
Open Geospatial Consortium
Submission Date 2023-04-19

Approval Date: 2024-06-21

Publication Date: 2024-07-05

External identifier of this OGC® document: http://www.opengis.net/doc/AS/Topic-6.3/1.0

Internal reference number of this OGC® document: 21-060r2

Version: 1.0

Category: OGC® Abstract Specification

Editor: Peter Baumann

OGC Abstract Specification Topic 6: Schema for Coverage
Geometry and Functions – Part 3: Processing Fundamentals

Copyright notice

Copyright © 2024 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is an OGC Member approved international standard. This document is available on a
royalty free, non-discriminatory basis. Recipients of this document are invited to submit, with their
comments, notification of any relevant patent rights of which they are aware and to provide supporting
documentation.

Document type: OGC® Abstract Specification
Document subtype:
Document stage: Approved
Document language: English

OGC 21-060r2
License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below, to any person
obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property without restriction (except as set forth
below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the Intellectual
Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that all copyright notices on the intellectual property are
retained intact and that each person to whom the Intellectual Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above copyright notice, a notice
that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT MAY BE IN
FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT
THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL
PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY
CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED
INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY
OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR
PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all copies in any form.
The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as provided in the following sentence, no such
termination of this license shall require the termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date
of notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole
opinion be likely to infringe, any patent, copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy
or cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual Property shall not be
used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize you or any third party to use certification marks,
trademarks or other special designations to indicate compliance with any LICENSOR standards or specifications. This Agreement is governed by the
laws of the Commonwealth of Massachusetts. The application to this Agreement of the United Nations Convention on Contracts for the International
Sale of Goods is hereby expressly excluded. In the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision
shall be modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No decision, action
or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

OGC 21-060r2
Keywords
The following are keywords to be used by search engines and document catalogues.
Ogcdoc, OGC document, Topic 6, coverage, processing

Preface
This document is consistent with the ISO 19123-3:2023, Geographic Information - Schema for
coverage geometry and functions - Part 1: Processing Fundamentals. ISO 19123-3:2023 was prepared
by Technical Committee ISO/TC 211, Geographic information/Geomatics, in close collaboration with
the Open Geospatial Consortium (OGC) and was derived from the OGC Standard OGC 08-068r3,
Web Coverage Processing Service (WCPS) Language Interface Standard. This document is an
abstraction of the processing framework for coverage data and makes up Part 3 of the Abstract
Specification Topic 6.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any or all
such patent rights.
Recipients of this document are requested to submit, with their comments, notification of any relevant
patent claims or other intellectual property rights of which they may be aware that might be infringed
by any implementation of the standard set forth in this document, and to provide supporting
documentation.

Submitting organizations
The following organizations submitted this Document to the Open Geospatial Consortium (OGC):

Name Affiliation

Peter Baumann Constructor
University

Lucio Colaiacomo European Union
Satellite Center

Dimitar Misev rasdaman GmbH
Joan Masó CREAF
Jimmy Zhou Feng Chia University
Peter Strobl Joint Research Centre

of the European
Union

All questions regarding this submission should be directed to the editor or the submitters.

OGC 21-060r2

Error! Reference source not found. iv

Contents	

Introduction .. vii

1. Scope .. 8

2. Normative references .. 8

3. Terms, definitions, abbreviated terms and notation ... 8

3.1 Terms and definitions ... 8

4. Conformance ... 9

4.1 Notation .. 9

4.2 Interoperability and Conformance Testing ... 9

4.3 Organization ... 9

5. Coverage model ... 10

5.1 Overview ... 10

5.2 Coverage identifier ... 11

5.3 Domain ... 11

5.4 Interpolation .. 14

5.5 Range values ... 15

5.6 Range type .. 15

5.7 Coverage probing functions synopsis ... 16

6. Coverage processing language ... 17

6.1 Syntax and Semantics Definition Style .. 18

6.2 Coverage Processing Expressions .. 19

6.3 Coverage-Generating Expressions .. 22

6.4 Coverage Extraction Expressions ... 28

6.5 Coverage range value-changing expressions .. 29

6.6 Coverage Derivation Expressions ... 50

6.7 Coverage Aggregation Expressions .. 51

6.8 Coverage Encode/Decode Expressions .. 56

6.9 Expression evaluation ... 58

6.10 Evaluation response ... 59

Annex A (normative) Conformance Tests .. 61

A.1 Conformance Class ... 61

A.2 Conformance Class Coverage Processing Core ... 61

Annex B (normative) Expression Syntax .. 62

B.1 Overview ... 62

OGC 21-060r2

Error! Reference source not found. v

B.2 Terminal Symbols ... 63

B.3 Processing Syntax ... 63

Annex C (non-normative) Syntax diagrams ... 71

Annex D (non-normative) Sample service descriptions .. 87

D.1 Overview ... 87

D.2 WCS-Core ... 87

D.3 WCS-Range-Subsetting .. 88

D.4 WCS-Scaling .. 88

D.5 WCS-CRS ... 88

D.6 WCS-Processing ... 89

OGC 21-060r2

Error! Reference source not found. vi

ISO	Foreword	

ISO	(the	International	Organization	for	Standardization)	is	a	worldwide	federation	of	national	standards	
bodies	 (ISO	member	 bodies).	 The	work	 of	 preparing	 International	 Standards	 is	 normally	 carried	 out	
through	 ISO	 technical	 committees.	 Each	 member	 body	 interested	 in	 a	 subject	 for	 which	 a	 technical	
committee	 has	 been	 established	 has	 the	 right	 to	 be	 represented	 on	 that	 committee.	 International	
organizations,	governmental	and	non-governmental,	in	liaison	with	ISO,	also	take	part	in	the	work.	ISO	
collaborates	 closely	 with	 the	 International	 Electrotechnical	 Commission	 (IEC)	 on	 all	 matters	 of	
electrotechnical	standardization.		

The	 procedures	 used	 to	 develop	 this	 document	 and	 those	 intended	 for	 its	 further	 maintenance	 are	
described	in	the	ISO/IEC	Directives,	Part	1.	In	particular,	the	different	approval	criteria	needed	for	the	
different	types	of	ISO	documents	should	be	noted.	This	document	was	drafted	in	accordance	with	the	
editorial	rules	of	the	ISO/IEC	Directives,	Part	2	(see	www.iso.org/directives).	

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	of	
patent	rights.	ISO	shall	not	be	held	responsible	for	identifying	any	or	all	such	patent	rights.	Details	of	any	
patent	rights	identified	during	the	development	of	the	document	will	be	in	the	Introduction	and/or	on	
the	ISO	list	of	patent	declarations	received	(see	www.iso.org/patents).	

Any	trade	name	used	in	this	document	is	information	given	for	the	convenience	of	users	and	does	not	
constitute	an	endorsement.		

For	 an	 explanation	 of	 the	 voluntary	 nature	 of	 standards,	 the	 meaning	 of	 ISO	 specific	 terms	 and	
expressions	related	to	conformity	assessment,	as	well	as	information	about	ISO's	adherence	to	the	World	
Trade	 Organization	 (WTO)	 principles	 in	 the	 Technical	 Barriers	 to	 Trade	 (TBT),	 see	
www.iso.org/iso/foreword.html.	

This	document	was	prepared	by	Technical	Committee	ISO/TC	211,	Geographic	information/Geomatics,	in	
collaboration	with	 the	European	Committee	 for	 Standardization	 (CEN)	Technical	 Committee	CEN/TC	
287,	Geographic	Information,	in	accordance	with	the	Agreement	on	technical	cooperation	between	ISO	
and	CEN	(Vienna	Agreement),	under	participation	of	the	IEEE	GRSS	Earth	Science	Informatics	Technical	
Committee,	 and	 derived	 from	 the	 Open	 Geospatial	 Consortium	 (OGC)	 standard	 WCPS	 1.1	 with	
permission.	

Any	feedback	or	questions	on	this	document	should	be	directed	to	the	user’s	national	standards	body.	A	
complete	listing	of	these	bodies	can	be	found	at	www.iso.org/members.html.	

OGC 21-060r2

Error! Reference source not found. vii

Introduction	

This document defines, at a high, implementation-independent level, operations on coverages - i.e.,
digital representations of space-time varying geographic phenomena - as defined in ISO 19123-1.
Specifically, regular and irregular grid coverages are addressed. Future versions will additionally
support further axis types as well as further coverage types from ISO19123-1, such as point clouds and
meshes in particular. While the core functionality is expected to be generic and applicable for any
coverage, there may be special functionality for particular coverage types.

The operations can be applied through an expression language allowing composition of unlimited
complexity and combining an unlimited number of coverages for data fusion. The language is
functionally defined and free of any side effects. Its conceptual foundation relies on only two
constructs: A “coverage constructor” builds a coverage, either from scratch or by deriving it from one
or more other coverages. A “coverage condenser” derives summary information from a coverage by
performing an aggregation like count, sum, minimum, maximum, and average.

The coverage processing language is independent from any particular request and response encoding,
as no concrete request/response protocol is assumed. Hence, this document does not define a concrete
service, but acts as the foundation for defining service standards functionality. One such
standardization target is OGC Web Coverage Service (WCS) [4].

Throughout the document, the following formatting conventions apply:

• Bold-Face in the text – such as processCoveragesExpr – represents syntax elements, normatively
defined in Annex B.

• Text in italics – such as succ() – represents mathematical functions and variables.
• Courier font – such as return and encode() – is used for code in the sense of the coverage

processing language.

OGC 21-060r2

8
Copyright © 2024 Open Geospatial Consortium

Error!	Reference	source	not	found.	

1. Scope

This document defines a coverage processing language for server-side extraction, filtering,
processing, analytics, and fusion of multi-dimensional geospatial coverages representing,
for example, spatio-temporal sensor, image, simulation, or statistics datacubes. Services
implementing this language provide access to original or derived sets of coverage
information, in forms that are useful for client-side consumption.

This document relies on the abstract coverage model defined in ISO 19123-1. In this
version, regular and irregular multi-dimensional grids are supported, for axes that can carry
spatial, temporal, or any other semantics. Future versions will additionally support further
axis types as well as further coverage types from 19123-1, in particular: point clouds and
meshes; while core functionality is expected to be generic for any coverage there might be
special functionality for particular coverage types.

2. Normative references

The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition
cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

ISO 19111, Geographic information — Referencing by coordinates
ISO	19123-1,	Geographic	information	—	Schema	for	coverage	geometry	and	functions	—	Part	
1:	Coverage	Fundamentals	

3. Terms, definitions, abbreviated terms and notation

3.1 Terms and definitions
For the purposes of this document, the terms, definitions and abbreviated terms given in
ISO 19123-1 apply.

ISO and IEC maintain terminological databases for use in standardization at the following
addresses:

—	 ISO	Online	browsing	platform:	available	at	https://www.iso.org/obp	

—	 IEC	Electropedia:	available	at	http://www.electropedia.org	

OGC 21-060r2

9
Copyright © 2024 Open Geospatial Consortium

3.1.1
probing function
<coverage> function extracting information from the coverage

4. Conformance

4.1 Notation
Table 1 lists the other international standards and packages in which UML classes used in
this document have been defined.

Table	1	—	Sources	of	externally	defined	UML	classes	

Prefix	 International	
Standard	

Package	

	 ISO	19123-1	 Coverage	 Core,	
Grid	Coverage	

4.2 Interoperability and Conformance Testing
This document being an abstract standard allows for multiple different implementations
and does not define a standardized interoperable implementation. Rather, standardization
targets are specifications of coverage operations and services which may use this language
to describe the semantics of their operations.

Conformance testing is accomplished by validating a candidate concretization against all
requirements by exercising the tests set out in Annex A. As a prerequisite, a candidate shall
also pass all conformance tests of ISO 19123-1 Coverage Core and Grid Coverage.

4.3 Organization
Table	2	—		Conformance	classes	

Conformance	class	 Clause	 Identifying	URL	

Coverage	Processing	 6	 https://standards.isotc211.org/19123/-3/1/conf/coverage-processing	

OGC 21-060r2

10
Copyright © 2024 Open Geospatial Consortium

5. Coverage model

5.1 Overview
This document defines a language whose expressions accept any number of input
coverages (together with further common inputs like numbers and strings) to generate any
number of output coverages or non-coverage results. Coverages are defined in ISO 19123-
1.Coverage model

Following the mathematical notion of a function that maps elements of a domain (such as
spatio-temporal coordinates) to a range (such as values of a “pixel”, “voxel”, etc.), a
coverage consists of (Figure 1):

• an identifier which uniquely identifies a coverage in some context (here: the context
of an expression)

• a domain of coordinate points (expressed in a common Coordinate Reference
System, CRS): “where in the multi-dimensional space can I find values?”

• a probing function which answers for each coverage coordinate in the domain
(“direct position”): “what is the value here?”

• a range type: “what do those values mean?”

Figure 1 – Coverage and GridCoverage (ISO 19123-1)

OGC 21-060r2

11
Copyright © 2024 Open Geospatial Consortium

Note Coverage in 19123-1 defines an interface which describes such an object’s behavior, but does
not yet assume any particular data structure. One interoperable concretization of it is the implementation
standard ISO 19123-2.

Below “probing functions” are introduced which extract components from some given
coverage. For every component of a coverage a corresponding probing function exists so
that altogether all properties of a coverage can be retrieved. They serve to define
document’s language semantics.

Note In the processing definition of this document, further probing functions – beyond the ISO 19123-
1 probing function evaluate() – are used as a concise means to describe all aspects of coverage-valued
function results.

5.2 Coverage identifier
Coverages in this document have an identifier which is used in a query to address a
coverage. Therefore, this identifier must be unique within some context (here: a query).
Beyond this, no particular assumptions are made on the realization of this identifier. In
particular, when the context of the coverage object changes (such as during delivery to a
client) uniqueness is not necessarily guaranteed any longer. Therefore, querying the object
in the new context potentially is not possible any longer.

Note In a concrete service, coverages available typically would be those which are stored on this
server, where access control allows addressing the coverage according to the user sending the request, etc.
All these aspects are out of scope of this document.

The corresponding probing function for a coverage C is:

id(C)

5.3 Domain

5.3.1 Direct Position
A coverage offers values at specific coordinate positions in its domain, called “direct
positions”; further values can possibly be derived through interpolation, depending on
whether and what type of interpolation a coverage allows.

For some direct position p = (p1,…,pd) from a domain whose d-dimensional CRS contains
axes (a1,…,ad), p[ai] denotes accessing the coordinate tuple component corresponding with
axis ai:

p[ai] = pi

5.3.2 Grid
The domain contains the coordinate tuples describing the coverage’s direct positions,
which for the purpose of this document all sit on a multi-dimensional grid. Informally this
means that every direct position inside the grid has exactly one next neighbor in both
directions of every axis, except for the rim where obviously fewer neighbors are available.
Figure 2 shows some regular and irregular grid examples.

OGC 21-060r2

12
Copyright © 2024 Open Geospatial Consortium

Figure 2 – Sample regular and irregular grid structures (19123-1)

The grid description depends on the complexity of the grid. As a grid is composed from an
ordered sequence of axes the resulting complexity is determined by the types of axes (such
as integer versus Latitude versus time) as well as the rules determining the direct positions
along these axes. The following axis types defined in 19123-1 are currently supported by
this document:

• A Cartesian (“index”) axis just requires lower and upper bound (which are of type
integer).

• A regular axis which can be described by lower and upper bounds together with a
constant distance, the resolution.

• An irregular axis which has individual distances, described by a sequence of
coordinates.

As per ISO 19123-1, the coverage domain with its axes has a single CRS which can serve
for georeferencing. Definition and interpretation of CRSs is based on ISO 19111:2019.

The CRS of a domain is obtained through function crs(C).

crs(C)

Auxiliary probing function axisList()extracts the ordered list of axes (a1,…,ad) from a d-
dimensional CRS:

axisList(crs)

Note As per 19123-1, all axis names in such a list are pairwise disjoint so that the names can act as a
unique identifier within their CRS.

Each axis contributes coordinates from some nonempty, totally ordered set of values which
can be numeric or, in the general case, strings (such as “2020-08-05T”).

For some given coverage C, probing function domain() delivers the coverage domain in its
CRS:

domain(C)

The domain information describes the coverage’s grid and its extent for each axis:

• the lower and upper bound of the direct positions

OGC 21-060r2

13
Copyright © 2024 Open Geospatial Consortium

• additionally the following information:

o for index axes: nothing further;
o for regular axes: the resolution, expressed in the unit of measure (uom) of

the axis;

o for irregular axes: the sequence of points.
This information is accessible through extended variants of the abovementioned functions.
For some coverage domain D with axis a, the following expressions return lower and upper
bound, respectively:

domain(C, a).lo
domain(C, a).hi

For convenience a function pair identical in effect, but based on the domain is defined:

D[a].lo = domain(C, a).lo
D[a].hi = domain(C, a).hi

The grid of the coverage domain is represented implicitly through functions “walking” the
grid from one direct position to one of its neighbors. This is based on the topological
structure of a grid where each direct position has exactly one lower and one higher neighbor
along each axis, with the exception of the domain rims where no such neighbor is available.
Therefore, these functions are partial.

Let D be given as the domain of coverage C, so that D = domain(C). Let further a be some
axis from the CRS of D. Then, functions pred() and succ() each return a neighboring direct
position for some given position. Function pred() returns the immediate preceding direct
position along axis a, function succ() returns the immediate succeeding direct position
along a. Where there is no such direct position (because the input position is sitting at the
rim of the domain extent) the value is undefined, written as ^.

pred(D, a, p) = x where
 if p[a] = D[a].lo domain(C,a).lo then x = ^
 else x is given by: x[ax] = p[ax] for all ax Î domain(C) \ {a}, and x[a] = max(x’ |
x’ Î domain(C, a) and x’ < p[a])

succ(D, a, p) = x where
 if p[a] = D[a].hi domain(C,a).hi then x = ^
 else x is given by: x[ax] = p[ax] for all ax Î domain(C) \ {a}, and x[a] = min(x’ |
x’ Î domain(C, a) and x’ > p[a])

Example	 In	Figure	3,	neighbors	of	p	in	coverage	domain	D	with	axes	x	and	y	can	be	reached	as	follows:	
	 a	=	succ(D,	y,	pred(D,	x,	p))	=	pred(D,	x,	succ(D,	y,	p))	
	 b	=	succ(D,	y,	p)	
	 c	=	succ(D,	y,	succ(D,	x,	p))	=	succ(D,	x,	succ(D,	y,	p))	
	 d	=	pred(D,	x,	p)	
	 e	=	succ(D,	x,	p)	
	 f	=	pred(D,	x,	pred(D,	y,	p))	=	pred(D,	y,	pred(D,	x,	p))	

OGC 21-060r2

14
Copyright © 2024 Open Geospatial Consortium

	 g	=	pred(D,	y,	p)	
	 h	=	succ(D,	x,	succ(D,	y,	p))	=	succ(D,	y,	succ(D,	x,	p))	

In this document, for the reader’s convenience basic arithmetic functions are assumed on
this grid navigation:

Figure 3 – Sample grid neighborhood

5.4 Interpolation
In ISO 19123-1 a coverage contains an indication on possible interpolation between direct
positions. Such interpolation can be set for all axes in a coverage simultaneously or –
following a more fine-grain approach – individually per axis.

Note In 19123-1 every coverage has exactly one interpolation method associated (for all axes or per
axis). In practice, coverages may allow users to pick one of several interpolation methods, such as with
imagery where linear, quadratic, and cubic interpolation are applicable on principle, and users can choose
any one of those. Conceptually, however, two coverages differing only in the interpolation methods are
distinct as they will deliver identical range values on their direct positions, but differing values in between
those. On the abstract level of 19123-1 and 19123-3 this ambiguity is not desirable.

For the purpose of this document a special interpolation method none is assumed as
defined, e.g., in 19123-1 Annex B. None indicates that no interpolation is possible along
the axis under consideration.

Note Interpolation method none is different from nearest-neighbor: An interpolation of
nearest-neighbor provides values in between direct positions which are derived from the closest direct
position. Interpolation none means that no values are provided between direct positions, in other words: the
evaluation function is undefined on any non-direct position and will in practice result in an exception.

Function interpolation(C,a) returns the interpolation method applicable on each axis of
coverage C, in order of the CRS axis sequence. For dimension(C)=d the probing function
delivers interpolation method list (m1,…,md) with interpolation method mi applying to axis
number i:

OGC 21-060r2

15
Copyright © 2024 Open Geospatial Consortium

interpolation(C)

This function is overloaded to extract the interpolation method associated with axis a of C:

interpolation(C, a)

Note Interpolation is particularly relevant with functions scale() and project().

5.5 Range values
The range value at some direct position p can be obtained with function evaluateC(p)
which, for some given coverage C, returns the value associated with pÎdomain(C)
expressed in the coverage’s CRS.

The corresponding probing function is:

value(C, p) = evaluateC(p) for some direct position pÎdomain(C)

Interpolation guides whether the value() function is defined on coordinates outside the set
of direct positions, and how this value is determined from the values available at the direct
positions.

Note The range value set can contain one or more null values, as determined by the range type. This
document does not make any assumption on this.

5.6 Range type
A coverage’s range type description can be obtained through probing function rangeType()
which delivers a set of tuples containing at least field names and field type:

rangeType(C)

This function gets overloaded to obtain the coverage range type of some particular range
field component f:

rangeType(C, f)

For the purpose of this document only the common programming language data types are
considered, and only on a high, abstract level: Boolean, integer, float, complex, as well as
records over those base types are available. However, an implementation specification of
this standard may add its own data types as long as these are coherent with this standard
overall.

Note The concrete range types available in coverage processing are determined by concretizations of
this document. Typically, the standard programming language data types will be available, such as (unsigned)
short, int, and long, as well as float and double. For example, the range type (aka pixel) of an 8-bit RGB
image normally is given by the triple < red: unsigned char; green: unsigned char; blue: unsigned char>.
Further, a concretization can add more information such as null values, accuracy, etc.

OGC 21-060r2

16
Copyright © 2024 Open Geospatial Consortium

5.7 Coverage probing functions synopsis
Requirement 1 https://standards.isotc211.org/19123/-
3/1/req/core/probingFunctions
The semantics of the probing functions used for the 19123-1 language semantics definition
shall be given by Table 3.

Table	3	—Coverage	probing	functions	synopsis	

Coverage		
characteristic	

Probing	function		
for	some	coverage	C,		
based	on	19123-1	

Comment		

Coverage
identifier id(C) Identifier of the coverage

Coverage CRS crs(C)
= crs (domain(C))
as per ISO 19123-1

CRS of the coverage

CRS axis list axisList(c)
= (a1,…,ad) for some d-dimensional CRS
c establishing this axis sequence

List of all axis names of the
CRS, in proper sequence

Domain extent
of coverage domain(C)

domain(C, a)
= domain extent along axis a

domain(C, a).lo
= lower bound of domain extent along
axis a

domain(C, a).hi
= upper bound of domain extent along
axis a

Extent of the coverage in
CRS coordinates

Grid neighbour pred(C, a, p)

succ(C, a, p)
as defined in Clause 5.3.2

These functions allow to
traverse a grid in steps
relative to some given
position, such as for
convolution operations and,
generally, Tomlin’s non-
local operations

OGC 21-060r2

17
Copyright © 2024 Open Geospatial Consortium

Range type rangeType(C)
rangeType(C, f)
= t where (f:t,...) ÎrangeType(C)

The range type record is
described by a list describing
its components in sequence;
for the purpose of this
standard only component
name and its data type are
considered.

Range field
name list rangeFieldNames(C)

= (f1, …, fn) where
rangeType(C) = ((f1;t1,…), …, (fn:tn,…)),
with field names fi and types ti

Ordered list all of the
coverage’s range fields
names and their data types;
possible further constituents
in a record component are
ignored in this standard, their
values are to be defined else-
where (e.g., implementation
dependent)

Range values value(C,p)
= evaluateC(p),pÎdomain(C)

with evaluate() as per 19123-1

Range values of the coverage
at some direct position (or
some position in between,
interpolation permitting)

Interpolation interpolation(C)	
as	per	ISO	19123-1	
interpolation(C, a)
= interpolation method of axis a

List of the interpolation
method allowed per axis, in
axis order; in case the
coverage has only one
interpolation defined for all
axes, this method is
multiplied into all positions
of the output list
Interpolation associated with
a particular axis

6. Coverage processing language

This clause establishes conformance class Coverage Processing.

This coverage processing language defines expressions on coverages which evaluate to
ordered lists of either coverages or scalars (whereby “scalar” here is used as a summary
term of all data structures that are not coverages). In the remainder of this document, the
terms processing expression and query are used interchangeably.

A coverage processing expression consists of a processCoveragesExpr (see Subclause
6.2). Each international standard claiming to support this specification shall provide the
coverage processing operations as specified in the following subclauses. A sample
application is provided in (informative) Annex D.

OGC 21-060r2

18
Copyright © 2024 Open Geospatial Consortium

Note This language has been designed so as to be “safe in evaluation” – i.e., implementations are
possible where any valid request can be evaluated in a finite number of steps, based on the operation
primitives. Hence, services based on the language constructs can be built in a way that no single request can
render the service permanently unavailable. This notwithstanding, it still is possible to send requests that will
impose high workload on a server.

Note 2 Data items within a query result list can be heterogeneous in size and structure. In particular, the
coverages within an evaluation result list can have different dimensions, domains, range types, etc. However,
a result list always consists of either coverages or scalar values, no mix of both.

6.1 Syntax and Semantics Definition Style

6.1.1 Expression Syntax
The language primitives plus the nesting capabilities form an expression language which
is independent from any specific encoding and service protocol; collectively it is referred
to as the coverage processing language. In the following subsections the language
elements are detailed. The complete syntax is listed in normative Annex B.

A coverage processing expression is called admissible if and only if it adheres to the syntax
of the language definition of this document.

Requirement 2 https://standards.isotc211.org/19123/-3/1/req/core/syntax
Coverage processing expressions shall adhere to the syntax definition of Annex B.

Note A railroad diagram of the syntax in Annex B is provided in (non-normative) Annex C for
visualization of the grammar.

EXAMPLE	 The	coverage	expression	fragment	$c * 2is	admissible	as	 it	adheres	to	 language	syntax	
whereas	abc seen	as	a	coverage	expression	violates	the	syntax	and,	hence,	is	not	admissible.	

6.1.2 Expression Semantics
The semantics of a coverage processing expression is defined recursively by indicating, for
all admissible expressions, the semantics. An expression is valid if and only if it is
admissible and complies with all rules imposed by the language semantics.

Requirement 3 https://standards.isotc211.org/19123/-3/1/req/core/semantics
Coverage processing expressions shall adhere to all semantics rules of this document.

EXAMPLE	 The	coverage	expression	following	is	valid	if	and	only	if	the	coverage	bound	to	variable	$c	has	
a	numeric	range	component	named	red.	

$c.red * 2.5

Note In the remainder of this clause, tables are used to describe the effect of an operation on each
coverage constituent.

The semantics of coverage processing expressions is defined via so-called probing
functions which extract information from a coverage.

OGC 21-060r2

19
Copyright © 2024 Open Geospatial Consortium

6.2 Coverage Processing Expressions

6.2.1 processCoveragesExpr
AprocessCoveragesExpr element processes a list of coverages in turn. Each coverage is
optionally checked first for fulfilling some predicate, and gets selected – i.e., contributes
to an element of the result list – only if the predicate evaluates to true. Each coverage
selected will be processed, and the result will be appended to the result list. This result list,
finally, is returned as the ProcessCoverages response unless any exception was generated.

Requirement 4 https://standards.isotc211.org/19123/-
3/1/req/core/processCoveragesExpr
A processCoveragesExpr shall be defined as follows.

Let

v1,	…	vn	be	n	pairwise	different	iteratorVars	(n³1),	
L1,	…	Ln	be	n coverageLists	(n³1),	
b	be	a	booleanScalarExpr	possibly	containing	occurrences	of	one	or	more	vi	
(1£i£n),	
P	be	a	processingExpr	possibly	containing	occurrences	of	vi	(1£i£n).	

Then,

m,n³1 be natural numbers,
v1, … cn, be n iteratorVars,
c1, … cm, be n pairwise different variableNames,
e1, … em, be n+m optional coverageExprs or scalarExprs or bracket-enclosed
intervalExprs, which may contain occurrences of v1, … cn and c1, … cm,
c be a coverageExpr or scalarExpr,
where every ci is defined before used in an expression.

Then,

for any processCoveragesExpr	E	
where	
		 E 	= for v1 in (L1),
 v2 in (L2),
 … ,
 vn in (Ln)
		 	 	 [letc1	:=	e1,	…,		cm	:=	em]	
 [where b]
		 	 	 return P	

the result R of evaluating processCoveragesExpr	E	is constructed as:	

Let R be the empty sequence;
while L1 is not empty:
{ assign the first element in L1 to iteration variable v1;

OGC 21-060r2

20
Copyright © 2024 Open Geospatial Consortium

 while L2 is not empty:
 { assign the first element in L2 to iteration variable
v2;
 …
 while Ln is not empty:
 { assign the first element in Ln to iteration
variable vn;
 substitute every occurrence of ci in E by ei;
 substitute every occurrence of viin E
 by the corresponding coverage;
 evaluate b;
 if (b)
 then
 evaluate P;
 append evaluation result to R;
 remove the first element from Ln;
 }
 …
 }
 remove the first element from L2;
 }
 remove the first element from L1;
}

The elements contained in the coverageList clause, constituting coverage identifiers, are
taken from the coverage identifiers advertised by the server.

Note Coverage identifiers may occur more than once in a coverageList. In this case the coverage will
be evaluated each time it appears, respecting the overall inspection sequence.

EXAMPLE	 Assume	availability	of	coverages	A,	B,	and	C.	Then,	the	following	request:	

for $c in (A, B, C)
return encode($c, "image/tiff")

	 will	produce	a	result	list	containing	three	TIFF-encoded	coverages.	

Assume	availability	of	satellite	images	A,	B,	and	C	and	a	coverage	M	acting	as	a	mask	(i.e.,	with	
range	values	of	0	and	1	and	the	same	extent	as	A,	B,	and	C).	Then,	masking	each	satellite	image	
can	be	performed	with	this	query:	

for $s in (A, B, C),
 $m in (M)
return encode($s * $m, "image/tiff")

The let clause declares a named constant and gives it a value.

EXAMPLE	 The	following	statement	defines	a	constant	of	name	$timeAxis	with	value	“date”.	

let $timeAxis := "date"

Note In most cases, named constants are used purely for convenience, to simplify the expressions and
make the code more readable.

OGC 21-060r2

21
Copyright © 2024 Open Geospatial Consortium

In a let clause the named constant only takes one value. This can be a single item or a
sequence (there is no real distinction — an item is just a sequence of length one), and the
sequence can contain nodes, or atomic values, or (beware!) a mixture of the two.

Named constants cannot be updated – something like let $x:=$x+1 is not allowed. More
specifically, it will not lead to an evaluation error, but the result will not be as expected (cf.
XPath literature). This rule might seem very strange if expecting a behavior as in
procedural languages such as JavaScript or python. But the coverage processing language
is not that kind of language, it is a declarative language which works at a higher level. This
constraint is essential to give optimizers the chance to find execution strategies that can
search vast databases in fractions of a second. SQL, XSLT, and XQuery users have found
that this declarative style of programming enables to code at a higher level by telling the
system what results are wanted, rather than telling it how to go about constructing those
results.

6.2.2 processingExpr
Requirement 5 https://standards.isotc211.org/19123/-3/1/req/core/processingExpr
A processingExpr element shall be either a encodeCoverageExpr (see Subclause6.8.1) or a
scalarExpr (see Subclause 6.4.1).

6.2.3 coverageExpr
Requirement 6 https://standards.isotc211.org/19123/-3/1/req/core/coverageExpr
A coverageExpr shall be either a coverageIdExpr (see Subclause 6.2.4) or a coverageCon-
structorExpr (see 6.3.1) or a coverageConstantExpr (see 6.3.1) or a getComponentExpr
(see 6.4.1) or an inducedExpr (see 6.5.1) or a subsetExpr (see 6.5.6.1) or a
crsTransformExpr (see 6.6) or a scaleExpr (see 6.5.7)or a decodeCoverageExpr (see 6.8.2).

Note A coverageExpr always evaluates to a single coverage.

6.2.4 coverageIdExpr
The coverageIdExpr element represents the name of a single coverage available. It is
represented by a coverage variable indicated in the processCoveragesExpr clause (see
Subclause 6.2).

Requirement 7 https://standards.isotc211.org/19123/-
3/1/req/core/coverageIdentifier
A coverageIdExpr shall be defined as follows.

Let

id	be a variableName bound to a coverage	C1	available.	

Then,

for any coverageExpr	C2,		
where	
		 C2 =	 id

OGC 21-060r2

22
Copyright © 2024 Open Geospatial Consortium

C2	is defined as:

Coverage constituent

 id(C2) = id(C1)

 crs(C2) = crs(C1)

domain(C2) = domain(C1)

interpolation(C2) = interpolation(C1)

rangeType(C2) = rangeType(C1)

 for all pÎdomain(C2):
 value(C2,p) = value(C1,p)

EXAMPLE	 The	following	coverage	expression	evaluates	to	the	complete,	unchanged	coverage	C,	assuming	
that	coverage	iteration	variable	$c	is	bound	to	it	at	the	time	of	evaluation:	

$c

6.3 Coverage-Generating Expressions

6.3.1 coverageConstructorExpr
The coverageConstructorExpr element creates a d-dimensional grid coverage for some
d³1 by defining the coverage’s domain, range type and range through expressions. This
allows deriving entirely new shapes, dimensions, and values (see examples below).

The coverage domain is built from a CRS defining the multi-dimensional axes and the
meaning of coordinates, including units of measure; indicating the coordinates of the direct
positions, i.e., the points where values sit.

Axis names can be chosen according to the rules specified in 19123-1.

A range type expression optionally creates the coverage’s specific range type, if not derived
automatically from the expression context.

A range expression creates the coverage range. A scalarExpr is evaluated at every direct
position of the coverage’s domain.

Requirement 8 https://standards.isotc211.org/19123/-
3/1/req/core/coverageConstructorExpr
A coverageConstructorExpr shall be defined as follows.

Let

OGC 21-060r2

23
Copyright © 2024 Open Geospatial Consortium

id	be an identifier,
D	be a domainExpr,
T	be a rangeTypeExpr,
R	be a rangeSetExpr.

Where

C	is a coverageConstructorExpr
with		
		 C =	 coverage id [D] [T] R

Let further

d	be an integer with	d>0,	
c	be a crsName representing a	d	-dimensional CRS,
ai	be pairwise distinct variableNames for	1£i£d,	
axisi	be pairwise distinct axisNames for	1£i£d,	
iei,1,	iei,2	be integer-valued indexExprs for	1£i£d with iei,1	≤	iei,2,
cei,1,	cei,2	be	axisPointExprs	for	1£i£d,	which are valid coordinates for axis	i	as
per CRS	c	with cei,1	≤	cei,2,	
resi	be axisPointExprs with	res1<…<resd for	1£i£d	valid for the	ith	axis as per	
c,	
xei,1,…	be axisPointExprs for	1£i£d,	which are valid coordinates for axis axisi	
as per CRS c	with xei,1<xei,2<…,	
im1,…,	imm be (not necessarily distinct) interpolationMethods for	1£i£m	with	
m>0.	

Where

D		is a domainExpr
with
		 D 	=	 domain
		 	 crs c with	
		 	 axis1 axisdef1 [interpolation im1],	
		 	 …	,	
		 	 axisd axisdefd [interpolation imd]

And

axisdefi	is	one	of	
		 axisdefi,index	 =	 index (iei,1 :	iei,2)	
		 axisdefi,regular	 =	 regular (cei,1 :	cei,2) resolution
resi
		 axisdefi,irregular	 =	 irregular(xei,1	,	…	,	xei,n)

And

OGC 21-060r2

24
Copyright © 2024 Open Geospatial Consortium

axis names used in the domainExpr shall match pairwise against the CRS axes
based on their order of occurrence in the	D	expression.

Note The axis names axisiare made available in the current context for use as iteration variables in
the range set computation where coordinate values get bound to each direct position in turn allowing to
inspect each direct position of the coverage. Iterator names may use the axis names defined in the CRS, or
may define aliases which are matched with the CRS axis names by their position in the expression.

Let further

n	be an integer with	d>0,	
f1,…,	fn	be fieldNames,
t1,…,	tn	be rangeTypes.

Where

T	is a rangeTypeExpr
with
		 T 	=	 range type
 f1 : t1,
 …
 fn : tn

Let further

r		be a scalarExpr possibly containing occurrences of direct position coordinates	
axisi as defined in D and range component identifiers	fj as	defined	in	T,
c1,	…,	cm be constants where	m=|domain(C)|.	

Where

R		is	a	rangeSetExpr	
with	R		one of
		 R1 =	 range r
		 R2 =	 range <c1,…,	cm>

and

R		is	part of a coverageConstructorExpr containing a domainExpr.

Then,

C	is	defined	as	the	following	ISO	19123-1	grid	coverage:	

Coverage constituent

id(C) = id

OGC 21-060r2

25
Copyright © 2024 Open Geospatial Consortium

crs(C) = c if D is present,
otherwise the CRS resulting from evaluatingr

domain(C) = domain extent resulting from evaluating D if present,
otherwise the domain extent resulting from evaluatingr

interpolation(C) = (x1,…, xd) where xi = imi where imi is indicated,
otherwisexi = none.

rangeType(C) = ((f1,t1), …, (fn,tn)) if T is present,
otherwise the range type resulting from evaluatingr ;
if no field names are provided (such as with R2) then the range field names are
implementation-dependent.

for all pÎdomain(C) and scalarExprr:
 value(C,p) = range value resulting from evaluating r, with possible
occurrences of ai substituted by the corresponding p[i] coordinate value. If,
for example through computed direct positions, a location outside the domain of
coverage addressed gets encountered then the behavior is implementation
dependent (possible options including assuming a null value for such a position or
terminating evaluation of the request).

for all pÎdomain(C) and rangeConstantExpr <c1,…, cm>:
 value(C, p) is determined by assigning each value ci in turn to a grid point
location, whereby assignment proceeds in row-major order (per dimension from
the lowest to the highest coordinate, and loops over the grid points with the first
axis listed as outermost loop, the next axis listed as next-to-outermost loop, etc.,
and the last axis listed as innermost loop).

Note A concretization of this language can extend the capabilities of the coverage constant expression
by allowing records at direct positions, rather than only atomic values.

6.3.2 Examples
The following examples illustrate use of the coverage constructor expressions in various
practical scenarios relying on common CRSs and data types (both not specified in this
document).

The first domain establishes a 2D WGS 84 grid with linear interpolation along both axes.

domain
crs “EPSG:4326” with
 Lat regular (10:30) resolution 0.01 interpolation linear,
 Long regular (10:30) resolution 0.01 interpolation linear

OGC 21-060r2

26
Copyright © 2024 Open Geospatial Consortium

In the following example, EPSG:4326 establishes Lat and Long axes, therefore in the
domain expression the first axis will be associated with Lat and the second with Long,
regardless of the axis naming in the domain expression; no interpolation is admissible:

domain
 crs “EPSG:4326” with
 Lat regular (10:30) resolution 0.5,
 Long regular (10:30) resolution 0.5

The next domain establishes a 4D georeferenced timeseries datacube with a spectral
dimension, regular in Lat/Long and irregular in time (given the varying number of days a
month has and based on the daily resolution specified).

domain
crs “EPSG:4326+OGC:unixTtime” with
 Lat regular (10:30) resolution 0.5,
 Long regular (10:30) resolution 0.5,
 Date irregular (“2017-01-01”, “2017-02-01”, “2017-03-01”,
 “2017-04-01”, “2017-05-01”, “2017-06-01”,
 “2017-07-01”, “2017-08-01”, “2017-09-01”,
 “2017-10-01”, “2017-11-01”, ”2017-12-01”
)

The expression below represents a single-band range type:

range type
 panchromatic: integer

The following range type defines RGB pixels:

range type
 red :integer,
 green:integer,
 blue :integer

The coverage constructor below resembles an induced operation, reducing intensity in all
range fields by ½. Coverage type, domain, and range type are adopted from the input
coverage.

coverage Half
range (integer) $c / 2

Below follows a complete coverage constructor representing a 3-D georeferenced image
timeseries whose range set gets loaded from some input file provided, represented by the
positional parameter $1. Further, some limited INSPIRE XML metadata record is
associated:

coverage MySatelliteDatacube
domain
 crs “EPSG:4326+OGC:unixTime” with

OGC 21-060r2

27
Copyright © 2024 Open Geospatial Consortium

 Lat regular (10:30) resolution 0.5,
 Long regular (10:30) resolution 0.5,
 Date regular (“2017-01”:”2019-12”) resolution “P1M”
range type panchromatic: integer
range decode($1)

The expression below computes a 256-bucket histogram over band blue of some coverage
$c of unknown domain extent and dimension:

coverage histogram
domain
 crs “OGC:Index1D” with bucket index (0:255)
range type
 b :integer
range
 count($c.blue = bucket)

If constituents can be determined then they do not need to be indicated; in this case input
coverage $C is copied; assuming it has range type unsigned short then the log() operation
suggests a float result, so this will be adopted as range type. Along the same line, the
domain is adopted from $C:

coverage LogOfCube
range log($c)

For a Sobel filter, a 3x3 filter kernel can be provided by the expression below. The range
value of matrix element (-1/-1) is 1, the value at position (0/-1) is 2, etc.

coverage Sobel3x3
domain
 crs “OGC:Index2d” with i index (-1 : +1), j index (-1 : +1)
range
 < 1; 2; 1;
 0; 0; 0;
 -1; -2; -1
 >

A Sobel filter kernel operation can be expressed like this:

coverage FilteredImage
domain
 crs “OGC:Index2D” with x index (0 : 5000), y index (0 :
5000)
range
 condense +
 over i (-1 : +1), j (-1 : +1)
 using $c.blue[x(x+i), y(y+j)] * Sobel3x3[i(i), j(j)]

OGC 21-060r2

28
Copyright © 2024 Open Geospatial Consortium

6.4 Coverage Extraction Expressions

6.4.1 scalarExpr
Requirement 9 https://standards.isotc211.org/19123/-3/1/req/core/scalarExpr
A scalarExpr shall be either a getComponentExpr (see Subclause 6.4.2) or a boolean-
ScalarExpr (see Subclause 6.4.3) or a numericScalarExpr (see Subclause 6.4.4) or a
stringScalarExpr (see Subclause 6.4.5).

Note As such, such an expression returns a (simple or composite) result value, that is: not a coverage.

6.4.2 getComponentExpr
The getComponentExpr element extracts a coverage element from a coverage.

Note The grid point value sets (“pixels”, “voxels”, …) can be extracted from a coverage using
subsetting operations (see Subclause 6.5.5).

Requirement 10 https://standards.isotc211.org/19123/-
3/1/req/core/getComponentExpr
A getComponentExpr shall be defined as follows.

Let

C	be	a	coverageExpr.	

Then,

The	following	extraction	functions	are	defined;	
the	result	shall	be	given	by	the	probing	functions	defined	in	Table	4;		
strings	shall	be	interpreted	case-sensitive;		
quotes	shall	be	single	or	double	quotes,	but	no	mix	per	quoted	element;	
arbitrary	whitespace	may	occur	in	between	any	two	syntactical	elements.	

Table	4	—	getComponentExpr	functions	

coverage processing
function for coverage C

Semantics
as per Table 3

Description

id(C) id(C) Coverage identifier as name (if it
does not contain special
characters) or a single- or
double-quoted string

crs(C) crs(C) Identifier of the coverage’s CRS

domain(C)

domain(C,a)

domain(C)

domain(C, a)

domain of the coverage’s CRS

OGC 21-060r2

29
Copyright © 2024 Open Geospatial Consortium

domain(C,a).lo

domain(C,a).hi

domain(C, a).lo

domain(C, a).hi

interpolation(C,a) interpolation(C,a) interpolation method assigned to
a coverage axis

EXAMPLE	1	 For	 some	 coverage	 named	 “iamacoverage”	 bound	 to	 variable	$c,	 the	 following	 expression	
evaluates	to	the	string	“iamacoverage”:	

id($c)

EXAMPLE	2	 For	some	coverage	$c	with	native	CRS	WGS	84	the	following	expression	may	evaluate	to	the	
string	 “EPSG:4326”,	 or	 alternatively	 “https://www.opengis.net/def/crs/EPSG/0/4326”,	 or	 some	 other	
designation	determined	by	a	concretization	of	this	document:	

nativeCrs($c)

6.4.3 booleanScalarExpr
Requirement 11 https://standards.isotc211.org/19123/-
3/1/req/core/booleanScalarExpr
A booleanScalarExprshall be a scalarExpr (see Subclause 6.4.1) whose result type is
Boolean. Operations shall be the well-known Boolean functions and, or, xor, and not,
arithmetic comparison (>, <, >=, <=, =, !=) on strings and numbers, and parenthesing, all
bearing the well-known standard semantics.

6.4.4 numericScalarExpr
Requirement 12 https://standards.isotc211.org/19123/-
3/1/req/core/numericScalarExpr
A numericScalarExpr shall be a scalarExpr (see Subclause 6.4.1) whose result type is
numeric (i.e., an integer, float, or complex number).

6.4.5 stringScalarExpr
Requirement 13 https://standards.isotc211.org/19123/-
3/1/req/core/stringScalarExpr
A stringScalarExpr shall be a scalarExpr (see Subclause 6.4.1) whose result type is character
string of length greater or equal to zero.

6.5 Coverage range value-changing expressions

6.5.1 inducedExpr
Requirement 14 https://standards.isotc211.org/19123/-
3/1/req/core/inducedExprCases
An inducedExpr shall be either a unaryInducedExpr (see Subclause 6.5.2) or a
binaryInducedExpr (see Subclause6.5.4) or a rangeConstructorExpr (see Subclause 6.5.5)
or a switchExpr (see Subclause 6.5.5.2).

OGC 21-060r2

30
Copyright © 2024 Open Geospatial Consortium

Induced operations support simultaneously applying a function originally working on a
single value to all grid point values of a coverage.

Note These operations can be expressed through a coverageConstructorExpr, however in a more
verbose way.

Requirement 15 https://standards.isotc211.org/19123/-
3/1/req/core/inducedExprComponents
In an inducedExpr, in case the range type contains more than one range component, the
function shall be applied to each point simultaneously.

Requirement 16 https://standards.isotc211.org/19123/-3/1/req/core/inducedExpr
In an inducedExpr the result coverage shall have the same domain as the input coverage(s).

Note 1 In case of an n-ary induced operation, n>1, all input coverages need to share the same domain as
a precondition.

Note 2 The result mayhave a different range type, see Subclause 6.9.5. The idea is that for each operation
available on the range type, a corresponding coverage operation is provided (“induced from the range type
operation”).

EXAMPLE	 Adding	two	RGB	images	will	apply	the	“+”	operation	to	each	pixel,	and	within	a	pixel	to	each	
range	field	in	turn.	

6.5.2 unaryInducedExpr
The unaryInducedExpr element specifies a unary induced operation, in other words, an
operation where only one coverage argument occurs.

Note The term “unary” refers only to coverage arguments; it is well possible that further non-coverage
parameters occur, such as an integer number indicating the shift distance in a bit() operation.

Requirement 17 https://standards.isotc211.org/19123/-
3/1/req/core/unaryInducedExprCases
A unaryInducedExpr shall be either a unaryArithmeticExpr, or trigonometricExpr, or
exponentialExpr (in which case it evaluates to a coverage with a numeric range type; see
Subclauses 6.5.2.1, 6.5.3, 6.5.3.1), a booleanExpr (in which case it evaluates to a Boolean
expression; see Subclause 6.5.3.2), a castExpr (in which case it evaluates to a coverage with
unchanged values, but another range type; see Subclause 6.5.3.3), or a fieldExpr (in which
case a range field selection is performed; see Subclause 6.5.3.4).

6.5.2.1 unaryArithmeticExpr
The unaryArithmeticExpr element specifies a unary induced arithmetic operation.

Requirement 18 https://standards.isotc211.org/19123/-
3/1/req/coreunaryArithmeticExpr
A unaryArithmeticExpr shall be defined as:

Let

OGC 21-060r2

31
Copyright © 2024 Open Geospatial Consortium

C1,	C2	be coverageExprs with all range type components being numeric and
additionally all range type components of	C1	being of type complex,
S1,	S2	be scalarExprs.

Then,

for any coverageExpr	C2	
where	C2	is one of
	 Cplus		 =		+ C1	
	 Cminus	 =		- C1	
	 Csqrt		 =		sqrt(C1)	
	 Cabs	 	 =		abs(C1)
	 Cre	 	 =		re(CC1)
	 Cim	 	 =		im(CC1)

	 CplusSC	 =		S1	+ C2
 CminSC	 =		S1	- C2
 CmultSC	 =		S1	* C2
 CdivSC	 =		S1	/ C2
 CandSC	 =		S1	and C2
 CorSC		 =		S1	or C2
 CxorSC	 =		S1	xor C2
 CeqSC	 =		S1	= C2
 CltSC		 =		S1	< C2
 CgtSC		 =		S1	> C2
 CleSC		 =		S1	<= C2
 CgeSC		 =		S1	>= C2
 CneSC	 =		S1	!= C2	

	 CplusCS	 =		C1	+ S2
 CmincS	 =		C1	- S2
 CmultCS	 =		C1	* S2
 CdivCS	 =		C1	/ S2
 CandCS	 =		C1	and S2
 CorCS		 =		C1	or S2
 CxorCS	 =		C1	xor S2
 CeqCS	 =		C1	= S2
 CltCS			 =		C1	<S2
 CgtCS		 =		C1	>S2
 CleCS		 =		C1	<= S2
 CgeCS		 =		C1	>= S2
 CneCS	 =		C1	!= S2

C2	is	defined	as:		

Coverage constituent

OGC 21-060r2

32
Copyright © 2024 Open Geospatial Consortium

id(C2) = “” (empty string)

crs(C2) = crs(C1)

domain(C2) = domain(C1)

interpolation(C2) = interpolation(C1)

 for all range fields rÎrangeFieldNames(C2):

 rangeFieldType(Cplus) is given by Requirement 47
 rangeFieldType(Cminus) is given by Requirement 47
 rangeFieldType(CplusSC) is given by Requirement 47
 rangeFieldType(Csqrt,r)
 = double if rangeFieldType(C1,r) ≠ complex and C1.r³0,
 = complex otherwise,
 rangeFieldType(Cabs,r)
 = unsigned int if rangeFieldType(C1,r) Î{ unsigned int, int }
 = float if rangeFieldType(C1,r) Î { float, complex }

 rangeFieldType(CplusSC) is given by Requirement 47
 rangeFieldType(CminSC) is given by Requirement 47
 rangeFieldType(CmultSC) is given by Requirement 47
 rangeFieldType(CdivSC) is given by Requirement 47
 rangeFieldType(CandSC) = boolean
 rangeFieldType(CorSC) = boolean
 rangeFieldType(CxorSC) = boolean
 rangeFieldType(CeqSC) = boolean
 rangeFieldType(CltSC) = boolean
 rangeFieldType(CgtSC) = boolean
 rangeFieldType(CleSC) = boolean
 rangeFieldType(CgeSC) = boolean
 rangeFieldType(CneSC) = boolean
 rangeFieldType(CovlSC) = rangeType(C2)
 rangeFieldType(CplusCS, r) is given by Requirement 47
 rangeFieldType(CminCS, r) is given by Requirement 47
 rangeFieldType(CmultCS, r) is given by Requirement 47
 rangeFieldType(CdivCS, r) is given by Requirement 47
 rangeFieldType(CandCS, r) = boolean
 rangeFieldType(CorCS, r) = boolean
 rangeFieldType(CxorCS, r) = boolean
 rangeFieldType(CeqCS, r) = boolean
 rangeFieldType(CltCS, r) = boolean
 rangeFieldType(CgtCS, r) = boolean
 rangeFieldType(CleCS, r) = boolean
 rangeFieldType(CgeCS, r) = boolean

OGC 21-060r2

33
Copyright © 2024 Open Geospatial Consortium

 rangeFieldType(CneCS, r) = boolean
 rangeFieldType(CovlCS, r) = boolean

 for all pÎdomain(C2):
 value(Cplus, p) = value(C1, p),
 value(Cminus, p) = - value(C1, p),
 value(Csqrt, p) = sqrt(value(C1, p)),
 value(Cabs, p) = abs(value(C1, p)),
 value(Cre, p) = re(value(C1, p)),
 value(Cim, p) = im(value(C1, p)),

 value(CplusSC) = value(S1) + value(C2)
 value(CminSC) = value(S1) - value(C2)
 value(CmultSC) = value(S1) * value(C2)
 value(CdivSC) = value(S1) / value(C2)
 value(CandSC) = value(S1) and value(C2)
 value(CorSC) = value(S1) or value(C2)
 value(CxorSC) = value(S1) xor value(C2)
 value(CeqSC) = value(S1) == value(C2)
 value(CltSC) = value(S1) < value(C2)
 value(CgtSC) = value(S1) > value(C2)
 value(CleSC) = value(S1) <= value(C2)
 value(CgeSC) = value(S1) >= value(C2)
 value(CneSC) = value(S1) != value(C2)
 value(CovlSC) = value(S1) overlay value(C2)

 value(CplusC)S = value(C1) + value(S2)
 value(CmincS) = value(C1) - value(S2)
 value(CmultCS) = value(C1) * value(S2)
 value(CdivCS) = value(C1) / value(S2)
 value(CandCS) = value(C1) and value(S2)
 value(CorCS) = value(C1) or value(S2)
 value(CxorCS) = value(C1) xor value(S2)
 value(CeqCS) = value(C1) == value(S2)
 value(CltCS) = value(C1) < value(S2)
 value(CgtCS) = value(C1) > value(S2)
 value(CleCS) = value(C1) <= value(S2)
 value(CgeCS) = value(C1) >= value(S2)
 value(CneCS) = value(C1) != value(S2)
 value(CovlCS) = value(C1) overlay value(S2)

EXAMPLE	 For	 two	 integer	 or	 float	 valued	 coverages	$c	 and	$d the	 following	 coverage	 expression	
evaluates	 to	 a	 float-type	 coverage	 where	 each	 range	 value	 contains	 the	 square	 root	 of	 the	 sum	 of	 the	
corresponding	source	coverages’	values.	

sqrt($c + $d)

OGC 21-060r2

34
Copyright © 2024 Open Geospatial Consortium

6.5.3 trigonometricExpr
The trigonometricExpr element specifies a unary induced trigonometric operation.

Requirement 19 https://standards.isotc211.org/19123/-
3/1/req/core/trigonometricExpr
A trigonometricExpr shall be defined as:

Let

C1	be	a	coverageExpr	

Then,

for	any	coverageExprC2	
where	C2	is	one	of	
		 Csin	 =	 sin(C1)	
		 Ccos	 =	 cos(C1)
		 Ctan	 =	 tan(C1)
		 Csinh	 =	 sinh(C1)
		 Ccosh	 =	 cosh(C1)
		 Carcsin	 =	 arcsin(C1)
		 Carccos	 =	 arccos(C1)
		 Carctan	 =	 arctan(C1)

C2	is	defined	as:	

Coverage constituent

id(C2) = “” (empty string)

crs(C2) = crs(C1)

domain(C2) = domain(C1)

interpolation(C2) = interpolation(C1)

rangeFieldNames (C2) = rangeFieldNames (C1)

 for all fields rÎrangeFieldNames(C2):
 rangeFieldType(C2,r)
 = complex if rangeFieldType(C1,r) = complex
 = float otherwise

 for all pÎdomain(C2):
 value(Csin,p) = sin(value(C1,p))
 value(Ccos,p) = cos(value(C1,p))
 value(Ctan,p) = tan(value(C1,p))
 value(Csinh,p) = sinh(value(C1,p))

OGC 21-060r2

35
Copyright © 2024 Open Geospatial Consortium

 value(Ccosh,p) = cosh(value(C1,p))
 value(Carcsin,p) = arcsin(value(C1,p))
 value(Carccos,p) = arccos(value(C1,p))
 value(Carctan,p) = arctan(value(C1,p))

	

EXAMPLE	 The	following	expression	replaces	all	values	of	the	coverage	addressed	by	$c	with	their	sine:	

sin($c)

To	 enforce	 a	 complex	 result	 for	 real-valued	 arguments	 the	 input	 coverage	 can	 be	 cast		
to	complex:	

arcsin((complex) $c)

6.5.3.1 exponentialExpr
The exponentialExpr element specifies a unary induced exponential operation.

Requirement 20 https://standards.isotc211.org/19123/-
3/1/req/core/exponentialExpr
An exponentialExpr shall be defined as:

Let

C1	be	a	coverageExpr,	
c	be	a	floatConstantor	complexConstant	

Then,

for	any	coverageExprC2	
where	C2	is	one	of	
		 Cexp	 =	 exp(C1)	
		 Clog	 =	 log(C1)
		 Cln	 =	 ln(C1)
		 Cpow	 =	 pow(C1,	c)

C2	is	defined	as:	

	

Coverage constituent

id(C2) = “” (empty string)

crs(C2) = crs(C1)

domain(C2) = domain(C1)

OGC 21-060r2

36
Copyright © 2024 Open Geospatial Consortium

interpolation(C2) = interpolation(C1)

rangeFieldNames (C2) = rangeFieldNames (C1)

for all fields rÎrangeFieldNames(C2):
 rangeFieldType(C2,r)
 = complex if rangeFieldType(C1,r) = complex
 = float otherwise

 for all pÎdomain(C2):
 value(Cexp, p) = exp(value(C1,p))
 value(Clog , p) = log(value(C1,p))
 value(Cln , p) = ln(value(C1,p))
 value(Cpow, p) = value(C1,p)c

EXAMPLE	 The	 following	 expression	 derives	 the	 natural	 logarithm	 for	 all	 values	 of	 some	 all-positive	
coverage	expression	$c:	

ln($c)

6.5.3.2 booleanExpr
The booleanExpr element specifies a unary induced Boolean operation.

Requirement 21 https://standards.isotc211.org/19123/-3/1/req/core/booleanExpr
A booleanExpr shall be defined as:

Let

C1	be a coverageExpr,
n	be a positive integer number.

Then,

for any coverageExpr	C2	
where	
		 C2	 	 =	 not C1
where	n	is	an expression evaluating to a nonnegative integer value

C2	is defined as:

Coverage constituent

id(C2) = “” (empty string)

crs(C2) = crs(C1)

domain(C2) = domain(C1)

OGC 21-060r2

37
Copyright © 2024 Open Geospatial Consortium

interpolation(C2) = interpolation(C1)

rangeFieldNames (C2) = rangeFieldNames (C1)

 for all fields rÎrangeFieldNames(C2):
 rangefieldType(C2,r) = boolean

 for all pÎdomain(C2):
 value(Cnot , p) = not(value(C1,p))

EXAMPLE	 The	 following	 expression	 inverts	 all	 (assumed:	 Boolean)	 range	 field	 values	 of	 coverage	
expression	$c:	

not $c

6.5.3.3 castExpr
The castExpr element specifies a unary induced cast operation, that is: to change the range
type of the coverage while leaving all other properties unchanged. All range components
are converted to this same type.

Note Depending on the input and output types the conversion result can suffer from a loss of accuracy
or overflow, up to being entirely wrong (such as when casting from long to short).

Requirement 22 https://standards.isotc211.org/19123/-3/1/req/core/castExpr
A castExpr shall be defined as:

Let

C1	be a coverageExpr,
t	be a range field type name.

Then,

for any coverageExpr	C2	
where	
		 C2	 	 =	 (t) C1

C2	is defined as:

Coverage constituent

id(C2) = “” (empty string)

crs(C2) = rs(C1)

domain(C2) = domain(C1)

OGC 21-060r2

38
Copyright © 2024 Open Geospatial Consortium

interpolation(C2) = interpolation(C1)

rangeFieldNames (C2) = rangeFieldNames (C1)

 for all fields rÎrangeFieldNames(C2):
 rangeFieldType(C2,r) = t

 for all pÎdomain(C2):
 value(C2 , p) = (t) value(C1,p)

EXAMPLE	 For	some	integer	or	float	valued	coverage	the	result	range	type	of	the	following	expression	will	
be	integer	instead	of	float:	

(integer) ($c / 2)

6.5.3.4 fieldExpr
The fieldExpr element specifies a unary induced field selection operation. Fields are
selected by their name.

Note Due to the current restriction to atomic range fields, the result of a field selection has atomic
values too.

Requirement 23 https://standards.isotc211.org/19123/-3/1/req/core/fieldExpr
A fieldExpr shall be defined as:

Let

C1	be a coverageExpr,
f	be a fieldName appearing in rangeFieldNames(C1),	
i	be an integer with	0£i<|rangeFieldNames(C1)|.	

Then,

for any coverageExpr	C2	
where	C2	is one of:
		 C2,f	 =	 C1 . f
		 C2,I	 =	 C1 . i	

C2	is defined as:	

Coverage constituent

id(C2) = “” (empty string)

crs(C2) = crs(C1)

domain(C2) = domain(C1)

OGC 21-060r2

39
Copyright © 2024 Open Geospatial Consortium

interpolation(C2) = interpolation(C1)

rangeFieldNames (C2) = (f), the sequence containing only f

rangeFieldType(C2,f) = rangeFieldType(C1,f)

for all pÎdomain(C2):
 value(C2,f,p) = value(C1.f,p)
 value(C2,i,p) = value(C1.g,p)
 where g is the ith field in rangeFieldNames(C1)

EXAMPLE	 Let	$c	refer	to	anexpression	resulting	in	a	coverage	of	with	two	bands,	red	and	green.	Then	the	
following	expression	describes	a	single-field,	integer-type	coverage	where	each	grid	point	value	contains	the	ratio	
between	red	and	green	band,	cast	back	to	integer	from	the	division	result	type	float:		

(integer) $c.red / $c.green

Requirement 24 https://standards.isotc211.org/19123/-
3/1/req/core/fieldExprShorthand
In a fieldExpr C.f where |rangeFieldNames(C)|=1, the evaluation of C.f shall be identical
to the evaluation of C.

EXAMPLE	 Let	$c	refer	to	a	coverage	expression	with	range	component	red,	$d	a	single-component	range	
type	(say,	a	panchromatic	satellite	scene).	Assuming	both	are	compatible	(as	per	induced	expression	definition)	
the	following	expression	is	valid:		

$c.red - $d

6.5.4 binaryInducedExpr
The binaryInducedExpr element specifies a binary induced operation, i.e., an operation
involving two coverage-valued arguments.

Requirement 25 https://standards.isotc211.org/19123/-
3/1/req/core/binaryInducedExprNumber
In a binaryInducedExpr, both participating coverages shall be aligned in the following
components:
- same native CRS;
- same domain;
- same number of range components;
- same interpolation for each axis.

Requirement 26 https://standards.isotc211.org/19123/-
3/1/req/core/binaryInducedExpr
A binaryInducedExpr shall be defined as:

Let

OGC 21-060r2

40
Copyright © 2024 Open Geospatial Consortium

C1,	C2	be coverageExprs,
N	be 0 or some null value (to be defined by a concretization of this document)
where
		 crs(C1) = crs(C2),
 domain(C1,a) = domain(C2,a),
 rangeFieldNames(C1) = rangeFieldNames(C2),
 rangeType(C1,f) is cast-compatible with rangeType(C2,f) or
 rangeType(C2,f) is cast-compatible with rangeType(C1,f)
 for all	fÎrangeFieldNames(C1).	

Then,

for any coverageExpr	C3	
where C3	is one of
 CplusCC	 =	 C1	+ C2
 CminCC	 =	 C1	- C2
 CmultCC	 =	 C1	* C2
 CdivCC	 =	 C1	/ C2
 CandCC	 =	 C1	and C2	
 CorCC	 =	 C1	or C2	
 CxorCC	 =	 C1	xor C2
 CeqCC	 =	 C1	= C2
 CltCC	 =	 C1	< C2
 CgtCC	 =	 C1	> C2
 CleCC	 =	 C1	<= C2
 CgeCC	 =	 C1	>= C2
 CneCC	 =	 C1	!= C2
 CovlCC	 =	 C1	overlay C2	

C3	is defined as:

Coverage constituent

id(C3) = “” (empty string)

crs(C3) = crs(C1)

domain(C3) = domain(C1)

interpolation(C3) = interpolation(C1)

rangeFieldNames (C3) = rangeFieldNames (C1)

 for all rÎrangeFieldNames(C3):

 rangeFieldType(CplusCC, r) is given by Requirement 47
 rangeFieldType(CminCC, r) is given by Requirement 47
 rangeFieldType(CmultCC, r) is given by Requirement 47

OGC 21-060r2

41
Copyright © 2024 Open Geospatial Consortium

 rangeFieldType(CdivCC, r) is given by Requirement 47
 rangeFieldType(CandCC, r) = boolean
 rangeFieldType(CorCC, r) = boolean
 rangeFieldType(CxorCC, r) = boolean
 rangeFieldType(CeqCC, r) = boolean
 rangeFieldType(CltCC, r) = boolean
 rangeFieldType(CgtCC, r) = boolean
 rangeFieldType(CleCC, r) = boolean
 rangeFieldType(CgeCC, r) = boolean
 rangeFieldType(CneCC, r) = boolean
 rangeFieldType(CovlCC, r) = rangeFieldType(C1, r)

 for all pÎdomain(C3):
 value(CplusCC, p) = value(C1, p) + value(C2, p)
 value(CminCC, p) = value(C1, p) - value(C2, p)
 value(CmultCC, p) = value(C1, p) * value(C2, p)
 value(CdivCC, p) = value(C1, p) / value(C2, p)
 value(CandCC, p) = value(C1, p) and value(C2, p)
 value(CorCC, p) = value(C1, p) or value(C2, p)
 value(CxorCC, p) = value(C1, p) xor value(C2, p)
 value(CeqCC, p) = value(C1, p) = value(C2, p)
 value(CltCC, p) = value(C1, p) < value(C2, p)
 value(CgtCC, p) = value(C1, p) > value(C2, p)
 value(CleCC, p) = value(C1, p) <= value(C2, p)
 value(CgeCC, p) = value(C1, p) >= value(C2, p)
 value(CneCC, p) = value(C1, p) != value(C2, p)
 value(CovlCC, p) = value(C2, p) if value(C1, p)=N
 value(C1, p) otherwise

EXAMPLE		 The	following	expression	describes	a	coverage	composed	of	the	sum	of	the	red,	green,	and	blue	
fields	of	the	coverage	referred	to	by	$c:		

$c.red + $c.green + $c.blue

6.5.5 N-ary Induced operations

6.5.5.1 rangeConstructorExpr
The rangeConstructorExpr, an n-ary induced operation, allows building coverages with
compound range structures. To this end, coverage range field expressions enumerated are
combined into one coverage.

All input coverages shall match in their domains and CRSs. An input coverage range field
maybe listed more than once.

OGC 21-060r2

42
Copyright © 2024 Open Geospatial Consortium

Requirement 27 https://standards.isotc211.org/19123/-
3/1/req/core/rangeConstructorExprNames
The names of the range fields generated by the operation shall be given by the names prefixed
to each component expression.

Requirement 28 https://standards.isotc211.org/19123/-
3/1/req/core/rangeConstructorExpr
A rangeConstructorExpr shall be defined as:

Let

n	be an integer with	n³1,
C1,	…,	Cn	be coverageExprs with	|rangeFieldNames(Ci)|=1 (i.e., just a single range
component),
f1,	…,	fn	be fieldNames
where, for	1£i,j£n,	
		 crs(Ci)	=	crs(Cj),		
		 domain(Ci)	=	domain(Cj)	
		 gridCrs(Ci)	=	gridCrs(Cj),		
		 interpolation(Ci)	=	interpolation(Cj).	

Then,

for any coverageExpr	C’	
where	C’	is one of
		 C’a	 	 =		 {	f1 : C1 ; … ; fn : Cn	}	
		 C’b	 	 =	 struct	{	f1 : C1 ; … ; fn : Cn	}	

C’	is defined as:

Coverage constituent

id(C’) = “” (empty string)

crs(C’) = crs(C1)

domain(C’) = domain(C1)

rangeFieldNames(C’) = (f1, …, fn)

for all range fields fi:
 rangeFieldType(C’,fi) = rangeFieldType(Ci)

 for all pÎdomain(C’):
 value(C’.fi,p) = value(Ci,p)

 for all range fields fi:
 interpolation(C’) = interpolation(C1)

OGC 21-060r2

43
Copyright © 2024 Open Geospatial Consortium

EXAMPLE	1:	 The	expression	below	does	a	false	color	encoding	by	combining	near-infrared,	red,	and	green	
bands	into	a	3-band	image,	which	might	be	visually	interpreted	as	RGB:	

struct {
 red: $c.nir;
 green: $c.red;
 blue: $c.green
}

EXAMPLE	2:	 The	following	expression	transforms	a	greyscale	image	referred	to	by	variable		$g	containing	
a	range	field	panchromatic	into	an	RGB-structured	image:	

struct {
 red: $g.panchromatic;
 green: $g.panchromatic;
 blue: $g.panchromatic
}

6.5.5.2 switchExpr
The switchExpr provides a case distinction for choosing among a set of coverages that all
share domain and range type. Conditions provided are evaluated sequentially, and the first
true alternative is chosen if any; otherwise, the default alternative is chosen.

• If the result expressions return scalar values, the returned scalar value on a branch
is used in places where the condition expression on that branch evaluates to true.

• If the result expressions return coverages, the values of the returned coverage on a
branch are copied in the result coverage in all places where the condition coverage
on that branch contains pixels with value true.

Note The conditions of the statement are evaluated in a manner similar to the if-then-elsestatement in
programming languages such as Java or C++. This implies that the conditions needs to be specified by order
of generality, starting with the least general and ending with the default result, which is the most general one.
A less general condition specified after a more general condition will be ignored, as the expression meeting
the less general expression will have had met already the more general condition.

Requirement 29 https://standards.isotc211.org/19123/-3/1/req/core/switchExpr
Syntax and semantics of a switchExpr shall be given as follows.

Let

n be an	integer with n³1,	
b1,	…,	bn	be	booleanExprs with a single Boolean range component,	
C1,	…,	Cn	be	coverageExprs with a single Boolean range component,	
R,	R1,	…,	Rn+1	be	coverageExprs,	

where, for 1£i£n,

OGC 21-060r2

44
Copyright © 2024 Open Geospatial Consortium

crs(C1)	=	…	=	crs(Cn)	=	crs(R1)	=	…	=	crs(Rn+1),	
domain(C1)	=	…	=	domain(Cn)	=	domain(R1)	=	…	=	domain(Rn+1),	
interpolation(C1)	=	…	=	interpolation(Cn)	=	interpolation(R1)	=	…	=	
interpolation(Rn+1),	
rangeType(R1)	=	…	=	rangeType(Rn+1).	

Then,

for any coverageExpr C’	
where	
		 C’ = switch
 case C1	return R1	
		 	 	 …
		 	 	 case Cn	return Rn	

		 	 	 default return Rn+1	

C’	is	defined	as:	

Coverage constituent

id(C’) = “” (empty string)

crs(C’) = crs(R1)

domain(C’) = domain(R1)

interpolation(C’) = interpolation(R1)

rangeType(C’) = rangeType(R1)

for all pÎdomain(C’):
 value(C’, p) = V
 where V =
 if value(C1,p) then value(R1,p)
 else if value(C2,p) then value(R2,p)
 …
 else if value(Cn,p) then value(Rn,p)
 else value(Rn+1,p)

EXAMPLE	1	 The	expression	below	performs	a	traffic	light	classification	on	some	single-band	coverage	$c.	

switch
 case $c < 10 return $c * {red: 0; green: 0;
blue: 255}
 case $c < 20 return $c * {red: 0; green: 255;
blue: 0}
 case $c < 30 return $c * {red: 255; green: 0;

OGC 21-060r2

45
Copyright © 2024 Open Geospatial Consortium

blue: 0}
 default return {red: 0; green: 0;
blue: 0}

EXAMPLE	2	 The	example	below	computes	log	of	all	positive	values	in	$c,	and	assigns	0	to	the	remaining	
ones.	This	way	it	avoids	an	exception	that	would	otherwise	be	thrown	should	any	cell	not	be	above	zero.	

switch
 case $c>0 return log($c)
 default return 0

6.5.6 Coverage Domain-Changing Expressions

6.5.6.1 subsetExpr
The subsetExpr element specifies spatial and temporal domain subsetting. It encompasses
spatial and temporal trimming (i.e., constraining the result coverage domain to a
subinterval, Subclause 6.5.6.2), slicing (i.e., cutting out a hyperplane from a coverage,
Subclause 6.5.6.3), extending (Subclause 6.5.6.3), and scaling (Subclause 6.5.7) of a
coverage expression.

Requirement 30 https://standards.isotc211.org/19123/-3/1/req/core/subsetExpr
A subsetExpr shall be either a trimExpr (Subclause 6.5.6.2) or a sliceExpr (Subclause
6.5.6.3) or an extendExpr (Subclause 6.5.6.3) or a scalingExpr (Subclause 6.5.7).

Note 1 The special case that subsetting leads to a single point remaining still resembles a coverage by
definition; this coverage is viewed as being of dimension 0.

Note 2 Range subsetting is accomplished via the unary induced fieldExpr(cf. Subclause 6.5.3.4).

6.5.6.2 trimExpr
The trimExpr element extracts a subset from a given coverage expression along the
dimension indicated, specified by a lower and upper bound for each dimension affected.
Interval limits can be expressed in the coverage CRS or any other CRS explicitly indicated,
as long as a transformation to the coverage CRS exists.

Requirement 31 https://standards.isotc211.org/19123/-3/1/req/core/trimExprInside
In a trimExpr lower as well as upper limits shall lie inside the coverage’s domain.

For syntactic convenience, both array-style addressing using brackets and function-style
syntax are provided; both are equivalent in semantics.

Requirement 32 https://standards.isotc211.org/19123/-3/1/req/core/trimExpr
A trimExpr shall be defined as:

Let

C1	be	a	coverageExpr,	
n	be	an	integer	with	0£n,	
(lo1:hi1),…,(lon:hin)	be	dimensionIntervalExprs	with	loi£hii	for	1£i£n.	

OGC 21-060r2

46
Copyright © 2024 Open Geospatial Consortium

Then,

for any coverageExpr	C2	
where	C2	is one of
		 Cbracket	 =	C1[p1, …, pn]
with		
 pi	is one of
 pnat,I	 =	 ai (loi : hii)
 pcrs,I	 =	 ai	:	crsi (loi : hii)	

where each interval is within the coverage’s bounds, as expressed by interval and
axis (possibly reprojected from an optional CRS indicated)

C2	is defined as:

Coverage constituent

id(C2) = “” (empty string)

 crs(C2) = crs(C1)

domain(C2) = domain(C1) reduced to extent (loi:hii) for any domain axis ai
(reprojected from crsi into the coverage CRS if crsi is present), and with
domain extent properly adjusted for any index axis ai present in the trim list

interpolation(C2) = interpolation(C1)

rangeType(C2) = rangeType(C1)

 for all pÎdomain(C2):
 value(C2, p) = value(C1, p)

EXAMPLE The following are syntactically valid, equivalent trim expressions:

$c[Lon (-120: -80), Lat (-10: +10)]

6.5.6.3 sliceExpr
The sliceExpr element extracts a spatial slice (i.e., a hyperplane) from a given coverage
expression along one of its dimensions, specified by one or more slicing dimensions and a
slicing position thereon. For each slicing dimension indicated, the resulting coverage has a
dimension reduced by 1; its dimensions are the dimensions of the original coverage, in the
same sequence, with the section dimension being removed from the list. CRSs / axes not
used by any of the remaining dimensions are removed from the coverage’s CRS set.

OGC 21-060r2

47
Copyright © 2024 Open Geospatial Consortium

Requirement 33 https://standards.isotc211.org/19123/-
3/1/req/core/sliceExprCoordinatesInside
In a sliceExpr the slicing coordinates shall lie inside the coverage’s domain.

For syntactic convenience, both array-style addressing using brackets and function-style
syntax are provided; both are equivalent in semantics.

Requirement 34 https://standards.isotc211.org/19123/-3/1/req/core/sliceExpr
A sliceExpr shall be defined as:

Let

C1	be	a	coverageExpr,	
n	be	an	integer	with	0£n,	
a1,…,an be	pairwise	distinct	axisNames	with		ai ÎaxisNameSet(C1)	for	1£i£n,	
s1,…,sn be	axisPointExprs	for	1£i£n.	which	evaluate,	according	to	normal	
arithmetic	rules,	to	coordinate	values.	

Then,

for any coverageExpr	C2	
where C2	is one of
		 Cbracket	 =	 C1[S1, …, Sn]
with
 Si	is one of
 Snat,I	 =	 ai (si)
 Scrs,I	 =	 ai :	crsi (si)	

C2	is	defined as:

Coverage constituent

 id(C2) = “” (empty string)

 crs(C2) = crs(C1) projected to the axes remaining

domain(C2) = domain(C1) reduced to the axes of nativeCrs(C2)

interpolation(C2) = interpolation(C1)

rangeType(C2) = rangeType(C1)

 for all pÎdomain(C1) :
 value(C2, p) = value(C1,p’) where p’is the projection of p to nativeCrs(C2)

EXAMPLE The following is a valid slice expression:

OGC 21-060r2

48
Copyright © 2024 Open Geospatial Consortium

$c[Date (“2021-08-28”)]

6.5.6.4 extendExpr
The extendExpr element extends a coverage to the bounding box indicated. How the new
grid points are filled with values is implementation dependent (for example, null is an
appropriate value).

There is no restriction on the position and size of the new bounding box. The new bounding
box does not need to lie outside the coverage, may intersect with the coverage, may lie
completely inside the coverage, may not intersect the coverage at all. Hence, the operation
can extend or reduce the footprint in each axis individually.

Note In this sense the extendExpr is a generalization of the trimExpr; still it is best to use the
trimExpr whenever the application wants to be sure that a proper subsetting has to take place.

Extension is only possible where the new coordinates can be extrapolated. This is the case
for index and regular axes, and therefore no extension along an irregular axis is possible.

Requirement 35 https://standards.isotc211.org/19123/-3/1/req/core/extendExpr
An extendExpr shall be defined as:

Let

C1	be a coverageExpr,
n	be an integer with	0£n,	
a1,…,an be pairwise distinct axisNames with		ai ÎaxisList(nativeCrs(C1))	for	
1£i£n,	
crs1,…,crsn be crsNames with crsi ÎcrsList(C1)	for	1£i£n,	
(lo1:hi1),…,(lon:hin)	be dimensionIntervalExprs with	loi£hii	for	1£i£n,	
N		be 0 or NaN or some null value (to be defined by an implementation target of
this standard).

Then,

for any coverageExpr	C2	
where	
		 C2	 =	 extend (C1, {p1, …, pn })
with		
 pi	is one of
 pnat,I	 =	 ai (loi : hii)
 pcrs,I	 =	 ai :	crsi (loi : hii)	

C2	is defined as:

Coverage constituent

id(C2) = “” (empty string)

OGC 21-060r2

49
Copyright © 2024 Open Geospatial Consortium

crs(C2) = crs(C1)

domain(C2) = domain(C1) adjusted to extent (loi:hii) for any domain axis ai
(reprojected from crsi into the coverage nativeCRS if crsi is present), and with
domain extent properly adjusted for any axis ai present in the extend list; axes
not mentioned remain unchanged.

interpolation(C2) = interpolation(C1)

rangeType(C2) = rangeType(C1)

 for all pÎdomain(C2):
 value(C2, p) = value(C1,p) for pÎdomain(C1)
 value(C2, p) = N otherwise

Note A concretization can restrict the CRSs available on the result, as not all CRSs necessarily are
technically appropriate.

EXAMPLE The following is a valid extend() expression:

extend($c, { x (-200 : +200) })

6.5.7 scaleExpr
The scaleExpr element reduces resolution of a grid coverage while leaving the geographic
extent unchanged. The new target resolution is specified by a grid interval along each axis.

Note Scaling regularly involves range interpolation, hence numerical effects have to be expected.

Requirement 36 https://standards.isotc211.org/19123/-3/1/req/core/scaleExpr1
A scaleExpr shall be defined as:

Let

C1	be a coverageExpr with only index and regular grid axes,
m,	n	be integers with	0£m	and	0£n,	
a1,…,am be pairwise distinct axisNames with		aiÎgridCrs(C1)	for	1£i£m,	
Ii	be intervalExprs for	1£i£m	which evaluate to pairs	loi,	hii	with	loi£hii.	

Then,

For any coverageExpr C2,	
where	
		 C2 =	 scale (C1, { a1 (I1), …, am (Im)})	

C2	is defined as:

OGC 21-060r2

50
Copyright © 2024 Open Geospatial Consortium

Coverage constituent

id(C2) = “” (empty string)

rs(C2) = crs(C1)

domain(C2) = domain(C1)

interpolation(C2) = interpolation(C1)

rangeType(C2) = rangeType(C1)

 for all pÎdomain(C2):
 value(C2, p) is obtained by rescaling the coverage grid along dimensions
ai such that the coverage’s extent along dimension ai is set to (loi:hii),
expressed in the coverage’s grid CRS; all other dimensions remain unaffected.
Whenever interpolation is needed the respective axis interpolation method of
the coverage expression gets applied.

	

EXAMPLE	 The	 following	expression	performs	x/y	 scaling	of	 some	coverage	 referenced	by	variable	$c	
using	the	interpolation	method	of	each	coverage	axis.	Note	that	$c	might	have	further	axes,	such	as	time,	which	
would	remain	unaffected.	

scale($c, { x (100: 200), y (300: 400) })

Note In practice, a concretization will provide several variants of scaling for convenience.

6.6 Coverage Derivation Expressions

6.6.1 crsTransformExpr
The crsTransformExpr element performs reprojection of a coverage from its native CRS
into another one; the dimension of the coverage as well as the axis types (such as regular
vs. irregular) remains unchanged whereas axes and range values generally change. For the
interpolation and resampling which usually is incurred the interpolation method to be
applied can be indicated optionally.

Note 1 This changes the range values (e.g., pixel radiometry).

Note 2 Some CRS combinations may not be supported.

Requirement 37 https://standards.isotc211.org/19123/-
3/1/req/core/crsTransformExpr
A crsTransformExpr shall be defined as:

Let

C1	be a coverageExpr,
c be a crsName.

OGC 21-060r2

51
Copyright © 2024 Open Geospatial Consortium

Then,

for any coverageExpr C2	
where
 C2	 =	 crsTransform(C1, c)	

C2	is defined as:

Coverage constituent

id(C2) = “” (empty string)

crs(C2) = c

domain(C2) = domain(C1)

interpolation(C2) = interpolation(C1)

rangeFieldNames(C2) = rangeFieldNames(C1)

 for all range fields rÎrangeFieldNames(C2):
 rangeFieldType(C2,r) = rangeFieldType(C1,r)

 for all pÎdomain(C2):
 value(C2,p) is obtained by reprojecting coverage C1 from its CRS into CRS
c. Interpolation will be applied as necessary.

	

Example	 The	following	expression	transforms	coverage	$c	(which	is	assumed	to	be	2D	with	some	not	
further	specified	CRS)	into	the	CRS	identified	by	EPSG:3035.	

crsTransform($c, “EPSG:3035”)

6.7 Coverage Aggregation Expressions

6.7.1 condenseExpr
Requirement 38 https://standards.isotc211.org/19123/-3/1/req/core/condenseExpr
A condenseExpr shall be either a reduceExpr (see Subclause6.7.3) or a generalCondense-
Expr (see Subclause 6.7.2).

This expression takes a coverage and summarizes its values using some summarization
function. The value returned is scalar, i.e.: a single scalar value or a record of values,
reflecting the number of the input coverage’s range type components.

Note In practice, aggregation results can be null if aggregation encounters null values in the coverage
expression. Handling of null values is governed by the value set definition which is out of scope of this
document. Rather, it depends on whether a concretization defines types with null values included. It is
expected, though, that a concretization will define null value handling in a way that for every direct position
evaluated, if any of the values participating is null then the result for this direct position will be null.

OGC 21-060r2

52
Copyright © 2024 Open Geospatial Consortium

6.7.2 generalCondenseExpr
The general generalCondenseExpr consolidates the grid point values of a coverage along
selected dimensions to a scalar value based on the condensing operation indicated. This
expression iterates over a given domain while combining the result values of the
scalarExprs through the condenseOpType indicated. Admissible condenseOpTypes are
the binary operations +, *, max, min, and, and or.

Requirement 39 https://standards.isotc211.org/19123/-
3/1/req/core/generalCondenseExpr
A generalCondenseExpr shall be defined as:

Let

op	be a condenseOpType,
n	be some integer with	n³0,	
d	be some integer with	d>0,	
axisi	be axisNames for	1£i£d,	
namei	be pairwise distinct variableNames for	1£i£d	which, in the request on
hand, are not used already as a variable in this expression’s scope,	
Ii	be intervalExprs for	1£i£d	which evaluate to pairs	loi,	hii	with	loi£hii,	
Cj	be coverageExprs for	1£j£n,	
P	be a booleanExpr possibly containing occurrences of	namei	and	Cj,	
V	be a scalarExpr or coverageExpr possibly containing occurrences of	namei	
and	Cj,
N	be a neutral element of type(V)	
where	
 1£i£d.	

Then,

For any scalarExpr	S
where	S	is one of	
 S’ 	 =		 condense op
 over name1 axis1 (I1),
 …,
 named axisd (Id)
 [whereP]
 using V	

 S” 	 =		 condense op
 over axis1 (I1),
 …,
 axisd (Id)
 [whereP]
 using V	

S	is constructed as follows (for	S”,	substitute	namei	by	axisi):		

OGC 21-060r2

53
Copyright © 2024 Open Geospatial Consortium

S := N;
for all name1 Î {lo1,… ,hi1}
 for all name2 Î {lo2,… ,hi2}
 …
 for all named Î {lod,… ,hid}
 if (filtering expression P is present)
 then
 let predicate P’ be obtained from evaluating
 expression P by substituting all occurrences of
 namei by its current value where namei occurring in
 a coordinate position of Cj are coordinates in the
 CRS of Cj
 else
 P’ = true;
 fi
 if (P’)
 then
 let V’ be obtained from evaluating expression V
 by substituting all occurrences of namei by its
 current value where namei occurring in a coordinate
 position of Cj are coordinates in the CRS of Cj where
 possible extra dimensions in a coverageExpr are
 treated as in induced operations;
 S := S op value(V’)
 fi
 endfor
 …
 endfor
 endfor
return S

Note 1 Condensers are heavily used, among others, in these two situations:

• To collapse Boolean-valued coverage expressions into scalar Boolean values so that they
can be used in predicates.

• In conjunction with the coverageConstructorExpr (see Subclause 6.3.1) to phrase high-
level imaging, signal processing, and statistical operations.

Note 2 The additional expressive power of condenseExpr over reduceExpr is twofold:

• A concretization can offer further summarization functions, as long as these form a mon-
oid, i.e.: they are commutative and associative and have a neutral element.

• The condenseExpr gives explicit access to the coordinate values; this makes
summarization considerably more powerful (see example below).

EXAMPLE	1	 The	following	expression	iterates	over	a	5000x5000	extent	of	image	$c	delivering	the	sum	of	
all	values	encountered	at	the	direct	positions.	

condense +
overx (0 : 4999), y (0 : 4999)
using $c[i(x) , j(y)]

OGC 21-060r2

54
Copyright © 2024 Open Geospatial Consortium

EXAMPLE	2	 Iteration	is	possible	also	in	native	coordinates	as	the	direct	positions	are	uniquely	identified:	

condense +
overy (20 : 30), x (40 : 50)
using $c[Lat(y) , Lon(x)]

EXAMPLE	3	 A	timeline	diagram	can	be	obtained	through	a	1-D	expression	which	aggregates	over	space	while	
iterating	over	time:	

coverage AverageTemperature
domain
 crs “OGC:DateTime” with t (domain(
$temperatureCube, Date))
range type t: float
range
 condense +
 over lat (domain($temperatureCube, Lat)),
 lon (domain($temperatureCube, Lon))
 using $temperatureCube[Lat(lat), (Lon(lon), Date(t
)]

EXAMPLE	4	 For	a	filter	kernel	k,	the	condenser	summarizes	not	only	over	the	grid	point	under	inspection,	
but	also	some	neighborhood.	The	following	applies	a	3x3	filter	kernel	to	band	b	of	some	coverage	$c	with	extent	
x0…x1/y0…y1;	note	that	the	result	image	is	defined	to	have	an	x	and	y	dimension:	

Coverage FilteredImage
domain
 crs “OGC:Index2D” with x (0 : 4999), y (0 : 4999)
range type f: int
range
 condense +
 over i (-1 : +1),
 j (-1 : +1)
 using $c[x+i , y+j] * k[i, j]

where	k	is	a	3x3	matrix	like

1 2 1
0 0 0
-1 -2 -1

Note See coverageConstantExpr for a way to specify the k matrix.

6.7.3 reduceExpr
A reduceExpr element derives a summary value from the coverage passed; in this sense
it “reduces” a coverage to a scalar value.

Note All these operations can be expressed through a condenseExpr, however in a more verbose way.

OGC 21-060r2

55
Copyright © 2024 Open Geospatial Consortium

Requirement 40 https://standards.isotc211.org/19123/-3/1/req/core/reduceExpr
A reduceExpr shall be either an add, avg, min, max, count, some, or all operation as per
Table 5.

Table	5	—	reduceExpr	definition	via	generalCondenseExpr	

reduceExpr definition
($a is assumed to evaluate to a coverage with a single
numeric range field, $b to a coverage with a single
Boolean range field.

Description

add($a) =
 condense +
 over $p1 (domain($a,D1)),
 …,
 $pd (domain($a,D1)),
 using $a[$p1 , …, $pd]

sum over all points in $a

avg($a) =
 add($a) / | domain($a) |

average of all points in $a

min($a) =
 condense min
 over $p1 (domain($a,D1)),
 …,
 $pd (domain($a,D1))
 using $a[$p1 , …, $pd]

minimum of all points in $a

max($a) =
 condense max
 over $p1 (domain($a,D1)),
 …,
 $pd (domain($a,D1))
 using $a[$p1 , …, $pd]

maximum of all points in $a

count($b) =
 condense +
 over $p1 (domain($b,D1)),
 …,
 $pd (domain($b,D1))
 where $b[$p1 , …, $pd]
 using 1

number of points in $b

some($b) =
 condense or
 over $p1 (domain($b,D1)),
 …,
 $pd (domain($b,D1))
 using $b[$p1 , …, $pd]

is there any point in $b with
value true?

OGC 21-060r2

56
Copyright © 2024 Open Geospatial Consortium

all($b) =
 condense and
 over $p1 D1(domain($b,D1)),
 …,
 $pd Dd(domain($b,D1))
 using $b[$p1 , …, $pd]

do all points of $b have value
true?

EXAMPLE	 The	previous	average	temperature	example	can	be	expressed	through	a	more	compact	range:	

coverage AverageTemperature
domain
 crs “OGC:DateTime” with t (domain($tCube, Date))
range type t: float
range
 avg($tCube[Date(t)]

6.8 Coverage Encode/Decode Expressions

6.8.1 encodeCoverageExpr
The encodeCoverageExpr element specifies encoding of a coverage-valued query result
by means of a data format and possible extra encoding parameters.

Data format encodings are not in the scope of this document.

Requirement 41 https://standards.isotc211.org/19123/-3/1/req/core/encode
An encodeCoverageExpr shall be defined as:

Let

C	be a coverageExpr,
f	be a string
where
		 f		is a stringConstant,
 extraParams	is a stringConstant.

Then,

for any string	S	
where	S	is one of
		 Se	 =	 encode (C,f)
		 See	 =	 encode (C,f, extraParams)	

S	is defined as that (binary or printable) byte string which encodes	C	into the data
format specified by	formatName	and the optional	extraParams.		

Syntax	and	semantics	of	both	f	and	the	extraParams	are	not	specified	in	this	document,	a	
set	of	suitable	data	formats	is	expected	to	be	provided	by	a	concretization	of	this	language.	

OGC 21-060r2

57
Copyright © 2024 Open Geospatial Consortium

Note Some format encodings can lead to a loss of information, with the consequence that
reconstruction of the complete coverage or even reusing it at all in a decode() operation may be impossible.

EXAMPLE	 The	following	expression	might	retrieve	coverage	$c	encoded	in	JPEG	with	a	quality	factor	of	
50%:	

encode($c, "image/jpg", ".50")

6.8.2 decodeCoverageExpr
A decodeCoverageExpr evaluates a byte stream passed as parameter to a coverage by
decoding the byte stream. This byte stream must represent a coverage encoding following
CIS 1.1 [09-146r6] and its coverage encoding profiles.

Note Implementations will be able to recognize the encoding format used by analyzing the input byte
stream. Therefore, no format indication parameter is required. Generally, though, the extraParams
syntax and semantics is data format and implementation dependent.

Requirement 42 https://standards.isotc211.org/19123/-3/1/req/core/decode
Syntax and semantics of a decodeCoverageExpr shall be given as follows.

Let

s be a string

where

s is a valid (binary or printable) representation of a complete coverage or a
domain, range type, range, or metadata component of a coverage,
extraParams is a stringConstant containing decoding directives.

Then,

for any decodeCoverageExpr C
where C is one of
 Ce = decode(s)
 Cee = decode(s, extraParams)

C is defined as the decoded coverage or coverage component equivalent to s
while applying the directives in extraParams.

In practice, this function can be used in several ways:

• To provide inline constants, encoded, e.g., in XML or JSON;

• To provide complete input files, accompanying the query, through positional
parameters;

• To provide input coverages and other values by reference, such as through URIs.

OGC 21-060r2

58
Copyright © 2024 Open Geospatial Consortium

EXAMPLE	 Assume	a	NetCDF	file	is	passed	as	a	single	extra	parameter	in	some	concrete	service.	The	service	
will	decodes	the	NetCDF	byte	stream	and	establishes	the	corresponding	coverage	before	further	evaluation	of	the	
complete	query:	

decode($1)

6.9 Expression evaluation
This Sublause defines additional rules for processingExpr expression evaluation.

6.9.1 Evaluation sequence
Requirement 43 https://standards.isotc211.org/19123/-3/1/req/core/sequence
A processingExpr shall evaluate coverage expressions from left to right.

6.9.2 Nesting
Requirement 44 https://standards.isotc211.org/19123/-3/1/req/core/nesting
A processingExpr shall allow nesting all operators, constructors, and functions arbitrarily,
provided that each sub-expression's result type matches the required type at the position where
the sub-expression occurs, and all semantics rules are fulfilled.

6.9.3 Parentheses
A processingExpr may contain parentheses to enforce a particular evaluation sequence.

Requirement 45 https://standards.isotc211.org/19123/-3/1/req/core/parentheses
Parentheses enforcing evaluation sequence in a processingExpr shall be defined as:

Let

C1	and	C2	be coverageExprs.

Then,

For any coverageExpr C2	

where	
		 C2	 =	 (C1)	

C2	is	defined as yielding the same result as	C1.	

EXAMPLE	 $c * ($c > 0)	

6.9.4 Operator precedence rules
Requirement 46 https://standards.isotc211.org/19123/-3/1/req/core/precedence
In case of ambiguities in the syntactical analysis of a request, operators shall have the following
precedence (listed in descending strength of binding):

Range field selection, trimming, slicing	

unary	–	

unary	arithmetic,	trigonometric,	and	exponential	functions	

OGC 21-060r2

59
Copyright © 2024 Open Geospatial Consortium

binary *,	/

binary +,	-

binary <,	<=,	>,	>=,	!=,	=

binary	and

binary or,	xor

: (interval constructor), condense, coverage, coverage constructor	

overlay, switch	

In all remaining cases evaluation shall be done left to right.

6.9.5 Range type compatibility and extension
A range type t1 is said to be cast-compatible with a range type t2 iff the following
conditions hold:

• Both range types,t1 and t2, have the same number of field elements, say d;

• For each range field element position i with 1£i£d, the ith range field type f1,i
of t1 is cast-compatible with the ith range field type f2,i of t2.

Cast compatibility is expected to be defined in detail in a concretization of this language.

Requirement 47 https://standards.isotc211.org/19123/-3/1/req/core/typeExtension
The type of each of the operands of an arithmetic operator (+, -, *, /) shall be a type that can
be extended to a numeric numeric type, and the result type of anarithmetic expression shall
be the common extended type of all of its operands as:
If the extended type is integer then integer arithmetic shall be performed.
If the extended type is float then floating-point arithmetic shall be performed.
If the extended type is complex then complex arithmetic shall be performed.
The result type shall be the smallest type allowing to represent the result without loss.

Note Explicit and implicit casts need to be used with caution, as unintended consequences can arise.
Data can be lost when floating-point representations are converted to integer representations as the fractional
components of the floating-point values will be truncated (rounded down). Conversely, converting from an
integer representation to a floating-point one can also loose precision, since the floating-point type can
potentially be unable to represent the integer exactly (for example, float possibly gets mapped to an IEEE
754 single precision type, which cannot represent the integer 16777217 exactly, while a 32-bit integer type
can). This can lead to situations such as storing the same integer value into two variables of type int and type
float which return false if compared for equality.

6.10 Evaluation response
If, for whatever reason, the query cannot be evaluated properly then an error is returned as
evaluation result. On abstract level, an error is a possible result value not equal to any valid
result.

OGC 21-060r2

60
Copyright © 2024 Open Geospatial Consortium

Requirement 48 https://standards.isotc211.org/19123/-3/1/req/core/error
Whenever a coverage expression cannot be evaluated according to the rules specified in
Clauses 6.1 and 6.8, evaluation shall respond with an error.

Note Concretizations of this specification will define some appropriate behaviour depending on the
target environment, such as return codes, exceptions, etc. Even not all syntactically valid expressions will be
semantically admissible in practice. Possible issues include: quota are exceeded, access restrictions apply.

EXAMPLE	 The	following	expressions	will	lead	to	an	error	(reasons:	division	by	zero;	illegal	trigonometric	
argument):	

$C / 0

arcsin(2)

The result of evaluating a processCoveragesExpr is one of the following:

Requirement 49 https://standards.isotc211.org/19123/-3/1/req/core/result
Depending on its result type, the normal result of evaluating a valid query shall consist of one
of the following alternatives:

• A (possibly empty) list of coverages.

• A (possibly empty) list of scalars (where scalar summarizes all non-coverage type
data, such as numbers, strings, URLs) or of records of scalars.

• An error.

OGC 21-060r2

61
Copyright © 2024 Open Geospatial Consortium

Annex A	
(normative)	

	
Conformance	Tests	

A.1 Conformance Class

This document defines one conformance class, Coverage Processing which constitutes the
mandatory Core every standardization target shall support.

Standardization targets are specifications containing provisions for coverage processing. A
specification claiming conformance to this document shall implement the Coverage
Processing conformance class.

Conformance with this document shall be assessed using all conformance test cases
specified in Annex A (normative) of this standard.

A.2 Conformance Class Coverage Processing Core

Conformance
test

https://standards.isotc211.org/19123/-
3/1/conf/core/allRequirements

Reference All normative statements in requirements class: Coverage
Processing

Test purpose: Verify that the specification under test conforms to all requirements
of this conformance class

Test method: Evaluate every requirement of this conformance class in turn; the
overall test passes if every single test passes.

Test type: Basic

OGC 21-060r2

62
Copyright © 2024 Open Geospatial Consortium

Annex B	
(normative)	

	
Expression	Syntax	

B.1 Overview

This Annex summarizes the coverage processing expression syntax. The syntax is
described in W3C EBNF grammar syntax [6].

Note This is a machine readable language not requiring formal translation into ISO supported
languages.

Tokens in single quotes represent literals which appear “as is” in a valid expression
(“terminal symbols”), other tokens represent either sub-expressions to be substituted
according to the grammar production rules (“non-terminals”) or terminal symbol classes
like identifiers, strings, and numbers as listed at the end of this Annex. The process-
CoveragesExpr nonterminal is the start of the production system.

Any number of whitespace characters (blank, tabulator, newline) may appear between
tokens as long as parsing is unambiguous.

EXAMPLE	 Between	 language	 tokens	 (such	 as	 “for”)	 and	 names	 there	 shall	 be	 at	 least	 one	whitespace	
character,	 whereas	 between	 names	 and	 non-alphanumeric	 tokens	 (such	 as	 opening	 parenthesis,	 “(“),	 no	
whitespace	is	required.	

Meta symbols used are as:

- brackets (“[…]”) denote optional elements which may occur or be left out;

- an asterisk after parentheses (“(…)*”) denotes that an arbitrary number of
repetitions of the parenthesis contents can be chosen, including none at all;

- a plus after parentheses (“(…)+”) denotes that an arbitrary number of repetitions of
the parenthesis contents can be chosen, at least one;

- a question mark after parentheses (“(…)?”) denotes that zero or one of the
parenthesis contents can be chosen;

- a vertical bar (“|”) denotes alternatives from which exactly one shall be chosen;

- Double slashes (“//”) begin comments which continue until the end of the line.
Comments are normative.

OGC 21-060r2

63
Copyright © 2024 Open Geospatial Consortium

Note The syntax as is remains ambiguous; the semantic rules listed in this document disambiguate the
grammar.

B.2 Terminal Symbols

In addition to the underlined terminal literals, the following are the terminal symbols:
variableName; name; stringConstant; booleanConstant; integerConstant;
and floatConstant.

A variableName shall adhere to the following regular expression: $[a-zA-Z_][0-
9a-zA-Z_]*.

This regular expression describes a consecutive sequence of characters where the first
character shall be either an alphabetical character or the “$” character and the remaining
characters consist of decimal digits, upper case alphabetical characters, lower case
alphabetical characters, underscore (“_”), and nothing else. The length of an identifier shall
be at least 1.

A name shall adhere to the following regular expression: ([a-zA-Z_][0-9a-zA-
Z_]*)|(“.+”).

Note This describes it to either be a consecutive sequence of digits and/or letters where the first
character is a letter, or a non-empty string constant.

While this document does not make assumptions about particularities of atomic data types
(such as short vs long integers, float vs double, and the associated bit lengths) the common
basic data types Boolean, integer, float, and complex are assumed to be available (with
complex syntactically being a composite expression, as usual):

A booleanConstant shall represent a logical truth value expressed as one of the literals
“true” and “false” resp., whereby upper and lower case characters shall not be
distinguished.

An integerConstant shall represent an integer number expressed in either decimal,
octal (with a “0” prefix), or hexadecimal notation (with a “0x” or “0X” prefix).

A floatConstant shall represent a floating point number in common decimal-point or
exponential notation.

A stringConstant shall represent a character sequence enclosed in single or double
quotes, with no mix of both in a single constant.

B.3 Processing Syntax

processCoveragesExpr ::=
 'for' variableName 'in' '(' coverageList ')'
 (',' variableName 'in' '(' coverageList ')')*
 ('let' letBinding (',' letBinding)*)?

OGC 21-060r2

64
Copyright © 2024 Open Geospatial Consortium

 ('where' booleanScalarExpr)?
 'return' processingExpr

coverageList ::=
 coverageName (',' coverageName)*

letBinding ::=
 variableName ':=' coverageExpr
 | scalarExpr
 | '[' intervalExpr ']'

processingExpr ::=
 encodeCoverageExpr
 | scalarExpr

formatName ::=
 stringConstant

extraParams ::=
 stringConstant

coverageExpr ::=
 coverageIdExpr
 | coverageConstructorExpr
 | coverageConstantExpr
 | getComponentExpr
 | inducedExpr
 | subsetExpr
 | crsTransformExpr
 | scaleExpr
 | decodeCoverageExpr

coverageIdExpr ::=
 coverageName

coverageConstructorExpr ::=
 'coverage' coverageName
 (domainExpr)? (rangeTypeExpr)? rangeSetExpr

domainExpr ::=
 'domain'
 'crs' nameOrString 'with'
 nameOrString axisDefExpr (',' nameOrString axisdefExpr)*
 (interpolationExpr)?

interpolationExpr ::=
 'interpolation ' interpolationMethod (','
interpolationMethod)*

interpolationMethod ::=
 none
 | name

OGC 21-060r2

65
Copyright © 2024 Open Geospatial Consortium

axisDefExpr ::=
 'index' (indexExpr ':' indexExpr)
 | 'regular' (axisPointExpr ':' axisPointExpr)
 'resolution' axisPointExpr
 | 'irregular' (axisPointExpr (',' axisPointExpr)*)

rangeTypeExpr ::=
 'range' 'type' rangeComponent (',' rangeComponent)*

rangeComponent ::=
 name ':' rangeType

rangeType ::=
 'boolean'
 | ('unsigned')? 'int'
 | 'float'
 | 'complex'

rangeSetExpr ::=
 'range' (scalarExpr | rangeConstantExpr)

rangeConstantExpr ::=
 '<' constant (';' constant)* '>'

scalarExpr ::=
 getComponentExpr
 | booleanScalarExpr
 | numericScalarExpr
 | stringScalarExpr
 | '(' scalarExpr ')'

getComponentExpr ::=
 identifierExpr
 | crs '(' coverageExpr ')' | getDomainExpr
 | interpolation '(' coverageExpr ')'

identifierExpr ::=
 | 'id' '(' coverageExpr ')'
 | 'name' '(' coverageExpr ')'

getDomainExpr ::=
 'domain' '(' coverageExpr ')'
 | 'domain' '(' coverageExpr ',' axisName ')'
 | 'domain' '(' coverageExpr ',' axisName ')' '.' 'lo'
 | 'domain' '(' coverageExpr ',' axisName ')' '.' 'hi'

booleanScalarExpr ::=
 booleanScalarExpr 'or' booleanScalarTerm
 | booleanScalarExpr 'xor' booleanScalarTerm
 | booleanScalarTerm

OGC 21-060r2

66
Copyright © 2024 Open Geospatial Consortium

booleanScalarTerm ::=
 booleanScalarTerm 'and' booleanScalarFactor
 | booleanScalarFactor

booleanScalarFactor ::=
 numericScalarExpr compOp numericScalarExpr
 | stringScalarExpr compOp stringScalarExpr
 | not booleanScalarExpr
 | '(' booleanScalarExpr ')'
 | booleanConstant

compOp ::=
 '='
 | '!='
 | '>'
 | '>='
 | '<'
 | '<='

numericScalarExpr ::=
 numericScalarExpr '+' numericScalarTerm
 | numericScalarExpr '-' numericScalarTerm
 | numericScalarTerm

numericScalarTerm ::=
 numericScalarTerm '*' numericScalarFactor
 | numericScalarTerm '/' numericScalarFactor
 | numericScalarFactor

numericScalarFactor ::=
 '(' numericScalarExpr ')'
 | '-' numericScalarFactor
 | 'round' '(' numericScalarExpr ')'
 | integerConstant
 | floatConstant
 | complexConstant
 | condenseExpr

stringScalarExpr ::=
 identifierExpr
 | stringConstant

inducedExpr ::=
 unaryInducedExpr
 | binaryInducedExpr
 | naryInducedExpr

unaryInducedExpr ::=
 unaryArithmeticExpr
 | exponentialExpr
 | trigonometricExpr
 | booleanExpr

OGC 21-060r2

67
Copyright © 2024 Open Geospatial Consortium

 | castExpr
 | fieldExpr

unaryArithmeticExpr ::=
 '+' coverageAtom
 | '-' coverageAtom
 | 'sqrt' '(' coverageExpr ')'
 | 'abs' '(' coverageExpr ')'
 | 're' '(' coverageExpr ')'
 | 'im' '(' coverageExpr ')'

trigonometricExpr ::=
 'sin' '(' coverageExpr ')'
 | 'cos' '(' coverageExpr ')'
 | 'tan' '(' coverageExpr ')'
 | 'sinh' '(' coverageExpr ')'
 | 'cosh' '(' coverageExpr ')'
 | 'tanh' '(' coverageExpr ')'
 | 'arcsin' '(' coverageExpr ')'
 | 'arccos' '(' coverageExpr ')'
 | 'arctan' '(' coverageExpr ')'

exponentialExpr ::=
 'exp' '(' coverageExpr ')'
 | 'log' '(' coverageExpr ')'
 | 'ln' '(' coverageExpr ')'
 | 'pow' '(' coverageExpr ')'

castExpr ::=
 '(' rangeType ')' coverageExpr

fieldExpr ::=
 coverageExpr '.' fieldName
 | coverageExpr '.' integerConstant

binaryInducedExpr ::=
 binaryInducedLogicExpr 'or' binaryInducedLogicTerm
 | binaryInducedLogicExpr 'xor' binaryInducedLogicTerm
 | binaryInducedLogicTerm

binaryInducedLogicTerm ::=
 binaryInducedLogicTerm 'and' binaryInducedLogicFactor
 | binaryInducedLogicFactor

binaryInducedLogicFactor ::=
 binaryInducedArithmExpr compOp binaryInducedArithmExpr
 | binaryInducedArithmExpr

binaryInducedArithmExpr ::=
 binaryInducedArithmExpr '+' binaryInducedArithmTerm
 | binaryInducedArithmExpr '-' binaryInducedArithmTerm
 | binaryInducedArithmTerm

OGC 21-060r2

68
Copyright © 2024 Open Geospatial Consortium

binaryInducedArithmTerm ::=
 binaryInducedArithmTerm '*' binaryInducedArithmFactor
 | binaryInducedArithmTerm '/' binaryInducedArithmFactor
 | binaryInducedArithmFactor

binaryInducedArithmFactor ::=
 binaryInducedArithmFactor 'overlay' binaryInducedExpr
 | inducedExpr

naryInducedExpr ::=
 rangeConstructorExpr
 | switchExpr

rangeConstructorExpr ::=
 ('struct')? '{' fieldName ':' scalarExpr
 (';' fieldName ':' scalarExpr)* '}'

switchExpr ::=
 'switch'
 'case' coverageExpr 'return' coverageExpr
 ('case' coverageExpr 'return' coverageExpr)*
 'default' 'return' coverageExpr

subsetExpr ::=
 trimExpr
 | sliceExpr
 | extendExpr
 | scalingExpr

trimExpr ::=
 coverageExpr '[' dimensionIntervalList ']'

dimensionIntervalExpr ::=
 dimensionIntervalExpr (',' dimensionIntervalExpr)*

dimensionIntervalExpr ::=
 axisExpr '(' axisPointExpr ':' axisPointExpr ')'

axisExpr ::=
 axisName (':' crsName)?

axisPointExpr ::= axisName
 | floatConstant
 | stringConstant

sliceExpr ::= coverageExpr '[' axisPointElement (','
axisPointElement)* ']'

axisPointElement ::=
 axisExpr '(' axisPointExpr ')'

OGC 21-060r2

69
Copyright © 2024 Open Geospatial Consortium

extendExpr ::=
 'extend' '(' coverageExpr ',' '{' dimensionIntervalList '}'
')'

scaleExpr ::=
 'scale' '(' coverageExpr ',' '{' dimensionIntervalList '}'
')'

crsTransformExpr ::=
 'crsTransform' '(' coverageExpr ',' crsName ')'

encodeCoverageExpr ::=
 'encode' '(' coverageExpr ',' formatName (',' extraParams
)? ')'

decodeCoverageExpr ::=
 'decode' '(' stringConstant (',' extraParams)? ')'

condenseExpr ::=
 reduceExpr
 | generalCondenseExpr

generalCondenseExpr ::=
 'condense' condenseOpType
 'over' axisIterator (',' axisIterator)*
 ('where' booleanScalarExpr)?
 'using' scalarExpr

condenseOpType ::=
 '+'
 | '*'
 | 'max'
 | 'min'
 | 'and'
 | 'or'

axisIterator ::=
 name [axisName] '(' intervalExpr ')'

intervalExpr ::=
 axisPointExpr ':' axisPointExpr

reduceExpr ::=
 'all' '(' coverageExpr ')'
 | 'some' '(' coverageExpr ')'
 | 'count' '(' coverageExpr ')'
 | 'add' '(' coverageExpr ')'
 | 'avg' '(' coverageExpr ')'
 | 'min' '(' coverageExpr ')'
 | 'max' '(' coverageExpr ')'

OGC 21-060r2

70
Copyright © 2024 Open Geospatial Consortium

coverageName ::=
 nameOrString

crsName ::=
 nameOrString

axisName ::=
 nameOrString

fieldName ::=
 nameOrString

constant ::=
 stringConstant
 | booleanConstant
 | integerConstant
 | floatConstant
 | complexConstant

complexConstant ::=
 '(' floatConstant ',' floatConstant ')'
 | '(' integerConstant ',' integerConstant ')'

nameOrString ::=
 name
 | stringConstant

OGC 21-060r2

71
Copyright © 2024 Open Geospatial Consortium

Annex C	
(non-normative)	

	
Syntax	diagrams	

The following graphical representation of the syntax (often called “syntax diagrams” or
“railroad diagrams”) is provided for the reader’s convenience. In case of deviation the
normative syntax in Annex B prevails.

Note 1 This is a machine language not requiring formal translation.

Note 2 Diagrams generated by RR - Railroad Diagram Generator.

Figure C.1 - processCoveragesExpr

Figure C.2 - coverageList

Figure C.3 - letBinding

OGC 21-060r2

72
Copyright © 2024 Open Geospatial Consortium

Figure C.4 - processingExpr

Figure C.5 - formatName

Figure C.6 - extraParams

Figure C.7 - coverageExpr

Figure C.8 - coverageIdExpr

OGC 21-060r2

73
Copyright © 2024 Open Geospatial Consortium

Figure C.9 - coverageConstructorExpr

Figure C.10 - domainExpr

Figure C.11 - interpolationExpr

Figure C.12 - interpolationMethod

Figure C.13 - axisDefExpr

OGC 21-060r2

74
Copyright © 2024 Open Geospatial Consortium

Figure C.14 - rangeTypeExpr

Figure C.15 - rangeComponent

Figure C.16 - rangeType

Figure C.17 - rangeSetExpr

Figure C.18 - rangeConstantExpr

OGC 21-060r2

75
Copyright © 2024 Open Geospatial Consortium

Figure C.19 - scalarExpr

Figure C.20 - getComponentExpr

Figure C.21 - identifierExpr

OGC 21-060r2

76
Copyright © 2024 Open Geospatial Consortium

Figure C.22 - getDomainExpr

Figure C.23 - booleanScalarExpr

Figure C.24 - booleanScalarTerm

OGC 21-060r2

77
Copyright © 2024 Open Geospatial Consortium

Figure C.25 - booleanScalarFactor

Figure C.26 - compOp

Figure C.27 - numericScalarExpr

Figure C.28 - numericScalarTerm

OGC 21-060r2

78
Copyright © 2024 Open Geospatial Consortium

Figure C.29 - numericScalarFactor

Figure C.30 - stringScalarExpr

Figure C.31 - inducedExpr

OGC 21-060r2

79
Copyright © 2024 Open Geospatial Consortium

Figure C.32 - unaryInducedExpr

Figure C.33 - unaryArithmeticExpr

OGC 21-060r2

80
Copyright © 2024 Open Geospatial Consortium

Figure C.34 - trigonometricExpr

Figure C.35 - exponentialExpr

Figure C.36 - castExpr

Figure C.37 - fieldExpr

OGC 21-060r2

81
Copyright © 2024 Open Geospatial Consortium

Figure C.38 - binaryInducedExpr

Figure C.39 - binaryInducedLogicFactor

Figure C.40 - binaryInducedArithmExpr

Figure C.41 - binaryInducedArithmTerm

Figure C.42 - binaryInducedArithmFactor

OGC 21-060r2

82
Copyright © 2024 Open Geospatial Consortium

Figure C.43 - naryInducedExpr

Figure C.44 - rangeConstructorExpr

Figure C.45 - switchExpr

Figure C.46 - subsetExpr

Figure C.47 - trimExpr

OGC 21-060r2

83
Copyright © 2024 Open Geospatial Consortium

Figure C.48 - dimensionIntervalExpr

Figure C.49 - axisExpr

Figure C.50 - axisPointExpr

Figure C.51 - sliceExpr

Figure C.52 - axisPointElement

Figure C.53 - extendExpr

OGC 21-060r2

84
Copyright © 2024 Open Geospatial Consortium

Figure C.54 - scaleExpr

Figure C.55 - crsTransformExpr

Figure C.56 - encodeCoverageExpr

Figure C.57 - decodeCoverageExpr

Figure C.58 - condenseExpr

Figure C.59 - generalCondenseExpr

OGC 21-060r2

85
Copyright © 2024 Open Geospatial Consortium

Figure C.60 - condenseOpType

Figure C.61 - axisIterator

Figure C.62 - intervalExpr

- reduceExpr

OGC 21-060r2

86
Copyright © 2024 Open Geospatial Consortium

Figure C.63 - coverageName

Figure C.64 - crsName

Figure C.65 - axisName

Figure C.66 - fieldName

Figure C.67 - constant

Figure C.68 - complexConstant

Figure C.69 - nameOrString

OGC 21-060r2

87
Copyright © 2024 Open Geospatial Consortium

Annex D	
(non-normative)	

	
Sample	service	descriptions	

D.1 Overview

This Annex presents, as an example of using the coverage processing language, the
specification of the OGC Web Coverage Service (WCS) [4] semantics through coverage
expressions. WCS-Core and several of its extensions are modeled.

D.2 WCS-Core

WCS-Core defines access to a coverage, subsetting, and output format encoding in the
GetCoverage request.

Extensions below often extend the GetCoverage request with additional parameters
triggering the additional functionality in the server. Therefore, when such extension
functionality is used the resulting 19123-1 expression describing the semantics will be a
functional merge of all individual WCS Core’s and extensions’ expressions involved.

Input parameters:

• {cov}
• {subset-axis1}, {subset-axis2}, …
• {fmt} (default: coverage native format)

WCS GetCoverage request in GET/KVP syntax:

https://acme.com/wcs?SERVICE=WCS&VERSION=2.0&REQUEST=GetCoverag
e&
 COVERAGEID={cov}&
 SUBSET={subset-axis1}&SUBSET={subset-axis2}&...&
 FORMAT={fmt}

Note The SUBSET parameter gets broken down into a trim or slice on the axes addressed

Semantics:

for $c in ({cov}) return encode({cov} {subset}, {fmt})

OGC 21-060r2

88
Copyright © 2024 Open Geospatial Consortium

D.3 WCS-Range-Subsetting

WCS-Range-Subsetting is an optional WCS extension which allows extraction of range
components (in various application domains also called “bands”, “variables”, etc.).
Technically, an additional parameter extends the WCS-Core GetCoverage request.

Input parameters:

• {cov}
• {range-subset}

WCS GetCoverage request in GET/KVP syntax:

https://acme.com/wcs?SERVICE=WCS&VERSION=2.0&REQUEST=GetCoverage&
 COVERAGEID={cov}&
 RANGESUBSET={range-subset}

Semantics:

for $c in ({cov}) return encode({cov}. {range-subset}, {fmt})

D.4 WCS-Scaling

WCS-Scaling is an optional WCS extension which allows reducing the resolution of a grid
coverage. Technically, additional parameters extend the WCS-Core GetCoverage request.
Here, one of the several scaling variants is described:

Input parameters:

• {cov} (as per WCS-Core)
• {scale-factor}

WCS GetCoverage request in GET/KVP syntax:

https://acme.com/wcs?SERVICE=WCS&VERSION=2.0&REQUEST=GetCoverage&
 COVERAGEID={cov}&
 SCALEFACTOR={scale-factor}

Semantics:

for $c in ({cov}) return encode(scale({cov} {scale-factor}), {fmt})

D.5 WCS-CRS

WCS-CRS is an optional WCS extension which allows reprojection of a coverage into a
different CRS (and formulate a subsetting request in a CRS different from the coverage’s
CRS – this is omitted here for simplicity). Technically, additional parameters extend the
WCS-Core GetCoverage request.

OGC 21-060r2

89
Copyright © 2024 Open Geospatial Consortium

Input parameters:

• {cov} (as per WCS-Core)
• {output-crs} CRS into which coverage is transformed
• {format} encoding format in which result is returned

WCS GetCoverage request in GET/KVP syntax:

https://acme.com/wcs?SERVICE=WCS&VERSION=2.0&REQUEST=GetCoverage&
 COVERAGEID={cov}&
 OUTPUTCRS={output-crs}

Semantics:

for $c in ({cov}) return encode(crsTransform({cov}, {output-crs}), {format})

D.6 WCS-Processing

WCS-Processing is an optional WCS extension which allows sending an OGC WCPS
request to a server and obtain the evaluation result. WCPS is based on the OGC Coverage
Implementation Schema (CIS) model which is identical to ISO 19123-2, a concretization
of the 19123-1 data model. Technically, an additional request type is added to WCS named
ProcessCoverages. For the overlapping part of both languages and assuming the ISO
19123-2 coverage model, translation is 1:1.

Input parameters:

• {wcps-expression}

WCS ProcessCoverage request in GET/KVP syntax:

https://acme.com/wcs?SERVICE=WCS&VERSION=2.0&REQUEST=ProcessCoverage&
 QUERY={wcps-expression}

Semantics:

{wcps-expression}

OGC 21-060r2

90
Copyright © 2024 Open Geospatial Consortium

Bibliography

[1] Baumann, P.: The OGC Web Coverage Processing Service (WCPS) Standard.
Geoinformatica, 14(4)2010, pp 447-479

[2] Baumann, P.: OGC Web Coverage Processing Service (WCPS) Language Interface
Standard. OGC document 08-068r3, https://docs.ogc.org/is/08-068r3/08-
068r3.html

[3] P. Baumann: Towards a Model-Driven Datacube Analytics Language. Proc. IEEE
Big Spatial Data Workshop, December 17, 2021,
http://localhost/public_html/Website-IUB/iu-
bremen.de_pbaumann//Papers/2021/IEEE-BigSpatialData_WCPS.pdf

[4] Baumann, P.: OGC Web Coverage Service (WCS) Interface Standard – Core. OGC
document 17-089r1, http://docs.opengeospatial.org/is/17-089r1/17-089r1.html

[5] ISO/IEC 19123:2022, Geographic information —Schema for coverage geometry
and functions — Part 1: Fundamentals

[6] W3C: XQuery 1.0: An XML Query Language (Second Edition).
https://www.w3.org/TR/2010/REC-xquery-20101214

[7] ISO/IEC 19123-2:2019, Geographic information — Schema for coverage geometry
and functions — Part 2: Coverage implementation schema

