'PRIVATE', 'LLMApi': 'BEDROCK', 'OpenSearchEBSVolumeSize':
 '10', 'LexBotVersion': 'LexV2 Only', 'EmbeddingsApi': 'BEDROCK', 'Language':
 'English', 'Version': 'v5.5.0', 'OpenSearchNodeCount': '1', 'LLMBedrockModelId':
 'anthropic.claude-instant-v1', 'Region': 'us-east-1', 'OpenSearchInstanceType':
 'm6g.large.search', 'FulfillmentConcurrency': '1', 'RequestType': 'Delete'}

Or

{ ‘event’: ‘UPDATE_SETTINGS’, ‘BEDROCK_GUARDRAIL_ENABLE’: ‘false’.
 ‘ENABLE_MULTI_LANGUAGE_SUPPORT’: ‘false’, ‘LLM_GENERATE_QUERY_ENABLE’:
 ‘true’,’KNOWLEDGE_BASE_SEARCH_TYPE’: ‘DEFAULT’, ‘PII_REJECTION_ENABLED’: ‘false’,
 ‘EMBEDDINGS_ENABLE’: ‘true’, ‘LLM_QA_ENABLE’: ‘true’ }

AWS owns the data gathered through this survey. Data collection is subject to the Privacy Notice.
To opt out of this feature, complete the following steps before launching the AWS CloudFormation
template.

Anonymized data collection 151

QnABot on AWS Implementation guide

1. Download the qnabot-on-aws-main.template AWS CloudFormation template to your local
hard drive.

2. Open the AWS CloudFormation template with a text editor.

3. Search for SO0189 and modify the AWS CloudFormation template description field to remove
the solution ID. The template should be modified from:

SolutionHelperAnonymizedData:
 SendAnonymizedData:
 Data: Yes

to:

SolutionHelperAnonymizedData:
 SendAnonymizedData:
 Data: No

4. Sign in to the AWS CloudFormation console.

5. Select Create stack.

6. On the Create stack page, Specify template section, select Upload a template file.

7. Under Upload a template file, choose Choose file and select the edited template from your
local drive.

8. Choose Next and follow the steps in Launch the stack for the relevant deployment option in the
Deploy the solution section of this guide.

Related AWS documentation

Blog posts

• Create a Question and Answer Bot with Amazon Lex and Amazon Alexa

• Create a questionnaire bot with Amazon Lex and Amazon Alexa

• Creating virtual guided navigation using a Question and Answer Bot with Amazon Lex and
Amazon Alexa

• Deploy a Web UI for Your Chatbot

• Building a multilingual question and answer bot with Amazon Lex

Related AWS documentation 152

https://console.aws.amazon.com/cloudformation/home?
https://aws.amazon.com/blogs/machine-learning/creating-a-question-and-answer-bot-with-amazon-lex-and-amazon-alexa/
https://aws.amazon.com/blogs/machine-learning/create-a-questionnaire-bot-with-amazon-lex-and-amazon-alexa/
https://aws.amazon.com/blogs/machine-learning/creating-virtual-guided-navigation-using-a-question-and-answer-bot-with-amazon-lex-and-amazon-alexa/
https://aws.amazon.com/blogs/machine-learning/creating-virtual-guided-navigation-using-a-question-and-answer-bot-with-amazon-lex-and-amazon-alexa/
https://aws.amazon.com/blogs/machine-learning/deploy-a-web-ui-for-your-chatbot/
https://aws.amazon.com/blogs/machine-learning/building-a-multilingual-question-and-answer-bot-with-amazon-lex/

QnABot on AWS Implementation guide

• Delight your customers with great conversational experiences via QnABot, a generative AI
chatbot

Workshop

• QnABot Workshop

YouTube demo

• Multi-lingual FAQ bots with agent transfer using Amazon Lex, Amazon Kendra, Amazon Connect,
and open source AWS QnABot

Contributors

The following individuals contributed to this document:

• Tim Mekari

• Michael Lin

• Abhishek Patil

• Fabien Houeto

• Abhay Joshi

• Ajay Swami

• Manish Jangid

• Morris Estepa

• Marc Burnie

• Ibrahim Mohamed

• Tarek Abdunabi

• Alireza Assadzadeh

• Bob Strahan

• Bob Potterveld

• Chris Lott

• John Calhoun

• Karl Thomas

Workshop 153

https://aws.amazon.com/blogs/machine-learning/delight-your-customers-with-great-conversational-experiences-via-qnabot-a-generative-ai-chatbot/
https://aws.amazon.com/blogs/machine-learning/delight-your-customers-with-great-conversational-experiences-via-qnabot-a-generative-ai-chatbot/
https://qnabot.workshop.aws/
https://www.youtube.com/watch?v=4Wxu775i5yM
https://www.youtube.com/watch?v=4Wxu775i5yM

QnABot on AWS Implementation guide

• Raj Chary

• Mohsen Ansari

Contributors 154

QnABot on AWS Implementation guide

Revisions

Date Change

September 2021 Release v5.0.0 – Initial AWS Solutions
Implementation release. For more informati
on, see the CHANGELOG.md file in the GitHub
repository.

October 2021 Release v5.0.1 – Bug fix for redaction of PII in
logs; documentation addition for deploying
a web UI. For more information, see the
CHANGELOG.md file in the GitHub repository.

December 2021 Release v5.1.0 – Integration with Genesys.
Fixed integration with Slack and LexV2.
Intelligent PII redaction with Amazon
Comprehend. Bug fix for Amazon Kendra
FAQ and metadata tags for questions. Added
client filter support to allow same questions
answered differently based on session
attributes. For more information, see the
CHANGELOG.md file in the GitHub repository.

February 2022 Release v5.1.1: Expanded language support
for voice and text interactions, included
support for Neural voices for Amazon Lex
language locales, fixed Amazon Kendra
WebCrawler data source sync issues. For more
information, see the CHANGELOG.md file in
the GitHub repository.

March 2022 Release v5.1.2: Added logic to support
Amazon Connect Interactive Messages and a
new set of example questions to be imported
for Genesys Cloud CX. For more information,

155

https://github.com/aws-solutions/qnabot-on-aws
https://github.com/aws-solutions/qnabot-on-aws
https://github.com/aws-solutions/qnabot-on-aws
https://github.com/aws-solutions/qnabot-on-aws

QnABot on AWS Implementation guide

Date Change

see the CHANGELOG.md file in the GitHub
repository.

July 2022 Release v5.2.0: This release includes: early
implementations of intent and slot matching
and Canvas LMS integration; support for
using custom domain names in QnABot on
AWS content designer and client interfaces;
Command Line Interface (CLI) for QnABot;
Amazon Kendra Redirect capability; ability to
import QnABot questions and answers from
an Excel file uploaded to an S3 data folder;
support for importing session attributes using
Excel files; bugs fixes and updates. For more
information, see the CHANGELOG.md file in
the GitHub repository.

September 2022 Release v5.2.1: This release includes security
patches, changes for the AWS Lambda release
that supports the Node.js 16 runtime, and a
bug fix for the error caused by not providing
an image URL in the Bot’s response card. For
more information, see the CHANGELOG.md
file in the GitHub repository.

October 2022 Release v5.2.2: This release includes npm and
pip security patches; improved deploymen
t stability for OpenSearch and Amazon Lex
resources creation; single character utterance
bug fix; and ElicitResponse bug fix. For
more information, see the CHANGELOG.md
file in the GitHub repository.

156

https://github.com/aws-solutions/qnabot-on-aws
https://github.com/aws-solutions/qnabot-on-aws
https://docs.aws.amazon.com/lambda/latest/dg/lambda-releases.html
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md

QnABot on AWS Implementation guide

Date Change

November 2022 Release v5.2.3: This release includes npm and
pip security patches. For more information,
see the CHANGELOG.md file in the GitHub
repository.

November 2022 Release v5.2.4: This release includes npm and
pip security patches. For more information,
see the CHANGELOG.md file in the GitHub
repository.

December 2022 Release v5.2.5: This release includes npm
and pip security patches; documentation
improvements; new unit tests; clientfilter
bug fix; Amazon Kendra FAQ bug fix; missing
Fulfillment Lambda function widget fix;
and support has been added for the latest
LexV2 languages. For more information,
see the CHANGELOG.md file in the GitHub
repository.

January 2023 Release v5.2.6: This release includes npm and
pip security patches. For more information,
see the CHANGELOG.md file in the GitHub
repository.

February 2023 Release v5.2.7: This release includes npm and
pip security patches; and new unit tests. For
more information, see the CHANGELOG.md
file in the GitHub repository.

157

https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md

QnABot on AWS Implementation guide

Date Change

February 2023 Release v5.3.0: This release moves the solution
onto OpenSearch v1.3 and introduces new
QnA search capabilities using text embedding
s. By enabling text embeddings, users can
leverage LLMs to obtain semantic-based query
matching. For more information, see the
CHANGELOG.md file in the GitHub repository.

March 2023 Release v5.3.1: This release includes npm
and pip security patches; and a bug fix for
theFulfillment Lambda function not
correctly publishing a new version. For more
information, see the CHANGELOG.md file in
the GitHub repository.

April 2023 Release v5.3.2: This release includes npm and
pip security patches; a bug fix for Alexa skill
reprompts; new CloudFormation parameter
to configure EBS volume size for OpenSearc
h; MetricsBucket Amazon S3 bucket
added to CF output; updates to Amazon Lex
and Amazon Connect response limits; and
miscellaneous documentation updates. For
more information, see the CHANGELOG.md
file in the GitHub repository.

April 2023 Release v5.3.3: This release includes npm
security patches. For more information,
see the CHANGELOG.md file in the GitHub
repository.

158

https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md

QnABot on AWS Implementation guide

Date Change

May 2023 Release v5.3.4: This release includes npm and
pip security patches and a bug fix for Amazon
Connect voice responses. For more informati
on, see the CHANGELOG.md file in the GitHub
repository.

July 2023 Release v5.3.5: This release includes
pip security patches and removal of the
ElasticSearchUpdate custom resource
to prevent CFNLambda recursion alert. For
more information, see the CHANGELOG.md
file in the GitHub repository.

July 2023 Release v5.4.0: This release introduces
additional QnA search capabilities using LLMs.
By enabling LLMs end users can leverage
additional features such as query disambigu
ation, text generation to answer questions
from an Amazon Kendra index or from the
new text passage item type. This release also
updates the Lambda Runtimes to Nodejs18
and Python 3.10 and adds initial support for
AppRegistry integration. For more informati
on, see the CHANGELOG.md file in the GitHub
repository.

August 2023 Release v5.4.1: This release includes minor
documentation updates to the LLM README
and additional LLM guidance in the Implement
ation Guide. For more information, see the
CHANGELOG.md file in the GitHub repository.

159

https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md

QnABot on AWS Implementation guide

Date Change

September 2023 Release v5.4.2: This release includes minor
updates and bug fixes. For more information,
see the CHANGELOG.md file in the GitHub
repository.

October 2023 Release v5.4.3: This release includes fix for an
issue where Alexa schema was not exporting
the utterances list. and additional documenta
tion on bot routing configuration.

Documentation additions include data
storage and protection, guidance section for
implementing quizzes, PII Redactions, Multi-
language support & Bot Routing. For more
information, see the CHANGELOG.md file in
the GitHub repository.

October 2023 Release v5.4.4: Updated package versions
to resolve security vulnerabilities. For more
information, see the CHANGELOG.md file in
the GitHub repository.

November 2023 Release v5.4.5: Updated package versions
to resolve security vulnerabilities. For more
information, see the CHANGELOG.md file in
the GitHub repository.

160

https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md

QnABot on AWS Implementation guide

Date Change

January 2024 Release v5.5.0: This release introduces
core-language parameter to the QnABot
deployment that supports 33 Languages and
allows the user to select a core language in
which the OpenSearch language analyzers
will be used. This provides a more syntactic
al accuracy for matching questions and
answers without resorting to translation. This
release also has additional enhancements like
Bot routing, protected utterances settings,
functional test collection and improveme
nts in error handling. This release also has
updates like Bluebird migration to native
promises, upgrade to AWS SDK for JavaScrip
t v3, Wepack 5, Vue3 and Vuetify3. It also
includes documentation updates, code quality
improvements, security patches and bug fixes.
For more information, see the CHANGELOG
.md file in the GitHub repository.

April 2024 Release v5.5.1: This release fixes Document
Chaining issues, updates the QnABot Client
from using Cognito Auth Code instead
of Implicit Grant, and includes patched
vulnerabilities as a part of these changes. For
more information, see the CHANGELOG.md
file in the GitHub repository.

April 2024 Release v5.5.1: This release fixes document
chaining issues, updates the QnABot client
from using Cognito Auth Code instead
of Implicit Grant, and includes patched
vulnerabilities as a part of these changes. For
more information, refer to the CHANGELOG
.md file in the GitHub repository.

161

https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md

QnABot on AWS Implementation guide

Date Change

June 2024 Release v6.0.0: This release introduces native
integration with Amazon Bedrock, which
provides access to the latest LLMs from
leading AI enterprises (Amazon’s Titan,
Anthropic’s Claude 3, Cohere’s Command,
Meta’s Llama 3, Mistal AI’s Large Model) to
find a model best suited for your use case.
Additionally, this release also integrates with
Amazon Bedrock knowledge base so you can
retrieve specific, relevant data from your data
sources, stored in Amazon S3 and automatic
ally converted to text embeddings stored in
a vector database of your choice (end-to-e
nd managed RAG). You can then retrieve your
company specific information with source
attribution (for example, citations) to improve
transparency and minimize hallucinations.
This release also includes seamless switching
 between specialty bots, UI improvements,
and other fixes. For more information, see the
CHANGELOG.md file in the GitHub repository.

June 2024 Release v6.0.1: Fixed a looping issue using
slots and chaining. Fixed bug that was restricti
ng stack names to be below 26 characters.
Updated package versions to resolve security
vulnerabilities. For more information, see the
CHANGELOG.md file in the GitHub repository.

162

https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md

QnABot on AWS Implementation guide

Date Change

July 2024 Release v6.0.2: Improved logout functiona
lity and bug fixes. Added character limit for
Bedrock KB input query due to LLM model
not being able to disambiguate correctly
. Updated parameter description for elicit
response bot settings in content designer
settings. Added additional documentation for
Bedrock Knowledge Base and for migrating
 QnABot configurations and data from existing
deployment to new deployment. Removed
Llama 2 from list of LLMs due to deprecati
on notice from Amazon Bedrock. For more
information, see the CHANGELOG.md file in
the GitHub repository.

August 2024 Release v6.0.3: Updated package versions
to resolve security vulnerabilities. For more
information, see the CHANGELOG.mdfile in
the GitHub repository.

August 2024 Release v6.1.0: Added Integration with
Guardrails for Amazon Bedrock and Amazon
Bedrock Knowledge Base Integration.
Ability to customize parameters for Amazon
Bedrock Knowledge Base. Added ability
to specify retention period for log groups.
Removed Amazon Lex V1 and Canvas LMS.
Added Amazon Titan Text Embeddings V2
and Amazon Titan Text Premier. For more
information, see the CHANGELOG.md file in
the GitHub repository.

163

https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/qnabot-on-aws/blob/main/CHANGELOG.md

QnABot on AWS Implementation guide

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents AWS current
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers, or licensors. AWS products
or services are provided “as is” without warranties, representations, or conditions of any kind,
whether express or implied. AWS responsibilities and liabilities to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

QnABot on AWS is a multi-channel, multi-language conversational interface (chatbot) that
responds to your customer’s questions, answers, and feedback, including by engaging third-party
generative artificial intelligence (AI) models that you may choose to use that AWS does not own or
otherwise have any control over (“Third-Party Generative AI Models”). Your use of the Third-Party
Generative AI Models is governed by the terms provided to you by the Third-Party Generative AI
Model providers when you acquired your license to use them (for example, their terms of service,
license agreement, acceptable use policy, and privacy policy). You are responsible for ensuring
that your use of the Third-Party Generative AI Models comply with the terms governing them,
and any laws, rules, regulations, policies, or standards that apply to you. You are also responsible
for making your own independent assessment of the Third-Party Generative AI Models that you
use, including their outputs and how Third-Party Generative AI Model providers use any data that
may be transmitted to them based on your deployment configuration. AWS does not make any
representations, warranties, or guarantees regarding the Third-Party Generative AI Models, which
are “Third-Party Content” under your agreement with AWS. QnABot on AWS is offered to you as
“AWS Content” under your agreement with AWS.

QnABot on AWS is licensed under the terms of the Apache License Version 2.0.

164

https://www.apache.org/licenses/LICENSE-2.0

	QnABot on AWS
	Table of Contents
	Create a custom question and answer chatbot
	Use cases
	Features and benefits
	Concepts and definitions

	Architecture overview
	Architecture diagram
	AWS Well-Architected pillars
	Operational Excellence
	Security
	Reliability
	Performance Efficiency
	Cost Optimization
	Sustainability

	Architecture details
	Amazon Lex web client
	Amazon Alexa devices
	Content designer UI
	AWS services in this solution
	How QnABot on AWS works

	Plan your deployment
	Cost
	Option 1: Default basic deployment
	Option 2a: SageMaker embeddings only
	Option 2b: Amazon Bedrock embeddings only
	Option 3a: SageMaker embeddings and LLMs
	Option 3b: Amazon Bedrock embeddings and LLMs
	Option 4a: SageMaker embeddings and LLM and RAG using Amazon Kendra
	Option 4b: Amazon Bedrock embeddings and LLM and RAG using Amazon Bedrock knowledge base
	Option 5: Amazon Bedrock embeddings and LLM and RAG using Amazon Bedrock knowledge base and Guardrails for Amazon Bedrock

	Security
	Security best practices
	Amazon S3 access logging bucket configuration
	Multi-factor authentication (MFA) in Amazon Cognito user pools
	Single sign-on with AWS IAM Identity Center
	AWS WAF for Amazon API Gateway
	Creating a custom domain in Amazon API Gateway
	Children Online Privacy Protection Act (COPPA) settings for Amazon Lex
	AWS CloudFormation parameters
	Amazon Cognito
	AWS Lambda
	IAM roles
	CloudWatch Logs
	Data storage and protection

	Quotas
	Quotas for AWS services in this solution
	AWS CloudFormation quotas
	AWS SageMaker endpoint quota
	Amazon Lex quotas

	Amazon DynamoDB backups
	Supported AWS Regions

	Deploy the solution
	Deployment process overview
	AWS CloudFormation templates
	Deploy via main template
	Deploy via VPC template

	Step 1: Launch the stack
	Step 2: Launch the chatbot content designer
	Step 3: Populate the chatbot with your questions and answers
	Table 1: Sample Q and A data

	Step 4: Interact with the chatbot
	Getting answers using an Amazon Lex web client user interface
	Getting answers using Amazon Alexa

	Monitor the solution with Service Catalog AppRegistry
	Activate CloudWatch Application Insights
	Confirm cost tags associated with the solution
	Activate cost allocation tags associated with the solution
	AWS Cost Explorer

	Update the solution
	Troubleshooting
	Contact AWS Support
	Create case
	How can we help?
	Additional information
	Help us resolve your case faster
	Solve now or contact us

	Uninstall the solution
	Using the AWS Management Console
	Using AWS Command Line Interface

	Advanced setup
	Adding images to your answers
	Displaying rich text answers
	Using SSML to control speech synthesis
	Using topics to support follow-up questions and contextual user journeys
	Adding buttons to the web UI
	Integrating Handlebars templates
	Quizzes
	Setting Amazon Lex session attributes
	Specifying Lambda hook functions
	Using keyword filters for more accurate answers and customizing “don’t know” answers
	Keyword filters
	Custom “Don’t Know” answers

	Configuring intent and slot matching
	Item ID setup
	Creating custom intent with slots and slot types
	Creating custom slot types
	Accessing slot values
	Import sample intent and slot types
	Lex rebuild
	Testing the experience
	Notes and considerations

	Configuring the chatbot to ask the questions and use response bots
	Response bots
	Advancing and branching through a series of questions

	Bot routing
	Configuration of bot routing
	Message protocol for a new bot router implemented in Lambda
	Sample bot router

	Connecting QnABot on AWS to an Amazon Connect call center
	Connecting QnABot on AWS to Genesys Cloud
	Tuning, testing, and troubleshooting unexpected answers
	Tuning answers using the content designer
	Testing all your questions
	Tuning the chatbot’s ASR
	Retrain Amazon Lex
	Retrain Alexa

	Monitoring QnABot on AWS usage and user feedback
	Using Amazon CloudWatch to monitor and troubleshoot
	Use Log Insights to query logs from CloudWatch groups

	Importing and exporting chatbot answers
	Modifying configuration settings
	Configure keyword filters feature
	Configure words and phrases replacement in user questions
	Configure pre-processing and post-processing Lambda hooks
	Configure multi-language support
	Using automatic translation
	Configure personally identifiable information (PII) rejection and redaction

	Integrating Amazon Kendra
	Using Amazon Kendra FAQ for question matching
	Using Amazon Kendra search as a fallback source of answers
	Amazon Kendra redirect
	Configuring an Item ID with Amazon Kendra redirect
	Web page indexer

	Semantic question matching using text embeddings LLM
	Enabling embeddings support
	Using Amazon Bedrock model (Preferred)
	Using the built-in Amazon SageMaker model
	Using a custom Lambda function

	Settings available for text embeddings
	Recommendations for tuning with LLMs
	Test using example phrases

	Text generation and query disambiguation using LLMs
	Enabling LLM support
	Amazon Bedrock (preferred)
	Amazon SageMaker
	Using a custom Lambda Function

	Query disambiguation and conversation retrieval
	Text generation for question answering
	Settings available for text generation LLMs configuration

	Guardrails for Amazon Bedrock Integration and Knowledge Base Integration
	Settings for Guardrail in QnABot on AWS

	Setting up a custom domain name for QnABot content designer and client
	Step 1: Set up custom domain name for API Gateway
	Step 2: Custom domain API mapping setup in API Gateway
	Mapping 1
	Mapping 2

	Step 3: Update QnABot API Resources in API Gateway
	Step 3a: Update the /pages/client resource
	Step 3b: Update the /pages/designer resource

	Step 4: Update QnABot Cognito user pool
	Update the callback URLs for app clients: UserPool-{stackname}-designer
	Step 5: Deploy API
	Step 6: Update the API Stage variables
	Step 7: Test the updates using the custom domain name
	Known limitation

	Using QnABot on AWS Command Line Interface (CLI)
	Setup prerequisites
	IAM policy
	Environment setup
	Set environment variables
	Available commands
	Using the import command
	Using the export command
	Running qnabot_cli.py as a shell script

	Developer guide
	Source code

	Reference
	Anonymized data collection
	Related AWS documentation
	Blog posts
	Workshop
	YouTube demo

	Contributors

	Revisions
	Notices

