JOASIS

TOSCA Simple Profile in YAML Version
1.3

OASIS Standard
26 February 2020

This stage:

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/1.3/0s/ TOSCA-Simple-Profile-Y AML-
v1.3-0s.pdf (Authoritative)

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/0s/ TOSCA-Simple-Profile-YAML-
v1.3-0s.html

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/0s/ TOSCA-Simple-Profile-YAML-
v1.3-0s.docx

Previous stage:
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/csprd01/TOSCA-Simple-Profile-
YAML-v1.3-csprd01.pdf (Authoritative)
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/csprd01/TOSCA-Simple-Profile-
YAML-v1.3-csprd0l1.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/csprd01/TOSCA-Simple-Profile-
YAML-v1.3-csprd01.docx

Latest stage:

https://docs.oasis-open.org/tosca/ TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-
v1.3.pdf (Authoritative)

https://docs.oasis-open.org/tosca/ TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-
v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-
v1.3.docx

Technical Committee:
OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC

Chairs:
Paul Lipton (paul.lipton@live.com), Individual Member
Chris Lauwers (lauwers@ubicity.com), Individual Member

Editors:

Matt Rutkowski (mrutkows@us.ibm.com), IBM

Chris Lauwers (lauwers@ubicity.com), Individual Member
Claude Noshpitz (claude.noshpitz@att.com), AT&T

Calin Curescu (calin.curescu@ericsson.com), Ericsson

Related work:

This specification replaces or supersedes:

e TOSCA Simple Profile in YAML Version 1.2. Edited by Matt Rutkowski, Luc Boutier, and Chris
Lauwers. OASIS Standard. Latest version: https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/NV1.2/TOSCA-Simple-Profile-YAML-v1.2.html.

This specification is related to:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 1 of 372

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.docx
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.docx
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/csprd01/TOSCA-Simple-Profile-YAML-v1.3-csprd01.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/csprd01/TOSCA-Simple-Profile-YAML-v1.3-csprd01.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/csprd01/TOSCA-Simple-Profile-YAML-v1.3-csprd01.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/csprd01/TOSCA-Simple-Profile-YAML-v1.3-csprd01.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/csprd01/TOSCA-Simple-Profile-YAML-v1.3-csprd01.docx
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/csprd01/TOSCA-Simple-Profile-YAML-v1.3-csprd01.docx
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.docx
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.docx
https://www.oasis-open.org/committees/tosca/
mailto:paul.lipton@live.com
mailto:lauwers@ubicity.com
mailto:mrutkows@us.ibm.com
http://www.ibm.com/
mailto:lauwers@ubicity.com
mailto:claude.noshpitz@att.com
http://www.att.com/
mailto:calin.curescu@ericsson.com
http://ericsson.com/
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html

e Topology and Orchestration Specification for Cloud Applications Version 1.0. Edited by Derek Palma
and Thomas Spatzier. OASIS Standard. Latest version: http://docs.oasis-
open.org/tosca/TOSCA/N1.0/TOSCA-v1.0.html.

Declared XML namespace:
e http://docs.oasis-open.org/tosca/ns/simple/yaml/1.3

Abstract:

This document defines a simplified profile of the TOSCA version 1.0 specification in a YAML rendering
which is intended to simplify the authoring of TOSCA service templates. This profile defines a less
verbose and more human-readable YAML rendering, reduced level of indirection between different
modeling artifacts as well as the assumption of a base type system.

Status:

This document was last revised or approved by the membership of OASIS on the above date. The level
of approval is also listed above. Check the “Latest stage” location noted above for possible later revisions
of this document. Any other numbered Versions and other technical work produced by the Technical
Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca#technical.

TC members should send comments on this specification to the TC’s email list. Others should send
comments to the TC’s public comment list, after subscribing to it by following the instructions at the “Send
A Comment” button on the TC’s web page at https://www.oasis-open.org/committees/tosca/.

This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-
open.org/committees/toscalipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for this
Work Product is provided in separate plain text files. In the event of a discrepancy between any such
plain text file and display content in the Work Product's prose narrative document(s), the content in the
separate plain text file prevails.

Citation format:
When referencing this specification the following citation format should be used:

[TOSCA-Simple-Profile-YAML-v1.3]

TOSCA Simple Profile in YAML Version 1.3. Edited by Matt Rutkowski, Chris Lauwers, Claude Noshpitz,
and Calin Curescu. 26 February 2020. OASIS Standard. https://docs.oasis-open.org/tosca/TOSCA-
Simple-Profile-YAML/v1.3/0s/TOSCA-Simple-Profile-YAML-v1.3-0s.html. Latest stage: https://docs.oasis-
open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 2 of 372

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/ns/simple/yaml/1.3
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tosca/
https://www.oasis-open.org/policies-guidelines/ipr#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/tosca/ipr.php
https://www.oasis-open.org/committees/tosca/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html

Notices

Copyright © OASIS Open 2020. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 3 of 372

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

Table of Contents

TaDIE Of EXAMPIES ... oottt e e e et e e e e a bt e e e ek bt e e e e a b et e e e aabr e e e e b r e e e e e 7
LI o L= L o 11] =PRSS 8
1 T Lo [1 o 1o T o PP ERPRT 9
IO | = o 1T OO PT R PR 9
R @] [=Tot 11V PO PP PP PPU P PP TTPPPN 9
1.3 SUMMArY Of KEY TOSCA CONCEPLSeeeiitiiieiiititee ittt ettt e ettt e et e e e st e e et et e e e anb e e e e e anbe e e e s anbeeeeaneee 9
T 0T] [T g 1=) = o) SRR 10
ISR =T 10110 To] (oo Y T P PO PP PO PP PP PPPPRTRPPPPRP 10
1.6 NOtAtioNAl CONVENTIONS.eiiiiiiiie it ettt ettt ettt e ettt e e e ssbae e e e sbeeeeesnbbeeeeanbeeeeesnbbeeaesnbbeeeesnsreeaeans 10
1.7 NOrMALIVE RETEIENCESueeiiiii ittt e e e et e e e e e e s e s nnb e e e e e e e e e e anneeees 11
1.8 NON-NOrMaAtiVe RETEIENCES ...t e e e s e e e e e e nneeees 11
ST €1 (01T T S 11
2 TOSCA DY EXAMPIE ...ttt e bt e e sttt e e s bb e e e e sbb e e e e sbb e e e e anbreeeeabreeaeaa 13
2.1 A *hello world” template for TOSCA Simple Profile in YAML ..., 13
2.2 TOSCA template for a simple software iNStallation ... 16
2.3 Overriding behavior of predefined NOde tyPeS.......ccoo i 17
2.4 TOSCA template for database content deployMENtooiiiiiiiiiiiiiie e 18
2.5 TOSCA template for a two-tier apPliCALIONeiiiiiiiiiiiiie e 21
2.6 Using a custom script to establish a relationship in atemplate............cccoooee i, 23
2.7 Using custom relationship types in @ TOSCA tEMPIALE........ccoiiiiiiiiiiiiieiiiie e 25
2.8 Defining generic dependencies between nodes in atemplate.............cccoeoe e, 26
2.9 Describing abstract requirements for nodes and capabilities in a TOSCA template.............ccoceeee.. 27
2.10 Using node template substitution for model COMPOSItIONcooiiiiiiiiiiiiie e 32
2.11 Using node template substitution for chaining SUbSYStEMS..........ccoooiiiiiiii e, 36
2.12 Using node template substitution to provide product ChOICec.eeviiiiiiiiiiiiiie e, 42
2.13 Grouping NOAE tEMPIALEScccie i ———— 46
2.14 Using YAML Macros to Simplify temMPIatescooiiiiiiiiiii e 48
2.15 Passing information as inputs to Interfaces and Operationsccccoe e, 49
2.16 Returning output values from OperatioNS.........ccociiii i 50
2.17 Receiving asynchronous NOLIfICALIONSciiieiiiiiiiiie e 51
2.18 Topology Template Model versus Instance Model ..., 52
2.19 Using attributes implicitly reflected from properties ... 52
2.20 Creating Multiple Node Instances from the Same Node Template..............cccoeeeeeieeii e, 54
3 TOSCA Simple Profile definitionNs iN YAMLcvuiiiiiiiee et 58
3.1 TOSCA Namespace URI @nd @liASccueiiiiiiiiieiiiiiie ettt 58
3.2 USING NAMESPACES. ... ettt e e e ettt e e e e ettt e e e e e e e s et e ettt e e e e s e s bbbeeeeeeeeeaaanbnbaeeeeaeeeaannbsbneeaaaeaeann 59
3.3 Parameter and PrOPErtY tYPES ...uueii i ittt ettt et e e sttt e e s ab e e s a bt e e b e e e nnnaeeas 63
3.4 NOIMALIVE VBIUES ...ttt e e oo ettt e e e e o e s hb b et e e e e e e e e e abnba e e e e e e e e sannbnbneeaaaeaeann 73
T IO 1S @ AN 1Y = = g T Lo [O SER 75
3.6 Reusable modeling definitioNS.............ueiiiii e e e 75
3.7 Type-SPeCifiCc EFINILIONSueieiiieiii it e e e e et e e e e e e e e s nnbbeeeeeae s 118
3.8 Template-specific EfiNIIONScoiiiiiii e 137
3.9 Topology Template definition.............ueiiiiiii e e e reeeeeeeas 156
3.10 Service Template definitionooueiiiiiii et 164
TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 4 of 372

4 IO I 107 AN U] (o110 1T 177

4.1 Reserved FUNCLON KEYWOITUScii e e e e e st s ee e e s ettt e e e e e e s st e e e e e e e s snnntnaaeeeaeesesnnranneeeees 177
4.2 Environment Variable CONVENLIONSoiiiiiiiiiiiiiiiece et e e et e e e e s e aneraaeeeaee s 177
G Vo 10T o {1 o 1 o] o PRSPPI 180
4.4 PrOPEITY TUNCHONS ... ueiiiii ittt e s e e e e e s e e e e e e e s s st et e e e e e e e e snnntataeeeeeesesnnsranneeeees 182
4.5 AIDULE FUNCHIONS ...t e e e e ettt e e e e e e sttt e e e e e e s e annbneeeeaaens 186
S @ o T=T = 1 o] o I {1 o 1o g USSR 187
4.7 NaVIgation fUNCLIONSoiiiiiieiiiee et e et e et e e e snb et e e e aabe e e e e anbreeeenees 187
B N 4] = Tod (1] o1 1o L OO TR PSR PRP 188
4.9 Context-based Entity Nnames (gIODal)cooeeiiiiiiiiiii e 190
5 TOSCA normative type definitioNSoceeiiiiiiiii e 191
LN TS 1])4 o SRR 191
5.2 TOSCA NOIMALIVE TYPE NAMIESeeiiiiiiiieiitieee ittt e st e et e e s aabb e e e s asbbe e e s asbe e e e asbe e e s anbeeeeanbeeeesanees 191
LoTRC B D= = Y/ 011 T PSSO PUPP PSPPI 191
N 4) =Tt A Y o= TP PU PP OTPPPO 203
5.5 CapabilitiES TYPESueeeeiiiiiiti ettt ettt sttt e e et e e bt e e et e e bt e e e e e e e nbe e e nees 206
NI R e To (U1 =T =T A 157 01 217
5.7 RelatiONSNIP TYPES ...ttt et e bt e s e e e e s bt e e e e e aabe e e nees 217
B 8 I I ACE Ty DS it ———————— 220
I Lo [Y/ o1 PP PP PP R OTPPPO 226
LT KO €1 (o 18] o I 1Y 1= PSSO PUPPO PRSPPI 239
DL POl CY Ty DS it e et ———————————— 240
6 TOSCA Cloud Service Archive (CSAR) fOIMAL.........eviiiiiieiiiiiiee it 242
6.1 Overall StruCtUre 0f @ CSARo e e e 242
6.2 TOSCA MELA Fil@....ceiie ettt et e e e e s e st e e e e e e s e asnbeaeeeeeeeseasnraneeeaeeas 242
6.3 Archive Without TOSCA-METAAALA..........cocuriiiiiiiiie e 243
7 TOSCA WOTKIIOWS ...ttt e et e s s e e e s e e s e s 245
7.1 NOrMAtiVe WOTKFIOWS ...ttt et e e e s e e e e e e e e s e st r e e e e e s e annrneeeeeeens 245
7.2 DecClarative WOTKFIOWSeiiiiiiiii ittt e e e e 245
7.3 IMPErative WOTKFIOWSo.uuiiiiiiiii ittt et e s abae e e e 249
8 TOSCA NEIWOIKING ... e 265
8.1 Networking and Service Template POrtability............ccoooiiiiiiiiii e 265
8.2 CONNECHIVILY SEIMANTICSueeiiieiiieit ettt sttt e s e bt e e et b e e s abb e e e e enbre e e e nees 265
8.3 EXPressing CONNECHIVILY SEMANTICScccciiie it 266
8.4 NEIWOIK PrOVISIONING ...eeiiiiiiiieiiiiie ettt ettt ettt e s e bt e e et b e e e s e nb e e e e enbaeeeenene 268
8.0 N W OTK Ty DS . e ——————— 272
8.6 Network modeling @pPrOBCREScoc.uiiiiiiiie it 277
9 Non-normative type defiNitIONSoo i e e e e e e e e s 283
S I N 1] = T A Y/ o1 PP UTTR ORI 283
S O o T= 1 o1 1Y Y/ 0 1= T PR 285
1 RS N\ oo (= Y/ o 1= TP UUTTT PO 286
10 Component MOAElING USE CASES.....ccoiuiiieiiiiieeiiiete ettt st et e e s st e e e e sabee e e s snbee e e e anbeeeeenneee 290
11 Application MOelNG USE CASES......ciii ittt ettt ettt e e e e e s e bbb e e e e e e e e e e annneeees 297
D10 USE CASES .etutuuuuuuunnunnutunntututetatetataestetetsbe e beb sttt sttt s k8555555t 5 85555558858t e ks8R s st e et n e e b e b nnnn e 297
2 @ 11 0 AN o o =S 345
12.1 A declarative @pPIOACKccoiii ittt e et e e e e e e e e e ab e e e e e e e aaaa 345
TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 5 of 372

12.2 Consideration of Event, Condition and ACHONoiieueiiiiiee e e e e e s e e eaaa s 345

12.3 TYPES OF POICIES ..t e e e e e e e e s et e et e e e e s s st etaeeeaaeaeanntatneeeaeeasannns 345
12.4 Policy relationship CONSIAEIALIONSeeiiiiiiiieiiiiie e e s eneeees 346
D2.5 USE CABSES ..ututuuuuutuuututunntutenetatetutatstebatabebebababe e et s e st st st s kst s b8 585558t 8 k555555588555t s kst 5k s et s e et et e b et e b nbnnes 347
13 Artifact Processing and creating Portable Service TeEMPIAESoevvveeiiiiiiiieeeie e 350
13,1 CSAR ONDOAITING -.etteiitiieeeiitee ettt ekttt ekt e e s bbbt e e s bbbt e e abbe e e e s sbe e e e s bne e e e snbneeesannneeas 350
R A N) = Lox (3 o o Yo =TT o PSPPSR 351
13.3 DYNAMIC AITIFACTSeeieiietiieee ittt s bttt e bbb e e s bt e e skt e e e s nbn e e e s annneees 355
13.4 DiSCUSSION Of EXAMPIES....ciiiieiiiiiiiiiiie et e e e e e s e e e e e s s et e e e e e e e s snnrnaaeeeaeeaesanns 355
13.5 Artifact Types and Metadatal..........uuuuiiieeiiiiiiiiie e e e e e s e e e e e s et raeeeaeeaeaaan 362
O 0o g1 (0] 0 1 =T g ot U PRRP 363
14.1 CONFOrMEANCE TAITGEIS ..uuuutururuieruuereruiuteueuererarerererarerererererererereeeeereeeresssesesssnsnsssnsssssnsnsssnnnsnsnsnsnsnnnnns 363
14.2 Conformance Clause 1: TOSCA YAML Service templateccocvvieeiiiiiieiiiiieciiieee e 363
14.3 Conformance Clause 2: TOSCA PrOCESSOIuuuuuuuurerurernrnrnrnrnenrnrnnnnnrnrnrnrnrnrnrnrnrnrnn————. 363
14.4 Conformance Clause 3: TOSCA OrCNESIIAtONoouviiiiiiiee et e e e e e e 363
14.5 Conformance Clause 4: TOSCA gENEIALONc.ciiuuiiiiiiiiiie ittt e e sibe e e s sbre e e seeeeas 364
14.6 Conformance Clause 5: TOSCA @rChIVEeiiiiiiiiiiiiiii et e e 364
Appendix A. Known EXtENSIONS t0 TOSCA V1.0 ..uiiiiiiiiieiiiiiie ettt 365
N A Y/ o T =T I @ F= T T 1= 365
A2 NOIMEALIVE TYPES ...eeeieiittiiie ettt ettt ettt e e sttt e e s bt e e e ea b et e e e aa ket e e e aab bt e e e aabe e e e e anbbeeeesnbbeeeesnbneeeeans 365
P o] o1=T T bl = T Ao g [0 Y] (=T [[=T oL 367
P o] o1=T g o [O oAV I3 (o I o 11 (e Y2 369
TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 6 of 372

Table of Examples

Example 1 - TOSCA Simple "Hello World" 13
Example 2 - Template with input and output parameter SECIONS..............ueviiiiiiiiiiiiiiiiis 15
Example 3 - Simple (MySQL) software installation on a TOSCA Compute Nnodecccceevivereeeiieeeeennee 16
Example 4 - Node Template overriding its Node Type's "configure" interfacecccccccoeeciviieeeieciiiinnnen, 18
Example 5 - Template for deploying database content on-top of MySQL DBMS middleware.................... 19
Example 6 - Basic two-tier application (web application and database server tiers)............ccccceeeeeevinnnneen. 21
Example 7 - Providing a custom relationship script to establish a connectioncccooiiiiiin 23
Example 8 - A web application Node Template requiring a custom database connection type................. 25
Example 9 - Defining a custom relationsShip tyPecooiv e 26
Example 10 - Simple dependency relationship between two nodes...........cccooiiiiiiiiic 26
Example 11 - An abstract "host" requirement using a node filtercccooe i 28
Example 12 - An abstract Compute node template with a node filter.............cooooiiiiiii e, 29
Example 13 - An abstract database requirement using a node filter..............ccoooviieeiiiiiiiiii e, 30
Example 14 - An abstract database node template...............ouveimiiiiiiiiiii e ———— 31
Example 15 - Referencing an abstract database node template............ccccccooiiiii 33
Example 16 - Using substitution mappings to export a database implementationcccccccvvivivninnnns 35
Example 17 - Declaring a transaction subsystem as a chain of substitutable node templates.................. 37
Example 18 - Defining a TransactionSubsystem node type ... 39
Example 19 - Implementation of a TransactionSubsytem node type using substitution mappings............ 40
Example 20 - Grouping Node Templates for possible policy applicationccccoeeiiiiiiiiiiiee 46
Example 21 - Grouping nodes for anti-colocation policy applicationcccceiiiiiiiii e 47
Example 22 - Using YAML anchors in TOSCA templatesccooiiiiiiiiiiiiie e 48
Example 23 - Properties reflected as attributescoooiiiiiiiiii i 53
Example 24 — TOSCA SD-WAN Service Template........cooociiiiiiii e 55
Example 25 — TOSCA SD-WAN Service Template...........uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiirieievnrverereresenenanenenenennnnnes 56
Example 26 — TOSCA SD-WAN Service TempPlate...........uuuuiuiiiiiiiiiiiiiiiiiiiieiiiiieieresvereveresenenennnnnnnnnnnnnes 57
TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 7 of 372

Table of Figures

Figure 1: Using template substitution to implement a database tier............coccoci 33
Figure 2: SUbSTItution MapPINgScoccuiiiieii e e e e e e e e e e e e e e e e e e e ba e e e e e e e e e e e nannrees 35
Figure 3: Chaining of subsystems in a service templateccccccooviiiiiiiii e 37
Figure 4: Defining subsystem details in a service template............cooociiieiiii e, 40
Figure-5: Typical 3-Tier NEWOIK..........uuuuiiiiiiiiiiiiiiiti bbb aaa e easesssasesesesssssnsnsnnnnnnnnnnnnnnns 269
Figure-6: Generic Service TEMPIALEciiii i e e e e e e e e e e nnneees 278
Figure-7: Service template with network template A ... 278
Figure-8: Service template with network template Boeiiiiiiiii e 279
TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 8 of 372

1 Introduction

1.1 IPR Policy

This specification is provided under the RF on Limited Terms Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents have
been disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-
open.org/committees/toscalipr.php).

1.2 Objective

The TOSCA Simple Profile in YAML specifies a rendering of TOSCA which aims to provide a more
accessible syntax as well as a more concise and incremental expressiveness of the TOSCA DSL in order
to minimize the learning curve and speed the adoption of the use of TOSCA to portably describe cloud
applications.

This proposal describes a YAML rendering for TOSCA. YAML is a human friendly data serialization
standard (http://yaml.org/) with a syntax much easier to read and edit than XML. As there are a number of
DSLs encoded in YAML, a YAML encoding of the TOSCA DSL makes TOSCA more accessible by these
communities.

This proposal prescribes an isomorphic rendering in YAML of a subset of the TOSCA v1.0 XML
specification ensuring that TOSCA semantics are preserved and can be transformed from XML to YAML
or from YAML to XML. Additionally, in order to streamline the expression of TOSCA semantics, the YAML
rendering is sought to be more concise and compact through the use of the YAML syntax.

1.3 Summary of key TOSCA concepts

The TOSCA metamodel uses the concept of service templates that describe cloud workloads as a
topology template, which is a graph of node templates modeling the components a workload is made up
of and of relationship templates modeling the relations between those components. TOSCA further
provides a type system of node types to describe the possible building blocks for constructing a service
template, as well as relationship types to describe possible kinds of relations. Both node and relationship
types may define lifecycle operations to implement the behavior an orchestration engine can invoke when
instantiating a service template. For example, a node type for some software product might provide a
‘create’ operation to handle the creation of an instance of a component at runtime, or a ‘start’ or ‘stop’
operation to handle a start or stop event triggered by an orchestration engine. Those lifecycle operations
are backed by implementation artifacts such as scripts or Chef recipes that implement the actual
behavior.

An orchestration engine processing a TOSCA service template uses the mentioned lifecycle operations to
instantiate single components at runtime, and it uses the relationship between components to derive the
order of component instantiation. For example, during the instantiation of a two-tier application that
includes a web application that depends on a database, an orchestration engine would first invoke the
‘create’ operation on the database component to install and configure the database, and it would then
invoke the ‘create’ operation of the web application to install and configure the application (which includes
configuration of the database connection).

The TOSCA simple profile assumes a number of base types (node types and relationship types) to be
supported by each compliant environment such as a ‘Compute’ node type, a ‘Network’ node type or a
generic ‘Database’ node type. Furthermore, it is envisioned that a large number of additional types for use
in service templates will be defined by a community over time. Therefore, template authors in many cases

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 9 of 372

https://www.oasis-open.org/policies-guidelines/ipr#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/tosca/ipr.php
https://www.oasis-open.org/committees/tosca/ipr.php
http://yaml.org/

will not have to define types themselves but can simply start writing service templates that use existing
types. In addition, the simple profile will provide means for easily customizing and extending existing
types, for example by providing a customized ‘create’ script for some software.

1.4 Implementations

Different kinds of processors and artifacts qualify as implementations of the TOSCA simple profile. Those
that this specification is explicitly mentioning or referring to fall into the following categories:

e TOSCA YAML service template (or “service template”): A YAML document artifact containing a
(TOSCA) topology template (see sections 3.9 “Service template definition”) that represents a
Cloud application. (see sections 3.8 “Topology template definition”)

e TOSCA processor (or “processor”): An engine or tool that is capable of parsing and interpreting a
TOSCA service template for a particular purpose. For example, the purpose could be validation,
translation or visual rendering.

e TOSCA orchestrator (also called orchestration engine): A TOSCA processor that interprets a
TOSCA service template or a TOSCA CSAR in order to instantiate, deploy, and manage the
described application in a Cloud.

e TOSCA generator: A tool that generates a TOSCA service template. An example of generator is
a modeling tool capable of generating or editing a TOSCA service template (often such a tool
would also be a TOSCA processor).

e TOSCA archive (or TOSCA Cloud Service Archive, or “CSAR”): a package artifact that contains a
TOSCA service template and other artifacts usable by a TOSCA orchestrator to deploy an
application.

The above list is not exclusive. The above definitions should be understood as referring to and
implementing the TOSCA simple profile as described in this document (abbreviated here as “TOSCA” for
simplicity).

1.5 Terminology

The TOSCA language introduces a YAML grammar for describing service templates by means of
Topology Templates and towards enablement of interaction with a TOSCA instance model perhaps by
external APIs or plans. The primary focus currently is on design time aspects, i.e. the description of
services to ensure their exchange between Cloud providers, TOSCA Orchestrators and tooling.

The language provides an extension mechanism that can be used to extend the definitions with additional
vendor-specific or domain-specific information.

1.6 Notational Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL", “SHALL NOT”, “SHOULD", “SHOULD
NOT”, “RECOMMENDED", “MAY”, and “OPTIONAL" in this document are to be interpreted as described
in [RFC2119].

1.6.1 Notes

e Sections that are titled “Example” throughout this document are considered non-normative.
o Afeature marked as deprecated in a particular version will be removed in the subsequent version
of the specification.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 10 of 372

1.7 Normative References

Reference Tag Description
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.
[TOSCA-1.0] Topology and Orchestration Topology and Orchestration Specification for

Cloud Applications (TOSCA) Version 1.0, an OASIS Standard, 25 November
2013, http://docs.oasis-open.org/tosca/TOSCA/V1.0/0s/TOSCA-v1.0-o0s.pdf

[YAML-1.2] YAML, Version 1.2, 3rd Edition, Patched at 2009-10-01, Oren Ben-Kiki, Clark
Evans, Ingy dot Net http://www.yaml.org/spec/1.2/spec.html
[YAML-TS-1.1] Timestamp Language-Independent Type for YAML Version 1.1, Working Draft

2005-01-18, http://yaml.org/type/timestamp.html

1.8 Non-Normative References

Reference Tag Description
[Apache] Apache Server, https://httpd.apache.org/
[Chef] Chef, https://chef.io
[NodeJS] Node.js, https://nodejs.org/
[Puppet] Puppet, http://puppetlabs.com/
[WordPress] WordPress, https://wordpress.org/
[Maven-Version] Apache Maven version policy draft:
https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy
[JSON-Spec] The JSON Data Interchange Format (ECMA aqd IETF v.ersions):
e http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-
404.pdf
¢ https://tools.ietf.org/html/rfc7158
[JSON-Schema] JSON Schema specification:
e http://json-schema.org/documentation.html
[XMLSpec] XML Specification, W3C Recommendation, February 1998,

http://www.w3.0rg/TR/1998/REC-xml-19980210

[XML Schema Part 1] XML Schema Part 1: Structures, W3C Recommendation, October 2004,
http://www.w3.0rg/TR/xmlschema-1/

[XML Schema Part 2] XML Schema Part 2: Datatypes, W3C Recommendation, October 2004,
http://mwww.w3.org/TR/xmlschema-2/

[IANA register for https://www.iana.org/assignments/hash-function-text-names/hash-function-text-
Hash Function names.xhtml

Textual Names]

[Jinja2] Jinja2, jinja.pocoo.org/

[Twig] Twig, https://twig.symfony.com

1.9 Glossary

The following terms are used throughout this specification and have the following definitions when used in
context of this document.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 11 of 372

http://www.ietf.org/rfc/rfc2119.txt
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://www.yaml.org/spec/1.2/spec.html
http://yaml.org/type/timestamp.html
https://httpd.apache.org/
https://chef.io/
https://nodejs.org/
http://puppetlabs.com/
https://wordpress.org/
https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://tools.ietf.org/html/rfc7158
http://www.w3.org/TR/xmlschema-2/
https://www.iana.org/assignments/hash-function-text-names/hash-function-text-names.xhtml
https://www.iana.org/assignments/hash-function-text-names/hash-function-text-names.xhtml
http://jinja.pocoo.org/
https://twig.symfony.com/

Term Definition

Instance Model A deployed service is a running instance of a Service Template. More precisely,
the instance is derived by instantiating the Topology Template of its Service
Template, most often by running a declarative workflow that is automatically
generated based on the node templates and relationship templates defined in
the Topology Template.

Node Template A Node Template specifies the occurrence of a component node as part of a
Topology Template. Each Node Template refers to a Node Type that defines
the semantics of the node (e.g., properties, attributes, requirements,
capabilities, interfaces). Node Types are defined separately for reuse purposes.

Relationship A Relationship Template specifies the occurrence of a relationship between

Template nodes in a Topology Template. Each Relationship Template refers to a
Relationship Type that defines the semantics relationship (e.g., properties,
attributes, interfaces, etc.). Relationship Types are defined separately for reuse
purposes.

Service Template A Service Template is typically used to specify the “topology” (or structure) and
“orchestration” (or invocation of management behavior) of IT services so that
they can be provisioned and managed in accordance with constraints and
policies.

Specifically, TOSCA Service Templates optionally allow definitions of a TOSCA
Topology Template, TOSCA types (e.g., Node, Relationship, Capability, Artifact,
etc.), groupings, policies and constraints along with any input or output
declarations.

Topology Model The term Topology Model is often used synonymously with the term Topology
Template with the use of “model” being prevalent when considering a Service
Template’'s topology definition as an abstract representation of an application
or service to facilitate understanding of its functional components and by
eliminating unnecessary details.

Topology Template A Topology Template defines the structure of a service in the context of a
Service Template. A Topology Template consists of a set of Node Template and
Relationship Template definitions that together define the topology model of a
service as a (not necessarily connected) directed graph.The term Topology
Template is often used synonymously with the term Topology Model. The
distinction is that a topology template can be used to instantiate and orchestrate
the model as a reusable pattern and includes all details necessary to

accomplish it.
Abstract Node An abstract node template is a node template that doesn’t define any
Template implementations for the TOSCA lifecycle management operations. Service

designers explicitly mark node templates as abstract using the substitute
directive. TOSCA orchestrators provide implementations for abstract node
templates by finding substituting templates for those node templates.

No-Op Node A No-Op node template is a hode template that does not specify

Template implementations for any of its operations, but is not marked as abstract. No-op
templates only act as placeholders for information to be used by other node
templates and do not need to be orchestrated.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 12 of 372

2 TOSCA by example

This non-normative section contains several sections that show how to model applications with TOSCA
Simple Profile using YAML by example starting with a “Hello World” template up through examples that
show complex composition modeling.

2.1 A “hello world” template for TOSCA Simple Profile in YAML

As mentioned before, the TOSCA simple profile assumes the existence of a small set of pre-defined,
normative set of node types (e.g., a ‘Compute’ node) along with other types, which will be introduced
through the course of this document, for creating TOSCA Service Templates. It is envisioned that many
additional node types for building service templates will be created by communities. Some may be
published as profiles that build upon the TOSCA Simple Profile specification. Using the normative TOSCA
Compute node type, a very basic “Hello World” TOSCA template for deploying just a single server would
look as follows:

Example 1 - TOSCA Simple "Hello World"

tosca_definitions_version: tosca_simple_yaml 1 3tosca_simple_yaml 1 3
description: Template for deploying a single server with predefined properties.

topology template:
node_templates:
db_server:
type: tosca.nodes.Compute
capabilities:
Host container properties
host:
properties:
num_cpus: 1
disk _size: 10 GB
mem_size: 4096 MB
Guest Operating System properties
0s:
properties:
host Operating System image properties
architecture: x86_64
type: linux
distribution: rhel
version: 6.5

The template above contains a very simple topology template” with only a single ‘Compute’ node
template named “db_server that declares some basic values for properties within two of the several
capabilities that are built into the Compute node type definition. All TOSCA Orchestrators are expected to
know how to instantiate a Compute node since it is normative and expected to represent a well-known

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 13 of 372

function that is portable across TOSCA implementations. This expectation is true for all normative
TOSCA Node and Relationship types that are defined in the Simple Profile specification. This means, with
TOSCA'’s approach, that the application developer does not need to provide any deployment or
implementation artifacts that contain code or logic to orchestrate these common software components.
TOSCA orchestrators simply select or allocate the correct node (resource) type that fulfills the application
topologies requirements using the properties declared in the node and its capabilities.

In the above example, the “host” capability contains properties that allow application developers to
optionally supply the number of CPUs, memory size and disk size they believe they need when the
Compute node is instantiated in order to run their applications. Similarly, the “os” capability is used to
provide values to indicate what host operating system the Compute node should have when it is
instantiated.

The logical diagram of the “hello world” Compute node would look as follows:

my_server
Compute
Attributes Capabilities
= private_address
* puhlic_oddress Container
= networks Properties
= ports + num_cpus: 1
+ disk_size: 10 GB
* mem_size: 512 MB
e
OperatingSystem
Properties
+ architecture: x86_64
+ type: linux
+ distribution: rhel
* version: 6.5
Endpaoint
\ | | Edpont |
e = -

As you can see, the Compute node also has attributes and other built-in capabilities, such as Bindable
and Endpoint, each with additional properties that will be discussed in other examples later in this
document. Although the Compute node has no direct properties apart from those in its capabilities, other
TOSCA node type definitions may have properties that are part of the node type itself in addition to
having Capabilities. TOSCA orchestration engines are expected to validate all property values provided
in a node template against the property definitions in their respective node type definitions referenced in
the service template. The tosca_definitions_version keyname in the TOSCA service template
identifies the versioned set of normative TOSCA type definitions to use for validating those types defined
in the TOSCA Simple Profile including the Compute node type. Specifically, the value
tosca_simple_yaml_1_3 indicates Simple Profile v1.3.0 definitions would be used for validation. Other
type definitions may be imported from other service templates using the import keyword discussed later.

2.1.1 Requesting input parameters and providing output

Typically, one would want to allow users to customize deployments by providing input parameters instead
of using hardcoded values inside a template. In addition, output values are provided to pass information
that perhaps describes the state of the deployed template to the user who deployed it (such as the private
IP address of the deployed server). A refined service template with corresponding inputs and outputs
sections is shown below.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 14 of 372

Example 2 - Template with input and output parameter sections

tosca_definitions_version: tosca_simple_yaml 1 3

description: Template for deploying a single server with predefined properties.

topology template:
inputs:
db_server_num_cpus:
type: integer
description: Number of CPUs for the server.
constraints:
- valid_values: [1, 2, 4, 8]

node_templates:
db_server:
type: tosca.nodes.Compute
capabilities:
Host container properties
host:
properties:
Compute properties
num_cpus: { get_input: db_server_num_cpus }
mem_size: 2048 MB
disk _size: 10 GB
mem_size: 4096 MB
Guest Operating System properties
0s:

omitted for brevity

outputs:
server_ip:
description: The private IP address of the provisioned server.

value: { get_attribute: [db_server, private_address] }

The inputs and outputs sections are contained in the topology_template element of the TOSCA
template, meaning that they are scoped to node templates within the topology template. Input parameters
defined in the inputs section can be assigned to properties of node template within the containing

topology template; output parameters can be obtained from attributes of node templates within the
containing topology template.

Note that the inputs section of a TOSCA template allows for defining optional constraints on each input
parameter to restrict possible user input. Further note that TOSCA provides for a set of intrinsic functions

like get_input, get_property or get_attribute to reference elements within the template or to
retrieve runtime values.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 15 of 372

2.2 TOSCA template for a simple software installation

Software installations can be modeled in TOSCA as node templates that get related to the node template
for a server on which the software would be installed. With a number of existing software node types (e.qg.
either created by the TOSCA work group or a community) template authors can just use those node types
for writing service templates as shown below.

Example 3 - Simple (MySQL) software installation on a TOSCA Compute node

tosca_definitions_version: tosca_simple_yaml 1 3
description: Template for deploying a single server with MySQL software on top.

topology template:
inputs:
mysql_rootpw:
type: string
mysql_port:
type: integer
rest omitted here for brevity

node_templates:
db_server:
type: tosca.nodes.Compute
rest omitted here for brevity

mysql:
type: tosca.nodes.DBMS.MySQL
properties:
root_password: { get_input: mysql_rootpw }
port: { get_input: mysql_port }
requirements:
- host: db_server

outputs:
omitted here for brevity

The example above makes use of a node type tosca.nodes.DBMS.MySQL for the mysql node template to
install MySQL on a server. This node type allows for setting a property root_password to adapt the
password of the MySQL root user at deployment. The set of properties and their schema has been
defined in the node type definition. By means of the get_input function, a value provided by the user at
deployment time is used as the value for the root_password property. The same is true for the port
property.

The mysql node template is related to the db_server node template (of type tosca.nodes.Compute) via
the requirements section to indicate where MySQL is to be installed. In the TOSCA metamodel, nodes
get related to each other when one node has a requirement against some capability provided by another
node. What kinds of requirements exist is defined by the respective node type. In case of MySQL, which

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 16 of 372

is software that needs to be installed or hosted on a compute resource, the underlying node type named
tosca.nodes.SoftwareComponent has a predefined requirement called host, which needs to be fulfilled
by pointing to a node template of type tosca.nodes.Compute.

The logical relationship between the mysql node and its host db_server node would appear as follows:

mysql

DBMS.MySQL

Properties
* rogt_password
+ port —_— 1

Capabilities |
" Requirement

Container

host: db_senver

HostedOn

o

db_server

Compute

" Capabilities |

@

Within the list of requirements, each list entry is a map that contains a single key/value pair where the
symbolic name of a requirement definition is the key and the identifier of the fulfilling node is the value.
The value is essentially the symbolic name of the other node template; specifically, or the example above,
the host requirement is fulfilled by referencing the db_server node template. The underlying TOSCA
DBMS node type already has a complete requirement definition for the host requirement of type Compute
and assures that a HostedOn TOSCA relationship will automatically be created and will only allow a valid
target host node is of type Compute. This approach allows the template author to simply provide the
name of a valid Compute node (i.e., db_server) as the value for the mysql node’s host requirement and
not worry about defining anything more complex if they do not want to.

2.3 Overriding behavior of predefined node types

Node types in TOSCA have associated implementations that provide the automation (e.g. in the form of
scripts such as Bash, Chef or Python) for the normative lifecycle operations of a node. For example, the
node type implementation for a MySQL database would associate scripts to TOSCA node operations like
configure, start, or stop to manage the state of MySQL at runtime.

Many node types may already come with a set of operational scripts that contain basic commands that
can manage the state of that specific node. If it is desired, template authors can provide a custom script
for one or more of the operations defined by a node type in their node template which will override the
default implementation in the type. The following example shows a mysql node template where the
template author provides their own configure script:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 17 of 372

Example 4 - Node Template overriding its Node Type's "configure" interface

tosca_definitions_version: tosca_simple_yaml 1 3

description: Template for deploying a single server with MySQL software on top.

topology_ template:
inputs:
omitted here for brevity

node_templates:
db_server:
type: tosca.nodes.Compute
rest omitted here for brevity

mysql:
type: tosca.nodes.DBMS.MySQL
properties:

root_password: { get_input: mysql rootpw }
port: { get_input: mysql port }
requirements:
- host: db_server
interfaces:
Standard:
configure: scripts/my_own_configure.sh

outputs:
omitted here for brevity

In the example above, the my_own_configure. sh script is provided for the configure operation of the
MySQL node type’s Standard lifecycle interface. The path given in the example above (i.e., ‘scripts/’) is
interpreted relative to the template file, but it would also be possible to provide an absolute URI to the
location of the script.

In other words, operations defined by node types can be thought of as “hooks” into which automation can
be injected. Typically, node type implementations provide the automation for those “hooks”. However,
within a template, custom automation can be injected to run in a hook in the context of the one, specific
node template (i.e. without changing the node type).

2.4 TOSCA template for database content deployment

In the Example 4, shown above, the deployment of the MySQL middleware only, i.e. without actual
database content was shown. The following example shows how such a template can be extended to
also contain the definition of custom database content on-top of the MySQL DBMS software.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 18 of 372

Example 5 - Template for deploying database content on-top of MySQL DBMS middleware

tosca_definitions_version: tosca_simple_yaml 1 3

description: Template for deploying a single server with predefined properties.

topology template:
inputs:
wordpress_db_name:
type: string
wordpress_db_user:
type: string
wordpress_db_password:
type: string
rest omitted here for brevity

node_templates:
db_server:
type: tosca.nodes.Compute
rest omitted here for brevity

mysql:
type: tosca.nodes.DBMS.MySQL
rest omitted here for brevity

wordpress_db:
type: tosca.nodes.Database.MySQL
properties:
name: { get_input: wordpress_db_name }
user: { get_input: wordpress_db_user }
password: { get_input: wordpress_db_password }
artifacts:
db_content:
file: files/wordpress_db_content.txt
type: tosca.artifacts.File
requirements:
- host: mysql
interfaces:
Standard:
create:
implementation: db_create.sh

inputs:

TOSCA-Simple-Profile-YAML-v1.3-0s
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

26 February 2020
Page 19 of 372

Copy DB file artifact to server’s staging area
db_data: { get_artifact: [SELF, db_content] }

outputs:
omitted here for brevity

In the example above, the wordpress_db node template of type tosca.nodes.Database.MySQL
represents an actual MySQL database instance managed by a MySQL DBMS installation. The
requirements section of the wordpress_db node template expresses that the database it represents is
to be hosted on a MySQL DBMS node template named mysql which is also declared in this template.

In the artifacts section of the wordpress_db the node template, there is an artifact definition named
db_content which represents a text file wordpress_db_content.txt which in turn will be used to add
content to the SQL database as part of the create operation.

As you can see above, a script is associated with the create operation with the name db_create.sh.
The TOSCA Orchestrator sees that this is not a named artifact declared in the node’s artifact section, but
instead a filename for a normative TOSCA implementation artifact script type (i.e.,
tosca.artifacts.Implementation.Bash). Since this is an implementation type for TOSCA, the
orchestrator will execute the script automatically to create the node on db_server, but first it will prepare
the local environment with the declared inputs for the operation. In this case, the orchestrator would see
that the db_data input is using the get_artifact function to retrieve the file
(wordpress_db_content.txt) which is associated with the db_content artifact name prior to executing
the db_create. sh script.

The logical diagram for this example would appear as follows:

my_db

Database.MySQL

Properties —————— L
+ passworg | Capabilities
. ;:{ EndpointDB

* name < ——————

" Lifecycle.Standard | | Redquirements |
Container
hast: mysgl

A

Artifacts:

get_artifact()
* db_content [, |

""""" > create: db_create.sh

- -

mysqgl

HostedOn
DEMS.MySQL —
Properties ~
* root_password
* port — L
Capabilities
(Requirements |
Container
| haost db_server
\ \
_ .
HostedOn
db_server
Compute 'T‘
" Capabilities
|
TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 20 of 372

Note that while it would be possible to define one node type and corresponding node templates that
represent both the DBMS middleware and actual database content as one entity, TOSCA normative node
types distinguish between middleware (container) and application (containee) node types. This allows on
one hand to have better re-use of generic middleware node types without binding them to content running
on top of them, and on the other hand this allows for better substitutability of, for example, middleware
components like a DBMS during the deployment of TOSCA models.

2.5 TOSCA template for a two-tier application

The definition of multi-tier applications in TOSCA is quite similar to the example shown in section 2.2, with
the only difference that multiple software node stacks (i.e., node templates for middleware and application
layer components), typically hosted on different servers, are defined and related to each other. The
example below defines a web application stack hosted on the web_server “compute” resource, and a
database software stack similar to the one shown earlier in section 6 hosted on the db_server compute
resource.

Example 6 - Basic two-tier application (web application and database server tiers)

tosca_definitions_version: tosca_simple_yaml_1_3
description: Template for deploying a two-tier application servers on 2 servers.

topology template:
inputs:
Admin user name and password to use with the WordPress application
wp_admin_username:
type: string
wp_admin_password:
type: string
mysql_root_password:
type: string
context_root:
type: string
rest omitted here for brevity

node_templates:
db_server:
type: tosca.nodes.Compute

rest omitted here for brevity
mysql:
type: tosca.nodes.DBMS.MySQL

rest omitted here for brevity

wordpress_db:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 21 of 372

type: tosca.nodes.Database.MySQL
rest omitted here for brevity

web_server:
type: tosca.nodes.Compute
rest omitted here for brevity

apache:
type: tosca.nodes.WebServer.Apache
requirements:
- host: web_server
rest omitted here for brevity

wordpress:
type: tosca.nodes.WebApplication.WordPress
properties:
context_root: { get_input: context_root }
admin_user: { get_input: wp_admin_username }
admin_password: { get_input: wp_admin_password }
db_host: { get_attribute: [db_server, private_address] }
requirements:
- host: apache
- database_endpoint: wordpress_db
interfaces:
Standard:
inputs:
db_host: { get_attribute: [db_server, private_address] }
db_port: { get_property: [mysql, port] }
db_name: { get_property: [wordpress_db, name] }
db_user: { get_property: [wordpress_db, user] }
db_password: { get_property: [wordpress_db, password] }

outputs:
omitted here for brevity

The web application stack consists of the wordpress [WordPress], the apache [Apache] and the
web_server node templates. The wordpress node template represents a custom web application of type
tosca.nodes.WebApplication.WordPress which is hosted on an Apache web server represented by the
apache node template. This hosting relationship is expressed via the host entry in the requirements
section of the wordpress node template. The apache node template, finally, is hosted on the
web_server compute node.

The database stack consists of the wordpress_db, the mysql and the db_server node templates. The
wordpress_db node represents a custom database of type tosca.nodes.Database.MySQL which is

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 22 of 372

hosted on a MySQL DBMS represented by the mysql node template. This node, in turn, is hosted on the
db_server compute node.

The wordpress node requires a connection to the wordpress_db node, since the WordPress application
needs a database to store its data in. This relationship is established through the database_endpoint
entry in the requirements section of the wordpress node template’s declared node type. For configuring
the WordPress web application, information about the database to connect to is required as input to the
configure operation. Therefore, the input parameters are defined and values for them are retrieved from
the properties and attributes of the wordpress_db node via the get_property and get_attribute
functions. In the above example, these inputs are defined at the interface-level and would be available to
all operations of the Standard interface (i.e., the tosca.interfaces.node.lifecycle.Standard
interface) within the wordpress node template and not just the configure operation.

2.6 Using a custom script to establish a relationship in a template

In previous examples, the template author did not have to think about explicit relationship types to be
used to link a requirement of a node to another node of a model, nor did the template author have to think
about special logic to establish those links. For example, the host requirement in previous examples just
pointed to another node template and based on metadata in the corresponding node type definition the
relationship type to be established is implicitly given.

In some cases, it might be necessary to provide special processing logic to be executed when
establishing relationships between nodes at runtime. For example, when connecting the WordPress
application from previous examples to the MySQL database, it might be desired to apply custom
configuration logic in addition to that already implemented in the application node type. In such a case, it
is possible for the template author to provide a custom script as implementation for an operation to be
executed at runtime as shown in the following example.

Example 7 - Providing a custom relationship script to establish a connection

tosca_definitions_version: tosca_simple_yaml_1_3
description: Template for deploying a two-tier application on two servers.

topology template:
inputs:
omitted here for brevity

node_templates:
db_server:
type: tosca.nodes.Compute

rest omitted here for brevity

mysql:
type: tosca.nodes.DBMS.MySQL
rest omitted here for brevity

wordpress_db:
type: tosca.nodes.Database.MySQL
rest omitted here for brevity

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 23 of 372

web_server:
type: tosca.nodes.Compute
rest omitted here for brevity

apache:
type: tosca.nodes.WebServer.Apache
requirements:
- host: web_server

rest omitted here for brevity

wordpress:
type: tosca.nodes.WebApplication.WordPress
properties:
omitted here for brevity
requirements:
- host: apache
- database_endpoint:
node: wordpress_db
relationship: wp_db_connection

rest omitted here for brevity

wordpress_db:
type: tosca.nodes.Database.MySQL
properties:
omitted here for the brevity
requirements:

- host: mysql

relationship_templates:
wp_db_connection:
type: ConnectsTo
interfaces:
Configure:
pre_configure_source: scripts/wp_db_configure.sh

outputs:
omitted here for brevity

The node type definition for the wordpress node template is WordPress which declares the complete
database_endpoint requirement definition. This database_endpoint declaration indicates it must be
fulfilled by any node template that provides an Endpoint.Database Capability Type using a ConnectsTo
relationship. The wordpress_db node template’s underlying MySQL type definition indeed provides the

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 24 of 372

Endpoint.Database Capability type. In this example however, no explicit relationship template is
declared; therefore, TOSCA orchestrators would automatically create a ConnectsTo relationship to
establish the link between the wordpress node and the wordpress_db node at runtime.

The ConnectsTo relationship (see 5.7.4) also provides a default Configure interface with operations that
optionally get executed when the orchestrator establishes the relationship. In the above example, the
author has provided the custom script wp_db_configure.sh to be executed for the operation called
pre_configure_source. The script file is assumed to be located relative to the referencing service
template such as a relative directory within the TOSCA Cloud Service Archive (CSAR) packaging format.
This approach allows for conveniently hooking in custom behavior without having to define a completely
new derived relationship type.

2.7 Using custom relationship types in a TOSCA template

In the previous section it was shown how custom behavior can be injected by specifying scripts inline in
the requirements section of node templates. When the same custom behavior is required in many
templates, it does make sense to define a new relationship type that encapsulates the custom behavior in
a re-usable way instead of repeating the same reference to a script (or even references to multiple
scripts) in many places.

Such a custom relationship type can then be used in templates as shown in the following example.

Example 8 - A web application Node Template requiring a custom database connection type

tosca_definitions_version: tosca_simple _yaml 1 3
description: Template for deploying a two-tier application on two servers.

topology template:
inputs:
omitted here for brevity

node_templates:
wordpress:

type: tosca.nodes.WebApplication.WordPress

properties:
omitted here for brevity

requirements:
- host: apache
- database_endpoint:

node: wordpress_db
relationship: my.types.WordpressDbConnection

wordpress_db:
type: tosca.nodes.Database.MySQL
properties:
omitted here for the brevity

requirements:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 25 of 372

- host: mysql

other resources not shown here ...

In the example above, a special relationship type my.types.WordpressDbConnection is specified for
establishing the link between the wordpress node and the wordpress_db node through the use of the
relationship keyword in the database reference. It is assumed, that this special relationship type
provides some extra behavior (e.g., an operation with a script) in addition to what a generic “connects to
relationship would provide. The definition of this custom relationship type is shown in the following
section.

2.7.1 Definition of a custom relationship type

The following YAML snippet shows the definition of the custom relationship type used in the previous
section. This type derives from the base “ConnectsTo” and overrides one operation defined by that base
relationship type. For the pre_configure_source operation defined in the Configure interface of the
ConnectsTo relationship type, a script implementation is provided. It is again assumed that the custom
configure script is located at a location relative to the referencing service template, perhaps provided in
some application packaging format (e.g., the TOSCA Cloud Service Archive (CSAR) format).

Example 9 - Defining a custom relationship type

tosca_definitions_version: tosca_simple_yaml 1 3
description: Definition of custom WordpressDbConnection relationship type

relationship_types:
my .types.WordpressDbConnection:
derived_from: tosca.relationships.ConnectsTo
interfaces:
Configure:
pre_configure_source: scripts/wp_db_configure.sh

2.8 Defining generic dependencies between nodes in a template

In some cases, it can be necessary to define a generic dependency between two nodes in a template to
influence orchestration behavior, i.e. to first have one node processed before another dependent node
gets processed. This can be done by using the generic dependency requirement which is defined by the
TOSCA Root Node Type and thus gets inherited by all other node types in TOSCA (see section 5.9.1).

Example 10 - Simple dependency relationship between two nodes
tosca_definitions_version: tosca_simple _yaml 1 3
description: Template with a generic dependency between two nodes.
topology template:
inputs:

omitted here for brevity

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 26 of 372

node_templates:
my_app:
type: my.types.MyApplication
properties:
omitted here for brevity
requirements:

- dependency: some_service

some_service:
type: some.nodetype.SomeService
properties:
omitted here for brevity

As in previous examples, the relation that one node depends on another node is expressed in the
requirements section using the built-in requirement named dependency that exists for all node types in
TOSCA. Even if the creator of the MyApplication node type did not define a specific requirement for
SomeService (similar to the database requirement in the example in section 2.6), the template author
who knows that there is a timing dependency and can use the generic dependency requirement to
express that constraint using the very same syntax as used for all other references.

2.9 Describing abstract requirements for nodes and capabilities in a
TOSCA template

In TOSCA templates, nodes are either:

e Concrete: meaning that they have a deployment and/or one or more implementation artifacts that
are declared on the “create” operation of the node’s Standard lifecycle interface, or they are

o Abstract: where the template describes only the node type along with its required capabilities
and properties that must be satisfied.

TOSCA Orchestrators, by default, when finding an abstract node in TOSCA Service Template during
deployment will attempt to “select” a concrete implementation for the abstract node type that best
matches and fulfills the requirements and property constraints the template author provided for that
abstract node. The concrete implementation of the node could be provided by another TOSCA Service
Template (perhaps located in a catalog or repository known to the TOSCA Orchestrator) or by an existing
resource or service available within the target Cloud Provider’s platform that the TOSCA Orchestrator
already has knowledge of.

TOSCA supports two methods for template authors to express requirements for an abstract node within a
TOSCA service template.

1. Using a target node_filter: where a node template can describe a requirement (relationship) for
another node without including it in the topology. Instead, the node provides a node_filter to
describe the target node type along with its capabilities and property constrains

2. Using an abstract node template: that describes the abstract node’s type along with its property
constraints and any requirements and capabilities it also exports. This first method you have

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 27 of 372

already seen in examples from previous chapters where the Compute node is abstract and
selectable by the TOSCA Orchestrator using the supplied Container and OperatingSystem
capabilities property constraints.

These approaches allow architects and developers to create TOSCA service templates that are
composable and can be reused by allowing flexible matching of one template’s requirements to another’s
capabilities. Examples of both these approaches are shown below.

The following section describe how a user can define a requirement for an orchestrator to select an
implementation and replace a node. For more details on how an orchestrator may perform matching and
select a node from it's catalog(s) you may look at section 14 of the specification.

2.9.1 Using a node_filter to define hosting infrastructure requirements for a
software

Using TOSCA, it is possible to define only the software components of an application in a template and
just express constrained requirements against the hosting infrastructure. At deployment time, the provider
can then do a late binding and dynamically allocate or assign the required hosting infrastructure and
place software components on top.

This example shows how a single software component (i.e., the mysql node template) can define its host
requirements that the TOSCA Orchestrator and provider will use to select or allocate an appropriate host
Compute node by using matching criteria provided on a node_filter.

Example 11 - An abstract "host" requirement using a node filter
tosca_definitions_version: tosca_simple_yaml 1 3
description: Template with requirements against hosting infrastructure.
topology template:
inputs:

omitted here for brevity

node_templates:

mysql:
type: tosca.nodes.DBMS.MySQL
properties:

omitted here for brevity
requirements:
- host:
node_filter:
capabilities:
Constraints for selecting “host” (Container Capability)
- host:
properties:

- num_cpus: { in_range: [1, 4] }

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 28 of 372

- mem_size: { greater_or_equal: 2 GB }
Constraints for selecting “os” (OperatingSystem Capability)
- os:
properties:
- architecture: { equal: x86_64 }
- type: linux
- distribution: ubuntu

In the example above, the mysql component contains a host requirement for a node of type Compute
which it inherits from its parent DBMS node type definition; however, there is no declaration or reference
to any node template of type Compute. Instead, the mysql node template augments the abstract “host”
requirement with a node_filter which contains additional selection criteria (in the form of property
constraints that the provider must use when selecting or allocating a host Compute node.

Some of the constraints shown above narrow down the boundaries of allowed values for certain
properties such as mem_size or num_cpus for the “host” capability by means of qualifier functions such
as greater_or_equal. Other constraints, express specific values such as for the architecture or
distribution properties of the “os” capability which will require the provider to find a precise match.

Note that when no qualifier function is provided for a property (filter), such as for the distribution
property, it is interpreted to mean the equal operator as shown on the architecture property.

2.9.2 Using an abstract node template to define infrastructure requirements
for software

This previous approach works well if no other component (i.e., another node template) other than mysql
node template wants to reference the same Compute node the orchestrator would instantiate. However,
perhaps another component wants to also be deployed on the same host, yet still allow the flexible
matching achieved using a node-filter. The alternative to the above approach is to create an abstract
node template that represents the Compute node in the topology as follows:

Example 12 - An abstract Compute node template with a node filter

tosca_definitions_version: tosca_simple_yaml 1 3
description: Template with requirements against hosting infrastructure.
topology template:

inputs:

omitted here for brevity

node_templates:

mysql:
type: tosca.nodes.DBMS.MySQL
properties:
omitted here for brevity
requirements:

- host: mysql compute

Abstract node template (placeholder) to be selected by provider
mysql_compute:

type: Compute

directives: [select]

node_filter:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 29 of 372

capabilities:
- host:
properties:
num_cpus: { equal: 2 }
mem_size: { greater_or_equal: 2 GB }
- 0s:
properties:
architecture: { equal: x86_64 }
type: linux
distribution: ubuntu

In this node template, the msql_compute node template is marked as abstract using the select directive.
As you can see the resulting mysql_compute node template looks very much like the “hello world”
template as shown in Chapter 2.1 but this one also allows the TOSCA orchestrator more flexibility when
“selecting” a host Compute node by providing flexible constraints for properties like mem_size.

As we proceed, you will see that TOSCA provides many normative node types like Compute for
commonly found services (e.g., BlockStorage, WebServer, Network, etc.). When these TOSCA
normative node types are used in your application’s topology they are always assumed to be
“implementable” by TOSCA Orchestrators which work with target infrastructure providers to find or
allocate the best match for them based upon your application’s requirements and constraints.

2.9.3 Using a node_filter to define requirements on a database for an
application

In the same way requirements can be defined on the hosting infrastructure (as shown above) for an

application, it is possible to express requirements against application or middleware components such as

a database that is not defined in the same template. The provider may then allocate a database by any
means, (e.g. using a database-as-a-service solution).

Example 13 - An abstract database requirement using a node filter

tosca_definitions_version: tosca_simple_yaml 1 3

description: Template with a TOSCA Orchestrator selectable database requirement
using a node_filter.

topology template:
inputs:
omitted here for brevity

node_templates:
my_app:

type: my.types.MyApplication

properties:
admin_user: { get_input: admin_username }
admin_password: { get_input: admin_password }
db_endpoint_url: { get_property: [SELF, database_endpoint, url path] }

requirements:

- database_endpoint:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 30 of 372

hello_world#_A_

node: my.types.nodes.MyDatabase
node_ filter:
properties:
- db_version: { greater_or_equal: 5.5 }

In the example above, the application my_app requires a database node of type MyDatabase which has a
db_version property value of greater_or_equal to the value 5.5.

This example also shows how the get_property intrinsic function can be used to retrieve the url_path
property from the database node that will be selected by the provider and connected to my_app at runtime
due to fulfillment of the database_endpoint requirement. To locate the property, the get_property’s first
argument is set to the keyword SELF which indicates the property is being referenced from something in
the node itself. The second parameter is the name of the requirement named database_endpoint which
contains the property we are looking for. The last argument is the name of the property itself (i.e.,
url_path) which contains the value we want to retrieve and assign to db_endpoint_url.

The alternative representation, which includes a node template in the topology for database that is still
selectable by the TOSCA orchestrator for the above example, is as follows:

Example 14 - An abstract database node template

tosca_definitions_version: tosca_simple_yaml 1 3

description: Template with a TOSCA Orchestrator selectable database using node
template.

topology template:
inputs:
omitted here for brevity

node_templates:
my_app:

type: my.types.MyApplication

properties:
admin_user: { get_input: admin_username }
admin_password: { get_input: admin_password }
db_endpoint_url: { get_property: [SELF, database_endpoint, url _path] }

requirements:
- database_endpoint: my_abstract_database

my_abstract_database:
type: my.types.nodes.MyDatabase
properties:
- db_version: { greater_or_equal: 5.5 }

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 31 of 372

2.10 Using node template substitution for model composition

From an application perspective, it is often not necessary or desired to dive into platform details, but the
platform/runtime for an application is abstracted. In such cases, the template for an application can use
generic representations of platform components. The details for such platform components, such as the
underlying hosting infrastructure and its configuration, can then be defined in separate template files that
can be used for substituting the more abstract representations in the application level template file.
Service designers use the substitute directive to declare node templates as abstract. At deployment
time, TOSCA orchestrators are expected to substitute abstract node templates in a service template
before service orchestration can be performed.

2.10.1 Understanding node template instantiation through a TOSCA
Orchestrator

When a topology template is instantiated by a TOSCA Orchestrator, the orchestrator has to first look for
abstract node templates in the topology template. Abstract node templates are node templates that
include the substitute directive. These abstract node templates must then be realized using
substituting service templates that are compatible with the node types specified for each abstract node
template. Such realizations can either be node types that include the appropriate implementation artifacts
and deployment artifacts that can be used by the orchestrator to bring to life the real-world resource
modeled by a node template. Alternatively, separate topology templates may be annotated as being
suitable for realizing a node template in the top-level topology template.

In the latter case, a TOSCA Orchestrator will use additional substitution mapping information provided as
part of the substituting topology templates to derive how the substituted part gets “wired” into the overall
deployment, for example, how capabilities of a node template in the top-level topology template get
bound to capabilities of node templates in the substituting topology template.

Thus, in cases where no “normal” node type implementation is available, or the node type corresponds to
a whole subsystem that cannot be implemented as a single node, additional topology templates can be
used for filling in more abstract placeholders in top level application templates.

2.10.2 Definition of the top-level service template

The following sample defines a web application web_app connected to a database db. In this example,
the complete hosting stack for the application is defined within the same topology template: the web
application is hosted on a web server web_server, which in turn is installed (hosted) on a compute node
server.

The hosting stack for the database db, in contrast, is not defined within the same file but only the
database is represented as a node template of type tosca.nodes.Database. The underlying hosting
stack for the database is defined in a separate template file, which is shown later in this section. Within
the current template, only a number of properties (user, password, name) are assigned to the database
using hardcoded values in this simple example.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 32 of 372

| ssoee®
db
web_app [Database] database
[WebApplicatio substitutable [Database]
B
1]
Ne}
web_server dbms
[WebServer] [DBMS]

X
o
o

serverl
[Compute]

server
[Compute]

]
L)
]
L]
[}
]
[)
]
]
L]
]
]
]
]
]
]

/4 Y

Figure 1: Using template substitution to implement a database tier

4

When a node template is to be substituted by another service template, this has to be indicated to an
orchestrator by marking he node template as abstract using the substitute directive. Orchestrators can
only instantiate abstract node templates by substituting them with a service template that consists entirely
of concrete nodes. Note that abstract node template substitution may need to happen recursively before a
service template is obtained that consists only of concrete nodes.

Note that in contrast to the use case described in section 2.9.2 (where a database was abstractly referred
to in the requirements section of a node and the database itself was not represented as a node
template), the approach shown here allows for some additional modeling capabilities in cases where this
is required.

For example, if multiple components need to use the same database (or any other sub-system of the
overall service), this can be expressed by means of normal relations between node templates, whereas
such modeling would not be possible in requirements sections of disjoint node templates.

Example 15 - Referencing an abstract database node template

tosca_definitions_version: tosca_simple_yaml 1 3

topology template:
description: Template of an application connecting to a database.

node_templates:
web_app:
type: tosca.nodes.WebApplication.MyWebApp
requirements:
- host: web_server

- database_endpoint: db

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 33 of 372

web_server:
type: tosca.nodes.WebServer
requirements:
- host: server

server:
type: tosca.nodes.Compute
details omitted for brevity

db:
This node is abstract as specified by the substitute directive
and must be substituted with a topology provided by another template
that exports a Database type’s capabilities.
type: tosca.nodes.Database
directives:
- substitute
properties:
user: my_db_user
password: secret
name: my_db_name

2.10.3 Definition of the database stack in a service template

The following sample defines a template for a database including its complete hosting stack, i.e. the
template includes a database node template, a template for the database management system (dbms)
hosting the database, as well as a computer node server on which the DBMS is installed.

This service template can be used standalone for deploying just a database and its hosting stack. In the
context of the current use case, though, this template can also substitute the database node template in
the previous snippet and thus fill in the details of how to deploy the database.

In order to enable such a substitution, an additional metadata section substitution_mappings is added
to the topology template to tell a TOSCA Orchestrator how exactly the topology template will fit into the
context where it gets used. For example, requirements or capabilities of the node that gets substituted by
the topology template have to be mapped to requirements or capabilities of internal node templates for
allow for a proper wiring of the resulting overall graph of node templates.

In short, the substitution_mappings section provides the following information:

1. It defines what node templates, i.e. node templates of which type, can be substituted by the
topology template.

2. It defines how capabilities of the substituted node (or the capabilities defined by the node type of
the substituted node template, respectively) are bound to capabilities of node templates defined
in the topology template.

3. It defines how requirements of the substituted node (or the requirements defined by the node type
of the substituted node template, respectively) are bound to requirements of node templates
defined in the topology template.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 34 of 372

Database

cnli"‘
» database
[Database]
substitution r
mappings o
=
(1]
\/ E
dbms
[DBMS]

server
[Compute]

4

The substitution_mappings section in the sample below denotes that this topology template can be
used for substituting node templates of type tosca.nodes.Database. It further denotes that the
database_endpoint capability of the substituted node gets fulfilled by the database_endpoint
capability of the database node contained in the topology template.

Figure 2: Substitution mappings

Example 16 - Using substitution mappings to export a database implementation

tosca_definitions_version: tosca_simple_yaml 1 3

topology template:
description: Template of a database including its hosting stack.

inputs:
db_user:
type: string
db_password:
type: string
other inputs omitted for brevity

substitution_mappings:
node_type: tosca.nodes.Database
capabilities:
database_endpoint: [database, database_endpoint]

node_templates:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 35 of 372

database:
type: tosca.nodes.Database
properties:
user: { get_input: db_user }
other properties omitted for brevity
requirements:
- host: dbms

dbms:
type: tosca.nodes.DBMS
details omitted for brevity

server:
type: tosca.nodes.Compute
details omitted for brevity

Note that the substitution_mappings section does not define any mappings for requirements of the
Database node type, since all requirements are fulfilled by other nodes templates in the current topology
template. In cases where a requirement of a substituted node is bound in the top-level service template
as well as in the substituting topology template, a TOSCA Orchestrator should raise a validation error.

Further note that no mappings for properties or attributes of the substituted node are defined. Instead, the
inputs and outputs defined by the topology template are mapped to the appropriate properties and
attributes or the substituted node. If there are more inputs than the substituted node has properties,
default values must be defined for those inputs, since no values can be assigned through properties in a
substitution case.

2.11 Using node template substitution for chaining subsystems

A common use case when providing an end-to-end service is to define a chain of several subsystems that
together implement the overall service. Those subsystems are typically defined as separate service
templates to (1) keep the complexity of the end-to-end service template at a manageable level and to (2)
allow for the re-use of the respective subsystem templates in many different contexts. The type of
subsystems may be specific to the targeted workload, application domain, or custom use case. For
example, a company or a certain industry might define a subsystem type for company- or industry specific
data processing and then use that subsystem type for various end-user services. In addition, there might
be generic subsystem types like a database subsystem that are applicable to a wide range of use cases.

2.11.1 Defining the overall subsystem chain

Figure 3 shows the chaining of three subsystem types — a message queuing subsystem, a transaction
processing subsystem, and a databank subsystem — that support, for example, an online booking
application. On the front end, this chain provides a capability of receiving messages for handling in the
message queuing subsystem. The message queuing subsystem in turn requires a number of receivers,
which in the current example are two transaction processing subsystems. The two instances of the
transaction processing subsystem might be deployed on two different hosting infrastructures or
datacenters for high-availability reasons. The transaction processing subsystems finally require a
database subsystem for accessing and storing application specific data. The database subsystem in the
backend does not require any further component and is therefore the end of the chain in this example.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 36 of 372

transl
[Transaction
Subsystem]

substitutable

mq
[Queuing
Subsystem]
substitutable

dbsys
[Database

trans2
[Transaction
Subsystem]

substitutable

Subsystem]
substitutable

4

Figure 3: Chaining of subsystems in a service template

All of the node templates in the service template shown above are abstract and considered substitutable
where each can be treated as their own subsystem; therefore, when instantiating the overall service, the
orchestrator would realize each substitutable node template using other TOSCA service templates.
These service templates would include more nodes and relationships that include the details for each
subsystem. A simplified version of a TOSCA service template for the overall service is given in the

following listing.

Example 17 - Declaring a transaction subsystem as a chain of substitutable node templates

tosca_definitions_version: tosca_simple_yaml 1 3

topology template:

description: Template of online transaction processing service.

node_templates:
mq:
type: example.QueuingSubsystem
directives:
- substitute
properties:
properties omitted for brevity
capabilities:
message_queue_endpoint:
details omitted for brevity
requirements:
- receiver: transl

- receiver: trans2

transl:
type: example.TransactionSubsystem
directives:

- substitute

TOSCA-Simple-Profile-YAML-v1.3-0s

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

26 February 2020
Page 37 of 372

properties:
mg_service ip: { get_attribute: [mqg, service_ ip] }
receiver_port: 8080
capabilities:
message_receiver:
details omitted for brevity
requirements:

- database_endpoint: dbsys

trans2:

type: example.TransactionSubsystem
directives:

- substitute
properties:

mg_service ip: { get_attribute: [mqg, service_ip] }

receiver_port: 8080
capabilities:

message_receiver:

details omitted for brevity

requirements:

- database_endpoint: dbsys

dbsys:

type: example.DatabaseSubsystem
directives:

- substitute
properties:

properties omitted for brevity
capabilities:

database_endpoint:

details omitted for brevity

As can be seen in the example above, the subsystems are chained to each other by binding requirements
of one subsystem node template to other subsystem node templates that provide the respective
capabilities. For example, the receiver requirement of the message queuing subsystem node template
mq is bound to transaction processing subsystem node templates trans1 and trans2.

Subsystems can be parameterized by providing properties. In the listing above, for example, the IP
address of the message queuing server is provided as property mq_service_ip to the transaction
processing subsystems and the desired port for receiving messages is specified by means of the
receiver_port property.

If attributes of the instantiated subsystems need to be obtained, this would be possible by using the
get_attribute intrinsic function on the respective subsystem node templates.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 38 of 372

2.11.2 Defining a subsystem (node) type

The types of subsystems that are required for a certain end-to-end service are defined as TOSCA node
types as shown in the following example. Node templates of those node types can then be used in the
end-to-end service template to define subsystems to be instantiated and chained for establishing the end-
to-end service.

The realization of the defined node type will be given in the form of a whole separate service template as
outlined in the following section.

Example 18 - Defining a TransactionSubsystem node type

tosca_definitions_version: tosca_simple_yaml 1 3

node_types:
example.TransactionSubsystem:
properties:
mg_service_ip:
type: string
receiver_port:
type: integer
attributes:
receiver_ip:
type: string

receiver_port:

type: integer

capabilities:

message_receiver: tosca.capabilities.Endpoint
requirements:
- database_endpoint: tosca.capabilities.Endpoint.Database

Configuration parameters that would be allowed for customizing the instantiation of any subsystem are
defined as properties of the node type. In the current example, those are the properties mq_service_ip
and receiver_port that had been used in the end-to-end service template in section 2.11.1.

Observable attributes of the resulting subsystem instances are defined as attributes of the node type. In
the current case, those are the IP address of the message receiver as well as the actually allocated port
of the message receiver endpoint.

2.11.3 Defining the details of a subsystem

The details of a subsystem, i.e. the software components and their hosting infrastructure, are defined as
node templates and relationships in a service template. By means of substitution mappings that have
been introduced in section 2.10.2, the service template is annotated to indicate to an orchestrator that it
can be used as realization of a node template of a certain type, as well as how characteristics of the node
type are mapped to internal elements of the service template.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 39 of 372

TransactionSubsystem

............ D

[SomeApp]

=
m
o

websrv
[WebServer]

R X
| E
output |

server
[Compute]

4

Figure 1 illustrates how a transaction processing subsystem as outlined in the previous section could be
defined in a service template. In this example, it simply consists of a custom application app of type
SomeApp that is hosted on a web server websrv, which in turn is running on a compute node.

Figure 4: Defining subsystem details in a service template

The application named app provides a capability to receive messages, which is bound to the
message_receiver capability of the substitutable node type. It further requires access to a database, so
the application’s database_endpoint requirement is mapped to the database_endpoint requirement of
the TransactionSubsystem node type.

Properties of the TransactionSubsystem node type are used to customize the instantiation of a
subsystem. Those properties can be mapped to any node template for which the author of the subsystem
service template wants to expose configurability. In the current example, the application app and the web
server middleware websrv get configured through properties of the TransactionSubsystem node type.
All properties of that node type are defined as inputs of the service template. The input parameters in
turn get mapped to node templates by means of get_input function calls in the respective sections of
the service template.

Similarly, attributes of the whole subsystem can be obtained from attributes of particular node templates.
In the current example, attributes of the web server and the hosting compute node will be exposed as
subsystem attributes. All exposed attributes that are defined as attributes of the substitutable
TransactionSubsystem node type are defined as outputs of the subsystem service template.

An outline of the subsystem service template is shown in the listing below. Note that this service template
could be used for stand-alone deployment of a transaction processing system as well, i.e. it is not
restricted just for use in substitution scenarios. Only the presence of the substitution_mappings
metadata section in the topology_template enables the service template for substitution use cases.

Example 19 - Implementation of a TransactionSubsytem node type using substitution mappings

tosca_definitions_version: tosca_simple_yaml 1 3

topology template:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 40 of 372

description: Template of a database including its hosting stack.

inputs:
mg_service_ip:
type: string

description: IP address of the message queuing server to receive messages

from
receiver_port:
type: string
description: Port to be used for receiving messages

other inputs omitted for brevity

substitution_mappings:
node_type: example.TransactionSubsystem
capabilities:
message_receiver: [app, message_receiver]
requirements:
database_endpoint: [app, database]

node_templates:
app:
type: example.SomeApp
properties:
properties omitted for brevity
capabilities:
message_receiver:
properties:
service_ip: { get_input: mqg_service_ip }
other properties omitted for brevity
requirements:
- database:
details omitted for brevity
- host: websrv

websrv:
type: tosca.nodes.WebServer
properties:
properties omitted for brevity
capabilities:
data_endpoint:

properties:

TOSCA-Simple-Profile-YAML-v1.3-0s

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved.

26 February 2020
Page 41 of 372

port_name: { get_input: receiver_port }
other properties omitted for brevity
requirements:
- host: server

server:
type: tosca.nodes.Compute
details omitted for brevity

outputs:
receiver_ip:
description: private IP address of the message receiver application
value: { get_attribute: [server, private_address] }
receiver_port:
description: Port of the message receiver endpoint
value: { get_attribute: [app, app_endpoint, port] }

2.12 Using node template substitution to provide product choice

Some service templates might include abstract node templates that model specific functionality without
fully specifying the exact product or technology that provides that functionality. The objective of such
service templates is to allow the end-user of the service to decide at service deployment time which
specific product component to use.

2.12.1 Defining a service template with vendor-independent component

For example, let's assume an abstract security service that includes a firewall component where the
choice of firewall product is left to the end-user at service deployment time. The following template shows
an example of such a service: it includes an abstract firewall node template that has a vendor property
that represents the firewall vendor. The value of this property is obtained from a topology input variable
that allows end-users to specify the desired firewall vendor at deployment time.

Defining a security service with a vendor-independent firewall component

tosca definitions version: tosca simple yaml 1 3
description: Service template for an abstract security service
topology template:

inputs:
vendorInput:
type: string
rulesInput:
type: list
entry schema: FirewallRules

node templates:
firewall:
type: abstract.Firewall
directives:
- substitute

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 42 of 372

properties:
vendor: { get input: vendorInput }
rules: { get input: rulesInput }

The abstract firewall node type is defined in the following code snippet. The abstract firewall node type
defines a rules property to hold the configured firewall rules. In addition, it also defines a property for
capturing the name of the vendor of the firewall.

Node type defining an abstract firewall component

tosca definitions version: tosca simple yaml 1 3
description: Template defining an abstract firewall component
node types:

abstract.Firewall:
derived from: tosca.nodes.Root

properties:
vendor:
type: string
rules:
type: list

entry schema: FirewallRules

2.12.2 Defining vendor-specific component options

In the above example, the firewall node template is abstract, which means that it needs to be substituted
with a substituting firewall template. Let's assume we have two firewall vendors—ACME Firewalls and
Simple Firewalls—who each provide implementations for the abstract firewall component. Their
respective implementations are defined in vendor-specific service templates. ACME Firewall's service
template might look as follows:

Service template for an ACME firewall

tosca definitions version: tosca simple yaml 1 3
description: Service template for an ACME firewall

topology template:

inputs:
rulesInput:
type: list

entry schema: FirewallRules

substitution mappings:
node type: abstract.Firewall
properties:
rules: [rulesInput]

node templates:

acme:
type: ACMEFirewall
properties:

rules: { get input: rulesInput }
acmeConfig: # any ACME-specific properties go here.

In this example the node type ACMEFirewall is an ACME-specific node type that models the internals of
the ACME firewall product. The ACMEFirewall node type definition is omitted here for brevity since it is
not relevant for the example.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 43 of 372

Similarly, Simple Firewall’s service template looks as follows:

Service template for a Simple Firewall

tosca definitions version: tosca simple yaml 1 3
description: Service template for a Simple Corp. firewall

topology template:

inputs:
rulesInput:
type: list

entry schema: FirewallRules

substitution mappings:
node type: abstract.Firewall
properties:
rules: [rulesInput]

node templates:

acme:
type: SimpleFirewall
properties:

rules: { get input: rulesInput }

As the substitution mappings section in the service templates show, either firewall service template can
be used to implement the abstract firewall component defined above.

2.12.3 Substitution matching using substitution filters

Since both the ACME Firewall and the Simple Firewall can substitute for abstract node templates of type
abstract.Firewall, either firewall is a valid candidate to substitute the abstract firewall node template.
When multiple matching templates are available, the orchestrator must provide mechanisms to allow the
end-user to drive the decision about which matching template must be selected.

TOSCA uses a substitution_filter in the substitution mappings section of a service template to
further constrain the abstract nodes for which a service template can be a valid substitution. Using
substitution filters, a service template is a valid candidate to substitute an abstract node template if the
following two conditions are met:

1. The type advertised in the substitution_mappings section of the service template matches the
type of the abstract node template.

2. The property values of the abstract node template satisfy the constraints defined in the
substitution_filtter of the substituting service template.

In the security service example used in this section, the value of the vendor property of the abstract
firewall node template is provide by the end-user using a topology input parameter. Substituting templates
use a substitution_filter to match the appropriate vendor-specific service templates with the abstract
firewall node template based on the value of the vendor property.

The following code snippet shows an updated version of the ACME Firewall service template. This
version includes a substitution_filter that specifies that this service template only matches abstract firewall
nodes with a vendor property equal to ‘ACME’.

Service template for an ACME firewall with a substitution filter

tosca definitions version: tosca simple yaml 1 3
description: Service template for an ACME firewall

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 44 of 372

topology template:

inputs:
rulesInput:
type: list

entry schema: FirewallRules

substitution mappings:
node type: abstract.Firewall
substitution filter:
properties:

- vendor: { equal: ACME }

properties:
rules: [rulesInput]

node templates:

acme:
type: ACMEFirewall
properties:

rules: { get input: rulesInput }
acmeConfig: # any ACME-specific properties go here.

Similarly, an updated service template for Simple Corp’s firewall looks as follows:

Service template for a Simple firewall with a substitution filter

tosca definitions version: tosca simple yaml 1 3
description: Service template for a Simple Corp. firewall

topology template:

inputs:
rulesInput:
type: list

entry schema: FirewallRules

substitution mappings:
node type: abstract.Firewall
substitution filter:
properties:

= vendor: { equal: Simple }

properties:
rules: [rulesInput]

node templates:

acme:
type: SimpleFirewall
properties:

rules: { get input: rulesInput }

As specified in this example, only abstract firewall node templates that have the vendor property set to
‘Simple’ can be substituted by this service template.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 45 of 372

2.13 Grouping node templates

In designing applications composed of several interdependent software components (or nodes) it is often
desirable to manage these components as a named group. This can provide an effective way of
associating policies (e.g., scaling, placement, security or other) that orchestration tools can apply to all
the components of group during deployment or during other lifecycle stages.

In many realistic scenarios it is desirable to include scaling capabilities into an application to be able to
react on load variations at runtime. The example below shows the definition of a scaling web server stack,
where a variable number of servers with apache installed on them can exist, depending on the load on
the servers.

Example 20 - Grouping Node Templates for possible policy application

tosca_definitions_version: tosca_simple _yaml 1 3
description: Template for a scaling web server.

topology template:
inputs:
omitted here for brevity

node_templates:
apache:
type: tosca.nodes.WebServer.Apache
properties:
Details omitted for brevity
requirements:

- host: server

server:
type: tosca.nodes.Compute
details omitted for brevity

groups:
webserver_group:
type: tosca.groups.Root

members: [apache, server]

The example first of all uses the concept of grouping to express which components (node templates)
need to be scaled as a unit — i.e. the compute nodes and the software on-top of each compute node. This
is done by defining the webserver_group in the groups section of the template and by adding both the
apache node template and the server node template as a member to the group.

Furthermore, a scaling policy is defined for the group to express that the group as a whole (i.e. pairs of
server node and the apache component installed on top) should scale up or down under certain
conditions.

In cases where no explicit binding between software components and their hosting compute resources is
defined in a template, but only requirements are defined as has been shown in section 2.9, a provider

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 46 of 372

could decide to place software components on the same host if their hosting requirements match, or to
place them onto different hosts.

It is often desired, though, to influence placement at deployment time to make sure components get
collocation or anti-collocated. This can be expressed via grouping and policies as shown in the example
below.

Example 21 - Grouping nodes for anti-colocation policy application

tosca_definitions_version: tosca_simple_yaml 1 3

description: Template hosting requirements and placement policy.

topology template:
inputs:
omitted here for brevity

node_templates:
wordpress_server:
type: tosca.nodes.WebServer
properties:
omitted here for brevity
requirements:
- host:
Find a Compute node that fulfills these additional filter regs.
node_filter:
capabilities:
- host:
properties:
- mem_size: { greater_or_equal: 512 MB }

- disk_size: { greater_or_equal: 2 GB }

- 0s:
properties:
- architecture: x86_64
- type: linux
mysql:
type: tosca.nodes.DBMS.MySQL
properties:

omitted here for brevity
requirements:
- host:
node: tosca.nodes.Compute
node_filter:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 47 of 372

capabilities:
- host:
properties:
- disk size: { greater_or_equal: 1 GB }
- os:
properties:
- architecture: x86_64
- type: linux

groups:
my_co_location_group:
type: tosca.groups.Root
members: [wordpress_server, mysql]

policies:
- my_anti_collocation_policy:
type: my.policies.anticolocateion
targets: [my_co_location_group]
For this example, specific policy definitions are considered
domain specific and are not included here

In the example above, both software components wordpress_server and mysql have similar hosting
requirements. Therefore, a provider could decide to put both on the same server as long as both their
respective requirements can be fulfilled. By defining a group of the two components and attaching an anti-
collocation policy to the group it can be made sure, though, that both components are put onto different
hosts at deployment time.

2.14 Using YAML Macros to simplify templates

The YAML 1.2 specification allows for defining of aliases, which allow for authoring a block of YAML (or
node) once and indicating it is an “anchor” and then referencing it elsewhere in the same document as an
“alias”. Effectively, YAML parsers treat this as a “macro” and copy the anchor block’s code to wherever it
is referenced. Use of this feature is especially helpful when authoring TOSCA Service Templates where
similar definitions and property settings may be repeated multiple times when describing a multi-tier
application.

For example, an application that has a web server and database (i.e., a two-tier application) may be
described using two Compute nodes (one to host the web server and another to host the database). The
author may want both Compute nodes to be instantiated with similar properties such as operating system,
distribution, version, etc.

To accomplish this, the author would describe the reusable properties using a named anchor in the
“dsl_definitions” section of the TOSCA Service Template and reference the anchor name as an alias
in any Compute node templates where these properties may need to be reused. For example:

Example 22 - Using YAML anchors in TOSCA templates

tosca_definitions_version: tosca_simple _yaml 1 3

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 48 of 372

http://yaml.org/spec/1.2/spec.html#id2786196

description: >
TOSCA simple profile that just defines a YAML macro for commonly reused Compute
properties.

dsl_definitions:
my_compute_node_props: &my_compute_node_props
disk _size: 10 GB
num_cpus: 1
mem_size: 2 GB

topology template:
node_templates:
my_server:
type: Compute
capabilities:
host:

properties: *my_compute_node_props

my_database:
type: Compute
capabilities:
host:

properties: *my_compute_node_props

2.15 Passing information as inputs to Interfaces and Operations

It is possible for type and template authors to declare input variables within an inputs block on interfaces
to nodes or relationships in order to pass along information needed by their operations (scripts). These
declarations can be scoped such as to make these variable values available to all operations on a node
or relationships interfaces or to individual operations. TOSCA orchestrators will make these values
available using the appropriate mechanisms depending on the type of implementation artifact used for
each operation. For example, when using script artifacts, input values are passed as environment
variables within the execution environments in which the scripts associated with lifecycle operations are
run.

2.15.1 Example: declaring input variables for all operations on a single
interface

node_templates:
wordpress:
type: tosca.nodes.WebApplication.WordPress

requirements:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 49 of 372

- database_endpoint: mysql_database
interfaces:
Standard:
inputs:
wp_db_port: { get property: [SELF, database_endpoint, port] }

2.15.2 Example: declaring input variables for a single operation

node_templates:
wordpress:
type: tosca.nodes.WebApplication.WordPress
requirements:

- database_endpoint: mysql_database
interfaces:
Standard:
create: wordpress_install.sh
configure:
implementation: wordpress_configure.sh
inputs:
wp_db_port: { get property: [SELF, database endpoint, port] }

In the case where an input variable name is defined at more than one scope within the same interfaces
section of a node or template definition, the lowest (or innermost) scoped declaration would override
those declared at higher (or more outer) levels of the definition.

2.16 Returning output values from operations

Service template designers have the ability to define operation outputs that specify named output values
that are expected to be returned by interface operations as well as the attributes on nodes or
relationships into which these output values must be stored.

2.16.1 Example: setting output values to a node attribute

The service template below shows an example service template that is used to create a compute node.
The config operation of the Standard lifecycle returns both the private and the public IP addresses of the
config node. The attribute mappings grammar is used to reflect these addresses into the appropriate
Compute node attributes:

tosca_definitions_version: tosca_simple_yaml 1 3
description: Template for creating compute node

topology template:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 50 of 372

node_templates:

node:
type: tosca.nodes.Compute
interfaces:
Standard:
configure:
outputs:
ipl: [SELF, private_address]
ip2: [SELF, public_address]

2.16.2 Example: setting output values to a capability attribute

Some operation outputs may need to be reflected into attributes of capabilities of nodes, rather than in
attributes of the nodes themselves. The following example shows how an IP address returned by a config
operation is stored in the ip_address attribute of the endpoint capability of a Compute node:

tosca definitions version: tosca simple yaml 1 2 0
description: Template for creating compute node
topology template:

node templates:

compute:
type: tosca.nodes.Compute
interfaces:
Standard:
config:
outputs:
ipl: [SELF, endpoint, ip address]

2.17 Receiving asynchronous notifications

As shown in the previous section, TOSCA allows service template designers to reflect the results of
executing interface operations into node or relationship artifacts using output mappings. However, there
are many situations where components modeled by a node can change independently as a result of
external events (e.g. load changes, failures, mode changes, etc.) rather than as a result of executing
lifecycle management operations. To support those situations, TOSCA includes support for notifications
that allow service template designers to specify how to asynchronously receive external events and how
those events should result in node or relationship attribute changes.

Just like operations, notifications are specified as part of interface definitions. The major difference
between notifications and operations is that the former are called from the outside world to on the
orchestrator, and not the other way around. As a result, notifications do not have inputs defined (since
they are called asynchronously from the outside). Information carried in notifications is pushed to the
orchestrator via notification outputs (similar to operation outputs).

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 51 of 372

The following example shows how a health monitoring interface is used to allow the orchestrator to
monitor the health of a database node by listening for heartbeats as well as by waiting for asynchronous
failure alerts:

tosca_definitions_version: tosca_simple_yaml 1 3
description: Template showing a health monitoring interface

topology template:
node_templates:
db_1:
type: org.ego.nodes.Database
interfaces:
HealthMonitor:
notifications:
heartbeat:
outputs:
tick: [SELF, still alive]
failure_report:
outputs:
level: [SELF, failure_level]
time: [SELF, failure_time]

environment: [SELF, failure_context]

2.18 Topology Template Model versus Instance Model

A TOSCA service template contains a topology template, which models the components of an
application, their relationships and dependencies (a.k.a., a topology model) that get interpreted and
instantiated by TOSCA Orchestrators. The actual node and relationship instances that are created
represent a set of resources distinct from the template itself, called a topology instance (model). The
direction of this specification is to provide access to the instances of these resources for management
and operational control by external administrators. This model can also be accessed by an orchestration
engine during deployment — i.e. during the actual process of instantiating the template in an incremental
fashion, That is, the orchestrator can choose the order of resources to instantiate (i.e., establishing a
partial set of node and relationship instances) and have the ability, as they are being created, to access
them in order to facilitate instantiating the remaining resources of the complete topology template.

2.19 Using attributes implicitly reflected from properties

Most entity types in TOSCA (e.g., Node, Relationship, Capability Types, etc.) have property definitions,
which allow template authors to set the values for as inputs when these entities are instantiated by an
orchestrator. These property values are considered to reflect the desired state of the entity by the author.
Once instantiated, the actual values for these properties on the realized (instantiated) entity are
obtainable via attributes on the entity with the same name as the corresponding property.

In other words, TOSCA orchestrators will automatically reflect (i.e., make available) any property defined
on an entity as an attribute of the entity with the same name as the property.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 52 of 372

Use of this feature is shown in the example below where a source node named my_client, of type
ClientNode, requires a connection to another node named my_server of type ServerNode. As you can
see, the ServerNode type defines a property named notification_port which defines a dedicated port
number which instances of my_client may use to post asynchronous natifications to it during runtime. In
this case, the TOSCA Simple Profile assures that the notification_port property is implicitly reflected
as an attribute in the my_server node (also with the name notification_port) when its node template
is instantiated.

Example 23 - Properties reflected as attributes

tosca_definitions_version: tosca_simple_yaml 1 3

description: >

TOSCA simple profile that shows how the (notification_port) property is reflected
as an attribute and can be referenced elsewhere.

node_types:
ServerNode:
derived_from: SoftwareComponent
properties:
notification_port:
type: integer
capabilities:
omitted here for brevity

ClientNode:
derived_from: SoftwareComponent
properties:
omitted here for brevity
requirements:
- server:
capability: Endpoint
node: ServerNode

relationship: ConnectsTo

topology template:
node_templates:

my_server:
type: ServerNode
properties:

notification_port: 8000

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 53 of 372

my_client:
type: ClientNode
requirements:
- server:

node: my_server
relationship: my_connection

relationship_templates:
my_connection:
type: ConnectsTo
interfaces:
Configure:
inputs:
targ_notify port: { get_attribute: [TARGET, notification_port] }
other operation definitions omitted here for brevity

Specifically, the above example shows that the ClientNode type needs the notification_port value
anytime a node of ServerType is connected to it using the ConnectsTo relationship in order to make it
available to its Configure operations (scripts). It does this by using the get_attribute function to
retrieve the notification_port attribute from the TARGET node of the ConnectsTo relationship (which is
a node of type ServerNode) and assigning it to an environment variable named targ_notify_port.

It should be noted that the actual port value of the notification_port attribute may or may not be the
value 8000 as requested on the property; therefore, any node that is dependent on knowing its actual
“runtime” value would use the get_attribute function instead of the get_property function.

2.20 Creating Multiple Node Instances from the Same Node Template

TOSCA service templates specify a set of nodes that need to be instantiated at service deployment time.
Some service templates may include multiple nodes that perform the same role. For example, a template
that models an SD-WAN service might contain multiple VPN Site nodes, one for each location that
accesses the SD-WAN. Rather than having to create a separate service template for each possible
number of VPN sites, it would be preferable to have a single service template that allows the number of
VPN sites to be specified as an input to the template at deployment time. This section introduces
experimental TOSCA language extensions in support of this functionality.It is expected that these
extensions will be formally standardized in a future version of this specifications.

The discussion in this section uses an example SD-WAN deployment to three sites as shown in the
following figure:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 54 of 372

VPN

Example SD-WAN Service Deployment

The following code snippet shows a TOSCA service template from which this service could have been
deployed:

Example 24 — TOSCA SD-WAN Service Template

tosca_definitions_version: tosca_simple_yaml_1_3

description: Template for deploying SD-WAN with three sites.

topology template:
inputs:
locationl:
type: Location
location?2:
type: Location
location3:
type: Location
node templates:
sdwan:
type: VPN
sitel:
type: VPNSite
properties:
location: { get input: locationl }
requirements:
- vpn: sdwan
site2:
type: VPNSite
properties:
location: { get input: location2 }
requirements:
- vpn: sdwan
site3:
type: VPNSite
properties:
location: { get input: location3 }
requirements:
- vpn: sdwan

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 55 of 372

Unfortunately, this template can only be used to deploy an SD-WAN with three sites. To deploy a different
number of sites, additional service templates would have t be created, one for each number of possible
SD-WAN sites. This leads to template proliferation, which is undesirable. The next section explores
alternatives.

2.20.1 Specifying Number of Occurrences

To avoid the need for multiple service templates, TOSCA must provide a mechanism that allows all VPN
Site nodes to be created from the same Site node template in the topology, and allow the number of sites
to be specified at deployment time. Specifically, this functionality must:
- Allow service template designers to specify that multiple node instances can be created from a
single node template
- Allow service template designers to constrain how many node instances can be created from a
single node template
- Allow users to specify at deployment time the exact number of instances that need to be created
from the single node template.

To provide this functionality, the TOSCA node template definition grammar is extended with an
occurrences keyword that specifies the minimum and maximum number of instances that can be
created from this node template. If occurrences is not specified, only one single instance can be created.
In addition, an instance_count keyword is used to specify the requested number of runtime instances of
this node template. It is expected that the value of the instance_count is provided as an input to the
topology template. These extensions enable the creation of a simplified SD-WAN service template that
contains only one single VPN Site node as shown in the following code snippet:

Example 25 — TOSCA SD-WAN Service Template

tosca_definitions_version: tosca_simple_yaml 1 3

description: Template for deploying SD-WAN with a variable number of sites.

topology template:
inputs:
numberOfSites:
type: integer

node templates:

sdwan:
type: VPN

site:
type: VPNSite
occurrences: [1l, UNBOUNDED]
instance count: { get input: numberOfSites }
requirements:

- vpn: sdwan

2.20.2 Specifying Inputs

The service template in the previous section conveniently ignores the location property of the Site node.
As shown earlier, the location property is expected to be provided as an input value. If Site node
templates can be instantiated multiple times, then it follows that multiple input values are required to
initialize the location property for each of the Site node instances.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 56 of 372

To allow specific input values to be matched with specific node template instances, a new
reserved keyword called INDEX is introduced. A TOSCA orchestrator will interpret this keyword
as the runtime index in the list of node instances created from a single node template.

The following service template shows how the INDEX keyword is used to retrieve specific values
from a list of input values in a service template:

Example 26 — TOSCA SD-WAN Service Template

tosca_definitions_version: tosca_simple_yaml 1 3

description: Template for deploying SD-WAN with a variable number of sites.

topology template:
inputs:
numberOfSites:
type: integer
locations:
type: list
entry schema: Location

node templates:
sdwan:
type: VPN
site:
type: VPNSite
occurrences: [1, UNBOUNDED]
instance count: { get input: numberOfSites }
properties:
location: { get input: [locations, INDEX] }
requirements:
- vpn: sdwan

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 57 of 372

3 TOSCA Simple Profile definitions in YAML

Except for the examples, this section is normative and describes all of the YAML grammar, definitions
and block structure for all keys and mappings that are defined for the TOSCA Version 1.3 Simple Profile
specification that are needed to describe a TOSCA Service Template (in YAML).

3.1 TOSCA Namespace URI and alias

The following TOSCA Namespace URI alias and TOSCA Namespace Alias are reserved values which
SHALL be used when identifying the TOSCA Simple Profile version 1.3 specification.

Namespace Alias Namespace URI Specification Description
tosca_simple_yaml_1_3 http://docs.oasis- The TOSCA Simple Profile v1.3 (YAML) target
open.org/tosca/ns/simple/yaml/1.3 namespace and namespace alias.

3.1.1 TOSCA Namespace prefix

The following TOSCA Namespace prefix is a reserved value and SHALL be used to reference the default
TOSCA Namespace URI as declared in TOSCA Service Templates.

Namespace Prefix Specification Description

tosca The reserved TOSCA Simple Profile Specification prefix that can be associated with the
default TOSCA Namespace URI

3.1.2 TOSCA Namespacing in TOSCA Service Templates

In the TOSCA Simple Profile, TOSCA Service Templates MUST always have, as the first line of YAML,
the keyword “tosca_definitions_version” with an associated TOSCA Namespace Alias value. This
single line accomplishes the following:

1. Establishes the TOSCA Simple Profile Specification version whose grammar MUST be used to
parse and interpret the contents for the remainder of the TOSCA Service Template.

2. Establishes the default TOSCA Namespace URI and Namespace Prefix for all types found in the
document that are not explicitly namespaced.

3. Automatically imports (without the use of an explicit import statement) the normative type
definitions (e.g., Node, Relationship, Capability, Artifact, etc.) that are associated with the TOSCA
Simple Profile Specification the TOSCA Namespace Alias value identifies.

4. Associates the TOSCA Namespace URI and Namespace Prefix to the automatically imported
TOSCA type definitions.

3.1.3 Rules to avoid namespace collisions

TOSCA Simple Profiles allows template authors to declare their own types and templates and assign
them simple names with no apparent namespaces. Since TOSCA Service Templates can import other
service templates to introduce new types and topologies of templates that can be used to provide
concrete implementations (or substitute) for abstract nodes. Rules are needed so that TOSCA
Orchestrators know how to avoid collisions and apply their own namespaces when import and nesting
occur.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 58 of 372

3.1.3.1 Additional Requirements

e The URI value “http://docs.oasis-open.org/tosca”, as well as all (path) extensions to it, SHALL be
reserved for TOSCA approved specifications and work. That means Service Templates that do
not originate from a TOSCA approved work product MUST NOT use it, in any form, when
declaring a (default) Namespace.

e Since TOSCA Service Templates can import (or substitute in) other Service Templates, TOSCA
Orchestrators and tooling will encounter the “tosca_definitions_version” statement for each
imported template. In these cases, the following additional requirements apply:

o Imported type definitions with the same Namespace URI, local name and version SHALL
be equivalent.

o If different values of the “tosca_definitions_version” are encountered, their
corresponding type definitions MUST be uniquely identifiable using their corresponding
Namespace URI using a different Namespace prefix.

¢ Duplicate local names (i.e., within the same Service Template SHALL be considered an error.
These include, but are not limited to duplicate names found for the following definitions:

o Repositories (repositories)

Data Types (data_types)

Node Types (node_types)

Relationship Types (relationship_types)

Capability Types (capability_types)

Artifact Types (artifact_types)

o Interface Types (interface_types)

e Duplicate Template names within a Service Template’s Topology Template SHALL be considered
an error. These include, but are not limited to duplicate names found for the following template
types:

o Node Templates (node_templates)

o Relationship Templates (relationship_templates)

o Inputs (inputs)

o Outputs (outputs)

¢ Duplicate names for the following keynames within Types or Templates SHALL be considered an
error. These include, but are not limited to duplicate names found for the following keynames:

Properties (properties)

Attributes (attributes)

Artifacts (artifacts)

Requirements (requirements)

Capabilities (capabilities)

Interfaces (interfaces)

Policies (policies)

Groups (groups)

O O O O O

O O O 0O O 0 O O

3.2 Using Namespaces

As of TOSCA version 1.2, Service template authors may declare a namespace within a Service Template
that would be used as the default namespace for any types (e.g., Node Type, Relationship Type, Data
Type, etc.) defined within the same Service template.

Specifically, a Service Template’s namespace declaration’s URI would be used to form a unique, fully
gualified Type name when combined with the locally defined, unqualified name of any Type in the same
Service Template. The resulatant, fully qualified Type name would be used by TOSCA Orchestrators,

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 59 of 372

http://docs.oasis-open.org/tosca

Processors and tooling when that Service Template was imported into another Service Template to avoid
Type name collision.

If a default namespace for the Service Template is declared, then it should be declared immediately after
the “tosca_definitions_version” declaration, to ensure that the namespace is clearly visible.

3.2.1 Example - Importing a Service Template and Namespaces

For example, let say we have two Service Templates, A and B, both of which define Types and a
Namespace. Service Template B contains a Node Type definition for “MyNode” and declares its (default)
Namespace to be “http://companyB.com/service/namespace/”:

Service Template B

tosca_definitions_version: tosca_simple_yaml_1_2
description: Service Template B

namespace: http://companyB.com/service/namespace/

node_types:
MyNode:
derived_from: SoftwareComponent
properties:
omitted here for brevity
capabilities:

omitted here for brevity

Service Template A has its own, completely different, Node Type definition also named “MyNode".

Service Template A

tosca_definitions_version: tosca_simple yaml 1 2
description: Service Template A
namespace: http://companyA.com/product/ns/

imports:
- file: csar/templates/ServiceTemplateB.yaml
namespace_prefix: templateB

node_types:
MyNode:
derived_from: Root

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 60 of 372

properties:

omitted here for brevity
capabilities:

omitted here for brevity

As you can see, Service Template A also “imports® Service Template B (i.e., “ServiceTemplateB.yaml“)
bringing in its Type defintions to the global namespace using the Namespace URI declared in Service
Template B to fully qualify all of its imported types.

In addition, the import includes a “namespace_prefix“ value (i.e., “templateB*), that can be used to qualify
and disambiguate any Type reference from from Service Template B within Service Template A. This
prefix is effectively the local alias for the corresponding Namespace URI declared within Service
Template B (i.e., “http://companyB.com/service/namespace/").

To illustrate conceptually what a TOSCA Orchestrator, for example, would track for their global
namespace upon processing Service Template A (and by import Service Template B) would be a list of
global Namespace URIs and their associated Namespace prefixes, as well as a list of fully qualified Type
names that comprises the overall global namespace.

3.2.1.1 Conceptual Global Namespace URI and Namespace Prefix tracking

Entry# | Namespace URI Namespace | Added by Key (Source file)
Prefix

1 http://open.org/tosca/ns/simple/yaml/1.3/ | tosca etosca_definitions_ version:

- from Service Template A
2 http://companyA.com/product/ns/ <None> e namespace:

- from Service Template A
3 http://companyB.com/service/namespace/ | templateB e namespace:

- from Service Template B

e namespace_prefix:
- from Service Template A, during import

In the above table,

e Entry 1: is an entry for the default TOSCA namespace, which is required to exist for it to be a
valid Service template. It is established by the “tosca_definitions_version” key’s value. By
default, it also gets assigned the “tosca” Namespace prefix.

o Entry 2: is the entry for the local default namespace for Service Template A as declared by the
“namespace” key.

o Note that no Namespace prefix is needed; any locally defined types that are not qualified
(i.e., not a full URI or using a Namespace Prefix) will default to this namespace if not
found first in the TOSCA namespace.

o Entry 3: is the entry for default Namespace URI for any type imported from Service Template B.
The author of Service Template A has assigned the local Namespace Prefix “templateB” that can
be used to qualify reference to any Type from Service Template B.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 61 of 372

As per TOSCA specification, any Type, that is not qualified with the ‘tosca’ prefix or full URI name, should
be first resolved by its unqualified name within the TOSCA namespace. If it not found there, then it may
be resolved within the local Service Template's default namespace.

3.2.1.2 Conceptual Global Namespace and Type tracking

Entry# | Namespace URI Unqualified Full Name Unqualified Short | Type

Name Classification
1 http://open.org/tosca/ns/simple/yaml|/1.3/ tosca.nodes.Compute Compute node
2 http://open.org/tosca/ns/simple/yaml|/1.3/ tosca.nodes.SoftwareComponent | SoftwareComponent
3 http://open.org/tosca/ns/simple/yaml/1.3/ tosca.relationships.ConnectsTo ConnectsTo relationship
100 http://companyA.com/product/ns/ | N/A MyNode node
200 http://companyB.com/service/namespace/ N/A MyNode node

In the above table,

Entry 1: is an example of one of the TOSCA standard Node Types (i.e., “Compute”) that is

brought into the global namespace via the “tosca_definitions_version” key.
o ltalso has two forms, full and short that are unique to TOSCA types for historical

reasons. Reference to a TOSCA type by either its unqualified short or full names is

viewed as equivalent as a reference to the same fully qualified Type name (i.e., its full

URI).

o In this example, use of either “tosca.nodes.Compute” or “Compute” (i.e., an unqualified
full and short name Type) in a Service Template would be treated as its fully qualified

URI equivalent of:

- “http://docs.oasis-open.org/tosca/ns/simple/yaml/1.3/tosca.nodes.Compute”.

Entry 2: is an example of a standard TOSCA Relationship Type
Entry 100: contains the unique Type identifer for the Node Type “MyNode” from Service

Template A.

Entry 200: contains the unique Type identifer for the Node Type “MyNode” from Service

Template B.

As you can see, although both templates defined a NodeType with an unqualified name of “MyNode”,
the TOSCA Orchestrator, processor or tool tracks them by their unique fully qualified Type Name
(URI).

The classification column is included as an example on how to logically differentiate a “Compute”
Node Type and “Compute” capability type if the table would be used to “search” for a match based
upon context in a Service Template.

TOSCA-Simple-Profile-YAML-v1.3-0s

Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

26 February 2020
Page 62 of 372

For example, if the short name “Compute” were used in a template on a Requirements clause, then
the matching type would not be the Compute Node Type, but instead the Compute Capability Type
based upon the Requirement clause being the context for Type reference.

3.3 Parameter and property types

This clause describes the primitive types that are used for declaring normative properties, parameters
and grammar elements throughout this specification.

3.3.1 Referenced YAML Types

Many of the types we use in this profile are built-in types from the YAML 1.2 specification (i.e., those
identified by the “tag:yaml.org,2002” version tag) [YAML-1.2].

The following table declares the valid YAML type URIs and aliases that SHALL be used when possible
when defining parameters or properties within TOSCA Service Templates using this specification:

Valid aliases Type URI
string tag:yaml.org,2002:str (default)
integer tag:yaml.org,2002:int
float tag:yaml.org,2002:float
boolean tag:yaml.org,2002:bool (i.e., a value either ‘true’ or ‘false’)
timestamp tag:yaml.org,2002:timestamp [YAML-TS-1.1]
null tag:yaml.org,2002:null
3.3.1.1 Notes

e The “string” type is the default type when not specified on a parameter or property declaration.
o While YAML supports further type aliases, such as “str” for “string”, the TOSCA Simple Profile
specification promotes the fully expressed alias name for clarity.

3.3.2 TOSCA version

TOSCA supports the concept of “reuse” of type definitions, as well as template definitions which could be
version and change over time. It is important to provide a reliable, normative means to represent a
version string which enables the comparison and management of types and templates over time.
Therefore, the TOSCA TC intends to provide a normative version type (string) for this purpose in future
Working Drafts of this specification.

Shorthand Name version

Type Qualified Name | tosca:version

3.3.2.1 Grammar

TOSCA version strings have the following grammar:
<major_version>.<minor_version>[.<fix_version>[.<qualifier>[-<build_version]]]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
e major_version: is a required integer value greater than or equal to 0 (zero)
e minor_version: is a required integer value greater than or equal to 0 (zero).
e fix_version: is an optional integer value greater than or equal to O (zero).

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 63 of 372

http://www.yaml.org/spec/1.2/spec.html

qualifier: is an optional string that indicates a named, pre-release version of the associated
code that has been derived from the version of the code identified by the combination
major_version, minor_version and fix_version numbers.

build_version: is an optional integer value greater than or equal to 0 (zero) that can be used to
further qualify different build versions of the code that has the same qualifer_string.

3.3.2.2 Version Comparison

When comparing TOSCA versions, all component versions (i.e., major, minor and fix) are
compared in sequence from left to right.

TOSCA versions that include the optional qualifier are considered older than those without a
qualifier.

TOSCA versions with the same major, minor, and fix versions and have the same qualifier string,
but with different build versions can be compared based upon the build version.

Qualifier strings are considered domain-specific. Therefore, this specification makes no
recommendation on how to compare TOSCA versions with the same major, minor and fix
versions, but with different qualifiers strings and simply considers them different named branches
derived from the same code.

3.3.2.3 Examples

Examples of valid TOSCA version strings:

#

6.

2

w

#

basic version strings

1
.0.1

version string with optional qualifier

.1.0.beta

version string with optional qualifier and build version

1.0.0.alpha-10

3.3.2.4 Notes

[Maven-Version] The TOSCA version type is compatible with the Apache Maven versioning
policy.

3.3.2.5 Additional Requirements

A version value of zero (i.e., ‘0’, ‘0.0°, or ‘0.0.0’) SHALL indicate there no version provided.
A version value of zero used with any qualifiers SHALL NOT be valid.

3.3.3 TOSCA range type

The range type can be used to define numeric ranges with a lower and upper boundary. For example, this
allows for specifying a range of ports to be opened in a firewall.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 64 of 372

Shorthand Name range

Type Qualified Name | tosca:range

3.3.3.1 Grammar

TOSCA range values have the following grammar:
[<lower_bound>, <upper_bound>]

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e lower_bound: is a required integer value that denotes the lower boundary of the range.
e upper_bound: is a required integer value that denotes the upper boundary of the range. This
value MUST be greater than or equal to 1lower_bound.

3.3.3.2 Keywords
The following Keywords may be used in the TOSCA range type:

Keyword Applicable | Description
Types

UNBOUNDED | scalar Used to represent an unbounded upper bounds (positive) value in a set for a scalar type.

3.3.3.3 Examples

Example of a node template property with a range value:

numeric range between 1 and 100
a_range_property: [1, 100]

a property that has allows any number © or greater
num_connections: [©, UNBOUNDED]

3.3.4 TOSCA list type

The list type allows for specifying multiple values for a parameter of property. For example, if an
application allows for being configured to listen on multiple ports, a list of ports could be configured using
the list data type.

Note that entries in a list for one property or parameter must be of the same type. The type (for simple
entries) or schema (for complex entries) is defined by the entry_schema attribute of the respective
property definition, attribute definitions, or input or output parameter definitions.

Shorthand Name list

Type Qualified Name | tosca:list

3.3.4.1 Grammar

TOSCA lists are essentially normal YAML lists with the following grammars:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 65 of 372

3.3.4.1.1 Square bracket notation

[<1list_entry_1>, <list_entry_ 2>, ...]

3.3.4.1.2 Bulleted list notation

- <list_entry_1>

- <list_entry_n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

o <list_entry_*>: represents one entry of the list.

3.3.4.2 Declaration Examples

3.3.4.2.1 List declaration using a simple type

The following example shows a list declaration with an entry schema based upon a simple integer type
(which has additional constraints):

<some_entity>:

properties:
listen_ports:

type: list

entry_schema:
description: listen port entry (simple integer type)
type: integer
constraints:

- max_length: 128

3.3.4.2.2 List declaration using a complex type

The following example shows a list declaration with an entry schema based upon a complex type:

<some_entity>:

properties:
products:
type: list
entry_schema:
description: Product information entry (complex type) defined elsewhere

type: ProductInfo

3.3.4.3 Definition Examples

These examples show two notation options for defining lists:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 66 of 372

¢ A single-line option which is useful for only short lists with simple entries.
o A multi-line option where each list entry is on a separate line; this option is typically useful or
more readable if there is a large number of entries, or if the entries are complex.

3.3.4.3.1 Square bracket notation

listen_ports: [80, 8080]

3.3.4.3.2 Bulleted list notation

listen_ports:
- 80
- 8080

3.3.5 TOSCA map type

The map type allows for specifying multiple values for a parameter of property as a map. In contrast to
the list type, where each entry can only be addressed by its index in the list, entries in a map are named
elements that can be addressed by their keys.

Note that entries in a map for one property or parameter must be of the same type. The type (for simple
entries) or schema (for complex entries) is defined by the entry_schema attribute of the respective
property definition, attribute definition, or input or output parameter definition. In addition, the keys that
identify entries in a map must be of the same type as well. The type of these keys is defined by the
key_schema attribute of the respective property definition, attribute_definition, or input or output
parameter_definition. If the key_schema is not specified, keys are assumed to be of type string.

Shorthand Name map

Type Qualified Name | tosca:map

3.3.5.1 Grammar

TOSCA maps are normal YAML dictionaries with following grammar:
3.3.5.1.1 Single-line grammar

{ <entry_key 1>: <entry_value_ 1>, ..., <entry key n>: <entry _value n> }

3.3.5.1.2 Multi-line grammar

<entry_key 1>: <entry value_ 1>

<entry_key n>: <entry_value_n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

o entry_key_*:is the required key for an entry in the map
e entry_value_*: is the value of the respective entry in the map

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 67 of 372

3.3.5.2 Declaration Examples

3.3.5.2.1 Map declaration using a simple type

The following example shows a map with an entry schema definition based upon an existing string type
(which has additional constraints):

<some_entity>:

properties:
emails:

type: map

entry_schema:
description: basic email address
type: string
constraints:

- max_length: 128

3.3.5.2.2 Map declaration using a complex type

The following example shows a map with an entry schema definition for contact information:

<some_entity>:

properties:
contacts:
type: map
entry_schema:
description: simple contact information

type: ContactInfo

3.3.5.3 Definition Examples
These examples show two notation options for defining maps:
e A single-line option which is useful for only short maps with simple entries.

o A multi-line option where each map entry is on a separate line; this option is typically useful or
more readable if there is a large number of entries, or if the entries are complex.

3.3.5.3.1 Single-line notation

notation option for shorter maps
user_name_to_id map: { userl: 1001, user2: 1002 }

3.3.5.3.2 Multi-line notation

notation for longer maps

user_name_to_id_map:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 68 of 372

userl: 1001
user2: 1002

3.3.6 TOSCA scalar-unit type

The scalar-unit type can be used to define scalar values along with a unit from the list of recognized units
provided below.

3.3.6.1 Grammar

TOSCA scalar-unit typed values have the following grammar:
<scalar> <unit>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e scalar:is arequired scalar value.
e unit:is arequired unit value. The unit value MUST be type-compatible with the scalar.

3.3.6.2 Additional requirements

o Whitespace: any humber of spaces (including zero or none) SHALL be allowed between the
scalar value and the unit value.

e It SHALL be considered an error if either the scalar or unit portion is missing on a property or
attribute declaration derived from any scalar-unit type.

¢ When performing constraint clause evaluation on values of the scalar-unit type, both the scalar
value portion and unit value portion SHALL be compared together (i.e., both are treated as a
single value). For example, if we have a property called storage_size. which is of type scalar-
unit, a valid range constraint would appear as follows:

o storage_size: in_range [4 GB, 20 GB]

where storage_size’s range would be evaluated using both the numeric and unit values
(combined together), in this case ‘4 GB’ and '20 GB’.

3.3.6.3 Concrete Types

Shorthand Names scalar-unit.size, scalar-unit.time, scalar-unit.frequency, scalar-unit.bitrate

Type Qualified Names | tosca:scalar-unit.size, tosca:scalar-unit.time

The scalar-unit type grammar is abstract and has four recognized concrete types in TOSCA:

e scalar-unit.size — used to define properties that have scalar values measured in size units.

e scalar-unit.time — used to define properties that have scalar values measured in size units.

e scalar-unit.frequency — used to define properties that have scalar values measured in units per
second.

e scalar-unit.bitrate — used to define properties that have scalar values measured in bits or bytes
per second

These types and their allowed unit values are defined below.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 69 of 372

3.3.6.4 scalar-unit.size

3.3.6.4.1 Recognized Units

Unit Usage Description

B size byte

kB size kilobyte (1000 bytes)

KiB size kibibytes (1024 bytes)

MB size megabyte (1000000 bytes)

MiB size mebibyte (1048576 bytes)

GB size gigabyte (1000000000 bytes)
GiB size gibibytes (1073741824 bytes)
B size terabyte (1000000000000 bytes)
TiB size tebibyte (1099511627776 bytes)

3.3.6.4.2 Examples

Storage size in Gigabytes

properties:

storage_size: 10 GB

3.3.6.4.3 Notes

The unit values recognized by TOSCA Simple Profile for size-type units are based upon a
subset of those defined by GNU at
http://www.gnu.org/software/parted/manual/html_node/unit.html, which is a non-normative
reference to this specification.
TOSCA treats these unit values as case-insensitive (e.g., a value of ‘kB’, ‘KB’ or ‘kb’ would be
equivalent), but it is considered best practice to use the case of these units as prescribed by

GNU.

Some Cloud providers may not support byte-level granularity for storage size allocations. In
those cases, these values could be treated as desired sizes and actual allocations would be
based upon individual provider capabilities.

3.3.6.5 scalar-unit.time

3.3.6.5.1 Recognized Units

Unit Usage Description
d time days
h time hours

TOSCA-Simple-Profile-YAML-v1.3-0s

Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

26 February 2020

Page 70 of 372

http://www.gnu.org/software/parted/manual/html_node/unit.html

Unit Usage Description

m time minutes

s time seconds

ms time milliseconds

us time microseconds
ns time nanoseconds

3.3.6.5.2 Examples

Response time in milliseconds

properties:

respone_time: 10 ms

3.3.6.5.3 Notes

The unit values recognized by TOSCA Simple Profile for time-type units are based upon a subset
of those defined by International System of Units whose recognized abbreviations are defined
within the following reference:

o http://lwww.ewh.ieee.org/soc/ias/pub-dept/abbreviation.pdf

o This document is a non-normative reference to this specification and intended for publications
or grammars enabled for Latin characters which are not accessible in typical programming

languages

3.3.6.6 scalar-unit.frequency

3.3.6.6.1 Recognized Units

Unit Usage Description

Hz frequency Hertz, or Hz. equals one cycle per second.

kHz frequency Kilohertz, or kHz, equals to 1,000 Hertz

MHz frequency Megahertz, or MHz, equals to 1,000,000 Hertz or 1,000 kHz

GHz frequency Gigahertz, or GHz, equals to 1,000,000,000 Hertz, or 1,000,000 kHz, or 1,000 MHz.

3.3.6.6.2 Examples

Processor raw clock rate

properties:
clock_rate: 2.4 GHz

TOSCA-Simple-Profile-YAML-v1.3-0s

Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

26 February 2020

Page 71 of 372

http://www.ewh.ieee.org/soc/ias/pub-dept/abbreviation.pdf

3.3.6.6.3 Notes

The value for Hertz (Hz) is the International Standard Unit (ISU) as described by the Bureau
International des Poids et Mesures (BIPM) in the “S/ Brochure: The International System of Units
(S1) [8th edition, 2006; updated in 2014]’, http://www.bipm.org/en/publications/si-brochure/

3.3.6.7 scalar-unit.bitrate

3.3.6.7.1 Recognized Units

Unit Usage Description

bps bitrate bit per second

Kbps bitrate kilobit (1000 bits) per second

Kibps bitrate kibibits (1024 bits) per second

Mbps bitrate megabit (1000000 bits) per second

Mibps bitrate mebibit (1048576 bits) per second

Gbps bitrate gigabit (1000000000 bits) per second

Gibps bitrate gibibits (1073741824 bits) per second

Tbps bitrate terabit (1000000000000 bits) per second
Tibps bitrate tebibits (1099511627776 bits) per second
Bps bitrate byte per second

KBps bitrate kilobyte (1000 bytes) per second

KiBps bitrate kibibytes (1024 bytes) per second

MBps bitrate megabyte (1000000 bytes) per second
MiBps bitrate mebibyte (1048576 bytes) per second
GBps bitrate gigabyte (1000000000 bytes) per second
GiBps bitrate gibibytes (1073741824 bytes) per second
TBps bitrate terabytes (1000000000000 bits) per second
TiBps bitrate tebibytes (1099511627776 bits) per second

3.3.6.7.2 Examples

Somewhere in a node template definition

requirements:

- link:

node_filter:

capabilities:

- myLinkable

properties:

bitrate:

- greater_or_equal: 10 Kbps # 10 * 1000 bits per second at least

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 72 of 372

http://www.bipm.org/en/publications/si-brochure/

3.3.6.7.3 Notes

¢ Unlike with the scalar-unit.size type, TOSCA treats scalar-unit.bitrate values as case-sensitive
(e.g., a value of ‘KBs’ means kilobyte per second, whereas ‘Kb’ means kilobit per second).
e For comparison purposes, 1 byte is the same as 8 bits.

3.4 Normative values

3.4.1 Node States

As components (i.e., nodes) of TOSCA applications are deployed, instantiated and orchestrated over
their lifecycle using normative lifecycle operations (see section 5.8 for normative lifecycle definitions) it is
important define normative values for communicating the states of these components normatively
between orchestration and workflow engines and any managers of these applications.

The following table provides the list of recognized node states for TOSCA Simple Profile that would be set
by the orchestrator to describe a node instance’s state:

Node State

Value Transitional | Description

initial no Node is not yet created. Node only exists as a template definition.

creating yes Node is transitioning from initial state to created state.

created no Node software has been installed.

configuring | yes Node is transitioning from created state to configured state.

configured no Node has been configured prior to being started.

starting yes Node is transitioning from configured state to started state.

started no Node is started.

stopping yes Node is transitioning from its current state to a configured state.

deleting yes Node is transitioning from its current state to one where it is deleted and its state is
no longer tracked by the instance model.

error no Node is in an error state.

3.4.2 Relationship States

Similar to the Node States described in the previous section, Relationships have state relative to their
(normative) lifecycle operations.

The following table provides the list of recognized relationship states for TOSCA Simple Profile that would
be set by the orchestrator to describe a node instance’s state:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 73 of 372

Node State

Value Transitional | Description

initial no Relationship is not yet created. Relationship only exists as a template definition.

3.4.2.1 Notes

o Additional states may be defined in future versions of the TOSCA Simple Profile in YAML
specification.

3.4.3 Directives

The following directive values are defined for this version of the TOSCA Simple Profile:

Directive Description

substitute Marks a node template as abstract and instructs the TOSCA Orchestrator to substitute this
node template with an appropriate substituting template.

substitutable This deprecated directive is synonymous to the substitute directive.

select Marks a node template as abstract and instructs the TOSCA Orchestrator to select a node of
this type from its inventory (based on constraints specified in the optional node_filter in the
node template)

selectable This deprecated directive is synonymous to the select directive.

3.4.4 Network Name aliases

The following are recognized values that may be used as aliases to reference types of networks within an
application model without knowing their actual name (or identifier) which may be assigned by the
underlying Cloud platform at runtime.

Alias value Description

PRIVATE An alias used to reference the first private network within a property or attribute of a Node or
Capability which would be assigned to them by the underlying platform at runtime.

A private network contains IP addresses and ports typically used to listen for incoming traffic to
an application or service from the Intranet and not accessible to the public internet.

PUBLIC An alias used to reference the first public network within a property or attribute of a Node or
Capability which would be assigned to them by the underlying platform at runtime.

A public network contains IP addresses and ports typically used to listen for incoming traffic to
an application or service from the Internet.

3.4.4.1 Usage

These aliases would be used in the tosca.capabilities.Endpoint Capability type (and types derived
from it) within the network_name field for template authors to use to indicate the type of network the
Endpoint is supposed to be assigned an IP address from.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 74 of 372

3.5 TOSCA Metamodel
This section defines all modelable entities that comprise the TOSCA Version 1.0 Simple Profile
specification along with their keynames, grammar and requirements.

3.5.1 Required Keynames

The TOSCA metamodel includes complex types (e.g., Node Types, Relationship Types, Capability Types,
Data Types, etc.) each of which include their own list of reserved keynames that are sometimes marked
as required. These types may be used to derive other types. These derived types (e.g., child types) do
not have to provide required keynames as long as they have been specified in the type they have been
derived from (i.e., their parent type).

3.6 Reusable modeling definitions

3.6.1 Description definition

This optional element provides a means include single or multiline descriptions within a TOSCA Simple
Profile template as a scalar string value.

3.6.1.1 Keyname

The following keyname is used to provide a description within the TOSCA Simple Profile specification:

description

3.6.1.2 Grammar

Description definitions have the following grammar:

description: <string>

3.6.1.3 Examples

Simple descriptions are treated as a single literal that includes the entire contents of the line that
immediately follows the description key:

description: This is an example of a single line description (no folding).

The YAML “folded” style may also be used for multi-line descriptions which “folds” line breaks as space
characters.

description: >
This is an example of a multi-line description using YAML. It permits for line

breaks for easier readability...

if needed. However, (multiple) line breaks are folded into a single space

character when processed into a single string value.

3.6.1.4 Notes

o Use of “folded” style is discouraged for the YAML string type apart from when used with the
description keyname.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 75 of 372

3.6.2 Metadata

This optional element provides a means to include optional metadata as a map of strings.

3.6.2.1 Keyname

The following keyname is used to provide metadata within the TOSCA Simple Profile specification:

metadata

3.6.2.2 Grammar

Metadata definitions have the following grammar:

metadata:

map of <string>

3.6.2.3 Examples

metadata:

fool: baril
foo2: bar2

3.6.2.4 Notes

o Data provided within metadata, wherever it appears, MAY be ignored by TOSCA Orchestrators
and SHOULD NOT affect runtime behavior.

3.6.3 Constraint clause

A constraint clause defines an operation along with one or more compatible values that can be used to
define a constraint on a property or parameter’s allowed values when it is defined in a TOSCA Service

Template or one of its entities.

3.6.3.1 Operator keynames

The following is the list of recognized operators (keynames) when defining constraint clauses:

Operator Type Value Type Description

equal scalar any Constrains a property or parameter to a value equal to (‘=’) the value
declared.

greater_than scalar comparable Constrains a property or parameter to a value greater than (‘>’) the value
declared.

greater_or_equal | scalar comparable Constrains a property or parameter to a value greater than or equal to
(>=") the value declared.

less_than scalar comparable Constrains a property or parameter to a value less than (‘<’) the value
declared.

less_or_equal scalar comparable Constrains a property or parameter to a value less than or equal to (‘<=’)

the value declared.

TOSCA-Simple-Profile-YAML-v1.3-0s
Standards Track Work Product

26 February 2020

Copyright © OASIS Open 2020. All Rights Reserved. Page 76 of 372

Operator Type Value Type Description
in_range dual scalar | comparable, Constrains a property or parameter to a value in range of (inclusive) the
range two values declared.
Note: subclasses or templates of types that declare a property with the
in_range constraint MAY only further restrict the range specified by
the parent type.
valid_values list any Constrains a property or parameter to a value that is in the list of
declared values.
length scalar string, list, Constrains the property or parameter to a value of a given length.
map
min_length scalar string, list, Constrains the property or parameter to a value to a minimum length.
map
max_length scalar string, list, Constrains the property or parameter to a value to a maximum length.
map
pattern regex string Constrains the property or parameter to a value that is allowed by the
provided regular expression.
Note: Future drafts of this specification will detail the use of regular
expressions and reference an appropriate standardized grammar.
schema string string Constrains the property or parameter to a value that is allowed by the
referenced schema.

3.6.3.1.1 Comparable value types

In the Value Type column above, an entry of “comparable” includes integer, float, timestamp, string,
version, and scalar-unit types while an entry of “any” refers to any type allowed in the TOSCA simple

profile in YAML.

3.6.3.2 Schema Constraint purpose

TOSCA recognizes that there are external data-interchange formats that are widely used within Cloud
service APIs and messaging (e.g., JSSON, XML, etc.).

The ‘schema’ Constraint was added so that, when TOSCA types utilize types from these externally
defined data (interchange) formats on Properties or Parameters, their corresponding Property definitions’
values can be optionally validated by TOSCA Orchestrators using the schema string provided on this

operator.

3.6.3.3 Additional Requirements

¢ If no operator is present for a simple scalar-value on a constraint clause, it SHALL be interpreted
as being equivalent to having the “equal” operator provided; however, the “equal” operator may
be used for clarity when expressing a constraint clause.

o The “length” operator SHALL be interpreted mean “size” for set types (i.e., list, map, etc.).

e Values provided by the operands (i.e., values and scalar values) SHALL be type-compatible with
their associated operations.
e Future drafts of this specification will detail the use of regular expressions and reference an

appropriate standardized grammar.

e The value for the keyname ‘schema’ SHOULD be a string that contains a valid external schema
definition that matches the corresponding Property definitions type.

When a valid ‘schema’ value is provided on a Property definition, a TOSCA Orchestrator

MAY choose use the contained schema definition for validation.

TOSCA-Simple-Profile-YAML-v1.3-0s

o

Standards Track Work Product

26 February 2020

Copyright © OASIS Open 2020. All Rights Reserved. Page 77 of 372

3.6.3.4 Grammar

Constraint clauses have one of the following grammars:

Scalar grammar
<operator>: <scalar_value>

Dual scalar grammar
<operator>: [<scalar_value_ 1>, <scalar_value 2>]

List grammar
<operator>: [<value 1>, <value 2>, ..., <value_n>]

Regular expression (regex) grammar
pattern: <regular_expression_value>

Schema grammar

schema: <schema_definition>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e operator: represents a required operator from the specified list shown above (see section
3.6.3.1 “Operator keynames”).

e scalar_value, scalar_value_*: represents a required scalar (or atomic quantity) that can
hold only one value at a time. This will be a value of a primitive type, such as an integer or string
that is allowed by this specification.

o value_*: represents a required value of the operator that is not limited to scalars.

e reqular_expression_value: represents a regular expression (string) value.

e schema_definition: represents a schema definition as a string.

3.6.3.5 Examples

Constraint clauses used on parameter or property definitions:

equal
equal: 2

greater_than

greater_than: 1

greater_or_equal

greater_or_equal: 2

less_than
less_than: 5

less_or_equal

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 78 of 372

less_or_equal: 4

in_range
in_range: [1, 4]

valid_values

valid values: [1, 2, 4]

specific length (in characters)
length: 32

min_length (in characters)
min_length: 8

max_length (in characters)
max_length: 64

schema
schema: <

{

Some schema syntax that matches corresponding property or parameter.

3.6.4 Property Filter definition

A property filter definition defines criteria, using constraint clauses, for selection of a TOSCA entity based
upon it property values.

3.6.4.1 Grammar

Property filter definitions have one of the following grammars:

3.6.4.1.1 Short notation:

The following single-line grammar may be used when only a single constraint is needed on a property:

<property_name>: <property constraint clause>

3.6.4.1.2 Extended notation:

The following multi-line grammar may be used when multiple constraints are needed on a property:

<property_name>:

- <property constraint clause 1>

- <property constraint clause n>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 79 of 372

e property_name: represents the name of property that would be used to select a property
definition with the same name (property_name) on a TOSCA entity (e.g., a Node Type, Node
Template, Capability Type, etc.).

e property_constraint_clause_*: represents constraint clause(s) that would be used to filter
entities based upon the named property’s value(s).

3.6.4.2 Additional Requirements

e Property constraint clauses must be type compatible with the property definitions (of the same
name) as defined on the target TOSCA entity that the clause would be applied against.

3.6.5 Node Filter definition

A node filter definition defines criteria for selection of a TOSCA Node Template based upon the
template’s property values, capabilities and capability properties.

3.6.5.1 Keynames

The following is the list of recognized keynames for a TOSCA node filter definition:

Keyname Required | Type Description

properties no list of An optional list of property filters that would be used to select (filter)
property filter matching TOSCA entities (e.g., Node Template, Node Type, Capability
definition Types, etc.) based upon their property definitions’ values.

capabilities no list of An optional list of capability names or types that would be used to
capability select (filter) matching TOSCA entities based upon their existence.
names or
capability type
names

3.6.5.2 Additional filtering on named Capability properties

Capabilities used as filters often have their own sets of properties which also can be used to construct a
filter.

Keyname Required | Type Description

<capability no list of An optional list of property filters that would be used to select (filter)

name_or_type> property filter matching TOSCA entities (e.g., Node Template, Node Type, Capability
name>: definitions Types, etc.) based upon their capabilities’ property definitions’ values.
properties

3.6.5.3 Grammar

Node filter definitions have following grammar:

node_filter:
properties:

- <property filter def 1>

- <property filter def n>

capabilities:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 80 of 372

- <capability name_or_type 1>:
properties:
- <cap 1 property filter def 1>

- <cap m property filter def n>

- <capability name_or_type n>:
properties:
- <cap 1 property filter def 1>

- <cap m property filter def n>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e property_filter_def_*: represents a property filter definition that would be used to select
(filter) matching TOSCA entities (e.g., Node Template, Node Type, Capability Types, etc.) based
upon their property definitions’ values.

e capability name_or_type_*: represents the type or name of a capability that would be used
to select (filter) matching TOSCA entities based upon their existence.

e cap_*_property_def_*: represents a property filter definition that would be used to select
(filter) matching TOSCA entities (e.g., Node Template, Node Type, Capability Types, etc.) based
upon their capabilities’ property definitions’ values.

3.6.5.4 Additional requirements

e TOSCA orchestrators SHALL search for matching capabilities listed on a target filter by assuming
the capability name is first a symbolic name and secondly it is a type name (in order to avoid
namespace collisions).

3.6.5.5 Example

The following example is a filter that would be used to select a TOSCA Compute node based upon the
values of its defined capabilities. Specifically, this filter would select Compute nodes that supported a
specific range of CPUs (i.e., num_cpus value between 1 and 4) and memory size (i.e., mem_size of 2 or
greater) from its declared “host” capability.

my_node_template:
other details omitted for brevity
requirements:
- host:
node_filter:
capabilities:
My “host” Compute node needs these properties:
- host:
properties:
- num_cpus: { in_range: [1, 4] }
- mem_size: { greater_or_equal: 512 MB }

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 81 of 372

3.6.6 Repository definition

A repository definition defines a named external repository which contains deployment and
implementation artifacts that are referenced within the TOSCA Service Template.

3.6.6.1 Keynames

The following is the list of recognized keynames for a TOSCA repository definition:

Keyname Required | Type Constraints Description

description no description | None The optional description for the repository.

url yes string None The required URL or network address used to access the
repository.

credential no Credential None The optional Credential used to authorize access to the
repository.

3.6.6.2 Grammar

Repository definitions have one the following grammars:

3.6.6.2.1 Single-line grammar (no credential):

<repository name>: <repository_ address>

3.6.6.2.2 Multi-line grammar

<repository name>:

description: <repository description>

url: <repository address>

credential:

<authorization credential>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e repository_name: represents the required symbolic name of the repository as a string.

e repository_description: contains an optional description of the repository.

e repository_address: represents the required URL of the repository as a string.

e authorization_credential: represents the optional credentials (e.g., user ID and password)

used to authorize access to the repository.

3.6.6.3 Example

The following represents a repository definition:

repositories:

my_code_repo:

description: My project’s code repository in GitHub

url: https://github.com/my-project/

TOSCA-Simple-Profile-YAML-v1.3-0s

Standards Track Work Product

26 February 2020

Copyright © OASIS Open 2020. All Rights Reserved. Page 82 of 372

3.6.7 Artifact definition

An artifact definition defines a named, typed file that can be associated with Node Type or Node
Template and used by orchestration engine to facilitate deployment and implementation of interface

operations.

3.6.7.1 Keynames

The following is the list of recognized keynames for a TOSCA artifact definition when using the extended

notation:

Keyname Required | Type Description

type yes string The required artifact type for the artifact definition.

file yes string The required URI string (relative or absolute) which can be used to
locate the artifact’s file.

repository no string The optional name of the repository definition which contains the
location of the external repository that contains the artifact. The
artifact is expected to be referenceable by its file URI within the
repository.

description no description The optional description for the artifact definition.

deploy_path no string The file path the associated file would be deployed into within the
target node’s container.

artifact_version no string The version of this artifact. One use of this artifact_version is to declare
the particular version of this artifact type, in addition to its mime_type
(that is declared in the artifact type definition). Together with the
mime_type it may be used to select a particular artifact processor for
this artifact. For example a python interpreter that can interpret
python version 2.7.0

checksum no string The checksum used to validate the integrity of the artifact.

checksum_algorithm | no string Algorithm used to calculate the artifact checksum (e.g. MD5, SHA
[Ref]). Shall be specified if checksum is specified for an artifact.

properties no map of The optional map of property assignments associated with the artifact.

property
assignments

3.6.7.2 Grammar

Artifact definitions have one of the following grammars:

3.6.7.2.1 Short notation

The following single-line grammar may be used when the artifact’s type and mime type can be inferred

from the file URI:

<artifact name>:

<artifact file URI>

3.6.7.2.2 Extended notation:

The following multi-line grammar may be used when the artifact's definition’s type and mime type need to

be explicitly declared:

TOSCA-Simple-Profile-YAML-v1.3-0s
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

26 February 2020
Page 83 of 372

<artifact name>:

description: <artifact description>

type: <artifact type name>
file: <artifact file URI>

repository: <artifact repository name>

deploy_path: <file deployment path>

version: <artifact _version>

checksum: <artifact_checksum>

checksum_algorithm: <artifact_checksum_algorithm>

properties: <property assignments>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

artifact_name: represents the required symbolic name of the artifact as a string.
artifact_description: represents the optional description for the artifact.
artifact_type_name: represents the required artifact type the artifact definition is based upon.
artifact_file_URI: represents the required URI string (relative or absolute) which can be
used to locate the artifact’s file.

artifact_repository_name: represents the optional name of the repository definition to use to
retrieve the associated artifact (file) from.

file_deployement_path: represents the optional path the artifact_file_URI would be
copied into within the target node’s container.

artifact_version: represents the version of artifact

artifact_checksum: represents the checksum of the Artifact
artifact_checksum_algorithm:represents the algorithm for verifying the checksum. Shall be
specified if checksum is specified

properties: represents an optional map of property assignments associated with the artifact

3.6.7.3 Examples

The following represents an artifact definition:

my_file artifact: ../my_apps_files/operation_artifact.txt

The following example represents an artifact definition with property assignments:

artifacts:

sw_image:

description: Image for virtual machine

type: tosca.artifacts.Deployment.Image.VM

file: http://10.10.86.141/images/Juniper_vSRX_15.1x49 D80 preconfigured.qcow2
checksum: badllcafee2f@f702572369da®b765e2

version: 3.2

checksum_algorithm: MD5

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 84 of 372

properties:
name: VSRX
container_format: BARE
disk_format: QCOW2
min_disk: 1 GB
size: 649 MB

3.6.8 Import definition

An import definition is used within a TOSCA Service Template to locate and uniquely name another
TOSCA Service Template file which has type and template definitions to be imported (included) and
referenced within another Service Template.

3.6.8.1 Keynames

The following is the list of recognized keynames for a TOSCA import definition:

Keyname Required | Type | Constraints Description
file yes string | None The required symbolic name for the imported file.
repository no string | None The optional symbolic name of the repository definition

where the imported file can be found as a string.

namespace_prefix | no string | None The optional namespace prefix (alias) that will be used to
indicate the namespace_uri when forming a qualified
name (i.e., gname) when referencing type definitions from
the imported file.

namespace_uri no string | Deprecated The optional, deprecated namespace URI to that will be
applied to type definitions found within the imported file
as a string.

3.6.8.2 Grammar

Import definitions have one the following grammars:
3.6.8.2.1 Single-line grammatr:

imports:
- <URI_1>
- <URI_2>

3.6.8.2.2 Multi-line grammar

imports:
- file: <file URI>
repository: <repository_name>
namespace_uri: <definition_namespace_uri> # deprecated

namespace_prefix: <definition_namespace_prefix>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
e file_uri: contains the required name (i.e., URI) of the file to be imported as a string.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 85 of 372

repository_name: represents the optional symbolic name of the repository definition where the
imported file can be found as a string.

namespace_uri: represents the optional namespace URI to that will be applied to type
definitions found within the imported file as a string.

namespace_prefix: represents the optional namespace prefix (alias) that will be used to
indicate the default namespace as declared in the imported Service Template when forming a
gualified name (i.e., gname) when referencing type definitions from the imported file as a string.

3.6.8.2.3 Requirements

The “file” keyname’s vlue MAY be an approved TOSCA Namespace alias.

The namespace prefix “tosca” Is reserved and SHALL NOT be used to as a value for
“namespace_prefix” on import.

The imports key “namespace_uri” is now deprecated. It was intended to be able to define a
default namespace for any types that were defined within the Service Template being imported;
however, with version 1.2, Service Templates MAY now declare their own default Namespace
which SHALL be used in place of this key’s value.

o Please note that TOSCA Orchestrators and Processors MAY still use
the’namespace_uri” value if provided, if the imported Service Template has no declared
default Namespace value. Regardless it is up to the TOSCA Orchestrator or Processor
to resolve Namespace collisions caused by imports as they see fit, for example, they may
treat it as an error or dynamically generate a unique namepspace themselves on import.

3.6.8.2.4 Import URI processing requirements

TOSCA Orchestrators, Processors and tooling SHOULD treat the <file_URI> of an import as follows:

URI: If the <file_URI> is a known namespace URI (identifier), such as a well-known URI defined
by a TOSCA specification, then it SHOULD cause the corresponding Type defintions to be
imported.
o This implies that there may or may not be an actual Service Template, perhaps it is a
known set Types identified by the well-known URI.
o This also implies that internet access is NOT needed to import.
Alias — If the <file_URI> is a reserved TOSCA Namespace alias, then it SHOULD cause the
corresponding Type defintions to be imported, using the associated full, Namespace URI to
uniquely identify the imported types.
URL - If the <file URI>is a valid URL (i.e., network accessible as a remote resource) and the
location contains a valid TOSCA Service Template, then it SHOULD cause the remote Service
Template to be imported.
Relative path - If the <file_URI> is a relative path URL, perhaps pointing to a Service Template
located in the same CSAR file, then it SHOULD cause the locally accessible Service Template to
be imported.
o Ifthe “repository” key is supplied, this could also mean relative to the repository’s URL
in a remote file system;
o Ifthe importing file located in a CSAR file, it should be treated as relative to the current
document’s location within a CSAR file’s directory structure.
Otherwise, the import SHOULD be considered a failure.

3.6.8.3 Example

The following represents how import definitions would be used for the imports keyname within a TOSCA
Service Template:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 86 of 372

imports:
- pathl/path2/some_defs.yaml
- file: pathl/path2/file2.yaml
repository: my_service_catalog
namespace_uri: http://mycompany.com/tosca/1.0/platform
namespace_prefix: mycompany

3.6.9 Schema Definition

All entries in a map or list for one property or parameter must be of the same type. Similarly, all keys for
map entries for one property or parameter must be of the same type as well. A TOSCA schema definition
specifies the type (for simple entries) or schema (for complex entries) for keys and entries in TOSCA set
types such as the TOSCA list or map.

3.6.9.1 Keynames

The following is the list of recognized keynames for a TOSCA schema definition:

Keyname Required | Type Constraints Description
type yes string None The required data type for the key or entry.
description no description None The optional description for the schema.
constraints no list of None The optional list of sequenced constraint clauses for the
constraint property.
clauses
key_schema no schema_defin | None When the schema itself is of type map, the optional
ition schema definition that is used to specify the type of
they keys of that map’s entries.
entry_schema no schema_defin | None When the schema itself is of type map or list, the
ition optional schema definition that is used to specify the
type of the entries in that map or list

3.6.9.2 Grammar

Schema definitions have the following grammar:

<schema definition>:

type: <schema type>
description: <schema description>

constraints:

- <schema constraints>

key_schema : <key schema_definition>
entry_schema: <entry_schema_definition>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e schema_description: represents the optional description of the schema definition

e schema_type: represents the required type name for entries of the specified schema.

e schema_constraints: represents the optional list of one or more constraint clauses on on
entries of the specified schema.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 87 of 372

o key_schema_definition: if the schema_type is map, represents the optional schema definition
for they keys of that map’s entries.

e entry_schema_definition: if the schema_type is map or list, represents the optional schema
definition for the entries in that map or list.

3.6.10 Property definition

A property definition defines a named, typed value and related data that can be associated with an entity
defined in this specification (e.g., Node Types, Relationship Types, Capability Types, etc.). Properties
are used by template authors to provide input values to TOSCA entities which indicate their “desired
state” when they are instantiated. The value of a property can be retrieved using the get_property
function within TOSCA Service Templates.

3.6.10.1 Attribute and Property reflection

The actual state of the entity, at any point in its lifecycle once instantiated, is reflected by Attribute
definitions. TOSCA orchestrators automatically create an attribute for every declared property (with the
same symbolic hame) to allow introspection of both the desired state (property) and actual state
(attribute).

3.6.10.2 Keynames

The following is the list of recognized keynames for a TOSCA property definition:

Keyname Required | Type Constraints Description
type yes string None The required data type for the property.
description no description None The optional description for the property.
required no boolean default: true An optional key that declares a property as required
(true) or not (false).
default no <any> None An optional key that may provide a value to be used as
a default if not provided by another means.
status no string default: The optional status of the property relative to the
supported specification or implementation. See table below for
valid values.
constraints no list of None The optional list of sequenced constraint clauses for the
constraint property.
clauses
key_schema no schema_defin | None The optional schema definition for the keys used to
ition identify entries in properties of type TOSCA map.
entry_schema no schema_defin | None The optional schema definition for the entries in
ition properties of TOSCA set types such as list or map.
external- no string None The optional key that contains a schema definition that
schema TOSCA Orchestrators MAY use for validation when the
“type” key’s value indicates an External schema (e.g.,
Iljsonll)
See section “External schema” below for further
explanation and usage.
metadata no map of string [N/A Defines a section used to declare additional metadata
information.

TOSCA-Simple-Profile-YAML-v1.3-0s

Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

26 February 2020
Page 88 of 372

3.6.10.3 Status values

The following property status values are supported:

Value Description

supported Indicates the property is supported. This is the default value for all property definitions.
unsupported Indicates the property is not supported.

experimental Indicates the property is experimental and has no official standing.

deprecated Indicates the property has been deprecated by a new specification version.

3.6.10.4 Grammar

Named property definitions have the following grammar:

<property nhame>:

type: <property type>
description: <property description>

required: <property required>
default: <default_value>

status: <status value>

constraints:

- <property constraints>

key_schema : <key_ schema_definition>

entry_schema: <entry_schema_definition>

metadata:

<metadata_map>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

property_name: represents the required symbolic name of the property as a string.
property_description: represents the optional description of the property.

property_type: represents the required data type of the property.

property_required: represents an optional boolean value (true or false) indicating whether or
not the property is required. If this keyname is not present on a property definition, then the
property SHALL be considered required (i.e., true) by default.

default_value: contains a type-compatible value that may be used as a default if not provided
by another means.

status_value: a string that contains a keyword that indicates the status of the property relative
to the specification or implementation.

property_constraints: represents the optional list of one or more sequenced constraint
clauses on the property definition

key_schema_definition: if the property_type is map, represents the optional schema definition
for they keys used to identify entries in that map.
entry_schema_definition: if the property_type is map or list, represents the optional schema
definition for the entries in that map or list.

metadata_map: represents the optional map of string.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 89 of 372

3.6.10.5 Additional Requirements

¢ Implementations of the TOSCA Simple Profile SHALL automatically reflect (i.e., make available)
any property defined on an entity as an attribute of the entity with the same name as the property.

e A property SHALL be considered required by default (i.e., as if the required keyname on the
definition is set to true) unless the definition’s required keyname is explicitly set to false.

e The value provided on a property definition’s default keyname SHALL be type compatible with
the type declared on the definition’s type keyname.

e Constraints of a property definition SHALL be type-compatible with the type defined for that
definition.

e Ifa‘schema’ keyname is provided, its value (string) MUST represent a valid schema definition
that matches the recognized external type provided as the value for the ‘type’ keyname as
described by its correspondig schema specification.

e TOSCA Orchestrators MAY choose to validate the value of the ‘schema’ keyname in accordance
with the corresponding schema specifcation for any recognized external types.

3.6.10.6 Refining Property Definitions

TOSCA allows derived types to refine properties defined in base types. A property definition in a derived
type is considered a refinement when a property with the same name is already defined in one of the
base types for that type.

Property definition refinements use parameter definition grammar rather than property definition
grammar. Specifically, this means the following:

e The type keyname is optional. If no type is specified, the property refinement reuses the type of
the property it refines. If a type is specified, the type must be the same as the type of the refined
property or it must derive from the type of the refined property.

e Property definition refinements support the value keyname that specifies a fixed type-compatible
value to assign to the property. These value assignments are considered final, meaning that it is
not valid to change the property value later (e.g. using further refinements)..

Property refinement definitions can refine properties defined in one of base types by doing one or more of
the following:

e Assigning a new (compatible) type as per the rules outlined above.

e Assigning a (final) fixed value

e Adding a default value

e Changing a default value

e Adding constraints.

e Turning an optional property into a required property.

No other refinements are allowed.

3.6.10.7 Notes

e This element directly maps to the PropertiesDefinition element defined as part of the
schema for most type and entities defined in the TOSCA v1.0 specification.

e Inthe TOSCA v1.0 specification constraints are expressed in the XML Schema definitions of
Node Type properties referenced in the PropertiesDefinition element of NodeType
definitions.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 90 of 372

3.6.10.8 Examples

The following represents an example of a property definition with constraints:

properties:
num_cpus:
type: integer
description: Number of CPUs requested for a software node instance.
default: 1
required: true
constraints:
- valid values: [1, 2, 4, 8]

The following shows an example of a property refinement. Consider the definition of an Endpoint
capability type:

tosca.capabilities.Endpoint:
derived from: tosca.capabilities.Root
properties:
protocol:
type: string
required: true
default: tcp
port:
type: PortDef
required: false
secure:
type: boolean
required: false
default: false
Other property definitions omitted for brevity

The Endpoint.Admin capability type refines the secure property of the Endpoint capability type from which
it derives by forcing its value to always be true:

tosca.capabilities.Endpoint.Admin:
derived from: tosca.capabilities.Endpoint
Change Endpoint secure indicator to true from its default of false
properties:
secure: true

3.6.11 Property assignment

This section defines the grammar for assigning values to named properties within TOSCA Node and
Relationship templates that are defined in their corresponding named types.

3.6.11.1 Keynames
The TOSCA property assignment has no keynames.

3.6.11.2 Grammar

Property assignments have the following grammar:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 91 of 372

3.6.11.2.1 Short notation:

The following single-line grammar may be used when a simple value assignment is needed:
<property_name>: <property value> | { <property value_expression> }

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

e property_name: represents the name of a property that would be used to select a property
definition with the same name within on a TOSCA entity (e.g., Node Template, Relationship
Template, etc.,) which is declared in its declared type (e.g., a Node Type, Node Template,
Capability Type, etc.).

e property_value, property_value_expression: represent the type-compatible value to
assign to the named property. Property values may be provided as the result from the
evaluation of an expression or a function.

3.6.12 Attribute definition

An attribute definition defines a named, typed value that can be associated with an entity defined in this
specification (e.g., a Node, Relationship or Capability Type). Specifically, it is used to expose the “actual
state” of some property of a TOSCA entity after it has been deployed and instantiated (as set by the
TOSCA orchestrator). Attribute values can be retrieved via the get_attribute function from the
instance model and used as values to other entities within TOSCA Service Templates.

3.6.12.1 Attribute and Property reflection

TOSCA orchestrators automatically create Attribute definitions for any Property definitions declared on
the same TOSCA entity (e.g., nodes, node capabilities and relationships) in order to make accessible the
actual (i.e., the current state) value from the running instance of the entity.

3.6.12.2 Keynames

The following is the list of recognized keynames for a TOSCA attribute definition:

Keyname Required | Type Constraints Description

type yes string None The required data type for the
attribute.

description no description None The optional description for the
attribute.

default no <any> None An optional key that may

provide a value to be used as a
default if not provided by
another means.

This value SHALL be type
compatible with the type
declared by the property
definition’s type keyname.

status no string default: supported The optional status of the
attribute relative to the
specification or
implementation. See
supported status values
defined under the Property
definition section.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 92 of 372

Keyname

Required | Type Constraints

Description

key_schema

No schema_definition | None

The optional schema definition
for the keys used to identify
entries in attributes of type
TOSCA map.

entry_schema

no schema_definition | None

The optional schema definition
for the entries in attributes of

TOSCA set types such as list or
map.

3.6.12.3 Grammar

Attribute definitions have the following grammar:

attributes:
<attribute name>:

type: <attribute type>

description: <attribute description>

default: <default_value>
status: <status value>

key_schema :

<key_schema_definition>

entry _schema: <entry_schema_definition>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

attribute_name: represents the required symbolic name of the attribute as a string.
attribute_type: represents the required data type of the attribute.

attribute_description: represents the optional description of the attribute.

default_value: contains a type-compatible value that may be used as a default if not provided
by another means.

status_value: contains a value indicating the attribute’s status relative to the specification
version (e.g., supported, deprecated, etc.). Supported status values for this keyname are defined
under Property definition.

key_schema_definition: if the attribute_type is map, represents the optional schema definition
for they keys used to identify entries in that map.

entry_schema_definition: if the attribute_type is map or list, represents the optional schema
definition for the entries in that map or list.

3.6.12.4 Additional Requirements

In addition to any explicitly defined attributes on a TOSCA entity (e.g., Node Type,
RelationshipType, etc.), implementations of the TOSCA Simple Profile MUST automatically
reflect (i.e., make available) any property defined on an entity as an attribute of the entity with the
same name as the property.

Values for the default keyname MUST be derived or calculated from other attribute or operation
output values (that reflect the actual state of the instance of the corresponding resource) and not
hard-coded or derived from a property settings or inputs (i.e., desired state).

3.6.12.5 Notes

TOSCA-Simple-Profile-YAML-v1.3-0s
Standards Track Work Product

Attribute definitions are very similar to Property definitions; however, properties of entities reflect
an input that carries the template author’s requested or desired value (i.e., desired state) which

26 February 2020

Copyright © OASIS Open 2020. All Rights Reserved. Page 93 of 372

the orchestrator (attempts to) use when instantiating the entity whereas attributes reflect the
actual value (i.e., actual state) that provides the actual instantiated value.
o For example, a property can be used to request the IP address of a node using a
property (setting); however, the actual IP address after the node is instantiated may by
different and made available by an attribute.

3.6.12.6 Example

The following represents a required attribute definition:

actual cpus:
type: integer
description: Actual number of CPUs allocated to the node instance.

3.6.13 Attribute assignment

This section defines the grammar for assigning values to named attributes within TOSCA Node and
Relationship templates which are defined in their corresponding named types.

3.6.13.1 Keynames

The TOSCA attribute assignment has no keynames.

3.6.13.2 Grammar

Attribute assignments have the following grammar:

3.6.13.2.1 Short notation:

The following single-line grammar may be used when a simple value assignment is needed:

<attribute name>: <attribute value> | { <attribute value expression> }

3.6.13.2.2 Extended notation:

The following multi-line grammar may be used when a value assignment requires keys in addition to a
simple value assignment:

<attribute_name>:
description: <attribute_description>

value: <attribute value> | { <attribute value expression> }

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

e attribute_name: represents the name of an attribute that would be used to select an attribute
definition with the same name within on a TOSCA entity (e.g., Node Template, Relationship
Template, etc.) which is declared (or reflected from a Property definition) in its declared type
(e.g., a Node Type, Node Template, Capability Type, etc.).

e attribute_value, attribute_value_expresssion: represent the type-compatible value to
assign to the named attribute. Attribute values may be provided as the result from the
evaluation of an expression or a function.

e attribute_description: represents the optional description of the attribute.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 94 of 372

3.6.13.3 Additional requirements

o Attribute values MAY be provided by the underlying implementation at runtime when requested
by the get_attribute function or it MAY be provided through the evaluation of expressions and/or
functions that derive the values from other TOSCA attributes (also at runtime).

3.6.14 Parameter definition

A parameter definition is essentially a TOSCA property definition; however, it also allows a value to be
assigned to it (as for a TOSCA property assignment). In addition, in the case of output parameters, it can
optionally inherit the data type of the value assigned to it rather than have an explicit data type defined for
it.

3.6.14.1 Keynames

The TOSCA parameter definition has all the keynames of a TOSCA Property definition, but in addition
includes the following additional or changed keynames:

Keyname Required | Type Constraints Description

type no string None The required data type for the parameter.

Note: This keyname is required for a TOSCA Property
definition, but is not for a TOSCA Parameter definition.

value no <any> N/A The type-compatible value to assign to the named
parameter. Parameter values may be provided as the
result from the evaluation of an expression or a function.

3.6.14.2 Grammar

Named parameter definitions have the following grammar:

<parameter name>:

type: <parameter type>

description: <parameter description>

value: <parameter_value> | { <parameter value expression> }
required: <parameter required>

default: <parameter_default_value>
status: <status value>
constraints:

- <parameter constraints>

key_schema : <key schema_definition>

entry_schema: <entry_schema_definition>

In addition, the following single-line grammar is supported when only a fixed value needs to be provided:

<parameter name>: <parameter_value> | { <parameter_value_expression> }

This single-line grammar is equivalent to the following:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 95 of 372

<parameter name>:

value : <parameter_value> | { <parameter_value_expression> }

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e parameter_name: represents the required symbolic name of the parameter as a string.

e parameter_description: represents the optional description of the parameter.

e parameter_type: represents the optional data type of the parameter. Note, this keyname is
required for a TOSCA Property definition, but is not for a TOSCA Parameter definition.

e parameter_value, parameter_value_expresssion: represent the type-compatible value to
assign to the named parameter. Parameter values may be provided as the result from the
evaluation of an expression or a function

e parameter_required: represents an optional boolean value (true or false) indicating whether or
not the parameter is required. If this keyname is not present on a parameter definition, then the
property SHALL be considered required (i.e., true) by default.

e default_value: contains a type-compatible value that may be used as a default if not provided
by another means.

e status_value: a string that contains a keyword that indicates the status of the parameter
relative to the specification or implementation.

e parameter_constraints: represents the optional list of one or more sequenced constraint
clauses on the parameter definition.

o key_schema_definition: if the parameter_type is map, represents the optional schema
definition for they keys used to identify entries in that map.

e entry_schema_definition: if the parameter_type is map or list, represents the optional
schema definition for the entries in that map or list.

3.6.14.3 Additional Requirements

e A parameter SHALL be considered required by default (i.e., as if the required keyname on the
definition is set to true) unless the definition’s required keyname is explicitly set to false.

e The value provided on a parameter definition’s default keyname SHALL be type compatible
with the type declared on the definition’s type keyname.

e Constraints of a parameter definition SHALL be type-compatible with the type defined for that
definition.

3.6.14.4 Example

The following represents an example of an input parameter definition with constraints:

inputs:
cpus:
type: integer
description: Number of CPUs for the server.
constraints:
- valid_values: [1, 2, 4, 8]

The following represents an example of an (untyped) output parameter definition:

outputs:
server_ip:
description: The private IP address of the provisioned server.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 96 of 372

value: { get_attribute: [my_server, private address] }

3.6.15 Attribute Mapping definition

An attribute mapping defines a named output value that is expected to be returned by an operation
implementations and a mapping that specifies the node or relationship attribute into which the returned

output value must be stored.

3.6.15.1 Grammar

Attribute mappings have the following grammar :

output_name: [<SELF | SOURCE | TARGET >, <optional_ capability name>,
<attribute_name>, <nested_attribute_name_or_index_1>, ...,

<nested_attribute_name_or_index_or_key n>]

The various entities in this grammar are defined as follows:

Parameter Required Type

Description

SELF | SOURCE | TARGET yes string

For operation outputs in interfaces on node templates, the
only allowed keyname is SELF: output values must always
be stored into attributes that belong to the node template
that has the interface for which the output values are
returned.

For operation outputs in interfaces on relationship
templates, allowable keynames are SELF, SOURCE, or
TARGET.

<optional_capability_nam | no string
e>

The optional name of the capability within the specified
node template that contains the named attribute into
which the output value must be stored.

<attribute_name> yes string

The name of the attribute into which the output value must
be stored.

<nested_attribute_name_o | no
r_index_or_key_*>

string|
integer

Some TOSCA attributes are complex (i.e., composed as
nested structures). These parameters are used to
dereference into the names of these nested structures
when needed.

Some attributes represent list or map types. In these cases,
an index or key may be provided to reference a specific
entry in the list or map (as named in the previous
parameter) to return.

Note that it is possible for multiple operations to define outputs that map onto the same attribute value.
For example, a create operation could include an output value that sets an attribute to an initial value, and
the subsequence configure operation could then update that same attribute to a new value.

It is also possible that a node template assigns a value to an attribute that has an operation output
mapped to it (including a value that is the result of calling an intrinsic function). Orchestrators could use
the assigned value for the attribute as its initial value. After the operation runs that maps an output value

TOSCA-Simple-Profile-YAML-v1.3-0s
Standards Track Work Product

Copyright © OASIS Open 2020. All Rights Reserved.

26 February 2020
Page 97 of 372

onto that attribute, the orchestrator must then use the updated value, and the value specified in the node
template will no longer be used.

3.6.16 Operation implementation definition

An operation implementation definition specifies one or more artifacts (e.g. scripts) to be used as the
implementation for an operation in an interface.

3.6.16.1 Keynames

The following is the list of recognized keynames for a TOSCA operation implementation definition:

Keyname Req | Type Description
uire
d
primary no Artifact definition The optional implementation artifact (i.e., the primary script file within
a TOSCA CSAR file).
dependencies no list of The optional list of one or more dependent or secondary
Artifact definition implementation artifacts which are referenced by the primary
implementation artifact (e.g., a library the script installs or a
secondary script).
timeout No integer Timeout value in seconds
operation_host no string The node on which operations should be executed (for TOSCA

call_operation activities).

If the operation is associated with an interface on a node type or a
relationship template, valid_values are SELF or HOST — referring to the
node itself or to the node that is the target of the HostedOn
relationship for that node.

If the operation is associated with a relationship type or a relationship
template, valid_values are SOURCE or TARGET — referring to the
relationship source or target node.

In both cases, the value can also be set to ORCHESTRATOR to indicated
that the operation must be executed in the orchestrator environment
rather than within the context of the service being orchestrated.

3.6.16.2 Grammar

Operation implementation definitions have the following grammars:

3.6.16.2.1 Short notation for use with single artifact

The following single-line grammar may be used when only a primary implementation artifact name is
needed:

implementation: <primary artifact name>

This notation can be used when the primary artifact name uniquely identifies the artifact, either because it
refers to a named artifact specified in the artifacts section of a type or template, or because it represents
the name of a script in the CSAR file that contains the definition.

TOSCA-Simple-Profile-YAML-v1.3-0s
Standards Track Work Product

26 February 2020

Copyright © OASIS Open 2020. All Rights Reserved. Page 98 of 372

3.6.16.2.2 Short notation for use with multiple artifact
The following multi-line short-hand grammar may be used when multiple artifacts are needed, but each of
the artifacts can be uniquely identified by name as before:

implementation:
primary: <primary_artifact name>

dependencies:

- <list_of dependent_artifact_names>
operation_host : SELF
timeout : 60

3.6.16.2.3 Extended notation for use with single artifact

The following multi-line grammar may be used in Node or Relationship Type or Template definitions when
only a single artifact is used but additional information about the primary artifact is needed (e.g. to specify
the repository from which to obtain the artifact, or to specify the artifact type when it cannot be derived
from the artifact file extension):

implementation:
primary:
<primary_artifact definition>

operation_host : HOST
timeout : 100

3.6.16.2.4 Extended notation for use with multiple artifacts

The following multi-line grammar may be used in Node or Relationship Type or Template definitions when
there are multiple artifacts that may be needed for the operation to be implemented and additional
information about each of the artifacts is required:

implementation:
primary:
<primary artifact definition>

dependencies:
- <list of dependent artifact definitions>

operation_host: HOST
timeout: 120

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

e primary_artifact_name: represents the optional name (string) of an implementation artifact
definition (defined elsewhere), or the direct name of an implementation artifact’s relative filename
(e.g., a service template-relative, path-inclusive filename or absolute file location using a URL).

e primary_artifact_definition: represents a full inline definition of an implementation artifact.

e list_of_dependent_artifact_names: represents the optional ordered list of one or more
dependent or secondary implementation artifact names (as strings) which are referenced by the
primary implementation artifact. TOSCA orchestrators will copy these files to the same location
as the primary artifact on the target node so as to make them accessible to the primary
implementation artifact when it is executed.

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 99 of 372

e list_of_dependent_artifact_definitions: represents the ordered list of one or more inline
definitions of dependent or secondary implementation artifacts. TOSCA orchestrators will copy
these artifacts to the same location as the primary artifact on the target node so as to make them
accessible to the primary implementation artifact when it is executed.

3.6.17 Operation definition

An operation definition defines a named function or procedure that can be bound to an operation
implementation.

3.6.17.1 Keynames

The following is the list of recognized keynames for a TOSCA operation definition:

Keyname Required | Type Description
description no description The optional description string for the associated named
operation.

implementation no Operation The optional definition of the operation implementation
implementation
definition

inputs no map of The optional map of input properties definitions (i.e.,
parameter parameter definitions) for operation definitions that are
definitions within TOSCA Node or Relationship Type definitions. This

includes when operation definitions are included as part of
a Requirement definition in a Node Type.

no map of The optional map of input property assignments (i.e.,
property parameters assignments) for operation definitions that are
assignments within TOSCA Node or Relationship Template definitions.

This includes when operation definitions are included as
part of a Requirement assignment in a Node Template.

outputs no map of The optional map of attribute mappings that specify named
attribute operation output values and their mappings onto attributes
mappings of the node_type or relationship that contains the interface

within which the operation is defined.

3.6.17.2 Grammar

Operation definitions have the following grammars:

3.6.17.2.1 Short notation

The following single-line grammar may be used when the operation’s implementation definition is the only
keyname that is needed, and when the operation implementation definition itself can be specified using a
single line grammar

<operation name>: <implementation artifact name>

3.6.17.2.2 Extended notation for use in Type definitions

The following multi-line grammar may be used in Node or Relationship Type definitions when additional
information about the operation is needed:

<operation name>:

description: <operation description>

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 100 of 372

implementation: <Operation implementation definition>

inputs:

<property definitions>

outputs:

<attribute mappings>

3.6.17.2.3 Extended notation for use in Template definitions

The following multi-line grammar may be used in Node or Relationship Template definitions when
additional information about the operation is needed:

<operation name>:

description: <operation description>

implementation: <Operation implementation definition>
inputs:

<property assignments>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

operation_name: represents the required symbolic name of the operation as a string.
operation_description: represents the optional description string for the corresponding
operation_name.

operation_implementation_definition: represents the optional specification of the
operation’s implementation).

property_definitions: represents the optional map of property definitions which the TOSCA
orchestrator would make available (i.e., or pass) to the corresponding implementation artifact
during its execution.

property_assignments: represents the optional map of property assignments for passing
parameters to Node or Relationship Template operations providing values for properties defined
in their respective type definitions.

attribute_mappings: represents the optional map of of attribute_mappings that consists of
named output values returned by operation implementations (i.e. artifacts) and associated
mappings that specify the attribute into which this output value must be stored.

3.6.17.3 Additional requirements

The default sub-classing behavior for implementations of operations SHALL be override. That is,
implementation artifacts assigned in subclasses override any defined in its parent class.
Template authors MAY provide property assignments on operation inputs on templates that do
not necessarily have a property definition defined in its corresponding type.

Implementation artifact file names (e.g., script filenames) may include file directory path names
that are relative to the TOSCA service template file itself when packaged within a TOSCA Cloud
Service ARchive (CSAR) file.

3.6.17.4 Examples

3.6.17.4.1 Single-line example

interfaces:

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 101 of 372

Standard:
start: scripts/start_server.sh

3.6.17.4.2 Multi-line example with shorthand implementation definitions

interfaces:
Configure:
pre_configure_source:
implementation:
primary: scripts/pre_configure_source.sh
dependencies:
- scripts/setup.sh
- binaries/library.rpm

- scripts/register.py

3.6.17.4.3 Multi-line example with extended implementation definitions

interfaces:
Configure:
pre_configure_source:
implementation:
primary:
file: scripts/pre_configure_source.sh
type: tosca.artifacts.Implementation.Bash
repository: my_service_catalog
dependencies: - file : scripts/setup.sh
type : tosca.artifacts.Implementation.Bash

Repository : my_service_catalog

3.6.18 Notification implementation definition

A notification implementation definition specifies one or more artifacts to be used by the orchestrator to
subscribe to that particular notification. We use the primary and dependencies keynames as in the
operation implementation definition.

3.6.18.1 Keynames

The following is the list of recognized keynames for a TOSCA notification implementation definition:

Keyname Req | Type Description
uire
d
primary no Artifact definition The optional implementation artifact (i.e., the primary script file within
a TOSCA CSAR file).

TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020
Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 102 of 372

Keyname Req | Type Description
uire

dependencies no list of The optional list of one or more dependent or secondary
Artifact definition implementation artifacts which are referenced by the primary
implementation artifact (e.g., a library the script installs or a
secondary script).

3.6.18.2 Grammar

Notification implementation definitions have the following grammars:

3.6.18.2.1 Short notation for use with single artifact

The following single-line grammar may be used when only a primary implementation artifact name is
needed:

implementation: <primary artifact name>

This notation can be used when the primary artifact name uniquely identifies the artifact, either because it
refers to a named artifact specified in the artifacts section of a type or template, or because it represents
the name of a script in the CSAR file that contains the definition.

3.6.18.2.2 Short notation for use with multiple artifact
The following multi-line short-hand grammar may be used when multiple artifacts are needed, but each of
the artifacts can be uniquely identified by name as before:

implementation:

primary: <primary_artifact name>

dependencies:

- <list_of_dependent_artifact_names>

3.6.19 Notification definition

A notification definition defines a named notification that can be associated with an interface. The
notification is a way for an external event to be transmitted to the TOSCA orchestrator. Parameter values
can be sent together with a notification and we can map them to node/relationship attributes imilarly to the
way operation outputs are mapped to attributes. The artifact that the orchestrator is registering with in
order to receive the notification is specified using the “implementation” keyname in a similar way to
operations.

When the notification is received an event is generated within the orchestrator that can be associated to
triggers in policies to call other internal operations and workflows. The notification name (the unqualified
full name) itself identifies the event type that is generated and can be textually used when defining the
associated triggers.

3.6.19.1 Keynames

The following is the list of recognized keynames for a TOSCA notification definition:

Keyname Required | Type Description
description no description The optional description string for the associated named
notification.
TOSCA-Simple-Profile-YAML-v1.3-0s 26 February 2020

Standards Track Work Product Copyright © OASIS Open 2020. All Rights Reserved. Page 103 of 372

mappings

Keyname Required | Type Description

implementation | no notification The optional definition of the notification implementation.
implementation
definition

outputs no map of attribute The optional map of property mappings that specify named

notification output values and their mappings onto attributes of the
node or relationship that contains the interface within which the
notification is defined.

3.6.19.2 Grammar

The following multi-line grammar may be used in Node or Relationship Template or Type definitions:

<notification_name>:

description: <notification_description>

implementation: <notification_implementation_definition>

outputs:

<attribute_mappings>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:

e notification_name: represents the required symbolic name of the notification as a string.

e notification_description: represents the optional description string for the corresponding
notification_name.

e notification_implementation_definition: representes the optional specification of the
notification implementation (i.e. the external artifact that is may send notifications)

e attribute_mappings: represents the optional map of attribute assignments for mapping the
outputs values to the respective attributes of the node or relationship.

3.6.20 Interface definition

An interface definition defines a named interface that can be associated with a Node or Relationship Type

3.6.20.1 Keynames

The following is the list of recognized keynames for a TOSCA interface definition:

Keyname Required | Type Description
inputs no map of The optional map of input property definitions available to all defined
property definitions operations for interface definitions that are within TOSCA Node or
Relationship Type definitions. This includes when interface definitions
are included as part of a Requirement definition in a Node Type.
no map of The optional map of input property assignments (i.e., parameters
property assignments assignments) for interface definitions that are within TOSCA Node or
Relationship Template definitions. This includes when interface
definitions are referenced as part of a Requirement assignment in a
Node Template.
operations no map of operation The optional map of operations defined for this interface.
definitions

TOSCA-Simple-Profile-YAML-v1.3-0s
Standards Track Work Product

26 February 2020

Copyright © OASIS Open 2020. All Rights Reserved. Page 104 of 372

Keyname Required | Type Description

notifications | no map of notification The optional map of notifications defined for this interface.
definitions

3.6.20.2 Grammar

Interface definitions have the following grammar:

3.6.20.2.1 Extended notation for use in Type definitions

The following multi-line grammar may be used in Node or Relationship Type definitions:

<interface definition name>:

type: <interface type name>

inputs:
<property definitions>

operations:
<operation definitions>

notifications:
<notification definitions>

3.6.20.2.2 Extended notation for use in Template definitions

The following multi-line grammar may be used in Node or Relationship Template definitions:

<interface definition name>:

inputs:
<property assignments>

operations:
<operation definitions>

notifications:
<notification_definitions>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:

e interface_definition_name: represents the required symbolic name of the interface as a
string.

e interface_type_name: represents the required name of the Interface Type for the interface
definition.

e property_definitions: represents the optional map of property definitions (i.e., parameters)
which the TOSCA orchestrator would make available (i.e., or pass) to all defined operations.

- This means these properties and their values would be accessible to the implementation
artifacts (e.q., scripts) associated to each operation during their execution.

e property_assignments: represents the optional map of property assignments for passing
parameters to Node or Relationship Template operations providing values for properties defined
in their respective type definitions.

e operation_definitions: represents the required name of one or more opera