

DU-09883-001_v1.3 | October 2023

Fabric Manager for NVIDIA NVSwitch
Systems

Virtualization/High Availability Modes

User Guide

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | ii

Document History

DU-09883-001_v1.3

Version Date Authors Description of Change
0.1 October 25, 2019 SB Initial Beta Release

0.2 March 23, 2020 SB Updated error handling and bare metal mode

0.3 May 11, 2020 YL Updated Shared NVSwitch APIs section with new API
information

0.4 July 7, 2020 SB Updated multi-instance GPU (MIG) interoperability and high
availability details.

0.5 July 17, 2020 SB Updated running as non-root instructions

0.6 August 03, 2020 SB Updated installation instructions based on CUDA repo and
updated SXid error details

0.7 January 26, 2021 GT, CC Updated with NVIDIA Virtual GPU (vGPU) multitenancy
virtualization mode

0.8 March 19, 2021 SB Updated High Availability section to reflect recent GPU
excluded option changes.

0.9 October 19, 2022 YL, SB, GT Updated with NVIDIA® DGX™ H100 and NVIDIA HGX™ H100

1.0 Jan 20, 2023 YL Updated GPU Module ID for DGX H100 and NVIDIA HGX H100

1.1 June 23, 2023 SB • Updated with log rotation options.
• Updated NVIDIA HGX H100 NVIDIA NVLink® topology

information.
• Added support language for NVIDIA HGX A800 and

NVIDIA HGX H800.

1.2 July 7, 2023 EK, PKS • Updated D.4 Non-Fatal NVSwitch SXid Errors
• Updated D. Fatal NVSwitch SXid Errors
• Added D.9 GPU/VM/System Reset Capabilities and

Limitations

1.3 October 3, 2023 YL, SB • Updated Shared NVSwitch 2 GPU partitions for DGX
H100 and HGX H100

• Updated various FM package details, FM Service restart
consideration for DGX H100 and HGX H100, Service VM
memory requirements.

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | iii

Table of Contents

 Overview ... 1
 Introduction .. 1
 NVSwitch-Based Systems ... 1
 Terminology .. 2
 NVSwitch Core Software Stack ... 2
 What is Fabric Manager? ... 3

 Getting Started with Fabric Manager .. 5
 Basic Components ... 5
 NVSwitch and NVLink Initialization ... 5
 Supported Platforms .. 7
 Supported Deployment Models ... 7
 Other NVIDIA Software Packages ... 8
 Installation .. 8
 Managing the Fabric Manager Service ... 9
 Fabric Manager Startup Options ... 10
 Fabric Manager Service File .. 11

 Running Fabric Manager as Non-Root ... 12
 Fabric Manager Config Options ... 13

 Bare Metal Mode.. 23
 Introduction .. 23
 Fabric Manager Installation .. 23
 Runtime NVSwitch and GPU Errors .. 23
 Interoperability With MIG ... 25

 Virtualization Models ... 27
 Introduction .. 27
 Supported Virtualization Models ... 27

 Fabric Manager SDK .. 28
 Data Structures .. 28
 Initializing the Fabric Manager API interface ... 31
 Shutting Down the Fabric Manager API interface .. 31
 Connect to Running the Fabric Manager Instance... 32
 Disconnect from Running the Fabric Manager Instance ... 32
 Getting Supported Partitions ... 33
 Activate a GPU Partition ... 33
 Activate a GPU Partition with Virtual Functions ... 34

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | iv

 Deactivate a GPU Partition .. 35
 Set Activated Partition List after a Fabric Manager Restart .. 35
 Get the NVLink Failed Devices .. 36
 Get Unsupported Partitions ... 36

 Full Passthrough Virtualization Model .. 38
 Supported Virtual Machine Configurations ... 40
 Virtual Machines with 16 GPUs ... 41
 Virtual Machines with Eight GPUS .. 41
 Virtual Machines with Four GPUS ... 41
 Virtual Machines with Two GPUs ... 41
 Virtual Machine with One GPU .. 42
 Other Requirements ... 42
 Hypervisor Sequences ... 42
 Monitoring Errors ... 43

 Limitations .. 43

 Shared NVSwitch Virtualization Model .. 44
 Software Stack ... 44
 Guest VM to Service VM Interaction .. 45
 Preparing the Service Virtual Machine ... 46
 FM Shared Library and APIs .. 47
 Fabric Manager Resiliency .. 50
 Service Virtual Machine Life Cycle Management ... 50
 Guest Virtual Machine Life Cycle Management.. 52
 Error Handling .. 54
 Interoperability With a Multi-Instance GPU .. 55

 vGPU Virtualization Model ... 56
 Software Stack ... 56
 Preparing the vGPU Host ... 57
 Fabric Manager-Shared Library and APIs .. 58
 Fabric Manager Resiliency .. 58
 vGPU Partitions .. 58
 Guest Virtual Machine Life Cycle Management.. 59
 Error Handling .. 60
 GPU Reset ... 60
 Interoperability with MIG .. 61

 Supported High Availability Modes .. 62
 Common Terms .. 62
 GPU Access NVLink Failure .. 63
 Trunk NVLink Failure ... 64

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | v

 NVSwitch Failure .. 66
 GPU Failure .. 67
 Manual Degradation ... 68

Appendix A. NVLink Topology .. 76

Appendix B. GPU Partitions ... 81

Appendix C. Resiliency ... 85

Appendix D. Error Handling ... 88

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3| 1

 Overview

 Introduction
As deep learning neural networks become more sophisticated, their size and complexity
continue to expand. The result is exponential demand in the computing capacity that is
required to train these networks during a reasonable period. To meet this challenge,
applications have turned into multi-GPU implementations.

NVIDIA® NVLink®, which was introduced to connect multiple GPUs, is a direct GPU-to-
GPU interconnect that scales multi-GPU input/output (IO) in the server. To additionally
scale the performance and connect multiple GPUs, NVIDIA introduced NVIDIA
NVSwitch™, which connects multiple NVLinks to provide all-to-all GPU communication at
the total NVLink speed.

 NVSwitch-Based Systems
Over the years, NVIDIA introduced three generation of NVSwitches and associated DGX
and NVIDIA HGX™ server systems.

NVIDIA DGX-2™ and NVIDIA HGX-2 systems consists of two identical GPU baseboards
with eight NVIDIA V100 GPUs and six first generation NVSwitches on each baseboard.
Each V100 GPU has one NVLink connection to each NVSwitch on the same GPU
baseboard. Two GPU baseboards are connected to build a 16-GPU system. Between the
two GPU baseboards, the only NVLink connections are between NVSwitches, where each
NVSwitch from one GPU baseboard is connected to one NVSwitch on the second GPU
baseboard for a total of eight NVLink connections.

The NVIDIA DGX™ A100 and NVIDIA HGX A100 8-GPU systems consist of a GPU
baseboard, with eight NVIDIA A100 GPUs, and six second generation NVSwitches. The
GPU baseboard NVLink topology is like the first-generation version, where each A100
GPU has two NVLink connections to each NVSwitch on the same GPU baseboard. This
generation supports connecting two GPU baseboards for a total of sixteen NVLink
connections between the baseboards.

Third-generation NVSwitches are used in DGX H100 and NVIDIA HGX H100 8-GPU server
systems. This server variant consists of one GPU baseboard with eight NVIDIA H100
GPUs and four NVSwitches. The corresponding NVLink topology is different from the
previous generation because every GPU has four NVLinks that connect to two of the
NVSwitches, and five NVLinks that connect to the remaining two NVSwitches. This
generation has depreciated the support to connect two GPU baseboard using NVLink.

Overview

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 2

 Terminology
Abbreviations Definitions

FM Fabric Manager

MMIO Memory Mapped IO

VM Virtual Machine

GPU register A location in the GPU MMIO space

SBR Secondary Bus Reset

DCGM NVIDIA Data Center GPU manager

NVML NVIDIA Management Library

Service VM A privileged VM where NVIDIA NVSwitch software stack runs

Access NVLink NVLink between a GPU and an NVSwitch

Trunk NVLink NVLink between two GPU baseboards

SMBPBI NVIDIA SMBus Post-Box Interface

vGPU NVIDIA GRID Virtual GPU

MIG Multi-Instance GPU

SR-IOV Single-Root IO Virtualization

PF Physical Function

VF Virtual Function

GFID GPU Function Identification

Partition A collection of GPUs which are allowed to perform NVLink
Peer-to-Peer Communication among themselves

ALI Autonomous Link Initialization

 NVSwitch Core Software Stack
The core software stack for NVSwitch management consists of an NVSwitch kernel driver
and a privileged process called NVIDIA Fabric Manager (FM). The kernel driver performs
low-level hardware management in response to FM requests. The software stack also
provides in-band and out-of-band monitoring solutions to report NVSwitch and GPU
errors and status information.

Overview

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 3

Figure 1. NVSwitch core software stack

 What is Fabric Manager?
FM configures the NVSwitch memory fabrics to form one memory fabric among all
participating GPUs and monitors the NVLinks that support the fabric. At a high level, FM
has the following responsibilities:
 Configures routing among NVSwitch ports.
 Coordinates with the GPU driver to initialize GPUs.
 Monitors the fabric for NVLink and NVSwitch errors.

DCGM

(GPU & NVSwitch
Monitoring)

Third Party
Integration
Point for
GPU &
NVSwitch
Monitoring

Fabric
Manager
Service

Kernel Mode

User Mode

NVML

(Monitoring APIs)

NVSwitch
Audit Tool

Fabric Manager Package

GPU Driver NVSwitch Driver

NVIDIA Driver Package

GPUs NVSwitches Out-of-
Band

BMC

Overview

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 4

 On systems that are not capable of Autonomous Link Initialization (ALI)-based NVLink
training (the first and second generation NVSwitch-based systems), FM also has the
following additional responsibilities:

 Coordinate with the NVSwitch driver to train NVSwitch to NVSwitch NVLink
interconnects.

 Coordinate with the GPU driver to initialize and train NVSwitch to GPU NVLink
interconnects.

This document provides an overview of various FM features and is intended for system
administrators and individual users of NVSwitch-based server systems.

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3| 5

 Getting Started with Fabric
Manager

 Basic Components
This section provides information about the basic components in FM.

2.1.1 Fabric Manager Service
The core component of FM is implemented as a standalone executable that runs as a
Unix Daemon process. The FM installation package will install the required core
components and registers the daemon as a system service called nvidia-
fabricmanager.

2.1.2 Software Development Kit
FM also provides a shared library, a set of C/C++ APIs (SDK), and the corresponding
header files. These APIs are used to interface with the Fabric Manager service to
query/activate/deactivate GPU partitions when FM is running in Shared NVSwitch and
vGPU multi-tenancy modes. All these SDK components are installed through a separate
development package. For more information, refer to “Shared NVSwitch Virtualization
Model” on page 44 and “vGPU Virtualization Model” on page 56.

 NVSwitch and NVLink Initialization
NVIDIA GPUs and NVSwitch memory fabrics are PCIe endpoint devices that require an
NVIDIA kernel driver to be used.

On DGX-2, NVIDIA HGX-2, DGX A100, and NVIDIA HGX A100 systems that do not have ALI
support, after the system boots, the NVLink connections are enabled after the NVIDIA
kernel driver is loaded, and the FM configures these connections. CUDA initialization will
fail with the cudaErrorSystemNotReady error if the application is launched before FM
completely initializes the system or when FM fails to initialize the system.

On DGX H100 and NVIDIA HGX H100 systems that have ALI support, NVLinks are trained
at the GPU and NVSwitch hardware levels without FM. To enable NVLink peer-to-peer
support, the GPUs must register with the NVLink fabric. If a GPU fails to register with the
fabric, it will lose its NVLink peer-to-peer capability and be available for non-peer-to-
peer use cases. The CUDA initialization process will start after the GPUs complete their
registration process with the NVLink fabric.

Getting Started with Fabric Manager

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 6

GPU fabric registration status is exposed through the NVML APIs, and as part of
nvidia-smi -q command. Refer the following nvidia-smi command output for
more information.
 Here is the Fabric state output when the GPU is being registered:

nvidia-smi -q -i 0 | grep -i -A 2 Fabric
 Fabric
 State : In Progress
 Status : N/A

 Here is the Fabric state output after the GPU has been successfully registered:

nvidia-smi -q -i 0 | grep -i -A 2 Fabric
 Fabric
 State : Completed
 Status : Success

Fabric Manager plays a critical role in the functionality of NVSwitch-based systems that
are typically initiated during a system boot or a workload activation. Restarting the
service intermittently is unnecessary; but if such a restart is necessary because of
workflow requirements, or as part of a GPU reset operation, complete the following
procedure for DGX H100 and NVIDIA HGX H100 systems to ensure the system returns to
a coherent state.

1. Stop all CUDA Applications and GPU-Related Services.
• Halt all running CUDA applications and services (for example, DCGM) that are

actively using GPUs.
• You can leave the nvidia-persistenced service running.

2. Stop Fabric Manager Service by terminating the Fabric Manager service.
3. Perform GPU Reset by issuing the nvidia-smi -r command and executing a GPU

reset by.
4. Start Fabric Manager Service Againby restaring the Fabric Manager service and

restoring its functionality.
5. Resume Stopped Services by restarting any services that were halted in step 1, such

as DCGM or other GPU-related services.
6. Launch CUDA Applications.
7. After completing these steps, launch your CUDA applications as needed.

Note: System administrators can set their GPU application launcher services, such as SSHD,
Docker, and so on, to start after the FM service is started. Refer to your Linux distribution’s
manual for more information about setting up service dependencies and the service start order.

Getting Started with Fabric Manager

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 7

 Supported Platforms
This section provides informaiton about the products and environments that FM currently
supports.

2.3.1 Hardware Architectures
 x86_64
 AArch64

2.3.2 NVIDIA Server Architectures
 DGX-2 and NVIDIA HGX-2 systems that use V100 GPUs and first-generation

NVSwitches.
 DGX A100 and NVIDIA HGX A100 systems that use A100 GPUs and second-generation

NVSwitches.
 NVIDIA HGX A800 systems that use A800 GPUs and second-generation NVSwitches.
 DGX H100 and NVIDIA HGX H100 systems that use H100 GPUs and third-generation

NVSwitches.
 NVIDIA HGX H800 systems that use H800 GPUs and third-generation NVSwitches.

Note: Unless specified, the steps for NVIDIA HGX A800 and NVIDIA HGX H800 are the same as the
steps NVIDIA HGX A100 and NVIDIA HGX H100. The only difference is that the number of GPU
NVLinks will defer depending on the actual platform.

2.3.3 OS Environment
FM is supported on the following major Linux OS distributions:
 RHEL/CentOS 7.x and RHEL/CentOS 8.x
 Ubuntu 18.04.x, and Ubuntu 20.04.x, and Ubuntu 22.04.x

 Supported Deployment Models
NVSwitch-based systems can be deployed as bare metal servers or in a virtualized (full
passthrough, Shared NVSwitch, or vGPU) multi-tenant environment. FM supports these
deployment models. Refer to the following sections for more information:

 “Bare Metal Mode configuration” on page 20

 “Full Passthrough Virtualized Configurations” on page 72.

Getting Started with Fabric Manager

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 8

 “Shared NVSwitch Virtualization Configurations” on page 73

 “Bare Metal and vGPU Configurations” on page 72

 Other NVIDIA Software Packages
To run the FM service, the target system must include a compatible Driver, starting with
version R450,for the NVIDIA Data Center GPUs.

Note: During initialization, the FM service checks the currently loaded kernel driver stack
version for compatibility, and if the loaded driver stack version is not compatible, aborts the
process.

 Installation

2.6.1 On NVSwitch-Based DGX Server Systems
The FM service is preinstalled in all the NVSwitch-based DGX-2, DGX A100, and DGXH100
systems as part of the supported DGX OS package. The service is enabled and started on
OS boot.

2.6.2 On NVSwitch-Based NVIDIA HGX Server
Systems

On NVSwitch-based NVIDIA HGX systems, to configure the NVLinks and NVSwitch
memory fabrics to support one memory fabric, the FM service needs to be manually
installed. The FM package is available through the NVIDIA CUDA network repository.
Refer to NVIDIA Driver Installation Quickstart Guide for more information about setting
up your system’s package manager and download packages from the desired CUDA
network repositories.
Each release version of Fabric Manager comprises the following packages:

 nvidia-fabricmanager-<version>

This package includes the essential components such as the core standalone FM
service process, service unit file, and topology files. For bare metal, you can install
just this package.

https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html

Getting Started with Fabric Manager

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 9

 nvidia-fabricmanager-devel-<version>

The "devel" package encompasses the FM shared library and its associated header
files. This package is important when you implement the Shared NVSwitch and vGPU
multi-tenancy virtualization models.

By splitting the functionality into these packages, users can selectively install the
components most relevant to their needs.

After the package manager network repositories are set up, use the following distro-
specific FM installation commands:

Note: In the following commands, <driver-branch> should be substituted with the required
NVIDIA driver branch number for qualified datacenter drivers (for example, 450).

 For Debian and Ubuntu based OS distributions:

sudo apt-get install cuda-drivers-fabricmanager-<driver-branch>

 For Red Hat Enterprise Linux 8 based OS distributions:
sudo dnf module install nvidia-driver:<driver-branch>/fm

 SUSE Linux based OS distributions:
sudo zypper install cuda-drivers-fabricmanager-<driver-branch>

Note: On NVSwitch-based NVIDIA HGX systems, before you install FM, install the compatible
Driver for NVIDIA Data Center GPUs. As part of the installation, the FM service unit file (nvidia-
fabricmanager.service) will be copied to systemd. However, the system administrator
must manually enable and start the FM service.

 Managing the Fabric Manager
Service

2.7.1 Start Fabric Manager
 To start FM, run the following command:

For Linux based OS distributions
sudo systemctl start nvidia-fabricmanager

2.7.2 Stop Fabric Manager
 To stop FM, run the following command:

For Linux based OS distributions
sudo systemctl stop nvidia-fabricmanager

Getting Started with Fabric Manager

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 10

2.7.3 Check the Fabric Manager Status
 To check the FM status, run the following command:

For Linux based OS distributions
sudo systemctl status nvidia-fabricmanager

2.7.4 Enable the Fabric Manager Service to Auto
Start at Boot

 To enable the FM service to start automatically at boot, run the following command:
For Linux based OS distributions
sudo systemctl enable nvidia-fabricmanager

2.7.5 Disable the Fabric Manager Service Auto
Start at Boot

 To disable the FM service to start automatically at boot, run the following command:
For Linux based OS distributions
sudo systemctl disable nvidia-fabricmanager

2.7.6 Check Fabric Manager System Log
Messages

 To check the FM system log messages, run the following command:
For Linux based OS distributions
sudo journalctl -u nvidia-fabricmanager

 Fabric Manager Startup Options
FM supports the following command-line options:
. /nv-fabricmanager -h

 NVIDIA Fabric Manager
 Runs as a background process to configure the NVSwitches to form
 a single memory fabric among all participating GPUs.

 Usage: nv-fabricmanager [options]

 Options include:
 [-h | --help]: Displays help information
 [-v | --version]: Displays the Fabric Manager version and exit.
 [-c | --config]: Provides Fabric Manager config file path/name
which controls all the config options.
 [-r | --restart]: Restart Fabric Manager after exit. Applicable
to Shared NVSwitch and vGPU multitenancy modes.

Getting Started with Fabric Manager

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 11

Most of the FM configurable parameters and options are specified through a text config
file. FM installation will copy a default config file to a predefined location, and the file will
be used by default. To use a different config file location, specify the same using the [-c
| --config] command line argument.

Note: On Linux based installations, the default FM config file will be in the
/usr/share/nvidia/nvswitch/fabricmanager.cfg directory. If the default config file on
the system is modified, to manage the existing config file, subsequent FM package update will
provide options such as merge/keep/overwrite.

 Fabric Manager Service File

2.9.1 On Linux-Based Systems
On Linux-based systems, the installation package will register the FM service using the
following systemd service unit file. To change the FM service start-up options, modify
this service unit file in the /lib/systemd/system/nvidia-
fabricmanager.service directory.
[Unit]
Description=FabricManager service
After=network-online.target
Requires=network-online.target

[Service]
User=root
PrivateTmp=false
Type=forking

ExecStart=/usr/bin/nv-fabricmanager -c /usr/share/nvidia/nvswitch/fabricmanager.cfg

[Install]
WantedBy=multi-user.target

Getting Started with Fabric Manager

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 12

 Running Fabric Manager as Non-
Root

On Linux-based systems, by default, the FM service requires administrative (root)
privileges to configure all the GPU NVLinks and NVSwitches to support a memory fabric.
However, system administrators and advanced users can complete the following steps to
run FM from a non-root account:
1. If the FM instance is running, stop it.
2. FM requires access to the following directory/file, so adjust the corresponding

directory/file access to the desired user/user group.
• /var/run/nvidia-fabricmanager

This option provides a fixed location to save runtime information.
• /var/log/

This option provides a configurable location to save FM log file.
• /usr/share/nvidia/nvswitch

This option provides a configurable location for fabric topology files.

This configurable directory/file information is based on default FM config file
options. If the default configuration values are changed, adjust the directory/file
information accordingly.

• The NVIDIA driver will create the following proc entry with default permission to
root.

3. Change its read/write access to the desired user/user group.
/proc/driver/nvidia-nvlink/capabilities/fabric-mgmt

4. FM also requires access to the following device node files.
• On all the NVSwitch-based NVIDIA HGX systems:

> /dev/nvidia-nvlink

> /dev/nvidia-nvswitchctl

> /dev/nvidia-nvswitchX (one for each NVSwitch device)

• Here are the additional device node files on DGX-2 and NVIDIA HGX A100 systems:
> /dev/nvidiactl

> /dev/nvidiaX (one for each GPU device)

By default, these device node files are created by the nvidia-modprobe utility, which
is installed as part of NVIDIA Driver package for Data Center GPUs, with access
permission for all users. If these device node files are created manually or outside of
nvidia-modprobe, assign read/write access to the user/user group.

5. After the required permissions are assigned, manually start the FM process from the
user/user group account.

6. The NVIDIA driver will create/recreate the above /proc entry during driver load, so
repeat steps 1-6 on every driver reload or system boot.

Getting Started with Fabric Manager

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 13

When FM is configured as a systemd service, the system administrator must edit the FM
service unit file to instruct systemd to run FM service from a specific user/group. This
specific user/group can be specified through the User= and Group= directive in the
[Service] section of FM service unit file. The system administrator must ensure that the
proc entry and associated file node permission are changed to desired user/user group
before FM service starts at system boot time.

When FM is configured to run from a specific user/user group as specified above, the
nvswitch-audit command line utility should be started from the same user/user
group account.

Note: System administrators can set up necessary udev rules to automate the process of
changing these proc entry permissions.

 Fabric Manager Config Options
The configurable parameters and options used by FM are specified through a text config
file. The following section lists all those currently supported configurable parameters
and options.

Note: The FM config file is read as part of FM service startup. If you changed anyconfig file
options, for the new settings to take effect, restart the FM service .

2.11.1 Logging Related Config Items

2.11.1.1 Setting the Log File Location and Name
 Config Item

LOG_FILE_NAME=<value>

 Supported/Possible Values

The complete path/filename string (max length of 256) for the log.

 Default Value

LOG_FILE_NAME=/var/log/fabricmanager.log

2.11.1.2 Setting Desired Log Level
 Config Item

LOG_LEVEL=<value>

Getting Started with Fabric Manager

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 14

 Supported/Possible Values

• 0 – All the logging is disabled

• 1 - Set log level to CRITICAL and above

• 2 - Set log level to ERROR and above

• 3 - Set log level to WARNING and above

• 4 - Set log level to INFO and above

 Default Value

LOG_LEVEL=4

2.11.1.3 Setting Log File Append Behavior
 Config Item

LOG_APPEND_TO_LOG=<value>

 Supported/Possible Values:

• 0 – No, don’t append to the existing log file, instead overwrite
the existing log file.

• 1 – Yes, append to the existing log file every time Fabric
Manager service is started.

 Default Value

LOG_APPEND_TO_LOG=1

2.11.1.4 Setting Log File Size
 Config Item

LOG_FILE_MAX_SIZE=<value>

 Supported/Possible Values

• The desired max log file size in MBs.
After the specified size is reached, FM will skip additional logging to the specified
log file.

 Default Value

LOG_FILE_MAX_SIZE=1024

Getting Started with Fabric Manager

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 15

2.11.1.5 Redirect Logs to Syslog
 Config Item

LOG_USE_SYSLOG=<value>

 Supported/Possible Values

• 0 – Use the specified log file for storing all the Fabric
Manager logs

• 1 - Redirect all the Fabric Manager logs to syslog instead
file-based logging.

 Default Value

LOG_USE_SYSLOG=0

2.11.1.6 Rotation Settings
 Config Item

LOG_MAX_ROTATE_COUNT=<value>

 Supported/Possible Values

• 0: The log is not rotated.
Logging is stopped once the log file reaches the size specified in above
LOG_FILE_MAX_SIZE option.

• Non-zero: Rotate the current log file once it reaches the individual log file size.
The combined Fabric Manager log size is LOG_FILE_MAX_SIZE multiplied by
LOG_MAX_ROTATE_COUNT + 1. After this threshold is reached, the oldest log file
will be purged.

 Default Value

LOG_MAX_ROTATE_COUNT=3

Note: The FM log is in a clear-text format, and NVIDIA recommends that you run the FM service
with logging enabled at the INFO level for troubleshooting field issues.

2.11.2 Operating Mode Related Config Items

Note: This section of config items is applicable only to Shared NVSwitch and vGPU Multitenancy
deployment.

Getting Started with Fabric Manager

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 16

2.11.2.1 Fabric Manager Operating Mode
 Config Item

FABRIC_MODE=<value>

 Supported/Possible Values

• 0: Start FM in bare metal or full passthrough virtualization mode.
• 1: Start FM in Shared NVSwitch multitenancy mode.

For more information, refer to ”Shared NVSwitch Virtualization Configurations” on
page 73.

• 2: Start FM in vGPU multitenancy mode.
For more information, refer to ”vGPU Virtualization Model” on page 56.

 Default Value

FABRIC_MODE=0

Note: The older SHARED_FABRIC_MODE configuration item is still supported, but we
recommend that you use the FABRIC_MODE configuration item.

2.11.2.2 Fabric Manager Restart Mode
 Config Item

FABRIC_MODE_RESTART=<value>

 Supported/Possible Values

• 0: Start FM and complete the initialization sequence.
• 1: Start FM and follow the Shared NVSwitch or vGPU multitenancy mode

resiliency/restart sequence.

This option is equal to the –restart command line argument to the FM process and
is provided to enable the Shared NVSwitch or vGPU multitenancy mode resiliency
without modifying command-line arguments to the FM process. Refer to “Appendix
C” on page 85 for more information on the FM resiliency flow.

 Default Value

FABRIC_MODE_RESTART=0

Note: The older SHARED_FABRIC_MODE_RESTART configuration item is still supported but we
recommend that you use FABRIC_MODE_RESTART configuration item.

Getting Started with Fabric Manager

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 17

2.11.2.3 Fabric Manager API Interface
 Config Item

FM_CMD_BIND_INTERFACE =<value>

 Supported/Possible Values

The network interface for the FM SDK/API to listen and for the Hypervisor to
communicate with the running FM instance for the shared NVSwitch and vGPU
multitenancy operations.

 Default Value

FM_CMD_BIND_INTERFACE=127.0.0.1

2.11.2.4 Fabric Manager API TCP Port
 Config Item

FM_CMD_PORT_NUMBER=<value>

 Supported/Possible Values

The TCP port number for the FM SDK/API for Hypervisor to communicate with the
running FM instance for Shared NVSwitch and vGPU multitenancy operations.

 Default Value

FM_CMD_PORT_NUMBER=6666

2.11.2.5 Fabric Manager Domain Socket Interface
 Config Item

FM_CMD_UNIX_SOCKET_PATH=<value>

 Supported/Possible Values

The Unix domain socket path instead of the TCP/IP socket for the FM SDK/API to
listen and to communicate with the running FM instance for the shared NVSwitch and
vGPU multitenancy operations.

 Default Value

FM_CMD_UNIX_SOCKET_PATH=<empty value>

Getting Started with Fabric Manager

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 18

2.11.2.6 Fabric Manager State
 Config Item

STATE_FILE_NAME=<value>

 Supported/Possible Values

Specify the filename to be used to save the FM states to restart FM after a crash or a
successful exit. This is only valid when the Shared NVSwitch or vGPU multitenancy
mode is enabled.

 Default Value

STATE_FILE_NAME =/tmp/fabricmanager.state

2.11.3 Miscellaneous Config Items

2.11.3.1 Prevent Fabric Manager from Daemonizing
 Config Item

DAEMONIZE=<value>

 Supported/Possible Values

• 0: Do not daemonize and run FM as a normal process.
• 1: Run the FM process as a Unix daemon.

 Default Value

DAEMONIZE=1

2.11.3.2 Fabric Manager Communication Socket Interface
 Config Item

BIND_INTERFACE_IP=<value>

 Supported/Possible Values

Network interface to listen for the FM internal communication/IPC, and this value
should be a valid IPv4 address.

 Default Value

BIND_INTERFACE_IP=127.0.0.1

Getting Started with Fabric Manager

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 19

2.11.3.3 Fabric Manager Communication TCP Port
 Config Item

STARTING_TCP_PORT=<value>

 Supported/Possible Values

Starting TCP port number for the FM internal communication/IPC, and this value
should be between 0 and 65535.

 Default Value

STARTING_TCP_PORT=16000

2.11.3.4 Unix Domain Socket for Fabric Manager
Communication

 Config Item

UNIX_SOCKET_PATH=<value>

 Supported/Possible Values

Use Unix Domain socket instead of TCP/IP socket for FM internal
communication/IPC. An empty value means that the Unix domain socket is not used.

 Default Value

UNIX_SOCKET_PATH=<empty value>

2.11.3.5 Fabric Manager System Topology File Location
 Config Item

TOPOLOGY_FILE_PATH =<value>

 Supported/Possible Values

Configuration option to specify the FM topology files directory path information.

 Default Value

TOPOLOGY_FILE_PATH=/usr/share/nvidia/nvswitch

Getting Started with Fabric Manager

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 20

2.11.4 High Availability Mode-Related Config
Items

2.11.4.1 Control Fabric Manager Behavior on Initialization
Failure

 Config Item

FM_STAY_RESIDENT_ON_FAILURES=<value>

 Supported/Possible Values

• 0: The FM service will terminate on errors such as, NVSwitch and GPU config
failure, typical software errors, and so on.

• 1: The FM service will stay running on errors such as, NVSwitch and GPU config
failure, typical software errors, and so on.
However, the system will be uninitialized, and the CUDA application launch will
fail.

 Default Value

FM_STAY_RESIDENT_ON_FAILURES=0

2.11.4.2 GPU Access NVLink Failure Mode
 Config Item

ACCESS_LINK_FAILURE_MODE=<value>

 Supported/Possible Values

The available high-availability options when there is an Access NVLink Failure (GPU
to NVSwitch NVLink). Refer to “Supported High Availability Modes” on page 62 for
more information about supported values and behavior.

 Default Value

ACCESS_LINK_FAILURE_MODE=0

Getting Started with Fabric Manager

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 21

2.11.4.3 NVSwitch Trunk NVLink Failure Mode
 Config Item

TRUNK_LINK_FAILURE_MODE=<value>

 Supported/Possible Values

The available high-availability options when there is a Trunk Link failure (NVSwitch to
NVSwitch connection between GPU baseboards). Refer to Refer to “Supported High
Availability Modes” on page 62 for more information about supported values and
behavior.

 Default Value

TRUNK_LINK_FAILURE_MODE=0

2.11.4.4 NVSwitch Failure Mode
 Config Item

NVSWITCH_FAILURE_MODE=<value>

 Supported/Possible Values

The available high-availability options when there is an NVSwitch failure. Refer to
Refer to “Supported High Availability Modes” on page 62 for more information about
supported values and behavior.

 Default Value

NVSWITCH_FAILURE_MODE=0

2.11.4.5 CUDA Jobs Behavior When the Fabric Manager
Service is Stopped or Terminated

 Config Item

ABORT_CUDA_JOBS_ON_FM_EXIT=<value>

 Supported/Possible Values

• 0: Do not abort running CUDA jobs when the FM service is stopped or exits.
However, a new CUDA job launch will fail with cudaErrorSystemNotReady
error.

• 1: Abort all running CUDA jobs when the FM service is stopped or exits.
Also, a new CUDA job launch will fail with cudaErrorSystemNotReady error.

Note: This is not effective on DGX H100 and NVIDIA HGX H100 NVSwitch based systems. Also,
This config option is applicable to only bare metal and full passthrough virtualization
models.

Getting Started with Fabric Manager

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 22

 Default Value

ABORT_CUDA_JOBS_ON_FM_EXIT=1

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 23

 Bare Metal Mode

 Introduction
The NVSwitch-based DGX and NVIDIA HGX server systems’ default software configuration
is to run the systems as bare-metal machines for workloads such as AI, machine
learning, and so on. This chapter provides information about the FM installation
requirements to support a bare metal configuration.

 Fabric Manager Installation

3.2.1 On NVSwitch-Based DGX Server Systems
As part of the supported DGX OS package installation, the FM service is preinstalled in all
the NVSwitch-based DGX systems. The service is enabled and started when the OS boots,
and the default installation configuration is to support bare metal mode.

3.2.2 On NVSwitch-Based NVIDIA HGX Server
Systems

To configure NVSwitch-based NVIDIA HGX systems for bare metal mode, system
administrators must install the NVIDIA FM Package, which is the same version as the
driver package.
The driver package is for NVIDIA Data Center GPUs (version 450.xx and later) for NVIDIA
HGX-2 and NVIDIA HGX A100 systems. For NVIDIA HGX H100 systems, version 525.xx and
later is required.

The FM default installation mode and configuration file options support bare metal mode.

 Runtime NVSwitch and GPU Errors
When an NVSwitch port or GPU generates a runtime error, the corresponding
information will be logged into the operating system's kernel log or event log. An error
report from NVSwitch will be logged with the SXid prefix, and a GPU error report will be
logged with the Xid prefix by the NVIDIA driver.

The NVSwitch SXids errors use the following reporting convention:
<nvidia-nvswitchX: SXid (PCI:<switch_pci_bdf>): <SXid_Value>, <Fatal
or Non-Fatal>, <Link No> < Error Description>
<raw error information for additional troubleshooting>

Bare Metal Mode

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 24

The following is an example of a SXid error log

[...] nvidia-nvswitch3: SXid (PCI:0000:c1:00.0): 28006, Non-fatal, Link
46 MC TS crumbstore MCTO (First)
[...] nvidia-nvswitch3: SXid (PCI:0000:c1:00.0): 28006, Severity 0
Engine instance 46 Sub-engine instance 00
[...] nvidia-nvswitch3: SXid (PCI:0000:c1:00.0): 28006, Data
{0x00140004, 0x00100000, 0x00140004, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000}

The GPU Xids errors use the following reporting convention:
NVRM: GPU at PCI:<gpu_pci_bdf>: <gpu_uuid>
NVRM: GPU Board Serial Number: <gpu_serial_number>
NVRM: Xid (PCI:<gpu_pci_bdf>): <Xid_Value>, <raw error information>

The following is an example of a Xid error log
[...] NVRM: GPU at PCI:0000:34:00: GPU-c43f0536-e751-7211-d7a7-
78c95249ee7d
[...] NVRM: GPU Board Serial Number: 0323618040756
[...] NVRM: Xid (PCI:0000:34:00): 45, Ch 00000010

Depending on the severity (fatal vs fon-fatal) and the impacted port, the SXid and Xid
errors can abort existing CUDA jobs and prevent new CUDA job launches. The next
section provides information about the potential impact of SXid and Xid errors and the
corresponding recovery procedure.

3.3.1 NVSwitch SXid Errors

3.3.1.1 NVSwitch Non-Fatal SXid Errors
NVSwitch non-fatal SXids are for informational purposes only, and FM will not terminate
CUDA jobs that are running or prevent new CUDA job launches. The existing CUDA jobs
should resume; but depending on the exact error, CUDA jobs might experience issues
such as a performance drop, no forward progress for brief time, and so on.

3.3.1.2 NVSwitch Fatal SXid Errors
When a fatal SXid error is reported on a NVSwitch port, which is connected between a
GPU and a NVSwitch, the corresponding error will be propagated to the GPU. The CUDA
jobs that are running on that GPU will be aborted and the GPU might report Xid 74 and
Xid 45 errors. The FM service will log the corresponding GPU index and PCI bus
information in its log file and syslog. The system administrator must use the following
recovery procedure to clear the error state before using the GPU for an additional CUDA
workload.

Bare Metal Mode

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 25

1. Reset the specified GPU (and all the participating GPUs in the affected workload) via
the NVIDIA System Management Interface (nvidia-smi) command line utility.

Refer to the -r or the --gpu-reset options in nvidia-smi for more information
and the individual GPU reset operation. If the problem persists, reboot or power cycle
the system.

When a fatal SXid error is reported on a NVSwitch port, which connects two GPU
baseboards, FM will abort all the running CUDA jobs and prevent any new CUDA job
launches. The GPU will also report an Xid 45 error as part of aborting CUDA jobs. The
FM service will log the corresponding error information in its log file and syslog.

2. The system administrator must use the following recovery procedure to clear the
error state and subsequent successful CUDA job launch:
a. Reset all the GPUs and NVSwitches.
b. Stop the FM service.
c. Stop all the applications that are using the GPU.
d. Reset all the GPU and NVSwitches using the nvidia-smi command line utility

with the -r or —the --gpu-reset option.

e. Do not use the -i or the –id options.

f. After the reset operation is complete, start the FM service again.
If the problem persists, reboot or power cycle the system.

3.3.2 GPU Xid Errors
GPU Xid messages indicate that a general GPU error occurred. The messages can
indicate a hardware problem, an NVIDIA software problem, or a user application
problem. When a GPU experiences an Xid error, the CUDA jobs that are running on that
GPU will typically be aborted. Complete the GPU reset procedure in the previous section
for additional troubleshooting.

On DGX H100 and NVIDIA HGX H100 systems, FM no longer monitors and logs GPU
errors. The NVIDIA driver will continue to monitor and log GPU errors in the syslog.

 Interoperability With MIG
Multi-Instance GPUs (MIGs) partition an NVIDIA A100 or H100 GPU into many
independent GPU instances. These instances run simultaneously, each with its own
memory, cache and streaming multiprocessors. However, when you enable the MIG
mode, the GPU NVLinks will be disabled, and the GPU will lose its NVLink peer-to-peer
(P2P) capability. After the MIG mode is successfully disabled, the GPU NVLinks will be
enabled again, and the GPU NVLink P2P capability will be restored.

On NVSwitch-based DGX and NVIDIA HGX systems, the FM service can cooperate with
GPU MIG instances. Also, on these systems, to successfully restore GPU NVLink peer-to-
peer capability after the MIG mode is disabled, the FM service must be running. On DGX

Bare Metal Mode

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 26

A100 and NVIDIA HGX A100 systems, the corresponding GPU NVLinks and NVSwitch side
NVLinks are trained off when MIG mode is enabled and retrained when MIG mode is
disabled. However, on DGX H100 and NVIDIA HGX H100 systems, GPU NVLinks will stay
active during MIG mode.

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 27

 Virtualization Models

 Introduction
NVSwitch-based systems support multiple models to isolate NVLink interconnects in a
multi-tenant environment. In virtualized environments, VM workloads often cannot be
trusted and must be isolated from each other and from the host or hypervisor. The
switches used to maintain this isolation cannot be directly controlled by untrusted VMs
and must instead be controlled by the trusted software.

This chapter provides a high-level overview of supported virtualization models.

 Supported Virtualization Models
The NVSwitch-based systems support the following virtualization models:
 Full Passthrough

• GPUs and NVSwitch memory fabrics are passed to the guest OS.
• Easy to deploy and requires minimal changes to the hypervisor/host OS.
• Reduced NVLink bandwidth for two and four GPU VMs.

 Shared NVSwitch Multitenancy Mode
• Only GPUs passed through to the guests.
• NVSwitch memory fabrics are managed by a dedicated trusted VM called Service

VM.
• NVSwitch memory fabrics are shared by the guest VMs, but the fabrics are not

visible to guests.
• Requires the tightest integration with the hypervisor.
• Complete bandwidth for two and four GPU VMs.
• No need for direct communication between the guest VM and the Service VM.

 vGPU Multitenancy Mode
• Only SR-IOV GPU VFs are passed through to the guests.
• GPU PFs and NVSwitch memory fabrics are managed by the vGPU host.
• NVSwitch memory fabrics are shared by all the guest VMs, but the fabrics are not

visible to guests.
• Complete bandwidth for two and four GPU VMs.
• This mode is tightly coupled with the vGPU software stack.

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 28

 Fabric Manager SDK
FM provides a shared library, a set of C/C++ APIs (SDK), and the corresponding header
files. The library and APIs are used to interface with FM when runs in the shared
NVSwitch and vGPU multi-tenant modes to query/activate/deactivate GPU partitions.

All FM interface API definitions, libraries, sample code, and associated data structure
definitions are delivered as a separate development package (RPM/Debian). To compile
the sample code provided in this user guide, this package must be installed.

 Data Structures
Here are the data structures:
// max number of GPU/fabric partitions supported by FM
#define FM_MAX_FABRIC_PARTITIONS 64

// max number of GPUs supported by FM
#define FM_MAX_NUM_GPUS 16

// Max number of ports per NVLink device supported by FM
#define FM_MAX_NUM_NVLINK_PORTS 64

// connection options for fmConnect()
typedef struct
{
 unsigned int version;
 char addressInfo[FM_MAX_STR_LENGTH];
 unsigned int timeoutMs;
 unsigned int addressIsUnixSocket;
} fmConnectParams_v1;

typedef fmConnectParams_v1 fmConnectParams_t;

// VF PCI Device Information
typedef struct
{
 unsigned int domain;
 unsigned int bus;
 unsigned int device;
 unsigned int function;
} fmPciDevice_t;

Fabric Manager SDK

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 29

// structure to store information about a GPU belonging to fabric
partition
typedef struct
{
 unsigned int physicalId;
 char uuid[FM_UUID_BUFFER_SIZE];
 char pciBusId[FM_DEVICE_PCI_BUS_ID_BUFFER_SIZE];
 unsigned int numNvLinksAvailable;
 unsigned int maxNumNvLinks;
 unsigned int nvlinkLineRateMBps;
} fmFabricPartitionGpuInfo_t;

// structure to store information about a fabric partition
typedef struct
{
 fmFabricPartitionId_t partitionId;
 unsigned int isActive;
 unsigned int numGpus;
 fmFabricPartitionGpuInfo_t gpuInfo[FM_MAX_NUM_GPUS];
} fmFabricPartitionInfo_t;

// structure to store information about all the supported fabric
partitions
typedef struct
{
 unsigned int version;
 unsigned int numPartitions;
 unsigned int maxNumPartitions;
 fmFabricPartitionInfo_t partitionInfo[FM_MAX_FABRIC_PARTITIONS];
} fmFabricPartitionList_v2;

typedef fmFabricPartitionList_v2 fmFabricPartitionList_t;

// structure to store information about all the activated fabric
partitionIds
typedef struct
{
 unsigned int version;
 unsigned int numPartitions;
 fmFabricPartitionId_t partitionIds[FM_MAX_FABRIC_PARTITIONS];
} fmActivatedFabricPartitionList_v1;

typedef fmActivatedFabricPartitionList_v1
fmActivatedFabricPartitionList_t;

// Structure to store information about a NVSwitch or GPU with failed
NVLinks

Fabric Manager SDK

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 30

typedef struct
{
 char uuid[FM_UUID_BUFFER_SIZE];
 char pciBusId[FM_DEVICE_PCI_BUS_ID_BUFFER_SIZE];
 unsigned int numPorts;
 unsigned int portNum[FM_MAX_NUM_NVLINK_PORTS];
} fmNvlinkFailedDeviceInfo_t;

// Structure to store a list of NVSwitches and GPUs with failed NVLinks
typedef struct
{
 unsigned int version;
 unsigned int numGpus;
 unsigned int numSwitches;
 fmNvlinkFailedDeviceInfo_t gpuInfo[FM_MAX_NUM_GPUS];
 fmNvlinkFailedDeviceInfo_t switchInfo[FM_MAX_NUM_NVSWITCHES];
} fmNvlinkFailedDevices_v1;

typedef fmNvlinkFailedDevices_v1 fmNvlinkFailedDevices_t;

/**
 * Structure to store information about a unsupported fabric partition
 */
typedef struct
{
 fmFabricPartitionId_t partitionId; //!< a unique id assigned to
reference this partition
 unsigned int numGpus; //!< number of GPUs in this partition
 unsigned int gpuPhysicalIds[FM_MAX_NUM_GPUS]; //!< physicalId of
each GPU assigned to this partition.
} fmUnsupportedFabricPartitionInfo_t;
/**
 * Structure to store information about all the unsupported fabric
partitions
 */
typedef struct
{
 unsigned int version; //!< version number. Use
fmFabricPartitionList_version
 unsigned int numPartitions; //!< total number of unsupported
partitions
 fmUnsupportedFabricPartitionInfo_t
partitionInfo[FM_MAX_FABRIC_PARTITIONS]; /*!< detailed information of
each

unsupported partition*/
} fmUnsupportedFabricPartitionList_v1;

Fabric Manager SDK

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 31

typedef fmUnsupportedFabricPartitionList_v1
fmUnsupportedFabricPartitionList_t;
#define fmUnsupportedFabricPartitionList_version1
MAKE_FM_PARAM_VERSION(fmUnsupportedFabricPartitionList_v1, 1)
#define fmUnsupportedFabricPartitionList_version
fmUnsupportedFabricPartitionList_version1

Note: On DGX H100 and NVIDIA HGX H100 systems, the GPU physical ID information has the
same value as GPU Module ID information that is returned by the nvidia-smi-q output. On
these systems, when reporting partition information, GPU information such as UUID, PCI Device
(BDF) will be empty. The hypervisor stack should use GPU Physical ID information to correlate
between GPUs in the partition, and the actual GPUs needs to be assigned to corresponding
partition's Guest VM.

 Initializing the Fabric Manager API
interface

To initialize the FM API interface library, run the following command:

fmReturn_t fmLibInit(void)

Parameters

None

Return Values

 FM_ST_SUCCESS - if FM API interface library has been properly initialized

FM_ST_IN_USE - FM API interface library is already in initialized state.

FM_ST_GENERIC_ERROR - A generic, unspecified error occurred

 Shutting Down the Fabric Manager
API interface

The following method is used to shut down the FM API interface library, and the remote
connections that were established through fmConnect() will also be shut down.
fmReturn_t fmLibShutdown(void)

Parameters

None

Return Values

 FM_ST_SUCCESS - if FM API interface library has been properly shut down

FM_ST_UNINITIALIZED - interface library was not in initialized state.

Fabric Manager SDK

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 32

 Connect to Running the Fabric
Manager Instance

To connect to a running instance of FM. the FM instance is started as part of system
service or manually by the system administrator. This connection will be used by the APIs
to exchange information to the running FM instance.
fmReturn_t fmConnect(fmConnectParams_t *connectParams, fmHandle_t *pFmHandle)

Parameters

connectParams

Valid IP address for the remote host engine to connect to. If ipAddress

is specified as x.x.x.x it will attempt to connect to the default port

specified by FM_CMD_PORT_NUMBER.If ipAddress is specified as x.x.x.x:yyyy

it will attempt to connect to the port specified by yyyy. To connect to

an FM instance that was started with unix domain socket fill the socket

path in addressInfo member and set addressIsUnixSocket flag.

pfmHandle

 Fabric Manager API interface abstracted handle for subsequent API calls

Return Values

 FM_ST_SUCCESS - successfully connected to the FM instance

FM_ST_CONNECTION_NOT_VALID - if the FM instance could not be reached

FM_ST_UNINITIALIZED - FM interface library has not been initialized

FM_ST_BADPARAM - pFmHandle is NULL or IP Address/format is invalid

FM_ST_VERSION_MISMATCH - provided versions of params do not match

 Disconnect from Running the
Fabric Manager Instance

To disconnect from an FM instance, run the following command.
fmReturn_t fmDisconnect(fmHandle_t pFmHandle)

Parameters

pfmHandle

 Handle that came from fmConnect

Return Values

 FM_ST_SUCCESS - successfully disconnected from the FM instance

FM_ST_UNINITIALIZED - FM interface library has not been initialized

FM_ST_BADPARAM - if pFmHandle is not a valid handle

FM_ST_GENERIC_ERROR - an unspecified internal error occurred

Fabric Manager SDK

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 33

 Getting Supported Partitions
To query the list of supported (static) GPU fabric partitions in an NVSwitch-based system,
run the following command.
fmReturn_t fmGetSupportedFabricPartitions(fmHandle_t pFmHandle,
fmFabricPartitionList_t *pFmFabricPartition)

Parameters

pFmHandle

 Handle returned by fmConnect()

pFmFabricPartition
 Pointer to fmFabricPartitionList_t structure. On success, the list of
supported (static) partition information will be populated in this structure.

Return Values

 FM_ST_SUCCESS – successfully queried the list of supported partitions

 FM_ST_UNINITIALIZED - FM interface library has not been initialized.

 FM_ST_BADPARAM – Invalid input parameters

 FM_ST_GENERIC_ERROR – an unspecified internal error occurred

 FM_ST_NOT_SUPPORTED - requested feature is not supported or enabled

 FM_ST_NOT_CONFIGURED - Fabric Manager is initializing and no data

 FM_ST_VERSION_MISMATCH - provided versions of params do not match

 Activate a GPU Partition
To activate a supported GPU fabric partition in an NVSwitch-based system, run the
following command.

Note: This API is supported only in Shared NVSwitch multi-tenancy mode.

fmReturn_t fmActivateFabricPartition((fmHandle_t pFmHandle,
fmFabricPartitionId_t partitionId)

Parameters

pFmHandle

 Handle returned by fmConnect()

partitionId

 The partition id to be activated.

Return Values

 FM_ST_SUCCESS – successfully queried the list of supported partitions

 FM_ST_UNINITIALIZED - FM interface library has not been initialized.

Fabric Manager SDK

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 34

 FM_ST_BADPARAM – Invalid input parameters or unsupported partition id

 FM_ST_GENERIC_ERROR – an unspecified internal error occurred

 FM_ST_NOT_SUPPORTED - requested feature is not supported or enabled

 FM_ST_NOT_CONFIGURED - Fabric Manager is initializing and no data

 FM_ST_IN_USE - specified partition is already active or the GPUs are in
use by other partitions.

 Activate a GPU Partition with
Virtual Functions

In the vGPU Virtualization Mode, to activate an available GPU fabric partition with vGPU
Virtual Functions (VFs), run this command.

fmReturn_t fmActivateFabricPartitionWithVFs((fmHandle_t pFmHandle,
fmFabricPartitionId_t partitionId, fmPciDevice_t *vfList, unsigned int numVfs)

Parameters:

pFmHandle
 Handle returned by fmConnect()

partitionId
 The partition id to be activated.

*vfList
 List of VFs associated with physical GPUs in the partition. The
ordering of VFs passed to this call is significant, especially for
migration/suspend/resume compatibility, the same ordering should be used each
time the partition is activated.
 numVfs
 Number of VFs

Return Values:
 FM_ST_SUCCESS – successfully queried the list of supported partitions
 FM_ST_UNINITIALIZED - FM interface library has not been initialized.
 FM_ST_BADPARAM – Invalid input parameters or unsupported partition id
 FM_ST_GENERIC_ERROR – an unspecified internal error occurred
 FM_ST_NOT_SUPPORTED - requested feature is not supported or enabled
 FM_ST_NOT_CONFIGURED - Fabric Manager is initializing and no data
 FM_ST_IN_USE - specified partition is already active or the GPUs are in
use by other partitions.

Note: Before you start a vGPU VM, this API must be called, even if there is only one vGPU
partition.

A multi-vGPU partition activation will fail if MIG mode is enabled on the corresponding
GPUs.

Fabric Manager SDK

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 35

 Deactivate a GPU Partition
To deactivate a previously activated GPU fabric partition in an NVSwitch-based system
when FM is running in Shared NVSwitch or vGPU multi-tenancy mode, run the following
command.
fmReturn_t fmDeactivateFabricPartition((fmHandle_t pFmHandle,
fmFabricPartitionId_t partitionId)

Parameters

pFmHandle

 Handle returned by fmConnect()

partitionId

 The partition id to be deactivated.

Return Values

 FM_ST_SUCCESS – successfully queried the list of supported partitions

 FM_ST_UNINITIALIZED - FM interface library has not been initialized.

 FM_ST_BADPARAM – Invalid input parameters or unsupported partition id

 FM_ST_GENERIC_ERROR – an unspecified internal error occurred

 FM_ST_NOT_SUPPORTED - requested feature is not supported or enabled

 FM_ST_NOT_CONFIGURED - Fabric Manager is initializing and no data

 FM_ST_UNINITIALIZED - specified partition is not activated

 Set Activated Partition List after a
Fabric Manager Restart

To send a list of currently activated fabric partitions to FM after it has been restarted, run
the following command.

Note: If there are no active partitions when FM is restarted, this call must be made with the
number of partitions as zero.

fmReturn_t fmSetActivatedFabricPartitions(fmHandle_t pFmHandle,
fmActivatedFabricPartitionList_t *pFmActivatedPartitionList)

Parameters

pFmHandle

 Handle returned by fmConnect()

pFmActivatedPartitionList

 List of currently activated fabric partitions.

Return Values

Fabric Manager SDK

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 36

 FM_ST_SUCCESS – FM state is updated with active partition information

 FM_ST_UNINITIALIZED - FM interface library has not been initialized.

 FM_ST_BADPARAM – Invalid input parameters

 FM_ST_GENERIC_ERROR – an unspecified internal error occurred

 FM_ST_NOT_SUPPORTED - requested feature is not supported or enabled

 Get the NVLink Failed Devices
To query all GPUs and NVSwitches with failed NVLinks as part of FM initialization, run the
following command.

Note: This API is not supported when FM is running in Shared NVSwitch or vGPU multi-tenancy
resiliency restart (--restart) modes.

fmReturn_t fmGetNvlinkFailedDevices(fmHandle_t pFmHandle,
fmNvlinkFailedDevices_t *pFmNvlinkFailedDevices)

Parameters

pFmHandle

 Handle returned by fmConnect()

pFmNvlinkFailedDevices

 List of GPU or NVSwitch devices that have failed NVLinks.

Return Values

 FM_ST_SUCCESS – successfully queried list of devices with failed NVLinks

 FM_ST_UNINITIALIZED - FM interface library has not been initialized.

 FM_ST_BADPARAM – Invalid input parameters

 FM_ST_GENERIC_ERROR – an unspecified internal error occurred

 FM_ST_NOT_SUPPORTED - requested feature is not supported or enabled

 FM_ST_NOT_CONFIGURED - Fabric Manager is initializing and no data

 FM_ST_VERSION_MISMATCH - provided versions of params do not match

Note: On DGX H100 and NVIDIA HGX H100 systems, NVLinks are trained at GPU and NVSwitch
hardware level using ALI feature and without FM coordination. On these systems, FM will always
return FM_ST_SUCCESS with an empty list for this API.

 Get Unsupported Partitions
To query all the unsupported fabric partitions when FM is running in Shared NVSwitch or
vGPU multi-tenancy modes, run the following command.
fmReturn_tfmGetUnsupportedFabricPartitions(fmHandle_t pFmHandle,

Fabric Manager SDK

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 37

fmUnsupportedFabricPartitionList_t *pFmUnupportedFabricPartition)
Parameters
pFmHandle
 Handle returned by fmConnect()
pFmUnupportedFabricPartition
 List of unsupported fabric partitions on the system.
Return Values
 FM_ST_SUCCESS – successfully queried list of devices with failed
NVLinks
 FM_ST_UNINITIALIZED - FM interface library has not been
initialized.
 FM_ST_BADPARAM – Invalid input parameters
 FM_ST_GENERIC_ERROR – an unspecified internal error occurred
 FM_ST_NOT_SUPPORTED - requested feature is not supported or
enabled
 FM_ST_NOT_CONFIGURED - Fabric Manager is initializing and no data
 FM_ST_VERSION_MISMATCH - provided versions of params do not match

Note: On DGX H100 and NVIDIA HGX H100 systems, this API will always return FM_ST_SUCCESS
with an empty list of unsupported partition.

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3| 38

 Full Passthrough
Virtualization Model

The first supported virtualization model for NVSwitch-based systems is passthrough
device assignment for GPUs and NVSwitch memory fabrics (switches). VMs with 16, eight,
four, two, and one GPUs are supported with predefined subsets of GPUs and NVSwitches
used for each VM size.

A subset of GPUs and NVSwitches is referred to as a system partition. Non-overlapping
partitions can be mixed and matched, which allows you to simultaneously support, for
example, an 8-GPU VM, a 4-GPU VM, and two 2-GPU VMs on an NVSwitch-based system
with two GPU baseboards. VMs with 16 and eight GPUs have no loss in bandwidth while in
smaller VMs, there is some bandwidth tradeoff for isolation by using dedicated switches.

Full Passthrough Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 39

Figure 2. Software Stack in a Two-GPU Virtual Machine (A Full
Passthrough Model)

3rd Party
GPU and
NVSwitch
Monitoring

HYPERVISOR MMIO Filter MMIO Filter MMIO Filter

GPU 0 GPU 2 NVSwitch 0

Guest VM 0

DCGM
(GPU & NVSwitch

Monitoring
Fabric

Manager
Service

User Mode

NVML
 (Monitoring

)

NVSwitch
Audit Tool

Fabric Manager Package

GPU Driver NVSwitch Driver

NVIDIA Driver Package

Optional In-Band Monitoring

Full Passthrough Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 40

 Supported Virtual Machine
Configurations

Table 1. DGX-2 and NVIDIA HGX-2 Systems Device Assignment

Number
of GPUs
assigned
to a VM

Number of
NVSwitches
assigned to

a VM

Enabled
NVLink

Interconnects
Per GPU

Enabled
NVLink

Interconnects
Per NVSwitch

Constraints

16 12 6 out of 6 16 out of 18 None

8 6 6 out of 6 8 out of 18 One set of eight GPUs from each
GPU Baseboard

4 3 3 out of 6 4 out of 18 Two sets of four GPUs from each
GPU Baseboard

2 1 1 out of 6 2 out of 18 Four sets of two GPUs from each
GPU Baseboard

1 0 0 out of 6 0 out of 18 None

Table 2. Two DGX A100 and NVIDIA HGX A100 Systems Device Assignment

Number
of GPUs
assigned
to a VM

Number of
NVSwitches
assigned to

a VM

Enabled
NVLink

Interconnects
Per GPU

Enabled
NVLink

Interconnects
Per NVSwitch

Constraints

16 12 12 out of 12 32 out of 36 None

8 6 12 out of 12 16 out of 36 One set of eight GPUs from each
GPU Baseboard.

4 3 6 out of 12 6 out of 36 Two sets of four GPUs from each
GPU Baseboard.

2 1 2 out of 12 4 out of 36 Four sets of two GPUs from each
GPU Baseboard.

1 0 0 out of 12 0 out of 36 None

Full Passthrough Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 41

Table 3. DGX H100 and NVIDIA HGX H100 Systems Device Assignment

Number
of GPUs
assigned
to a VM

Number of
NVSwitches
assigned to

a VM

Enabled
NVLink

Interconnects
Per GPU

Enabled NVLink
Interconnects Per

NVSwitch
Constraints

8 4 18 out of 18 32 out of 64 for two
NVSwitches.
40 out of 64 for other two
NVSwitches.

None

1 0 0 out of 18 0 out of 64 Need to disable GPU
NVLinks.

 Virtual Machines with 16 GPUs
The available GPUs and NVSwitches are assigned to the guest VM. There are no disabled
NVLink interconnects on the NVSwitches or on the GPUs. To support 16 GPU partitions,
the system must be populated with two GPU baseboards.

 Virtual Machines with Eight GPUS
Each VM has eight GPUs and the NVSwitches on the same base board (six for DGX A100
and NVIDIA HGX A100 and four for DGX H100 and NVIDIA HGX H100) must be assigned to
the guest VM. Each GPU has all the NVLink interconnects enabled. If the system has two
GPU baseboards, two system partitions will be available where eight GPU VMs can be
created. Otherwise only one partition will be available. All NVLink connections between
GPU baseboards are disabled.

 Virtual Machines with Four GPUS
If this configuration is supported, each VM gets four GPUs and three switches. As
specified in Table 3, only a subset of NVLink interconnects per GPU are enabled. If the
system is populated with two GPU baseboards, four partitions are available on the
system. For single baseboard systems, two partitions are available. All NVLink
connections between GPU baseboards are disabled.

 Virtual Machines with Two GPUs
If this configuration is supported, each VM gets two GPUs and one NVSwitch. Also, a
subset of GPU NVLink interconnects per GPU are enabled. If the system is populated with
two GPU baseboards, eight partitions are available on the system. For single baseboard

Full Passthrough Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 42

systems, four partitions are available. All NVLink connections between GPU baseboards
are disabled.

 Virtual Machine with One GPU
Each VM has one GPU and no switches. If the system is populated with two GPU
baseboards, 16 partitions are available on the system. For single baseboard systems,
eight partitions are available. All NVLink connections between GPU baseboards are
disabled.

 Other Requirements
Here are some other requirements:
 The hypervisor needs to maintain the partition configuration, including which NVLink

connections to block on each GPU and switch for each partition.
 The hypervisor needs to implement MMIO filtering for NVSwitch.
 The hypervisor needs to finely control IOMMU mappings that were configured for

GPUs and switches.
 Guest VMs with more than one GPU need to run the core NVSwitch software stack,

for example, NVIDIA Driver and FM to configure switches and NVLink connections.

 Hypervisor Sequences
The hypervisor completes the following steps to launch, shutdown and reboot Guest VMs.
1. Start the guest VM.

a. Select an unused partition of GPUs and switches.
b. Reset the GPUs and switches in the partition.
c. Block the disabled NVLink connections on each GPU by performing the specified

MMIO configuration.
d. Block the disabled NVLink connections on each switch by configuring the MMIO

intercept.
e. Avoid configuring any IOMMU mappings between GPUs and switches.

> Switches cannot be accessible by any other PCIe device that the guest VM
controls.
This way, the switches cannot bypass the MMIO restrictions implemented for
the CPU.

> GPUs do not need to be accessible by any other GPUs or switches.
> GPUs need to be accessible by third-party devices to support

NVIDIAGPUDirect™ RDMA.
f. To avoid additional GPU resets, start the guest VM.

Full Passthrough Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 43

2. Shut down the guest VM.
a. Shut down the Guest VM as usual.
b. Reset the GPUs and switches that belong to the partition.

3. Reboot the Guest VM.
a. Repeat steps 1a to 1f, but this time, the partition has already been selected.

 Monitoring Errors
The NVSwitch, GPU and NVLink errors are visible to guest VMs. If you want the hypervisor
to monitor the same items, use one of the following methods:
 In-band monitoring

Run NVIDIA Data Center GPU Manager (DCGM) on the guest VM or use the NVIDIA
Management Library (NVML) APIs for GPU-specific monitoring.

 Out-of-Band Monitoring
Use the GPU and NVSwitch SMBus Post Box Interface (SMBPBI)-based OOB
commands.

 Limitations
 NVSwitch errors are visible to the guest VMs.
 Windows is only supported for single GPU VMs.

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3| 44

 Shared NVSwitch
Virtualization Model

The shared NVSwitch virtualization model additionally extends the GPU Passthrough
model by managing the switches from one Service VM that runs permanently. The GPUs
are made accessible to the Service VM for link training and reassigned to the guest VMs.

Sharing switches among the guest VMs allows FM to enable more NVLink connections
for 2 and 4 GPU VMs that observe reduced bandwidth in GPU Passthrough model.

 Software Stack
The software stack required for NVSwitch management runs in a Service VM.

Figure 3. Shared NVSwitch Software Stack

NVSwitch units are always assigned as a PCIe passthrough device to the Service VM.
GPUs are hot-plugged and hot-unplugged on-demand (as PCI passthrough) to the
Service VM.

Hardware Layer (CPU, GPU, NVSwitch, etc.)

Hypervisor

Guest VMs

VM VM
Service VM

NVIDIA
NVSwitch

Software Stack

VM

Shared NVSwitch Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 45

At a high level, the Service VM has the following features:
 Provides an interface to query the available GPU VM partitions (groupings) and

corresponding GPU information.
 Provides an interface to activate GPU VM partitions, which involves the following:

• Training NVSwitch to NVSwitch NVLink interconnects (if required).
• Training the corresponding GPU NVLink interfaces (if applicable).
• Programming NVSwitch to deny access to GPUs not assigned to the partition.

 Provides an interface to deactivate GPU VM partitions, which involves the following:
• Untrain (power down) the NVSwitch to NVSwitch NVLink interconnects.
• Untrain (power down) the corresponding GPU NVLink interfaces.
• Disable the corresponding NVSwitch routing and GPU access.

 Report NVSwitch errors through in-band and out-of-band mechanisms.

 Guest VM to Service VM Interaction
For NVIDIA HGX-2, NVIDIA HGX A100, and NVIDIA HGX A800 server systems, the GPU
configurations that are required to enable NVLink communication are established as part
of the initial partition activation process, which occurs before transferring GPU control to
the Guest VM. Consequently, there is no need for the Guest VM to initiate communication
with the Service VM while workloads are running.

However, on NVIDIA HGX H100 and NVIDIA HGX H800 systems, a different approach is
required. In these systems, the GPUs are not assigned to the Service VM during partition
activation. As a result, the configurations for GPU NVLink communication must be
passed to the Guest VM. Additionally, the newly introduced NVLink Sharp feature in the
H100 and H800 generations necessitates dynamic adjustments to the NVSwitch
configuration based on the workload requirements of the Guest VM.
To facilitate these functionalities on NVIDIA HGX H100 and NVIDIA HGX H800 systems,
GPUs in the Guest VM communicate over NVLink by transmitting specialized packets to
the FM that runs on the Service VM. To simplify integration efforts, communicating these
requests over NVLink is the optimal solutionbecause it can be completely managed in
NVIDIA's software and firmware, without requiring custom integrations for the customer.
This communication protocol also is version agnostic, which allows compatibility between
different versions of NVIDIA Drivers on the Guest and Service VMs.

Shared NVSwitch Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 46

 Preparing the Service Virtual
Machine

7.3.1 The OS Image
Internally, NVIDIA uses an Ubuntu distro as the Service VM OS image. However, there are
no known limitations with other major Linux OS distributions. Refer to “OS Environment”
on page 7 for more information.

7.3.2 Resource Requirements
Refer to the corresponding OS distributions minimum resource guidelines for more
information about the exact Service VM resource requirements. In addition to the
specified minimum guidelines, NVIDIA internally uses the following hardware resources
for Service VM.

Note: The resource requirements for the Service VM might vary if it is used for additional
functionalities, such as conducting a GPU health check. The specific memory and vCPU demands
might also fluctuate depending on the Linux distribution you selected and the OS features you
enabled. We recommend that you make necessary adjustments to the allocated memory and
vCPU resources accordingly.

Table 4. Service VM Resources

Resource Quantity/Size

vCPU 2

System Memory 4 GB

7.3.3 NVIDIA Software Packages
The Service VM image must have the following NVIDIA software packages installed.
 NVIDIA Data Center GPU Driver (version 450.xx and later for NVIDIA HGX-2 and

NVIDIA HGX A100 systems).
For NVIDIA HGX H100 systems, version 525.xx and later is required.

 NVIDIA Fabric Manager Package (same version as the Driver package).

7.3.4 Fabric Manager Config File Modifications
To support the Shared NVSwitch mode, start the FM service in Shared NVSwitch mode by
setting the FM config item FABRIC_MODE=1.

Shared NVSwitch Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 47

Note: NVSwitches and GPUs on NVIDIA HGX-2 and NVIDIA HGX A100 systems must bind to
nvidia.ko before FM service starts. If the GPUs and NVSwitches are not plugged into the Service
VM as part of OS boot, start the FM service manually or the process directly by running the
appropriate command line options after the NVSwitches and GPUs are bound to nvidia.ko.

In Shared NVSwitch mode, FM supports a resiliency feature, which allows the non-stop
forwarding of NVLink traffic between GPUs on active guest VMs after FM gracefully or
non-gracefully exits in the Service VM. To support this feature, FM uses
/tmp/fabricmanager.state to save certain metadata information. To use a different
location/file to store this metadata information, modify the STATE_FILE_NAME FM
config file item with the path and file name.

FM uses TCP I/P loopback (127.0.0.1)-based socket interface for communication. To use
Unix domain sockets instead, modify the FM FM_CMD_UNIX_SOCKET_PATH and
UNIX_SOCKET_PATH config file options with the Unix domain socket names.

7.3.5 Other NVIDIA Software Packages
In Shared NVSwitch mode, no process or entity, other than FM, should open and interact
with GPUs while activating or deactivating the partition. Also, all the GPU health check
applications must be started after activating the partition and must be closed before
unbinding the GPUs from nvidia.ko.

 FM Shared Library and APIs
Refer to ”Fabric Manager SDK” on page 28 for the list of the APIs that manage a shared
NVSwitch partition life cycle.

7.4.1 Sample Code
The following code snippet shows how to query supported partitions, activate, or
deactivate partitions, and so on by using the FM APIs mentioned in ”Fabric Manager
SDK” on page 28.
#include <iostream>

#include <string.h>

#include "nv_fm_agent.h"

int main(int argc, char **argv)

{

 fmReturn_t fmReturn;

 fmHandle_t fmHandle = NULL;

 char hostIpAddress[16] = {0};

 unsigned int operation = 0;

Shared NVSwitch Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 48

 fmFabricPartitionId_t partitionId = 0;

 fmFabricPartitionList_t partitionList = {0};

 std::cout << "Select Shared Fabric Partition Operation: \n”;

 std::cout << "0 - List Supported Partition \n”;

 std::cout << “1 – Activate a Partition \n”;

 std::cout << “2 – Deactivate a Partition \n”;

 std::cin >> operation;

 if (operation > 2) {

 std::cout << “Invalid input.\n” << std::endl;

 return FM_ST_BADPARAM;

 }

 std::cout << std::endl;

 if (operation > 0) {

 std::cout << “Input Shared Fabric Partition ID: \n”;

 std::cin >> partitionId;

 if (partitionId >= FM_MAX_FABRIC_PARTITIONS) {

 std::cout << “Invalid partition ID.” << std::endl;

 return FM_ST_BADPARAM;

 }

 }

 std::cout << std::endl;

 std::cout << “Please input an IP address to connect to. (Localhost =
127.0.0.1) \n”;

 std::string buffer;

 std::cin >> buffer;

 if (buffer.length() > sizeof(hostIpAddress) – 1){

 std::cout << “Invalid IP address.\n” << std::endl;

 return FM_ST_BADPARAM;

 } else {

 buffer += ‘\0’;

 strncpy(hostIpAddress, buffer.c_str(), 15);

 }

 /* Initialize Fabric Manager API interface library */

 fmReturn = fmLibInit();

 if (FM_ST_SUCCESS != fmReturn) {

 std::cout << “Failed to initialize Fabric Manager API interface
library.” << std::endl;

 return fmReturn;

 }

 /* Connect to Fabric Manager instance */

Shared NVSwitch Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 49

 fmConnectParams_t connectParams;

 strncpy(connectParams.addressInfo, hostIpAddress, sizeof(hostIpAddress));

 connectParams.timeoutMs = 1000; // in milliseconds

 connectParams.version = fmConnectParams_version;

 connectParams.addressIsUnixSocket = 0;

 fmReturn = fmConnect(&connectParams, &fmHandle);

 if (fmReturn != FM_ST_SUCCESS){

 std::cout << “Failed to connect to Fabric Manager instance.” <<
std::endl;

 return fmReturn;

 }

 if (operation == 0) {

 /* List supported partitions */

 partitionList.version = fmFabricPartitionList_version;

 fmReturn = fmGetSupportedFabricPartitions(fmHandle, &partitionList);

 if (fmReturn != FM_ST_SUCCESS) {

 std::cout << “Failed to get partition list. fmReturn: “ << fmReturn
<< std::endl;

 } else {

 /* Only printing number of partitions for brevity */

 std::cout << “Total number of partitions supported: “ <<
partitionList.numPartitions << std::endl;

 }

 } else if (operation == 1) {

 /* Activate a partition */

 fmReturn = fmActivateFabricPartition(fmHandle, partitionId);

 if (fmReturn != FM_ST_SUCCESS) {

 std::cout << “Failed to activate partition. fmReturn: “ << fmReturn
<< std::endl;

 }

 } else if (operation == 2) {

 /* Deactivate a partition */

 fmReturn = fmDeactivateFabricPartition(fmHandle, partitionId);

 if (fmReturn != FM_ST_SUCCESS) {

 std::cout << “Failed to deactivate partition. fmReturn: “ <<
fmReturn << std::endl;

 }

 } else {

 std::cout << “Unknown operation.” << std::endl;

 }

 /* Clean up */

 fmDisconnect(fmHandle);

Shared NVSwitch Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 50

 fmLibShutdown();

 return fmReturn;

}

Make file for the above sample assuming the source is saved into
sampleCode.cpp
Note: Change the default include paths (/usr/include & /usr/lib) based on FM
API header files location.

IDIR := /usr/include

CXXFLAGS = -I $(IDIR)

LDIR := /usr/lib

LDFLAGS= -L$(LDIR) -lnvfm

sampleCode: sampleCode.o

 $(CXX) -o $@ $< $(CXXFLAGS) $(LDFLAGS)

clean:

 -@rm -f sameplCode.o

 -@rm -f sampleCode

 Fabric Manager Resiliency
Refer to “Resiliency” on page 85 for more information about FM resiliency in Shared
Virtualization mode.

 Service Virtual Machine Life Cycle
Management

7.6.1 GPU Partitions
Refer to “GPU Partitions” on page 81 for the default, and all supported partitions, for the
shared NVSwitch virtualization mode.

7.6.2 Building GPUs to Partition Mapping
The FM instance that runs on the Service VM and Hypervisor must use a common
numbering scheme (GPU Physical ID) to uniquely identify each GPU. In this release, the
Physical ID numbering is the same as in the Baseboard Pinout design collateral.

The hypervisor should maintain a list of GPU Physical IDs and corresponding PCI BDF
mapping information to identify each GPUs in the hypervisor. This information is required

Shared NVSwitch Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 51

to identify GPUs that belong to a partition and hot attach the GPUs to a Service VM as part
of guest VM activation.

7.6.3 Booting the Service Virtual Machine
As part of Service VM boot, the hypervisor must do the following:
 Assign/plug the available NVSwitches as PCI passthrough devices to the Service VM

without MMIO filtering.
 On NVIDIA HGX-2 and NVIDIA HGX A100 systems, assign/plug the available GPUs as

PCI passthrough devices to the Service VM without MMIO filtering.
 Start and wait for the FM to fully initialize the GPUs and switches.

The FM APIs will return FM_ST_NOT_CONFIGURED until the fabric is initialized and
ready.

 Query the list of currently supported VM partitions and build the available guest VM
combinations accordingly.

 Deassign/unplug the GPUs from the Service VM for NVIDIA HGX-2 and NVIDIA HGX
A100 systems.

7.6.4 Restarting the Service Virtual Machine
The NVSwitch kernel software stack gets loaded and initializes the NVSwitches and GPUs
as part of the Service VM booting, so restarting Service VM will affect currently activated
GPU partitions. The hypervisor must follow the same procedure and steps as described
in “Booting the Service ” on page 51.

7.6.5 Shutdown the Service
Currently activated VM partitions will not be affected as part of Service VM shutdown
because the NVSwitch configuration is preserved. However, if the hypervisor or PCIe pass
through driver issues, a Secondary Bus Reset (SBR) to the NVSwitch devices as part of
Service VM shutdown, the activated partitions will be affected. Since FM is not running,
and the driver is unloaded, there will be no active error monitoring and corresponding
remediation.

Note: Do not leave the guest VMs in this state for a longer period.

Shared NVSwitch Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 52

 Guest Virtual Machine Life Cycle
Management

7.7.1 Guest Virtual Machine NVIDIA Driver
Package

To use GPU NVLink interconnects, ensure that one of the following the driver packages
for NVIDIA Data Center GPUs is installed on the guest VM:

 Version 450.xx and later for NVIDIA HGX-2 and NVIDIA HGX A100 systems.

 Version 525.xx and later for NVIDIA HGX H100 systems.

7.7.2 Starting a Guest Virtual Machine
To start a guest VM, the hypervisor must complete one of the following procedures:

Note: The sequences will be different depending on the NVSwitch generation used in the system.
The key difference is whether the GPU needs to be attached to Service VM and bound to
nvidia.ko.

 On NVIDIA HGX-2 and NVIDIA HGX A100 Systems:
a. Select one of the supported GPU partitions based on guest VM GPU demand.
b. Identify the corresponding GPUs using the GPU Physical ID to PCI BDF mapping.
c. Reset (SBR) the selected GPUs.
d. Hot plug the selected GPUs to the Service VM.
e. Ensure that the GPUs are bound to nvidia.ko.

f. Request FM to activate the requested GPU partition using the
fmActivateFabricPartition() API.

g. Unbind the GPUs from nvidia.ko.

h. Hot unplug the GPUs from Service VM (if needed).
i. Start the guest VM without resetting the GPUs.

Note: If the GPUs get PCIe reset as part of guest VM launch, the GPU NVLinks will be in an
InActive state on the guest VM. Also, starting the guest VM without a GPU reset might require
a modification in your hypervisor VM launch sequence path.

 On NVIDIA HGX H100 systems:

Shared NVSwitch Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 53

a. Select one of the supported GPU partitions based on guest VM GPU demand.
b. Identify the corresponding GPUs by using the GPU Physical ID to PCI BDF

mapping.
c. Request FM to activate the requested GPU partition using the

fmActivateFabricPartition() API.

d. Start the guest VM.

7.7.3 Shutting Down a Guest Virtual Machine
To shut down a guest VM, the hypervisor must do the following.

Note: The sequences will be different depending on the NVSwitch generation used in the system.

 On NVIDIA HGX-2 and NVIDIA HGX A100 Systems:
a. Shut down the guest VM but, to avoid any NVSwitch side NVLink errors, avoid GPU

resets (
b. Use the fmDeactivateFabricPartition () API and request FM to

deactivate the specific GPU partition.
c. Reset the GPUs after the deactivation partition request has completed.

 On NVIDIA HGX H100 Systems:
a. Shut down the guest VM.
b. Use the fmDeactivateFabricPartition () API and request FM to

deactivate the specific GPU partition.
c. If the guest VM shutdown process is not completing an explicit GPU reset, reset

the GPUs after the deactivate partition request has completed.

7.7.4 Rebooting a Guest Virtual Machine
When rebooting a guest VM, if the GPUs get an SBR as part of the VM reboot, the
hypervisor must complete the steps in “Starting a Guest Virtual Machine” on page 52 and
“Shutting Down a Guest Virtual Machine” on page 53.

7.7.5 Verifying GPU Routing
The nvswitch-audit command line utility, which was installed as part of the FM
package, can output the number of NVLinks that the NVSwitches are programmed to
handle for each GPU. The tool reconstructs this information by reading and decoding the
internal NVSwitch hardware routing table information. We recommend that you
periodically verify the GPU reachability matrix on each VM partition activation and
deactivation cycle by running this tool in the Service VM.

Shared NVSwitch Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 54

The following options are supported by nvswitch-audit command line utility.
root@host1-servicevm:~# ./nvswitch-audit -h

NVIDIA NVSwitch audit tool

Reads NVSwitch hardware tables and outputs the current number of

NVlink connections between each pair of GPUs

Usage: nvswitch-audit [options]

Options include:

[-h | --help]: Displays help information

[-v | --verbose]: Verbose output including all Request and Response table
entries

[-f | --full-matrix]: Display All possible GPUs including those with no
connecting paths

[-c | --csv]: Output the GPU Reachability Matrix as Comma Separated Values

[-s | --src]: Source GPU for displaying number of unidirectional connections

[-d | --dst]: Destination GPU for displaying number of unidirectional
connections

The following example output shows the maximum GPU NVLink connectivity when an 8-
GPU VM partition on an NVIDIA HGX A100 is activated.
root@host1-servicevm:~# ./nvswitch-audit

GPU Reachability Matrix

GPU 1 2 3 4 5 6 7 8

 1 X 12 12 12 12 12 12 12

 2 12 X 12 12 12 12 12 12

 3 12 12 X 12 12 12 12 12

 4 12 12 12 X 12 12 12 12

 5 12 12 12 12 X 12 12 12

 6 12 12 12 12 12 X 12 12

 7 12 12 12 12 12 12 X 12

 8 12 12 12 12 12 12 X 12

 Error Handling
Refer to “Error Handling” on page 88 for information about FM initialization, partition,
and hardware specific errors and their handling.

7.8.1 Guest Virtual Machine GPU Errors
When the guest VM is active, all GPU runtime errors will be logged in the guest VM syslog
as Xid errors. On NVIDIA HGX-2 and NVIDIA HGX A100 systems, the GPU NVLink errors
that require retraining are not supported in this environment, and to recover, must
complete the steps in “Starting a Guest Virtual Machine” on page 52 and “Shutting Down
a Guest Virtual Machine” on page 53.

Shared NVSwitch Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 55

7.8.2 Handling a Service Virtual Machine Crash
When a Service VM experiences a kernel crash, the remaining activated guest VMs will
continue as expected. However, the VM partition activation and deactivation life cycle will
be affected. To recover from this state, a Service VM restart, or a reboot is required.

 Interoperability With a Multi-
Instance GPU

The Shared NVSwitch virtualization model can interoperate with the MIG feature that is
supported on NVIDIA A100 and H100 GPUs. However, to expose a shared NVSwitch
partition with MIG-enabled GPUs to guest VMs, maintain one of the options in this
section. Since NVLinks are not trained on H100 GPUs when MIG is enabled, these options
are not applicable for NVIDIA HGX H100 systems.

7.9.1 Initializing Service Virtual Machine
When FM initializes on the Service VM, without the --restart option for resiliency flow,
the MIG mode must be disabled for the available GPUs. If any GPUs have MIG mode
enabled, the FM service initialization will be aborted.

7.9.2 Activating the Guest Virtual Machine
The FM-shared NVSwitch partition activation and deactivation sequence can handle MIG-
enabled GPUs. However, GPUs in which MIG was enabled before the partition was
activated, for example by the VM before the VM reboot, will not have NVLinks trained as
part of the partition activation. The activation/deactivation flow works as expected.

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3| 56

 vGPU Virtualization Model
The vGPU virtualization model supports VF passthrough by enabling SR-IOV functionality
in all the supported GPUs and assigning a specific VF, or set of VFs, to the VM.
 GPU NVLinks are assigned to only one VF at a time.
 NVLink P2P between GPUs that belong to different VMs or partitions is not

supported.
Refer to the vGPU Software User Guide for more information about the supported vGPU
functionality, features, and configurations.

 Software Stack
In the vGPU virtualization model, the NVSwitch Software Stack (FM and Switch Driver)
runs in the vGPU host. Like the bare-metal mode, the physical GPUs and NVSwitches are
owned and managed by the vGPU host. The GPU and NVSwitch NVLinks are trained and
configured as part of FM initialization. The switch routing table is initialized to prevent
any GPU-GPU communication.

Note: The vGPU-based deployment model is not supported on first generation-based NVSwitch
systems such as DGX-2 and NVIDIA HGX-2.

Note: The vGPU-based deployment model is not supported on the current release of DGX H100
and NVIDIA HGX H100 systems. NVIDIA plans to add this support in a future software release.

https://docs.nvidia.com/grid/11.0/grid-vgpu-user-guide/index.html

vGPU Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 57

Figure 4. The vGPU Software Stack

 Preparing the vGPU Host

8.2.1 OS Image
Refer to the NVIDIA Virtual GPU Software User Guide for the list of supported OSs,
hypervisors, and for information about installing and configuring the vGPU host driver
software.

8.2.2 NVIDIA Software Packages
In addition to the NVIDIA vGPU host driver software, the vGPU host image must have the
following NVIDIA software packages installed:
 NVIDIA FM package
 NVIDIA Fabric Manager SDK Package

Note: Both packages must be the same version as the Driver package.

Hardware Layer (CPU, GPU, NVSwitch, etc.)

Host/Hypervisor

vGPU Guest VMs

VM

NVIDIA NVSwitch and vGPU Software Stack

VM VM VM VM

https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide

vGPU Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 58

8.2.3 Fabric Manager Config File Modifications
To support vGPU virtualization, start the FM service in vGPU Virtualization mode by
setting the FABRIC_MODE=2 FM config item.

Note: NVSwitches must bind to nvidia.ko before the FM service starts. On DGX A100 and
NVIDIA HGX A100 systems, all the GPUs must also be bound to nvidia.ko before the FM
service starts.

In the vGPU virtualization mode, FM supports a resiliency feature that allows the
continuous forwarding of NVLink traffic between GPUs on active guest VMs after FM exits
(gracefully or non-gracefully) on the vGPU host. To support this feature, FM uses
/tmp/fabricmanager.state to save certain metadata information. To use a different
location/file to store this metadata information, modify the STATE_FILE_NAME FM
config file item with the new path and file name.

By default, FM uses TCP I/P loopback (127.0.0.1)-based socket interface for
communication. To use Unix domain sockets instead, modify the
FM_CMD_UNIX_SOCKET_PATH and UNIX_SOCKET_PATH FM config file options with the
new Unix domain socket names.

 Fabric Manager-Shared Library
and APIs

Refer to ”Fabric Manager SDK” on page 28 for a list of the APIs to manage the vGPU
partition life cycle,.

 Fabric Manager Resiliency
Refer to “Resiliency” on page 85 for more information about FM resiliency in vGPU
Virtualization mode.

 vGPU Partitions
Refer to “GPU Partitions” on page 81 for the default supported partitions for the vGPU
virtualization model.

vGPU Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 59

 Guest Virtual Machine Life Cycle
Management

Here is an overview of the guest VM life cycle:
1. System powers on and initializes.

 The vGPU host driver loads.
 SR-IOV is enabled.
 FM initializes in the vGPU Virtualization Mode.
 NVlinks are trained.

2. The partition is activated with the selected SR-IOV VFs.
3. The vGPU-enabled VM completes its life cycle with VFs selected in step 2.

This life cycle can involve boot, reboot, shutdown, suspend, resume, and migrate
activities.

4. The partition deactivates.

These steps are explained in greater detail in the following sections.

8.6.1 Activating the Partition and Starting the
Virtual Machine

SR-IOV VFs must be enabled on the physical GPUs before you activate partitions and
power on the vGPU VMs.

When starting a guest VM, the hypervisor must do the following:
1. Select an available GPU partition that contains the required number of GPUs for the

guest VM and select the VFs that will be used on those GPUs.
2. Use the fmActivateFabricPartitionWithVFs () API and request FM to activate

the GPU partition, with the set of selected VFs.
3. Start the guest VM with the selected VFs.

Note: Partition activation is always required before starting a vGPU VM, even for VMs that use
only one vGPU.

The ordering of VFs used during partition activation and VM assignment must remain consistent
to ensure the correct suspend, resume, and migration operations.

Refer to the Installing and Configuring the NVIDIA GPU Manager for Red Hat Linux
KVM for more information about SR-IOV VF enablement and assigning VFs to VMs.

https://docs.nvidia.com/grid/11.0/grid-vgpu-user-guide/index.html#red-hat-el-kvm-install-configure-vgpu
https://docs.nvidia.com/grid/11.0/grid-vgpu-user-guide/index.html#red-hat-el-kvm-install-configure-vgpu

vGPU Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 60

8.6.2 Deactivating the Partition
Deactivate partitions only when no VM is executing on the GPUs in the partition. To
deactivate a partition:
1. Shut down the guest VM that is currently operating in the partition.
2. Use the fmDeactivateFabricPartition () API and request that FM deactivate

the partition.

8.6.3 Migrating Virtual Machines
VM migration is supported only between partitions with an identical number, type of GPU,
and NvLink topology.

Refer to “Migrating a VM Configured with vGPU” for more information.

8.6.4 Verifying GPU Routing
The nvswitch-audit command line utility referenced in “Verifying GPU Routing” on
page 53 can also be used to verify NVSwitch routing information in the vGPU mode. We
recommend that you run this tool to periodically verify the GPU reachability matrix on
each VM partition activation and deactivation cycle.

 Error Handling
Refer to “Error Handling” on page 88 for information about FM initialization, partition,
hardware specific errors, and their handling.

8.7.1 Guest Virtual Machine GPU Errors
When the guest VM is active, GPU runtime errors will be logged in the vGPU host syslog
like the Xid errors. On DGX A100 and NVIDIA HGX A100 systems, GPU NVLink errors that
require retraining are not supported in this environment and must complete the guest
VM shutdown and start sequence to recover.

 GPU Reset
If the GPU generates a runtime error or gets an Xid NVLink error, the system
administrator can clear the corresponding error state and recover the GPU using the
GPU reset operation. The operation must be initiated from the vGPU host after a VM that
is using the GPU is shut down and the corresponding partition is deactivated. Refer to the
nvidia-smi command-line utility documentation for more information.

https://docs.nvidia.com/grid/11.0/grid-vgpu-user-guide/index.html#migrating-vm-with-vgpu

vGPU Virtualization Model

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 61

 Interoperability with MIG
MIG-backed vGPUs on NVIDIA A100 and NVIDIA HGX A100 cannot use NVlink. The FM’s
vGPU Virtualization mode still can interoperate with the MIG feature to support use cases
where a subset of GPUs are being used in MIG mode.

8.9.1 Enabling MIG before Starting the Fabric
Manager Service

 When MIG was enabled on a GPU before FM was started, FM will remove the GPU
partitions from its list of available partitions that contain GPUs in MIG mode.

 These GPU partitions will not be available for deploying VMs.
 To enable partitions after disabling MIG mode on a GPU, reboot the system.

8.9.2 Enabling MIG After Starting the Fabric
Manager Service

 MIG functionality might be enabled on any GPU after starting the FM Service, but
before a partition that contained the GPU, is activated.

 Activating a GPU partition will return success even if the GPU is in MIG mode.
 Activating a multi-GPU partition will fail if any GPU in the partition is in MIG mode on

DGX A100 and NVIDIA HGX A100 systems.
The process will succeed on the DGX H100 and NVIDIA HGX H100 systems.

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3| 62

 Supported High Availability
Modes

FM provides several High Availability Mode (Degraded Mode) configurations that allow
system administrators to set appropriate policies when there are hardware failures, such
as GPU failures, NVSwitch failures, NVLink connection failures, and so on, on NVSwitch-
based systems. With this feature, system administrators can keep a subset of available
GPUs that can be used while waiting to replace failed GPUs, baseboards, and so on.

DGX A100, NVIDIA HGX A100 and DGX H100, NVIDIA HGX H100 systems have different
behaviors Refer to “Error Handling” on page 88 for more information.

 Common Terms
 GPU Access NVLink is an NVLink connection between a GPU and a NVSwitch.
 GPU Access NVLink failure is a failure that occurs in the connection between a GPU

and an NVSwitch.
Failures can be the result of a GPU/NVSwitch pin failure, a mechanical failure in the
GPU baseboard, or a similar failure.

 Trunk NVLink are the links that connect two GPU baseboards.
Trunk NVLinks only occur between NVSwitches and travel over the NVLink bridge
PCBs and connectors.

 Trunk NVLink failure is a trunk NVLink failure that traverses between the two GPU
baseboard trays.
This failure can be the result of a bad backplane connector pin or a similar issue.

 NVSwitch failure is a NVSwitch failure that is categorized as an internal failure of the
NVSwitch.
This failure can be the result of the NVSwitch not being displayed on the PCIe bus,
DBE error, or a similar issue.

 GPU failure is a GPU failure where the GPU has failed.
This failure can be the result of NVLink connectivity, a PCIe failure, or a similar issue.

Note: These high availability modes and their corresponding dynamic reconfiguration of the
NVSwitch based system are applied in response to errors that are detected during FM
initialization. Runtime errors that occur after the system is initialized, or when a GPU job is
running, will not trigger these high availability mode policies.

Supported High Availability Modes

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 63

 GPU Access NVLink Failure

9.2.1 Fabric Manager Config Item
The GPU access NVLink failure mode is controlled through this FM config file item:
ACCESS_LINK_FAILURE_MODE=<value>

9.2.2 Bare Metal Behavior
 ACCESS_LINK_FAILURE_MODE=0

In this mode, FM removes the GPUs with access NVLink failure from NVSwitch
routing and configures the rest of the GPUs to form one memory fabric. This means
the GPUs with the access NVLink failure will lose their NVLink P2P capability with
other GPUs. The failed GPUs are still visible to the NVIDIA software stack, such as
CUDA, NVML, NVIDIA-SMI, and so on, and can be used for non-NVLink workloads.

 ACCESS_LINK_FAILURE_MODE=1

In this mode, FM will disable NVSwitch and its pair of Trunk NVLinks if there are two
GPU baseboards where the GPU Access NVLink is connected. This reduces the
NVLink P2P bandwidth to 5/6 throughout the fabric. If a GPU can access NVLink
failures to more than one NVSwitch, this option will remove the GPU from the
NVSwitch routing configuration and disable its NVLink P2P capability.

This process will leave the other GPUs with complete NVLink P2P bandwidth. If
multiple GPU access NVLink failures point to the same NVSwitch, that NVSwitch will
be disabled.

This mode is effective only on DGX A100 and NVIDIA HGX A100 NVSwitch-based
systems.

9.2.3 Shared NVSwitch and vGPU Virtualization
Behavior

 ACCESS_LINK_FAILURE_MODE=0

In this mode, FM removes the GPUs with access NVLink failures from the currently
supported GPU partition list. Figure 4 shows the effect of one GPU having an access
NVLink failure in a two-GPU baseboard system. The failed GPUs will be available for
single GPU partitions.

This mode is effective only on DGX A100 and NVIDIA HGX A100 NVSwitch-based
systems.

Supported High Availability Modes

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 64

Figure 4. Shared NVSwitch and vGPU Partitions When a GPU Access
NVLink Fails

 ACCESS_LINK_FAILURE_MODE=1

In the Shared NVSwitch mode, all GPU partitions will be available, but the partitions
will reduce the available bandwidth to 5/6 throughout the fabric. If multiple access
NVLinks fail on one GPU, the GPU will be removed, and the available GPU partitions
will be adjusted as mentioned earlier. The failed GPUs will be available for single GPU
partitions.

This mode is effective only on DGX A100 and NVIDIA HGX A100 NVSwitch based
systems.

Note: Currently, the ACCESS_LINK_FAILURE_MODE=1 configuration is not supported in the
vGPU Multitenancy Mode.

 Trunk NVLink Failure

9.3.1 Fabric Manager Config Item
The Trunk NVLink failure mode is controlled through this FM config file item:
TRUNK_LINK_FAILURE_MODE=<value>

Note: This option applies only to systems with two GPU baseboards.

Supported High Availability Modes

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 65

9.3.2 Bare Metal Behavior
 TRUNK_LINK_FAILURE_MODE=0

In this mode, FM aborts and leaves the system uninitialized when there is a trunk
NVLink failure, and all CUDA application launches will fail with
cudaErrorSystemNotReady status. However, when
FM_STAY_RESIDENT_ON_FAILURES =1, the continue with error config
option is enabled, and the FM service continues to run, and the CUDA application
launches will fail with cudaErrorSystemNotReady status.

This mode is effective only on the DGX A100 and NVIDIA HGX A100 NVSwitch-based
systems.

 TRUNK_LINK_FAILURE_MODE=1

In this mode, if an NVSwitch has one or more trunk NVLink failures, the NVSwitch will
be disabled with its peer NVSwitch. This reduces the available bandwidth to 5/6
throughout the fabric. If multiple NVSwitches have trunk NVLink failures, FM will fall
back to the TRUNK_LINK_FAILURE_MODE=0 behavior as mentioned above.

This mode is effective only on DGX A100 and NVIDIA HGX A100 NVSwitch-based
systems.

9.3.3 Shared NVSwitch and vGPU Virtualization
Behavior

 TRUNK_LINK_FAILURE_MODE=0

In this mode, FM removes GPU partitions by using trunk NVLinks from the currently
supported GPU partition list. This means 16 GPU partitions and eight GPU partitions
across baseboards will be removed. The remaining partitions will run with complete
NVLink bandwidth. This option will support an unlimited number of trunk NVLink
failures on a connected pair of NVSwitches.

This mode is effective only on DGX A100 and NVIDIA HGX A100 NVSwitch-based
systems.

 TRUNK_LINK_FAILURE_MODE=1

In the Shared NVSwitch mode, the GPU partitions will be available, but the partitions
will reduce the available bandwidth to 5/6 throughout the fabric. This option will be
supported when multiple trunk NVLink failures are present on the same NVSwitch
pair. If multiple trunk NVLink failures affect different NVSwitch pairs, FM will fall
back to the TRUNK_LINK_FAILURE_MODE=0 behavior as mentioned above.

This mode is effective only on DGX A100 and NVIDIA HGX A100 NVSwitch-based
systems.

Supported High Availability Modes

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 66

Note: Currently, the TRUNK_LINK_FAILURE_MODE=1 configuration is not supported in the vGPU
Multitenancy Mode.

 NVSwitch Failure

9.4.1 Fabric Manager Config Item
The NVSwitch failure mode is controlled through this FM config file item:
NVSWITCH_FAILURE_MODE=<value>

9.4.2 Bare Metal Behavior
 NVSWITCH_FAILURE_MODE=0

In this mode, FM aborts and leaves the system uninitialized when there is an
NVSwitch failure, and all CUDA application launches will fail with a
cudaErrorSystemNotReady status. However, when
FM_STAY_RESIDENT_ON_FAILURES =1, the continue with error config
option is enabled, the FM service continues to run, and CUDA application launches
will fail with a cudaErrorSystemNotReady status.

 NVSWITCH_FAILURE_MODE =1

In this mode, when there is an NVSwitch failure, the NVSwitch will be disabled with its
peer NVSwitch. This will reduce the available bandwidth to 5/6 throughout the fabric.
If multiple NVSwitch failures happen, FM will fall back to the
NVSWITCH_FAILURE_MODE=0 behavior as mentioned above.

This mode is effective only on DGX A100 and NVIDIA HGX A100 NVSwitch-based
systems.

9.4.3 Shared NVSwitch and vGPU Virtualization
Behavior

 NVSWITCH_FAILURE_MODE=0

In this mode, FM will remove multi-GPU partitions from the baseboard with the
failing NVSwitch and eight GPU partitions across baseboards. In one baseboard
system, only single GPU partitions will be supported. Figure 5 shows the supported
partitions when an NVSwitch has failed.

This mode is effective only on DGX A100 and NVIDIA HGX A100 NVSwitch-based
systems.

Supported High Availability Modes

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 67

Figure 5. Shared NVSwitch and vGPU Partitions When an NVSwitch has
Failed

 NVSWITCH_FAILURE_MODE=1

In the Shared NVSwitch mode, all the GPU partitions will be available, but the
partitions will reduce the available bandwidth to 5/6 throughout the fabric. If multiple
NVSwitch failures happen, FM will fall back to NVSWITCH_FAILURE_MODE =0
behavior as mentioned above.

This mode is effective only on DGX A100 and NVIDIA HGX A100 NVSwitch-based
systems.

Note: Currently, the NVSWITCH_FAILURE_MODE=1 configuration is not supported in the vGPU
Multitenancy Mode.

 GPU Failure

9.5.1 Bare Metal Behavior
FM will ignore GPUs that have failed to initialize, are not displayed on the PCI bus, and so
on. FM will set up routing and enable NVLink P2P among the available GPUs.

9.5.2 Shared NVSwitch and vGPU Virtualization
Behavior

FM will continue initialization and adjust the currently supported partition list by
excluding the failed GPU partitions. Figure 6 shows the supported partitions when a GPU
is missing or has failed to initialize.

Supported High Availability Modes

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 68

Figure 6. Shared NVSwitch and vGPU Partitions When a GPU is
Missing/Has Failed

 Manual Degradation
Manual degradation prevents a consistently failing GPU, NVSwitch, or baseboard from
being enumerated by the NVSwitch system software stack. Depending on the failing
component, the system administrator must configure appropriate action.

9.6.1 GPU Exclusion
Depending on the errors, certain GPUs might be candidates for exclusion from the
system so that FM can successfully initialize and configure the rest of the GPU subsets.
Based on the failure analysis data from previous generation GPUs, to exclude a GPU,
here are the recommended error conditions:
 GPU double bit ECC errors.
 GPU falling off the PCIe bus.
 GPU failure to enumerate on the PCIe bus.
 GPU side NVLink training error.
 GPU side unexpected XID.

This category can also be application induced.

For full passthrough virtualization, the administrator must identify the GPUs that should
be excluded. The hypervisor must ensure that VMs are not created on the GPUs that have
been identified as candidates for exclusion.

Supported High Availability Modes

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 69

9.6.1.1 GPU Exclusion Flow
The GPU exclusion flow can be broken down into the following phases:
1. Running application error handling.
2. Diagnosing GPU failures.
3. Remediating the error.

The steps for each of these phases can vary based on whether the system is running in
bare metal or in virtualized mode. The following sections describe the flow for bare metal
and virtualized platforms.

9.6.1.2 Running Application Error Handling
Errors faced by the GPU during active execution, such as GPU ECC errors, GPU falling off
the bus, and so on, are reported through the following means:
 /var/log/syslog as an XID message

 DCGM
 NVIDIA Management Library (NVML)
 GPU SMBPBI-based OOB commands
 The FM log file.

Table 5. Error Conditions and Signatures

Error Condition Error signature on Running Application
GPU Double Bit Error XID 48 output by GPU driver

GPU falling off PCIe bus XID 79 output by GPU driver

GPU failing to enumerate on
bus

GPU does not appear to applications (CUDA applications or
nvidia-smi query)

GPU side NVLink training error Error output to /var/log/syslog by FM

GPU side errors Other XIDs output by GPU driver. This can also be application
induced.

GPU Double Bit Error XID 48 output by GPU driver

9.6.1.3 Diagnosing GPU Failures
System administrators can create their own GPU monitoring/health check scripts to look
for the error traces. This process requires looking for at least one of the above-
mentioned sources (syslog, NVML APIs, and so on) to collect the necessary data.

DCGM includes an exclusion recommendation script that can be invoked by a system
administrator to collect the GPU error information. This script queries information from
the passive monitoring performed by DCGM to determine whether any conditions that
might require a GPU to be excluded have occurred since the previous time the DCGM
daemon was started. As part of the execution, the script invokes a validation test that

Supported High Availability Modes

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 70

determines whether unexpected XIDs are being generated by the execution of a known
good application. Users can prevent the validation test from being run and choose to only
monitor the passive information.

The DCGM exclusion recommendation script code is provided as a reference for system
administrators to extend as appropriate or build their own monitoring/health check
scripts.

Note: Refer to the NVIDIA DCGM Documentation for more information about the exclusion
recommendation script such as its location and supported options.

9.6.1.4 In-Band GPU Exclude Mechanism
The GPU kernel driver on NVSwitch-based systems can be configured to ignore a set of
GPUs, even if the GPUs were enumerated on the PCIe bus. The GPUs to be excluded are
identified by the GPU’s unique identifier (GPU UUID) via a kernel module parameter. After
identifying whether the GPU exclude candidates are in the system, the GPU kernel
module driver will exclude the GPU from being used by applications. If a GPU UUID is in
the exclude candidate list, but the UUID was not detected at runtime because the UUID
belonged to a GPU that is not on the system or because the PCIe enumeration of the GPU
board failed, the GPU is not considered to have been excluded.

The list of exclude candidate GPUs can be persisted across reboots by specifying the
module parameters by using a .conf file in the filesystem. The exclude mechanism is
specific to a GPU, rather than a physical location on the baseboard. As a result, if a GPU
is on the exclude candidate list, and is later replaced by a new GPU, the new GPU will
become visible to the system without updating the exclude candidates. Conversely, if a
GPU has been excluded on a system, placing it in different PCIe slots will still prevent the
GPU from being visible to applications, unless the exclude candidate list is updated.

Updating the GPU excludes candidates requires manual intervention by the system
administrator.

9.6.1.5 Kernel Module Parameters
The set of candidate GPU UUIDs that will be excluded are specified by using a kernel
module parameter that consists of a set of comma-separated GPU UUIDs.

 The kernel parameter can be specified when the kernel module loads nvidia.ko.
insmod nvidia.ko NVreg_ExcludedGpus=uuid1,uuid2…

 To make the GPU UUID persistent, the set of exclude candidate GPU UUIDs can also
be specified by using a nvidia.conf file in /etc/modprobe.d.
options nvidia NVreg_ExcludedGpus=uuid1, uuid2…

Adding GPUs into the exclude candidate list is a manual step that must be completed by
a system administrator.

https://docs.nvidia.com/datacenter/dcgm/index.html

Supported High Availability Modes

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 71

Note: The previously supported NVreg_GpuBlacklist module parameter option has been
deprecated and will be removed in a future release.

9.6.1.6 Adding/Removing a GPU from the Exclude
Candidate List

To add a GPU from the exclude candidate list or to remove it from the list, the system
administrator must complete the following steps:
1. If a conf file does not exist, create a conf file for the nvidia kernel module parameters.
2. Complete one of the following tasks:

a. Add the UUID of the excluded GPU into the .conf file.
b. Remove the UUID of the GPU from the list.

3. Restart the system to load the kernel driver with updated module parameters.

9.6.1.7 Listing Excluded GPUs
An excluded GPU is not visible in CUDA applications or in basic queries by using
nvidia-smi -q or through NVML. This section provides information about the options
to identify when a GPU has been excluded, for example, the GPU’s UUID was in the
exclude candidate list, and the GPU was detected in the system.

9.6.1.8 nvidia-smi
The new command, nvidia-smi -B or nvidia-smi --list-excluded-gpus, can be
used to get a list of excluded GPUs.

9.6.1.9 Procfs
The procfs entry, /proc/driver/nvidia/gpus/<PCI_ID>/information, can specify
whether the GPU has been excluded.

9.6.1.10 Out-of-Band Query
Refer to the NVIDIA GPU SMBus Post-Box Interface (SMBPBI) documentation for more
information.

9.6.1.11 Running GPU Exclusion Scripts
The following section provides information about the recommended flow that a system
administrator should follow to run GPU monitoring health checks or the DCGM exclusion
recommendation script on various system configurations.

Supported High Availability Modes

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 72

9.6.1.12 Bare Metal and vGPU Configurations
In, the system administrator will run the bare metal and vGPU virtualization
configurations in the same OS instance as the application programs. Here is the general
flow that a system administrator will follow:
1. Periodically run the health check script or the DCGM exclusion recommendation

script for all the GPUs and NVSwitches on the system.
2. (Optional) Monitor the system logs to trigger a run of the health check script or DCGM

exclusion recommendation script.
3. Based on the output of the health check or exclusion recommendation script, add the

GPU UUID to the exclude candidate list.

4. Also, if you are using the DCGM exclusion recommendation script, update the
periodic run of the exclude recommendation script with the newly expected GPU
count.

5. Reboot the system to load the kernel driver with updated module parameters.

9.6.1.13 Full Passthrough Virtualized Configurations
The primary difference in virtualized configurations is that the GPU kernel driver is left to
the guest VMs. As a result, the execution of the GPU diagnosis and remediation phases
must be performed by the hypervisor with the VM provisioning mechanism.

Here is the general flow that a hypervisor will follow:
1. The guest VM finishes and returns controls of a set of GPUs and switches to the

hypervisor.
2. The hypervisor invokes a special test VM, which is trusted by the hypervisor.

In test VM, there should be a complete instance of the NVIDIA NVSwitch core
software stack, including GPU drivers and FM.

3. On this test VM, run the health check script or DCGM exclusion recommendation
script.

4. Based on the output of the health check or exclusion recommendation script, add the
GPU UUID to a hypervisor readable database.
The hypervisor shuts down the test VM.

 The hypervisor reads the database to identify the candidates for excluding and
updates its resource allocation mechanisms to prevent that GPU from being
assigned to future VM requests.

 After the GPU board has been replaced, to make the GPU available again, the
hypervisor updates the database.

Supported High Availability Modes

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 73

9.6.1.14 Shared NVSwitch Virtualization Configurations
In a shared NVSwitch virtualization configuration, system administrators can run their
GPU health check script or DCGM exclusion recommendation script in a dedicated test
VM, or on DGX A100 and NVIDIA HGX A100 systems, in the Service VM immediately after
the GPU partition is activated.

To run GPU health on a special test VM:
1. The guest VM completes and returns control of the GPUs in the partition to the

hypervisor.
2. After the shared NVSwitch guest VM shutdown procedure is complete, activate the

same GPU partition again.
3. The hypervisor schedules a special test VM, which is trusted on those GPUs.
4. On this test VM, run the health check script or DCGM exclusion recommendation

script.
5. Based on the output of the health check or exclusion recommendation script, add the

GPU UUID into a hypervisor readable database.
6. If the partition activation/deactivation cycle is consistently failing, the hypervisor can

consider adding all the GPU UUID s of a partition to the database.
7. After the health check is complete, shut down the test VM.
8. The hypervisor reads the database to identify the candidates for exclusion and

removes the corresponding GPU partitions from its currently supported partitions.
9. The hypervisor resource allocation mechanisms ensures that the affected GPU

partitions will not be activated.
10. When the Service VM is rebooted, the hypervisor can choose not to bind the excluded

GPUs to the Service VM.
This way, FM will adjust its currently supported GPU partitions.

11. When the GPU board has been replaced, the hypervisor updates the database to
make the GPU available and restarts the Service VM with all the GPUs to enable
previously disabled GPU partitions again.

To run GPU health on a Service VM on DGX 100 and NVIDIA HGX 100 systems:
1. The fmActivateFabricPartition() call returned successfully in a Shared

NVSwitch partition activation flow.
2. Before the hypervisor detaches/unbinds the GPUs in the partition, run the required

health check script or DCGM exclusion recommendation script on those GPUs in the
Service VM.

3. Based on the output of the health check or exclusion recommendation script, add the
GPU UUID into a hypervisor readable database.

4. The hypervisor executes the partition deactivation flow using
fmDeactivateFabricPartition() when health check fails and corresponding
guest VM launch is deferred.

Supported High Availability Modes

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 74

5. If the partition activation/deactivation cycle is consistently failing, the hypervisor can
consider adding the GPU UUID s of a partition to the database.

6. The hypervisor reads the database to identify the candidates for exclusion and
removes the corresponding GPU partitions from its currently supported partitions.

7. The hypervisor resource allocation mechanisms ensure that the affected GPU
partitions will not be activated.

8. After the Service VM is rebooted, the hypervisor can choose not to bind the excluded
GPUs to the Service VM.
This way, FM will adjust its currently supported GPU partitions.

9. After the GPU board has been replaced, the hypervisor updates the database to make
the GPU available and restarts the Service VM with the GPUs to enable previously
disabled GPU partitions again.

9.6.2 NVSwitch Exclusion
In DGX A100 and NVIDIA HGX A100 systems, if an NVSwitch is consistently failing, the
system administrator can explicitly exclude the NVSwitch.

9.6.2.1 In-Band NVSwitch Exclusion
The NVSwitch kernel driver on NVSwitch-based systems can be configured to ignore an
NVSwitch even when the systems were enumerated on the PCIe bus like the GPU
exclusion feature. If the NVSwitch exclusion candidates are in the system, the NVSwitch
kernel module driver will exclude the NVSwitch from being used by applications. If an
NVSwitch UUID is in the exclusion candidate list, but the UUID is not detected at runtime
because the UUID belongs to a NVSwitch that is not on the system, or because the PCIe
enumeration of the NVSwitch fails, the NVSwitch is not considered to have been
excluded.

Also, in NVIDIA HGX A100 systems with two GPU baseboards, if an NVSwitch is explicitly
excluded, FM will manually exclude its peer NVSwitch across the Trunk NVLinks. This
behavior can be configured using the NVSWITCH_FAILURE_MODE high availability
configuration file item.

9.6.2.2 Kernel Module Parameters
 To specify a candidate NVSwitch UUID as a kernel module parameter, run the

following command.
insmod nvidia.ko NvSwitchExcludelist=<NVSwitch_uuid>

 To make the NVSwitch UUID persistent, specify the UUID using an nvidia.conf file in
/etc/modprobe.d.
options nvidia NvSwitchExcludelist=<NVSwitch_uuid>

The system administrator can get the NVSwitch UUID from the FM log file and add the
UUID into the excluded candidate list.

Supported High Availability Modes

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 75

Note: The previously supported NvSwitchBlacklist module parameter option has been
deprecated and will be removed in a future release.

9.6.2.3 Out-of-Band NVSwitch Exclusion
Refer to SMBus Post Box Interface (SMBPBI) for more information about NVSwitch.

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3| 76

Appendix A. NVLink Topology
The following section lists the link IDs used by each GPU to connect to each NVSwitch on
different versions of NVIDIA HGX baseboards.

A.1 NVIDIA HGX-2 GPU Baseboard
Every NVSwitch uses the 0/1, 2/3, 8/9 and 10/11 links for the inter-GPU baseboard connection,
and the links are not listed. Other NVLink connections, two per NVSwitch, are unused.

Table 6. GPUs and NVSwitch Links

GPU GPU link NVSwitch NVSwitch link

1 0 4 16

1 1 1 5

1 2 6 6

1 3 3 15

1 4 5 15

1 5 2 6

2 0 4 15

2 1 1 16

2 2 3 6

2 3 6 12

2 4 2 17

2 5 5 7

3 0 4 14

3 1 1 17

3 2 3 17

3 3 6 13

3 4 5 6

3 5 2 4

4 0 4 17

4 1 1 4

4 2 3 7

4 3 6 7

NVLink Topology

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 77

GPU GPU link NVSwitch NVSwitch link

4 4 2 7

4 5 5 17

5 0 4 13

5 1 1 13

5 2 5 13

5 3 3 13

5 4 6 14

5 5 2 16

6 0 4 5

6 1 1 14

6 2 6 5

6 3 3 4

6 4 2 12

6 5 5 14

7 0 4 12

7 1 1 15

7 2 5 5

7 3 3 5

7 4 2 13

7 5 6 17

8 0 4 4

8 1 1 12

8 2 6 15

8 3 5 12

8 4 3 14

8 5 2 5

A.2 NVIDIA HGX A100 GPU Baseboard
Every NVSwitch uses links 0 to 7 and 16 to 23 for the inter-GPU baseboard connection, and the
links are not listed. Other NVLink connections (four per NVSwitch) are unused.

The GPU numbering in Table 7 is the same numbering used in the HGX A100 Baseboard Pinout
design document.

NVLink Topology

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 78

Table 7. NVLink Topology of the NVIDIA HGX A100 GPU Baseboard

GPU GPU link NVSwitch NVSwitch link

1 0, 1 4 8, 9

1 2, 3 1 24, 25

1 4, 5 3 30, 31

1 6, 7 6 12, 13

1 8, 9 2 12, 13

1 10, 11 5 30, 31

2 0, 1 4 30, 31

2 2, 3 1 26, 27

2 4, 5 3 12, 13

2 6, 7 6 24, 25

2 8, 9 2 34, 35

2 10, 11 5 14, 15

3 0, 1 4 28, 29

3 2, 3 1 34, 35

3 4, 5 3 34, 35

3 6, 7 6 26, 27

3 8, 9 2 8, 9

3 10, 11 5 12, 13

4 0, 1 4 34, 35

4 2, 3 1 32, 33

4 4, 5 3 14, 15

4 6, 7 6 14, 15

4 8, 9 2 14, 15

4 10, 11 5 34, 35

5 0, 1 4 26, 27

5 2, 3 1 10, 11

5 4, 5 3 28, 29

5 6, 7 6 28, 29

5 8, 9 2 10, 11

5 10, 11 5 26, 27

6 0, 1 4 10, 11

6 2, 3 1 28, 29

6 4, 5 3 8, 9

6 6, 7 6 10, 11

NVLink Topology

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 79

GPU GPU link NVSwitch NVSwitch link

6 8, 9 2 24, 25

6 10, 11 5 28, 29

7 0, 1 4 24, 25

7 2, 3 1 30, 31

7 4, 5 3 26, 27

7 6, 7 6 30, 31

7 8, 9 2 26, 27

7 10, 11 5 10, 11

8 0, 1 4 32, 33

8 2, 3 1 8, 9

8 4, 5 3 10, 11

8 6, 7 6 34, 35

8 8, 9 2 32, 233

8 10, 11 5 24, 25

A.3 NVIDIA HGX H100 GPU Baseboard
The GPU numbering in Table 8 is the same information that is returned through nvidia-smi
as the module ID, which is derived based on the GPIO connections on the baseboard.

Table 8. NVLink Topology of the NVIDIA HGX H100 GPU Baseboard

GPU GPU link NVSwitch NVSwitch link

1 2,3,12,13 1 40,41,44,45

1 0,1,11,16,17 2 36,37,40,46,47

1 15,14,10,6,7 3 42,43,45,62,63

1 4,5,9,8 4 58,59,62,63

2 15,14,8,9 1 42,43,46,47

2 2,3,7,6,11 2 2,3,4,5,32

2 10,5,4,0,1 3 34,40,41,46,47

2 12,13,16,17 4 34,35,38,39

3 13,12,7,6 1 48,49,52,53

3 17,16,10,3,2 2 0,1,33,38,39

3 14,15,8,9,11 3 16,17,50,51,52

3 5,4,1,0 4 56,57,60,61

4 9,8,13,12 1 32,33,36,37

NVLink Topology

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 80

GPU GPU link NVSwitch NVSwitch link

4 2,3,10,14,15 2 50,51,53,62,63

4 7,6,11,16,17 3 2,3,35,38,39

4 5,4,1,0 4 42,43,46,47

5 7,6,12,13 1 58,59,62,63

5 17,16,11,1,0 2 48,49,52,56,57

5 15,14,10,2,3 3 36,37,44,60,61

5 4,5,9,8 4 48,49,52,53

6 6,7,15,14 1 34,35,38,39

6 8,9,17,16,11 2 6,7,34,35,42

6 4,5,10,1,0 3 0,1,19,32,33

6 13,12,3,2 4 32,33,36,37

7 17,16,13,12 1 50,51,54,55

7 10,0,1,4,5 2 43,54,55,58,59

7 15,14,11,8,9 3 48,49,53,56,57

7 7,6,3,2 4 40,41,44,45

8 12,13,17,16 1 56,57,60,61

8 10,5,4,0,1 2 41,44,45,60,61

8 11,14,15,7,6 3 18,54,55,58,59

8 2,3,8,9 4 50,51,54,55

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3| 81

Appendix B. GPU Partitions
This chapter provides information about the =default Shared NVSwitch and vGPU partitions
for various GPU baseboards.

B.1 DGX-2 and NVIDIA HGX-2

Table 9. Default Shared NVSwitch Partitions for DGX-2 and NVIDIA HGX-2

Partition ID Number of GPUs GPU Physical ID

Number of NVLink
Interconnects per

GPU

0 16 1 to 16 6

1 8 1 to 8 6

2 8 9 to 16 6

3 8 1,4,6,7 from baseboard1
9, 12,14, 15 from baseboard2

5

4 8 2,3,5,8 from baseboard1
10, 11, 13,16 from baseboard2

5

5 4 1,4,6,7 5

6 4 2,3,5,8 5

7 4 9,12,14,15 5

8 4 10,11,13,16 5

9 2 1,4 5

10 2 2,3 5

11 2 5,8 5

12 2 6,7 5

13 2 9,12 5

14 2 10,11 5

15 2 13,16 5

16 2 14,15 5

17 to 32 1 Physical ID 1 for Partition ID 17,
Physical ID 2 for Partition ID 18,

and so on.

0

GPU Partitions

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 82

In this generation of NVSwitch, the NVLink ports reset (even-odd pair of links) must be issued
in pairs. As a result, NVIDIA HGX-2 and DGX-2 only support a fixed mapping of Shared
NVSwitch partitions. Due to this limitation, the four-GPU and two-GPU VMs can enable only
five out of six NVLinks per GPU.

B.2 DGX A100 and NVIDIA HGX A100

B.1.1 Default GPU Partitions
Depending on the high availability mode configurations, when a GPU is unavailable (due to
failures, backlisting, and so on), the corresponding partitions will be removed from the
currently supported partition list. However, the Partition ID and GPU Physical IDs will remain
the same for the rest of the supported partitions.

Note: The GPU Physical IDs are based on how the GPU baseboard NVSwitch GPIOs are strapped.
If only one baseboard is present, and the GPIOs are strapped as for the bottom tray, the GPU
Physical IDs range is between 1 and 8. If the baseboard is strapped as for the top tray, the GPU
Physical IDs range between 9 and 16.

Table 10. Default Shared NVSwitch and vGPU Partitions for DGX A100 and
NVIDIA HGX A100

Partition ID Number of GPUs GPU Physical ID

Number of NVLink
Interconnects per

GPU

0 16 1 to 16 12

1 8 1 to 8 12

2 8 9 to 16 12

3 8 1 to 4 & 9 to 12 12

4 8 5 to 8 & 13 to 16 12

5 8 1 to 4 & 13 to 16 12

6 8 5 to 8 & 9 to 12 12

7 4 1, 2, 3, 4 12

8 4 5, 6, 7, 8 12

9 4 9, 10, 11, 12 12

10 4 13, 14, 15, 16 12

11 2 1, 2 12

12 2 3, 4 12

13 2 5, 6 12

GPU Partitions

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 83

Partition ID Number of GPUs GPU Physical ID

Number of NVLink
Interconnects per

GPU

14 2 7, 8 12

15 2 9, 10 12

16 2 11, 12 12

17 2 13, 14 12

18 2 15, 16 12

19 1 1 0

20 to 34 1 Physical ID 2 for Partition ID 20,
Physical ID 3 for Partition ID 21,

etc.

0

B.1.2 Supported GPU Partitions
In DGX A100 and NVIDIA HGX A100 systems, the earlier generation even-odd pair NVSwitch
NVLink reset requirement is no longer applicable. So, if the default GPU partition mentioned
above is not optimal based on the system’s PCIe topology, the partition mapping can be
changed. However, NVIDIA has the following restrictions for partition definitions:
 The two-GPU NVLink partitions must be in the same GPU baseboard.
 The four-GPU NVLink partitions must be in the same GPU baseboard.
 For eight-GPU NVLink partitions, which span across two GPU baseboards, four GPUs must

be from each baseboard.

Note: NVIDIA will evaluate any custom partition definition requests and variations of the above-
mentioned policy on a case-by-case basis and will provide necessary information to
configure/override the default GPU partitions.

GPU Partitions

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 84

B.3 DGX H100 and HGX H100

B.1.1 Default GPU Partitions

Table 11. Default Shared NVSwitch Partitions for DGX H100 and NVIDIA HGX
H100

Partition ID Number of GPUs

GPU Physical ID

Module ID

Number of NVLink
Interconnects per

GPU

0 8 1 to 8 18

1 4 1 to 4 18

2 4 5 to 8 18

3 2 1,3 18

4 2 2,4 18

5 2 5,7 18

6 2 6,8 18

7 1 1 0

8 1 2 0

9 1 3 0

10 1 4 0

11 1 5 0

12 1 6 0

13 1 7 0

14 1 8 0

B.1.2 Supported GPU Partitions
In DGX H100 and NVIDIA HGX H100 systems, regardless of the GPU degradation states, the
GPU partitions above are returned in the get support partition API.

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3| 85

Appendix C. Resiliency
The FM resiliency feature in the Shared NVSwitch and vGPU Model allows system
administrators to resume the normal operation after FM gracefully or non-gracefully exits in
the Service VM. With this feature, currently activated guest VMs will continue to forward
NVLink traffic even when FM is not running. After FM is successfully restarted, FM will
support the typical guest VM activation /deactivation workflow.

The NVSwitch and GPU NVLink errors that were detected while FM is not running will be
cached into the NVSwitch Driver and will be reported after FM has successfully restarted.
Also, changing the FM version when FM is not running is not supported.

C.1 High-Level Flow
1. After an FM crash or graceful exit, the hypervisor will run the –restart command line

option to start FM and resume the operation.
2. After restarting FM, in 60 seconds the hypervisor will use the

fmSetActivatedFabricPartitions () API and provide a list of currently activated
guest VM partitions.
This is because FM has no knowledge about the guest VM changes when it is not running.
If there are no activated guest VM partitions running when FM is restarted, the hypervisor
will call the fmSetActivatedFabricPartitions() API with number of partitions as
zero.

3. To start Fabric Manager with the typical process, or to reinitialize the software and
hardware states, the hypervisor will follow the typical Service VM starting sequence
without the --restart option.

C.2 Detailed Resiliency Flow
When FM is started in normal mode, after initializing all the NVLink devices and discovering
the NVLink connections, FM will save the required metadata information in the
/tmp/fabricmanger.state file. However, this location can be changed by setting the new
file location to STATE_FILE_NAME FM config file item. The saved state is a snapshot of
detected GPU information (UUID, physical Id) and the currently supported guest VM partition
metadata.

When FM is started with the --restart command line option, it will skip most of its NVLink
and NVSwitch initialization steps and populate the required information from the stored file.
FM will wait for the hypervisor to provide a list of currently activated guest VM partitions.
During this time, typical partition operations such as querying the list of supported guest VM
partitions, activating and deactivating guest VM partitions, and so on, will be rejected. After the

Resiliency

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 86

list of active guest VM partition information is received from hypervisor, FM will ensure that
routing is enabled only for those partitions. After these steps have completed, FM will enable
typical guest VM partition activation and the deactivation workflow.

If FM cannot resume from the current state or the hypervisor does not provide the list of
currently activated guest VM partitions before the timeout period, the restart operation will be
aborted, and FM will exit.

Figure 7 shows the high-level flow when FM is started with typical command-line options and
the --restart option.

Resiliency

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 87

Figure 7. Fabric Manager Flow: Typical and Restart Options

Discover all NVSwitches & GPUs.
Initialize all NVLinks, discover NVLink
connections, and train all NVLinks.

Write GPU & NVSwitch metadata and
currently supported partition metadata
to the state file

Fabric Manage Normal
Start

 Configure NVSwitch ports and routing
tables on all NVSwitches. Set all routing
entries to invalid.

Reset and turn OFF all the GPU and
NVSwitch NVLinks

Fabric Manage Re - S tart

Read and check the sanity of the saved
state file. Log error and abort if sanity
check failed.

Populate internal
GPU/NVSwitch/Partition Information
from the saved state information

 Wait for Hypervisor to provide list of
currently activated VM partition
information through
fmSetActivatedFabricPartitions ()

 Explicitly disable routing and power off
NVLinks for the partitions which are not
activated based on the list provided by
Hypervisor

Mark internal state as fully initialized and ready to
accept Hypervisor commands

Accept and execute Hypervisor VM partition
activate/deactivate requests.

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3| 88

Appendix D. Error Handling

D.1 FM Initialization Errors
The following errors might occur during FM initialization and topology discovery. These errors
happen only during Host boot time (vGPU mode) or Service VM initialization (Shared NVSwitch
mode), and the assumption is that no guest VMs are running.

Table 12. Errors During FM Initialization

Error Condition Error Impact Recovery
Access NVLink connection
(GPU to NVSwitch) training
failure

Depending on the
ACCESS_LINK_FAILURE_MODE
configuration, FM will disable
partitions that are using the Access
NVLink failed GPU or disable the
connected NVSwitch (and its peer
NVSwitch) and support the partitions
with reduced bandwidth.

• Restart the FM
service (vGPU mode)
or Service VM (Shared
NVSwitch mode)

• If the error persists,
RMA the GPU.

Trunk NVLink connection
(NVSwitch to NVSwitch)
training failure

Depending on the
TRUNK_LINK_FAILURE_MODE
configuration, FM will remove
partitions that are using Trunk
NVLinks or disable the NVSwitch (and
its peer NVSwitch) and support the
partitions with reduced bandwidth.

• Restart FM service
(vGPU mode) or
Service VM (Shared
NVSwitch mode)

• If the error persists,
inspect/reseat the
NVLink Trunk
backplane connector.

Any NVSwitch or GPU
programming/configuration
failures and typical software
errors

Treated as fatal error and FM service
will abort. However, if the
FM_STAY_RESIDENT_ON_FAILURES
configuration option is set, the FM
service will stay running, but partition
activation/deactivation flow will not be
supported.

• Restart the host and
FM service (vGPU
mode) or Service VM
(NVSwitch mode)

• If the error persists,
technical
troubleshooting is
required.

D.2 Partition Life Cycle Errors
Table 13 summarizes potential errors returned by FM SDK APIs while querying supported
partitions or activating/deactivating VM partitions.

Error Handling

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 89

Table 13. VM Partition Life Cycle Errors

Return Code Error Condition/Impact Recovery
FM_ST_BADPARAM

Provided partition ID or
other parameters to the
APIs are invalid.

Use only the partition IDs returned by
fmGetSupportedFabricPartitions
(). Make sure pointer arguments are
not NULL.

FM_ST_NOT_SUPPORTED FM is not started with
required config options.

Make sure that shared fabric mode is
enabled in the FM config file. If not, set
the desired value and restart
FMservice.

• Shared NVSwitch Mode:
SHARED_FABRIC_MODE = 1

• vGPU Mode:
SHARED_FABRIC_MODE = 2

FM_ST_NOT_CONFIGURED

FM APIs are issued before
FM is completely initialized.

Wait until FM service is completely
initialized.

FM_ST_UNINITIALIZED FM interface library has not
been initialized.

Make sure FM interface library is
initialized with call to fmLibInit().

FM_ST_IN_USE Provided partition ID is
already activated or the
GPUs required for the
specified partition are in
use on other activated
partitions.

• Provide a non-activated partition ID.

• Ensure that the GPUs are not in use
by other activated partitions.

FM_ST_UNINITIALIZED Provided partition ID is
already deactivated.

Provide an activated partition ID.

FM_ST_GENERIC_ERROR A generic error has
happened while
activating/deactivating a
VM partition.

Check the associated syslog for specific
and detailed error information.

FM_ST_TIMEOUT A GPU or NVSwitch
configuration setting timed
out.

Check the associated syslog for specific
and detailed error information.

FM_ST_
VERSION_MISMATCH

The client application using
the FM APIs might have
compiled/linked with a
different version of FM
package that is running on
the Service VM.

Ensure that the client application is
compiled and linked with the same, or a
compatible, FM package that is installed
on the Service VM.

Error Handling

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 90

D.3 Runtime NVSwitch Errors
NVSwitch runtime errors can be retrieved or monitored using the following options:
 Through the Host or Service VM syslog and Fabric Manager log file as SXid errors.
 Through the NVSwitch public API interface.
 Through the NVSwitch SMBPBI-based OOB commands.

When an NVSwitch port generates an SXid error, the corresponding error information and
affected GPU partition information will be logged into the host or Service VM syslog.

Depending on the type of SXid errors and the impacted port, the GPUs on the corresponding
guest VM or all other guest VMs might be impacted. Generally, if the impact is local to a guest
VM, the other running guest VMs will not be affected and should function normally.

D.4 Non-Fatal NVSwitch SXid Errors
Table 14 lists potential NVSwitch non-fatal SXid errors that might occur in the field and their
impact.

Table 14. Potential Non-Fatal NVSwitch SXid Errors

SXid & Error String Guest VM Impact Guest VM Recovery
Other Guest VM
Impact

11004 (Ingress invalid
ACL)

This SXid error can
happen only because
of an incorrect FM
partition
configuration and is
expected not to occur
in the field.

Corresponding GPU
NVLink traffic will be
stalled, and the
subsequent GPU access
will hang.
The GPU driver on the
guest VM will abort CUDA
jobs with Xid 45.

• Validate GPU/NVSwitch
fabric partition routing
information using the
NVSwitch-audit tool.

• Restart the guest VM.

If the error is observed
on a Trunk port,
partitions that are using
NVSwitch trunk ports
will be affected

11012, 11021, 11022.
11023, 12021, 12023,
15008, 15011, 19049,
19055, 19057, 19059,
19062, 19065, 19068,
19071, 24001, 24002,
24003
 (Single bit ECC
errors)

No guest VM impact
because the NVSwitch
hardware will auto correct
the ECC errors.

Not Applicable. No Impact

20001 (TX Replay
Error)

NVLink packet needs to be
retransmitted. This error

Not Applicable If the error is observed
on a Trunk port, the

Error Handling

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 91

SXid & Error String Guest VM Impact Guest VM Recovery
Other Guest VM
Impact

might impact the NVLink
throughput of the specified
port.

partitions that are using
NVSwitch trunk ports
might see throughput
impact.

12028 (egress non-
posted PRIV error)

Corresponding GPU
NVLink traffic will be
stalled, and subsequent
GPU access will hang.
The GPU driver on the
guest VM will abort CUDA
jobs with Xid 45.

Restart Guest VM If the error is observed
on a Trunk port, the
partitions that are using
NVSwitch trunk ports
will be affected.

19084(AN1 Heartbeat
Timeout Error)

This error is usually
accompanied by a fatal
SXid error that will affect
the corresponding GPU
NVLink traffic.

Reset all GPUs and all
NVSwitches (refer to
section D.9)

If the error is observed
on a Trunk port, the
partitions that are using
NVSwitch trunk ports
will be affected.

22013(Minion Link
DLREQ interrupt

This SXid can be safely
ignored

 Not Applicable No Impact.

20012 This error could occur due
to a broken/inconsistent
connection or
uncoordinated shutdown

If this issue was not due to
an uncoordinated
shutdown, check link
mechanical connections.

No impact if error is
confined to a single
GPU.

D.5 Fatal NVSwitch SXid Errors
Table 15 lists potential NVSwitch fatal SXid errors that might occur in the field. The hypervisor
must track these SXid source ports (NVLink) to determine whether the error occurred on an
NVSwitch trunk port or NVSwitch access port. The fatal SXid will be propagated to the GPU as
Xid 74 when applicable. The following recommended actions apply to all SXids in Table 15
unless otherwise noted.
 If the error occurred on an NVSwitch access port, the impact will be limited to the

corresponding guest VM.
To recover, shut down the guest VM.

 If the errors occurred on an NVSwitch trunk port, to reset the trunk ports and recover,
shut down the guest VM partitions that are crossing the trunk port.
The partitions can be recreated. Currently, the partitions that are using NVSwitch trunk
ports are the 16x GPU partition and the 8x GPU partitions with four GPUs per baseboard.

Error Handling

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 92

Table 15. Potential Fatal NVSwitch SXid Errors

SXid SXid Error String
11001 ingress invalid command

11009 ingress invalid VCSet

11013 ingress header DBE

11018 ingress RID DBE

11019 ingress RLAN DBE

11020 ingress control parity

12001 egress crossbar overflow

12002 egress packet route

12022 egress input ECC DBE error

12024 egress output ECC DBE error

12025 egress credit overflow

12026 egress destination request ID error

12027 egress destination response ID error

12030 egress control parity error

12031 egress credit parity error

12032 egress flit type mismatch

14017 TS ATO timeout

15001 route buffer over/underflow

15006 route transdone over/underflow

15009 route GLT DBE

15010 route parity

15012 route incoming DBE

15013 route credit parity

19047 NCISOC HDR ECC DBE Error

19048 NCISOC DAT ECC DBE Error

19054 HDR RAM ECC DBE Error

19056 DAT0 RAM ECC DBE Error

19058 DAT1 RAM ECC DBE Error

19060 CREQ RAM HDR ECC DBE Error

19061 CREQ RAM DAT ECC DBE Error

19063 Response RAM HDR ECC DBE Error

19064 Response RAM DAT ECC DBE Error

19066 COM RAM HDR ECC DBE Error

19067 COM RAM DAT ECC DBE Error

19069 RSP1 RAM HDR ECC DBE Error

Error Handling

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 93

SXid SXid Error String

19070 RSP1 RAM DAT ECC DBE Error

20034

LTSSM Fault Up

Guest VM Impact: This SXid is triggered whenever the associated link has gone
down from active. This interrupt is usually associated with other NVLink errors.

Guest VM Recovery: In case of A100, restart the VM. In case of H100, reset the
GPU (refer to section D.9). If issue persists, report GPU issues.

Other Guest VM Impact: No impact if error is confined to a single GPU.

22012 Minion Link NA interrupt

24004 sourcetrack TCEN0 crubmstore DBE

24005 sourcetrack TCEN0 TD crubmstore DBE

24006 sourcetrack TCEN1 crubmstore DBE

24007 sourcetrack timeout error

D.6 Always Fatal NVSwitch SXid Errors
Table 16 lists potential NVSwitch fatal SXid errors that are always fatal to the entire
fabric/system. After an always fatal SXid error has occurred, the guest VM partitions need to
be shut down and one of the following tasks must occur:

 The host needs to be restarted.

 After the NVSwitches and GPUs are SBRed, restart the Service VM restart.

Table 16. Always Fatal NVSwitch SXid Errors

SXid SXid Error String

12020 egress sequence ID error

22003 Minion Halt

22011 Minion exterror

23001 ingress SRC-VC buffer overflow

23002 ingress SRC-VC buffer underflow

23003 egress DST-VC credit overflow

23004 egress DST-VC credit underflow

23005 ingress packet burst error

23006 ingress packet sticky error

23007 possible bubbles at ingress

Error Handling

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 94

SXid SXid Error String

23008 ingress packet invalid dst error

23009 ingress packet parity error

23010 ingress SRC-VC buffer overflow

23011 ingress SRC-VC buffer underflow

23012 egress DST-VC credit overflow

23013 egress DST-VC credit underflow

23014 ingress packet burst error

23015 ingress packet sticky error

23016 possible bubbles at ingress

23017 ingress credit parity error

D.7 Other Notable NVSwitch SXid Errors
Table 17 provides additional SXid errors that might affect the overall fabric/system.

Table 17. Other Notable NVSwitch SXid Errors

SXid SXid Error String Comments/Description

10001 Host_priv_error
The errors are not fatal to the fabric/system, but they
might be followed by other fatal events.

10002 Host_priv_timeout
The errors are not fatal to the fabric/system, but they
might be followed by other fatal events.

10003 Host_unhandled_interrupt

This SXid error is never expected to occur.

If it occurs, it is fatal to the fabric/system, and to recover,
it will require a reset to all GPUs and NVSwitches (refer to
section D.9).

If the error is observed on a Trunk port, the partitions that
are using NVSwitch trunk ports will be affected.

10004 Host_thermal_event_start

Related to thermal events, which are not directly fatal to
the fabric/system, but they indicate that system cooling
might be insufficient.
This error might force the specified NVSwitch Links to
enter power saving mode (Single Lane Mode) and impact
over the NVLink throughput.

10005 Host_thermal_event_end

Related to thermal events, which are not directly fatal to
the fabric/system, but they do indicate that system
cooling might be insufficient.

Error Handling

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 95

For the comprehensive list of other NVSwitch SXid errors, go to
https://github.com/NVIDIA/open-gpu-kernel-
modules/blob/4397463e738d2d90aa1164cc5948e723701f7b53/src/common/nvswitch/interface/
ctrl_dev_nvswitch.h

D.8 High Availability Mode Comparison
Table 18 provides information about the expected behaviors for the existing FM high availability
mode configuration options on DGX A100/ NVIDIA HGX A100 and DGX H100/ NVIDIA HGX H100
systems.

Table 18. High Availability Mode Comparison Between DGX A100/NVIDIA HGX
A100 and DGX-HGX100/ NVIDIA HGX-H100

Configuration
DGX A100/ NVIDIA HGX
A100

DGX A100/ NVIDIA HGX A100

TRUNK_LINK_FAILURE_MODE

High Availability Mode options when
there is a Trunk Link Failure
(NVSwitch to NVSwitch NVLink
failure).

In bare metal or full
passthrough virtualization
mode:

• 0:Exit FM and leave the
system/NVLinks
uninitialized.

• 1: Disable the
NVSwitch and its peer
NVSwitch, which
reduces NVLink P2P
bandwidth.

In Shared NVSwitch or
vGPU-based multitenancy
mode.

• 0: Remove partitions
that are using the
Trunk NVLinks

• 1: Disable the
NVSwitch and its peer
NVSwitch.

All partitions will be
available but with reduced
NVLink P2P bandwidth.

The configuration is not applicable
on DGX H100 and NVIDIA HGX H100
systems, because there are no
trunk NVLinks on these systems.
Also on these systems, this
configuration value is ignored.

NVSWITCH_FAILURE_MODE

High Availability Mode options when
there is a NVSwitch failure or an
NVSwitch is excluded.

In bare metal or full
passthrough virtualization
mode:
• 0: Abort Fabric

Manager.

This configuration is not applicable
on DGX H100 and NVIDIA HGXH100
systems. Also on these systems,
this configuration value is ignored.

https://github.com/NVIDIA/open-gpu-kernel-modules/blob/4397463e738d2d90aa1164cc5948e723701f7b53/src/common/nvswitch/interface/ctrl_dev_nvswitch.h
https://github.com/NVIDIA/open-gpu-kernel-modules/blob/4397463e738d2d90aa1164cc5948e723701f7b53/src/common/nvswitch/interface/ctrl_dev_nvswitch.h
https://github.com/NVIDIA/open-gpu-kernel-modules/blob/4397463e738d2d90aa1164cc5948e723701f7b53/src/common/nvswitch/interface/ctrl_dev_nvswitch.h

Error Handling

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 96

Configuration
DGX A100/ NVIDIA HGX
A100

DGX A100/ NVIDIA HGX A100

 • 1: Disable the
NVSwitch and its peer
NVSwitch, which
reduces P2P
bandwidth.

In Shared NVSwitch or
vGPU based multitenancy
mode:

• 0: Disable partitions
that are using the
NVSwitch

• 1: Disable the
NVSwitch and its peer
NVSwitch.

All partitions will be
available but with reduced
NVLink P2P bandwidth.

In bare metal or full passthrough
virtualization mode:

The four NVSwitches on the
baseboard should be accessible to
FM. If an NVSwitch is not available,
FM will abort and leave the system
as uninitialized.

Depending on the nature of the
failure, the GPU NVLinks might be
active. However, the GPUs will fail
to complete registration with
NVLink fabric and CUDA
application launch will fail.

In Shared NVSwitch or vGPU
based multitenancy mode

The four NVSwitches on the
baseboard should be accessible to
FM. If an NVSwitch is not available,
FM will abort and leave the system
as uninitialized, and the Shared
NVSwitch-related partition APIs
will fail/return an error.

ACCESS_LINK_FAILURE_MODE

High Availability Mode options when
there is an Access Link Failure (GPU
to NVSwitch NVLink failure)

In bare metal or full
passthrough virtualization
mode:

• 0: Remove the GPU
with the Access
NVLink failure from
NVLink P2P capability

• 1: Disable the
NVSwitch and its peer
NVSwitch, which
reduces NVLink P2P
bandwidth

In Shared NVSwitch or
vGPU based multitenancy
mode:

• 0: Disable partitions
that are using the
Access Link failed
GPU.

The configuration is not applicable
on DGX H100 and NVIDIA HGX
H100 systems, and the configured
value is ignored.

In bare metal or full passthrough
virtualization mode

When there is an Access Link
Failure, the corresponding
nvidia-smi output will show the
inactive NVLinks. The GPU will lose
its NVLink peer-to-peer capability.

In Shared NVSwitch or vGPU
based multitenancy mode:

FM will report that all partitions
are available, and partition
activation will be allowed. However,
the corresponding GPU on the

Error Handling

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 97

Configuration
DGX A100/ NVIDIA HGX
A100

DGX A100/ NVIDIA HGX A100

• 1: Disable the
NVSwitch and its peer
NVSwitch.
All partitions will be
available but with
reduced NVLink P2P
bandwidth.

guest VM will report some NVLinks
as InActive and lose the NVLink
peer-to-peer capability.

ABORT_CUDA_JOBS_ON_FM_EXIT

Control running CUDA jobs behavior
when FM service is stopped or
terminated.

• 0: Do not abort running
CUDA jobs when FM
exits. However, new
CUDA job launches
will fail.

• 1: Abort all running
CUDA jobs when
Fabric Manager exits.

The configuration is not applicable
on DGX H100 and NVIDIA HGX
H100 systems and the configured
value is ignored.

On these systems, after FM exits,
the following occurs:

• Running CUDA jobs will
continue to run.

• A new CUDA job launch will
fail.

However, if the GPUs have
persistence mode enabled,
new CUDA job launches will
succeed. Also, after GPU reset
operation, the CUDA job
launch will fail even if the
GPUs have persistence mode
enabled.

D.9 GPU/VM/System Reset Capabilities
and Limitations

Refer to the following excerpt from nvidia-smi man-page
 Used to trigger a reset of one or more GPUs. Can be used to clear GPU HW and SW state in

situations that would otherwise require a machine reboot.
 Typically useful when a double bit ECC error occurs.
 The -i option can be used to target one or more specific devices.

• Without this option, all GPUs are reset., and root is required.
• Applications, such asCUDA application, graphics application like X server, monitoring

application like other instance of nvidia-smi) cannot use these devices.

Error Handling

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 98

Table 19. GPU/VM/System Reset Capabilities and Limitations

 FM State Bare Metal Full
Passthrough
Virtualization
(All devices in
the same VM)

Shared
NVSwitch
Virtualization
(GPUs and
NVSwitches in
different VMs)

Ampere and
later with
direct NVLink
connect

N/A A GPU can be
reset
individually. In
addition, all
GPUs can be
reset without
specifying any
device.

GPU reset not
supported in VMs.
Restart the VM.

N/A

Ampere +
NVSwitch

Running A GPU can be
reset
individually. As
part of GPU
reset operation,
corresponding
NVSwitch side
links will be
reset
automatically as
well by the FM.

GPU reset is not
supported in VMs.
Restart the VM.

Restart the VM.
The service VM
flow should
ensure proper
reset of NVSwitch
links through
communication
with the FM.

Not Running Individual GPU
reset is not
supported.
Reset all GPUs
and NVSwitches
connected
together via
NVLink.

GPU reset is not
supported in VMs.
Restart the VM.

Hopper and
later +
NVSwitch

N/A GPUs can be
reset
individually
regardless of
FM dependency.
In addition, all
GPUs and
NVSwitches can

GPU reset
ability depends
on permissions
allowed to VM
by hypervisor. If
not allowed,
restart VM.

GPU reset ability
depends on
permissions
allowed to VM by
hypervisor. If not
allowed, Restart
VM.

Error Handling

Fabric Manager for NVIDIA NVSwitch Systems DU-09883-001_v1.3 | 99

 FM State Bare Metal Full
Passthrough
Virtualization
(All devices in
the same VM)

Shared
NVSwitch
Virtualization
(GPUs and
NVSwitches in
different VMs)

be reset without
specifying any
device.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051

http://www.nvidia.com

Notice
This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained
in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information
or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver
any Material (defined below), code, or functionality.
NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying
any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are
formed either directly or indirectly by this document.
NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at
customer’s own risk.
NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in
this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to
avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may
result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default,
damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii)
customer product designs.
No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the
third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.
Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.
THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort
DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are
trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI
HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks
NVIDIA, the NVIDIA logo, DGX, HGX, NVLink, and NVSwitch are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries.
Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2023 NVIDIA Corporation & Affiliates. All rights reserved.

http://www.nvidia.com/

	Chapter 1. Overview
	1.1 Introduction
	1.2 NVSwitch-Based Systems
	1.3 Terminology
	1.4 NVSwitch Core Software Stack
	1.5 What is Fabric Manager?

	Chapter 2. Getting Started with Fabric Manager
	2.1 Basic Components
	2.1.1 Fabric Manager Service
	2.1.2 Software Development Kit

	2.2 NVSwitch and NVLink Initialization
	2.3 Supported Platforms
	2.3.1 Hardware Architectures
	2.3.2 NVIDIA Server Architectures
	2.3.3 OS Environment

	2.4 Supported Deployment Models
	2.5 Other NVIDIA Software Packages
	2.6 Installation
	2.6.1 On NVSwitch-Based DGX Server Systems
	2.6.2 On NVSwitch-Based NVIDIA HGX Server Systems

	2.7 Managing the Fabric Manager Service
	2.7.1 Start Fabric Manager
	2.7.2 Stop Fabric Manager
	2.7.3 Check the Fabric Manager Status
	2.7.4 Enable the Fabric Manager Service to Auto Start at Boot
	2.7.5 Disable the Fabric Manager Service Auto Start at Boot
	2.7.6 Check Fabric Manager System Log Messages

	2.8 Fabric Manager Startup Options
	2.9 Fabric Manager Service File
	2.9.1 On Linux-Based Systems

	2.10 Running Fabric Manager as Non-Root
	2.11 Fabric Manager Config Options
	2.11.1 Logging Related Config Items
	2.11.1.1 Setting the Log File Location and Name
	2.11.1.2 Setting Desired Log Level
	2.11.1.3 Setting Log File Append Behavior
	2.11.1.4 Setting Log File Size
	2.11.1.5 Redirect Logs to Syslog
	2.11.1.6 Rotation Settings

	2.11.2 Operating Mode Related Config Items
	2.11.2.1 Fabric Manager Operating Mode
	2.11.2.2 Fabric Manager Restart Mode
	2.11.2.3 Fabric Manager API Interface
	2.11.2.4 Fabric Manager API TCP Port
	2.11.2.5 Fabric Manager Domain Socket Interface
	2.11.2.6 Fabric Manager State

	2.11.3 Miscellaneous Config Items
	2.11.3.1 Prevent Fabric Manager from Daemonizing
	2.11.3.2 Fabric Manager Communication Socket Interface
	2.11.3.3 Fabric Manager Communication TCP Port
	2.11.3.4 Unix Domain Socket for Fabric Manager Communication
	2.11.3.5 Fabric Manager System Topology File Location

	2.11.4 High Availability Mode-Related Config Items
	2.11.4.1 Control Fabric Manager Behavior on Initialization Failure
	2.11.4.2 GPU Access NVLink Failure Mode
	2.11.4.3 NVSwitch Trunk NVLink Failure Mode
	2.11.4.4 NVSwitch Failure Mode
	2.11.4.5 CUDA Jobs Behavior When the Fabric Manager Service is Stopped or Terminated

	Chapter 3. Bare Metal Mode
	3.1 Introduction
	3.2 Fabric Manager Installation
	3.2.1 On NVSwitch-Based DGX Server Systems
	3.2.2 On NVSwitch-Based NVIDIA HGX Server Systems

	3.3 Runtime NVSwitch and GPU Errors
	3.3.1 NVSwitch SXid Errors
	3.3.1.1 NVSwitch Non-Fatal SXid Errors
	3.3.1.2 NVSwitch Fatal SXid Errors

	3.3.2 GPU Xid Errors

	3.4 Interoperability With MIG

	Chapter 4. Virtualization Models
	4.1 Introduction
	4.2 Supported Virtualization Models

	Chapter 5. Fabric Manager SDK
	5.1 Data Structures
	5.2 Initializing the Fabric Manager API interface
	5.3 Shutting Down the Fabric Manager API interface
	5.4 Connect to Running the Fabric Manager Instance
	5.5 Disconnect from Running the Fabric Manager Instance
	5.6 Getting Supported Partitions
	5.7 Activate a GPU Partition
	5.8 Activate a GPU Partition with Virtual Functions
	5.9 Deactivate a GPU Partition
	5.10 Set Activated Partition List after a Fabric Manager Restart
	5.11 Get the NVLink Failed Devices
	5.12 Get Unsupported Partitions

	Chapter 6. Full Passthrough Virtualization Model
	6.1 Supported Virtual Machine Configurations
	6.2 Virtual Machines with 16 GPUs
	6.3 Virtual Machines with Eight GPUS
	6.4 Virtual Machines with Four GPUS
	6.5 Virtual Machines with Two GPUs
	6.6 Virtual Machine with One GPU
	6.7 Other Requirements
	6.8 Hypervisor Sequences
	6.9 Monitoring Errors
	6.10 Limitations

	Chapter 7. Shared NVSwitch Virtualization Model
	7.1 Software Stack
	7.2 Guest VM to Service VM Interaction
	7.3 Preparing the Service Virtual Machine
	7.3.1 The OS Image
	7.3.2 Resource Requirements
	7.3.3 NVIDIA Software Packages
	7.3.4 Fabric Manager Config File Modifications
	7.3.5 Other NVIDIA Software Packages

	7.4 FM Shared Library and APIs
	7.4.1 Sample Code

	7.5 Fabric Manager Resiliency
	7.6 Service Virtual Machine Life Cycle Management
	7.6.1 GPU Partitions
	7.6.2 Building GPUs to Partition Mapping
	7.6.3 Booting the Service Virtual Machine
	7.6.4 Restarting the Service Virtual Machine
	7.6.5 Shutdown the Service

	7.7 Guest Virtual Machine Life Cycle Management
	7.7.1 Guest Virtual Machine NVIDIA Driver Package
	7.7.2 Starting a Guest Virtual Machine
	7.7.3 Shutting Down a Guest Virtual Machine
	7.7.4 Rebooting a Guest Virtual Machine
	7.7.5 Verifying GPU Routing

	7.8 Error Handling
	7.8.1 Guest Virtual Machine GPU Errors
	7.8.2 Handling a Service Virtual Machine Crash

	7.9 Interoperability With a Multi-Instance GPU
	7.9.1 Initializing Service Virtual Machine
	7.9.2 Activating the Guest Virtual Machine

	Chapter 8. vGPU Virtualization Model
	8.1 Software Stack
	8.2 Preparing the vGPU Host
	8.2.1 OS Image
	8.2.2 NVIDIA Software Packages
	8.2.3 Fabric Manager Config File Modifications

	8.3 Fabric Manager-Shared Library and APIs
	8.4 Fabric Manager Resiliency
	8.5 vGPU Partitions
	8.6 Guest Virtual Machine Life Cycle Management
	8.6.1 Activating the Partition and Starting the Virtual Machine
	8.6.2 Deactivating the Partition
	8.6.3 Migrating Virtual Machines
	8.6.4 Verifying GPU Routing

	8.7 Error Handling
	8.7.1 Guest Virtual Machine GPU Errors

	8.8 GPU Reset
	8.9 Interoperability with MIG
	8.9.1 Enabling MIG before Starting the Fabric Manager Service
	8.9.2 Enabling MIG After Starting the Fabric Manager Service

	Chapter 9. Supported High Availability Modes
	9.1 Common Terms
	9.2 GPU Access NVLink Failure
	9.2.1 Fabric Manager Config Item
	9.2.2 Bare Metal Behavior
	9.2.3 Shared NVSwitch and vGPU Virtualization Behavior

	9.3 Trunk NVLink Failure
	9.3.1 Fabric Manager Config Item
	9.3.2 Bare Metal Behavior
	9.3.3 Shared NVSwitch and vGPU Virtualization Behavior

	9.4 NVSwitch Failure
	9.4.1 Fabric Manager Config Item
	9.4.2 Bare Metal Behavior
	9.4.3 Shared NVSwitch and vGPU Virtualization Behavior

	9.5 GPU Failure
	9.5.1 Bare Metal Behavior
	9.5.2 Shared NVSwitch and vGPU Virtualization Behavior

	9.6 Manual Degradation
	9.6.1 GPU Exclusion
	9.6.1.1 GPU Exclusion Flow
	9.6.1.2 Running Application Error Handling
	9.6.1.3 Diagnosing GPU Failures
	9.6.1.4 In-Band GPU Exclude Mechanism
	9.6.1.5 Kernel Module Parameters
	9.6.1.6 Adding/Removing a GPU from the Exclude Candidate List
	9.6.1.7 Listing Excluded GPUs
	9.6.1.8 nvidia-smi
	9.6.1.9 Procfs
	9.6.1.10 Out-of-Band Query
	9.6.1.11 Running GPU Exclusion Scripts
	9.6.1.12 Bare Metal and vGPU Configurations
	9.6.1.13 Full Passthrough Virtualized Configurations
	9.6.1.14 Shared NVSwitch Virtualization Configurations

	9.6.2 NVSwitch Exclusion
	9.6.2.1 In-Band NVSwitch Exclusion
	9.6.2.2 Kernel Module Parameters
	9.6.2.3 Out-of-Band NVSwitch Exclusion

	Appendix A. NVLink Topology
	A.1 NVIDIA HGX-2 GPU Baseboard
	A.2 NVIDIA HGX A100 GPU Baseboard
	A.3 NVIDIA HGX H100 GPU Baseboard

	Appendix B. GPU Partitions
	B.1 DGX-2 and NVIDIA HGX-2
	B.2 DGX A100 and NVIDIA HGX A100
	B.1.1 Default GPU Partitions
	B.1.2 Supported GPU Partitions
	B.3 DGX H100 and HGX H100

	B.1.1 Default GPU Partitions
	B.1.2 Supported GPU Partitions

	Appendix C. Resiliency
	C.1 High-Level Flow
	C.2 Detailed Resiliency Flow

	Appendix D. Error Handling
	D.1 FM Initialization Errors
	D.2 Partition Life Cycle Errors
	D.3 Runtime NVSwitch Errors
	D.4 Non-Fatal NVSwitch SXid Errors
	D.5 Fatal NVSwitch SXid Errors
	D.6 Always Fatal NVSwitch SXid Errors
	D.7 Other Notable NVSwitch SXid Errors
	D.8 High Availability Mode Comparison
	D.9 GPU/VM/System Reset Capabilities and Limitations

