
MySQL Globalization

Abstract

This is the MySQL Globalization extract from the MySQL 8.0 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2024-08-06 (revision: 79244)

http://forums.mysql.com

Table of Contents
Preface and Legal Notices .. v
1 Character Sets, Collations, Unicode ... 1

1.1 Character Sets and Collations in General .. 2
1.2 Character Sets and Collations in MySQL ... 3

1.2.1 Character Set Repertoire ... 5
1.2.2 UTF-8 for Metadata ... 7

1.3 Specifying Character Sets and Collations .. 8
1.3.1 Collation Naming Conventions .. 9
1.3.2 Server Character Set and Collation .. 10
1.3.3 Database Character Set and Collation .. 11
1.3.4 Table Character Set and Collation .. 12
1.3.5 Column Character Set and Collation ... 12
1.3.6 Character String Literal Character Set and Collation .. 14
1.3.7 The National Character Set .. 16
1.3.8 Character Set Introducers .. 16
1.3.9 Examples of Character Set and Collation Assignment .. 18
1.3.10 Compatibility with Other DBMSs ... 19

1.4 Connection Character Sets and Collations ... 19
1.5 Configuring Application Character Set and Collation ... 25
1.6 Error Message Character Set .. 27
1.7 Column Character Set Conversion .. 28
1.8 Collation Issues .. 29

1.8.1 Using COLLATE in SQL Statements ... 29
1.8.2 COLLATE Clause Precedence ... 30
1.8.3 Character Set and Collation Compatibility ... 30
1.8.4 Collation Coercibility in Expressions .. 30
1.8.5 The binary Collation Compared to _bin Collations .. 32
1.8.6 Examples of the Effect of Collation ... 35
1.8.7 Using Collation in INFORMATION_SCHEMA Searches ... 36

1.9 Unicode Support ... 38
1.9.1 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding) 40
1.9.2 The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding) 40
1.9.3 The utf8 Character Set (Deprecated alias for utf8mb3) ... 41
1.9.4 The ucs2 Character Set (UCS-2 Unicode Encoding) .. 42
1.9.5 The utf16 Character Set (UTF-16 Unicode Encoding) .. 42
1.9.6 The utf16le Character Set (UTF-16LE Unicode Encoding) .. 43
1.9.7 The utf32 Character Set (UTF-32 Unicode Encoding) .. 43
1.9.8 Converting Between 3-Byte and 4-Byte Unicode Character Sets 43

1.10 Supported Character Sets and Collations ... 45
1.10.1 Unicode Character Sets ... 46
1.10.2 West European Character Sets .. 54
1.10.3 Central European Character Sets ... 56
1.10.4 South European and Middle East Character Sets .. 57
1.10.5 Baltic Character Sets ... 57
1.10.6 Cyrillic Character Sets .. 58
1.10.7 Asian Character Sets ... 58
1.10.8 The Binary Character Set ... 63

1.11 Restrictions on Character Sets .. 64
1.12 Setting the Error Message Language ... 64
1.13 Adding a Character Set .. 65

1.13.1 Character Definition Arrays ... 67

iii

MySQL Globalization

1.13.2 String Collating Support for Complex Character Sets ... 68
1.13.3 Multi-Byte Character Support for Complex Character Sets .. 68

1.14 Adding a Collation to a Character Set .. 68
1.14.1 Collation Implementation Types .. 70
1.14.2 Choosing a Collation ID ... 72
1.14.3 Adding a Simple Collation to an 8-Bit Character Set .. 73
1.14.4 Adding a UCA Collation to a Unicode Character Set .. 74

1.15 Character Set Configuration .. 81
1.16 MySQL Server Locale Support .. 82

2 MySQL Server Time Zone Support .. 87

iv

Preface and Legal Notices
This is the MySQL Globalization extract from the MySQL 8.0 Reference Manual.

Licensing information—MySQL 8.0. This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 8.0, see the MySQL 8.0 Commercial Release
License Information User Manual for licensing information, including licensing information relating to third-
party software that may be included in this Commercial release. If you are using a Community release
of MySQL 8.0, see the MySQL 8.0 Community Release License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

Legal Notices

Copyright © 1997, 2024, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other

v

https://downloads.mysql.com/docs/licenses/mysqld-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-8.0-gpl-en.pdf

Documentation Accessibility

measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Character Sets, Collations, Unicode

Table of Contents
1.1 Character Sets and Collations in General .. 2
1.2 Character Sets and Collations in MySQL ... 3

1.2.1 Character Set Repertoire ... 5
1.2.2 UTF-8 for Metadata ... 7

1.3 Specifying Character Sets and Collations .. 8
1.3.1 Collation Naming Conventions .. 9
1.3.2 Server Character Set and Collation .. 10
1.3.3 Database Character Set and Collation .. 11
1.3.4 Table Character Set and Collation .. 12
1.3.5 Column Character Set and Collation ... 12
1.3.6 Character String Literal Character Set and Collation .. 14
1.3.7 The National Character Set .. 16
1.3.8 Character Set Introducers .. 16
1.3.9 Examples of Character Set and Collation Assignment .. 18
1.3.10 Compatibility with Other DBMSs ... 19

1.4 Connection Character Sets and Collations ... 19
1.5 Configuring Application Character Set and Collation ... 25
1.6 Error Message Character Set .. 27
1.7 Column Character Set Conversion .. 28
1.8 Collation Issues .. 29

1.8.1 Using COLLATE in SQL Statements ... 29
1.8.2 COLLATE Clause Precedence ... 30
1.8.3 Character Set and Collation Compatibility ... 30
1.8.4 Collation Coercibility in Expressions .. 30
1.8.5 The binary Collation Compared to _bin Collations ... 32
1.8.6 Examples of the Effect of Collation ... 35
1.8.7 Using Collation in INFORMATION_SCHEMA Searches ... 36

1.9 Unicode Support ... 38
1.9.1 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding) ... 40
1.9.2 The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding) ... 40
1.9.3 The utf8 Character Set (Deprecated alias for utf8mb3) .. 41
1.9.4 The ucs2 Character Set (UCS-2 Unicode Encoding) .. 42
1.9.5 The utf16 Character Set (UTF-16 Unicode Encoding) .. 42
1.9.6 The utf16le Character Set (UTF-16LE Unicode Encoding) .. 43
1.9.7 The utf32 Character Set (UTF-32 Unicode Encoding) .. 43
1.9.8 Converting Between 3-Byte and 4-Byte Unicode Character Sets .. 43

1.10 Supported Character Sets and Collations ... 45
1.10.1 Unicode Character Sets ... 46
1.10.2 West European Character Sets .. 54
1.10.3 Central European Character Sets ... 56
1.10.4 South European and Middle East Character Sets .. 57
1.10.5 Baltic Character Sets ... 57
1.10.6 Cyrillic Character Sets .. 58
1.10.7 Asian Character Sets ... 58
1.10.8 The Binary Character Set ... 63

1.11 Restrictions on Character Sets .. 64
1.12 Setting the Error Message Language ... 64
1.13 Adding a Character Set .. 65

1

Character Sets and Collations in General

1.13.1 Character Definition Arrays ... 67
1.13.2 String Collating Support for Complex Character Sets ... 68
1.13.3 Multi-Byte Character Support for Complex Character Sets ... 68

1.14 Adding a Collation to a Character Set ... 68
1.14.1 Collation Implementation Types .. 70
1.14.2 Choosing a Collation ID ... 72
1.14.3 Adding a Simple Collation to an 8-Bit Character Set .. 73
1.14.4 Adding a UCA Collation to a Unicode Character Set .. 74

1.15 Character Set Configuration .. 81
1.16 MySQL Server Locale Support .. 82

MySQL includes character set support that enables you to store data using a variety of character sets
and perform comparisons according to a variety of collations. The default MySQL server character set
and collation are utf8mb4 and utf8mb4_0900_ai_ci, but you can specify character sets at the server,
database, table, column, and string literal levels. To maximize interoperability and future-proofing of your
data and applications, we recommend that you use the utf8mb4 character set whenever possible.

Note

UTF8 is a deprecated synonym for utf8mb3, and you should expect it to be
removed in a future version of MySQL. Specify utfmb3 or (preferably) utfmb4
instead.

This chapter discusses the following topics:

• What are character sets and collations?

• The multiple-level default system for character set assignment.

• Syntax for specifying character sets and collations.

• Affected functions and operations.

• Unicode support.

• The character sets and collations that are available, with notes.

• Selecting the language for error messages.

• Selecting the locale for day and month names.

Character set issues affect not only data storage, but also communication between client programs and
the MySQL server. If you want the client program to communicate with the server using a character set
different from the default, you need to indicate which one. For example, to use the latin1 Unicode
character set, issue this statement after connecting to the server:

SET NAMES 'latin1';

For more information about configuring character sets for application use and character set-related issues
in client/server communication, see Section 1.5, “Configuring Application Character Set and Collation”, and
Section 1.4, “Connection Character Sets and Collations”.

1.1 Character Sets and Collations in General

A character set is a set of symbols and encodings. A collation is a set of rules for comparing characters in
a character set. Let's make the distinction clear with an example of an imaginary character set.

2

Character Sets and Collations in MySQL

Suppose that we have an alphabet with four letters: A, B, a, b. We give each letter a number: A = 0, B = 1,
a = 2, b = 3. The letter A is a symbol, the number 0 is the encoding for A, and the combination of all four
letters and their encodings is a character set.

Suppose that we want to compare two string values, A and B. The simplest way to do this is to look at the
encodings: 0 for A and 1 for B. Because 0 is less than 1, we say A is less than B. What we've just done is
apply a collation to our character set. The collation is a set of rules (only one rule in this case): “compare
the encodings.” We call this simplest of all possible collations a binary collation.

But what if we want to say that the lowercase and uppercase letters are equivalent? Then we would have
at least two rules: (1) treat the lowercase letters a and b as equivalent to A and B; (2) then compare the
encodings. We call this a case-insensitive collation. It is a little more complex than a binary collation.

In real life, most character sets have many characters: not just A and B but whole alphabets, sometimes
multiple alphabets or eastern writing systems with thousands of characters, along with many special
symbols and punctuation marks. Also in real life, most collations have many rules, not just for whether
to distinguish lettercase, but also for whether to distinguish accents (an “accent” is a mark attached to a
character as in German Ö), and for multiple-character mappings (such as the rule that Ö = OE in one of the
two German collations).

MySQL can do these things for you:

• Store strings using a variety of character sets.

• Compare strings using a variety of collations.

• Mix strings with different character sets or collations in the same server, the same database, or even the
same table.

• Enable specification of character set and collation at any level.

To use these features effectively, you must know what character sets and collations are available, how to
change the defaults, and how they affect the behavior of string operators and functions.

1.2 Character Sets and Collations in MySQL
MySQL Server supports multiple character sets, including several Unicode character sets. To display
the available character sets, use the INFORMATION_SCHEMA CHARACTER_SETS table or the SHOW
CHARACTER SET statement. A partial listing follows. For more complete information, see Section 1.10,
“Supported Character Sets and Collations”.

mysql> SHOW CHARACTER SET;
+----------+---------------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+---------------------------------+---------------------+--------+
| big5 | Big5 Traditional Chinese | big5_chinese_ci | 2 |
| binary | Binary pseudo charset | binary | 1 |
...
| latin1 | cp1252 West European | latin1_swedish_ci | 1 |
...
| ucs2 | UCS-2 Unicode | ucs2_general_ci | 2 |
...
| utf8mb3 | UTF-8 Unicode | utf8mb3_general_ci | 3 |
| utf8mb4 | UTF-8 Unicode | utf8mb4_0900_ai_ci | 4 |
...

By default, the SHOW CHARACTER SET statement displays all available character sets. It takes an optional
LIKE or WHERE clause that indicates which character set names to match. The following example shows
some of the Unicode character sets (those based on Unicode Transformation Format):

3

https://dev.mysql.com/doc/refman/8.0/en/information-schema-character-sets-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like

Character Sets and Collations in MySQL

mysql> SHOW CHARACTER SET LIKE 'utf%';
+---------+------------------+--------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+------------------+--------------------+--------+
utf16	UTF-16 Unicode	utf16_general_ci	4
utf16le	UTF-16LE Unicode	utf16le_general_ci	4
utf32	UTF-32 Unicode	utf32_general_ci	4
utf8mb3	UTF-8 Unicode	utf8mb3_general_ci	3
utf8mb4	UTF-8 Unicode	utf8mb4_0900_ai_ci	4
+---------+------------------+--------------------+--------+

A given character set always has at least one collation, and most character sets have several. To list the
display collations for a character set, use the INFORMATION_SCHEMA COLLATIONS table or the SHOW
COLLATION statement.

By default, the SHOW COLLATION statement displays all available collations. It takes an optional LIKE or
WHERE clause that indicates which collation names to display. For example, to see the collations for the
default character set, utf8mb4, use this statement:

mysql> SHOW COLLATION WHERE Charset = 'utf8mb4';
+----------------------------+---------+-----+---------+----------+---------+---------------+
| Collation | Charset | Id | Default | Compiled | Sortlen | Pad_attribute |
+----------------------------+---------+-----+---------+----------+---------+---------------+
utf8mb4_0900_ai_ci	utf8mb4	255	Yes	Yes	0	NO PAD
utf8mb4_0900_as_ci	utf8mb4	305		Yes	0	NO PAD
utf8mb4_0900_as_cs	utf8mb4	278		Yes	0	NO PAD
utf8mb4_0900_bin	utf8mb4	309		Yes	1	NO PAD
utf8mb4_bin	utf8mb4	46		Yes	1	PAD SPACE
utf8mb4_croatian_ci	utf8mb4	245		Yes	8	PAD SPACE
utf8mb4_cs_0900_ai_ci	utf8mb4	266		Yes	0	NO PAD
utf8mb4_cs_0900_as_cs	utf8mb4	289		Yes	0	NO PAD
utf8mb4_czech_ci	utf8mb4	234		Yes	8	PAD SPACE
utf8mb4_danish_ci	utf8mb4	235		Yes	8	PAD SPACE
utf8mb4_da_0900_ai_ci	utf8mb4	267		Yes	0	NO PAD
utf8mb4_da_0900_as_cs	utf8mb4	290		Yes	0	NO PAD
utf8mb4_de_pb_0900_ai_ci	utf8mb4	256		Yes	0	NO PAD
utf8mb4_de_pb_0900_as_cs	utf8mb4	279		Yes	0	NO PAD
utf8mb4_eo_0900_ai_ci	utf8mb4	273		Yes	0	NO PAD
utf8mb4_eo_0900_as_cs	utf8mb4	296		Yes	0	NO PAD
utf8mb4_esperanto_ci	utf8mb4	241		Yes	8	PAD SPACE
utf8mb4_estonian_ci	utf8mb4	230		Yes	8	PAD SPACE
utf8mb4_es_0900_ai_ci	utf8mb4	263		Yes	0	NO PAD
utf8mb4_es_0900_as_cs	utf8mb4	286		Yes	0	NO PAD
utf8mb4_es_trad_0900_ai_ci	utf8mb4	270		Yes	0	NO PAD
utf8mb4_es_trad_0900_as_cs	utf8mb4	293		Yes	0	NO PAD
utf8mb4_et_0900_ai_ci	utf8mb4	262		Yes	0	NO PAD
utf8mb4_et_0900_as_cs	utf8mb4	285		Yes	0	NO PAD
utf8mb4_general_ci	utf8mb4	45		Yes	1	PAD SPACE
utf8mb4_german2_ci	utf8mb4	244		Yes	8	PAD SPACE
utf8mb4_hr_0900_ai_ci	utf8mb4	275		Yes	0	NO PAD
utf8mb4_hr_0900_as_cs	utf8mb4	298		Yes	0	NO PAD
utf8mb4_hungarian_ci	utf8mb4	242		Yes	8	PAD SPACE
utf8mb4_hu_0900_ai_ci	utf8mb4	274		Yes	0	NO PAD
utf8mb4_hu_0900_as_cs	utf8mb4	297		Yes	0	NO PAD
utf8mb4_icelandic_ci	utf8mb4	225		Yes	8	PAD SPACE
utf8mb4_is_0900_ai_ci	utf8mb4	257		Yes	0	NO PAD
utf8mb4_is_0900_as_cs	utf8mb4	280		Yes	0	NO PAD
utf8mb4_ja_0900_as_cs	utf8mb4	303		Yes	0	NO PAD
utf8mb4_ja_0900_as_cs_ks	utf8mb4	304		Yes	24	NO PAD
utf8mb4_latvian_ci	utf8mb4	226		Yes	8	PAD SPACE
utf8mb4_la_0900_ai_ci	utf8mb4	271		Yes	0	NO PAD
utf8mb4_la_0900_as_cs	utf8mb4	294		Yes	0	NO PAD
utf8mb4_lithuanian_ci	utf8mb4	236		Yes	8	PAD SPACE
utf8mb4_lt_0900_ai_ci	utf8mb4	268		Yes	0	NO PAD
utf8mb4_lt_0900_as_cs	utf8mb4	291		Yes	0	NO PAD
utf8mb4_lv_0900_ai_ci	utf8mb4	258		Yes	0	NO PAD

4

https://dev.mysql.com/doc/refman/8.0/en/information-schema-collations-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-collation.html
https://dev.mysql.com/doc/refman/8.0/en/show-collation.html
https://dev.mysql.com/doc/refman/8.0/en/show-collation.html
https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like

Character Set Repertoire

utf8mb4_lv_0900_as_cs	utf8mb4	281		Yes	0	NO PAD
utf8mb4_persian_ci	utf8mb4	240		Yes	8	PAD SPACE
utf8mb4_pl_0900_ai_ci	utf8mb4	261		Yes	0	NO PAD
utf8mb4_pl_0900_as_cs	utf8mb4	284		Yes	0	NO PAD
utf8mb4_polish_ci	utf8mb4	229		Yes	8	PAD SPACE
utf8mb4_romanian_ci	utf8mb4	227		Yes	8	PAD SPACE
utf8mb4_roman_ci	utf8mb4	239		Yes	8	PAD SPACE
utf8mb4_ro_0900_ai_ci	utf8mb4	259		Yes	0	NO PAD
utf8mb4_ro_0900_as_cs	utf8mb4	282		Yes	0	NO PAD
utf8mb4_ru_0900_ai_ci	utf8mb4	306		Yes	0	NO PAD
utf8mb4_ru_0900_as_cs	utf8mb4	307		Yes	0	NO PAD
utf8mb4_sinhala_ci	utf8mb4	243		Yes	8	PAD SPACE
utf8mb4_sk_0900_ai_ci	utf8mb4	269		Yes	0	NO PAD
utf8mb4_sk_0900_as_cs	utf8mb4	292		Yes	0	NO PAD
utf8mb4_slovak_ci	utf8mb4	237		Yes	8	PAD SPACE
utf8mb4_slovenian_ci	utf8mb4	228		Yes	8	PAD SPACE
utf8mb4_sl_0900_ai_ci	utf8mb4	260		Yes	0	NO PAD
utf8mb4_sl_0900_as_cs	utf8mb4	283		Yes	0	NO PAD
utf8mb4_spanish2_ci	utf8mb4	238		Yes	8	PAD SPACE
utf8mb4_spanish_ci	utf8mb4	231		Yes	8	PAD SPACE
utf8mb4_sv_0900_ai_ci	utf8mb4	264		Yes	0	NO PAD
utf8mb4_sv_0900_as_cs	utf8mb4	287		Yes	0	NO PAD
utf8mb4_swedish_ci	utf8mb4	232		Yes	8	PAD SPACE
utf8mb4_tr_0900_ai_ci	utf8mb4	265		Yes	0	NO PAD
utf8mb4_tr_0900_as_cs	utf8mb4	288		Yes	0	NO PAD
utf8mb4_turkish_ci	utf8mb4	233		Yes	8	PAD SPACE
utf8mb4_unicode_520_ci	utf8mb4	246		Yes	8	PAD SPACE
utf8mb4_unicode_ci	utf8mb4	224		Yes	8	PAD SPACE
utf8mb4_vietnamese_ci	utf8mb4	247		Yes	8	PAD SPACE
utf8mb4_vi_0900_ai_ci	utf8mb4	277		Yes	0	NO PAD
utf8mb4_vi_0900_as_cs	utf8mb4	300		Yes	0	NO PAD
utf8mb4_zh_0900_as_cs	utf8mb4	308		Yes	0	NO PAD
+----------------------------+---------+-----+---------+----------+---------+---------------+

For more information about those collations, see Section 1.10.1, “Unicode Character Sets”.

Collations have these general characteristics:

• Two different character sets cannot have the same collation.

• Each character set has a default collation. For example, the default collations for utf8mb4 and latin1
are utf8mb4_0900_ai_ci and latin1_swedish_ci, respectively. The INFORMATION_SCHEMA
CHARACTER_SETS table and the SHOW CHARACTER SET statement indicate the default collation
for each character set. The INFORMATION_SCHEMA COLLATIONS table and the SHOW COLLATION
statement have a column that indicates for each collation whether it is the default for its character set
(Yes if so, empty if not).

• Collation names start with the name of the character set with which they are associated, generally
followed by one or more suffixes indicating other collation characteristics. For additional information
about naming conventions, see Section 1.3.1, “Collation Naming Conventions”.

When a character set has multiple collations, it might not be clear which collation is most suitable for
a given application. To avoid choosing an inappropriate collation, perform some comparisons with
representative data values to make sure that a given collation sorts values the way you expect.

1.2.1 Character Set Repertoire

The repertoire of a character set is the collection of characters in the set.

String expressions have a repertoire attribute, which can have two values:

• ASCII: The expression can contain only ASCII characters; that is, characters in the Unicode range U
+0000 to U+007F.

5

https://dev.mysql.com/doc/refman/8.0/en/information-schema-character-sets-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-collations-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-collation.html

Character Set Repertoire

• UNICODE: The expression can contain characters in the Unicode range U+0000 to U+10FFFF.
This includes characters in the Basic Multilingual Plane (BMP) range (U+0000 to U+FFFF) and
supplementary characters outside the BMP range (U+10000 to U+10FFFF).

The ASCII range is a subset of UNICODE range, so a string with ASCII repertoire can be converted
safely without loss of information to the character set of any string with UNICODE repertoire. It can also be
converted safely to any character set that is a superset of the ascii character set. (All MySQL character
sets are supersets of ascii with the exception of swe7, which reuses some punctuation characters for
Swedish accented characters.)

The use of repertoire enables character set conversion in expressions for many cases where MySQL
would otherwise return an “illegal mix of collations” error when the rules for collation coercibility are
insufficient to resolve ambiguities. (For information about coercibility, see Section 1.8.4, “Collation
Coercibility in Expressions”.)

The following discussion provides examples of expressions and their repertoires, and describes how the
use of repertoire changes string expression evaluation:

• The repertoire for a string constant depends on string content and may differ from the repertoire of the
string character set. Consider these statements:

SET NAMES utf8mb4; SELECT 'abc';
SELECT _utf8mb4'def';

Although the character set is utf8mb4 in each of the preceding cases, the strings do not actually contain
any characters outside the ASCII range, so their repertoire is ASCII rather than UNICODE.

• A column having the ascii character set has ASCII repertoire because of its character set. In the
following table, c1 has ASCII repertoire:

CREATE TABLE t1 (c1 CHAR(1) CHARACTER SET ascii);

The following example illustrates how repertoire enables a result to be determined in a case where an
error occurs without repertoire:

CREATE TABLE t1 (
 c1 CHAR(1) CHARACTER SET latin1,
 c2 CHAR(1) CHARACTER SET ascii
);
INSERT INTO t1 VALUES ('a','b');
SELECT CONCAT(c1,c2) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (latin1_swedish_ci,IMPLICIT)
and (ascii_general_ci,IMPLICIT) for operation 'concat'

Using repertoire, subset to superset (ascii to latin1) conversion can occur and a result is returned:

+---------------+
| CONCAT(c1,c2) |
+---------------+
| ab |
+---------------+

• Functions with one string argument inherit the repertoire of their argument. The result of
UPPER(_utf8mb4'abc') has ASCII repertoire because its argument has ASCII repertoire. (Despite
the _utf8mb4 introducer, the string 'abc' contains no characters outside the ASCII range.)

6

https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_upper

UTF-8 for Metadata

• For functions that return a string but do not have string arguments and use
character_set_connection as the result character set, the result repertoire is ASCII if
character_set_connection is ascii, and UNICODE otherwise:

FORMAT(numeric_column, 4);

Use of repertoire changes how MySQL evaluates the following example:

SET NAMES ascii;
CREATE TABLE t1 (a INT, b VARCHAR(10) CHARACTER SET latin1);
INSERT INTO t1 VALUES (1,'b');
SELECT CONCAT(FORMAT(a, 4), b) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (ascii_general_ci,COERCIBLE)
and (latin1_swedish_ci,IMPLICIT) for operation 'concat'

With repertoire, a result is returned:

+-------------------------+
| CONCAT(FORMAT(a, 4), b) |
+-------------------------+
| 1.0000b |
+-------------------------+

• Functions with two or more string arguments use the “widest” argument repertoire for the result
repertoire, where UNICODE is wider than ASCII. Consider the following CONCAT() calls:

CONCAT(_ucs2 X'0041', _ucs2 X'0042')
CONCAT(_ucs2 X'0041', _ucs2 X'00C2')

For the first call, the repertoire is ASCII because both arguments are within the ASCII range. For the
second call, the repertoire is UNICODE because the second argument is outside the ASCII range.

• The repertoire for function return values is determined based on the repertoire of only those arguments
that affect the result's character set and collation.

IF(column1 < column2, 'smaller', 'greater')

The result repertoire is ASCII because the two string arguments (the second argument and the third
argument) both have ASCII repertoire. The first argument does not matter for the result repertoire, even
if the expression uses string values.

1.2.2 UTF-8 for Metadata

Metadata is “the data about the data.” Anything that describes the database—as opposed to being the
contents of the database—is metadata. Thus column names, database names, user names, version
names, and most of the string results from SHOW are metadata. This is also true of the contents of tables in
INFORMATION_SCHEMA because those tables by definition contain information about database objects.

Representation of metadata must satisfy these requirements:

• All metadata must be in the same character set. Otherwise, neither the SHOW statements nor SELECT
statements for tables in INFORMATION_SCHEMA would work properly because different rows in the same
column of the results of these operations would be in different character sets.

• Metadata must include all characters in all languages. Otherwise, users would not be able to name
columns and tables using their own languages.

7

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_concat
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Specifying Character Sets and Collations

To satisfy both requirements, MySQL stores metadata in a Unicode character set, namely UTF-8. This
does not cause any disruption if you never use accented or non-Latin characters. But if you do, you should
be aware that metadata is in UTF-8.

The metadata requirements mean that the return values of the USER(), CURRENT_USER(),
SESSION_USER(), SYSTEM_USER(), DATABASE(), and VERSION() functions have the UTF-8 character
set by default.

The server sets the character_set_system system variable to the name of the metadata character set:

mysql> SHOW VARIABLES LIKE 'character_set_system';
+----------------------+---------+
| Variable_name | Value |
+----------------------+---------+
| character_set_system | utf8mb3 |
+----------------------+---------+

Storage of metadata using Unicode does not mean that the server returns headers of columns and the
results of DESCRIBE functions in the character_set_system character set by default. When you use
SELECT column1 FROM t, the name column1 itself is returned from the server to the client in the
character set determined by the value of the character_set_results system variable, which has a
default value of utf8mb4. If you want the server to pass metadata results back in a different character
set, use the SET NAMES statement to force the server to perform character set conversion. SET NAMES
sets the character_set_results and other related system variables. (See Section 1.4, “Connection
Character Sets and Collations”.) Alternatively, a client program can perform the conversion after receiving
the result from the server. It is more efficient for the client to perform the conversion, but this option is not
always available for all clients.

If character_set_results is set to NULL, no conversion is performed and the server returns metadata
using its original character set (the set indicated by character_set_system).

Error messages returned from the server to the client are converted to the client character set
automatically, as with metadata.

If you are using (for example) the USER() function for comparison or assignment within a single statement,
don't worry. MySQL performs some automatic conversion for you.

SELECT * FROM t1 WHERE USER() = latin1_column;

This works because the contents of latin1_column are automatically converted to UTF-8 before the
comparison.

INSERT INTO t1 (latin1_column) SELECT USER();

This works because the contents of USER() are automatically converted to latin1 before the
assignment.

Although automatic conversion is not in the SQL standard, the standard does say that every character
set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-known principle that
“what applies to a superset can apply to a subset,” we believe that a collation for Unicode can apply for
comparisons with non-Unicode strings. For more information about coercion of strings, see Section 1.8.4,
“Collation Coercibility in Expressions”.

1.3 Specifying Character Sets and Collations
There are default settings for character sets and collations at four levels: server, database, table, and
column. The description in the following sections may appear complex, but it has been found in practice
that multiple-level defaulting leads to natural and obvious results.

8

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_session-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_system-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_database
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_system
https://dev.mysql.com/doc/refman/8.0/en/describe.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_system
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_system
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user

Collation Naming Conventions

CHARACTER SET is used in clauses that specify a character set. CHARSET can be used as a synonym for
CHARACTER SET.

Character set issues affect not only data storage, but also communication between client programs and
the MySQL server. If you want the client program to communicate with the server using a character set
different from the default, you need to indicate which one. For example, to use the latin1 Unicode
character set, issue this statement after connecting to the server:

SET NAMES 'latin1';

For more information about character set-related issues in client/server communication, see Section 1.4,
“Connection Character Sets and Collations”.

1.3.1 Collation Naming Conventions

MySQL collation names follow these conventions:

• A collation name starts with the name of the character set with which it is associated, generally followed
by one or more suffixes indicating other collation characteristics. For example, utf8mb4_0900_ai_ci
and latin1_swedish_ci are collations for the utf8mb4 and latin1 character sets, respectively.
The binary character set has a single collation, also named binary, with no suffixes.

• A language-specific collation includes a locale code or language name. For example,
utf8mb4_tr_0900_ai_ci and utf8mb4_hu_0900_ai_ci sort characters for the utf8mb4
character set using the rules of Turkish and Hungarian, respectively. utf8mb4_turkish_ci and
utf8mb4_hungarian_ci are similar but based on a less recent version of the Unicode Collation
Algorithm.

• Collation suffixes indicate whether a collation is case-sensitive, accent-sensitive, or kana-sensitive (or
some combination thereof), or binary. The following table shows the suffixes used to indicate these
characteristics.

Table 1.1 Collation Suffix Meanings

Suffix Meaning

_ai Accent-insensitive

_as Accent-sensitive

_ci Case-insensitive

_cs Case-sensitive

_ks Kana-sensitive

_bin Binary

For nonbinary collation names that do not specify accent sensitivity, it is determined by case sensitivity.
If a collation name does not contain _ai or _as, _ci in the name implies _ai and _cs in the name
implies _as. For example, latin1_general_ci is explicitly case-insensitive and implicitly accent-
insensitive, latin1_general_cs is explicitly case-sensitive and implicitly accent-sensitive, and
utf8mb4_0900_ai_ci is explicitly case-insensitive and accent-insensitive.

For Japanese collations, the _ks suffix indicates that a collation is kana-sensitive; that is, it distinguishes
Katakana characters from Hiragana characters. Japanese collations without the _ks suffix are not kana-
sensitive and treat Katakana and Hiragana characters equal for sorting.

For the binary collation of the binary character set, comparisons are based on numeric byte values.
For the _bin collation of a nonbinary character set, comparisons are based on numeric character code

9

Server Character Set and Collation

values, which differ from byte values for multibyte characters. For information about the differences
between the binary collation of the binary character set and the _bin collations of nonbinary
character sets, see Section 1.8.5, “The binary Collation Compared to _bin Collations”.

• Collation names for Unicode character sets may include a version number to indicate the version of
the Unicode Collation Algorithm (UCA) on which the collation is based. UCA-based collations without a
version number in the name use the version-4.0.0 UCA weight keys. For example:

• utf8mb4_0900_ai_ci is based on UCA 9.0.0 weight keys (http://www.unicode.org/Public/
UCA/9.0.0/allkeys.txt).

• utf8mb4_unicode_520_ci is based on UCA 5.2.0 weight keys (http://www.unicode.org/Public/
UCA/5.2.0/allkeys.txt).

• utf8mb4_unicode_ci (with no version named) is based on UCA 4.0.0 weight keys (http://
www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt).

• For Unicode character sets, the xxx_general_mysql500_ci collations preserve the pre-5.1.24
ordering of the original xxx_general_ci collations and permit upgrades for tables created before
MySQL 5.1.24 (Bug #27877).

1.3.2 Server Character Set and Collation

MySQL Server has a server character set and a server collation. By default, these are utf8mb4 and
utf8mb4_0900_ai_ci, but they can be set explicitly at server startup on the command line or in an
option file and changed at runtime.

Initially, the server character set and collation depend on the options that you use when you start
mysqld. You can use --character-set-server for the character set. Along with it, you can add --
collation-server for the collation. If you don't specify a character set, that is the same as saying
--character-set-server=utf8mb4. If you specify only a character set (for example, utf8mb4)
but not a collation, that is the same as saying --character-set-server=utf8mb4 --collation-
server=utf8mb4_0900_ai_ci because utf8mb4_0900_ai_ci is the default collation for utf8mb4.
Therefore, the following three commands all have the same effect:

mysqld
mysqld --character-set-server=utf8mb4
mysqld --character-set-server=utf8mb4 \
 --collation-server=utf8mb4_0900_ai_ci

One way to change the settings is by recompiling. To change the default server character set and collation
when building from sources, use the DEFAULT_CHARSET and DEFAULT_COLLATION options for CMake.
For example:

cmake . -DDEFAULT_CHARSET=latin1

Or:

cmake . -DDEFAULT_CHARSET=latin1 \
 -DDEFAULT_COLLATION=latin1_german1_ci

Both mysqld and CMake verify that the character set/collation combination is valid. If not, each program
displays an error message and terminates.

The server character set and collation are used as default values if the database character set and
collation are not specified in CREATE DATABASE statements. They have no other purpose.

10

http://www.unicode.org/Public/UCA/9.0.0/allkeys.txt
http://www.unicode.org/Public/UCA/9.0.0/allkeys.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_server
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_default_charset
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_default_collation
https://dev.mysql.com/doc/refman/8.0/en/create-database.html

Database Character Set and Collation

The current server character set and collation can be determined from the values of the
character_set_server and collation_server system variables. These variables can be changed
at runtime.

1.3.3 Database Character Set and Collation

Every database has a database character set and a database collation. The CREATE DATABASE and
ALTER DATABASE statements have optional clauses for specifying the database character set and
collation:

CREATE DATABASE db_name
 [[DEFAULT] CHARACTER SET charset_name]
 [[DEFAULT] COLLATE collation_name]
ALTER DATABASE db_name
 [[DEFAULT] CHARACTER SET charset_name]
 [[DEFAULT] COLLATE collation_name]

The keyword SCHEMA can be used instead of DATABASE.

The CHARACTER SET and COLLATE clauses make it possible to create databases with different character
sets and collations on the same MySQL server.

Database options are stored in the data dictionary and can be examined by checking the Information
Schema SCHEMATA table.

Example:

CREATE DATABASE db_name CHARACTER SET latin1 COLLATE latin1_swedish_ci;

MySQL chooses the database character set and database collation in the following manner:

• If both CHARACTER SET charset_name and COLLATE collation_name are specified, character set
charset_name and collation collation_name are used.

• If CHARACTER SET charset_name is specified without COLLATE, character set charset_name
and its default collation are used. To see the default collation for each character set, use the SHOW
CHARACTER SET statement or query the INFORMATION_SCHEMA CHARACTER_SETS table.

• If COLLATE collation_name is specified without CHARACTER SET, the character set associated with
collation_name and collation collation_name are used.

• Otherwise (neither CHARACTER SET nor COLLATE is specified), the server character set and server
collation are used.

The character set and collation for the default database can be determined from the values of the
character_set_database and collation_database system variables. The server sets these
variables whenever the default database changes. If there is no default database, the variables have
the same value as the corresponding server-level system variables, character_set_server and
collation_server.

To see the default character set and collation for a given database, use these statements:

USE db_name;
SELECT @@character_set_database, @@collation_database;

Alternatively, to display the values without changing the default database:

SELECT DEFAULT_CHARACTER_SET_NAME, DEFAULT_COLLATION_NAME
FROM INFORMATION_SCHEMA.SCHEMATA WHERE SCHEMA_NAME = 'db_name';

11

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_server
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/alter-database.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-schemata-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-character-sets-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_database
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_database
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_server

Table Character Set and Collation

The database character set and collation affect these aspects of server operation:

• For CREATE TABLE statements, the database character set and collation are used as default values for
table definitions if the table character set and collation are not specified. To override this, provide explicit
CHARACTER SET and COLLATE table options.

• For LOAD DATA statements that include no CHARACTER SET clause, the server uses the character set
indicated by the character_set_database system variable to interpret the information in the file. To
override this, provide an explicit CHARACTER SET clause.

• For stored routines (procedures and functions), the database character set and collation in effect at
routine creation time are used as the character set and collation of character data parameters for
which the declaration includes no CHARACTER SET or a COLLATE attribute. To override this, provide
CHARACTER SET and COLLATE explicitly.

1.3.4 Table Character Set and Collation

Every table has a table character set and a table collation. The CREATE TABLE and ALTER TABLE
statements have optional clauses for specifying the table character set and collation:

CREATE TABLE tbl_name (column_list)
 [[DEFAULT] CHARACTER SET charset_name]
 [COLLATE collation_name]]
ALTER TABLE tbl_name
 [[DEFAULT] CHARACTER SET charset_name]
 [COLLATE collation_name]

Example:

CREATE TABLE t1 (...)
CHARACTER SET latin1 COLLATE latin1_danish_ci;

MySQL chooses the table character set and collation in the following manner:

• If both CHARACTER SET charset_name and COLLATE collation_name are specified, character set
charset_name and collation collation_name are used.

• If CHARACTER SET charset_name is specified without COLLATE, character set charset_name
and its default collation are used. To see the default collation for each character set, use the SHOW
CHARACTER SET statement or query the INFORMATION_SCHEMA CHARACTER_SETS table.

• If COLLATE collation_name is specified without CHARACTER SET, the character set associated with
collation_name and collation collation_name are used.

• Otherwise (neither CHARACTER SET nor COLLATE is specified), the database character set and collation
are used.

The table character set and collation are used as default values for column definitions if the column
character set and collation are not specified in individual column definitions. The table character set and
collation are MySQL extensions; there are no such things in standard SQL.

1.3.5 Column Character Set and Collation

Every “character” column (that is, a column of type CHAR, VARCHAR, a TEXT type, or any synonym) has
a column character set and a column collation. Column definition syntax for CREATE TABLE and ALTER
TABLE has optional clauses for specifying the column character set and collation:

col_name {CHAR | VARCHAR | TEXT} (col_length)
 [CHARACTER SET charset_name]

12

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_database
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-character-sets-table.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

Column Character Set and Collation

 [COLLATE collation_name]

These clauses can also be used for ENUM and SET columns:

col_name {ENUM | SET} (val_list)
 [CHARACTER SET charset_name]
 [COLLATE collation_name]

Examples:

CREATE TABLE t1
(
 col1 VARCHAR(5)
 CHARACTER SET latin1
 COLLATE latin1_german1_ci
);
ALTER TABLE t1 MODIFY
 col1 VARCHAR(5)
 CHARACTER SET latin1
 COLLATE latin1_swedish_ci;

MySQL chooses the column character set and collation in the following manner:

• If both CHARACTER SET charset_name and COLLATE collation_name are specified, character set
charset_name and collation collation_name are used.

CREATE TABLE t1
(
 col1 CHAR(10) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci
) CHARACTER SET latin1 COLLATE latin1_bin;

The character set and collation are specified for the column, so they are used. The column has character
set utf8mb4 and collation utf8mb4_unicode_ci.

• If CHARACTER SET charset_name is specified without COLLATE, character set charset_name and
its default collation are used.

CREATE TABLE t1
(
 col1 CHAR(10) CHARACTER SET utf8mb4
) CHARACTER SET latin1 COLLATE latin1_bin;

The character set is specified for the column, but the collation is not. The column has character
set utf8mb4 and the default collation for utf8mb4, which is utf8mb4_0900_ai_ci. To see the
default collation for each character set, use the SHOW CHARACTER SET statement or query the
INFORMATION_SCHEMA CHARACTER_SETS table.

• If COLLATE collation_name is specified without CHARACTER SET, the character set associated with
collation_name and collation collation_name are used.

CREATE TABLE t1
(
 col1 CHAR(10) COLLATE utf8mb4_polish_ci
) CHARACTER SET latin1 COLLATE latin1_bin;

The collation is specified for the column, but the character set is not. The column has collation
utf8mb4_polish_ci and the character set is the one associated with the collation, which is utf8mb4.

• Otherwise (neither CHARACTER SET nor COLLATE is specified), the table character set and collation are
used.

CREATE TABLE t1

13

https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/set.html
https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-character-sets-table.html

Character String Literal Character Set and Collation

(
 col1 CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_bin;

Neither the character set nor collation is specified for the column, so the table defaults are used. The
column has character set latin1 and collation latin1_bin.

The CHARACTER SET and COLLATE clauses are standard SQL.

If you use ALTER TABLE to convert a column from one character set to another, MySQL attempts to map
the data values, but if the character sets are incompatible, there may be data loss.

1.3.6 Character String Literal Character Set and Collation

Every character string literal has a character set and a collation.

For the simple statement SELECT 'string', the string has the connection default character set and
collation defined by the character_set_connection and collation_connection system variables.

A character string literal may have an optional character set introducer and COLLATE clause, to designate
it as a string that uses a particular character set and collation:

[_charset_name]'string' [COLLATE collation_name]

The _charset_name expression is formally called an introducer. It tells the parser, “the string that follows
uses character set charset_name.” An introducer does not change the string to the introducer character
set like CONVERT() would do. It does not change the string value, although padding may occur. The
introducer is just a signal. See Section 1.3.8, “Character Set Introducers”.

Examples:

SELECT 'abc';
SELECT _latin1'abc';
SELECT _binary'abc';
SELECT _utf8mb4'abc' COLLATE utf8mb4_danish_ci;

Character set introducers and the COLLATE clause are implemented according to standard SQL
specifications.

MySQL determines the character set and collation of a character string literal in the following manner:

• If both _charset_name and COLLATE collation_name are specified, character set charset_name
and collation collation_name are used. collation_name must be a permitted collation for
charset_name.

• If _charset_name is specified but COLLATE is not specified, character set charset_name and its
default collation are used. To see the default collation for each character set, use the SHOW CHARACTER
SET statement or query the INFORMATION_SCHEMA CHARACTER_SETS table.

• If _charset_name is not specified but COLLATE collation_name is specified, the connection
default character set given by the character_set_connection system variable and collation
collation_name are used. collation_name must be a permitted collation for the connection default
character set.

• Otherwise (neither _charset_name nor COLLATE collation_name is specified), the
connection default character set and collation given by the character_set_connection and
collation_connection system variables are used.

Examples:

14

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_connection
https://dev.mysql.com/doc/refman/8.0/en/cast-functions.html#function_convert
https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-character-sets-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_connection

Character String Literal Character Set and Collation

• A nonbinary string with latin1 character set and latin1_german1_ci collation:

SELECT _latin1'Müller' COLLATE latin1_german1_ci;

• A nonbinary string with utf8mb4 character set and its default collation (that is, utf8mb4_0900_ai_ci):

SELECT _utf8mb4'Müller';

• A binary string with binary character set and its default collation (that is, binary):

SELECT _binary'Müller';

• A nonbinary string with the connection default character set and utf8mb4_0900_ai_ci collation (fails if
the connection character set is not utf8mb4):

SELECT 'Müller' COLLATE utf8mb4_0900_ai_ci;

• A string with the connection default character set and collation:

SELECT 'Müller';

An introducer indicates the character set for the following string, but does not change how the parser
performs escape processing within the string. Escapes are always interpreted by the parser according to
the character set given by character_set_connection.

The following examples show that escape processing occurs using character_set_connection
even in the presence of an introducer. The examples use SET NAMES (which changes
character_set_connection, as discussed in Section 1.4, “Connection Character Sets and
Collations”), and display the resulting strings using the HEX() function so that the exact string contents can
be seen.

Example 1:

mysql> SET NAMES latin1;
mysql> SELECT HEX('à\n'), HEX(_sjis'à\n');
+------------+-----------------+
| HEX('à\n') | HEX(_sjis'à\n') |
+------------+-----------------+
| E00A | E00A |
+------------+-----------------+

Here, à (hexadecimal value E0) is followed by \n, the escape sequence for newline. The escape sequence
is interpreted using the character_set_connection value of latin1 to produce a literal newline
(hexadecimal value 0A). This happens even for the second string. That is, the _sjis introducer does not
affect the parser's escape processing.

Example 2:

mysql> SET NAMES sjis;
mysql> SELECT HEX('à\n'), HEX(_latin1'à\n');
+------------+-------------------+
| HEX('à\n') | HEX(_latin1'à\n') |
+------------+-------------------+
| E05C6E | E05C6E |
+------------+-------------------+

Here, character_set_connection is sjis, a character set in which the sequence of à followed by
\ (hexadecimal values 05 and 5C) is a valid multibyte character. Hence, the first two bytes of the string
are interpreted as a single sjis character, and the \ is not interpreted as an escape character. The
following n (hexadecimal value 6E) is not interpreted as part of an escape sequence. This is true even for
the second string; the _latin1 introducer does not affect escape processing.

15

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_hex
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection

The National Character Set

1.3.7 The National Character Set

Standard SQL defines NCHAR or NATIONAL CHAR as a way to indicate that a CHAR column should use
some predefined character set. MySQL uses utf8 as this predefined character set. For example, these
data type declarations are equivalent:

CHAR(10) CHARACTER SET utf8
NATIONAL CHARACTER(10)
NCHAR(10)

As are these:

VARCHAR(10) CHARACTER SET utf8
NATIONAL VARCHAR(10)
NVARCHAR(10)
NCHAR VARCHAR(10)
NATIONAL CHARACTER VARYING(10)
NATIONAL CHAR VARYING(10)

You can use N'literal' (or n'literal') to create a string in the national character set. These
statements are equivalent:

SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';

MySQL 8.0 interprets the national character set as utf8mb3, which is now deprecated. Thus, using
NATIONAL CHARACTER or one of its synonyms to define the character set for a database, table, or column
raises a warning similar to this one:

NATIONAL/NCHAR/NVARCHAR implies the character set UTF8MB3, which will be
replaced by UTF8MB4 in a future release. Please consider using CHAR(x) CHARACTER
SET UTF8MB4 in order to be unambiguous.

1.3.8 Character Set Introducers

A character string literal, hexadecimal literal, or bit-value literal may have an optional character set
introducer and COLLATE clause, to designate it as a string that uses a particular character set and
collation:

[_charset_name] literal [COLLATE collation_name]

The _charset_name expression is formally called an introducer. It tells the parser, “the string that follows
uses character set charset_name.” An introducer does not change the string to the introducer character
set like CONVERT() would do. It does not change the string value, although padding may occur. The
introducer is just a signal.

For character string literals, space between the introducer and the string is permitted but optional.

For character set literals, an introducer indicates the character set for the following string, but does not
change how the parser performs escape processing within the string. Escapes are always interpreted
by the parser according to the character set given by character_set_connection. For additional
discussion and examples, see Section 1.3.6, “Character String Literal Character Set and Collation”.

Examples:

SELECT 'abc';
SELECT _latin1'abc';
SELECT _binary'abc';
SELECT _utf8mb4'abc' COLLATE utf8mb4_danish_ci;
SELECT _latin1 X'4D7953514C';

16

https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/cast-functions.html#function_convert
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection

Character Set Introducers

SELECT _utf8mb4 0x4D7953514C COLLATE utf8mb4_danish_ci;
SELECT _latin1 b'1000001';
SELECT _utf8mb4 0b1000001 COLLATE utf8mb4_danish_ci;

Character set introducers and the COLLATE clause are implemented according to standard SQL
specifications.

Character string literals can be designated as binary strings by using the _binary introducer.
Hexadecimal literals and bit-value literals are binary strings by default, so _binary is permitted, but
normally unnecessary. _binary may be useful to preserve a hexadecimal or bit literal as a binary string in
contexts for which the literal is otherwise treated as a number. For example, bit operations permit numeric
or binary string arguments in MySQL 8.0 and higher, but treat hexadecimal and bit literals as numbers by
default. To explicitly specify binary string context for such literals, use a _binary introducer for at least
one of the arguments:

mysql> SET @v1 = X'000D' | X'0BC0';
mysql> SET @v2 = _binary X'000D' | X'0BC0';
mysql> SELECT HEX(@v1), HEX(@v2);
+----------+----------+
| HEX(@v1) | HEX(@v2) |
+----------+----------+
| BCD | 0BCD |
+----------+----------+

The displayed result appears similar for both bit operations, but the result without _binary is a BIGINT
value, whereas the result with _binary is a binary string. Due to the difference in result types, the
displayed values differ: High-order 0 digits are not displayed for the numeric result.

MySQL determines the character set and collation of a character string literal, hexadecimal literal, or bit-
value literal in the following manner:

• If both _charset_name and COLLATE collation_name are specified, character set charset_name
and collation collation_name are used. collation_name must be a permitted collation for
charset_name.

• If _charset_name is specified but COLLATE is not specified, character set charset_name and its
default collation are used. To see the default collation for each character set, use the SHOW CHARACTER
SET statement or query the INFORMATION_SCHEMA CHARACTER_SETS table.

• If _charset_name is not specified but COLLATE collation_name is specified:

• For a character string literal, the connection default character set given by the
character_set_connection system variable and collation collation_name are used.
collation_name must be a permitted collation for the connection default character set.

• For a hexadecimal literal or bit-value literal, the only permitted collation is binary because these
types of literals are binary strings by default.

• Otherwise (neither _charset_name nor COLLATE collation_name is specified):

• For a character string literal, the connection default character set and collation given by the
character_set_connection and collation_connection system variables are used.

• For a hexadecimal literal or bit-value literal, the character set and collation are binary.

Examples:

• Nonbinary strings with latin1 character set and latin1_german1_ci collation:

SELECT _latin1'Müller' COLLATE latin1_german1_ci;

17

https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-character-sets-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_connection

Examples of Character Set and Collation Assignment

SELECT _latin1 X'0A0D' COLLATE latin1_german1_ci;
SELECT _latin1 b'0110' COLLATE latin1_german1_ci;

• Nonbinary strings with utf8mb4 character set and its default collation (that is, utf8mb4_0900_ai_ci):

SELECT _utf8mb4'Müller';
SELECT _utf8mb4 X'0A0D';
SELECT _utf8mb4 b'0110';

• Binary strings with binary character set and its default collation (that is, binary):

SELECT _binary'Müller';
SELECT X'0A0D';
SELECT b'0110';

The hexadecimal literal and bit-value literal need no introducer because they are binary strings by
default.

• A nonbinary string with the connection default character set and utf8mb4_0900_ai_ci collation (fails if
the connection character set is not utf8mb4):

SELECT 'Müller' COLLATE utf8mb4_0900_ai_ci;

This construction (COLLATE only) does not work for hexadecimal literals or bit literals because their
character set is binary no matter the connection character set, and binary is not compatible with the
utf8mb4_0900_ai_ci collation. The only permitted COLLATE clause in the absence of an introducer is
COLLATE binary.

• A string with the connection default character set and collation:

SELECT 'Müller';

1.3.9 Examples of Character Set and Collation Assignment

The following examples show how MySQL determines default character set and collation values.

Example 1: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10) CHARACTER SET latin1 COLLATE latin1_german1_ci
) DEFAULT CHARACTER SET latin2 COLLATE latin2_bin;

Here we have a column with a latin1 character set and a latin1_german1_ci collation. The definition
is explicit, so that is straightforward. Notice that there is no problem with storing a latin1 column in a
latin2 table.

Example 2: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10) CHARACTER SET latin1
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

This time we have a column with a latin1 character set and a default collation. Although it might seem
natural, the default collation is not taken from the table level. Instead, because the default collation for
latin1 is always latin1_swedish_ci, column c1 has a collation of latin1_swedish_ci (not
latin1_danish_ci).

Example 3: Table and Column Definition

CREATE TABLE t1

18

Compatibility with Other DBMSs

(
 c1 CHAR(10)
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

We have a column with a default character set and a default collation. In this circumstance, MySQL checks
the table level to determine the column character set and collation. Consequently, the character set for
column c1 is latin1 and its collation is latin1_danish_ci.

Example 4: Database, Table, and Column Definition

CREATE DATABASE d1
 DEFAULT CHARACTER SET latin2 COLLATE latin2_czech_cs;
USE d1;
CREATE TABLE t1
(
 c1 CHAR(10)
);

We create a column without specifying its character set and collation. We're also not specifying a character
set and a collation at the table level. In this circumstance, MySQL checks the database level to determine
the table settings, which thereafter become the column settings.) Consequently, the character set for
column c1 is latin2 and its collation is latin2_czech_cs.

1.3.10 Compatibility with Other DBMSs

For MaxDB compatibility these two statements are the same:

CREATE TABLE t1 (f1 CHAR(N) UNICODE);
CREATE TABLE t1 (f1 CHAR(N) CHARACTER SET ucs2);

Both the UNICODE attribute and the ucs2 character set are deprecated in MySQL 8.0.28.

1.4 Connection Character Sets and Collations
A “connection” is what a client program makes when it connects to the server, to begin a session within
which it interacts with the server. The client sends SQL statements, such as queries, over the session
connection. The server sends responses, such as result sets or error messages, over the connection back
to the client.

• Connection Character Set and Collation System Variables

• Impermissible Client Character Sets

• Client Program Connection Character Set Configuration

• SQL Statements for Connection Character Set Configuration

• Connection Character Set Error Handling

Connection Character Set and Collation System Variables

Several character set and collation system variables relate to a client's interaction with the server. Some of
these have been mentioned in earlier sections:

• The character_set_server and collation_server system variables indicate the server
character set and collation. See Section 1.3.2, “Server Character Set and Collation”.

• The character_set_database and collation_database system variables indicate the character
set and collation of the default database. See Section 1.3.3, “Database Character Set and Collation”.

19

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_database
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_database

Connection Character Set and Collation System Variables

Additional character set and collation system variables are involved in handling traffic for the connection
between a client and the server. Every client has session-specific connection-related character set and
collation system variables. These session system variable values are initialized at connect time, but can be
changed within the session.

Several questions about character set and collation handling for client connections can be answered in
terms of system variables:

• What character set are statements in when they leave the client?

The server takes the character_set_client system variable to be the character set in which
statements are sent by the client.

Note

Some character sets cannot be used as the client character set. See
Impermissible Client Character Sets.

• What character set should the server translate statements to after receiving them?

To determine this, the server uses the character_set_connection and collation_connection
system variables:

• The server converts statements sent by the client from character_set_client to
character_set_connection. Exception: For string literals that have an introducer such as
_utf8mb4 or _latin2, the introducer determines the character set. See Section 1.3.8, “Character
Set Introducers”.

• collation_connection is important for comparisons of literal strings. For comparisons of strings
with column values, collation_connection does not matter because columns have their own
collation, which has a higher collation precedence (see Section 1.8.4, “Collation Coercibility in
Expressions”).

• What character set should the server translate query results to before shipping them back to the client?

The character_set_results system variable indicates the character set in which the server returns
query results to the client. This includes result data such as column values, result metadata such as
column names, and error messages.

To tell the server to perform no conversion of result sets or error messages, set
character_set_results to NULL or binary:

SET character_set_results = NULL;
SET character_set_results = binary;

For more information about character sets and error messages, see Section 1.6, “Error Message
Character Set”.

To see the values of the character set and collation system variables that apply to the current session, use
this statement:

SELECT * FROM performance_schema.session_variables
WHERE VARIABLE_NAME IN (
 'character_set_client', 'character_set_connection',
 'character_set_results', 'collation_connection'
) ORDER BY VARIABLE_NAME;

The following simpler statements also display the connection variables, but include other related variables
as well. They can be useful to see all character set and collation system variables:

20

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results

Impermissible Client Character Sets

SHOW SESSION VARIABLES LIKE 'character_set_%';
SHOW SESSION VARIABLES LIKE 'collation_%';

Clients can fine-tune the settings for these variables, or depend on the defaults (in which case, you can
skip the rest of this section). If you do not use the defaults, you must change the character settings for
each connection to the server.

Impermissible Client Character Sets

The character_set_client system variable cannot be set to certain character sets:

ucs2
utf16
utf16le
utf32

Attempting to use any of those character sets as the client character set produces an error:

mysql> SET character_set_client = 'ucs2';
ERROR 1231 (42000): Variable 'character_set_client'
can't be set to the value of 'ucs2'

The same error occurs if any of those character sets are used in the following contexts, all of which result
in an attempt to set character_set_client to the named character set:

• The --default-character-set=charset_name command option used by MySQL client programs
such as mysql and mysqladmin.

• The SET NAMES 'charset_name' statement.

• The SET CHARACTER SET 'charset_name' statement.

Client Program Connection Character Set Configuration

When a client connects to the server, it indicates which character set it wants to use for communication
with the server. (Actually, the client indicates the default collation for that character set, from
which the server can determine the character set.) The server uses this information to set the
character_set_client, character_set_results, character_set_connection system
variables to the character set, and collation_connection to the character set default collation. In
effect, the server performs the equivalent of a SET NAMES operation.

If the server does not support the requested character set or collation, it falls back to using the server
character set and collation to configure the connection. For additional detail about this fallback behavior,
see Connection Character Set Error Handling.

The mysql, mysqladmin, mysqlcheck, mysqlimport, and mysqlshow client programs determine the
default character set to use as follows:

• In the absence of other information, each client uses the compiled-in default character set, usually
utf8mb4.

• Each client can autodetect which character set to use based on the operating system setting, such as
the value of the LANG or LC_ALL locale environment variable on Unix systems or the code page setting
on Windows systems. For systems on which the locale is available from the OS, the client uses it to
set the default character set rather than using the compiled-in default. For example, setting LANG to
ru_RU.KOI8-R causes the koi8r character set to be used. Thus, users can configure the locale in
their environment for use by MySQL clients.

The OS character set is mapped to the closest MySQL character set if there is no exact match. If the
client does not support the matching character set, it uses the compiled-in default. For example, utf8

21

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_default-character-set
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_connection
https://dev.mysql.com/doc/refman/8.0/en/set-names.html

SQL Statements for Connection Character Set Configuration

and utf-8 map to utf8mb4, and ucs2 is not supported as a connection character set, so it maps to the
compiled-in default.

C applications can use character set autodetection based on the OS setting by invoking
mysql_options() as follows before connecting to the server:

mysql_options(mysql,
 MYSQL_SET_CHARSET_NAME,
 MYSQL_AUTODETECT_CHARSET_NAME);

• Each client supports a --default-character-set option, which enables users to specify the
character set explicitly to override whatever default the client otherwise determines.

Note

Some character sets cannot be used as the client character set. Attempting
to use them with --default-character-set produces an error. See
Impermissible Client Character Sets.

With the mysql client, to use a character set different from the default, you could explicitly execute a SET
NAMES statement every time you connect to the server (see Client Program Connection Character Set
Configuration). To accomplish the same result more easily, specify the character set in your option file.
For example, the following option file setting changes the three connection-related character set system
variables set to koi8r each time you invoke mysql:

[mysql]
default-character-set=koi8r

If you are using the mysql client with auto-reconnect enabled (which is not recommended), it is preferable
to use the charset command rather than SET NAMES. For example:

mysql> charset koi8r
Charset changed

The charset command issues a SET NAMES statement, and also changes the default character set that
mysql uses when it reconnects after the connection has dropped.

When configuration client programs, you must also consider the environment within which they execute.
See Section 1.5, “Configuring Application Character Set and Collation”.

SQL Statements for Connection Character Set Configuration

After a connection has been established, clients can change the character set and collation system
variables for the current session. These variables can be changed individually using SET statements, but
two more convenient statements affect the connection-related character set system variables as a group:

• SET NAMES 'charset_name' [COLLATE 'collation_name']

SET NAMES indicates what character set the client uses to send SQL statements to the server. Thus,
SET NAMES 'cp1251' tells the server, “future incoming messages from this client are in character
set cp1251.” It also specifies the character set that the server should use for sending results back to
the client. (For example, it indicates what character set to use for column values if you use a SELECT
statement that produces a result set.)

A SET NAMES 'charset_name' statement is equivalent to these three statements:

SET character_set_client = charset_name;
SET character_set_results = charset_name;
SET character_set_connection = charset_name;

22

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_default-character-set
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_default-character-set
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-statement.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html

Connection Character Set Error Handling

Setting character_set_connection to charset_name also implicitly sets
collation_connection to the default collation for charset_name. It is unnecessary to set that
collation explicitly. To specify a particular collation to use for collation_connection, add a COLLATE
clause:

SET NAMES 'charset_name' COLLATE 'collation_name'

• SET CHARACTER SET 'charset_name'

SET CHARACTER SET is similar to SET NAMES but sets character_set_connection and
collation_connection to character_set_database and collation_database (which, as
mentioned previously, indicate the character set and collation of the default database).

A SET CHARACTER SET charset_name statement is equivalent to these three statements:

SET character_set_client = charset_name;
SET character_set_results = charset_name;
SET collation_connection = @@collation_database;

Setting collation_connection also implicitly sets character_set_connection to the character
set associated with the collation (equivalent to executing SET character_set_connection =
@@character_set_database). It is unnecessary to set character_set_connection explicitly.

Note

Some character sets cannot be used as the client character set. Attempting to
use them with SET NAMES or SET CHARACTER SET produces an error. See
Impermissible Client Character Sets.

Example: Suppose that column1 is defined as CHAR(5) CHARACTER SET latin2. If you do not say
SET NAMES or SET CHARACTER SET, then for SELECT column1 FROM t, the server sends back all
the values for column1 using the character set that the client specified when it connected. On the other
hand, if you say SET NAMES 'latin1' or SET CHARACTER SET 'latin1' before issuing the SELECT
statement, the server converts the latin2 values to latin1 just before sending results back. Conversion
may be lossy for characters that are not in both character sets.

Connection Character Set Error Handling

Attempts to use an inappropriate connection character set or collation can produce an error, or cause the
server to fall back to its default character set and collation for a given connection. This section describes
problems that can occur when configuring the connection character set. These problems can occur when
establishing a connection or when changing the character set within an established connection.

• Connect-Time Error Handling

• Runtime Error Handling

Connect-Time Error Handling

Some character sets cannot be used as the client character set; see Impermissible Client Character Sets.
If you specify a character set that is valid but not permitted as a client character set, the server returns an
error:

$> mysql --default-character-set=ucs2
ERROR 1231 (42000): Variable 'character_set_client' can't be set to
the value of 'ucs2'

If you specify a character set that the client does not recognize, it produces an error:

23

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_connection
https://dev.mysql.com/doc/refman/8.0/en/set-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_database
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_database
https://dev.mysql.com/doc/refman/8.0/en/set-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Connection Character Set Error Handling

$> mysql --default-character-set=bogus
mysql: Character set 'bogus' is not a compiled character set and is
not specified in the '/usr/local/mysql/share/charsets/Index.xml' file
ERROR 2019 (HY000): Can't initialize character set bogus
(path: /usr/local/mysql/share/charsets/)

If you specify a character set that the client recognizes but the server does not, the server falls back
to its default character set and collation. Suppose that the server is configured to use latin1 and
latin1_swedish_ci as its defaults, and that it does not recognize gb18030 as a valid character set.
A client that specifies --default-character-set=gb18030 is able to connect to the server, but the
resulting character set is not what the client wants:

mysql> SHOW SESSION VARIABLES LIKE 'character_set_%';
+--------------------------+--------+
| Variable_name | Value |
+--------------------------+--------+
| character_set_client | latin1 |
| character_set_connection | latin1 |
...
| character_set_results | latin1 |
...
+--------------------------+--------+
mysql> SHOW SESSION VARIABLES LIKE 'collation_connection';
+----------------------+-------------------+
| Variable_name | Value |
+----------------------+-------------------+
| collation_connection | latin1_swedish_ci |
+----------------------+-------------------+

You can see that the connection system variables have been set to reflect a character set and collation of
latin1 and latin1_swedish_ci. This occurs because the server cannot satisfy the client character set
request and falls back to its defaults.

In this case, the client cannot use the character set that it wants because the server does not support
it. The client must either be willing to use a different character set, or connect to a different server that
supports the desired character set.

The same problem occurs in a more subtle context: When the client tells the server to use a character set
that the server recognizes, but the default collation for that character set on the client side is not known
on the server side. This occurs, for example, when a MySQL 8.0 client wants to connect to a MySQL
5.7 server using utf8mb4 as the client character set. A client that specifies --default-character-
set=utf8mb4 is able to connect to the server. However, as in the previous example, the server falls back
to its default character set and collation, not what the client requested:

mysql> SHOW SESSION VARIABLES LIKE 'character_set_%';
+--------------------------+--------+
| Variable_name | Value |
+--------------------------+--------+
| character_set_client | latin1 |
| character_set_connection | latin1 |
...
| character_set_results | latin1 |
...
+--------------------------+--------+
mysql> SHOW SESSION VARIABLES LIKE 'collation_connection';
+----------------------+-------------------+
| Variable_name | Value |
+----------------------+-------------------+
| collation_connection | latin1_swedish_ci |
+----------------------+-------------------+

Why does this occur? After all, utf8mb4 is known to the 8.0 client and the 5.7 server, so both of them
recognize it. To understand this behavior, it is necessary to understand that when the client tells the server

24

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_default-character-set
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_default-character-set
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_default-character-set

Configuring Application Character Set and Collation

which character set it wants to use, it really tells the server the default collation for that character set.
Therefore, the aforementioned behavior occurs due to a combination of factors:

• The default collation for utf8mb4 differs between MySQL 5.7 and 8.0 (utf8mb4_general_ci for 5.7,
utf8mb4_0900_ai_ci for 8.0).

• When the 8.0 client requests a character set of utf8mb4, what it sends to the server is the default 8.0
utf8mb4 collation; that is, the utf8mb4_0900_ai_ci.

• utf8mb4_0900_ai_ci is implemented only as of MySQL 8.0, so the 5.7 server does not recognize it.

• Because the 5.7 server does not recognize utf8mb4_0900_ai_ci, it cannot satisfy the client
character set request, and falls back to its default character set and collation (latin1 and
latin1_swedish_ci).

In this case, the client can still use utf8mb4 by issuing a SET NAMES 'utf8mb4' statement after
connecting. The resulting collation is the 5.7 default utf8mb4 collation; that is, utf8mb4_general_ci.
If the client additionally wants a collation of utf8mb4_0900_ai_ci, it cannot achieve that because the
server does not recognize that collation. The client must either be willing to use a different utf8mb4
collation, or connect to a server from MySQL 8.0 or higher.

Runtime Error Handling

Within an established connection, the client can request a change of connection character set and collation
with SET NAMES or SET CHARACTER SET.

Some character sets cannot be used as the client character set; see Impermissible Client Character Sets.
If you specify a character set that is valid but not permitted as a client character set, the server returns an
error:

mysql> SET NAMES 'ucs2';
ERROR 1231 (42000): Variable 'character_set_client' can't be set to
the value of 'ucs2'

If the server does not recognize the character set (or the collation), it produces an error:

mysql> SET NAMES 'bogus';
ERROR 1115 (42000): Unknown character set: 'bogus'
mysql> SET NAMES 'utf8mb4' COLLATE 'bogus';
ERROR 1273 (HY000): Unknown collation: 'bogus'

Tip

A client that wants to verify whether its requested character set was honored by the
server can execute the following statement after connecting and checking that the
result is the expected character set:

SELECT @@character_set_client;

1.5 Configuring Application Character Set and Collation
For applications that store data using the default MySQL character set and collation (utf8mb4,
utf8mb4_0900_ai_ci), no special configuration should be needed. If applications require data storage
using a different character set or collation, you can configure character set information several ways:

• Specify character settings per database. For example, applications that use one database might use the
default of utf8mb4, whereas applications that use another database might use sjis.

• Specify character settings at server startup. This causes the server to use the given settings for all
applications that do not make other arrangements.

25

https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-character-set.html

Configuring Application Character Set and Collation

• Specify character settings at configuration time, if you build MySQL from source. This causes the server
to use the given settings as the defaults for all applications, without having to specify them at server
startup.

When different applications require different character settings, the per-database technique provides a
good deal of flexibility. If most or all applications use the same character set, specifying character settings
at server startup or configuration time may be most convenient.

For the per-database or server-startup techniques, the settings control the character set for data storage.
Applications must also tell the server which character set to use for client/server communications, as
described in the following instructions.

The examples shown here assume use of the latin1 character set and latin1_swedish_ci collation
in particular contexts as an alternative to the defaults of utf8mb4 and utf8mb4_0900_ai_ci.

• Specify character settings per database. To create a database such that its tables use a given
default character set and collation for data storage, use a CREATE DATABASE statement like this:

CREATE DATABASE mydb
 CHARACTER SET latin1
 COLLATE latin1_swedish_ci;

Tables created in the database use latin1 and latin1_swedish_ci by default for any character
columns.

Applications that use the database should also configure their connection to the server each time they
connect. This can be done by executing a SET NAMES 'latin1' statement after connecting. The
statement can be used regardless of connection method (the mysql client, PHP scripts, and so forth).

In some cases, it may be possible to configure the connection to use the desired character set some
other way. For example, to connect using mysql, you can specify the --default-character-
set=latin1 command-line option to achieve the same effect as SET NAMES 'latin1'.

For more information about configuring client connections, see Section 1.4, “Connection Character Sets
and Collations”.

Note

If you use ALTER DATABASE to change the database default character set or
collation, existing stored routines in the database that use those defaults must
be dropped and recreated so that they use the new defaults. (In a stored routine,
variables with character data types use the database defaults if the character set
or collation are not specified explicitly. See CREATE PROCEDURE and CREATE
FUNCTION Statements.)

• Specify character settings at server startup. To select a character set and collation at server
startup, use the --character-set-server and --collation-server options. For example, to
specify the options in an option file, include these lines:

[mysqld]
character-set-server=latin1
collation-server=latin1_swedish_ci

These settings apply server-wide and apply as the defaults for databases created by any application,
and for tables created in those databases.

It is still necessary for applications to configure their connection using SET NAMES or equivalent
after they connect, as described previously. You might be tempted to start the server with the --

26

https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_default-character-set
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_default-character-set
https://dev.mysql.com/doc/refman/8.0/en/alter-database.html
https://dev.mysql.com/doc/refman/8.0/en/create-procedure.html
https://dev.mysql.com/doc/refman/8.0/en/create-procedure.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_server
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_connect

Error Message Character Set

init_connect="SET NAMES 'latin1'" option to cause SET NAMES to be executed automatically
for each client that connects. However, this may yield inconsistent results because the init_connect
value is not executed for users who have the CONNECTION_ADMIN privilege (or the deprecated SUPER
privilege).

• Specify character settings at MySQL configuration time. To select a character set and collation if
you configure and build MySQL from source, use the DEFAULT_CHARSET and DEFAULT_COLLATION
CMake options:

cmake . -DDEFAULT_CHARSET=latin1 \
 -DDEFAULT_COLLATION=latin1_swedish_ci

The resulting server uses latin1 and latin1_swedish_ci as the default for databases and tables
and for client connections. It is unnecessary to use --character-set-server and --collation-
server to specify those defaults at server startup. It is also unnecessary for applications to configure
their connection using SET NAMES or equivalent after they connect to the server.

Regardless of how you configure the MySQL character set for application use, you must also consider
the environment within which those applications execute. For example, if you intend to send statements
using UTF-8 text taken from a file that you create in an editor, you should edit the file with the locale of your
environment set to UTF-8 so that the file encoding is correct and so that the operating system handles it
correctly. If you use the mysql client from within a terminal window, the window must be configured to use
UTF-8 or characters may not display properly. For a script that executes in a Web environment, the script
must handle character encoding properly for its interaction with the MySQL server, and it must generate
pages that correctly indicate the encoding so that browsers know how to display the content of the pages.
For example, you can include this <meta> tag within your <head> element:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

1.6 Error Message Character Set
This section describes how the MySQL server uses character sets for constructing error messages. For
information about the language of error messages (rather than the character set), see Section 1.12,
“Setting the Error Message Language”. For general information about configuring error logging, see The
Error Log.

• Character Set for Error Message Construction

• Character Set for Error Message Disposition

Character Set for Error Message Construction

The server constructs error messages as follows:

• The message template uses UTF-8 (utf8mb3).

• Parameters in the message template are replaced with values that apply to a specific error occurrence:

• Identifiers such as table or column names use UTF-8 internally so they are copied as is.

• Character (nonbinary) string values are converted from their character set to UTF-8.

• Binary string values are copied as is for bytes in the range 0x20 to 0x7E, and using \x hexadecimal
encoding for bytes outside that range. For example, if a duplicate-key error occurs for an attempt to
insert 0x41CF9F into a VARBINARY unique column, the resulting error message uses UTF-8 with
some bytes hexadecimal encoded:

Duplicate entry 'A\xCF\x9F' for key 1

27

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_connect
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_connect
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_connection-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_default_charset
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_default_collation
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_server
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/error-log.html
https://dev.mysql.com/doc/refman/8.0/en/error-log.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html

Character Set for Error Message Disposition

Character Set for Error Message Disposition

An error message, once constructed, can be written by the server to the error log or sent to clients:

• If the server writes the error message to the error log, it writes it in UTF-8, as constructed, without
conversion to another character set.

• If the server sends the error message to a client program, the server converts it from
UTF-8 to the character set specified by the character_set_results system variable. If
character_set_results has a value of NULL or binary, no conversion occurs. No conversion
occurs if the variable value is utf8mb3 or utf8mb4, either, because those character sets have a
repertoire that includes all UTF-8 characters used in message construction.

If characters cannot be represented in character_set_results, some encoding may occur during
the conversion. The encoding uses Unicode code point values:

• Characters in the Basic Multilingual Plane (BMP) range (0x0000 to 0xFFFF) are written using \nnnn
notation.

• Characters outside the BMP range (0x10000 to 0x10FFFF) are written using \+nnnnnn notation.

Clients can set character_set_results to control the character set in which they receive error
messages. The variable can be set directly, or indirectly by means such as SET NAMES. For more
information about character_set_results, see Section 1.4, “Connection Character Sets and
Collations”.

1.7 Column Character Set Conversion
To convert a binary or nonbinary string column to use a particular character set, use ALTER TABLE. For
successful conversion to occur, one of the following conditions must apply:

• If the column has a binary data type (BINARY, VARBINARY, BLOB), all the values that it contains must
be encoded using a single character set (the character set you're converting the column to). If you use a
binary column to store information in multiple character sets, MySQL has no way to know which values
use which character set and cannot convert the data properly.

• If the column has a nonbinary data type (CHAR, VARCHAR, TEXT), its contents should be encoded in the
column character set, not some other character set. If the contents are encoded in a different character
set, you can convert the column to use a binary data type first, and then to a nonbinary column with the
desired character set.

Suppose that a table t has a binary column named col1 defined as VARBINARY(50). Assuming that
the information in the column is encoded using a single character set, you can convert it to a nonbinary
column that has that character set. For example, if col1 contains binary data representing characters in
the greek character set, you can convert it as follows:

ALTER TABLE t MODIFY col1 VARCHAR(50) CHARACTER SET greek;

If your original column has a type of BINARY(50), you could convert it to CHAR(50), but the resulting
values are padded with 0x00 bytes at the end, which may be undesirable. To remove these bytes, use the
TRIM() function:

UPDATE t SET col1 = TRIM(TRAILING 0x00 FROM col1);

Suppose that table t has a nonbinary column named col1 defined as CHAR(50) CHARACTER SET
latin1 but you want to convert it to use utf8mb4 so that you can store values from many languages. The
following statement accomplishes this:

28

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_trim

Collation Issues

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET utf8mb4;

Conversion may be lossy if the column contains characters that are not in both character sets.

A special case occurs if you have old tables from before MySQL 4.1 where a nonbinary column contains
values that actually are encoded in a character set different from the server's default character set. For
example, an application might have stored sjis values in a column, even though MySQL's default
character set was different. It is possible to convert the column to use the proper character set but an
additional step is required. Suppose that the server's default character set was latin1 and col1 is
defined as CHAR(50) but its contents are sjis values. The first step is to convert the column to a
binary data type, which removes the existing character set information without performing any character
conversion:

ALTER TABLE t MODIFY col1 BLOB;

The next step is to convert the column to a nonbinary data type with the proper character set:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET sjis;

This procedure requires that the table not have been modified already with statements such as INSERT
or UPDATE after an upgrade to MySQL 4.1 or higher. In that case, MySQL would store new values in the
column using latin1, and the column would contain a mix of sjis and latin1 values and cannot be
converted properly.

If you specified attributes when creating a column initially, you should also specify them when altering the
table with ALTER TABLE. For example, if you specified NOT NULL and an explicit DEFAULT value, you
should also provide them in the ALTER TABLE statement. Otherwise, the resulting column definition does
not include those attributes.

To convert all character columns in a table, the ALTER TABLE ... CONVERT TO CHARACTER SET
charset statement may be useful. See ALTER TABLE Statement.

1.8 Collation Issues
The following sections discuss various aspects of character set collations.

1.8.1 Using COLLATE in SQL Statements

With the COLLATE clause, you can override whatever the default collation is for a comparison. COLLATE
may be used in various parts of SQL statements. Here are some examples:

• With ORDER BY:

SELECT k
FROM t1
ORDER BY k COLLATE latin1_german2_ci;

• With AS:

SELECT k COLLATE latin1_german2_ci AS k1
FROM t1
ORDER BY k1;

• With GROUP BY:

SELECT k
FROM t1
GROUP BY k COLLATE latin1_german2_ci;

• With aggregate functions:

29

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

COLLATE Clause Precedence

SELECT MAX(k COLLATE latin1_german2_ci)
FROM t1;

• With DISTINCT:

SELECT DISTINCT k COLLATE latin1_german2_ci
FROM t1;

• With WHERE:

SELECT *
FROM t1
WHERE _latin1 'Müller' COLLATE latin1_german2_ci = k;

SELECT *
FROM t1
WHERE k LIKE _latin1 'Müller' COLLATE latin1_german2_ci;

• With HAVING:

SELECT k
FROM t1
GROUP BY k
HAVING k = _latin1 'Müller' COLLATE latin1_german2_ci;

1.8.2 COLLATE Clause Precedence

The COLLATE clause has high precedence (higher than ||), so the following two expressions are
equivalent:

x || y COLLATE z
x || (y COLLATE z)

1.8.3 Character Set and Collation Compatibility

Each character set has one or more collations, but each collation is associated with one and only one
character set. Therefore, the following statement causes an error message because the latin2_bin
collation is not legal with the latin1 character set:

mysql> SELECT _latin1 'x' COLLATE latin2_bin;
ERROR 1253 (42000): COLLATION 'latin2_bin' is not valid
for CHARACTER SET 'latin1'

1.8.4 Collation Coercibility in Expressions

In the great majority of statements, it is obvious what collation MySQL uses to resolve a comparison
operation. For example, in the following cases, it should be clear that the collation is the collation of column
x:

SELECT x FROM T ORDER BY x;
SELECT x FROM T WHERE x = x;
SELECT DISTINCT x FROM T;

However, with multiple operands, there can be ambiguity. For example, this statement performs a
comparison between the column x and the string literal 'Y':

SELECT x FROM T WHERE x = 'Y';

If x and 'Y' have the same collation, there is no ambiguity about the collation to use for the comparison.
But if they have different collations, should the comparison use the collation of x, or of 'Y'? Both x and
'Y' have collations, so which collation takes precedence?

30

https://dev.mysql.com/doc/refman/8.0/en/logical-operators.html#operator_or

Collation Coercibility in Expressions

A mix of collations may also occur in contexts other than comparison. For example, a multiple-argument
concatenation operation such as CONCAT(x,'Y') combines its arguments to produce a single string.
What collation should the result have?

To resolve questions like these, MySQL checks whether the collation of one item can be coerced to the
collation of the other. MySQL assigns coercibility values as follows:

• An explicit COLLATE clause has a coercibility of 0 (not coercible at all).

• The concatenation of two strings with different collations has a coercibility of 1.

• The collation of a column or a stored routine parameter or local variable has a coercibility of 2.

• A “system constant” (the string returned by functions such as USER() or VERSION()) has a coercibility
of 3.

• The collation of a literal has a coercibility of 4.

• The collation of a numeric or temporal value has a coercibility of 5.

• NULL or an expression that is derived from NULL has a coercibility of 6.

MySQL uses coercibility values with the following rules to resolve ambiguities:

• Use the collation with the lowest coercibility value.

• If both sides have the same coercibility, then:

• If both sides are Unicode, or both sides are not Unicode, it is an error.

• If one of the sides has a Unicode character set, and another side has a non-Unicode character set, the
side with Unicode character set wins, and automatic character set conversion is applied to the non-
Unicode side. For example, the following statement does not return an error:

SELECT CONCAT(utf8mb4_column, latin1_column) FROM t1;

It returns a result that has a character set of utf8mb4 and the same collation as utf8mb4_column.
Values of latin1_column are automatically converted to utf8mb4 before concatenating.

• For an operation with operands from the same character set but that mix a _bin collation and a _ci
or _cs collation, the _bin collation is used. This is similar to how operations that mix nonbinary and
binary strings evaluate the operands as binary strings, applied to collations rather than data types.

Although automatic conversion is not in the SQL standard, the standard does say that every character
set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-known principle that
“what applies to a superset can apply to a subset,” we believe that a collation for Unicode can apply
for comparisons with non-Unicode strings. More generally, MySQL uses the concept of character set
repertoire, which can sometimes be used to determine subset relationships among character sets and
enable conversion of operands in operations that would otherwise produce an error. See Section 1.2.1,
“Character Set Repertoire”.

The following table illustrates some applications of the preceding rules.

Comparison Collation Used

column1 = 'A' Use collation of column1

column1 = 'A' COLLATE x Use collation of 'A' COLLATE x

column1 COLLATE x = 'A' COLLATE y Error

31

https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_concat
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_version

The binary Collation Compared to _bin Collations

To determine the coercibility of a string expression, use the COERCIBILITY() function (see Information
Functions):

mysql> SELECT COERCIBILITY(_utf8mb4'A' COLLATE utf8mb4_bin);
 -> 0
mysql> SELECT COERCIBILITY(VERSION());
 -> 3
mysql> SELECT COERCIBILITY('A');
 -> 4
mysql> SELECT COERCIBILITY(1000);
 -> 5
mysql> SELECT COERCIBILITY(NULL);
 -> 6

For implicit conversion of a numeric or temporal value to a string, such as occurs for the argument 1 in
the expression CONCAT(1, 'abc'), the result is a character (nonbinary) string that has a character set
and collation determined by the character_set_connection and collation_connection system
variables. See Type Conversion in Expression Evaluation.

1.8.5 The binary Collation Compared to _bin Collations

This section describes how the binary collation for binary strings compares to _bin collations for
nonbinary strings.

Binary strings (as stored using the BINARY, VARBINARY, and BLOB data types) have a character set and
collation named binary. Binary strings are sequences of bytes and the numeric values of those bytes
determine comparison and sort order. See Section 1.10.8, “The Binary Character Set”.

Nonbinary strings (as stored using the CHAR, VARCHAR, and TEXT data types) have a character set and
collation other than binary. A given nonbinary character set can have several collations, each of which
defines a particular comparison and sort order for the characters in the set. For most character sets, one
of these is the binary collation, indicated by a _bin suffix in the collation name. For example, the binary
collations for latin1 and big5 are named latin1_bin and big5_bin, respectively. utf8mb4 is an
exception that has two binary collations, utf8mb4_bin and utf8mb4_0900_bin; see Section 1.10.1,
“Unicode Character Sets”.

The binary collation differs from _bin collations in several respects, discussed in the following sections:

• The Unit for Comparison and Sorting

• Character Set Conversion

• Lettercase Conversion

• Trailing Space Handling in Comparisons

• Trailing Space Handling for Inserts and Retrievals

The Unit for Comparison and Sorting

Binary strings are sequences of bytes. For the binary collation, comparison and sorting are based on
numeric byte values. Nonbinary strings are sequences of characters, which might be multibyte. Collations
for nonbinary strings define an ordering of the character values for comparison and sorting. For _bin
collations, this ordering is based on numeric character code values, which is similar to ordering for binary
strings except that character code values might be multibyte.

Character Set Conversion

A nonbinary string has a character set and is automatically converted to another character set in many
cases, even when the string has a _bin collation:

32

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_coercibility
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_concat
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_connection
https://dev.mysql.com/doc/refman/8.0/en/type-conversion.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

The binary Collation Compared to _bin Collations

• When assigning column values to another column that has a different character set:

UPDATE t1 SET utf8mb4_bin_column=latin1_column;
INSERT INTO t1 (latin1_column) SELECT utf8mb4_bin_column FROM t2;

• When assigning column values for INSERT or UPDATE using a string literal:

SET NAMES latin1;
INSERT INTO t1 (utf8mb4_bin_column) VALUES ('string-in-latin1');

• When sending results from the server to a client:

SET NAMES latin1;
SELECT utf8mb4_bin_column FROM t2;

For binary string columns, no conversion occurs. For cases similar to those preceding, the string value is
copied byte-wise.

Lettercase Conversion

Collations for nonbinary character sets provide information about lettercase of characters, so characters
in a nonbinary string can be converted from one lettercase to another, even for _bin collations that ignore
lettercase for ordering:

mysql> SET NAMES utf8mb4 COLLATE utf8mb4_bin;
mysql> SELECT LOWER('aA'), UPPER('zZ');
+-------------+-------------+
| LOWER('aA') | UPPER('zZ') |
+-------------+-------------+
| aa | ZZ |
+-------------+-------------+

The concept of lettercase does not apply to bytes in a binary string. To perform lettercase conversion, the
string must first be converted to a nonbinary string using a character set appropriate for the data stored in
the string:

mysql> SET NAMES binary;
mysql> SELECT LOWER('aA'), LOWER(CONVERT('aA' USING utf8mb4));
+-------------+------------------------------------+
| LOWER('aA') | LOWER(CONVERT('aA' USING utf8mb4)) |
+-------------+------------------------------------+
| aA | aa |
+-------------+------------------------------------+

Trailing Space Handling in Comparisons

MySQL collations have a pad attribute, which has a value of PAD SPACE or NO PAD:

• Most MySQL collations have a pad attribute of PAD SPACE.

• The Unicode collations based on UCA 9.0.0 and higher have a pad attribute of NO PAD; see
Section 1.10.1, “Unicode Character Sets”.

For nonbinary strings (CHAR, VARCHAR, and TEXT values), the string collation pad attribute determines
treatment in comparisons of trailing spaces at the end of strings:

• For PAD SPACE collations, trailing spaces are insignificant in comparisons; strings are compared without
regard to trailing spaces.

• NO PAD collations treat trailing spaces as significant in comparisons, like any other character.

33

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html

The binary Collation Compared to _bin Collations

The differing behaviors can be demonstrated using the two utf8mb4 binary collations, one of which is PAD
SPACE, the other of which is NO PAD. The example also shows how to use the INFORMATION_SCHEMA
COLLATIONS table to determine the pad attribute for collations.

mysql> SELECT COLLATION_NAME, PAD_ATTRIBUTE
 FROM INFORMATION_SCHEMA.COLLATIONS
 WHERE COLLATION_NAME LIKE 'utf8mb4%bin';
+------------------+---------------+
| COLLATION_NAME | PAD_ATTRIBUTE |
+------------------+---------------+
| utf8mb4_bin | PAD SPACE |
| utf8mb4_0900_bin | NO PAD |
+------------------+---------------+
mysql> SET NAMES utf8mb4 COLLATE utf8mb4_bin;
mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 1 |
+------------+
mysql> SET NAMES utf8mb4 COLLATE utf8mb4_0900_bin;
mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 0 |
+------------+

Note

“Comparison” in this context does not include the LIKE pattern-matching operator,
for which trailing spaces are significant, regardless of collation.

For binary strings (BINARY, VARBINARY, and BLOB values), all bytes are significant in comparisons,
including trailing spaces:

mysql> SET NAMES binary;
mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 0 |
+------------+

Trailing Space Handling for Inserts and Retrievals

CHAR(N) columns store nonbinary strings N characters long. For inserts, values shorter than N characters
are extended with spaces. For retrievals, trailing spaces are removed.

BINARY(N) columns store binary strings N bytes long. For inserts, values shorter than N bytes are
extended with 0x00 bytes. For retrievals, nothing is removed; a value of the declared length is always
returned.

mysql> CREATE TABLE t1 (
 a CHAR(10) CHARACTER SET utf8mb4 COLLATE utf8mb4_bin,
 b BINARY(10)
);
mysql> INSERT INTO t1 VALUES ('x','x');
mysql> INSERT INTO t1 VALUES ('x ','x ');
mysql> SELECT a, b, HEX(a), HEX(b) FROM t1;
+------+------------------------+--------+----------------------+
| a | b | HEX(a) | HEX(b) |
+------+------------------------+--------+----------------------+
| x | 0x78000000000000000000 | 78 | 78000000000000000000 |

34

https://dev.mysql.com/doc/refman/8.0/en/information-schema-collations-table.html
https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like

Examples of the Effect of Collation

| x | 0x78200000000000000000 | 78 | 78200000000000000000 |
+------+------------------------+--------+----------------------+

1.8.6 Examples of the Effect of Collation

Example 1: Sorting German Umlauts

Suppose that column X in table T has these latin1 column values:

Muffler
Müller
MX Systems
MySQL

Suppose also that the column values are retrieved using the following statement:

SELECT X FROM T ORDER BY X COLLATE collation_name;

The following table shows the resulting order of the values if we use ORDER BY with different collations.

latin1_swedish_ci latin1_german1_ci latin1_german2_ci

Muffler Muffler Müller

MX Systems Müller Muffler

Müller MX Systems MX Systems

MySQL MySQL MySQL

The character that causes the different sort orders in this example is ü (German “U-umlaut”).

• The first column shows the result of the SELECT using the Swedish/Finnish collating rule, which says
that U-umlaut sorts with Y.

• The second column shows the result of the SELECT using the German DIN-1 rule, which says that U-
umlaut sorts with U.

• The third column shows the result of the SELECT using the German DIN-2 rule, which says that U-umlaut
sorts with UE.

Example 2: Searching for German Umlauts

Suppose that you have three tables that differ only by the character set and collation used:

mysql> SET NAMES utf8mb4;
mysql> CREATE TABLE german1 (
 c CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_german1_ci;
mysql> CREATE TABLE german2 (
 c CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_german2_ci;
mysql> CREATE TABLE germanutf8 (
 c CHAR(10)
) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

Each table contains two records:

mysql> INSERT INTO german1 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO german2 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO germanutf8 VALUES ('Bar'), ('Bär');

Two of the above collations have an A = Ä equality, and one has no such equality
(latin1_german2_ci). For that reason, comparisons yield the results shown here:

35

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Using Collation in INFORMATION_SCHEMA Searches

mysql> SELECT * FROM german1 WHERE c = 'Bär';
+------+
| c |
+------+
| Bar |
| Bär |
+------+
mysql> SELECT * FROM german2 WHERE c = 'Bär';
+------+
| c |
+------+
| Bär |
+------+
mysql> SELECT * FROM germanutf8 WHERE c = 'Bär';
+------+
| c |
+------+
| Bar |
| Bär |
+------+

This is not a bug but rather a consequence of the sorting properties of latin1_german1_ci and
utf8mb4_unicode_ci (the sorting shown is done according to the German DIN 5007 standard).

1.8.7 Using Collation in INFORMATION_SCHEMA Searches

String columns in INFORMATION_SCHEMA tables have a collation of utf8mb3_general_ci, which
is case-insensitive. However, for values that correspond to objects that are represented in the file
system, such as databases and tables, searches in INFORMATION_SCHEMA string columns can be
case-sensitive or case-insensitive, depending on the characteristics of the underlying file system and the
lower_case_table_names system variable setting. For example, searches may be case-sensitive if the
file system is case-sensitive. This section describes this behavior and how to modify it if necessary.

Suppose that a query searches the SCHEMATA.SCHEMA_NAME column for the test database. On Linux,
file systems are case-sensitive, so comparisons of SCHEMATA.SCHEMA_NAME with 'test' match, but
comparisons with 'TEST' do not:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+
mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'TEST';
Empty set (0.00 sec)

These results occur with the lower_case_table_names system variable set to 0. A
lower_case_table_names setting of 1 or 2 causes the second query to return the same (nonempty)
result as the first query.

Note

It is prohibited to start the server with a lower_case_table_names setting that is
different from the setting used when the server was initialized.

On Windows or macOS, file systems are not case-sensitive, so comparisons match both 'test' and
'TEST':

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'test';

36

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lower_case_table_names
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lower_case_table_names
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lower_case_table_names
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lower_case_table_names

Using Collation in INFORMATION_SCHEMA Searches

+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+
mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'TEST';
+-------------+
| SCHEMA_NAME |
+-------------+
| TEST |
+-------------+

The value of lower_case_table_names makes no difference in this context.

The preceding behavior occurs because the utf8mb3_general_ci collation is not used for
INFORMATION_SCHEMA queries when searching for values that correspond to objects represented in the
file system.

If the result of a string operation on an INFORMATION_SCHEMA column differs from expectations, a
workaround is to use an explicit COLLATE clause to force a suitable collation (see Section 1.8.1, “Using
COLLATE in SQL Statements”). For example, to perform a case-insensitive search, use COLLATE with the
INFORMATION_SCHEMA column name:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME COLLATE utf8mb3_general_ci = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+
mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME COLLATE utf8mb3_general_ci = 'TEST';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+

You can also use the UPPER() or LOWER() function:

WHERE UPPER(SCHEMA_NAME) = 'TEST'
WHERE LOWER(SCHEMA_NAME) = 'test'

Although a case-insensitive comparison can be performed even on platforms with case-sensitive file
systems, as just shown, it is not necessarily always the right thing to do. On such platforms, it is possible
to have multiple objects with names that differ only in lettercase. For example, tables named city, CITY,
and City can all exist simultaneously. Consider whether a search should match all such names or just
one and write queries accordingly. The first of the following comparisons (with utf8mb3_bin) is case-
sensitive; the others are not:

WHERE TABLE_NAME COLLATE utf8mb3_bin = 'City'
WHERE TABLE_NAME COLLATE utf8mb3_general_ci = 'city'
WHERE UPPER(TABLE_NAME) = 'CITY'
WHERE LOWER(TABLE_NAME) = 'city'

Searches in INFORMATION_SCHEMA string columns for values that refer to INFORMATION_SCHEMA itself
do use the utf8mb3_general_ci collation because INFORMATION_SCHEMA is a “virtual” database
not represented in the file system. For example, comparisons with SCHEMATA.SCHEMA_NAME match
'information_schema' or 'INFORMATION_SCHEMA' regardless of platform:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'information_schema';

37

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lower_case_table_names
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_upper
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_lower

Unicode Support

+--------------------+
| SCHEMA_NAME |
+--------------------+
| information_schema |
+--------------------+
mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'INFORMATION_SCHEMA';
+--------------------+
| SCHEMA_NAME |
+--------------------+
| information_schema |
+--------------------+

1.9 Unicode Support
The Unicode Standard includes characters from the Basic Multilingual Plane (BMP) and supplementary
characters that lie outside the BMP. This section describes support for Unicode in MySQL. For information
about the Unicode Standard itself, visit the Unicode Consortium website.

BMP characters have these characteristics:

• Their code point values are between 0 and 65535 (or U+0000 and U+FFFF).

• They can be encoded in a variable-length encoding using 8, 16, or 24 bits (1 to 3 bytes).

• They can be encoded in a fixed-length encoding using 16 bits (2 bytes).

• They are sufficient for almost all characters in major languages.

Supplementary characters lie outside the BMP:

• Their code point values are between U+10000 and U+10FFFF).

• Unicode support for supplementary characters requires character sets that have a range outside BMP
characters and therefore take more space than BMP characters (up to 4 bytes per character).

The UTF-8 (Unicode Transformation Format with 8-bit units) method for encoding Unicode data is
implemented according to RFC 3629, which describes encoding sequences that take from one to four
bytes. The idea of UTF-8 is that various Unicode characters are encoded using byte sequences of different
lengths:

• Basic Latin letters, digits, and punctuation signs use one byte.

• Most European and Middle East script letters fit into a 2-byte sequence: extended Latin letters (with tilde,
macron, acute, grave and other accents), Cyrillic, Greek, Armenian, Hebrew, Arabic, Syriac, and others.

• Korean, Chinese, and Japanese ideographs use 3-byte or 4-byte sequences.

MySQL supports these Unicode character sets:

• utf8mb4: A UTF-8 encoding of the Unicode character set using one to four bytes per character.

• utf8mb3: A UTF-8 encoding of the Unicode character set using one to three bytes per character. This
character set is deprecated in MySQL 8.0, and you should use utf8mb4 instead.

• utf8: An alias for utf8mb3. In MySQL 8.0, this alias is deprecated; use utf8mb4 instead. utf8 is
expected in a future release to become an alias for utf8mb4.

• ucs2: The UCS-2 encoding of the Unicode character set using two bytes per character. Deprecated in
MySQL 8.0.28; you should expect support for this character set to be removed in a future release.

38

http://www.unicode.org/

Unicode Support

• utf16: The UTF-16 encoding for the Unicode character set using two or four bytes per character. Like
ucs2 but with an extension for supplementary characters.

• utf16le: The UTF-16LE encoding for the Unicode character set. Like utf16 but little-endian rather
than big-endian.

• utf32: The UTF-32 encoding for the Unicode character set using four bytes per character.

Note

The utf8mb3 character set is deprecated and you should expect it to be removed
in a future MySQL release. Please use utf8mb4 instead. utf8 is currently an alias
for utf8mb3, but it is now deprecated as such, and utf8 is expected subsequently
to become a reference to utf8mb4. Beginning with MySQL 8.0.28, utf8mb3 is
also displayed in place of utf8 in columns of Information Schema tables, and in the
output of SQL SHOW statements.

In addition, in MySQL 8.0.30, all collations using the utf8_ prefix are renamed
using the prefix utf8mb3_.

To avoid ambiguity about the meaning of utf8, consider specifying utf8mb4
explicitly for character set references.

Table 1.2, “Unicode Character Set General Characteristics”, summarizes the general characteristics of
Unicode character sets supported by MySQL.

Table 1.2 Unicode Character Set General Characteristics

Character Set Supported Characters Required Storage Per Character

utf8mb3, utf8 (deprecated) BMP only 1, 2, or 3 bytes

ucs2 BMP only 2 bytes

utf8mb4 BMP and supplementary 1, 2, 3, or 4 bytes

utf16 BMP and supplementary 2 or 4 bytes

utf16le BMP and supplementary 2 or 4 bytes

utf32 BMP and supplementary 4 bytes

Characters outside the BMP compare as REPLACEMENT CHARACTER and convert to '?' when converted
to a Unicode character set that supports only BMP characters (utf8mb3 or ucs2).

If you use character sets that support supplementary characters and thus are “wider” than the BMP-
only utf8mb3 and ucs2 character sets, there are potential incompatibility issues for your applications;
see Section 1.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”. That section also
describes how to convert tables from the (3-byte) utf8mb3 to the (4-byte) utf8mb4, and what constraints
may apply in doing so.

A similar set of collations is available for most Unicode character sets. For example, each has a
Danish collation, the names of which are utf8mb4_danish_ci, utf8mb3_danish_ci (deprecated),
utf8_danish_ci (deprecated), ucs2_danish_ci, utf16_danish_ci, and utf32_danish_ci. The
exception is utf16le, which has only two collations. For information about Unicode collations and their
differentiating properties, including collation properties for supplementary characters, see Section 1.10.1,
“Unicode Character Sets”.

The MySQL implementation of UCS-2, UTF-16, and UTF-32 stores characters in big-endian byte order and
does not use a byte order mark (BOM) at the beginning of values. Other database systems might use little-

39

The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)

endian byte order or a BOM. In such cases, conversion of values needs to be performed when transferring
data between those systems and MySQL. The implementation of UTF-16LE is little-endian.

MySQL uses no BOM for UTF-8 values.

Client applications that communicate with the server using Unicode should set the client character set
accordingly (for example, by issuing a SET NAMES 'utf8mb4' statement). Some character sets cannot
be used as the client character set. Attempting to use them with SET NAMES or SET CHARACTER SET
produces an error. See Impermissible Client Character Sets.

The following sections provide additional detail on the Unicode character sets in MySQL.

1.9.1 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)

The utf8mb4 character set has these characteristics:

• Supports BMP and supplementary characters.

• Requires a maximum of four bytes per multibyte character.

utf8mb4 contrasts with the utf8mb3 character set, which supports only BMP characters and uses a
maximum of three bytes per character:

• For a BMP character, utf8mb4 and utf8mb3 have identical storage characteristics: same code values,
same encoding, same length.

• For a supplementary character, utf8mb4 requires four bytes to store it, whereas utf8mb3 cannot
store the character at all. When converting utf8mb3 columns to utf8mb4, you need not worry about
converting supplementary characters because there are none.

utf8mb4 is a superset of utf8mb3, so for an operation such as the following concatenation, the result has
character set utf8mb4 and the collation of utf8mb4_col:

SELECT CONCAT(utf8mb3_col, utf8mb4_col);

Similarly, the following comparison in the WHERE clause works according to the collation of utf8mb4_col:

SELECT * FROM utf8mb3_tbl, utf8mb4_tbl
WHERE utf8mb3_tbl.utf8mb3_col = utf8mb4_tbl.utf8mb4_col;

For information about data type storage as it relates to multibyte character sets, see String Type Storage
Requirements.

1.9.2 The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding)

The utf8mb3 character set has these characteristics:

• Supports BMP characters only (no support for supplementary characters)

• Requires a maximum of three bytes per multibyte character.

Applications that use UTF-8 data but require supplementary character support should use utf8mb4 rather
than utf8mb3 (see Section 1.9.1, “The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)”).

Exactly the same set of characters is available in utf8mb3 and ucs2. That is, they have the same
repertoire.

Note

The recommended character set for MySQL is utf8mb4. All new applications
should use utf8mb4.

40

https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_repertoire

The utf8 Character Set (Deprecated alias for utf8mb3)

The utf8mb3 character set is deprecated. utf8mb3 remains supported for the
lifetimes of the MySQL 8.0.x and following LTS release series, as well as in MySQL
8.0.

Expect utf8mb3 to be removed in a future major release of MySQL.

Since changing character sets can be a complex and time-consuming task,
you should begin to prepare for this change now by using utf8mb4 for new
applications. For guidance in converting existing applications which use utfmb3, see
Section 1.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”.

utf8mb3 can be used in CHARACTER SET clauses, and utf8mb3_collation_substring in
COLLATE clauses, where collation_substring is bin, czech_ci, danish_ci, esperanto_ci,
estonian_ci, and so forth. For example:

CREATE TABLE t (s1 CHAR(1)) CHARACTER SET utf8mb3;
SELECT * FROM t WHERE s1 COLLATE utf8mb3_general_ci = 'x';
DECLARE x VARCHAR(5) CHARACTER SET utf8mb3 COLLATE utf8mb3_danish_ci;
SELECT CAST('a' AS CHAR CHARACTER SET utf8mb4) COLLATE utf8mb4_czech_ci;

Prior to MySQL 8.0.29, instances of utf8mb3 in statements were converted to utf8. In MySQL
8.0.30 and later, the reverse is true, so that in statements such as SHOW CREATE TABLE or SELECT
CHARACTER_SET_NAME FROM INFORMATION_SCHEMA.COLUMNS or SELECT COLLATION_NAME FROM
INFORMATION_SCHEMA.COLUMNS, users see the character set or collation name prefixed with utf8mb3
or utf8mb3_.

utf8mb3 is also valid (but deprecated) in contexts other than CHARACTER SET clauses. For example:

mysqld --character-set-server=utf8mb3

SET NAMES 'utf8mb3'; /* and other SET statements that have similar effect */
SELECT _utf8mb3 'a';

For information about data type storage as it relates to multibyte character sets, see String Type Storage
Requirements.

1.9.3 The utf8 Character Set (Deprecated alias for utf8mb3)

utf8 has been used by MySQL in the past as an alias for the utf8mb3 character set, but this usage is
now deprecated; in MySQL 8.0, SHOW statements and columns of INFORMATION_SCHEMA tables display
utf8mb3 instead. For more information, see Section 1.9.2, “The utf8mb3 Character Set (3-Byte UTF-8
Unicode Encoding)”.

Note

The recommended character set for MySQL is utf8mb4. All new applications
should use utf8mb4.

The utf8mb3 character set is deprecated. utf8mb3 remains supported for the
lifetimes of the MySQL 8.0.x and following LTS release series, as well as in MySQL
8.0.

Expect utf8mb3 to be removed in a future major release of MySQL.

Since changing character sets can be a complex and time-consuming task,
you should begin to prepare for this change now by using utf8mb4 for new

41

https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema.html

The ucs2 Character Set (UCS-2 Unicode Encoding)

applications. For guidance in converting existing applications which use utfmb3, see
Section 1.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”.

1.9.4 The ucs2 Character Set (UCS-2 Unicode Encoding)

Note

The ucs2 character set is deprecated in MySQL 8.0.28; expect it to be removed in
a future MySQL release. Please use utf8mb4 instead.

In UCS-2, every character is represented by a 2-byte Unicode code with the most significant byte first. For
example: LATIN CAPITAL LETTER A has the code 0x0041 and it is stored as a 2-byte sequence: 0x00
0x41. CYRILLIC SMALL LETTER YERU (Unicode 0x044B) is stored as a 2-byte sequence: 0x04 0x4B.
For Unicode characters and their codes, please refer to the Unicode Consortium website.

The ucs2 character set has these characteristics:

• Supports BMP characters only (no support for supplementary characters)

• Uses a fixed-length 16-bit encoding and requires two bytes per character.

1.9.5 The utf16 Character Set (UTF-16 Unicode Encoding)

The utf16 character set is the ucs2 character set with an extension that enables encoding of
supplementary characters:

• For a BMP character, utf16 and ucs2 have identical storage characteristics: same code values, same
encoding, same length.

• For a supplementary character, utf16 has a special sequence for representing the character using 32
bits. This is called the “surrogate” mechanism: For a number greater than 0xffff, take 10 bits and add
them to 0xd800 and put them in the first 16-bit word, take 10 more bits and add them to 0xdc00 and put
them in the next 16-bit word. Consequently, all supplementary characters require 32 bits, where the first
16 bits are a number between 0xd800 and 0xdbff, and the last 16 bits are a number between 0xdc00
and 0xdfff. Examples are in Section 15.5 Surrogates Area of the Unicode 4.0 document.

Because utf16 supports surrogates and ucs2 does not, there is a validity check that applies only in
utf16: You cannot insert a top surrogate without a bottom surrogate, or vice versa. For example:

INSERT INTO t (ucs2_column) VALUES (0xd800); /* legal */
INSERT INTO t (utf16_column)VALUES (0xd800); /* illegal */

There is no validity check for characters that are technically valid but are not true Unicode (that is,
characters that Unicode considers to be “unassigned code points” or “private use” characters or even
“illegals” like 0xffff). For example, since U+F8FF is the Apple Logo, this is legal:

INSERT INTO t (utf16_column)VALUES (0xf8ff); /* legal */

Such characters cannot be expected to mean the same thing to everyone.

Because MySQL must allow for the worst case (that one character requires four bytes) the maximum
length of a utf16 column or index is only half of the maximum length for a ucs2 column or index. For
example, the maximum length of a MEMORY table index key is 3072 bytes, so these statements create
tables with the longest permitted indexes for ucs2 and utf16 columns:

CREATE TABLE tf (s1 VARCHAR(1536) CHARACTER SET ucs2) ENGINE=MEMORY;
CREATE INDEX i ON tf (s1);
CREATE TABLE tg (s1 VARCHAR(768) CHARACTER SET utf16) ENGINE=MEMORY;
CREATE INDEX i ON tg (s1);

42

http://www.unicode.org/
http://www.unicode.org/versions/Unicode4.0.0/ch15.pdf

The utf16le Character Set (UTF-16LE Unicode Encoding)

1.9.6 The utf16le Character Set (UTF-16LE Unicode Encoding)

This is the same as utf16 but is little-endian rather than big-endian.

1.9.7 The utf32 Character Set (UTF-32 Unicode Encoding)

The utf32 character set is fixed length (like ucs2 and unlike utf16). utf32 uses 32 bits for every
character, unlike ucs2 (which uses 16 bits for every character), and unlike utf16 (which uses 16 bits for
some characters and 32 bits for others).

utf32 takes twice as much space as ucs2 and more space than utf16, but utf32 has the same
advantage as ucs2 that it is predictable for storage: The required number of bytes for utf32 equals the
number of characters times 4. Also, unlike utf16, there are no tricks for encoding in utf32, so the stored
value equals the code value.

To demonstrate how the latter advantage is useful, here is an example that shows how to determine a
utf8mb4 value given the utf32 code value:

/* Assume code value = 100cc LINEAR B WHEELED CHARIOT */
CREATE TABLE tmp (utf32_col CHAR(1) CHARACTER SET utf32,
 utf8mb4_col CHAR(1) CHARACTER SET utf8mb4);
INSERT INTO tmp VALUES (0x000100cc,NULL);
UPDATE tmp SET utf8mb4_col = utf32_col;
SELECT HEX(utf32_col),HEX(utf8mb4_col) FROM tmp;

MySQL is very forgiving about additions of unassigned Unicode characters or private-use-area characters.
There is in fact only one validity check for utf32: No code value may be greater than 0x10ffff. For
example, this is illegal:

INSERT INTO t (utf32_column) VALUES (0x110000); /* illegal */

1.9.8 Converting Between 3-Byte and 4-Byte Unicode Character Sets

This section describes issues that you may face when converting character data between the utf8mb3
and utf8mb4 character sets.

Note

This discussion focuses primarily on converting between utf8mb3 and utf8mb4,
but similar principles apply to converting between the ucs2 character set and
character sets such as utf16 or utf32.

The utf8mb3 and utf8mb4 character sets differ as follows:

• utf8mb3 supports only characters in the Basic Multilingual Plane (BMP). utf8mb4 additionally supports
supplementary characters that lie outside the BMP.

• utf8mb3 uses a maximum of three bytes per character. utf8mb4 uses a maximum of four bytes per
character.

Note

This discussion refers to the utf8mb3 and utf8mb4 character set names to be
explicit about referring to 3-byte and 4-byte UTF-8 character set data.

One advantage of converting from utf8mb3 to utf8mb4 is that this enables applications to use
supplementary characters. One tradeoff is that this may increase data storage space requirements.

43

Converting Between 3-Byte and 4-Byte Unicode Character Sets

In terms of table content, conversion from utf8mb3 to utf8mb4 presents no problems:

• For a BMP character, utf8mb4 and utf8mb3 have identical storage characteristics: same code values,
same encoding, same length.

• For a supplementary character, utf8mb4 requires four bytes to store it, whereas utf8mb3 cannot
store the character at all. When converting utf8mb3 columns to utf8mb4, you need not worry about
converting supplementary characters because there are none.

In terms of table structure, these are the primary potential incompatibilities:

• For the variable-length character data types (VARCHAR and the TEXT types), the maximum permitted
length in characters is less for utf8mb4 columns than for utf8mb3 columns.

• For all character data types (CHAR, VARCHAR, and the TEXT types), the maximum number of characters
that can be indexed is less for utf8mb4 columns than for utf8mb3 columns.

Consequently, to convert tables from utf8mb3 to utf8mb4, it may be necessary to change some column
or index definitions.

Tables can be converted from utf8mb3 to utf8mb4 by using ALTER TABLE. Suppose that a table has
this definition:

CREATE TABLE t1 (
 col1 CHAR(10) CHARACTER SET utf8mb3 COLLATE utf8mb3_unicode_ci NOT NULL,
 col2 CHAR(10) CHARACTER SET utf8mb3 COLLATE utf8mb3_bin NOT NULL
) CHARACTER SET utf8mb3;

The following statement converts t1 to use utf8mb4:

ALTER TABLE t1
 DEFAULT CHARACTER SET utf8mb4,
 MODIFY col1 CHAR(10)
 CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 MODIFY col2 CHAR(10)
 CHARACTER SET utf8mb4 COLLATE utf8mb4_bin NOT NULL;

The catch when converting from utf8mb3 to utf8mb4 is that the maximum length of a column or index
key is unchanged in terms of bytes. Therefore, it is smaller in terms of characters because the maximum
length of a character is four bytes instead of three. For the CHAR, VARCHAR, and TEXT data types, watch
for these issues when converting your MySQL tables:

• Check all definitions of utf8mb3 columns and make sure they do not exceed the maximum length for
the storage engine.

• Check all indexes on utf8mb3 columns and make sure they do not exceed the maximum length for the
storage engine. Sometimes the maximum can change due to storage engine enhancements.

If the preceding conditions apply, you must either reduce the defined length of columns or indexes, or
continue to use utf8mb3 rather than utf8mb4.

Here are some examples where structural changes may be needed:

• A TINYTEXT column can hold up to 255 bytes, so it can hold up to 85 3-byte or 63 4-byte characters.
Suppose that you have a TINYTEXT column that uses utf8mb3 but must be able to contain more than
63 characters. You cannot convert it to utf8mb4 unless you also change the data type to a longer type
such as TEXT.

Similarly, a very long VARCHAR column may need to be changed to one of the longer TEXT types if you
want to convert it from utf8mb3 to utf8mb4.

44

https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

Supported Character Sets and Collations

• InnoDB has a maximum index length of 767 bytes for tables that use COMPACT or REDUNDANT row
format, so for utf8mb3 or utf8mb4 columns, you can index a maximum of 255 or 191 characters,
respectively. If you currently have utf8mb3 columns with indexes longer than 191 characters, you must
index a smaller number of characters.

In an InnoDB table that uses COMPACT or REDUNDANT row format, these column and index definitions
are legal:

col1 VARCHAR(500) CHARACTER SET utf8mb3, INDEX (col1(255))

To use utf8mb4 instead, the index must be smaller:

col1 VARCHAR(500) CHARACTER SET utf8mb4, INDEX (col1(191))

Note

For InnoDB tables that use COMPRESSED or DYNAMIC row format, index key
prefixes longer than 767 bytes (up to 3072 bytes) are permitted. Tables created
with these row formats enable you to index a maximum of 1024 or 768 characters
for utf8mb3 or utf8mb4 columns, respectively. For related information, see
InnoDB Limits, and DYNAMIC Row Format.

The preceding types of changes are most likely to be required only if you have very long columns or
indexes. Otherwise, you should be able to convert your tables from utf8mb3 to utf8mb4 without
problems, using ALTER TABLE as described previously.

The following items summarize other potential incompatibilities:

• SET NAMES 'utf8mb4' causes use of the 4-byte character set for connection character sets. As long
as no 4-byte characters are sent from the server, there should be no problems. Otherwise, applications
that expect to receive a maximum of three bytes per character may have problems. Conversely,
applications that expect to send 4-byte characters must ensure that the server understands them.

• For replication, if character sets that support supplementary characters are to be used on the source, all
replicas must understand them as well.

Also, keep in mind the general principle that if a table has different definitions on the source and replica,
this can lead to unexpected results. For example, the differences in maximum index key length make it
risky to use utf8mb3 on the source and utf8mb4 on the replica.

If you have converted to utf8mb4, utf16, utf16le, or utf32, and then decide to convert back to
utf8mb3 or ucs2 (for example, to downgrade to an older version of MySQL), these considerations apply:

• utf8mb3 and ucs2 data should present no problems.

• The server must be recent enough to recognize definitions referring to the character set from which you
are converting.

• For object definitions that refer to the utf8mb4 character set, you can dump them with mysqldump prior
to downgrading, edit the dump file to change instances of utf8mb4 to utf8, and reload the file in the
older server, as long as there are no 4-byte characters in the data. The older server sees utf8 in the
dump file object definitions and create new objects that use the (3-byte) utf8 character set.

1.10 Supported Character Sets and Collations
This section indicates which character sets MySQL supports. There is one subsection for each group of
related character sets. For each character set, the permissible collations are listed.

45

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_compact_row_format
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_redundant_row_format
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_compact_row_format
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_redundant_row_format
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_compressed_row_format
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_dynamic_row_format
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_index_prefix
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_index_prefix
https://dev.mysql.com/doc/refman/8.0/en/innodb-limits.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-row-format.html#innodb-row-format-dynamic
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

Unicode Character Sets

To list the available character sets and their default collations, use the SHOW CHARACTER SET statement
or query the INFORMATION_SCHEMA CHARACTER_SETS table. For example:

mysql> SHOW CHARACTER SET;
+----------+---------------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+---------------------------------+---------------------+--------+
armscii8	ARMSCII-8 Armenian	armscii8_general_ci	1
ascii	US ASCII	ascii_general_ci	1
big5	Big5 Traditional Chinese	big5_chinese_ci	2
binary	Binary pseudo charset	binary	1
cp1250	Windows Central European	cp1250_general_ci	1
cp1251	Windows Cyrillic	cp1251_general_ci	1
cp1256	Windows Arabic	cp1256_general_ci	1
cp1257	Windows Baltic	cp1257_general_ci	1
cp850	DOS West European	cp850_general_ci	1
cp852	DOS Central European	cp852_general_ci	1
cp866	DOS Russian	cp866_general_ci	1
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
euckr	EUC-KR Korean	euckr_korean_ci	2
gb18030	China National Standard GB18030	gb18030_chinese_ci	4
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
geostd8	GEOSTD8 Georgian	geostd8_general_ci	1
greek	ISO 8859-7 Greek	greek_general_ci	1
hebrew	ISO 8859-8 Hebrew	hebrew_general_ci	1
hp8	HP West European	hp8_english_ci	1
keybcs2	DOS Kamenicky Czech-Slovak	keybcs2_general_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
koi8u	KOI8-U Ukrainian	koi8u_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
macce	Mac Central European	macce_general_ci	1
macroman	Mac West European	macroman_general_ci	1
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
swe7	7bit Swedish	swe7_swedish_ci	1
tis620	TIS620 Thai	tis620_thai_ci	1
ucs2	UCS-2 Unicode	ucs2_general_ci	2
ujis	EUC-JP Japanese	ujis_japanese_ci	3
utf16	UTF-16 Unicode	utf16_general_ci	4
utf16le	UTF-16LE Unicode	utf16le_general_ci	4
utf32	UTF-32 Unicode	utf32_general_ci	4
utf8mb3	UTF-8 Unicode	utf8mb3_general_ci	3
utf8mb4	UTF-8 Unicode	utf8mb4_0900_ai_ci	4
+----------+---------------------------------+---------------------+--------+

In cases where a character set has multiple collations, it might not be clear which collation is most
suitable for a given application. To avoid choosing the wrong collation, it can be helpful to perform some
comparisons with representative data values to make sure that a given collation sorts values the way you
expect.

1.10.1 Unicode Character Sets

This section describes the collations available for Unicode character sets and their differentiating
properties. For general information about Unicode, see Section 1.9, “Unicode Support”.

MySQL supports multiple Unicode character sets:

• utf8mb4: A UTF-8 encoding of the Unicode character set using one to four bytes per character.

46

https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-character-sets-table.html

Unicode Character Sets

• utf8mb3: A UTF-8 encoding of the Unicode character set using one to three bytes per character. This
character set is deprecated in MySQL 8.0, and you should use utf8mb4 instead.

• utf8: An alias for utf8mb3. In MySQL 8.0, this alias is deprecated; use utf8mb4 instead. utf8 is
expected in a future release to become an alias for utf8mb4.

• ucs2: The UCS-2 encoding of the Unicode character set using two bytes per character. Deprecated in
MySQL 8.0.28; you should expect support for this character set to be removed in a future release.

• utf16: The UTF-16 encoding for the Unicode character set using two or four bytes per character. Like
ucs2 but with an extension for supplementary characters.

• utf16le: The UTF-16LE encoding for the Unicode character set. Like utf16 but little-endian rather
than big-endian.

• utf32: The UTF-32 encoding for the Unicode character set using four bytes per character.

Note

The utf8mb3 character set is deprecated and you should expect it to be removed
in a future MySQL release. Please use utf8mb4 instead. utf8 is currently an alias
for utf8mb3, but it is now deprecated as such, and utf8 is expected subsequently
to become a reference to utf8mb4. Beginning with MySQL 8.0.28, utf8mb3 is
also displayed in place of utf8 in columns of Information Schema tables, and in the
output of SQL SHOW statements.

To avoid ambiguity about the meaning of utf8, consider specifying utf8mb4
explicitly for character set references.

utf8mb4, utf16, utf16le, and utf32 support Basic Multilingual Plane (BMP) characters and
supplementary characters that lie outside the BMP. utf8mb3 and ucs2 support only BMP characters.

Most Unicode character sets have a general collation (indicated by _general in the name or
by the absence of a language specifier), a binary collation (indicated by _bin in the name),
and several language-specific collations (indicated by language specifiers). For example, for
utf8mb4, utf8mb4_general_ci and utf8mb4_bin are its general and binary collations, and
utf8mb4_danish_ci is one of its language-specific collations.

Most character sets have a single binary collation. utf8mb4 is an exception that has two: utf8mb4_bin
and (as of MySQL 8.0.17) utf8mb4_0900_bin. These two binary collations have the same sort order but
are distinguished by their pad attribute and collating weight characteristics. See Collation Pad Attributes,
and Character Collating Weights.

Collation support for utf16le is limited. The only collations available are utf16le_general_ci and
utf16le_bin. These are similar to utf16_general_ci and utf16_bin.

• Unicode Collation Algorithm (UCA) Versions

• Collation Pad Attributes

• Language-Specific Collations

• _general_ci Versus _unicode_ci Collations

• Character Collating Weights

• Miscellaneous Information

Unicode Collation Algorithm (UCA) Versions

47

Unicode Character Sets

MySQL implements the xxx_unicode_ci collations according to the Unicode Collation Algorithm (UCA)
described at http://www.unicode.org/reports/tr10/. The collation uses the version-4.0.0 UCA weight keys:
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. The xxx_unicode_ci collations have only
partial support for the Unicode Collation Algorithm. Some characters are not supported, and combining
marks are not fully supported. This affects languages such as Vietnamese, Yoruba, and Navajo. A
combined character is considered different from the same character written with a single unicode character
in string comparisons, and the two characters are considered to have a different length (for example, as
returned by the CHAR_LENGTH() function or in result set metadata).

Unicode collations based on UCA versions higher than 4.0.0 include the version in the collation name.
Examples:

• utf8mb4_unicode_520_ci is based on UCA 5.2.0 weight keys (http://www.unicode.org/Public/
UCA/5.2.0/allkeys.txt),

• utf8mb4_0900_ai_ci is based on UCA 9.0.0 weight keys (http://www.unicode.org/Public/UCA/9.0.0/
allkeys.txt).

The LOWER() and UPPER() functions perform case folding according to the collation of their argument.
A character that has uppercase and lowercase versions only in a Unicode version higher than 4.0.0 is
converted by these functions only if the argument collation uses a high enough UCA version.

Collation Pad Attributes

Collations based on UCA 9.0.0 and higher are faster than collations based on UCA versions prior to 9.0.0.
They also have a pad attribute of NO PAD, in contrast to PAD SPACE as used in collations based on UCA
versions prior to 9.0.0. For comparison of nonbinary strings, NO PAD collations treat spaces at the end of
strings like any other character (see Trailing Space Handling in Comparisons).

To determine the pad attribute for a collation, use the INFORMATION_SCHEMA COLLATIONS table, which
has a PAD_ATTRIBUTE column. For example:

mysql> SELECT COLLATION_NAME, PAD_ATTRIBUTE
 FROM INFORMATION_SCHEMA.COLLATIONS
 WHERE CHARACTER_SET_NAME = 'utf8mb4';
+----------------------------+---------------+
| COLLATION_NAME | PAD_ATTRIBUTE |
+----------------------------+---------------+
utf8mb4_general_ci	PAD SPACE
utf8mb4_bin	PAD SPACE
utf8mb4_unicode_ci	PAD SPACE
utf8mb4_icelandic_ci	PAD SPACE
...	
utf8mb4_0900_ai_ci	NO PAD
utf8mb4_de_pb_0900_ai_ci	NO PAD
utf8mb4_is_0900_ai_ci	NO PAD
...	
utf8mb4_ja_0900_as_cs	NO PAD
utf8mb4_ja_0900_as_cs_ks	NO PAD
utf8mb4_0900_as_ci	NO PAD
utf8mb4_ru_0900_ai_ci	NO PAD
utf8mb4_ru_0900_as_cs	NO PAD
utf8mb4_zh_0900_as_cs	NO PAD
utf8mb4_0900_bin	NO PAD
+----------------------------+---------------+

Comparison of nonbinary string values (CHAR, VARCHAR, and TEXT) that have a NO PAD collation differ
from other collations with respect to trailing spaces. For example, 'a' and 'a ' compare as different
strings, not the same string. This can be seen using the binary collations for utf8mb4. The pad attribute
for utf8mb4_bin is PAD SPACE, whereas for utf8mb4_0900_bin it is NO PAD. Consequently,

48

http://www.unicode.org/reports/tr10/
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_char-length
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/9.0.0/allkeys.txt
http://www.unicode.org/Public/UCA/9.0.0/allkeys.txt
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_lower
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_upper
https://dev.mysql.com/doc/refman/8.0/en/information-schema-collations-table.html

Unicode Character Sets

operations involving utf8mb4_0900_bin do not add trailing spaces, and comparisons involving strings
with trailing spaces may differ for the two collations:

mysql> CREATE TABLE t1 (c CHAR(10) COLLATE utf8mb4_bin);
Query OK, 0 rows affected (0.03 sec)
mysql> INSERT INTO t1 VALUES('a');
Query OK, 1 row affected (0.01 sec)
mysql> SELECT * FROM t1 WHERE c = 'a ';
+------+
| c |
+------+
| a |
+------+
1 row in set (0.00 sec)
mysql> ALTER TABLE t1 MODIFY c CHAR(10) COLLATE utf8mb4_0900_bin;
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> SELECT * FROM t1 WHERE c = 'a ';
Empty set (0.00 sec)

Language-Specific Collations

MySQL implements language-specific Unicode collations if the ordering based only on the Unicode
Collation Algorithm (UCA) does not work well for a language. Language-specific collations are UCA-based,
with additional language tailoring rules. Examples of such rules appear later in this section. For questions
about particular language orderings, http://unicode.org provides Common Locale Data Repository (CLDR)
collation charts at http://www.unicode.org/cldr/charts/30/collation/index.html.

For example, the nonlanguage-specific utf8mb4_0900_ai_ci and language-specific
utf8mb4_LOCALE_0900_ai_ci Unicode collations each have these characteristics:

• The collation is based on UCA 9.0.0 and CLDR v30, is accent-insensitive and case-insensitive.
These characteristics are indicated by _0900, _ai, and _ci in the collation name. Exception:
utf8mb4_la_0900_ai_ci is not based on CLDR because Classical Latin is not defined in CLDR.

• The collation works for all characters in the range [U+0, U+10FFFF].

• If the collation is not language specific, it sorts all characters, including supplementary characters,
in default order (described following). If the collation is language specific, it sorts characters of the
language correctly according to language-specific rules, and characters not in the language in default
order.

• By default, the collation sorts characters having a code point listed in the DUCET table (Default Unicode
Collation Element Table) according to the weight value assigned in the table. The collation sorts
characters not having a code point listed in the DUCET table using their implicit weight value, which is
constructed according to the UCA.

• For non-language-specific collations, characters in contraction sequences are treated as separate
characters. For language-specific collations, contractions might change character sorting order.

A collation name that includes a locale code or language name shown in the following table is a language-
specific collation. Unicode character sets may include collations for one or more of these languages.

Table 1.3 Unicode Collation Language Specifiers

Language Language Specifier

Bosnian bs

Bulgarian bg

Chinese zh

49

http://unicode.org
http://www.unicode.org/cldr/charts/30/collation/index.html

Unicode Character Sets

Language Language Specifier

Classical Latin la or roman

Croatian hr or croatian

Czech cs or czech

Danish da or danish

Esperanto eo or esperanto

Estonian et or estonian

Galician gl

German phone book order de_pb or german2

Hungarian hu or hungarian

Icelandic is or icelandic

Japanese ja

Latvian lv or latvian

Lithuanian lt or lithuanian

Mongolian mn

Norwegian / Bokmål nb

Norwegian / Nynorsk nn

Persian persian

Polish pl or polish

Romanian ro or romanian

Russian ru

Serbian sr

Sinhala sinhala

Slovak sk or slovak

Slovenian sl or slovenian

Modern Spanish es or spanish

Traditional Spanish es_trad or spanish2

Swedish sv or swedish

Turkish tr or turkish

Vietnamese vi or vietnamese

MySQL 8.0.30 and later provides the Bulgarian collations utf8mb4_bg_0900_ai_ci and
utf8mb4_bg_0900_as_cs.

Croatian collations are tailored for these Croatian letters: Č, Ć, Dž, Đ, Lj, Nj, Š, Ž.

MySQL 8.0.30 and later provides the utf8mb4_sr_latn_0900_ai_ci and
utf8mb4_sr_latn_0900_as_cs collations for Serbian and the utf8mb4_bs_0900_ai_ci and
utf8mb4_bs_0900_as_cs collations for Bosnian, when these languages are written with the Latin
alphabet.

Beginning with MySQL 8.0.30, MySQL provides collations for both major varieties of Norwegian: for
Bokmål, you can use utf8mb4_nb_0900_ai_ci and utf8mb4_nb_0900_as_cs; for Nynorsk, MySQL
now provides utf8mb4_nn_0900_ai_ci and utf8mb4_nn_0900_as_cs.

50

Unicode Character Sets

For Japanese, the utf8mb4 character set includes utf8mb4_ja_0900_as_cs and
utf8mb4_ja_0900_as_cs_ks collations. Both collations are accent-sensitive and case-sensitive.
utf8mb4_ja_0900_as_cs_ks is also kana-sensitive and distinguishes Katakana characters from
Hiragana characters, whereas utf8mb4_ja_0900_as_cs treats Katakana and Hiragana characters
as equal for sorting. Applications that require a Japanese collation but not kana sensitivity may use
utf8mb4_ja_0900_as_cs for better sort performance. utf8mb4_ja_0900_as_cs uses three weight
levels for sorting; utf8mb4_ja_0900_as_cs_ks uses four.

For Classical Latin collations that are accent-insensitive, I and J compare as equal, and U and V compare
as equal. I and J, and U and V compare as equal on the base letter level. In other words, J is regarded as
an accented I, and U is regarded as an accented V.

MySQL 8.0.30 and later provides collations for the Mongolian language when written with Cyrillic
characters, utf8mb4_mn_cyrl_0900_ai_ci and utf8mb4_mn_cyrl_0900_as_cs.

Spanish collations are available for modern and traditional Spanish. For both, ñ (n-tilde) is a separate letter
between n and o. In addition, for traditional Spanish, ch is a separate letter between c and d, and ll is a
separate letter between l and m.

Traditional Spanish collations may also be used for Asturian and Galician. Beginning with MySQL 8.0.30,
MySQL also provides utf8mb4_gl_0900_ai_ci and utf8mb4_gl_0900_as_cs collations for
Galician. (These are the same collations as utf8mb4_es_0900_ai_ci and utf8mb4_es_0900_as_cs,
respectively.)

Swedish collations include Swedish rules. For example, in Swedish, the following relationship holds, which
is not something expected by a German or French speaker:

Ü = Y < Ö

_general_ci Versus _unicode_ci Collations

For any Unicode character set, operations performed using the xxx_general_ci collation are faster
than those for the xxx_unicode_ci collation. For example, comparisons for the utf8mb4_general_ci
collation are faster, but slightly less correct, than comparisons for utf8mb4_unicode_ci. The reason
is that utf8mb4_unicode_ci supports mappings such as expansions; that is, when one character
compares as equal to combinations of other characters. For example, ß is equal to ss in German and
some other languages. utf8mb4_unicode_ci also supports contractions and ignorable characters.
utf8mb4_general_ci is a legacy collation that does not support expansions, contractions, or ignorable
characters. It can make only one-to-one comparisons between characters.

To further illustrate, the following equalities hold in both utf8mb4_general_ci and
utf8mb4_unicode_ci (for the effect of this in comparisons or searches, see Section 1.8.6, “Examples of
the Effect of Collation”):

Ä = A
Ö = O
Ü = U

A difference between the collations is that this is true for utf8mb4_general_ci:

ß = s

Whereas this is true for utf8mb4_unicode_ci, which supports the German DIN-1 ordering (also known
as dictionary order):

ß = ss

51

Unicode Character Sets

MySQL implements language-specific Unicode collations if the ordering with utf8mb4_unicode_ci does
not work well for a language. For example, utf8mb4_unicode_ci works fine for German dictionary order
and French, so there is no need to create special utf8mb4 collations.

utf8mb4_general_ci also is satisfactory for both German and French, except that ß is equal to
s, and not to ss. If this is acceptable for your application, you should use utf8mb4_general_ci
because it is faster. If this is not acceptable (for example, if you require German dictionary order), use
utf8mb4_unicode_ci because it is more accurate.

If you require German DIN-2 (phone book) ordering, use the utf8mb4_german2_ci collation, which
compares the following sets of characters equal:

Ä = Æ = AE
Ö = Œ = OE
Ü = UE
ß = ss

utf8mb4_german2_ci is similar to latin1_german2_ci, but the latter does not compare Æ equal to AE
or Œ equal to OE. There is no utf8mb4_german_ci corresponding to latin1_german_ci for German
dictionary order because utf8mb4_general_ci suffices.

Character Collating Weights

A character's collating weight is determined as follows:

• For all Unicode collations except the _bin (binary) collations, MySQL performs a table lookup to find a
character's collating weight.

• For _bin collations except utf8mb4_0900_bin, the weight is based on the code point, possibly with
leading zero bytes added.

• For utf8mb4_0900_bin, the weight is the utf8mb4 encoding bytes. The sort order is the same as for
utf8mb4_bin, but much faster.

Collating weights can be displayed using the WEIGHT_STRING() function. (See String Functions and
Operators.) If a collation uses a weight lookup table, but a character is not in the table (for example,
because it is a “new” character), collating weight determination becomes more complex:

• For BMP characters in general collations (xxx_general_ci), the weight is the code point.

• For BMP characters in UCA collations (for example, xxx_unicode_ci and language-specific
collations), the following algorithm applies:

if (code >= 0x3400 && code <= 0x4DB5)
 base= 0xFB80; /* CJK Ideograph Extension */
else if (code >= 0x4E00 && code <= 0x9FA5)
 base= 0xFB40; /* CJK Ideograph */
else
 base= 0xFBC0; /* All other characters */
aaaa= base + (code >> 15);
bbbb= (code & 0x7FFF) | 0x8000;

The result is a sequence of two collating elements, aaaa followed by bbbb. For example:

mysql> SELECT HEX(WEIGHT_STRING(_ucs2 0x04CF COLLATE ucs2_unicode_ci));
+--+
| HEX(WEIGHT_STRING(_ucs2 0x04CF COLLATE ucs2_unicode_ci)) |
+--+
| FBC084CF |

52

https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_weight-string
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html

Unicode Character Sets

+--+

Thus, U+04cf CYRILLIC SMALL LETTER PALOCHKA (ӏ) is, with all UCA 4.0.0 collations, greater than
U+04c0 CYRILLIC LETTER PALOCHKA (Ӏ). With UCA 5.2.0 collations, all palochkas sort together.

• For supplementary characters in general collations, the weight is the weight for 0xfffd REPLACEMENT
CHARACTER. For supplementary characters in UCA 4.0.0 collations, their collating weight is 0xfffd.
That is, to MySQL, all supplementary characters are equal to each other, and greater than almost all
BMP characters.

An example with Deseret characters and COUNT(DISTINCT):

CREATE TABLE t (s1 VARCHAR(5) CHARACTER SET utf32 COLLATE utf32_unicode_ci);
INSERT INTO t VALUES (0xfffd); /* REPLACEMENT CHARACTER */
INSERT INTO t VALUES (0x010412); /* DESERET CAPITAL LETTER BEE */
INSERT INTO t VALUES (0x010413); /* DESERET CAPITAL LETTER TEE */
SELECT COUNT(DISTINCT s1) FROM t;

The result is 2 because in the MySQL xxx_unicode_ci collations, the replacement character has a
weight of 0x0dc6, whereas Deseret Bee and Deseret Tee both have a weight of 0xfffd. (Were the
utf32_general_ci collation used instead, the result is 1 because all three characters have a weight of
0xfffd in that collation.)

An example with cuneiform characters and WEIGHT_STRING():

/*
The four characters in the INSERT string are
00000041 # LATIN CAPITAL LETTER A
0001218F # CUNEIFORM SIGN KAB
000121A7 # CUNEIFORM SIGN KISH
00000042 # LATIN CAPITAL LETTER B
*/
CREATE TABLE t (s1 CHAR(4) CHARACTER SET utf32 COLLATE utf32_unicode_ci);
INSERT INTO t VALUES (0x000000410001218f000121a700000042);
SELECT HEX(WEIGHT_STRING(s1)) FROM t;

The result is:

0E33 FFFD FFFD 0E4A

0E33 and 0E4A are primary weights as in UCA 4.0.0. FFFD is the weight for KAB and also for KISH.

The rule that all supplementary characters are equal to each other is nonoptimal but is not expected to
cause trouble. These characters are very rare, so it is very rare that a multi-character string consists
entirely of supplementary characters. In Japan, since the supplementary characters are obscure Kanji
ideographs, the typical user does not care what order they are in, anyway. If you really want rows sorted
by the MySQL rule and secondarily by code point value, it is easy:

ORDER BY s1 COLLATE utf32_unicode_ci, s1 COLLATE utf32_bin

• For supplementary characters based on UCA versions higher than 4.0.0 (for example,
xxx_unicode_520_ci), supplementary characters do not necessarily all have the same collating
weight. Some have explicit weights from the UCA allkeys.txt file. Others have weights calculated
from this algorithm:

aaaa= base + (code >> 15);
bbbb= (code & 0x7FFF) | 0x8000;

There is a difference between “ordering by the character's code value” and “ordering by the character's
binary representation,” a difference that appears only with utf16_bin, because of surrogates.

53

https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_weight-string
ftp://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

West European Character Sets

Suppose that utf16_bin (the binary collation for utf16) was a binary comparison “byte by byte” rather
than “character by character.” If that were so, the order of characters in utf16_bin would differ from the
order in utf8mb4_bin. For example, the following chart shows two rare characters. The first character
is in the range E000-FFFF, so it is greater than a surrogate but less than a supplementary. The second
character is a supplementary.

Code point Character utf8mb4 utf16
---------- --------- ------- -----
0FF9D HALFWIDTH KATAKANA LETTER N EF BE 9D FF 9D
10384 UGARITIC LETTER DELTA F0 90 8E 84 D8 00 DF 84

The two characters in the chart are in order by code point value because 0xff9d < 0x10384. And they
are in order by utf8mb4 value because 0xef < 0xf0. But they are not in order by utf16 value, if we use
byte-by-byte comparison, because 0xff > 0xd8.

So MySQL's utf16_bin collation is not “byte by byte.” It is “by code point.” When MySQL sees a
supplementary-character encoding in utf16, it converts to the character's code-point value, and then
compares. Therefore, utf8mb4_bin and utf16_bin are the same ordering. This is consistent with
the SQL:2008 standard requirement for a UCS_BASIC collation: “UCS_BASIC is a collation in which
the ordering is determined entirely by the Unicode scalar values of the characters in the strings being
sorted. It is applicable to the UCS character repertoire. Since every character repertoire is a subset of the
UCS repertoire, the UCS_BASIC collation is potentially applicable to every character set. NOTE 11: The
Unicode scalar value of a character is its code point treated as an unsigned integer.”

If the character set is ucs2, comparison is byte-by-byte, but ucs2 strings should not contain surrogates,
anyway.

Miscellaneous Information

The xxx_general_mysql500_ci collations preserve the pre-5.1.24 ordering of the original
xxx_general_ci collations and permit upgrades for tables created before MySQL 5.1.24 (Bug #27877).

1.10.2 West European Character Sets

Western European character sets cover most West European languages, such as French, Spanish,
Catalan, Basque, Portuguese, Italian, Albanian, Dutch, German, Danish, Swedish, Norwegian, Finnish,
Faroese, Icelandic, Irish, Scottish, and English.

• ascii (US ASCII) collations:

• ascii_bin

• ascii_general_ci (default)

• cp850 (DOS West European) collations:

• cp850_bin

• cp850_general_ci (default)

• dec8 (DEC Western European) collations:

• dec8_bin

• dec8_swedish_ci (default)

The dec character set is deprecated in MySQL 8.0.28; expect support for it to be removed in a
subsequent MySQL release.

54

West European Character Sets

• hp8 (HP Western European) collations:

• hp8_bin

• hp8_english_ci (default)

The hp8 character set is deprecated in MySQL 8.0.28; expect support for it to be removed in a
subsequent MySQL release.

• latin1 (cp1252 West European) collations:

• latin1_bin

• latin1_danish_ci

• latin1_general_ci

• latin1_general_cs

• latin1_german1_ci

• latin1_german2_ci

• latin1_spanish_ci

• latin1_swedish_ci (default)

MySQL's latin1 is the same as the Windows cp1252 character set. This means it is the same as
the official ISO 8859-1 or IANA (Internet Assigned Numbers Authority) latin1, except that IANA
latin1 treats the code points between 0x80 and 0x9f as “undefined,” whereas cp1252, and therefore
MySQL's latin1, assign characters for those positions. For example, 0x80 is the Euro sign. For the
“undefined” entries in cp1252, MySQL translates 0x81 to Unicode 0x0081, 0x8d to 0x008d, 0x8f to
0x008f, 0x90 to 0x0090, and 0x9d to 0x009d.

The latin1_swedish_ci collation is the default that probably is used by the majority of MySQL
customers. Although it is frequently said that it is based on the Swedish/Finnish collation rules, there are
Swedes and Finns who disagree with this statement.

The latin1_german1_ci and latin1_german2_ci collations are based on the DIN-1 and DIN-2
standards, where DIN stands for Deutsches Institut für Normung (the German equivalent of ANSI). DIN-1
is called the “dictionary collation” and DIN-2 is called the “phone book collation.” For an example of the
effect this has in comparisons or when doing searches, see Section 1.8.6, “Examples of the Effect of
Collation”.

• latin1_german1_ci (dictionary) rules:

Ä = A
Ö = O
Ü = U
ß = s

• latin1_german2_ci (phone-book) rules:

Ä = AE
Ö = OE
Ü = UE
ß = ss

In the latin1_spanish_ci collation, ñ (n-tilde) is a separate letter between n and o.

55

Central European Character Sets

• macroman (Mac West European) collations:

• macroman_bin

• macroman_general_ci (default)

macroroman is deprecated in MySQL 8.0.28; expect support for it to be removed in a subsequent
MySQL release.

• swe7 (7bit Swedish) collations:

• swe7_bin

• swe7_swedish_ci (default)

1.10.3 Central European Character Sets

MySQL provides some support for character sets used in the Czech Republic, Slovakia, Hungary,
Romania, Slovenia, Croatia, Poland, and Serbia (Latin).

• cp1250 (Windows Central European) collations:

• cp1250_bin

• cp1250_croatian_ci

• cp1250_czech_cs

• cp1250_general_ci (default)

• cp1250_polish_ci

• cp852 (DOS Central European) collations:

• cp852_bin

• cp852_general_ci (default)

• keybcs2 (DOS Kamenicky Czech-Slovak) collations:

• keybcs2_bin

• keybcs2_general_ci (default)

• latin2 (ISO 8859-2 Central European) collations:

• latin2_bin

• latin2_croatian_ci

• latin2_czech_cs

• latin2_general_ci (default)

• latin2_hungarian_ci

• macce (Mac Central European) collations:

• macce_bin

56

South European and Middle East Character Sets

• macce_general_ci (default)

macce is deprecated in MySQL 8.0.28; expect support for it to be removed in a subsequent MySQL
release.

1.10.4 South European and Middle East Character Sets

South European and Middle Eastern character sets supported by MySQL include Armenian, Arabic,
Georgian, Greek, Hebrew, and Turkish.

• armscii8 (ARMSCII-8 Armenian) collations:

• armscii8_bin

• armscii8_general_ci (default)

• cp1256 (Windows Arabic) collations:

• cp1256_bin

• cp1256_general_ci (default)

• geostd8 (GEOSTD8 Georgian) collations:

• geostd8_bin

• geostd8_general_ci (default)

• greek (ISO 8859-7 Greek) collations:

• greek_bin

• greek_general_ci (default)

• hebrew (ISO 8859-8 Hebrew) collations:

• hebrew_bin

• hebrew_general_ci (default)

• latin5 (ISO 8859-9 Turkish) collations:

• latin5_bin

• latin5_turkish_ci (default)

1.10.5 Baltic Character Sets

The Baltic character sets cover Estonian, Latvian, and Lithuanian languages.

• cp1257 (Windows Baltic) collations:

• cp1257_bin

• cp1257_general_ci (default)

• cp1257_lithuanian_ci

57

Cyrillic Character Sets

• latin7 (ISO 8859-13 Baltic) collations:

• latin7_bin

• latin7_estonian_cs

• latin7_general_ci (default)

• latin7_general_cs

1.10.6 Cyrillic Character Sets

The Cyrillic character sets and collations are for use with Belarusian, Bulgarian, Russian, Ukrainian, and
Serbian (Cyrillic) languages.

• cp1251 (Windows Cyrillic) collations:

• cp1251_bin

• cp1251_bulgarian_ci

• cp1251_general_ci (default)

• cp1251_general_cs

• cp1251_ukrainian_ci

• cp866 (DOS Russian) collations:

• cp866_bin

• cp866_general_ci (default)

• koi8r (KOI8-R Relcom Russian) collations:

• koi8r_bin

• koi8r_general_ci (default)

• koi8u (KOI8-U Ukrainian) collations:

• koi8u_bin

• koi8u_general_ci (default)

1.10.7 Asian Character Sets

The Asian character sets that we support include Chinese, Japanese, Korean, and Thai. These can
be complicated. For example, the Chinese sets must allow for thousands of different characters. See
Section 1.10.7.1, “The cp932 Character Set”, for additional information about the cp932 and sjis
character sets. See Section 1.10.7.2, “The gb18030 Character Set”, for additional information about
character set support for the Chinese National Standard GB 18030.

For answers to some common questions and problems relating support for Asian character sets in MySQL,
see MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets.

• big5 (Big5 Traditional Chinese) collations:

58

https://dev.mysql.com/doc/refman/8.0/en/faqs-cjk.html

Asian Character Sets

• big5_bin

• big5_chinese_ci (default)

• cp932 (SJIS for Windows Japanese) collations:

• cp932_bin

• cp932_japanese_ci (default)

• eucjpms (UJIS for Windows Japanese) collations:

• eucjpms_bin

• eucjpms_japanese_ci (default)

• euckr (EUC-KR Korean) collations:

• euckr_bin

• euckr_korean_ci (default)

• gb2312 (GB2312 Simplified Chinese) collations:

• gb2312_bin

• gb2312_chinese_ci (default)

• gbk (GBK Simplified Chinese) collations:

• gbk_bin

• gbk_chinese_ci (default)

• gb18030 (China National Standard GB18030) collations:

• gb18030_bin

• gb18030_chinese_ci (default)

• gb18030_unicode_520_ci

• sjis (Shift-JIS Japanese) collations:

• sjis_bin

• sjis_japanese_ci (default)

• tis620 (TIS620 Thai) collations:

• tis620_bin

• tis620_thai_ci (default)

• ujis (EUC-JP Japanese) collations:

• ujis_bin

• ujis_japanese_ci (default)

59

Asian Character Sets

The big5_chinese_ci collation sorts on number of strokes.

1.10.7.1 The cp932 Character Set

Why is cp932 needed?

In MySQL, the sjis character set corresponds to the Shift_JIS character set defined by IANA, which
supports JIS X0201 and JIS X0208 characters. (See http://www.iana.org/assignments/character-sets.)

However, the meaning of “SHIFT JIS” as a descriptive term has become very vague and it often includes
the extensions to Shift_JIS that are defined by various vendors.

For example, “SHIFT JIS” used in Japanese Windows environments is a Microsoft extension of
Shift_JIS and its exact name is Microsoft Windows Codepage : 932 or cp932. In addition to
the characters supported by Shift_JIS, cp932 supports extension characters such as NEC special
characters, NEC selected—IBM extended characters, and IBM selected characters.

Many Japanese users have experienced problems using these extension characters. These problems
stem from the following factors:

• MySQL automatically converts character sets.

• Character sets are converted using Unicode (ucs2).

• The sjis character set does not support the conversion of these extension characters.

• There are several conversion rules from so-called “SHIFT JIS” to Unicode, and some characters are
converted to Unicode differently depending on the conversion rule. MySQL supports only one of these
rules (described later).

The MySQL cp932 character set is designed to solve these problems.

Because MySQL supports character set conversion, it is important to separate IANA Shift_JIS and
cp932 into two different character sets because they provide different conversion rules.

How does cp932 differ from sjis?

The cp932 character set differs from sjis in the following ways:

• cp932 supports NEC special characters, NEC selected—IBM extended characters, and IBM selected
characters.

• Some cp932 characters have two different code points, both of which convert to the same Unicode code
point. When converting from Unicode back to cp932, one of the code points must be selected. For this
“round trip conversion,” the rule recommended by Microsoft is used. (See http://support.microsoft.com/
kb/170559/EN-US/.)

The conversion rule works like this:

• If the character is in both JIS X 0208 and NEC special characters, use the code point of JIS X 0208.

• If the character is in both NEC special characters and IBM selected characters, use the code point of
NEC special characters.

• If the character is in both IBM selected characters and NEC selected—IBM extended characters, use
the code point of IBM extended characters.

The table shown at https://msdn.microsoft.com/en-us/goglobal/cc305152.aspx provides information
about the Unicode values of cp932 characters. For cp932 table entries with characters under which

60

http://www.iana.org/assignments/character-sets
http://support.microsoft.com/kb/170559/EN-US/
http://support.microsoft.com/kb/170559/EN-US/
https://msdn.microsoft.com/en-us/goglobal/cc305152.aspx

Asian Character Sets

a four-digit number appears, the number represents the corresponding Unicode (ucs2) encoding. For
table entries with an underlined two-digit value appears, there is a range of cp932 character values that
begin with those two digits. Clicking such a table entry takes you to a page that displays the Unicode
value for each of the cp932 characters that begin with those digits.

The following links are of special interest. They correspond to the encodings for the following sets of
characters:

• NEC special characters (lead byte 0x87):

https://msdn.microsoft.com/en-us/goglobal/gg674964

• NEC selected—IBM extended characters (lead byte 0xED and 0xEE):

https://msdn.microsoft.com/en-us/goglobal/gg671837
https://msdn.microsoft.com/en-us/goglobal/gg671838

• IBM selected characters (lead byte 0xFA, 0xFB, 0xFC):

https://msdn.microsoft.com/en-us/goglobal/gg671839
https://msdn.microsoft.com/en-us/goglobal/gg671840
https://msdn.microsoft.com/en-us/goglobal/gg671841

• cp932 supports conversion of user-defined characters in combination with eucjpms, and solves
the problems with sjis/ujis conversion. For details, please refer to http://www.sljfaq.org/afaq/
encodings.html.

For some characters, conversion to and from ucs2 is different for sjis and cp932. The following tables
illustrate these differences.

Conversion to ucs2:

sjis/cp932 Value sjis -> ucs2 Conversion cp932 -> ucs2 Conversion

5C 005C 005C

7E 007E 007E

815C 2015 2015

815F 005C FF3C

8160 301C FF5E

8161 2016 2225

817C 2212 FF0D

8191 00A2 FFE0

8192 00A3 FFE1

81CA 00AC FFE2

Conversion from ucs2:

ucs2 value ucs2 -> sjis Conversion ucs2 -> cp932 Conversion

005C 815F 5C

007E 7E 7E

00A2 8191 3F

00A3 8192 3F

00AC 81CA 3F

61

https://msdn.microsoft.com/en-us/goglobal/gg674964
https://msdn.microsoft.com/en-us/goglobal/gg671837
https://msdn.microsoft.com/en-us/goglobal/gg671838
https://msdn.microsoft.com/en-us/goglobal/gg671839
https://msdn.microsoft.com/en-us/goglobal/gg671840
https://msdn.microsoft.com/en-us/goglobal/gg671841
http://www.sljfaq.org/afaq/encodings.html
http://www.sljfaq.org/afaq/encodings.html

Asian Character Sets

ucs2 value ucs2 -> sjis Conversion ucs2 -> cp932 Conversion

2015 815C 815C

2016 8161 3F

2212 817C 3F

2225 3F 8161

301C 8160 3F

FF0D 3F 817C

FF3C 3F 815F

FF5E 3F 8160

FFE0 3F 8191

FFE1 3F 8192

FFE2 3F 81CA

Users of any Japanese character sets should be aware that using --character-set-client-
handshake (or --skip-character-set-client-handshake) has an important effect. See Server
Command Options.

1.10.7.2 The gb18030 Character Set

In MySQL, the gb18030 character set corresponds to the “Chinese National Standard GB 18030-2005:
Information technology—Chinese coded character set”, which is the official character set of the People's
Republic of China (PRC).

Characteristics of the MySQL gb18030 Character Set

• Supports all code points defined by the GB 18030-2005 standard. Unassigned code points in the
ranges (GB+8431A439, GB+90308130) and (GB+E3329A36, GB+EF39EF39) are treated as '?' (0x3F).
Conversion of unassigned code points return '?'.

• Supports UPPER and LOWER conversion for all GB18030 code points. Case folding defined by Unicode
is also supported (based on CaseFolding-6.3.0.txt).

• Supports Conversion of data to and from other character sets.

• Supports SQL statements such as SET NAMES.

• Supports comparison between gb18030 strings, and between gb18030 strings and strings of other
character sets. There is a conversion if strings have different character sets. Comparisons that include or
ignore trailing spaces are also supported.

• The private use area (U+E000, U+F8FF) in Unicode is mapped to gb18030.

• There is no mapping between (U+D800, U+DFFF) and GB18030. Attempted conversion of code points
in this range returns '?'.

• If an incoming sequence is illegal, an error or warning is returned. If an illegal sequence is used in
CONVERT(), an error is returned. Otherwise, a warning is returned.

• For consistency with utf8mb3 and utf8mb4, UPPER is not supported for ligatures.

• Searches for ligatures also match uppercase ligatures when using the gb18030_unicode_520_ci
collation.

62

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_character-set-client-handshake
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_character-set-client-handshake
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_character-set-client-handshake
https://dev.mysql.com/doc/refman/8.0/en/server-options.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html

The Binary Character Set

• If a character has more than one uppercase character, the chosen uppercase character is the one
whose lowercase is the character itself.

• The minimum multibyte length is 1 and the maximum is 4. The character set determines the length of a
sequence using the first 1 or 2 bytes.

Supported Collations

• gb18030_bin: A binary collation.

• gb18030_chinese_ci: The default collation, which supports Pinyin. Sorting of non-Chinese characters
is based on the order of the original sort key. The original sort key is GB(UPPER(ch)) if UPPER(ch)
exists. Otherwise, the original sort key is GB(ch). Chinese characters are sorted according to the Pinyin
collation defined in the Unicode Common Locale Data Repository (CLDR 24). Non-Chinese characters
are sorted before Chinese characters with the exception of GB+FE39FE39, which is the code point
maximum.

• gb18030_unicode_520_ci: A Unicode collation. Use this collation if you need to ensure that ligatures
are sorted correctly.

1.10.8 The Binary Character Set

The binary character set is the character set for binary strings, which are sequences of bytes. The
binary character set has one collation, also named binary. Comparison and sorting are based on
numeric byte values, rather than on numeric character code values (which for multibyte characters differ
from numeric byte values). For information about the differences between the binary collation of the
binary character set and the _bin collations of nonbinary character sets, see Section 1.8.5, “The binary
Collation Compared to _bin Collations”.

For the binary character set, the concepts of lettercase and accent equivalence do not apply:

• For single-byte characters stored as binary strings, character and byte boundaries are the same, so
lettercase and accent differences are significant in comparisons. That is, the binary collation is case-
sensitive and accent-sensitive.

mysql> SET NAMES 'binary';
mysql> SELECT CHARSET('abc'), COLLATION('abc');
+----------------+------------------+
| CHARSET('abc') | COLLATION('abc') |
+----------------+------------------+
| binary | binary |
+----------------+------------------+
mysql> SELECT 'abc' = 'ABC', 'a' = 'ä';
+---------------+------------+
| 'abc' = 'ABC' | 'a' = 'ä' |
+---------------+------------+
| 0 | 0 |
+---------------+------------+

• For multibyte characters stored as binary strings, character and byte boundaries differ. Character
boundaries are lost, so comparisons that depend on them are not meaningful.

To perform lettercase conversion of a binary string, first convert it to a nonbinary string using a character
set appropriate for the data stored in the string:

mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING utf8mb4));
+-------------+------------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING utf8mb4)) |

63

Restrictions on Character Sets

+-------------+------------------------------------+
| New York | new york |
+-------------+------------------------------------+

To convert a string expression to a binary string, these constructs are equivalent:

BINARY expr
CAST(expr AS BINARY)
CONVERT(expr USING BINARY)

If a value is a character string literal, the _binary introducer may be used to designate it as a binary
string. For example:

_binary 'a'

The _binary introducer is permitted for hexadecimal literals and bit-value literals as well, but
unnecessary; such literals are binary strings by default.

For more information about introducers, see Section 1.3.8, “Character Set Introducers”.

Note

Within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that
option, see mysql — The MySQL Command-Line Client.

1.11 Restrictions on Character Sets
• Identifiers are stored in mysql database tables (user, db, and so forth) using utf8mb3, but identifiers

can contain only characters in the Basic Multilingual Plane (BMP). Supplementary characters are not
permitted in identifiers.

• The ucs2, utf16, utf16le, and utf32 character sets have the following restrictions:

• None of them can be used as the client character set. See Impermissible Client Character Sets.

• It is currently not possible to use LOAD DATA to load data files that use these character sets.

• FULLTEXT indexes cannot be created on a column that uses any of these character sets. However,
you can perform IN BOOLEAN MODE searches on the column without an index.

• The REGEXP and RLIKE operators work in byte-wise fashion, so they are not multibyte safe and
may produce unexpected results with multibyte character sets. In addition, these operators compare
characters by their byte values and accented characters may not compare as equal even if a given
collation treats them as equal.

1.12 Setting the Error Message Language
By default, mysqld produces error messages in English, but they can be displayed instead in any of
several other languages: Czech, Danish, Dutch, Estonian, French, German, Greek, Hungarian, Italian,
Japanese, Korean, Norwegian, Norwegian-ny, Polish, Portuguese, Romanian, Russian, Slovak, Spanish,
or Swedish. This applies to messages the server writes to the error log and sends to clients.

To select the language in which the server writes error messages, follow the instructions in this section.
For information about changing the character set for error messages (rather than the language), see
Section 1.6, “Error Message Character Set”. For general information about configuring error logging, see
The Error Log.

64

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_binary-as-hex
https://dev.mysql.com/doc/refman/8.0/en/mysql.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/regexp.html#operator_regexp
https://dev.mysql.com/doc/refman/8.0/en/regexp.html#operator_regexp
https://dev.mysql.com/doc/refman/8.0/en/error-log.html

Adding a Character Set

The server searches for the error message file using these rules:

• It looks for the file in a directory constructed from two system variable values, lc_messages_dir and
lc_messages, with the latter converted to a language name. Suppose that you start the server using
this command:

mysqld --lc_messages_dir=/usr/share/mysql --lc_messages=fr_FR

In this case, mysqld maps the locale fr_FR to the language french and looks for the error file in the /
usr/share/mysql/french directory.

By default, the language files are located in the share/mysql/LANGUAGE directory under the MySQL
base directory.

• If the message file cannot be found in the directory constructed as just described, the server ignores the
lc_messages value and uses only the lc_messages_dir value as the location in which to look.

• If the server cannot find the configured message file, it writes a message to the error log to indicate the
problem and defaults to built-in English messages.

The lc_messages_dir system variable can be set only at server startup and has only a global read-only
value at runtime. lc_messages can be set at server startup and has global and session values that can
be modified at runtime. Thus, the error message language can be changed while the server is running, and
each client can have its own error message language by setting its session lc_messages value to the
desired locale name. For example, if the server is using the fr_FR locale for error messages, a client can
execute this statement to receive error messages in English:

SET lc_messages = 'en_US';

1.13 Adding a Character Set
This section discusses the procedure for adding a character set to MySQL. The proper procedure depends
on whether the character set is simple or complex:

• If the character set does not need special string collating routines for sorting and does not need multibyte
character support, it is simple.

• If the character set needs either of those features, it is complex.

For example, greek and swe7 are simple character sets, whereas big5 and czech are complex
character sets.

To use the following instructions, you must have a MySQL source distribution. In the instructions, MYSET
represents the name of the character set that you want to add.

1. Add a <charset> element for MYSET to the sql/share/charsets/Index.xml file. Use the
existing contents in the file as a guide to adding new contents. A partial listing for the latin1
<charset> element follows:

<charset name="latin1">
 <family>Western</family>
 <description>cp1252 West European</description>
 ...
 <collation name="latin1_swedish_ci" id="8" order="Finnish, Swedish">
 <flag>primary</flag>
 <flag>compiled</flag>
 </collation>
 <collation name="latin1_danish_ci" id="15" order="Danish"/>
 ...

65

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lc_messages_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lc_messages
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lc_messages
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lc_messages_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lc_messages_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lc_messages
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lc_messages

Adding a Character Set

 <collation name="latin1_bin" id="47" order="Binary">
 <flag>binary</flag>
 <flag>compiled</flag>
 </collation>
 ...
</charset>

The <charset> element must list all the collations for the character set. These must include at least a
binary collation and a default (primary) collation. The default collation is often named using a suffix of
general_ci (general, case-insensitive). It is possible for the binary collation to be the default collation,
but usually they are different. The default collation should have a primary flag. The binary collation
should have a binary flag.

You must assign a unique ID number to each collation. The range of IDs from 1024 to 2047 is reserved
for user-defined collations. To find the maximum of the currently used collation IDs, use this query:

SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;

2. This step depends on whether you are adding a simple or complex character set. A simple character
set requires only a configuration file, whereas a complex character set requires C source file that
defines collation functions, multibyte functions, or both.

For a simple character set, create a configuration file, MYSET.xml, that describes the character
set properties. Create this file in the sql/share/charsets directory. You can use a copy of
latin1.xml as the basis for this file. The syntax for the file is very simple:

• Comments are written as ordinary XML comments (<!-- text -->).

• Words within <map> array elements are separated by arbitrary amounts of whitespace.

• Each word within <map> array elements must be a number in hexadecimal format.

• The <map> array element for the <ctype> element has 257 words. The other <map> array elements
after that have 256 words. See Section 1.13.1, “Character Definition Arrays”.

• For each collation listed in the <charset> element for the character set in Index.xml, MYSET.xml
must contain a <collation> element that defines the character ordering.

For a complex character set, create a C source file that describes the character set properties and
defines the support routines necessary to properly perform operations on the character set:

• Create the file ctype-MYSET.c in the strings directory. Look at one of the existing ctype-*.c
files (such as ctype-big5.c) to see what needs to be defined. The arrays in your file must have
names like ctype_MYSET, to_lower_MYSET, and so on. These correspond to the arrays for a
simple character set. See Section 1.13.1, “Character Definition Arrays”.

• For each <collation> element listed in the <charset> element for the character set in
Index.xml, the ctype-MYSET.c file must provide an implementation of the collation.

• If the character set requires string collating functions, see Section 1.13.2, “String Collating Support
for Complex Character Sets”.

• If the character set requires multibyte character support, see Section 1.13.3, “Multi-Byte Character
Support for Complex Character Sets”.

3. Modify the configuration information. Use the existing configuration information as a guide to adding
information for MYSYS. The example here assumes that the character set has default and binary
collations, but more lines are needed if MYSET has additional collations.

66

Character Definition Arrays

a. Edit mysys/charset-def.c, and “register” the collations for the new character set.

Add these lines to the “declaration” section:

#ifdef HAVE_CHARSET_MYSET
extern CHARSET_INFO my_charset_MYSET_general_ci;
extern CHARSET_INFO my_charset_MYSET_bin;
#endif

Add these lines to the “registration” section:

#ifdef HAVE_CHARSET_MYSET
 add_compiled_collation(&my_charset_MYSET_general_ci);
 add_compiled_collation(&my_charset_MYSET_bin);
#endif

b. If the character set uses ctype-MYSET.c, edit strings/CMakeLists.txt and add
ctype-MYSET.c to the definition of the STRINGS_SOURCES variable.

c. Edit cmake/character_sets.cmake:

i. Add MYSET to the value of with CHARSETS_AVAILABLE in alphabetic order.

ii. Add MYSET to the value of CHARSETS_COMPLEX in alphabetic order. This is needed even for
simple character sets, so that CMake can recognize -DDEFAULT_CHARSET=MYSET.

4. Reconfigure, recompile, and test.

1.13.1 Character Definition Arrays

Each simple character set has a configuration file located in the sql/share/charsets directory. For a
character set named MYSYS, the file is named MYSET.xml. It uses <map> array elements to list character
set properties. <map> elements appear within these elements:

• <ctype> defines attributes for each character.

• <lower> and <upper> list the lowercase and uppercase characters.

• <unicode> maps 8-bit character values to Unicode values.

• <collation> elements indicate character ordering for comparison and sorting, one element per
collation. Binary collations need no <map> element because the character codes themselves provide the
ordering.

For a complex character set as implemented in a ctype-MYSET.c file in the strings directory,
there are corresponding arrays: ctype_MYSET[], to_lower_MYSET[], and so forth. Not every
complex character set has all of the arrays. See also the existing ctype-*.c files for examples. See the
CHARSET_INFO.txt file in the strings directory for additional information.

Most of the arrays are indexed by character value and have 256 elements. The <ctype> array is indexed
by character value + 1 and has 257 elements. This is a legacy convention for handling EOF.

<ctype> array elements are bit values. Each element describes the attributes of a single character in the
character set. Each attribute is associated with a bitmask, as defined in include/m_ctype.h:

#define _MY_U 01 /* Upper case */
#define _MY_L 02 /* Lower case */
#define _MY_NMR 04 /* Numeral (digit) */
#define _MY_SPC 010 /* Spacing character */

67

https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_default_charset

String Collating Support for Complex Character Sets

#define _MY_PNT 020 /* Punctuation */
#define _MY_CTR 040 /* Control character */
#define _MY_B 0100 /* Blank */
#define _MY_X 0200 /* heXadecimal digit */

The <ctype> value for a given character should be the union of the applicable bitmask values that
describe the character. For example, 'A' is an uppercase character (_MY_U) as well as a hexadecimal
digit (_MY_X), so its ctype value should be defined like this:

ctype['A'+1] = _MY_U | _MY_X = 01 | 0200 = 0201

The bitmask values in m_ctype.h are octal values, but the elements of the <ctype> array in MYSET.xml
should be written as hexadecimal values.

The <lower> and <upper> arrays hold the lowercase and uppercase characters corresponding to each
member of the character set. For example:

lower['A'] should contain 'a'
upper['a'] should contain 'A'

Each <collation> array indicates how characters should be ordered for comparison and sorting
purposes. MySQL sorts characters based on the values of this information. In some cases, this is the
same as the <upper> array, which means that sorting is case-insensitive. For more complicated sorting
rules (for complex character sets), see the discussion of string collating in Section 1.13.2, “String Collating
Support for Complex Character Sets”.

1.13.2 String Collating Support for Complex Character Sets

For a simple character set named MYSET, sorting rules are specified in the MYSET.xml configuration
file using <map> array elements within <collation> elements. If the sorting rules for your language
are too complex to be handled with simple arrays, you must define string collating functions in the
ctype-MYSET.c source file in the strings directory.

The existing character sets provide the best documentation and examples to show how these functions
are implemented. Look at the ctype-*.c files in the strings directory, such as the files for the big5,
czech, gbk, sjis, and tis160 character sets. Take a look at the MY_COLLATION_HANDLER structures
to see how they are used. See also the CHARSET_INFO.txt file in the strings directory for additional
information.

1.13.3 Multi-Byte Character Support for Complex Character Sets

If you want to add support for a new character set named MYSET that includes multibyte characters, you
must use multibyte character functions in the ctype-MYSET.c source file in the strings directory.

The existing character sets provide the best documentation and examples to show how these functions
are implemented. Look at the ctype-*.c files in the strings directory, such as the files for the euc_kr,
gb2312, gbk, sjis, and ujis character sets. Take a look at the MY_CHARSET_HANDLER structures to
see how they are used. See also the CHARSET_INFO.txt file in the strings directory for additional
information.

1.14 Adding a Collation to a Character Set
Warning

User-defined collations are deprecated; you should expect support for them to
be removed in a future version of MySQL. As of MySQL 8.0.33, the server issues
a warning for any use of COLLATE user_defined_collation in an SQL

68

Adding a Collation to a Character Set

statement; a warning is also issued when the server is started with --collation-
server set equal to the name of a user-defined collation.

A collation is a set of rules that defines how to compare and sort character strings. Each collation in
MySQL belongs to a single character set. Every character set has at least one collation, and most have
two or more collations.

A collation orders characters based on weights. Each character in a character set maps to a weight.
Characters with equal weights compare as equal, and characters with unequal weights compare according
to the relative magnitude of their weights.

The WEIGHT_STRING() function can be used to see the weights for the characters in a
string. The value that it returns to indicate weights is a binary string, so it is convenient to use
HEX(WEIGHT_STRING(str)) to display the weights in printable form. The following example shows that
weights do not differ for lettercase for the letters in 'AaBb' if it is a nonbinary case-insensitive string, but
do differ if it is a binary string:

mysql> SELECT HEX(WEIGHT_STRING('AaBb' COLLATE latin1_swedish_ci));
+--+
| HEX(WEIGHT_STRING('AaBb' COLLATE latin1_swedish_ci)) |
+--+
| 41414242 |
+--+
mysql> SELECT HEX(WEIGHT_STRING(BINARY 'AaBb'));
+-----------------------------------+
| HEX(WEIGHT_STRING(BINARY 'AaBb')) |
+-----------------------------------+
| 41614262 |
+-----------------------------------+

MySQL supports several collation implementations, as discussed in Section 1.14.1, “Collation
Implementation Types”. Some of these can be added to MySQL without recompiling:

• Simple collations for 8-bit character sets.

• UCA-based collations for Unicode character sets.

• Binary (xxx_bin) collations.

The following sections describe how to add user-defined collations of the first two types to existing
character sets. All existing character sets already have a binary collation, so there is no need here to
describe how to add one.

Warning

Redefining built-in collations is not supported and may result in unexpected server
behavior.

Summary of the procedure for adding a new user-defined collation:

1. Choose a collation ID.

2. Add configuration information that names the collation and describes the character-ordering rules.

3. Restart the server.

4. Verify that the server recognizes the collation.

The instructions here cover only user-defined collations that can be added without recompiling MySQL.
To add a collation that does require recompiling (as implemented by means of functions in a C source
file), use the instructions in Section 1.13, “Adding a Character Set”. However, instead of adding all the

69

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_server
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_weight-string

Additional Resources

information required for a complete character set, just modify the appropriate files for an existing character
set. That is, based on what is already present for the character set's current collations, add data structures,
functions, and configuration information for the new collation.

Note

If you modify an existing user-defined collation, that may affect the ordering of rows
for indexes on columns that use the collation. In this case, rebuild any such indexes
to avoid problems such as incorrect query results. See Rebuilding or Repairing
Tables or Indexes.

Additional Resources

• Example showing how to add a collation for full-text searches: Adding a User-Defined Collation for Full-
Text Indexing

• The Unicode Collation Algorithm (UCA) specification: http://www.unicode.org/reports/tr10/

• The Locale Data Markup Language (LDML) specification: http://www.unicode.org/reports/tr35/

1.14.1 Collation Implementation Types

MySQL implements several types of collations:

Simple collations for 8-bit character sets

This kind of collation is implemented using an array of 256 weights that defines a one-to-one mapping from
character codes to weights. latin1_swedish_ci is an example. It is a case-insensitive collation, so the
uppercase and lowercase versions of a character have the same weights and they compare as equal.

mysql> SET NAMES 'latin1' COLLATE 'latin1_swedish_ci';
Query OK, 0 rows affected (0.01 sec)
mysql> SELECT HEX(WEIGHT_STRING('a')), HEX(WEIGHT_STRING('A'));
+-------------------------+-------------------------+
| HEX(WEIGHT_STRING('a')) | HEX(WEIGHT_STRING('A')) |
+-------------------------+-------------------------+
| 41 | 41 |
+-------------------------+-------------------------+
1 row in set (0.01 sec)
mysql> SELECT 'a' = 'A';
+-----------+
| 'a' = 'A' |
+-----------+
| 1 |
+-----------+
1 row in set (0.12 sec)

For implementation instructions, see Section 1.14.3, “Adding a Simple Collation to an 8-Bit Character Set”.

Complex collations for 8-bit character sets

This kind of collation is implemented using functions in a C source file that define how to order characters,
as described in Section 1.13, “Adding a Character Set”.

Collations for non-Unicode multibyte character sets

For this type of collation, 8-bit (single-byte) and multibyte characters are handled differently. For 8-bit
characters, character codes map to weights in case-insensitive fashion. (For example, the single-byte
characters 'a' and 'A' both have a weight of 0x41.) For multibyte characters, there are two types of
relationship between character codes and weights:

70

https://dev.mysql.com/doc/refman/8.0/en/rebuilding-tables.html
https://dev.mysql.com/doc/refman/8.0/en/rebuilding-tables.html
https://dev.mysql.com/doc/refman/8.0/en/full-text-adding-collation.html
https://dev.mysql.com/doc/refman/8.0/en/full-text-adding-collation.html
http://www.unicode.org/reports/tr10/
http://www.unicode.org/reports/tr35/

Collation Implementation Types

• Weights equal character codes. sjis_japanese_ci is an example of this kind of collation. The
multibyte character 'ぢ' has a character code of 0x82C0, and the weight is also 0x82C0.

mysql> CREATE TABLE t1
 (c1 VARCHAR(2) CHARACTER SET sjis COLLATE sjis_japanese_ci);
Query OK, 0 rows affected (0.01 sec)
mysql> INSERT INTO t1 VALUES ('a'),('A'),(0x82C0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
a	61	41
A	41	41
ぢ	82C0	82C0
+------+---------+------------------------+
3 rows in set (0.00 sec)

• Character codes map one-to-one to weights, but a code is not necessarily equal to the weight.
gbk_chinese_ci is an example of this kind of collation. The multibyte character '膰' has a character
code of 0x81B0 but a weight of 0xC286.

mysql> CREATE TABLE t1
 (c1 VARCHAR(2) CHARACTER SET gbk COLLATE gbk_chinese_ci);
Query OK, 0 rows affected (0.33 sec)
mysql> INSERT INTO t1 VALUES ('a'),('A'),(0x81B0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
a	61	41
A	41	41
膰	81B0	C286
+------+---------+------------------------+
3 rows in set (0.00 sec)

For implementation instructions, see Section 1.13, “Adding a Character Set”.

Collations for Unicode multibyte character sets

Some of these collations are based on the Unicode Collation Algorithm (UCA), others are not.

Non-UCA collations have a one-to-one mapping from character code to weight. In MySQL, such collations
are case-insensitive and accent-insensitive. utf8mb4_general_ci is an example: 'a', 'A', 'À', and
'á' each have different character codes but all have a weight of 0x0041 and compare as equal.

mysql> SET NAMES 'utf8mb4' COLLATE 'utf8mb4_general_ci';
Query OK, 0 rows affected (0.00 sec)
mysql> CREATE TABLE t1
 (c1 CHAR(1) CHARACTER SET UTF8MB4 COLLATE utf8mb4_general_ci);
Query OK, 0 rows affected (0.01 sec)
mysql> INSERT INTO t1 VALUES ('a'),('A'),('À'),('á');
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0
mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
a	61	0041
A	41	0041
À	C380	0041
á	C3A1	0041

71

Choosing a Collation ID

+------+---------+------------------------+
4 rows in set (0.00 sec)

UCA-based collations in MySQL have these properties:

• If a character has weights, each weight uses 2 bytes (16 bits).

• A character may have zero weights (or an empty weight). In this case, the character is ignorable.
Example: "U+0000 NULL" does not have a weight and is ignorable.

• A character may have one weight. Example: 'a' has a weight of 0x0E33.

mysql> SET NAMES 'utf8mb4' COLLATE 'utf8mb4_unicode_ci';
Query OK, 0 rows affected (0.05 sec)
mysql> SELECT HEX('a'), HEX(WEIGHT_STRING('a'));
+----------+-------------------------+
| HEX('a') | HEX(WEIGHT_STRING('a')) |
+----------+-------------------------+
| 61 | 0E33 |
+----------+-------------------------+
1 row in set (0.02 sec)

• A character may have many weights. This is an expansion. Example: The German letter 'ß' (SZ
ligature, or SHARP S) has a weight of 0x0FEA0FEA.

mysql> SET NAMES 'utf8mb4' COLLATE 'utf8mb4_unicode_ci';
Query OK, 0 rows affected (0.11 sec)
mysql> SELECT HEX('ß'), HEX(WEIGHT_STRING('ß'));
+-----------+--------------------------+
| HEX('ß') | HEX(WEIGHT_STRING('ß')) |
+-----------+--------------------------+
| C39F | 0FEA0FEA |
+-----------+--------------------------+
1 row in set (0.00 sec)

• Many characters may have one weight. This is a contraction. Example: 'ch' is a single letter in Czech
and has a weight of 0x0EE2.

mysql> SET NAMES 'utf8mb4' COLLATE 'utf8mb4_czech_ci';
Query OK, 0 rows affected (0.09 sec)
mysql> SELECT HEX('ch'), HEX(WEIGHT_STRING('ch'));
+-----------+--------------------------+
| HEX('ch') | HEX(WEIGHT_STRING('ch')) |
+-----------+--------------------------+
| 6368 | 0EE2 |
+-----------+--------------------------+
1 row in set (0.00 sec)

A many-characters-to-many-weights mapping is also possible (this is contraction with expansion), but is
not supported by MySQL.

For implementation instructions, for a non-UCA collation, see Section 1.13, “Adding a Character Set”. For a
UCA collation, see Section 1.14.4, “Adding a UCA Collation to a Unicode Character Set”.

Miscellaneous collations

There are also a few collations that do not fall into any of the previous categories.

1.14.2 Choosing a Collation ID

Each collation must have a unique ID. To add a collation, you must choose an ID value that is not currently
used. MySQL supports two-byte collation IDs. The range of IDs from 1024 to 2047 is reserved for user-
defined collations.

72

Adding a Simple Collation to an 8-Bit Character Set

The collation ID that you choose appears in these contexts:

• The ID column of the Information Schema COLLATIONS table.

• The Id column of SHOW COLLATION output.

• The charsetnr member of the MYSQL_FIELD C API data structure.

• The number member of the MY_CHARSET_INFO data structure returned by the
mysql_get_character_set_info() C API function.

To determine the largest currently used ID, issue the following statement:

mysql> SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;
+---------+
| MAX(ID) |
+---------+
| 247 |
+---------+

To display a list of all currently used IDs, issue this statement:

mysql> SELECT ID FROM INFORMATION_SCHEMA.COLLATIONS ORDER BY ID;
+-----+
| ID |
+-----+
| 1 |
| 2 |
| ... |
| 52 |
| 53 |
| 57 |
| 58 |
| ... |
| 98 |
| 99 |
| 128 |
| 129 |
| ... |
| 247 |
+-----+

Warning

Before upgrading, you should save the configuration files that you change. If you
upgrade in place, the process replaces the modified files.

1.14.3 Adding a Simple Collation to an 8-Bit Character Set

This section describes how to add a simple collation for an 8-bit character set by writing the <collation>
elements associated with a <charset> character set description in the MySQL Index.xml file. The
procedure described here does not require recompiling MySQL. The example adds a collation named
latin1_test_ci to the latin1 character set.

1. Choose a collation ID, as shown in Section 1.14.2, “Choosing a Collation ID”. The following steps use
an ID of 1024.

2. Modify the Index.xml and latin1.xml configuration files. These files are located in the directory
named by the character_sets_dir system variable. You can check the variable value as follows,
although the path name might be different on your system:

73

https://dev.mysql.com/doc/refman/8.0/en/information-schema-collations-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-collation.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-get-character-set-info.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_sets_dir

Adding a UCA Collation to a Unicode Character Set

mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+---+
| Variable_name | Value |
+--------------------+---+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+---+

3. Choose a name for the collation and list it in the Index.xml file. Find the <charset> element for the
character set to which the collation is being added, and add a <collation> element that indicates the
collation name and ID, to associate the name with the ID. For example:

<charset name="latin1">
 ...
 <collation name="latin1_test_ci" id="1024"/>
 ...
</charset>

4. In the latin1.xml configuration file, add a <collation> element that names the collation and that
contains a <map> element that defines a character code-to-weight mapping table for character codes 0
to 255. Each value within the <map> element must be a number in hexadecimal format.

<collation name="latin1_test_ci">
<map>
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
 60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F
 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
 41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
 44 4E 4F 4F 4F 4F 5C D7 5C 55 55 55 59 59 DE DF
 41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
 44 4E 4F 4F 4F 4F 5C F7 5C 55 55 55 59 59 DE FF
</map>
</collation>

5. Restart the server and use this statement to verify that the collation is present:

mysql> SHOW COLLATION WHERE Collation = 'latin1_test_ci';
+----------------+---------+------+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------+---------+------+---------+----------+---------+
| latin1_test_ci | latin1 | 1024 | | | 1 |
+----------------+---------+------+---------+----------+---------+

1.14.4 Adding a UCA Collation to a Unicode Character Set

This section describes how to add a UCA collation for a Unicode character set by writing the
<collation> element within a <charset> character set description in the MySQL Index.xml file.
The procedure described here does not require recompiling MySQL. It uses a subset of the Locale Data
Markup Language (LDML) specification, which is available at http://www.unicode.org/reports/tr35/. With
this method, you need not define the entire collation. Instead, you begin with an existing “base” collation
and describe the new collation in terms of how it differs from the base collation. The following table lists the
base collations of the Unicode character sets for which UCA collations can be defined. It is not possible to
create user-defined UCA collations for utf16le; there is no utf16le_unicode_ci collation that would
serve as the basis for such collations.

74

http://www.unicode.org/reports/tr35/

Adding a UCA Collation to a Unicode Character Set

Table 1.4 MySQL Character Sets Available for User-Defined UCA Collations

Character Set Base Collation

utf8mb4 utf8mb4_unicode_ci

ucs2 ucs2_unicode_ci

utf16 utf16_unicode_ci

utf32 utf32_unicode_ci

The following sections show how to add a collation that is defined using LDML syntax, and provide a
summary of LDML rules supported in MySQL.

1.14.4.1 Defining a UCA Collation Using LDML Syntax

To add a UCA collation for a Unicode character set without recompiling MySQL, use the following
procedure. If you are unfamiliar with the LDML rules used to describe the collation's sort characteristics,
see Section 1.14.4.2, “LDML Syntax Supported in MySQL”.

The example adds a collation named utf8mb4_phone_ci to the utf8mb4 character set. The collation is
designed for a scenario involving a Web application for which users post their names and phone numbers.
Phone numbers can be given in very different formats:

+7-12345-67
+7-12-345-67
+7 12 345 67
+7 (12) 345 67
+71234567

The problem raised by dealing with these kinds of values is that the varying permissible formats make
searching for a specific phone number very difficult. The solution is to define a new collation that reorders
punctuation characters, making them ignorable.

1. Choose a collation ID, as shown in Section 1.14.2, “Choosing a Collation ID”. The following steps use
an ID of 1029.

2. To modify the Index.xml configuration file. This file is located in the directory named by the
character_sets_dir system variable. You can check the variable value as follows, although the
path name might be different on your system:

mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+---+
| Variable_name | Value |
+--------------------+---+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+---+

3. Choose a name for the collation and list it in the Index.xml file. In addition, you must provide the
collation ordering rules. Find the <charset> element for the character set to which the collation is
being added, and add a <collation> element that indicates the collation name and ID, to associate
the name with the ID. Within the <collation> element, provide a <rules> element containing the
ordering rules:

<charset name="utf8mb4">
 ...
 <collation name="utf8mb4_phone_ci" id="1029">
 <rules>
 <reset>\u0000</reset>
 <i>\u0020</i> <!-- space -->
 <i>\u0028</i> <!-- left parenthesis -->
 <i>\u0029</i> <!-- right parenthesis -->

75

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_sets_dir

Adding a UCA Collation to a Unicode Character Set

 <i>\u002B</i> <!-- plus -->
 <i>\u002D</i> <!-- hyphen -->
 </rules>
 </collation>
 ...
</charset>

4. If you want a similar collation for other Unicode character sets, add other <collation> elements. For
example, to define ucs2_phone_ci, add a <collation> element to the <charset name="ucs2">
element. Remember that each collation must have its own unique ID.

5. Restart the server and use this statement to verify that the collation is present:

mysql> SHOW COLLATION WHERE Collation = 'utf8mb4_phone_ci';
+------------------+---------+------+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+------------------+---------+------+---------+----------+---------+
| utf8mb4_phone_ci | utf8mb4 | 1029 | | | 8 |
+------------------+---------+------+---------+----------+---------+

Now test the collation to make sure that it has the desired properties.

Create a table containing some sample phone numbers using the new collation:

mysql> CREATE TABLE phonebook (
 name VARCHAR(64),
 phone VARCHAR(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_phone_ci
);
Query OK, 0 rows affected (0.09 sec)
mysql> INSERT INTO phonebook VALUES ('Svoj','+7 912 800 80 02');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO phonebook VALUES ('Hf','+7 (912) 800 80 04');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO phonebook VALUES ('Bar','+7-912-800-80-01');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO phonebook VALUES ('Ramil','(7912) 800 80 03');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO phonebook VALUES ('Sanja','+380 (912) 8008005');
Query OK, 1 row affected (0.00 sec)

Run some queries to see whether the ignored punctuation characters are in fact ignored for comparison
and sorting:

mysql> SELECT * FROM phonebook ORDER BY phone;
+-------+--------------------+
| name | phone |
+-------+--------------------+
Sanja	+380 (912) 8008005
Bar	+7-912-800-80-01
Svoj	+7 912 800 80 02
Ramil	(7912) 800 80 03
Hf	+7 (912) 800 80 04
+-------+--------------------+	
5 rows in set (0.00 sec)	
mysql> SELECT * FROM phonebook WHERE phone='+7(912)800-80-01';	
+------+------------------+	
name	phone
+------+------------------+	
Bar	+7-912-800-80-01
+------+------------------+	
1 row in set (0.00 sec)	
mysql> SELECT * FROM phonebook WHERE phone='79128008001';	
+------+------------------+	
name	phone
+------+------------------+

76

Adding a UCA Collation to a Unicode Character Set

| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)
mysql> SELECT * FROM phonebook WHERE phone='7 9 1 2 8 0 0 8 0 0 1';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

1.14.4.2 LDML Syntax Supported in MySQL

This section describes the LDML syntax that MySQL recognizes. This is a subset of the syntax described
in the LDML specification available at http://www.unicode.org/reports/tr35/, which should be consulted
for further information. MySQL recognizes a large enough subset of the syntax that, in many cases, it is
possible to download a collation definition from the Unicode Common Locale Data Repository and paste
the relevant part (that is, the part between the <rules> and </rules> tags) into the MySQL Index.xml
file. The rules described here are all supported except that character sorting occurs only at the primary
level. Rules that specify differences at secondary or higher sort levels are recognized (and thus can be
included in collation definitions) but are treated as equality at the primary level.

The MySQL server generates diagnostics when it finds problems while parsing the Index.xml file. See
Section 1.14.4.3, “Diagnostics During Index.xml Parsing”.

Character Representation

Characters named in LDML rules can be written literally or in \unnnn format, where nnnn is the
hexadecimal Unicode code point value. For example, A and á can be written literally or as \u0041 and
\u00E1. Within hexadecimal values, the digits A through F are not case-sensitive; \u00E1 and \u00e1
are equivalent. For UCA 4.0.0 collations, hexadecimal notation can be used only for characters in the Basic
Multilingual Plane, not for characters outside the BMP range of 0000 to FFFF. For UCA 5.2.0 collations,
hexadecimal notation can be used for any character.

The Index.xml file itself should be written using UTF-8 encoding.

Syntax Rules

LDML has reset rules and shift rules to specify character ordering. Orderings are given as a set of rules
that begin with a reset rule that establishes an anchor point, followed by shift rules that indicate how
characters sort relative to the anchor point.

• A <reset> rule does not specify any ordering in and of itself. Instead, it “resets” the ordering for
subsequent shift rules to cause them to be taken in relation to a given character. Either of the following
rules resets subsequent shift rules to be taken in relation to the letter 'A':

<reset>A</reset>
<reset>\u0041</reset>

• The <p>, <s>, and <t> shift rules define primary, secondary, and tertiary differences of a character from
another character:

• Use primary differences to distinguish separate letters.

• Use secondary differences to distinguish accent variations.

• Use tertiary differences to distinguish lettercase variations.

Either of these rules specifies a primary shift rule for the 'G' character:

77

http://www.unicode.org/reports/tr35/

Adding a UCA Collation to a Unicode Character Set

<p>G</p>
<p>\u0047</p>

• The <i> shift rule indicates that one character sorts identically to another. The following rules cause 'b'
to sort the same as 'a':

<reset>a</reset>
<i>b</i>

• Abbreviated shift syntax specifies multiple shift rules using a single pair of tags. The following table
shows the correspondence between abbreviated syntax rules and the equivalent nonabbreviated rules.

Table 1.5 Abbreviated Shift Syntax

Abbreviated Syntax Nonabbreviated Syntax

<pc>xyz</pc> <p>x</p><p>y</p><p>z</p>

<sc>xyz</sc> <s>x</s><s>y</s><s>z</s>

<tc>xyz</tc> <t>x</t><t>y</t><t>z</t>

<ic>xyz</ic> <i>x</i><i>y</i><i>z</i>

• An expansion is a reset rule that establishes an anchor point for a multiple-character sequence. MySQL
supports expansions 2 to 6 characters long. The following rules put 'z' greater at the primary level than
the sequence of three characters 'abc':

<reset>abc</reset>
<p>z</p>

• A contraction is a shift rule that sorts a multiple-character sequence. MySQL supports contractions 2 to
6 characters long. The following rules put the sequence of three characters 'xyz' greater at the primary
level than 'a':

<reset>a</reset>
<p>xyz</p>

• Long expansions and long contractions can be used together. These rules put the sequence of three
characters 'xyz' greater at the primary level than the sequence of three characters 'abc':

<reset>abc</reset>
<p>xyz</p>

• Normal expansion syntax uses <x> plus <extend> elements to specify an expansion. The following
rules put the character 'k' greater at the secondary level than the sequence 'ch'. That is, 'k'
behaves as if it expands to a character after 'c' followed by 'h':

<reset>c</reset>
<x><s>k</s><extend>h</extend></x>

This syntax permits long sequences. These rules sort the sequence 'ccs' greater at the tertiary level
than the sequence 'cscs':

<reset>cs</reset>
<x><t>ccs</t><extend>cs</extend></x>

The LDML specification describes normal expansion syntax as “tricky.” See that specification for details.

• Previous context syntax uses <x> plus <context> elements to specify that the context before a
character affects how it sorts. The following rules put '-' greater at the secondary level than 'a', but
only when '-' occurs after 'b':

78

Adding a UCA Collation to a Unicode Character Set

<reset>a</reset>
<x><context>b</context><s>-</s></x>

• Previous context syntax can include the <extend> element. These rules put 'def' greater at the
primary level than 'aghi', but only when 'def' comes after 'abc':

<reset>a</reset>
<x><context>abc</context><p>def</p><extend>ghi</extend></x>

• Reset rules permit a before attribute. Normally, shift rules after a reset rule indicate characters that sort
after the reset character. Shift rules after a reset rule that has the before attribute indicate characters
that sort before the reset character. The following rules put the character 'b' immediately before 'a' at
the primary level:

<reset before="primary">a</reset>
<p>b</p>

Permissible before attribute values specify the sort level by name or the equivalent numeric value:

<reset before="primary">
<reset before="1">
<reset before="secondary">
<reset before="2">
<reset before="tertiary">
<reset before="3">

• A reset rule can name a logical reset position rather than a literal character:

<first_tertiary_ignorable/>
<last_tertiary_ignorable/>
<first_secondary_ignorable/>
<last_secondary_ignorable/>
<first_primary_ignorable/>
<last_primary_ignorable/>
<first_variable/>
<last_variable/>
<first_non_ignorable/>
<last_non_ignorable/>
<first_trailing/>
<last_trailing/>

These rules put 'z' greater at the primary level than nonignorable characters that have a Default
Unicode Collation Element Table (DUCET) entry and that are not CJK:

<reset><last_non_ignorable/></reset>
<p>z</p>

Logical positions have the code points shown in the following table.

Table 1.6 Logical Reset Position Code Points

Logical Position Unicode 4.0.0 Code Point Unicode 5.2.0 Code Point

<first_non_ignorable/> U+02D0 U+02D0

<last_non_ignorable/> U+A48C U+1342E

<first_primary_ignorable/
>

U+0332 U+0332

<last_primary_ignorable/> U+20EA U+101FD

<first_secondary_ignorable/
>

U+0000 U+0000

79

Adding a UCA Collation to a Unicode Character Set

Logical Position Unicode 4.0.0 Code Point Unicode 5.2.0 Code Point

<last_secondary_ignorable/
>

U+FE73 U+FE73

<first_tertiary_ignorable/
>

U+0000 U+0000

<last_tertiary_ignorable/
>

U+FE73 U+FE73

<first_trailing/> U+0000 U+0000

<last_trailing/> U+0000 U+0000

<first_variable/> U+0009 U+0009

<last_variable/> U+2183 U+1D371

• The <collation> element permits a shift-after-method attribute that affects character weight
calculation for shift rules. The attribute has these permitted values:

• simple: Calculate character weights as for reset rules that do not have a before attribute. This is the
default if the attribute is not given.

• expand: Use expansions for shifts after reset rules.

Suppose that '0' and '1' have weights of 0E29 and 0E2A and we want to put all basic Latin letters
between '0' and '1':

<reset>0</reset>
<pc>abcdefghijklmnopqrstuvwxyz</pc>

For simple shift mode, weights are calculated as follows:

'a' has weight 0E29+1
'b' has weight 0E29+2
'c' has weight 0E29+3
...

However, there are not enough vacant positions to put 26 characters between '0' and '1'. The result
is that digits and letters are intermixed.

To solve this, use shift-after-method="expand". Then weights are calculated like this:

'a' has weight [0E29][233D+1]
'b' has weight [0E29][233D+2]
'c' has weight [0E29][233D+3]
...

233D is the UCA 4.0.0 weight for character 0xA48C, which is the last nonignorable character (a sort of
the greatest character in the collation, excluding CJK). UCA 5.2.0 is similar but uses 3ACA, for character
0x1342E.

MySQL-Specific LDML Extensions

An extension to LDML rules permits the <collation> element to include an optional version attribute
in <collation> tags to indicate the UCA version on which the collation is based. If the version attribute
is omitted, its default value is 4.0.0. For example, this specification indicates a collation that is based on
UCA 5.2.0:

<collation id="nnn" name="utf8mb4_xxx_ci" version="5.2.0">
...

80

Character Set Configuration

</collation>

1.14.4.3 Diagnostics During Index.xml Parsing

The MySQL server generates diagnostics when it finds problems while parsing the Index.xml file:

• Unknown tags are written to the error log. For example, the following message results if a collation
definition contains a <aaa> tag:

[Warning] Buffered warning: Unknown LDML tag:
'charsets/charset/collation/rules/aaa'

• If collation initialization is not possible, the server reports an “Unknown collation” error, and also
generates warnings explaining the problems, such as in the previous example. In other cases, when a
collation description is generally correct but contains some unknown tags, the collation is initialized and
is available for use. The unknown parts are ignored, but a warning is generated in the error log.

• Problems with collations generate warnings that clients can display with SHOW WARNINGS. Suppose that
a reset rule contains an expansion longer than the maximum supported length of 6 characters:

<reset>abcdefghi</reset>
<i>x</i>

An attempt to use the collation produces warnings:

mysql> SELECT _utf8mb4'test' COLLATE utf8mb4_test_ci;
ERROR 1273 (HY000): Unknown collation: 'utf8mb4_test_ci'
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Error | 1273 | Unknown collation: 'utf8mb4_test_ci' |
| Warning | 1273 | Expansion is too long at 'abcdefghi=x' |
+---------+------+--+

1.15 Character Set Configuration
The MySQL server has a compiled-in default character set and collation. To change these defaults, use the
--character-set-server and --collation-server options when you start the server. See Server
Command Options. The collation must be a legal collation for the default character set. To determine
which collations are available for each character set, use the SHOW COLLATION statement or query the
INFORMATION_SCHEMA COLLATIONS table.

If you try to use a character set that is not compiled into your binary, you might run into the following
problems:

• If your program uses an incorrect path to determine where the character sets are stored (which is
typically the share/mysql/charsets or share/charsets directory under the MySQL installation
directory), this can be fixed by using the --character-sets-dir option when you run the program.
For example, to specify a directory to be used by MySQL client programs, list it in the [client] group
of your option file. The examples given here show what the setting might look like for Unix or Windows,
respectively:

[client]
character-sets-dir=/usr/local/mysql/share/mysql/charsets
[client]
character-sets-dir="C:/Program Files/MySQL/MySQL Server 8.0/share/charsets"

• If the character set is a complex character set that cannot be loaded dynamically, you must recompile
the program with support for the character set.

81

https://dev.mysql.com/doc/refman/8.0/en/show-warnings.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_server
https://dev.mysql.com/doc/refman/8.0/en/server-options.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html
https://dev.mysql.com/doc/refman/8.0/en/show-collation.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-collations-table.html

MySQL Server Locale Support

For Unicode character sets, you can define collations without recompiling by using LDML notation. See
Section 1.14.4, “Adding a UCA Collation to a Unicode Character Set”.

• If the character set is a dynamic character set, but you do not have a configuration file for it, you should
install the configuration file for the character set from a new MySQL distribution.

• If your character set index file (Index.xml) does not contain the name for the character set, your
program displays an error message:

Character set 'charset_name' is not a compiled character set and is not
specified in the '/usr/share/mysql/charsets/Index.xml' file

To solve this problem, you should either get a new index file or manually add the name of any missing
character sets to the current file.

You can force client programs to use specific character set as follows:

[client]
default-character-set=charset_name

This is normally unnecessary. However, when character_set_system differs from
character_set_server or character_set_client, and you input characters manually (as database
object identifiers, column values, or both), these may be displayed incorrectly in output from the client or
the output itself may be formatted incorrectly. In such cases, starting the mysql client with --default-
character-set=system_character_set—that is, setting the client character set to match the system
character set—should fix the problem.

1.16 MySQL Server Locale Support
The locale indicated by the lc_time_names system variable controls the language used to display
day and month names and abbreviations. This variable affects the output from the DATE_FORMAT(),
DAYNAME(), and MONTHNAME() functions.

lc_time_names does not affect the STR_TO_DATE() or GET_FORMAT() function.

The lc_time_names value does not affect the result from FORMAT(), but this function takes an optional
third parameter that enables a locale to be specified to be used for the result number's decimal point,
thousands separator, and grouping between separators. Permissible locale values are the same as the
legal values for the lc_time_names system variable.

Locale names have language and region subtags listed by IANA (http://www.iana.org/assignments/
language-subtag-registry) such as 'ja_JP' or 'pt_BR'. The default value is 'en_US' regardless of your
system's locale setting, but you can set the value at server startup, or set the GLOBAL value at runtime if
you have privileges sufficient to set global system variables; see System Variable Privileges. Any client can
examine the value of lc_time_names or set its SESSION value to affect the locale for its own connection.

(The first SET NAMES statement in the following example may not be necessary if no settings relating to
character set and collation have been changed from their defaults; we include it for completeness.)

mysql> SET NAMES 'utf8mb4';
Query OK, 0 rows affected (0.09 sec)
mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| en_US |
+-----------------+
1 row in set (0.00 sec)
mysql> SELECT DAYNAME('2020-01-01'), MONTHNAME('2020-01-01');

82

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_system
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_default-character-set
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_default-character-set
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lc_time_names
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_dayname
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_monthname
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lc_time_names
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_str-to-date
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_get-format
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lc_time_names
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_format
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lc_time_names
http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lc_time_names
https://dev.mysql.com/doc/refman/8.0/en/set-names.html

MySQL Server Locale Support

+-----------------------+-------------------------+
| DAYNAME('2020-01-01') | MONTHNAME('2020-01-01') |
+-----------------------+-------------------------+
| Wednesday | January |
+-----------------------+-------------------------+
1 row in set (0.00 sec)
mysql> SELECT DATE_FORMAT('2020-01-01','%W %a %M %b');
+---+
| DATE_FORMAT('2020-01-01','%W %a %M %b') |
+---+
| Wednesday Wed January Jan |
+---+
1 row in set (0.00 sec)
mysql> SET lc_time_names = 'es_MX';
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| es_MX |
+-----------------+
1 row in set (0.00 sec)
mysql> SELECT DAYNAME('2020-01-01'), MONTHNAME('2020-01-01');
+-----------------------+-------------------------+
| DAYNAME('2020-01-01') | MONTHNAME('2020-01-01') |
+-----------------------+-------------------------+
| miércoles | enero |
+-----------------------+-------------------------+
1 row in set (0.00 sec)
mysql> SELECT DATE_FORMAT('2020-01-01','%W %a %M %b');
+---+
| DATE_FORMAT('2020-01-01','%W %a %M %b') |
+---+
| miércoles mié enero ene |
+---+
1 row in set (0.00 sec)

The day or month name for each of the affected functions is converted from utf8mb4 to the character set
indicated by the character_set_connection system variable.

lc_time_names may be set to any of the following locale values. The set of locales supported by MySQL
may differ from those supported by your operating system.

Locale Value Meaning

ar_AE Arabic - United Arab Emirates

ar_BH Arabic - Bahrain

ar_DZ Arabic - Algeria

ar_EG Arabic - Egypt

ar_IN Arabic - India

ar_IQ Arabic - Iraq

ar_JO Arabic - Jordan

ar_KW Arabic - Kuwait

ar_LB Arabic - Lebanon

ar_LY Arabic - Libya

ar_MA Arabic - Morocco

ar_OM Arabic - Oman

ar_QA Arabic - Qatar

83

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lc_time_names

MySQL Server Locale Support

Locale Value Meaning

ar_SA Arabic - Saudi Arabia

ar_SD Arabic - Sudan

ar_SY Arabic - Syria

ar_TN Arabic - Tunisia

ar_YE Arabic - Yemen

be_BY Belarusian - Belarus

bg_BG Bulgarian - Bulgaria

ca_ES Catalan - Spain

cs_CZ Czech - Czech Republic

da_DK Danish - Denmark

de_AT German - Austria

de_BE German - Belgium

de_CH German - Switzerland

de_DE German - Germany

de_LU German - Luxembourg

el_GR Greek - Greece

en_AU English - Australia

en_CA English - Canada

en_GB English - United Kingdom

en_IN English - India

en_NZ English - New Zealand

en_PH English - Philippines

en_US English - United States

en_ZA English - South Africa

en_ZW English - Zimbabwe

es_AR Spanish - Argentina

es_BO Spanish - Bolivia

es_CL Spanish - Chile

es_CO Spanish - Colombia

es_CR Spanish - Costa Rica

es_DO Spanish - Dominican Republic

es_EC Spanish - Ecuador

es_ES Spanish - Spain

es_GT Spanish - Guatemala

es_HN Spanish - Honduras

es_MX Spanish - Mexico

es_NI Spanish - Nicaragua

es_PA Spanish - Panama

84

MySQL Server Locale Support

Locale Value Meaning

es_PE Spanish - Peru

es_PR Spanish - Puerto Rico

es_PY Spanish - Paraguay

es_SV Spanish - El Salvador

es_US Spanish - United States

es_UY Spanish - Uruguay

es_VE Spanish - Venezuela

et_EE Estonian - Estonia

eu_ES Basque - Spain

fi_FI Finnish - Finland

fo_FO Faroese - Faroe Islands

fr_BE French - Belgium

fr_CA French - Canada

fr_CH French - Switzerland

fr_FR French - France

fr_LU French - Luxembourg

gl_ES Galician - Spain

gu_IN Gujarati - India

he_IL Hebrew - Israel

hi_IN Hindi - India

hr_HR Croatian - Croatia

hu_HU Hungarian - Hungary

id_ID Indonesian - Indonesia

is_IS Icelandic - Iceland

it_CH Italian - Switzerland

it_IT Italian - Italy

ja_JP Japanese - Japan

ko_KR Korean - Republic of Korea

lt_LT Lithuanian - Lithuania

lv_LV Latvian - Latvia

mk_MK Macedonian - North Macedonia

mn_MN Mongolia - Mongolian

ms_MY Malay - Malaysia

nb_NO Norwegian(Bokmål) - Norway

nl_BE Dutch - Belgium

nl_NL Dutch - The Netherlands

no_NO Norwegian - Norway

pl_PL Polish - Poland

85

MySQL Server Locale Support

Locale Value Meaning

pt_BR Portugese - Brazil

pt_PT Portugese - Portugal

rm_CH Romansh - Switzerland

ro_RO Romanian - Romania

ru_RU Russian - Russia

ru_UA Russian - Ukraine

sk_SK Slovak - Slovakia

sl_SI Slovenian - Slovenia

sq_AL Albanian - Albania

sr_RS Serbian - Serbia

sv_FI Swedish - Finland

sv_SE Swedish - Sweden

ta_IN Tamil - India

te_IN Telugu - India

th_TH Thai - Thailand

tr_TR Turkish - Turkey

uk_UA Ukrainian - Ukraine

ur_PK Urdu - Pakistan

vi_VN Vietnamese - Vietnam

zh_CN Chinese - China

zh_HK Chinese - Hong Kong

zh_TW Chinese - Taiwan

86

Chapter 2 MySQL Server Time Zone Support
This section describes the time zone settings maintained by MySQL, how to load the system tables
required for named time support, how to stay current with time zone changes, and how to enable leap-
second support.

Beginning with MySQL 8.0.19, time zone offsets are also supported for inserted datetime values; see The
DATE, DATETIME, and TIMESTAMP Types, for more information.

For information about time zone settings in replication setups, see Replication and System Functions and
Replication and Time Zones.

• Time Zone Variables

• Populating the Time Zone Tables

• Staying Current with Time Zone Changes

• Time Zone Leap Second Support

Time Zone Variables
MySQL Server maintains several time zone settings:

• The server system time zone. When the server starts, it attempts to determine the time zone of the host
machine and uses it to set the system_time_zone system variable.

To explicitly specify the system time zone for MySQL Server at startup, set the TZ environment variable
before you start mysqld. If you start the server using mysqld_safe, its --timezone option provides
another way to set the system time zone. The permissible values for TZ and --timezone are system
dependent. Consult your operating system documentation to see what values are acceptable.

• The server current time zone. The global time_zone system variable indicates the time zone the server
currently is operating in. The initial time_zone value is 'SYSTEM', which indicates that the server time
zone is the same as the system time zone.

Note

If set to SYSTEM, every MySQL function call that requires a time zone calculation
makes a system library call to determine the current system time zone. This call
may be protected by a global mutex, resulting in contention.

The initial global server time zone value can be specified explicitly at startup with the --default-
time-zone option on the command line, or you can use the following line in an option file:

default-time-zone='timezone'

If you have the SYSTEM_VARIABLES_ADMIN privilege (or the deprecated SUPER privilege), you can set
the global server time zone value at runtime with this statement:

SET GLOBAL time_zone = timezone;

• Per-session time zones. Each client that connects has its own session time zone setting, given by the
session time_zone variable. Initially, the session variable takes its value from the global time_zone
variable, but the client can change its own time zone with this statement:

SET time_zone = timezone;

87

https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/replication-features-functions.html
https://dev.mysql.com/doc/refman/8.0/en/replication-features-timezone.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_system_time_zone
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html#option_mysqld_safe_timezone
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html#option_mysqld_safe_timezone
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_default-time-zone
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_default-time-zone
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_system-variables-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone

Populating the Time Zone Tables

The session time zone setting affects display and storage of time values that are zone-sensitive. This
includes the values displayed by functions such as NOW() or CURTIME(), and values stored in and
retrieved from TIMESTAMP columns. Values for TIMESTAMP columns are converted from the session time
zone to UTC for storage, and from UTC to the session time zone for retrieval.

The session time zone setting does not affect values displayed by functions such as UTC_TIMESTAMP()
or values in DATE, TIME, or DATETIME columns. Nor are values in those data types stored in UTC; the
time zone applies for them only when converting from TIMESTAMP values. If you want locale-specific
arithmetic for DATE, TIME, or DATETIME values, convert them to UTC, perform the arithmetic, and then
convert back.

The current global and session time zone values can be retrieved like this:

SELECT @@GLOBAL.time_zone, @@SESSION.time_zone;

timezone values can be given in several formats, none of which are case-sensitive:

• As the value 'SYSTEM', indicating that the server time zone is the same as the system time zone.

• As a string indicating an offset from UTC of the form [H]H:MM, prefixed with a + or -, such as
'+10:00', '-6:00', or '+05:30'. A leading zero can optionally be used for hours values less than
10; MySQL prepends a leading zero when storing and retrieving the value in such cases. MySQL
converts '-00:00' or '-0:00' to '+00:00'.

Prior to MySQL 8.0.19, this value had to be in the range '-12:59' to '+13:00', inclusive; beginning
with MySQL 8.0.19, the permitted range is '-13:59' to '+14:00', inclusive.

• As a named time zone, such as 'Europe/Helsinki', 'US/Eastern', 'MET', or 'UTC'.

Note

Named time zones can be used only if the time zone information tables in the
mysql database have been created and populated. Otherwise, use of a named
time zone results in an error:

mysql> SET time_zone = 'UTC';
ERROR 1298 (HY000): Unknown or incorrect time zone: 'UTC'

Populating the Time Zone Tables
Several tables in the mysql system schema exist to store time zone information (see The mysql System
Schema). The MySQL installation procedure creates the time zone tables, but does not load them. To do
so manually, use the following instructions.

Note

Loading the time zone information is not necessarily a one-time operation because
the information changes occasionally. When such changes occur, applications that
use the old rules become out of date and you may find it necessary to reload the
time zone tables to keep the information used by your MySQL server current. See
Staying Current with Time Zone Changes.

If your system has its own zoneinfo database (the set of files describing time zones), use the
mysql_tzinfo_to_sql program to load the time zone tables. Examples of such systems are Linux,
macOS, FreeBSD, and Solaris. One likely location for these files is the /usr/share/zoneinfo directory.
If your system has no zoneinfo database, you can use a downloadable package, as described later in this
section.

88

https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_now
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_curtime
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_utc-timestamp
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/system-schema.html
https://dev.mysql.com/doc/refman/8.0/en/system-schema.html

Staying Current with Time Zone Changes

To load the time zone tables from the command line, pass the zoneinfo directory path name to
mysql_tzinfo_to_sql and send the output into the mysql program. For example:

mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root -p mysql

The mysql command shown here assumes that you connect to the server using an account such as root
that has privileges for modifying tables in the mysql system schema. Adjust the connection parameters as
required.

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from them.
mysql processes those statements to load the time zone tables.

mysql_tzinfo_to_sql also can be used to load a single time zone file or generate leap second
information:

• To load a single time zone file tz_file that corresponds to a time zone name tz_name, invoke
mysql_tzinfo_to_sql like this:

mysql_tzinfo_to_sql tz_file tz_name | mysql -u root -p mysql

With this approach, you must execute a separate command to load the time zone file for each named
zone that the server needs to know about.

• If your time zone must account for leap seconds, initialize leap second information like this, where
tz_file is the name of your time zone file:

mysql_tzinfo_to_sql --leap tz_file | mysql -u root -p mysql

After running mysql_tzinfo_to_sql, restart the server so that it does not continue to use any
previously cached time zone data.

If your system has no zoneinfo database (for example, Windows), you can use a package containing SQL
statements that is available for download at the MySQL Developer Zone:

https://dev.mysql.com/downloads/timezones.html

Warning

Do not use a downloadable time zone package if your system has a zoneinfo
database. Use the mysql_tzinfo_to_sql utility instead. Otherwise, you may
cause a difference in datetime handling between MySQL and other applications on
your system.

To use an SQL-statement time zone package that you have downloaded, unpack it, then load the
unpacked file contents into the time zone tables:

mysql -u root -p mysql < file_name

Then restart the server.

Warning

Do not use a downloadable time zone package that contains MyISAM tables. That
is intended for older MySQL versions. MySQL now uses InnoDB for the time zone
tables. Trying to replace them with MyISAM tables causes problems.

Staying Current with Time Zone Changes

89

https://dev.mysql.com/downloads/timezones.html

Staying Current with Time Zone Changes

When time zone rules change, applications that use the old rules become out of date. To stay current, it is
necessary to make sure that your system uses current time zone information is used. For MySQL, there
are multiple factors to consider in staying current:

• The operating system time affects the value that the MySQL server uses for times if its time zone is set
to SYSTEM. Make sure that your operating system is using the latest time zone information. For most
operating systems, the latest update or service pack prepares your system for the time changes. Check
the website for your operating system vendor for an update that addresses the time changes.

• If you replace the system's /etc/localtime time zone file with a version that uses rules differing from
those in effect at mysqld startup, restart mysqld so that it uses the updated rules. Otherwise, mysqld
might not notice when the system changes its time.

• If you use named time zones with MySQL, make sure that the time zone tables in the mysql database
are up to date:

• If your system has its own zoneinfo database, reload the MySQL time zone tables whenever the
zoneinfo database is updated.

• For systems that do not have their own zoneinfo database, check the MySQL Developer Zone for
updates. When a new update is available, download it and use it to replace the content of your current
time zone tables.

For instructions for both methods, see Populating the Time Zone Tables. mysqld caches time zone
information that it looks up, so after updating the time zone tables, restart mysqld to make sure that it
does not continue to serve outdated time zone data.

If you are uncertain whether named time zones are available, for use either as the server's time zone
setting or by clients that set their own time zone, check whether your time zone tables are empty. The
following query determines whether the table that contains time zone names has any rows:

mysql> SELECT COUNT(*) FROM mysql.time_zone_name;
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+

A count of zero indicates that the table is empty. In this case, no applications currently are using named
time zones, and you need not update the tables (unless you want to enable named time zone support). A
count greater than zero indicates that the table is not empty and that its contents are available to be used
for named time zone support. In this case, be sure to reload your time zone tables so that applications that
use named time zones can obtain correct query results.

To check whether your MySQL installation is updated properly for a change in Daylight Saving Time rules,
use a test like the one following. The example uses values that are appropriate for the 2007 DST 1-hour
change that occurs in the United States on March 11 at 2 a.m.

The test uses this query:

SELECT
 CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central') AS time1,
 CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central') AS time2;

The two time values indicate the times at which the DST change occurs, and the use of named time zones
requires that the time zone tables be used. The desired result is that both queries return the same result
(the input time, converted to the equivalent value in the 'US/Central' time zone).

Before updating the time zone tables, you see an incorrect result like this:

90

Time Zone Leap Second Support

+---------------------+---------------------+
| time1 | time2 |
+---------------------+---------------------+
| 2007-03-11 01:00:00 | 2007-03-11 02:00:00 |
+---------------------+---------------------+

After updating the tables, you should see the correct result:

+---------------------+---------------------+
| time1 | time2 |
+---------------------+---------------------+
| 2007-03-11 01:00:00 | 2007-03-11 01:00:00 |
+---------------------+---------------------+

Time Zone Leap Second Support

Leap second values are returned with a time part that ends with :59:59. This means that a function
such as NOW() can return the same value for two or three consecutive seconds during the leap second.
It remains true that literal temporal values having a time part that ends with :59:60 or :59:61 are
considered invalid.

If it is necessary to search for TIMESTAMP values one second before the leap second, anomalous results
may be obtained if you use a comparison with 'YYYY-MM-DD hh:mm:ss' values. The following example
demonstrates this. It changes the session time zone to UTC so there is no difference between internal
TIMESTAMP values (which are in UTC) and displayed values (which have time zone correction applied).

mysql> CREATE TABLE t1 (
 a INT,
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (ts)
);
Query OK, 0 rows affected (0.01 sec)
mysql> -- change to UTC
mysql> SET time_zone = '+00:00';
Query OK, 0 rows affected (0.00 sec)
mysql> -- Simulate NOW() = '2008-12-31 23:59:59'
mysql> SET timestamp = 1230767999;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO t1 (a) VALUES (1);
Query OK, 1 row affected (0.00 sec)
mysql> -- Simulate NOW() = '2008-12-31 23:59:60'
mysql> SET timestamp = 1230768000;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO t1 (a) VALUES (2);
Query OK, 1 row affected (0.00 sec)
mysql> -- values differ internally but display the same
mysql> SELECT a, ts, UNIX_TIMESTAMP(ts) FROM t1;
+------+---------------------+--------------------+
| a | ts | UNIX_TIMESTAMP(ts) |
+------+---------------------+--------------------+
| 1 | 2008-12-31 23:59:59 | 1230767999 |
| 2 | 2008-12-31 23:59:59 | 1230768000 |
+------+---------------------+--------------------+
2 rows in set (0.00 sec)
mysql> -- only the non-leap value matches
mysql> SELECT * FROM t1 WHERE ts = '2008-12-31 23:59:59';
+------+---------------------+
| a | ts |
+------+---------------------+
| 1 | 2008-12-31 23:59:59 |
+------+---------------------+
1 row in set (0.00 sec)
mysql> -- the leap value with seconds=60 is invalid
mysql> SELECT * FROM t1 WHERE ts = '2008-12-31 23:59:60';

91

https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_now
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html

Time Zone Leap Second Support

Empty set, 2 warnings (0.00 sec)

To work around this, you can use a comparison based on the UTC value actually stored in the column,
which has the leap second correction applied:

mysql> -- selecting using UNIX_TIMESTAMP value return leap value
mysql> SELECT * FROM t1 WHERE UNIX_TIMESTAMP(ts) = 1230768000;
+------+---------------------+
| a | ts |
+------+---------------------+
| 2 | 2008-12-31 23:59:59 |
+------+---------------------+
1 row in set (0.00 sec)

92

	MySQL Globalization
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Character Sets, Collations, Unicode
	1.1 Character Sets and Collations in General
	1.2 Character Sets and Collations in MySQL
	1.2.1 Character Set Repertoire
	1.2.2 UTF-8 for Metadata

	1.3 Specifying Character Sets and Collations
	1.3.1 Collation Naming Conventions
	1.3.2 Server Character Set and Collation
	1.3.3 Database Character Set and Collation
	1.3.4 Table Character Set and Collation
	1.3.5 Column Character Set and Collation
	1.3.6 Character String Literal Character Set and Collation
	1.3.7 The National Character Set
	1.3.8 Character Set Introducers
	1.3.9 Examples of Character Set and Collation Assignment
	1.3.10 Compatibility with Other DBMSs

	1.4 Connection Character Sets and Collations
	1.5 Configuring Application Character Set and Collation
	1.6 Error Message Character Set
	1.7 Column Character Set Conversion
	1.8 Collation Issues
	1.8.1 Using COLLATE in SQL Statements
	1.8.2 COLLATE Clause Precedence
	1.8.3 Character Set and Collation Compatibility
	1.8.4 Collation Coercibility in Expressions
	1.8.5 The binary Collation Compared to _bin Collations
	1.8.6 Examples of the Effect of Collation
	1.8.7 Using Collation in INFORMATION_SCHEMA Searches

	1.9 Unicode Support
	1.9.1 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)
	1.9.2 The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding)
	1.9.3 The utf8 Character Set (Deprecated alias for utf8mb3)
	1.9.4 The ucs2 Character Set (UCS-2 Unicode Encoding)
	1.9.5 The utf16 Character Set (UTF-16 Unicode Encoding)
	1.9.6 The utf16le Character Set (UTF-16LE Unicode Encoding)
	1.9.7 The utf32 Character Set (UTF-32 Unicode Encoding)
	1.9.8 Converting Between 3-Byte and 4-Byte Unicode Character Sets

	1.10 Supported Character Sets and Collations
	1.10.1 Unicode Character Sets
	1.10.2 West European Character Sets
	1.10.3 Central European Character Sets
	1.10.4 South European and Middle East Character Sets
	1.10.5 Baltic Character Sets
	1.10.6 Cyrillic Character Sets
	1.10.7 Asian Character Sets
	1.10.7.1 The cp932 Character Set
	1.10.7.2 The gb18030 Character Set

	1.10.8 The Binary Character Set

	1.11 Restrictions on Character Sets
	1.12 Setting the Error Message Language
	1.13 Adding a Character Set
	1.13.1 Character Definition Arrays
	1.13.2 String Collating Support for Complex Character Sets
	1.13.3 Multi-Byte Character Support for Complex Character Sets

	1.14 Adding a Collation to a Character Set
	1.14.1 Collation Implementation Types
	1.14.2 Choosing a Collation ID
	1.14.3 Adding a Simple Collation to an 8-Bit Character Set
	1.14.4 Adding a UCA Collation to a Unicode Character Set
	1.14.4.1 Defining a UCA Collation Using LDML Syntax
	1.14.4.2 LDML Syntax Supported in MySQL
	1.14.4.3 Diagnostics During Index.xml Parsing

	1.15 Character Set Configuration
	1.16 MySQL Server Locale Support

	Chapter 2 MySQL Server Time Zone Support

