MySQL Backup and Recovery

Abstract
This is the MySQL Backup and Recovery extract from the MySQL 5.7 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2024-08-06 (revision: 79247)

http://forums.mysql.com

Table of Contents

Preface and Legal NOTICESccouuuiiiiiiieiiei ettt ettt et et e e e nb e e enaas %
1 BACKUP 8NGO RECOVEIY ..ottt ettt e et e et e e e e e e e eenans 1
1.1 Backup and RECOVEIY TYPES ...uuiiiituieeiiiii ettt ettt e ettt e ettt e ettt e e ettt e e e eat s e e eentaaaeeen 2

1.2 Database Backup MethOUSiiiiiiiiii e 5

1.3 Example Backup and RECOVEIY SHAtEOYccouuuiiiiiiiiieiiiiie ettt 7
1.3.1 Establishing @ Backup POLICYcoiiiiiiiiiiiiieeeii e 7

1.3.2 Using Backups fOr RECOVEIYciiiiiiieiiiiii ettt ettt 9

1.3.3 Backup Strategy SUMIMANYuuieiiiiiieiiiiiee ettt et e e e e eeni e eeees 10

1.4 Using mysgldump fOr BACKUPSuuiiiiiiiieiiiii et 10
1.4.1 Dumping Data in SQL Format with mysgldumpcccooiiiiiiniiii e, 10

1.4.2 Reloading SQL-Format BaCKUPSuuiiiiiiiiiiiiiiieeeei e 11

1.4.3 Dumping Data in Delimited-Text Format with mysgldumpccccooeeiiiiiiiinnnnnne. 12

1.4.4 Reloading Delimited-Text Format BaCKUPScooiiiiiiiiiiiiiiiieiii e 13

SR 01 YASTo | (o 18T 0] o T I o 1 TR 14

1.5 Point-in-Time (Incremental) RECOVEIYiiiiiiiiiiii et 15
1.5.1 Point-in-Time Recovery UsiNg Binary LOQooviieiiiiiiiiiieiiiiiie e 16

1.5.2 Point-in-Time Recovery Using Event POSItIONScccooviiiiiiiiiiiiiiccei e 17

1.6 MyISAM Table Maintenance and Crash RECOVEIYccoouuiiiiiiiiiiiiiiiiieei e 18
1.6.1 Using myisamchk for Crash RECOVEIYcoouuiiiiiiiiiiieiii e 19

1.6.2 How to Check MyISAM Tables for ErfOrsScoiveiiiiiiiiiiiiieecii e 19

1.6.3 How to Repair MyISAM TabIesoouuiiiiiiiieei e 20

1.6.4 MyISAM Table OPtiMIZAtIONoeiiiiiieiiii e 22

1.6.5 Setting Up a MyISAM Table Maintenance Schedulec.ccoocooiiiiiiiiinieiiinen. 23

2 Using Replication fOr BACKUPSiiiiiiiieiiii ettt e 25
2.1 Backing Up a Replica USiNg MYSQIQUMPooiiiiiiiiiiieeeee e 25

2.2 Backing Up Raw Data from a RepPliCaccouuiiiiiiiiiie e 26

2.3 Backing Up a Source or Replica by Making It Read Onlyccccovviiiiiiiiiiiiniecieeeee, 27

R LT ToT] = B = =Tl (U o PP 29

Preface and Legal Notices

This is the MySQL Backup and Recovery extract from the MySQL 5.7 Reference Manual.

Licensing information—MySQL 5.7. This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 5.7, see the MySQL 5.7 Commercial Release
License Information User Manual for licensing information, including licensing information relating to
third-party software that may be included in this Commercial release. If you are using a Community
release of MySQL 5.7, see the MySQL 5.7 Community Release License Information User Manual

for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Licensing information—MySQL NDB Cluster 7.5. This product may include third-party software,
used under license. If you are using a Commercial release of NDB Cluster 7.5, see the MySQL NDB
Cluster 7.5 Commercial Release License Information User Manual for licensing information relating

to third-party software that may be included in this Commercial release. If you are using a Community
release of NDB Cluster 7.5, see the MySQL NDB Cluster 7.5 Community Release License Information
User Manual for licensing information relating to third-party software that may be included in this
Community release.

Licensing information—MySQL NDB Cluster 7.6. If you are using a Commercial release of
MySQL NDB Cluster 7.6, see the MySQL NDB Cluster 7.6 Commercial Release License Information
User Manual for licensing information, including licensing information relating to third-party software
that may be included in this Commercial release. If you are using a Community release of MySQL NDB
Cluster 7.6, see the MySQL NDB Cluster 7.6 Community Release License Information User Manual
for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Legal Notices

Copyright © 1997, 2024, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications

of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated

https://downloads.mysql.com/docs/licenses/mysqld-5.7-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-5.7-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-5.7-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.6-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.6-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.6-gpl-en.pdf

Documentation Accessibility

on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible

for and expressly disclaim all warranties of any kind with respect to third-party content, products,

and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion

to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program

website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support for Accessibility

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/
t opi ¢/ | ookup?ct x=acc& d=tr s if you are hearing impaired.

Vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

viii

Chapter 1 Backup and Recovery

Table of Contents

1.1 Backup and RECOVEIY TYPES ..ouuuiiiiniiiiieei i et ettt et e e e e e e e et e et e e et e e et e e etnreeaaeeanaeeatnaeeanaaees 2
1.2 Database Backup MENOAScouuiiiiiiiii e e e e e e e et e et e e e eees 5
1.3 Example Backup and RECOVEINY StrateQYoceuuiiiiiiiiiiieeiiieee e e e e e e e e e e e e e e e e ean s 7
1.3.1 Establishing a Backup POICYccovuiiiiiii e e 7
1.3.2 Using Backups fOr RECOVEIYuiiiiiiii et e e e e e e 9
1.3.3 Backup Strate@gy SUMMAIYcceuuiiiieiiieeis e e e ete e et e et e e s e e et r e et e e e eat s e e eeaneeeen 10
1.4 Using mysqldump fOr BACKUPScuuiiiiiiiii it e e e e e e e e e e e e e ean s 10
1.4.1 Dumping Data in SQL Format with mysqldumpcccoeeiiiiiiiiiii e, 10
1.4.2 Reloading SQL-Format BaCKUPSccouuiiiiiiiii e e 11
1.4.3 Dumping Data in Delimited-Text Format with mysgldumpcccocciiiiiiiiiiieeeee, 12
1.4.4 Reloading Delimited-Text Format BacCkupscccuiiiiiiiiiiiiiii e 13
SR 91T | [0 10T 0] T I o 1 14
1.5 Point-in-Time (INCremental) RECOVEIYiivuiiii e e e e e e e e e e e aaaas 15
1.5.1 Point-in-Time Recovery Using Binary LOQoveiuiirii i e e 16
1.5.2 Point-in-Time Recovery Using EVent POSITIONScc.ovviiiiiiiiicicce e e ee e 17
1.6 MyISAM Table Maintenance and Crash RECOVEIYccuoviiiiiiiiiiiiiiiec e 18
1.6.1 Using myisamchk for Crash RECOVEIYcvvuiiiiiiiiiii e 19
1.6.2 How to Check MyISAM Tables fOr EITOISccouuiiiiiiiiii e e e 19
1.6.3 How to Repair MyISAM TabIesccouniiiiiii e 20
1.6.4 MyISAM Table OptimiZationccuoiiiiiiiiii e e e 22
1.6.5 Setting Up a MyISAM Table Maintenance Schedulecccooeviiiiiiiii i, 23

It is important to back up your databases so that you can recover your data and be up and running
again in case problems occur, such as system crashes, hardware failures, or users deleting data by
mistake. Backups are also essential as a safeguard before upgrading a MySQL installation, and they
can be used to transfer a MySQL installation to another system or to set up replica servers.

MySQL offers a variety of backup strategies from which you can choose the methods that best suit
the requirements for your installation. This chapter discusses several backup and recovery topics with
which you should be familiar:

» Types of backups: Logical versus physical, full versus incremental, and so forth.

Methods for creating backups.
» Recovery methods, including point-in-time recovery.
» Backup scheduling, compression, and encryption.

» Table maintenance, to enable recovery of corrupt tables.

Additional Resources

Resources related to backup or to maintaining data availability include the following:

» Customers of MySQL Enterprise Edition can use the MySQL Enterprise Backup product for backups.
For an overview of the MySQL Enterprise Backup product, see MySQL Enterprise Backup Overview.

» A forum dedicated to backup issues is available at https://forums.mysql.com/list.php?28.

* Details for nysql dunp can be found in MySQL Programs.

https://dev.mysql.com/doc/refman/5.7/en/mysql-enterprise-backup.html
https://forums.mysql.com/list.php?28
https://dev.mysql.com/doc/refman/5.7/en/programs.html

Backup and Recovery Types

The syntax of the SQL statements described here is given in SQL Statements.
For additional information about | nnoDB backup procedures, see Chapter 3, InnoDB Backup.

Replication enables you to maintain identical data on multiple servers. This has several benefits,
such as enabling client query load to be distributed over servers, availability of data even if a given
server is taken offline or fails, and the ability to make backups with no impact on the source by using
a replica server. See Replication.

MySQL InnoDB Cluster is a collection of products that work together to provide a high availability
solution. A group of MySQL servers can be configured to create a cluster using MySQL Shell. The
cluster of servers has a single source, called the primary, which acts as the read-write source.
Multiple secondary servers are replicas of the source. A minimum of three servers are required to
create a high availability cluster. A client application is connected to the primary via MySQL Router.
If the primary fails, a secondary is automatically promoted to the role of primary, and MySQL Router
routes requests to the new primary.

NDB Cluster provides a high-availability, high-redundancy version of MySQL adapted for the
distributed computing environment. See MySQL NDB Cluster 7.5 and NDB Cluster 7.6, which
provides information about MySQL NDB Cluster 7.5 (based on MySQL 5.7 but containing the latest
improvements and fixes for the NDB storage engine).

1.1 Backup and Recovery Types

This section describes the characteristics of different types of backups.

Physical (Raw) Versus Logical Backups

Physical backups consist of raw copies of the directories and files that store database contents. This
type of backup is suitable for large, important databases that need to be recovered quickly when
problems occur.

Logical backups save information represented as logical database structure (CREATE DATABASE,
CREATE TABLE statements) and content (I NSERT statements or delimited-text files). This type of
backup is suitable for smaller amounts of data where you might edit the data values or table structure,
or recreate the data on a different machine architecture.

Physical backup methods have these characteristics:

The backup consists of exact copies of database directories and files. Typically this is a copy of all or
part of the MySQL data directory.

Physical backup methods are faster than logical because they involve only file copying without
conversion.

Output is more compact than for logical backup.

Because backup speed and compactness are important for busy, important databases, the MySQL
Enterprise Backup product performs physical backups. For an overview of the MySQL Enterprise
Backup product, see MySQL Enterprise Backup Overview.

Backup and restore granularity ranges from the level of the entire data directory down to the level of

individual files. This may or may not provide for table-level granularity, depending on storage engine.
For example, | nnoDB tables can each be in a separate file, or share file storage with other | nnoDB

tables; each Myl SAMtable corresponds uniquely to a set of files.

In addition to databases, the backup can include any related files such as log or configuration files.

Data from MEMORY tables is tricky to back up this way because their contents are not stored on disk.
(The MySQL Enterprise Backup product has a feature where you can retrieve data from MEMORY
tables during a backup.)

https://dev.mysql.com/doc/refman/5.7/en/sql-statements.html
https://dev.mysql.com/doc/refman/5.7/en/replication.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/create-database.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-enterprise-backup.html

Online Versus Offline Backups

» Backups are portable only to other machines that have identical or similar hardware characteristics.

» Backups can be performed while the MySQL server is not running. If the server is running, it is
necessary to perform appropriate locking so that the server does not change database contents
during the backup. MySQL Enterprise Backup does this locking automatically for tables that require
it.

» Physical backup tools include the nmysql backup of MySQL Enterprise Backup for | nnoDB or any
other tables, or file system-level commands (such as cp, scp, t ar, r sync) for Myl SAMtables.

» For restore:
* MySQL Enterprise Backup restores | nnoDB and other tables that it backed up.
e ndb_rest or e restores NDB tables.

 Files copied at the file system level can be copied back to their original locations with file system
commands.

Logical backup methods have these characteristics:

» The backup is done by querying the MySQL server to obtain database structure and content
information.

» Backup is slower than physical methods because the server must access database information and
convert it to logical format. If the output is written on the client side, the server must also send it to
the backup program.

» Output is larger than for physical backup, particularly when saved in text format.

» Backup and restore granularity is available at the server level (all databases), database level (all
tables in a particular database), or table level. This is true regardless of storage engine.

» The backup does not include log or configuration files, or other database-related files that are not
part of databases.

» Backups stored in logical format are machine independent and highly portable.
» Logical backups are performed with the MySQL server running. The server is not taken offline.

* Logical backup tools include the mysql dunp program and the SELECT ... | NTO OUTFI LE
statement. These work for any storage engine, even VENORY.

» To restore logical backups, SQL-format dump files can be processed using the nysql client. To load
delimited-text files, use the LOAD DATA statement or the mysql i nport client.

Online Versus Offline Backups

Online backups take place while the MySQL server is running so that the database information can be
obtained from the server. Offline backups take place while the server is stopped. This distinction can
also be described as “hot” versus “cold” backups; a “warm” backup is one where the server remains
running but locked against modifying data while you access database files externally.

Online backup methods have these characteristics:

» The backup is less intrusive to other clients, which can connect to the MySQL server during the
backup and may be able to access data depending on what operations they need to perform.

» Care must be taken to impose appropriate locking so that data modifications do not take place that
would compromise backup integrity. The MySQL Enterprise Backup product does such locking
automatically.

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html

Local Versus Remote Backups

Offline backup methods have these characteristics:

 Clients can be affected adversely because the server is unavailable during backup. For that reason,
such backups are often taken from a replica server that can be taken offline without harming
availability.

» The backup procedure is simpler because there is no possibility of interference from client activity.

A similar distinction between online and offline applies for recovery operations, and similar
characteristics apply. However, it is more likely for clients to be affected for online recovery than for
online backup because recovery requires stronger locking. During backup, clients might be able to read
data while it is being backed up. Recovery modifies data and does not just read it, so clients must be
prevented from accessing data while it is being restored.

Local Versus Remote Backups

A local backup is performed on the same host where the MySQL server runs, whereas a remote
backup is done from a different host. For some types of backups, the backup can be initiated from a
remote host even if the output is written locally on the server. host.

» nysql dunp can connect to local or remote servers. For SQL output (CREATE and | NSERT
statements), local or remote dumps can be done and generate output on the client. For delimited-text
output (with the - - t ab option), data files are created on the server host.

« SELECT ... | NTO OUTFI LE can be initiated from a local or remote client host, but the output file
is created on the server host.

» Physical backup methods typically are initiated locally on the MySQL server host so that the server
can be taken offline, although the destination for copied files might be remote.

Snapshot Backups

Some file system implementations enable “snapshots” to be taken. These provide logical copies of
the file system at a given point in time, without requiring a physical copy of the entire file system. (For
example, the implementation may use copy-on-write techniques so that only parts of the file system
modified after the snapshot time need be copied.) MySQL itself does not provide the capability for
taking file system snapshots. It is available through third-party solutions such as Veritas, LVM, or ZFS.

Full Versus Incremental Backups

A full backup includes all data managed by a MySQL server at a given point in time. An incremental
backup consists of the changes made to the data during a given time span (from one point in time to
another). MySQL has different ways to perform full backups, such as those described earlier in this
section. Incremental backups are made possible by enabling the server's binary log, which the server
uses to record data changes.

Full Versus Point-in-Time (Incremental) Recovery

A full recovery restores all data from a full backup. This restores the server instance to the state that it
had when the backup was made. If that state is not sufficiently current, a full recovery can be followed
by recovery of incremental backups made since the full backup, to bring the server to a more up-to-
date state.

Incremental recovery is recovery of changes made during a given time span. This is also called point-
in-time recovery because it makes a server's state current up to a given time. Point-in-time recovery

is based on the binary log and typically follows a full recovery from the backup files that restores the
server to its state when the backup was made. Then the data changes written in the binary log files are
applied as incremental recovery to redo data modifications and bring the server up to the desired point
in time.

https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_tab
https://dev.mysql.com/doc/refman/5.7/en/select-into.html

Table Maintenance

Table Maintenance

Data integrity can be compromised if tables become corrupt. For | nnoDB tables, this is not a typical
issue. For programs to check Myl SAMtables and repair them if problems are found, see Section 1.6,
“MyISAM Table Maintenance and Crash Recovery”.

Backup Scheduling, Compression, and Encryption

Backup scheduling is valuable for automating backup procedures. Compression of backup

output reduces space requirements, and encryption of the output provides better security against
unauthorized access of backed-up data. MySQL itself does not provide these capabilities. The MySQL
Enterprise Backup product can compress | nnoDB backups, and compression or encryption of backup
output can be achieved using file system utilities. Other third-party solutions may be available.

1.2 Database Backup Methods

This section summarizes some general methods for making backups.

Making a Hot Backup with MySQL Enterprise Backup

Customers of MySQL Enterprise Edition can use the MySQL Enterprise Backup product to do physical
backups of entire instances or selected databases, tables, or both. This product includes features

for incremental and compressed backups. Backing up the physical database files makes restore

much faster than logical techniques such as the mysqgl dunp command. | nnoDB tables are copied
using a hot backup mechanism. (Ideally, the | nnoDB tables should represent a substantial majority

of the data.) Tables from other storage engines are copied using a warm backup mechanism. For an
overview of the MySQL Enterprise Backup product, see MySQL Enterprise Backup Overview.

Making Backups with mysgldump

The nysql dunp program can make backups. It can back up all kinds of tables. (See Section 1.4,
“Using mysqldump for Backups™.)

For | nnoDB tables, it is possible to perform an online backup that takes no locks on tables using the - -
si ngl e-transacti on option to nysql dunp. See Section 1.3.1, “Establishing a Backup Policy”.

Making Backups by Copying Table Files

For storage engines that represent each table using its own files, tables can be backed up by copying
those files. For example, Myl SAMtables are stored as files, so it is easy to do a backup by copying files
(*.frm*. MYD, and *. MYI files). To get a consistent backup, stop the server or lock and flush the
relevant tables:

FLUSH TABLES tbl _|ist WTH READ LOCK;

You need only a read lock; this enables other clients to continue to query the tables while you are
making a copy of the files in the database directory. The flush is needed to ensure that the all active
index pages are written to disk before you start the backup. See LOCK TABLES and UNLOCK
TABLES Statements, and FLUSH Statement.

You can also create a binary backup simply by copying all table files, as long as the server is not
updating anything. (But note that table file copying methods do not work if your database contains

| nnoDB tables. Also, even if the server is not actively updating data, | nnoDB may still have modified
data cached in memory and not flushed to disk.)

Making Delimited-Text File Backups

To create a text file containing a table's data, you can use SELECT * | NTO OQUTFI LE 'fil e_naneg'
FROM t bl _nan®e. The file is created on the MySQL server host, not the client host. For this statement,

https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_mysql_enterprise_backup
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_physical
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_incremental_backup
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_compressed_backup
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_hot_backup
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_warm_backup
https://dev.mysql.com/doc/refman/5.7/en/mysql-enterprise-backup.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_single-transaction
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_single-transaction
https://dev.mysql.com/doc/refman/5.7/en/lock-tables.html
https://dev.mysql.com/doc/refman/5.7/en/lock-tables.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html
https://dev.mysql.com/doc/refman/5.7/en/select-into.html
https://dev.mysql.com/doc/refman/5.7/en/select-into.html

Making Incremental Backups by Enabling the Binary Log

the output file cannot already exist because permitting files to be overwritten constitutes a security risk.
See SELECT Statement. This method works for any kind of data file, but saves only table data, not the
table structure.

Another way to create text data files (along with files containing CREATE TABLE statements for the
backed up tables) is to use nmysql dunp with the - - t ab option. See Section 1.4.3, “Dumping Data in
Delimited-Text Format with mysgldump”.

To reload a delimited-text data file, use LOAD DATA or mysql i nport.

Making Incremental Backups by Enabling the Binary Log

MySQL supports incremental backups: You must start the server with the - - | og- bi n option to
enable binary logging; see The Binary Log. The binary log files provide you with the information

you need to replicate changes to the database that are made subsequent to the point at which you
performed a backup. At the moment you want to make an incremental backup (containing all changes
that happened since the last full or incremental backup), you should rotate the binary log by using
FLUSH LOGS. This done, you need to copy to the backup location all binary logs which range from
the one of the moment of the last full or incremental backup to the last but one. These binary logs
are the incremental backup; at restore time, you apply them as explained in Section 1.5, “Point-in-
Time (Incremental) Recovery”. The next time you do a full backup, you should also rotate the binary
log using FLUSH LOGS or nysql dunp --flush-1 ogs. See mysqldump — A Database Backup
Program.

Making Backups Using Replicas

If you have performance problems with your source server while making backups, one strategy that
can help is to set up replication and perform backups on the replica rather than on the source. See
Chapter 2, Using Replication for Backups.

If you are backing up a replica server, you should back up its source info and relay log info repositories
(see Relay Log and Replication Metadata Repositories) when you back up the replica's databases,
regardless of the backup method you choose. These information files are always needed to resume
replication after you restore the replica's data. If your replica is replicating LOAD DATA statements,

you should also back up any SQL_LOAD- * files that exist in the directory that the replica uses for this
purpose. The replica needs these files to resume replication of any interrupted LOAD DATA operations.
The location of this directory is the value of the sl ave_| oad_t npdi r system variable. If the server
was not started with that variable set, the directory location is the value of the t npdi r system variable.

Recovering Corrupt Tables

If you have to restore Myl SAMtables that have become corrupt, try to recover them using REPAI R
TABLE or nyi santhk -r first. That should work in 99.9% of all cases. If nyi santhk fails, see
Section 1.6, “MyISAM Table Maintenance and Crash Recovery”.

Making Backups Using a File System Snapshot
If you are using a Veritas file system, you can make a backup like this:
1. From a client program, execute FLUSH TABLES W TH READ LOCK.
2. From another shell, execute nount vxfs snapshot.
3. From the first client, execute UNLOCK TABLES.
4. Copy files from the snapshot.
5. Unmount the snapshot.

Similar snapshot capabilities may be available in other file systems, such as LVM or ZFS.

https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_tab
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#option_mysqld_log-bin
https://dev.mysql.com/doc/refman/5.7/en/binary-log.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-logs
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-logs
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html
https://dev.mysql.com/doc/refman/5.7/en/replica-logs.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_load_tmpdir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tmpdir
https://dev.mysql.com/doc/refman/5.7/en/repair-table.html
https://dev.mysql.com/doc/refman/5.7/en/repair-table.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-tables-with-read-lock
https://dev.mysql.com/doc/refman/5.7/en/lock-tables.html

Example Backup and Recovery Strategy

1.3 Example Backup and Recovery Strategy

This section discusses a procedure for performing backups that enables you to recover data after
several types of crashes:

» Operating system crash

Power failure

File system crash
» Hardware problem (hard drive, motherboard, and so forth)

The example commands do not include options such as - - user and - - passwor d for the nysql dunp
and nmysqgl client programs. You should include such options as necessary to enable client programs
to connect to the MySQL server.

Assume that data is stored in the | nnoDB storage engine, which has support for transactions and
automatic crash recovery. Assume also that the MySQL server is under load at the time of the crash. If
it were not, no recovery would ever be needed.

For cases of operating system crashes or power failures, we can assume that MySQL's disk data is
available after a restart. The | nnoDB data files might not contain consistent data due to the crash, but

I nnoDB reads its logs and finds in them the list of pending committed and noncommitted transactions
that have not been flushed to the data files. | nnoDB automatically rolls back those transactions that
were not committed, and flushes to its data files those that were committed. Information about this
recovery process is conveyed to the user through the MySQL error log. The following is an example log
excerpt:

| nnoDB: Dat abase was not shut down nornally.

I nnoDB: Starting recovery fromlog files..
InnoDB: Starting | og scan based on checkpoi nt at
I nnoDB: | og sequence nunber 0 13674004

| nnoDB: Doi ng recovery: scanned up to | og sequence nunber 0 13739520
I nnoDB: Doi ng recovery: scanned up to | og sequence nunber 0 13805056
I nnoDB: Doi ng recovery: scanned up to | og sequence nunber 0 13870592
I nnoDB: Doi ng recovery: scanned up to | og sequence nunber 0 13936128
| nnoDB: Doi ng recovery: scanned up to | og sequence nunber 0 20555264
I nnoDB: Doi ng recovery: scanned up to | og sequence nunber 0 20620800
I nnoDB: Doi ng recovery: scanned up to | og sequence nunber 0 20664692
I nnoDB: 1 unconmitted transaction(s) which nust be rolled back

I nnoDB: Starting rol | back of unconmitted transactions

I nnoDB: Rol I'ing back trx no 16745

I nnoDB: Rol I'i ng back of trx no 16745 conpl et ed

I nnoDB: Rol | back of unconmitted transactions conpl eted

I nnoDB: Starting an apply batch of |og records to the database..
| nnoDB: Apply batch conpl et ed

I nnoDB: Started

nysqgl d: ready for connections

For the cases of file system crashes or hardware problems, we can assume that the MySQL disk data
is not available after a restart. This means that MySQL fails to start successfully because some blocks
of disk data are no longer readable. In this case, it is necessary to reformat the disk, install a new one,
or otherwise correct the underlying problem. Then it is necessary to recover our MySQL data from
backups, which means that backups must already have been made. To make sure that is the case,
design and implement a backup policy.

1.3.1 Establishing a Backup Policy

To be useful, backups must be scheduled regularly. A full backup (a snapshot of the data at a point in
time) can be done in MySQL with several tools. For example, MySQL Enterprise Backup can perform
a physical backup of an entire instance, with optimizations to minimize overhead and avoid disruption

https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_user
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/5.7/en/mysql-enterprise-backup.html
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_physical_backup

Establishing a Backup Policy

when backing up | nnoDB data files; mysql dunp provides online logical backup. This discussion uses
nmysql dunp.

Assume that we make a full backup of all our | nnoDB tables in all databases using the following
command on Sunday at 1 p.m., when load is low:

$> nysql dunp --all-databases --nmaster-data --single-transaction > backup_sunday_1 PM sql

The resulting . sql file produced by nysql dunp contains a set of SQL | NSERT statements that can be
used to reload the dumped tables at a later time.

This backup operation acquires a global read lock on all tables at the beginning of the dump (using
FLUSH TABLES W TH READ LOCK). As soon as this lock has been acquired, the binary log
coordinates are read and the lock is released. If long updating statements are running when the FLUSH
statement is issued, the backup operation may stall until those statements finish. After that, the dump
becomes lock-free and does not disturb reads and writes on the tables.

It was assumed earlier that the tables to back up are | nnoDB tables, so - - si ngl e-transacti on
uses a consistent read and guarantees that data seen by nysql dunp does not change. (Changes
made by other clients to | nnoDB tables are not seen by the nmysql dunp process.) If the backup
operation includes nontransactional tables, consistency requires that they do not change during the
backup. For example, for the Myl SAMtables in the nysql database, there must be no administrative
changes to MySQL accounts during the backup.

Full backups are necessary, but it is not always convenient to create them. They produce large backup
files and take time to generate. They are not optimal in the sense that each successive full backup
includes all data, even that part that has not changed since the previous full backup. It is more efficient
to make an initial full backup, and then to make incremental backups. The incremental backups are
smaller and take less time to produce. The tradeoff is that, at recovery time, you cannot restore your
data just by reloading the full backup. You must also process the incremental backups to recover the
incremental changes.

To make incremental backups, we need to save the incremental changes. In MySQL, these changes
are represented in the binary log, so the MySQL server should always be started with the - - | og- bi n
option to enable that log. With binary logging enabled, the server writes each data change into a file
while it updates data. Looking at the data directory of a MySQL server that was started with the - -

| og- bi n option and that has been running for some days, we find these MySQL binary log files:

-rwrw--- 1 guilhem guilhem 1277324 Nov 10 23: 59 gbi chot 2-bi n. 000001

-rwW-rw--- 1 guilhem guilhem 4 Nov 10 23:59 gbi chot 2-bi n. 000002
-rwW-rw--- 1 guilhem guilhem 79 Nov 11 11: 06 gbi chot 2-bi n. 000003
-rwW-rw--- 1 guilhem guilhem 508 Nov 11 11: 08 gbi chot 2- bi n. 000004
-rwrw--- 1 guilhem guilhem 220047446 Nov 12 16: 47 gbi chot 2- bi n. 000005
-rwW-rw--- 1 guilhem guilhem 998412 Nov 14 10: 08 gbi chot 2-bi n. 000006
-rwW-rw--- 1 guilhem guilhem 361 Nov 14 10: 07 gbi chot 2-bi n. i ndex

Each time it restarts, the MySQL server creates a new binary log file using the next number in the
sequence. While the server is running, you can also tell it to close the current binary log file and begin
a new one manually by issuing a FLUSH LOGS SQL statement or with a nysql admi n fl ush-1o0gs
command. nysql dunp also has an option to flush the logs. The . i ndex file in the data directory
contains the list of all MySQL binary logs in the directory.

The MySQL binary logs are important for recovery because they form the set of incremental backups. If
you make sure to flush the logs when you make your full backup, the binary log files created afterward
contain all the data changes made since the backup. Let's modify the previous mysql dunp command
a bit so that it flushes the MySQL binary logs at the moment of the full backup, and so that the dump
file contains the name of the new current binary log:

$> nmysqgl dunp --single-transaction --flush-1ogs --nmaster-data=2 \
--al |l -dat abases > backup_sunday_1 PM sql

After executing this command, the data directory contains a new binary log file, gbi chot 2-
bi n. 000007, because the - - f | ush- | ogs option causes the server to flush its logs. The - - nast er -

https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_logical_backup
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-tables-with-read-lock
https://dev.mysql.com/doc/refman/5.7/en/flush.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_single-transaction
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#option_mysqld_log-bin
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#option_mysqld_log-bin
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#option_mysqld_log-bin
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-logs
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_flush-logs
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_master-data

Using Backups for Recovery

dat a option causes nysql dunp to write binary log information to its output, so the resulting . sql
dump file includes these lines:

-- Position to start replication or point-in-tine recovery from
-- CHANGE MASTER TO MASTER LOG FI LE=' gbi chot 2- bi n. 000007' , MASTER LOG PCS=4;

Because the mysqgl dunp command made a full backup, those lines mean two things:

» The dump file contains all changes made before any changes written to the gbi chot 2-
bi n. 000007 binary log file or higher.

» All data changes logged after the backup are not present in the dump file, but are present in the
gbi chot 2- bi n. 000007 binary log file or higher.

On Monday at 1 p.m., we can create an incremental backup by flushing the logs to begin a new
binary log file. For example, executing a nysql adm n fl ush-1 ogs command creates gbi chot 2-
bi n. 000008. All changes between the Sunday 1 p.m. full backup and Monday 1 p.m. are in the

gbi chot 2- bi n. 000007 file. This incremental backup is important, so it is a good idea to copy it to

a safe place. (For example, back it up on tape or DVD, or copy it to another machine.) On Tuesday at
1 p.m., execute another nysql admi n fl ush-1 ogs command. All changes between Monday 1 p.m.
and Tuesday 1 p.m. are in the gbi chot 2- bi n. 000008 file (which also should be copied somewhere
safe).

The MySQL binary logs take up disk space. To free up space, purge them from time to time. One
way to do this is by deleting the binary logs that are no longer needed, such as when we make a full
backup:

$> nysql dunp --single-transaction --flush-1ogs --master-data=2 \
--al | -dat abases --del ete-master-1ogs > backup_sunday_1_PM sql

Note

Deleting the MySQL binary logs with nysql dunp --del et e- mast er-1 ogs
can be dangerous if your server is a replication source server, because replica
servers might not yet fully have processed the contents of the binary log. The
description for the PURCE BI NARY LOGS statement explains what should be
verified before deleting the MySQL binary logs. See PURGE BINARY LOGS
Statement.

1.3.2 Using Backups for Recovery

Now, suppose that we have a catastrophic unexpected exit on Wednesday at 8 a.m. that requires
recovery from backups. To recover, first we restore the last full backup we have (the one from Sunday
1 p.m.). The full backup file is just a set of SQL statements, so restoring it is very easy:

$> nysqgl < backup_sunday_1_PM sql

At this point, the data is restored to its state as of Sunday 1 p.m.. To restore the changes made since
then, we must use the incremental backups; that is, the gbi chot 2- bi n. 000007 and ghi chot 2-

bi n. 000008 binary log files. Fetch the files if necessary from where they were backed up, and then
process their contents like this:

$> nysql bi nl og gbi chot 2- bi n. 000007 gbi chot 2- bi n. 000008 | nysql

We now have recovered the data to its state as of Tuesday 1 p.m., but still are missing the changes
from that date to the date of the crash. To not lose them, we would have needed to have the MySQL
server store its MySQL binary logs into a safe location (RAID disks, SAN, ...) different from the place
where it stores its data files, so that these logs were not on the destroyed disk. (That is, we can start
the server with a - - | 0g- bi n option that specifies a location on a different physical device from the
one on which the data directory resides. That way, the logs are safe even if the device containing
the directory is lost.) If we had done this, we would have the gbhi chot 2- bi n. 000009 file (and any

https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_master-data
https://dev.mysql.com/doc/refman/5.7/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/5.7/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/5.7/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#option_mysqld_log-bin

Backup Strategy Summary

subsequent files) at hand, and we could apply them using nysql bi nl og and nysqgl to restore the
most recent data changes with no loss up to the moment of the crash:

$> nysql bi nl og gbi chot 2- bi n. 000009 ... | nysq

For more information about using nysql bi nl og to process binary log files, see Section 1.5, “Point-in-
Time (Incremental) Recovery”.

1.3.3 Backup Strategy Summary

In case of an operating system crash or power failure, | nnoDB itself does all the job of recovering data.
But to make sure that you can sleep well, observe the following guidelines:

» Always run the MySQL server with the - - | 0og- bi n option, or even - - | og- bi n=l og_nan®e, where
the log file name is located on some safe media different from the drive on which the data directory is
located. If you have such safe media, this technique can also be good for disk load balancing (which
results in a performance improvement).

» Make periodic full backups, using the nmysql dunp command shown earlier in Section 1.3.1,
“Establishing a Backup Policy”, that makes an online, nonblocking backup.

» Make periodic incremental backups by flushing the logs with FLUSH LOGS or nysql admi n fl ush-
| ogs.

1.4 Using mysqldump for Backups

This section describes how to use nmysql dunp to produce dump files, and how to reload dump files. A
dump file can be used in several ways:

* As a backup to enable data recovery in case of data loss.
» As a source of data for setting up replicas.
» As a source of data for experimentation:
« To make a copy of a database that you can use without changing the original data.
e To test potential upgrade incompatibilities.
nmysqgl dunp produces two types of output, depending on whether the - - t ab option is given:

» Without - - t ab, nysql dunp writes SQL statements to the standard output. This output consists of
CREATE statements to create dumped objects (databases, tables, stored routines, and so forth), and
| NSERT statements to load data into tables. The output can be saved in a file and reloaded later
using mysql to recreate the dumped objects. Options are available to modify the format of the SQL
statements, and to control which objects are dumped.

e With - -t ab, nysql dunp produces two output files for each dumped table. The server writes one
file as tab-delimited text, one line per table row. This file is named t bl _nane. t xt in the output
directory. The server also sends a CREATE TABLE statement for the table to nysql dunp, which
writes it as a file named t bl _nane. sql in the output directory.

1.4.1 Dumping Data in SQL Format with mysgldump

This section describes how to use mysql dunp to create SQL-format dump files. For information about
reloading such dump files, see Section 1.4.2, “Reloading SQL-Format Backups”.

By default, mysql dunp writes information as SQL statements to the standard output. You can save the
output in a file:

$> nysql dunp [argunents] > file_nane

10

https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#option_mysqld_log-bin
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#option_mysqld_log-bin
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-logs
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_tab
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_tab
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_tab
https://dev.mysql.com/doc/refman/5.7/en/create-table.html

Reloading SQL-Format Backups

To dump all databases, invoke nysql dunp with the - - al | - dat abases option:
$> nysql dunp --all-databases > dunp. sql
To dump only specific databases, name them on the command line and use the - - dat abases option:

$> nysql dunp --databases dbl db2 db3 > dunp. sql

The - - dat abases option causes all names on the command line to be treated as database names.
Without this option, mysql dunp treats the first name as a database name and those following as table
names.

With - - al | - dat abases or - - dat abases, mysql dunp writes CREATE DATABASE and USE
statements prior to the dump output for each database. This ensures that when the dump file is
reloaded, it creates each database if it does not exist and makes it the default database so database
contents are loaded into the same database from which they came. If you want to cause the dump file
to force a drop of each database before recreating it, use the - - add- dr op- dat abase option as well.
In this case, nmysql dunp writes a DROP DATABASE statement preceding each CREATE DATABASE
statement.

To dump a single database, nhame it on the command line:

$> nysql dunp --databases test > dunp. sql

In the single-database case, it is permissible to omit the - - dat abases option:
$> nysql dunp test > dunp. sql

The difference between the two preceding commands is that without - - dat abases, the dump output
contains no CREATE DATABASE or USE statements. This has several implications:

* When you reload the dump file, you must specify a default database name so that the server knows
which database to reload.

» For reloading, you can specify a database name different from the original name, which enables you
to reload the data into a different database.

« If the database to be reloaded does not exist, you must create it first.

» Because the output contains no CREATE DATABASE statement, the - - add- dr op- dat abase option
has no effect. If you use it, it produces no DROP DATABASE statement.

To dump only specific tables from a database, name them on the command line following the database
name:

$> nysqgl dunp test t1 t3 t7 > dunp. sql

1.4.2 Reloading SQL-Format Backups

To reload a dump file written by nysql dunp that consists of SQL statements, use it as input to
the mysql client. If the dump file was created by mysql dunp with the - - al | - dat abases or - -
dat abases option, it contains CREATE DATABASE and USE statements and it is not necessary to
specify a default database into which to load the data:

$> nysql < dunp. sql
Alternatively, from within nysqgl , use a sour ce command:

nysql > source dunp. sql

If the file is a single-database dump not containing CREATE DATABASE and USE statements, create the
database first (if necessary):

11

https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_all-databases
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_databases
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_databases
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_all-databases
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_databases
https://dev.mysql.com/doc/refman/5.7/en/create-database.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_add-drop-database
https://dev.mysql.com/doc/refman/5.7/en/drop-database.html
https://dev.mysql.com/doc/refman/5.7/en/create-database.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_databases
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_databases
https://dev.mysql.com/doc/refman/5.7/en/create-database.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/create-database.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_add-drop-database
https://dev.mysql.com/doc/refman/5.7/en/drop-database.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_all-databases
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_databases
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_databases
https://dev.mysql.com/doc/refman/5.7/en/create-database.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/create-database.html
https://dev.mysql.com/doc/refman/5.7/en/use.html

Dumping Data in Delimited-Text Format with mysqgldump

$> nysql adni n create dbl

Then specify the database name when you load the dump file:
$> nysqgl dbl < dunp. sql

Alternatively, from within nysql , create the database, select it as the default database, and load the
dump file:

nysql > CREATE DATABASE | F NOT EXI STS dbi;
nysql > USE dbi;
nmysql > source dunp. sql

Note

For Windows PowerShell users: Because the "<" character is reserved for future
use in PowerShell, an alternative approach is required, such as using quotes
cnd. exe /¢ "nysql < dunp.sql".

1.4.3 Dumping Data in Delimited-Text Format with mysqgldump

This section describes how to use nmysql dunp to create delimited-text dump files. For information
about reloading such dump files, see Section 1.4.4, “Reloading Delimited-Text Format Backups”.

If you invoke nysql dunp with the - -t ab=di r _nane option, it uses di r _nane as the output directory
and dumps tables individually in that directory using two files for each table. The table name is the base
name for these files. For a table named t 1, the files are named t 1. sql andt1.txt.The. sql file
contains a CREATE TABLE statement for the table. The . t xt file contains the table data, one line per
table row.

The following command dumps the contents of the db1 database to files in the / t np database:
$> nysql dunp --tab=/tnp dbl

The . t xt files containing table data are written by the server, so they are owned by the system
account used for running the server. The server uses SELECT ... | NTO OUTFI LE to write the files,
so you must have the FI LE privilege to perform this operation, and an error occurs if a given . t xt file
already exists.

The server sends the CREATE definitions for dumped tables to mysql dunp, which writes them to . sql
files. These files therefore are owned by the user who executes nysql dunp.

Itis best that - - t ab be used only for dumping a local server. If you use it with a remote server, the

- - t ab directory must exist on both the local and remote hosts, and the . t xt files are written by the
server in the remote directory (on the server host), whereas the . sql files are written by nysql dunp in
the local directory (on the client host).

For nysql dunp - -t ab, the server by default writes table data to . t xt files one line per row with tabs
between column values, no quotation marks around column values, and newline as the line terminator.
(These are the same defaults as for SELECT ... | NTO OUTFI LE.)

To enable data files to be written using a different format, mysql dunp supports these options:
e --fields-term nated-by=str

The string for separating column values (default: tab).
» --fields-encl osed- by=char

The character within which to enclose column values (default: no character).

e --fields-optionally-encl osed-by=char

12

https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_tab
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/select-into.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_file
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_tab
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_tab
https://dev.mysql.com/doc/refman/5.7/en/select-into.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_fields
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_fields
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_fields

Reloading Delimited-Text Format Backups

The character within which to enclose non-numeric column values (default: no character).
» --fields-escaped-by=char

The character for escaping special characters (default: no escaping).
e --lines-term nat ed-by=str

The line-termination string (default: newline).

Depending on the value you specify for any of these options, it might be necessary on the command
line to quote or escape the value appropriately for your command interpreter. Alternatively, specify the
value using hex notation. Suppose that you want mysql dunp to quote column values within double
guotation marks. To do so, specify double quote as the value for the - - f i el ds- encl osed- by option.
But this character is often special to command interpreters and must be treated specially. For example,
on Unix, you can quote the double quote like this:

--fields-encl osed-by="""

On any platform, you can specify the value in hex:

--fields-encl osed- by=0x22

It is common to use several of the data-formatting options together. For example, to dump tables in
comma-separated values format with lines terminated by carriage-return/newline pairs (\ r \ n), use this
command (enter it on a single line):

$> nysql dunp --tab=/tnp --fields-term nated-by=,
--fields-encl osed-by="""' --1lines-term nated-by=0x0d0a dbl

Should you use any of the data-formatting options to dump table data, you must specify the same
format when you reload data files later, to ensure proper interpretation of the file contents.

1.4.4 Reloading Delimited-Text Format Backups

For backups produced with nysql dunp - -t ab, each table is represented in the output directory by an
. sqgl file containing the CREATE TABLE statement for the table, and a . t xt file containing the table
data. To reload a table, first change location into the output directory. Then process the . sqgl file with
nmysqgl to create an empty table and process the . t xt file to load the data into the table:

$> nysql dbl < t1.sql
$> nysqlinport dbl t1.txt

An alternative to using nysqgl i mport to load the data file is to use the LOAD DATA statement from
within the nysql client:

nysql > USE db1;
nysqgl > LOAD DATA INFILE "t1.txt' |NTO TABLE t1;

If you used any data-formatting options with mysql dunp when you initially dumped the table, you must
use the same options with nysql i nport or LOAD DATA to ensure proper interpretation of the data file
contents:

$> nysqlinport --fields-term nated-by=,
--fields-encl osed-by=""" --1lines-term nated-by=0x0d0a dbl t1.txt

Or:

nmysql > USE dbi;

nysql > LOAD DATA INFILE "t1.txt' |NTO TABLE t1
FI ELDS TERM NATED BY ',' FIELDS ENCLOSED BY ' "'
LI NES TERM NATED BY '\r\n';

13

https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_fields
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_lines-terminated-by
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_fields
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html

mysqldump Tips

1.4.5 mysqldump Tips
This section surveys techniques that enable you to use nysql dunp to solve specific problems:
» How to make a copy a database
» How to copy a database from one server to another
» How to dump stored programs (stored procedures and functions, triggers, and events)
* How to dump definitions and data separately

1.4.5.1 Making a Copy of a Database

$> nysql dunp dbl > dunp. sql
$> nysql adni n create db2
$> nysql db2 < dunp. sql

Do not use - - dat abases on the mysqgl dunp command line because that causes USE db1 to be
included in the dump file, which overrides the effect of naming db2 on the mysql command line.

1.4.5.2 Copy a Database from one Server to Another
On Server 1:
$> nysql dunp --dat abases dbl > dunp. sql
Copy the dump file from Server 1 to Server 2.
On Server 2:
$> nysqgl < dunp. sq

Use of - - dat abases with the mysql dunp command line causes the dump file to include CREATE
DATABASE and USE statements that create the database if it does exist and make it the default
database for the reloaded data.

Alternatively, you can omit - - dat abases from the nysqgl dunp command. Then you need to create
the database on Server 2 (if necessary) and to specify it as the default database when you reload the
dump file.

On Server 1:
$> nysql dunp dbl > dunp. sql
On Server 2:

$> nysqgl adnin create dbl
$> nysql dbl < dunp.sql

You can specify a different database name in this case, so omitting - - dat abases from the
nysql dunp command enables you to dump data from one database and load it into another.

1.4.5.3 Dumping Stored Programs

Several options control how nysql dunp handles stored programs (stored procedures and functions,
triggers, and events):

* --event s: Dump Event Scheduler events
e --routines: Dump stored procedures and functions

e --triggers:Dump triggers for tables

14

https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_databases
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_databases
https://dev.mysql.com/doc/refman/5.7/en/create-database.html
https://dev.mysql.com/doc/refman/5.7/en/create-database.html
https://dev.mysql.com/doc/refman/5.7/en/use.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_databases
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_databases
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_events
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_routines
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_triggers

Point-in-Time (Incremental) Recovery

The - -tri gger s option is enabled by default so that when tables are dumped, they are accompanied
by any triggers they have. The other options are disabled by default and must be specified explicitly to

dump the corresponding objects. To disable any of these options explicitly, use its skip form: - - ski p-

events, --ski p-routines,or--skip-triggers.

1.4.5.4 Dumping Table Definitions and Content Separately

The - - no- dat a option tells nysql dunp not to dump table data, resulting in the dump file containing
only statements to create the tables. Conversely, the - - no- cr eat e- i nf o option tells nysql dunp to
suppress CREATE statements from the output, so that the dump file contains only table data.

For example, to dump table definitions and data separately for the t est database, use these
commands:

$> nysql dunp --no-data test > dunp-defs.sq
$> nysql dunp --no-create-info test > dunp-data.sq

For a definition-only dump, add the - - r out i nes and - - event s options to also include stored routine
and event definitions:

$> nysqgl dunp --no-data --routines --events test > dunp-defs.sq
1.4.5.5 Using mysqgldump to Test for Upgrade Incompatibilities

When contemplating a MySQL upgrade, it is prudent to install the newer version separately from your
current production version. Then you can dump the database and database object definitions from the
production server and load them into the new server to verify that they are handled properly. (This is
also useful for testing downgrades.)

On the production server:
$> nysql dunp --all-databases --no-data --routines --events > dunp-defs.sq
On the upgraded server:
$> nysql < dunp-defs.sq

Because the dump file does not contain table data, it can be processed quickly. This enables you to
spot potential incompatibilities without waiting for lengthy data-loading operations. Look for warnings or
errors while the dump file is being processed.

After you have verified that the definitions are handled properly, dump the data and try to load it into the
upgraded server.

On the production server:

$> nysql dunp --all-databases --no-create-info > dunp-data.sq
On the upgraded server:

$> nysql < dunp-data.sq

Now check the table contents and run some test queries.

1.5 Point-in-Time (Incremental) Recovery

Point-in-time recovery refers to recovery of data changes up to a given point in time. Typically, this type
of recovery is performed after restoring a full backup that brings the server to its state as of the time the
backup was made. (The full backup can be made in several ways, such as those listed in Section 1.2,
“Database Backup Methods”.) Point-in-time recovery then brings the server up to date incrementally
from the time of the full backup to a more recent time.

15

https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_triggers
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_events
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_events
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_routines
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_triggers
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_no-data
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_no-create-info
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_routines
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_events

Point-in-Time Recovery Using Binary Log

1.5.1 Point-in-Time Recovery Using Binary Log

This section explains the general idea of using the binary log to perform a point-in-time-recovery. The
next section, Section 1.5.2, “Point-in-Time Recovery Using Event Positions”, explains the operation in
details with an example.

Note

Many of the examples in this and the next section use the nysql client to
process binary log output produced by mysql bi nl og. If your binary log
contains \ O (null) characters, that output cannot be parsed by mysql unless
you invoke it with the - - bi nar y- node option.

The source of information for point-in-time recovery is the set of binary log files generated subsequent
to the full backup operation. Therefore, to allow a server to be restored to a point-in-time, binary logging
must be enabled on it (see The Binary Log for details).

To restore data from the binary log, you must know the name and location of the current binary log
files. By default, the server creates binary log files in the data directory, but a path name can be
specified with the - - | og- bi n option to place the files in a different location. To see a listing of all
binary log files, use this statement:

nmysql > SHOW Bl NARY LOGS;

To determine the name of the current binary log file, issue the following statement:

nysql > SHOW MASTER STATUS;

The mysql bi nl og utility converts the events in the binary log files from binary format to text so that
they can be viewed or applied. mysql bi nl og has options for selecting sections of the binary log
based on event times or position of events within the log. See mysqlbinlog — Utility for Processing
Binary Log Files.

Applying events from the binary log causes the data modifications they represent to be reexecuted.
This enables recovery of data changes for a given span of time. To apply events from the binary log,
process nmysql bi nl og output using the nysqgl client:

$> nysql binlog binlog files | nysql -u root -p

Viewing log contents can be useful when you need to determine event times or positions to select
partial log contents prior to executing events. To view events from the log, send nysqgl bi nl og output
into a paging program:

$> nysql binlog binlog files | nore
Alternatively, save the output in a file and view the file in a text editor:

$> nysql binlog binlog files > tnpfile
$> ... edit tnpfile ...

After editing the file, apply the contents as follows:
$> nysql -u root -p < tnpfile

If you have more than one binary log to apply on the MySQL server, use a single connection to apply
the contents of all binary log files that you want to process. Here is one way to do so:

$> nysql bi nl og bi nl og. 000001 bi nl og. 000002 | nysql -u root -p

Another approach is to write the whole log to a single file and then process the file:

$> nysql bi nl og bi nl og. 000001 > /tnp/statenents. sq

16

https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_binary-mode
https://dev.mysql.com/doc/refman/5.7/en/binary-log.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#option_mysqld_log-bin
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html

Point-in-Time Recovery Using Event Positions

$> nysql bi nl og bi nl og. 000002 >> /tnp/ st at enent s. sql
$> nysql -u root -p -e "source /tnp/statenents.sql"

1.5.2 Point-in-Time Recovery Using Event Positions

The last section, Section 1.5.1, “Point-in-Time Recovery Using Binary Log”, explains the general idea
of using the binary log to perform a point-in-time-recovery. The section explains the operation in details
with an example.

As an example, suppose that around 13:00:00 on May 27, 2020, an SQL statement was executed
that deleted a table. You can perform a point-in-time recovery to restore the server up to its state right
before the table deletion. These are some sample steps to achieve that:

1. Restore the last full backup created before the point-in-time of interest (call it t ,,, which is 13:00:00
on May 27, 2020 in our example). When finished, note the binary log position up to which you have
restored the server for later use, and restart the server.

Note

While the last binary log position recovered is also displayed by InnoDB
after the restore and server restart, that is not a reliable means for obtaining
the ending log position of your restore, as there could be DDL events and
non-lnnoDB changes that have taken place after the time reflected by the
displayed position. Your backup and restore tool should provide you with
the last binary log position for your recovery: for example, if you are using
nysql bi nl og for the task, check the stop position of the binary log replay;
if you are using MySQL Enterprise Backup, the last binary log position has
been saved in your backup. See Point-in-Time Recovery.

2. Find the precise binary log event position corresponding to the point in time up to which you want to
restore your database. In our example, given that we know the rough time where the table deletion
took place (t), we can find the log position by checking the log contents around that time using the
nysql bi nl og utility. Use the - - st art - dat eti ne and - - st op- dat et i e options to specify a
short time period around t ;,, and then look for the event in the output. For example:

$> nysql bi nl og --start-datetime="2020-05-27 12:59: 00" --stop-datetinme="2020-05-27 13:06: 00" \
--verbose /var/lib/mysql/bin.123456 | grep -C 12 "DROP TABLE"
at 1868

#200527 13: 00: 30 server id 2 end_|log_pos 1985 CRC32 0x8b894489 Query thread_i d=8 exec_time=0 error
use “pets /*1*/;

SET TI MESTAMP=1590598830/ *! */ ;

SET @®ession. pseudo_t hread_i d=8/*!*/;

SET @®ession. foreign_key checks=1, @®ession.sql_auto_is _null=0, @®ession.unique_checks=1, @@®essi
SET @®ession. sql _nmpde=1436549152/ *! 80005 &-0x1003ff00*//*!*/;

SET @®ession. auto_increnment _i ncrement =1, @®ession. auto_i ncrenment_of fset=1/*!*/;

[*I\C latinl *//*!*];

SET @®ession. character_set_client=8, @®ession. col |l ati on_connecti on=8, @®essi on. col | ati on_server =8/
SET @®ession.lc_tinme_names=0/*!*/;

SET @®ession. col |l ati on_dat abase=DEFAULT/ *!*/;

DROP TABLE “cats”™ /* generated by server */

[*V*];

at 1985

#200527 13: 05:06 server id 2 end_|log_pos 2050 CRC32 0x2f 8d0249 Anonynmous_GTII D | ast _conmi tted=6 sec
/*150718 SET TRANSACTI ON | SOLATI ON LEVEL READ COWM TTED*//*!*/;

original _commt_tinmestanp=0 (1969-12-31 19: 00: 00. 000000 EST)

i medi ate_conmmit _timestanp=0 (1969-12-31 19: 00: 00. 000000 EST)

/*180001 SET @@ession.original _commt_tinestanp=0*//*!*/;

/*180014 SET @@ession.original_server_version=0*//*!*/;

/*180014 SET @@ession.imedi ate_server_versi on=0*//*!*/;

SET @OBESSI ON. GTI D_NEXT= ' ANONYMOUS' / *! */ ;

at 2050

#200527 13: 05: 06 server id 2 end_|log_pos 2122 CRC32 0x56280bbl Query thread_i d=8 exec_time=0 error

From the output of nysql bi nl og, the DROP TABLE " pets’. cats statement can be found
in the segment of the binary log between the line # at 1868 and # at 1985, which means the

17

https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/advanced.point.html
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_start-datetime
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_stop-datetime

MyISAM Table Maintenance and Crash Recovery

statement takes place after the log position 1868, and the log is at position 1985 after the DROP
TABLE statement.

Note

Only usethe - -start-datetineand--stop-datetine options to
help you find the actual event positions of interest. Using the two options to
specify the range of binary log segment to apply is not recommended: there
is a higher risk of missing binary log events when using the options. Use - -
start-positionand--stop-position instead.

3. Apply the events in binary log file to the server, starting with the log position your found in step 1
(assume it is 1006) and ending at the position you have found in step 2 that is before your point-in-
time of interest (which is 1868):

$> nysql binlog --start-position=1006 --stop-position=1868 /var/lib/mysql/bin.123456 \
| mysgl -u root -p

The command recovers all the transactions from the starting position until just before the stop
position. Because the output of mysql bi nl og includes SET Tl MESTANMP statements before each
SQL statement recorded, the recovered data and related MySQL logs reflect the original times at
which the transactions were executed.

Your database has now been restored to the point-in-time of interest, t ,, right before the table
pets. cat s was dropped.

4. Beyond the point-in-time recovery that has been finished, if you also want to reexecute all the
statements after your point-in-time of interest, use mysql bi nl og again to apply all the events after
t , to the server. We noted in step 2 that after the statement we wanted to skip, the log is at position
1985; we can use it for the - - st art - posi t i on option, so that any statements after the position
are included:

$> nysql binlog --start-position=1985 /var/lib/mysql/bin.123456 \
| nmysgl -u root -p

Your database has been restored the latest statement recorded in the binary log file, but with the
selected event skipped.

1.6 MylSAM Table Maintenance and Crash Recovery

This section discusses how to use nyi santhk to check or repair My| SAMtables (tables that have
. MyDand . MyI files for storing data and indexes). For general nyi santhk background, see
myisamchk — MyISAM Table-Maintenance Utility. Other table-repair information can be found at
Rebuilding or Repairing Tables or Indexes.

You can use nyi santhk to check, repair, or optimize database tables. The following sections describe
how to perform these operations and how to set up a table maintenance schedule. For information
about using nyi santhk to get information about your tables, see Obtaining Table Information with
myisamchk.

Even though table repair with nyi santhk is quite secure, it is always a good idea to make a backup
before doing a repair or any maintenance operation that could make a lot of changes to a table.

nyi sanchk operations that affect indexes can cause Myl SAMFULLTEXT indexes to be rebuilt with
full-text parameters that are incompatible with the values used by the MySQL server. To avoid this
problem, follow the guidelines in myisamchk General Options.

My | SAMtable maintenance can also be done using the SQL statements that perform operations similar
to what nyi santhk can do:

» To check Myl SAMtables, use CHECK TABLE.

18

https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_start-datetime
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_stop-datetime
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_start-position
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_start-position
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_stop-position
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_start-position
https://dev.mysql.com/doc/refman/5.7/en/myisamchk.html
https://dev.mysql.com/doc/refman/5.7/en/rebuilding-tables.html
https://dev.mysql.com/doc/refman/5.7/en/myisamchk-table-info.html
https://dev.mysql.com/doc/refman/5.7/en/myisamchk-table-info.html
https://dev.mysql.com/doc/refman/5.7/en/myisamchk-general-options.html
https://dev.mysql.com/doc/refman/5.7/en/check-table.html

Using myisamchk for Crash Recovery

e To repair Myl SAMtables, use REPAI R TABLE.

» To optimize Myl SAMtables, use OPTI M ZE TABLE.

» To analyze Myl SAMtables, use ANALYZE TABLE.

For additional information about these statements, see Table Maintenance Statements.

These statements can be used directly or by means of the nysql check client program. One
advantage of these statements over nyi santhk is that the server does all the work. With nmyi santhk,
you must make sure that the server does not use the tables at the same time so that there is no
unwanted interaction between nyi santhk and the server.

1.6.1 Using myisamchk for Crash Recovery

This section describes how to check for and deal with data corruption in MySQL databases. If your
tables become corrupted frequently, you should try to find the reason why. See What to Do If MySQL
Keeps Crashing.

For an explanation of how Myl SAMtables can become corrupted, see MyISAM Table Problems.

If you run nysql d with external locking disabled (which is the default), you cannot reliably use

nyi santhk to check a table when nmysql d is using the same table. If you can be certain that no

one can access the tables through mysql d while you run nyi santhk, you have only to execute
nysqgl adm n fl ush-tabl es before you start checking the tables. If you cannot guarantee this, you
must stop mysql d while you check the tables. If you run nyi santhk to check tables that nysql d is
updating at the same time, you may get a warning that a table is corrupt even when it is not.

If the server is run with external locking enabled, you can use nyi santhk to check tables at any
time. In this case, if the server tries to update a table that nyi santhk is using, the server waits for
nyi sanchk to finish before it continues.

If you use nyi santhk to repair or optimize tables, you must always ensure that the nysqgl d server
is not using the table (this also applies if external locking is disabled). If you do not stop nysql d, you
should at least do a nysql admi n fl ush-t abl es before you run nyi santhk. Your tables may
become corrupted if the server and nyi santhk access the tables simultaneously.

When performing crash recovery, it is important to understand that each Myl SAMtable t bl _nane in a
database corresponds to the three files in the database directory shown in the following table.

File Purpose
tbl _nanme.frm Definition (format) file
tbl _nane. MYD Data file
tbl _nane. Ml Index file

Each of these three file types is subject to corruption in various ways, but problems occur most often in
data files and index files.

nmyi santhk works by creating a copy of the . MyD data file row by row. It ends the repair stage by
removing the old . MYD file and renaming the new file to the original file name. If you use - - qui ck,

nyi santhk does not create a temporary . MYD file, but instead assumes that the . MYD file is correct
and generates only a new index file without touching the . MYD file. This is safe, because nyi santhk
automatically detects whether the . MYD file is corrupt and aborts the repair if it is. You can also specify
the - - qui ck option twice to nyi santhk. In this case, nyi santhk does not abort on some errors
(such as duplicate-key errors) but instead tries to resolve them by modifying the . MYD file. Normally
the use of two - - qui ck options is useful only if you have too little free disk space to perform a normal
repair. In this case, you should at least make a backup of the table before running nyi santhk.

1.6.2 How to Check MyISAM Tables for Errors

19

https://dev.mysql.com/doc/refman/5.7/en/repair-table.html
https://dev.mysql.com/doc/refman/5.7/en/optimize-table.html
https://dev.mysql.com/doc/refman/5.7/en/analyze-table.html
https://dev.mysql.com/doc/refman/5.7/en/table-maintenance-statements.html
https://dev.mysql.com/doc/refman/5.7/en/crashing.html
https://dev.mysql.com/doc/refman/5.7/en/crashing.html
https://dev.mysql.com/doc/refman/5.7/en/myisam-table-problems.html
https://dev.mysql.com/doc/refman/5.7/en/myisamchk-repair-options.html#option_myisamchk_quick
https://dev.mysql.com/doc/refman/5.7/en/myisamchk-repair-options.html#option_myisamchk_quick
https://dev.mysql.com/doc/refman/5.7/en/myisamchk-repair-options.html#option_myisamchk_quick

How to Repair MyISAM Tables

To check a Myl SAMtable, use the following commands:
* nyi sancthk tbhl _nane

This finds 99.99% of all errors. What it cannot find is corruption that involves only the data file (which
is very unusual). If you want to check a table, you should normally run nyi santhk without options or
with the - s (silent) option.

e nyi santhk -mtbl _name

This finds 99.999% of all errors. It first checks all index entries for errors and then reads through all
rows. It calculates a checksum for all key values in the rows and verifies that the checksum matches
the checksum for the keys in the index tree.

e nyi sancthk -e tbl_nane

This does a complete and thorough check of all data (- e means “extended check”). It does a check-
read of every key for each row to verify that they indeed point to the correct row. This may take a
long time for a large table that has many indexes. Normally, myi sanchk stops after the first error

it finds. If you want to obtain more information, you can add the - v (verbose) option. This causes
nyi santhk to keep going, up through a maximum of 20 errors.

e nyi sancthk -e -i tbl_nane

This is like the previous command, but the - i option tells nyi santhk to print additional statistical
information.

In most cases, a simple nyi santhk command with no arguments other than the table name is
sufficient to check a table.

1.6.3 How to Repair MyISAM Tables

The discussion in this section describes how to use nyi santhk on Myl SAMtables (extensions . MY
and . MYD).

You can also use the CHECK TABLE and REPAI R TABLE statements to check and repair Myl SAM
tables. See CHECK TABLE Statement, and REPAIR TABLE Statement.

Symptoms of corrupted tables include queries that abort unexpectedly and observable errors such as
these:

* t bl _name. f r mis locked against change

e Can'tfindfilet bl _name. MYl (Errcode: nnn)

Unexpected end of file

Record file is crashed
» Got error nnn from table handler

To get more information about the error, run per r or nnn, where nnn is the error number. The
following example shows how to use per r or to find the meanings for the most common error numbers
that indicate a problem with a table:

$> perror 126 127 132 134 135 136 141 144 145

M/SQL error code 126 Index file is crashed

M/SQL error code 127 Record-file is crashed

M/SQL error code 132 = O d database file

M/SQL error code 134 Record was already deleted (or record file crashed)
M/SQL error code 135 No nore roomin record file

M/SQL error code 136 No nore roomin index file

20

https://dev.mysql.com/doc/refman/5.7/en/check-table.html
https://dev.mysql.com/doc/refman/5.7/en/repair-table.html
https://dev.mysql.com/doc/refman/5.7/en/check-table.html
https://dev.mysql.com/doc/refman/5.7/en/repair-table.html

How to Repair MyISAM Tables

M/SQL error code 141
MySQL error code 144
MySQL error code 145

Dupli cate uni que key or constraint on wite or update
Table is crashed and | ast repair failed
Tabl e was marked as crashed and shoul d be repaired

Note that error 135 (no more room in record file) and error 136 (no more room in index file) are not
errors that can be fixed by a simple repair. In this case, you must use ALTER TABLE to increase the
MAX_ ROAS and AVG_ROW LENGTH table option values:

ALTER TABLE t bl name MAX ROWB=xxx AVG _ROW LENGTH=yyy;
If you do not know the current table option values, use SHOW CREATE TABLE.

For the other errors, you must repair your tables. nyi santhk can usually detect and fix most problems
that occur.

The repair process involves up to four stages, described here. Before you begin, you should change
location to the database directory and check the permissions of the table files. On Unix, make sure that
they are readable by the user that mysql d runs as (and to you, because you need to access the files
you are checking). If it turns out you need to modify files, they must also be writable by you.

This section is for the cases where a table check fails (such as those described in Section 1.6.2, “How
to Check MyISAM Tables for Errors”), or you want to use the extended features that nyi sanchk
provides.

The nyi santhk options used for table maintenance with are described in myisamchk — MyISAM
Table-Maintenance Utility. nyi santhk also has variables that you can set to control memory allocation
that may improve performance. See myisamchk Memory Usage.

If you are going to repair a table from the command line, you must first stop the mysql d server. Note
that when you do nmysql adm n shut down on a remote server, the nysql d server is still available for
a while after mnysql admni n returns, until all statement-processing has stopped and all index changes
have been flushed to disk.

Stage 1. Checking your tables

Run nyi sanchk *. MYl ornyi sanchk -e *. Myl if you have more time. Use the - s (silent) option
to suppress unnecessary information.

If the mysql d server is stopped, you should use the - - updat e- st at e option to tell nyi santhk to
mark the table as “checked.”

You have to repair only those tables for which nyi santhk announces an error. For such tables,
proceed to Stage 2.

If you get unexpected errors when checking (such as out of nenory errors), or if myi sanchk
crashes, go to Stage 3.

Stage 2: Easy safe repair

First, try nyi sanchk -r -q tbl _nane (-r -q means “quick recovery mode”). This attempts to
repair the index file without touching the data file. If the data file contains everything that it should and
the delete links point at the correct locations within the data file, this should work, and the table is fixed.
Start repairing the next table. Otherwise, use the following procedure:

1. Make a backup of the data file before continuing.

2. Usenyi sanchk -r tbl_nane (-r means “recovery mode”). This removes incorrect rows and
deleted rows from the data file and reconstructs the index file.

3. If the preceding step fails, use nyi sanchk --safe-recover thl nane. Safe recovery mode
uses an old recovery method that handles a few cases that regular recovery mode does not (but is
slower).

21

https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-create-table.html
https://dev.mysql.com/doc/refman/5.7/en/myisamchk.html
https://dev.mysql.com/doc/refman/5.7/en/myisamchk.html
https://dev.mysql.com/doc/refman/5.7/en/myisamchk-memory.html
https://dev.mysql.com/doc/refman/5.7/en/myisamchk-check-options.html#option_myisamchk_update-state

MyISAM Table Optimization

Note

If you want a repair operation to go much faster, you should set the values of
the sort _buffer size andkey_ buffer_si ze variables each to about 25%
of your available memory when running nyi sanchk.

If you get unexpected errors when repairing (such as out of menory errors), or if myi sanchk
crashes, go to Stage 3.

Stage 3: Difficult repair

You should reach this stage only if the first 16KB block in the index file is destroyed or contains
incorrect information, or if the index file is missing. In this case, it is necessary to create a new index
file. Do so as follows:

1. Move the data file to a safe place.

2. Use the table description file to create new (empty) data and index files:
$> nysqgl db_nane

nmysql > SET aut oconmi t =1;
nysql > TRUNCATE TABLE t bl _nane;
nmysql > quit

3. Copy the old data file back onto the newly created data file. (Do not just move the old file back onto
the new file. You want to retain a copy in case something goes wrong.)

Important

If you are using replication, you should stop it prior to performing the above
procedure, since it involves file system operations, and these are not logged by
MySQL.

Go back to Stage 2. nyi santhk -r - q should work. (This should not be an endless loop.)

You can also use the REPAI R TABLE t bl _nanme USE_FRMSQL statement, which performs the
whole procedure automatically. There is also no possibility of unwanted interaction between a utility
and the server, because the server does all the work when you use REPAI R TABLE. See REPAIR
TABLE Statement.

Stage 4: Very difficult repair

You should reach this stage only if the . f r mdescription file has also crashed. That should never
happen, because the description file is not changed after the table is created:

1. Restore the description file from a backup and go back to Stage 3. You can also restore the index
file and go back to Stage 2. In the latter case, you should start with nmyi santhk -r.

2. If you do not have a backup but know exactly how the table was created, create a copy of the table
in another database. Remove the new data file, and then move the . f r mdescription and . My
index files from the other database to your crashed database. This gives you new description and
index files, but leaves the . MYD data file alone. Go back to Stage 2 and attempt to reconstruct the
index file.

1.6.4 MyISAM Table Optimization

To coalesce fragmented rows and eliminate wasted space that results from deleting or updating rows,
run myi sanchk in recovery mode:

$> nyi santhk -r tbl _nane

22

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sort_buffer_size
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_key_buffer_size
https://dev.mysql.com/doc/refman/5.7/en/repair-table.html
https://dev.mysql.com/doc/refman/5.7/en/repair-table.html
https://dev.mysql.com/doc/refman/5.7/en/repair-table.html

Setting Up a MyISAM Table Maintenance Schedule

You can optimize a table in the same way by using the OPTI M ZE TABLE SQL statement. OPTI M ZE
TABLE does a table repair and a key analysis, and also sorts the index tree so that key lookups are
faster. There is also no possibility of unwanted interaction between a utility and the server, because the
server does all the work when you use OPTI M ZE TABLE. See OPTIMIZE TABLE Statement.

nmyi santhk has a number of other options that you can use to improve the performance of a table:

» --anal yze or - a: Perform key distribution analysis. This improves join performance by enabling the
join optimizer to better choose the order in which to join the tables and which indexes it should use.

e --sort-index or-S: Sort the index blocks. This optimizes seeks and makes table scans that use
indexes faster.

e --sort-records=i ndex_numor - R i ndex_nunt Sort data rows according to a given index.
This makes your data much more localized and may speed up range-based SELECT and ORDER BY
operations that use this index.

For a full description of all available options, see myisamchk — MylSAM Table-Maintenance Utility.

1.6.5 Setting Up a MyISAM Table Maintenance Schedule

It is a good idea to perform table checks on a regular basis rather than waiting for problems to
occur. One way to check and repair Myl SAMtables is with the CHECK TABLE and REPAI R TABLE
statements. See Table Maintenance Statements.

Another way to check tables is to use nyi santhk. For maintenance purposes, you can use
nmyi santhk -s. The - s option (short for - - si | ent) causes nmyi santhk to run in silent mode,
printing messages only when errors occur.

Itis also a good idea to enable automatic Myl SAMtable checking. For example, whenever the machine
has done a restart in the middle of an update, you usually need to check each table that could have
been affected before it is used further. (These are “expected crashed tables.”) To cause the server to
check Myl SAMtables automatically, start it with the myi sam r ecover opti ons system variable set.
See Server System Variables.

You should also check your tables regularly during normal system operation. For example, you can run
a cron job to check important tables once a week, using a line like this in a cr ont ab file:

35 0 * * 0 /path/to/nyisanchk --fast --silent /path/to/datadir/*/*. Myl

This prints out information about crashed tables so that you can examine and repair them as
necessary.

To start with, execute nyi sanchk - s each night on all tables that have been updated during the last
24 hours. As you see that problems occur infrequently, you can back off the checking frequency to
once a week or so.

Normally, MySQL tables need little maintenance. If you are performing many updates to Myl SAMtables
with dynamic-sized rows (tables with VARCHAR, BLOB, or TEXT columns) or have tables with many
deleted rows you may want to defragment/reclaim space from the tables from time to time. You can do
this by using OPTI M ZE TABLE on the tables in question. Alternatively, if you can stop the mysql d
server for a while, change location into the data directory and use this command while the server is
stopped:

$> nyi santhk -r -s --sort-index --nyisamsort_buffer_size=16M */*. Ml

23

https://dev.mysql.com/doc/refman/5.7/en/optimize-table.html
https://dev.mysql.com/doc/refman/5.7/en/optimize-table.html
https://dev.mysql.com/doc/refman/5.7/en/optimize-table.html
https://dev.mysql.com/doc/refman/5.7/en/optimize-table.html
https://dev.mysql.com/doc/refman/5.7/en/optimize-table.html
https://dev.mysql.com/doc/refman/5.7/en/myisamchk-other-options.html#option_myisamchk_analyze
https://dev.mysql.com/doc/refman/5.7/en/myisamchk-other-options.html#option_myisamchk_sort-index
https://dev.mysql.com/doc/refman/5.7/en/myisamchk-other-options.html#option_myisamchk_sort-records
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/myisamchk.html
https://dev.mysql.com/doc/refman/5.7/en/check-table.html
https://dev.mysql.com/doc/refman/5.7/en/repair-table.html
https://dev.mysql.com/doc/refman/5.7/en/table-maintenance-statements.html
https://dev.mysql.com/doc/refman/5.7/en/myisamchk-general-options.html#option_myisamchk_silent
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_myisam_recover_options
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html
https://dev.mysql.com/doc/refman/5.7/en/char.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/optimize-table.html

24

Chapter 2 Using Replication for Backups

Table of Contents

2.1 Backing Up a Replica USiNg MYSOIQUMPcooutniiiiiiee ettt e eeeai e e ene e eees 25
2.2 Backing Up Raw Data from a RePlICAuiiiiiiiiiiiiiiii e 26
2.3 Backing Up a Source or Replica by Making It Read Only ..., 27

To use replication as a backup solution, replicate data from the source to a replica, and then back up
the replica. The replica can be paused and shut down without affecting the running operation of the
source, so you can produce an effective snapshot of “live” data that would otherwise require the source
to be shut down.

How you back up a database depends on its size and whether you are backing up only the data, or the
data and the replica state so that you can rebuild the replica in the event of failure. There are therefore
two choices:

« If you are using replication as a solution to enable you to back up the data on the source, and
the size of your database is not too large, the nysql dunp tool may be suitable. See Section 2.1,
“Backing Up a Replica Using mysgldump”.

» For larger databases, where nysql dunp would be impractical or inefficient, you can back up the
raw data files instead. Using the raw data files option also means that you can back up the binary
and relay logs that enable you to re-create the replica in the event of a replica failure. For more
information, see Section 2.2, “Backing Up Raw Data from a Replica”.

Another backup strategy, which can be used for either source or replica servers, is to put the server in
a read-only state. The backup is performed against the read-only server, which then is changed back to
its usual read/write operational status. See Section 2.3, “Backing Up a Source or Replica by Making It
Read Only”.

2.1 Backing Up a Replica Using mysqldump

Using nysql dunp to create a copy of a database enables you to capture all of the data in the
database in a format that enables the information to be imported into another instance of MySQL
Server (see mysqldump — A Database Backup Program). Because the format of the information is
SQL statements, the file can easily be distributed and applied to running servers in the event that
you need access to the data in an emergency. However, if the size of your data set is very large,
nysql dunp may be impractical.

When using nysql dunp, you should stop replication on the replica before starting the dump process to
ensure that the dump contains a consistent set of data:

1. Stop the replica from processing requests. You can stop replication completely on the replica using
nysql adm n:

$> nysqgl admi n stop-sl ave
Alternatively, you can stop only the replication SQL thread to pause event execution:

$> mysqgl -e ' STOP SLAVE SQL_THREAD; '

This enables the replica to continue to receive data change events from the source's binary log
and store them in the relay logs using the 1/O thread, but prevents the replica from executing these
events and changing its data. Within busy replication environments, permitting the 1/O thread to run
during backup may speed up the catch-up process when you restart the replication SQL thread.

2. Runnysql dunp to dump your databases. You may either dump all databases or select databases
to be dumped. For example, to dump all databases:

25

https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html

Backing Up Raw Data from a Replica

$> nysql dunp --all-databases > fulldb. dunp

3. Once the dump has completed, start replica operations again:

$> nysqgl adnin start-sl ave

In the preceding example, you may want to add login credentials (user name, password) to the
commands, and bundle the process up into a script that you can run automatically each day.

If you use this approach, make sure you monitor the replication process to ensure that the time taken
to run the backup does not affect the replica’s ability to keep up with events from the source. See
Checking Replication Status. If the replica is unable to keep up, you may want to add another replica
and distribute the backup process. For an example of how to configure this scenario, see Replicating
Different Databases to Different Replicas.

2.2 Backing Up Raw Data from a Replica

To guarantee the integrity of the files that are copied, backing up the raw data files on your MySQL
replica should take place while your replica server is shut down. If the MySQL server is still running,
background tasks may still be updating the database files, particularly those involving storage engines
with background processes such as | nnoDB. With | nnoDB, these problems should be resolved during
crash recovery, but since the replica server can be shut down during the backup process without
affecting the execution of the source it makes sense to take advantage of this capability.

To shut down the server and back up the files:

1. Shut down the replica MySQL server:

$> nysqgl adni n shut down

2. Copy the data files. You can use any suitable copying or archive utility, including cp, t ar or
W nZi p. For example, assuming that the data directory is located under the current directory, you
can archive the entire directory as follows:

$> tar cf /tnp/dbbackup.tar ./data

3. Start the MySQL server again. Under Unix:

$> nysqgl d_safe &

Under Windows:

C\> "C\Program Fi | es\ \ySQL\ M\ySQL Server 5. 7\bi n\ nysql d"

Normally you should back up the entire data directory for the replica MySQL server. If you want to be
able to restore the data and operate as a replica (for example, in the event of failure of the replica),
then in addition to the replica's data, you should also back up the replica status files, the replication
metadata repositories, and the relay log files. These files are needed to resume replication after you
restore the replica's data.

If you lose the relay logs but still have the r el ay- | og. i nf o file, you can check it to determine how
far the replication SQL thread has executed in the source's binary logs. Then you can use CHANGE
MASTER TOwith the MASTER LOG FI LE and MASTER LOG PCS options to tell the replica to re-read
the binary logs from that point. This requires that the binary logs still exist on the source server.

If your replica is replicating LOAD DATA statements, you should also back up any SQL_LOAD- * files
that exist in the directory that the replica uses for this purpose. The replica needs these files to resume
replication of any interrupted LOAD DATA operations. The location of this directory is the value of

the sl ave_| oad_t npdi r system variable. If the server was not started with that variable set, the
directory location is the value of the t npdi r system variable.

26

https://dev.mysql.com/doc/refman/5.7/en/replication-administration-status.html
https://dev.mysql.com/doc/refman/5.7/en/replication-solutions-partitioning.html
https://dev.mysql.com/doc/refman/5.7/en/replication-solutions-partitioning.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_load_tmpdir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tmpdir

Backing Up a Source or Replica by Making It Read Only

2.3 Backing Up a Source or Replica by Making It Read Only

It is possible to back up either source or replica servers in a replication setup by acquiring a global read
lock and manipulating the r ead_onl y system variable to change the read-only state of the server to
be backed up:

1. Make the server read-only, so that it processes only retrievals and blocks updates.
2. Perform the backup.
3. Change the server back to its normal read/write state.

Note

The instructions in this section place the server to be backed up in a state that is
safe for backup methods that get the data from the server, such as nysql dunp
(see mysgldump — A Database Backup Program). You should not attempt to
use these instructions to make a binary backup by copying files directly because
the server may still have modified data cached in memory and not flushed to
disk.

The following instructions describe how to do this for a source server and for a replica server. For both
scenarios discussed here, suppose that you have the following replication setup:

* A source server S1
» Areplica server R1 that has S1 as its source

A client C1 connected to S1

A client C2 connected to R1

In either scenario, the statements to acquire the global read lock and manipulate the r ead_onl y
variable are performed on the server to be backed up and do not propagate to any replicas of that
server.

Scenario 1: Backup with a Read-Only Source

Put the source S1 in a read-only state by executing these statements on it:

nysql > FLUSH TABLES W TH READ LOCK;
mysql > SET GLOBAL read_only = ON,

While S1 is in a read-only state, the following properties are true:

» Requests for updates sent by C1 to S1 block because the server is in read-only mode.
» Requests for query results sent by C1 to S1 succeed.

» Making a backup on S1 is safe.

» Making a backup on R1 is not safe. This server is still running, and might be processing the binary
log or update requests coming from client C2

While S1 is read only, perform the backup. For example, you can use nysql dunp.

After the backup operation on S1 completes, restore S1 to its normal operational state by executing
these statements:

nmysql > SET GLOBAL read_only = OFF;
nysql > UNLOCK TABLES;

Although performing the backup on S1 is safe (as far as the backup is concerned), it is not optimal for
performance because clients of S1 are blocked from executing updates.

27

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_read_only

Backing Up a Source or Replica by Making It Read Only

This strategy applies to backing up a source server in a replication setup, but can also be used for a
single server in a nonreplication setting.

Scenario 2: Backup with a Read-Only Replica

Put the replica R1 in a read-only state by executing these statements on it:

nysqgl > FLUSH TABLES W TH READ LOCK;
nmysqgl > SET GLOBAL read_only = ON,

While R1 is in a read-only state, the following properties are true:
» The source S1 continues to operate, so making a backup on the source is not safe.
e The replica R1 is stopped, so making a backup on the replica R1 is safe.

These properties provide the basis for a popular backup scenario: Having one replica busy performing
a backup for a while is not a problem because it does not affect the entire network, and the system

is still running during the backup. In particular, clients can still perform updates on the source server,
which remains unaffected by backup activity on the replica.

While R1 is read only, perform the backup. For example, you can use nmysql dunp.

After the backup operation on R1 completes, restore R1 to its normal operational state by executing
these statements:

nysql > SET GLOBAL read_only = OFF;
mysql > UNLOCK TABLES;

After the replica is restored to normal operation, it again synchronizes to the source by catching up with
any outstanding updates from the binary log of the source.

28

Chapter 3 InnoDB Backup

The key to safe database management is making regular backups. Depending on your data volume,
number of MySQL servers, and database workload, you can use these backup techniques, alone or
in combination: hot backup with MySQL Enterprise Backup; cold backup by copying files while the
MySQL server is shut down; logical backup with mysql dunp for smaller data volumes or to record the
structure of schema objects. Hot and cold backups are physical backups that copy actual data files,
which can be used directly by the mysql d server for faster restore.

Using MySQL Enterprise Backup is the recommended method for backing up | nnoDB data.
Note

| nnoDB does not support databases that are restored using third-party backup
tools.

Hot Backups

The nysql backup command, part of the MySQL Enterprise Backup component, lets you back

up a running MySQL instance, including | nnoDB tables, with minimal disruption to operations

while producing a consistent snapshot of the database. When nysql backup is copying | nnoDB
tables, reads and writes to | nnoDB tables can continue. MySQL Enterprise Backup can also create
compressed backup files, and back up subsets of tables and databases. In conjunction with the MySQL
binary log, users can perform point-in-time recovery. MySQL Enterprise Backup is part of the MySQL
Enterprise subscription. For more details, see MySQL Enterprise Backup Overview.

Cold Backups

If you can shut down the MySQL server, you can make a physical backup that consists of all files used
by | nnoDB to manage its tables. Use the following procedure:

1. Perform a slow shutdown of the MySQL server and make sure that it stops without errors.
2. Copy all | nnoDB data files (i bdat a files and . i bd files) into a safe place.

3. Copy all the . f r mfiles for | nnoDB tables to a safe place.

4. Copy all I nnoDB log files (i b_| ogfi | e files) to a safe place.

5. Copy your ny. cnf configuration file or files to a safe place.
Logical Backups Using mysqgldump

In addition to physical backups, it is recommended that you regularly create logical backups by
dumping your tables using mysql dunp. A binary file might be corrupted without you naoticing it.
Dumped tables are stored into text files that are human-readable, so spotting table corruption
becomes easier. Also, because the format is simpler, the chance for serious data corruption is smaller.
nysql dunp also has a - - si ngl e-transact i on option for making a consistent snapshot without
locking out other clients. See Section 1.3.1, “Establishing a Backup Policy”.

Replication works with | nnoDB tables, so you can use MySQL replication capabilities to keep a copy of
your database at database sites requiring high availability. See InnoDB and MySQL Replication.

29

https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_hot_backup
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_cold_backup
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_logical_backup
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_physical_backup
https://dev.mysql.com/doc/refman/5.7/en/mysql-enterprise-backup.html
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_slow_shutdown
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_single-transaction
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-and-mysql-replication.html

30

	MySQL Backup and Recovery
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Backup and Recovery
	1.1 Backup and Recovery Types
	1.2 Database Backup Methods
	1.3 Example Backup and Recovery Strategy
	1.3.1 Establishing a Backup Policy
	1.3.2 Using Backups for Recovery
	1.3.3 Backup Strategy Summary

	1.4 Using mysqldump for Backups
	1.4.1 Dumping Data in SQL Format with mysqldump
	1.4.2 Reloading SQL-Format Backups
	1.4.3 Dumping Data in Delimited-Text Format with mysqldump
	1.4.4 Reloading Delimited-Text Format Backups
	1.4.5 mysqldump Tips
	1.4.5.1 Making a Copy of a Database
	1.4.5.2 Copy a Database from one Server to Another
	1.4.5.3 Dumping Stored Programs
	1.4.5.4 Dumping Table Definitions and Content Separately
	1.4.5.5 Using mysqldump to Test for Upgrade Incompatibilities

	1.5 Point-in-Time (Incremental) Recovery
	1.5.1 Point-in-Time Recovery Using Binary Log
	1.5.2 Point-in-Time Recovery Using Event Positions

	1.6 MyISAM Table Maintenance and Crash Recovery
	1.6.1 Using myisamchk for Crash Recovery
	1.6.2 How to Check MyISAM Tables for Errors
	1.6.3 How to Repair MyISAM Tables
	1.6.4 MyISAM Table Optimization
	1.6.5 Setting Up a MyISAM Table Maintenance Schedule

	Chapter 2 Using Replication for Backups
	2.1 Backing Up a Replica Using mysqldump
	2.2 Backing Up Raw Data from a Replica
	2.3 Backing Up a Source or Replica by Making It Read Only

	Chapter 3 InnoDB Backup

