
Reachability in Bidirected Pushdown VASS
Moses Ganardi #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Rupak Majumdar #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Andreas Pavlogiannis #

Aarhus University, Denmark

Lia Schütze #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Georg Zetzsche #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Abstract
A pushdown vector addition system with states (PVASS) extends the model of vector addition
systems with a pushdown store. A PVASS is said to be bidirected if every transition (pushing/popping
a symbol or modifying a counter) has an accompanying opposite transition that reverses the effect.
Bidirectedness arises naturally in many models; it can also be seen as a overapproximation of
reachability. We show that the reachability problem for bidirected PVASS is decidable in Ackermann
time and primitive recursive for any fixed dimension. For the special case of one-dimensional
bidirected PVASS, we show reachability is in PSPACE, and in fact in polynomial time if the stack
is polynomially bounded. Our results are in contrast to the directed setting, where decidability of
reachability is a long-standing open problem already for one dimensional PVASS, and there is a
PSPACE-lower bound already for one-dimensional PVASS with bounded stack.

The reachability relation in the bidirected (stateless) case is a congruence over Nd. Our upper
bounds exploit saturation techniques over congruences. In particular, we show novel elementary-time
constructions of semilinear representations of congruences generated by finitely many vector pairs. In
the case of one-dimensional PVASS, we employ a saturation procedure over bounded-size counters.

We complement our upper bound with a TOWER-hardness result for arbitrary dimension and
k-EXPSPACE hardness in dimension 2k + 6 using a technique by Lazić and Totzke to implement
iterative exponentiations.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Vector addition systems, Pushdown, Reachability, Decidability, Complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.124

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2204.11799 [20]

1 Introduction

The reachability problem for infinite-state systems is one of the most basic and well-studied
tasks in verification. Given an infinite-state system and two configurations c1 and c2 in
the system, it asks: Is there a run from c1 to c2? Pushdown systems (PDS) and vector
addition systems with states (VASS) are prominent models for which the reachability problem
has been studied extensively. Each of them features a finite set of control states and a
storage mechanism that holds an unbounded amount of information. In a PDS, there is a
stack where we can push and pop letters. In a VASS, there is a set of counters which can

EA
T
C
S

© Moses Ganardi, Rupak Majumdar, Andreas Pavlogiannis, Lia Schütze, and
Georg Zetzsche;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 124; pp. 124:1–124:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ganardi@mpi-sws.org
https://orcid.org/0000-0002-0775-7781
mailto:rupak@mpi-sws.org
https://orcid.org/0000-0003-2136-0542
mailto:pavlogiannis@cs.au.dk
https://orcid.org/0000-0002-8943-0722
mailto:lschuetze@mpi-sws.org
https://orcid.org/0000-0003-4002-5491
mailto:georg@mpi-sws.org
https://orcid.org/0000-0002-6421-4388
https://doi.org/10.4230/LIPIcs.ICALP.2022.124
https://arxiv.org/abs/2204.11799
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

124:2 Reachability in Bidirected Pushdown VASS

be incremented and decremented, but not tested for zero. Reachability in both models is
understood in isolation [5, 11, 37, 12, 38], but the reachability problem for their combination
is a long-standing open problem.

Pushdown VASS. A pushdown VASS (PVASS) combines PDS and VASS. A PVASS consists
of finitely many control states and has access to both a pushdown stack (as in PDS) and
counters (as in VASS). A PVASS is d-dimensional if it has d counters. A PVASS is a natural
combination of the simple building blocks of PDS and VASS. The reachability problem
for PVASS has remained a long-standing open problem [39, 50, 15], even if we combine a
pushdown with a single counter.

Bidirectedness. A step toward deciding reachability is to first study natural relaxations of
the reachability relation. A relaxation that has recently attracted attention is bidirectedness.
Bidirectedness assumes that for each transition from state p to q in our infinite-state system,
there exists a transition from q to p with opposite effect. For example, in bidirected pushdown
systems, for each transition from p to q pushing γ on the stack, there is a transition from
q to p that pops γ. Likewise, in bidirected VASS, if there is a transition from p to q

that adds some vector v ∈ Zd to counters, then there is a transition from q to p adding
−v. It turns out that several tasks in program analysis can be formulated or practically
approximated as reachability in bidirected pushdown systems [8, 54] or bidirected multi-
pushdown systems [51, 52, 55, 40, 41, 31]. Bidirected systems have also been considered in
algorithmic group theory as an algorithmic framework to provide simple algorithms for the
membership problem in subgroups [42].

Reachability in bidirected systems is usually considerably more efficient than in the
general case. In bidirected pushdown systems, reachability can be solved in almost linear
time [8] whereas a truly subcubic algorithm for the general case is a long-standing open
problem [26, 9]. Reachability in bidirected VASS is equivalent to the uniform word problem
in finitely presented commutative semigroups, which is EXPSPACE-complete [43]. A separate
polynomial time algorithm for bidirected two-dimensional VASS was given in [41]. Moreover,
recent results on reachability in bidirected valence systems shows complexity drops across a
large variety of infinite-state systems [21]: For almost every class of systems studied in [21],
the complexity of bidirected reachability is lower than in the general case (the only exception
being pushdown systems, where the complexity is P-complete in both settings). For example,
reachability in bidirected Z-VASS, and even in bidirected Z-PVASS, is in P [21].

However, little is known about bidirected PVASS. They have recently been studied
in [31], where decidability of reachability in dimension one is shown. However, as in the
non-bidirected case, decidability of reachability in bidirected PVASS is hitherto not known.

Contributions. We show that in bidirected PVASS (of arbitrary dimension), reachability is
decidable. Moreover, we provide an Ackermann complexity upper bound, and show that in
any fixed dimension, reachability is primitive recursive.

▶ Theorem 1.1. Reachability in bidirected pushdown VASS is in ACKERMANN, and primitive
recursive (in F4d+11) if the dimension d is fixed.

Here, (Fα)α is an ordinal-indexed hierarchy of fast-growing complexity classes [48],
including F3 = TOWER and Fω = ACKERMANN. The formal definition of the hierarchy can
be found in Section 4.3. A recurring theme in our upper bounds is that saturation techniques,
the standard method to analyze pushdown systems, combine surprisingly well with counters

M. Ganardi, R. Majumdar, A. Pavlogiannis, L. Schütze, and G. Zetzsche 124:3

in the bidirected setting. Saturation is used in each of our upper bounds. In Section 3,
we begin the exposition with a short, self-contained proof that reachability is decidable in
bidirected PVASS. It shows that non-reachability is always certified by an inductive invariant
of a particular saturation procedure. In Section 4, we show the Ackermann upper bound.
Here, we saturate a congruence relation that encodes the reachability relation. The upper
bound relies on two key ingredients. First, we use results about Gröbner bases of polynomial
ideals to show that in elementary time, one can construct a Presburger formula for the
congruence generated by finitely many vector pairs. This construction serves as one step in
the saturation. To show termination in Ackermannian time, we rely on a technique from [16]
to bound the length of strictly ascending chains of upward closed sets of vectors. Here, the
difficulty is to transfer this bound from chains of upward closed sets to chains of congruences.

In Section 5 we present a PSPACE algorithm for bidirected PVASS in dimension one.

▶ Theorem 1.2. Reachability in 1-dimensional bidirected pushdown VASS is in PSPACE.

Here, we rely on an observation from [31] that reachability in bidirected one-dimensional
PVASS reduces to (i) coverability in bidirected one-dimensional PVASS and (ii) reachability
in one-dimensional bidirected Z-PVASS. Since (ii) is known to be in P [21], we show that
(i) can be done in PSPACE. For this, we use saturation to compute, for each state pair (p, q),
three bounds on counter values that determine whether coverability holds. We show that
these bounds have at most exponential absolute value, which yields a PSPACE procedure.

Finally in Section 6, we show that reachability in bidirected PVASS is TOWER-hard. For
this, we adapt a technique from [33] that shows a TOWER lower bound for general PVASS.

▶ Theorem 1.3. Reachability in bidirected PVASS is TOWER-hard, and k-EXPSPACE-hard
in dimension 2k + 6.

Related work. The model of pushdown VASS is surrounded by extensions and restrictions
of the storage mechanism for which decidability is understood, the most prominent being
the recent Ackermann-completeness for reachability in VASS [11, 37, 12, 38]. If instead of
the stack, we have a counter with zero tests, then reachability is still decidable [47, 4]. Here,
decidability even holds if we have a zero-testable counter and one additional counter that can
be reset [18, 17]. Furthermore, the extension of VASS by nested zero tests, where for each
i ∈ {1, . . . , d}, we have an instruction that tests all counters 1, . . . , i for zero simultaneously,
also allows deciding reachability [47, 3] and can be seen as a special case of pushdown
VASS [1]. Another decidability result concerns the coverability problem: Here, we are given a
configuration c1 and a control state q and want to know whether from c1, one can reach some
configuration in control state q. It is known that the reachability problem for d-dimensional
PVASS reduces to coverability in (d + 1)-dimensional PVASS, and that coverability in
1-dimensional PVASS is decidable [39]. According to [15], the latter problem is PSPACE-hard
and in EXPSPACE. Furthermore, if the counters in a PVASS are allowed to go negative
during a run, then we speak of an integer PVASS (Z-PVASS). For these, reachability is
known to be decidable [25] and NP-complete [24]. However, if we extend the model of PVASS
by allowing resets on the counters, then even coverability is undecidable in dimension one [50].

For VASS, several generalizations of bidirectedness have been studied. It is EXPSPACE-
complete whether given two configurations are mutually reachable [35]. Moreover, if two
configurations are mutually reachable, then their distance is at most doubly exponential
(linear for fixed dimension) in their size [36]. Furthermore, for cyclic VASS (where each
transition can be reversed by some execution), it is known that the reachability set has a
semilinear representation of at most exponential size [6]. Let us note that in the VASS/Petri
net literature, sometimes [6] (but not entirely consistently [35]) the term reversible is used to
mean bidirected. However, this clashes with the reversibility notion in dynamical systems [30].

ICALP 2022

124:4 Reachability in Bidirected Pushdown VASS

2 Preliminaries

Vectors and semilinear sets. We denote integer vectors by bold letters x. The maximum
norm of x is denoted by ∥x∥. The i-th unit vector is denoted by ei. The componentwise order
≤ on Nd is a well-quasi order (wqo), i.e. for any infinite sequence x1, x2, . . . over Nd there exist
i < j with xi ≤ xj . We write x < y if x ≤ y and x ≠ y. This implies that the set min(X)
of minimal elements in any X ⊆ Nd is finite. We denote by X↑ = {y ∈ Nk | ∃x ∈ X : x ≤ y}
the upwards closure of X. We also write x↑ for {x}↑. A congruence on a commutative
monoid (M, +), for example M = Nd, is an equivalence relation Q ⊆M×M where (a, b) ∈ Q
implies (a + c, b + c) ∈ Q for all a, b, c ∈M . We also write a ∼Q b instead of (a, b) ∈ Q.

For X ⊆ Nk we denote by X∗ the submonoid generated by X. A set L ⊆ Nk is linear
if it is of the form L = b + P ∗ for some base vector b ∈ Nk and some finite set P ⊆ Nk

of period vectors. Finite unions of linear sets are called semilinear. It is well-known that
a set is semilinear if and only if it is definable in Presburger arithmetic, i.e. first-order
logic over (N, +,≤, 0, 1). Furthermore, one can effectively convert between these formats in
elementary time: While defining semilinear sets in Presburger arithmetic is straightforward,
for the converse we can use Cooper’s quantifier elimination [10] running in triply exponential
time [44], see also [23] for an excellent overview. We will confuse a semilinear S with its
representation, which is either a list of base and period vectors for each linear set or a defining
Presburger formula, and denote by ∥S∥ the size of its representation.

Pushdown VASS. A d-dimensional pushdown VASS (PVASS) is a tuple P = (Q, Γ, T)
where Q is a finite set of states, Γ is a finite stack alphabet, and T ⊆ Q× Zd ×Op(Γ)×Q is
a finite set of transitions. Here Op(Γ) = {a, ā | a ∈ Γ} ∪ {ε} is the set of operations on the
stack. A configuration over P is a tuple (q, x, s) ∈ Q× Nd × Γ∗. The one-step relation → is
the smallest binary relation on configurations such that for all (p, v, α, q) ∈ T and x ∈ Nd

with x + v ≥ 0 we have: (i) If α ∈ Γ ∪ {ε} then (p, x, s)→ (q, x + v, sα) (ii) if α = ā then
(p, x, sa)→ (q, x + v, s). Its transitive-reflexive closure is denoted by ∗−→. We say that P is
bidirected if (p, v, α, q) ∈ T implies (q,−v, ᾱ, p) ∈ T where we set ¯̄a = a for a ∈ Γ and ε̄ = ε.
The reachability problem for bidirected PVASS asks: Given a bidirected PVASS P and two
states s, t, does (s, 0, ε) ∗−→ (t, 0, ε) hold?

The counter updates u in a PVASS transition (p, u, q) can be given in either unary or
binary encoding since there are logspace translations in both directions: To add a binary
encoded number u to a counter we push the binary notation of u to the stack, and repeatedly
decrement the stack counter while incrementing u. Since this computation is deterministic,
the simulation also works for bidirected PVASS.

For the Ackermann upper bound it is convenient to use pushdown VASS with a single
state. A pushdown VAS (PVAS) P = (Γ, T) in dimension d consists of a finite stack alphabet
Γ and a finite set of transitions T ⊆ Nd × Nd × (Γ ∪ Γ̄ ∪ {ε}). Here, a configuration is a pair
(x, s) ∈ Nd × Γ∗. The effect of a transition (u, v, α) is subtracting u from the d counters,
assuming that the counters stay non-negative, and then adding v. A PVAS P is bidirected if
(u, v, a) ∈ T implies (v, u, ā) ∈ T . A bidirected PVASS in dimension d can be simulated by a
bidirected PVAS in dimension d + 2 where the two additional counters add up to the number
of states and specify the current state. Hence, one can reduce the reachability problem for
bidirected PVASS to the reachability problem for bidirected PVAS: Given a bidirected PVAS
P and two vectors s, t ∈ Nd, does (s, ε) ∗−→ (t, ε) hold?

M. Ganardi, R. Majumdar, A. Pavlogiannis, L. Schütze, and G. Zetzsche 124:5

3 Decidability

In this section, we present a simple and self-contained proof that reachability is decidable
in bidirected PVASS. Consider the reachability relation between configurations with empty
stack. For any states p, q, define the set Rp,q ⊆ Nd × Nd with

Rp,q = {(u, v) | u, v ∈ Nd, (p, u, ε) ∗−→ (q, v, ε)}.

We will prove that each Rp,q is semilinear, for which we rely on the fact that these sets
are slices. A slice is a subset S ⊆ Nk such that if u, u + v, u + w ∈ S for some u, v, w ∈
Nk, then u + v + w ∈ S. Observe that each Rp,q ⊆ N2d is a slice. This is because if
(u, v), (u + u1, v + v1), (u + u2, v + v2) ∈ Rp,q, then there is a run

(p, u + u1 + u2, ε) ∗−→ (q, v + v1 + u2, ε) ∗−→ (p, u + v1 + u2, ε) ∗−→ (q, v + v1 + v2, ε),

where the middle part exists due to bidirectedness. Thus, the pair (u + u1 + u2, v + v1 + v2)
belongs to Rp,q. The following was first shown in [14, Proposition 7.3].

▶ Theorem 3.1 (Eilenberg & Schützenberger 1969). Every slice is semilinear.

This seems to be stronger than the somewhat better-known fact that each congruence on Nd

is semilinear: Observe that every congruence on Nd, seen as a subset of N2d, is a slice. In
the case of congruences, a relatively simple proof was obtained by Hirshfeld [27]. We present
a proof of Theorem 3.1 that combines ideas from both [14] and [27] and is (in our opinion)
simpler than each.

For a set X ⊆ Nk, let min X be the set of minimal elements of X, with respect to the usual
component-wise ordering ≤ on Nk. Since this ordering is a well-quasi ordering, min X is finite
for every set X. Suppose S ⊆ Nk is a slice. For each u ∈ S, let S−u := {v ∈ Nk | u+v ∈ S}.
Then u ≤ v implies S − u ⊆ S − v. Consider for each u ∈ S the submonoid

Mu = (min(S − u \ {0}))∗.

In other words, Mu is the submonoid of Nk generated by the non-zero minimal elements of
S−u. Note that for u, v ∈ S, we have Mu = Mv if and only if (S−u\{0}) ↑ = (S−v\{0}) ↑.
Since S is a slice, we have u + Mu ⊆ S for every u ∈ S. Since u ∈ u + Mu, we trivially have

S =
⋃

u∈S

u + Mu.

Since each u + Mu is semilinear, it suffices to show that S is covered by finitely many sets
u + Mu. We first observe that if u ≤ v and Mu = Mv, then u + Mu already covers v + Mv.

▶ Lemma 3.2. Let u, v ∈ S. If u ≤ v and Mu = Mv, then v + Mv ⊆ u + Mu.

Proof. We will use the following claim: For every w ∈ S with u ≤ w ≤ v, we have
Mu = Mw = Mv. Indeed, since Mu = Mv, we have min(S − u \ {0}) = min(S − v \ {0}).
Moreover, since S is a slice, we have S − u ⊆ S −w ⊆ S − v. Therefore, min(S −w \ {0})
coincides with min(S − u \ {0}) and min(S − v \ {0}), which implies Mw = Mu = Mv.

Let us prove the lemma. We proceed by induction on ∥v − u∥. If u = v, then we are
done. Otherwise, there exists an m ∈ min(S − u \ {0}) such that u + m ≤ v. By our claim,
we have Mu = Mu+m = Mv. Therefore, induction implies v ∈ u + m + Mu+m. But since
m ∈Mu and Mu+m ⊆Mu, this implies v ∈ u + Mu. ◀

The following implies semilinearity of S.

ICALP 2022

124:6 Reachability in Bidirected Pushdown VASS

▶ Lemma 3.3. There is a finite set F ⊆ S such that S =
⋃

u∈F u + Mu.

Proof. Suppose not. Then there is an infinite sequence u1, u2, . . . ∈ S such that each set
ui + Mui

contributes a new element. By Dickson’s lemma u1, u2, . . . contains a subsequence
v1, v2, . . . with vi ≤ vi+1 for all i ≥ 1. Since then S − v1 ⊆ S − v2 ⊆ · · · , the sequence
(S − v1 \ {0}) ↑ ⊆ (S − v2 \ {0}) ↑ ⊆ · · · becomes stationary, again by Dickson’s lemma, and
therefore also the sequence Mv1 , Mv2 , By Lemma 3.2, this means that only finitely many
terms in the sequence v1 + Mv1 , v2 + Mv2 , . . . contribute new elements, a contradiction. ◀

Saturation invariants. We have seen that the reachability relations Rp,q are all semilinear.
However, since the semilinearity proof is non-constructive, this does not explain how to decide
reachability. Nevertheless, we shall use semilinearity to show that in case of non-reachability,
there exists a certificate. This yields a decision procedure consisting of two semi-algorithms in
the style of Leroux’s algorithm for reachability in VASS [34]: One semi-algorithm enumerates
potential runs, and one enumerates potential certificates for non-reachability.

We assume that we are given a bidirected d-dimensional PVASS with state set Q and
stack alphabet Γ. We may assume that all transitions are of the form p

γ−→ q or p
γ̄−→ q for

γ ∈ Γ or p
v−→ q for v ∈ Zd. Our certificates for non-reachability will be in the form of what

we call saturation invariants. Imagine a (non-terminating) naive saturation algorithm that
attempts to compute the sets Rp,q by adding vector pairs one-by-one to finite sets Fp,q. It
would start with Fp,q = ∅ and then add pairs: For each transition p

v−→ q and each vector
u ∈ Nd with u + v ∈ Nd, it would add the pair (u, u + v) to Fp,q. Moreover, if (u, v) ∈ Fp,q

and (v, w) ∈ Fq,r, it would add (u, w) to Fp,r. Finally, if there are transitions p
γ−→ p′ and

q′ γ̄−→ q and there is a (u, v) ∈ Fp′,q′ , then it would add (u, v) to Fp,q.
Intuitively, a saturation invariant is a forward inductive invariant of this naive saturation

algorithm. Let us make this precise. For subsets R1, R2 ⊆ Nd × Nd, we define

R1 ◦R2 = {(u, w) ∈ Nd × Nd | ∃v ∈ Nd : (u, v) ∈ R1, (v, w) ∈ R2}.

A saturation invariant consists of a family (Ip,q)(p,q)∈Q2 of sets Ip,q ⊆ Nd × Nd for which
1. For each transition p

v−→ q, v ∈ Zd, each u ∈ Nd with u+v ∈ Nd, we have (u, u+v) ∈ Ip,q.
2. For each p, q, r ∈ Q, we have Ip,q ◦ Iq,r ⊆ Ip,r.
3. For each p, p′, q, q′ ∈ Q for which there are transitions p

γ−→ p′, q′ γ̄−→ q for some γ ∈ Γ, we
have Ip′,q′ ⊆ Ip,q.

There is a natural ordering of such families (Ip,q)(p,q)∈Q2 defined by inclusion: We write
(Ip,q)(p,q)∈Q2 ≤ (Jp,q)(p,q)∈Q2 , if Ip,q ⊆ Jp,q for each p, q ∈ Q. In this sense, we can speak of
a smallest saturation invariant.

▶ Lemma 3.4. The family (Rp,q)(p,q)∈Q2 is the smallest saturation invariant.

Proof. By induction on the length of a run, it follows that (Rp,q)(p,q)∈Q2 is included in every
saturation invariant. Moreover, (Rp,q)(p,q)∈Q2 is clearly a saturation invariant itself. ◀

Our certificates will consist of saturation invariants defined in Presburger arithmetic. A
family (Ip,q)(p,q)∈Q2 is Presburger-definable if for each (p, q) ∈ Q2, the set Ip,q is semilinear.
According to Theorem 3.1, the family (Rp,q)(p,q)∈Q2 is Presburger-definable. Therefore, the
following is a direct consequence of Lemma 3.4.

▶ Theorem 3.5. For each s, t ∈ Q, we have (0, 0) /∈ Rs,t if and only if there exists a
Presburger-definable saturation invariant (Ip,q)(p,q)∈Q2 such that (0, 0) /∈ Is,t.

M. Ganardi, R. Majumdar, A. Pavlogiannis, L. Schütze, and G. Zetzsche 124:7

Algorithm 1 Algorithm for bidirected reachability in PVAS.

Data: Bidirected d-dim. PVAS P = (Γ, T)
1 R0 := Cong({(u, v) | (u, v, ε) ∈ T});
2 for i = 1, 2, . . . do
3 Ri ← Ri−1;
4 for (u, u′, a) ∈ T and (v′, v, ā) ∈ T do
5 Ri ← Ri ∪ {(x + u, y + v) | (x + u′, y + v′) ∈ Ri−1, x, y ∈ Nd};
6 Ri ← Cong(Ri);
7 if Ri = Ri−1 then return Ri;

This yields our algorithm: One semi-algorithm enumerates transition sequences and
terminates if one of them is a run witnessing (s, 0, ε) ∗−→ (t, 0, ε). The other semi-algorithm
enumerates Presburger-definable families (Ip,q)(p,q)∈Q2 in the form of Presburger formulas.
Using Presburger arithmetic, it is then easy to check whether (i) (Ip,q)(p,q)∈Q2 is a saturation
invariant and (ii) (0, 0) /∈ Is,t. If a saturation invariant is found, the semi-algorithm reports
non-reachability. By Theorem 3.5, one of the two semi-algorithms must terminate.

4 Ackermann upper bound

In this section, we show that reachability in bidirected PVASS is solvable in Ackermann time
in the general case and in primitive recursive complexity in every fixed dimension.

One way to avoid enumeration in the algorithm of Section 3 would be to start with the
semilinear one-step relation described in the first condition of saturation invariants, and
then to enlarge it according to the second and third condition. Moreover, one could take
the slice closure (the smallest slice that includes the current set) after each enlargement.
Since slices satisfy an ascending chain condition [14, Corollary 12.3], this would ensure
termination. In fact, computing the slice closure of a semilinear set is possible with an
algorithm by Grabowski [22]. Unfortunately, the latter is itself based on enumeration and
we are not aware of any complexity bounds for computing slice closures. Therefore, we use
an analogous algorithm that uses congruences instead of slices. Since congruences can be
encoded in polynomial ideals, we can tap into the rich toolbox of Gröbner bases to compute
the congruence generated by a semilinear set.

4.1 The saturation algorithm
In the following we will work with pushdown VAS instead of pushdown VASS. Our decision
procedure for bidirected reachability relies on the crucial fact that the reachability relation
RP = {(s, t) ∈ Nd×Nd | (s, ε) ∗−→ (t, ε)} of a bidirected pushdown VAS P is a congruence: It
is always reflexive, transitive and additive, even for directed pushdown VAS, and symmetric for
bidirected systems. Therefore, whenever we have found an underapproximation R ⊆ RP we
can replace R by the smallest congruence containing R. The smallest congruence containing
a set R ⊆ Nd × Nd is denoted by Cong(R). We also say that R is a basis of (or generates)
Cong(R). Recall that every congruence on Nd is a slice. Therefore, congruences are semilinear
and ascending chains of congruences stabilize.

Algorithm 1 is a saturation algorithm that computes a semilinear representation for
RP . The sets Ri are maintained by semilinear representations or Presburger formulas.
Since in this section we only prove elementary complexity bounds, we can use both formats

ICALP 2022

124:8 Reachability in Bidirected Pushdown VASS

interchangeably. Observe that the update in line 5 and the equality test in line 7 can be
expressed in Presburger arithmetic. The computation of Cong(·) will be explained in the
next subsection. Consider the values of Ri for i ≥ 1 after line 6 of Algorithm 1. They form
an ascending chain of congruences (Ri)i≥1, which implies that the algorithm must terminate.
For the correctness one can prove by induction on i that (x, y) ∈ Ri if and only if there
exists a run between (x, ε) and (y, ε) whose stack height does not exceed i. Moreover, if the
algorithm terminates after k iterations then Rk = RP .

We will use a primitive recursive algorithm (which is elementary in fixed dimension) to
compute Cong(Ri) from a semilinear representation for Ri. Using the tools from [49] we can
then prove upper bounds for the length of the ascending chain.

4.2 Semilinear representations for congruences
In this section, we present an algorithm that, for a given semilinear representation for a set
R ⊆ Nd × Nd, computes a semilinear representation for Cong(R). Its run time is bounded
by a tower of exponentials in ∥R∥ of height O(d) (Theorem 4.4). Note that for bidirected
VASS, it is known that in exponential space, one can compute a semilinear representation
of the reachability set [32, 6]. In other words, one can compute in exponential space a
representation of the congruence class of a given vector x ∈ Nd. In contrast, our algorithm
computes a semilinear representation of the entire congruence.

Let the function expk be inductively defined by exp0(x) = x and expk+1(x) = expk(2x).
In the following we show how to compute a semilinear representation for a congruence Q
given by a semilinear basis R ⊆ Nd×Nd in time expO(d)(∥R∥). In fact, we can assume that R

is finite since a linear set L = b + P ∗ is contained in Cong(FL) where FL = {b, b + p | p ∈ P},
and, therefore, a semilinear set

⋃m
i=1 Li generates the same congruence as

⋃m
i=1 FLi . The

semilinear representation of Q will be obtained by induction on the dimension d via a
decomposition of Nd into smaller regions. A region is a linear set L = b + P ∗ ⊆ Nd

where P ⊆ {e1, . . . , ed}. Its dimension is |P |. In particular all sets b↑ = b + {e1, . . . , ed}∗

are regions. For a region L = b + P ∗ and a congruence Q, we define the congruence
QL = {(x, y) ∈ (P ∗)2 | (b + x, b + y) ∈ Q} on the submonoid P ∗.

A submonoid S ⊆ Nk is subtractive if x, y ∈ S and x ≤ y implies y−x ∈ S. For example,
the non-negative restriction G ∩ Nk of a group G ⊆ Zk is a subtractive submonoid. The
following lemma is well-known, see [14, Proposition 7.1] or the full version [20] for a proof.

▶ Lemma 4.1. Every subtractive submonoid S ⊆ Nk is of the form S = M∗ where M is the
finite set of the minimal nonzero elements in S.

Eilenberg and Schützenberger observed that for every slice S there exists an element
s ∈ S such that S − s is a subtractive submonoid [14, Proposition 7.2]. As a consequence,
for every congruence Q on Nd there exists b ∈ Nd such that Qb↑ is a subtractive submonoid.
We provide an elementary bound on b.

▶ Lemma 4.2. Given a finite basis R for a congruence Q on Nd, one can compute in
elementary time a vector b ∈ Nd and a finite set M ⊆ N2d such that Qb↑ = M∗.

Gröbner bases. It remains to compute a semilinear representation of Q on the complement
of b↑. We will decompose Nd \ b↑ into disjoint (d − 1)-dimensional regions Lj , compute
bases for the restrictions QLj

, and proceed inductively. To compute the bases for QLj
, we

will exploit the well-studied connection between congruences on Nd and binomial ideals [43].
Let Z[x] be the polynomial ring in the variables x = (x1, . . . , xd) over Z. We write xu for

M. Ganardi, R. Majumdar, A. Pavlogiannis, L. Schütze, and G. Zetzsche 124:9

the monomial x
u(1)
1 · · ·xu(d)

d . An ideal is a nonempty set I ⊆ Z[x] such that f, g ∈ I and
h ∈ Z[x] implies f + g, hf ∈ I. An ideal I is finitely represented by a basis B, i.e. I is
the smallest ideal containing B. By Hilbert’s basis theorem any ideal I ⊆ Z[x] has a finite
basis. One of the main tools in computer algebra for handling polynomial ideals are Gröbner
bases, e.g. to solve the ideal membership problem. We defer the reader to [2] for details on
Gröbner bases and only mention the properties required for our purposes. A Gröbner basis
is defined with respect to an admissible monomial ordering, e.g. a lexicographic ordering
on the monomials. Buchberger’s algorithm [7] computes for a given basis for an ideal I the
unique reduced Gröbner basis for I in doubly exponential space [13].

A basis R for a congruence Q on Nd can be translated into the polynomial ideal I ⊆ Z[x]
generated by BR = {xu−xv | (u, v) ∈ R}. It is known that s ∼Q t if and only if xs−xt ∈ I

[43, Lemma 1 and 2]. Moreover, the reduced Gröbner basis of I with respect to an admissible
monomial order always consists of differences of monomials xs − xt [29, Theorem 2.7].

The following lemma can be reduced to two known applications of Gröbner bases. Let
I ⊆ Z[x] be an ideal. For a subsequence y of x we call I ∩Z[y] the elimination ideal, which is
indeed an ideal in Z[y]. For b ∈ Nd we define the ideal quotient I : xb = {p ∈ Z[x] | pxb ∈ I},
which is also an ideal. It is known that one can compute Gröbner bases for I ∩ Z[y] and
I : xb in elementary time [2, Section 6], see the full version [20] for more details.

▶ Lemma 4.3. Given a finite basis R for a congruence Q on Nd and a region L ⊆ Nd, one
can compute in elementary time a finite basis for QL.

We are ready to compute a semilinear representation of Cong(R) in expO(d)(n) time. We
proceed by induction over d. Using Lemma 4.2 we can write Qb↑ = M∗. We decompose
Nd =

⋃m
i=0 Lj into regions where L0 = b↑ and L1, . . . , Lm are (d− 1)-dimensional regions.

By Lemma 4.3 we can compute bases for QLi
for i ∈ [1, m] and by induction hypothesis

semilinear representations for QLi . In this way, we obtain semilinear representations for the
restrictions Qi = Q∩ L2

i for each i ∈ [0, m]. Finally, we can express s ∼Q t by a Presburger
formula that says that there exists a sequence of intermediate vectors of length 2(m + 1)
where adjacent elements are related by an R-step or are contained in some relation Qi.

▶ Theorem 4.4. Given a semilinear basis R for a congruence Q on Nd, one can compute a
semilinear representation for Q in time expc1d(n) for some absolute constant c1.

4.3 Ascending chains of congruences
To bound the length of the chain of congruences Ri in Algorithm 1 we use a length function
theorem [49, Theorem 3.15], see also [16]. In general, such theorems allow to derive complexity
bounds for algorithms whose termination arguments are based on well-quasi orders.

Fast-growing complexity classes. In the following we state a simplified version of [49,
Theorem 3.15], which is sufficient for our application. We start by introducing fast-growing
functions and complexity classes. Recall that the Cantor normal form of an ordinal α ≤ ωω

is the unique representation α = ωα1 + · · ·+ ωαp where α > α1 ≥ · · · ≥ αp. In this form α is
a limit ordinal if and only if p > 0 and αp > 0. A fundamental sequence for a limit ordinal λ

is a sequence (λ(x))x<ω of ordinals with supremum λ. Given a limit ordinal λ ≤ ωω whose
Cantor normal form is λ = β + ωk+1, we use the standard fundamental sequence (λ(x))x<ω,
defined inductively as ωω(x) = ωx+1 and (β + ωk+1)(x) = β + ωk · (x + 1). Given a function
h : N→ N the Hardy hierarchy (hα)α≤ωω relative to h is defined by

h0(x) = x, hα+1(x) = hα(h(x)), hλ(x) = hλ(x)(x).

ICALP 2022

124:10 Reachability in Bidirected Pushdown VASS

Using the Hardy functions (Hα)α relative to H(x) = x + 1 we can define the fast-growing
complexity classes (Fα)α from [48]. We denote by F<α the class of functions computed by
deterministic Turing machines in time O(Hβ(n)) for some β < ωα. By Fα we denote the class
of decision problems solved by deterministic Turing machines in time O(Hωα(p(n))) for some
function p ∈ F<α. We define PRIMITIVE-RECURSIVE =

⋃
k<ω Fk and ACKERMANN = Fω.

Controlled bad sequences. By Dickson’s lemma, any sequence of vectors x1, x2, . . . with
xi ̸≤ xj for all i < j must be finite. Such a sequence is also called bad. To obtain complexity
bounds on the length of bad sequences we need to restrict to sequences that do not grow in
an uncontrolled fashion. In the following let g : N→ N be monotone, strictly inflationary, i.e.
g(x) > x for all x, and super-homogeneous, i.e. g(xy) ≥ g(x) · y for all x, y ≥ 1. A sequence
of vectors x0, x1, . . . , xℓ is (g, n)-controlled if ∥xi∥ ≤ gi(n) for all i ∈ [0, ℓ]. The following
statement follows from [49, Theorem 3.15] and [49, Eq. (3.13)].

▶ Theorem 4.5. Any (g, n)-controlled bad sequence over Nk has length at most gωk (nk).

A chain in Nk is a sequence S0 ⊊ S1 ⊊ · · · ⊊ Sℓ of subsets Si ⊆ Nk. The chain is
(g, n)-controlled if for each i ∈ [0, ℓ− 1] there exists si ∈ Si+1 \ Si with ∥si∥ ≤ gi(n). A set
X ⊆ Nk is upwards closed if X = X↑. Observe that any (g, n)-controlled chain of upwards
closed sets in Nk is bounded by 1 + gωk (nk) since we obtain a (g, n)-controlled bad sequence
s0, s1, . . . , sℓ−1 by picking arbitrary si ∈ Si+1 \ Si with ∥si∥ ≤ gi(n).

Translating congruences into upwards closed sets. The key trick in our upper bound for
ascending chains of congruences is to translate congruences into upwards closed sets. This
allows us to translate bounds on the length of ascending chains of upward closed sets into
corresponding bounds for congruences. The translation works as follows. To each congruence
Q on Nd, we associate the upwards closed set U(Q) ⊆ N4d with

U(Q) = {(x, y, u, v) | (x, y) ∈ Q, (x + u, y + v) ∈ Q, (u, v) ̸= (0, 0)}↑.

Clearly Q1 ⊆ Q2 implies U(Q1) ⊆ U(Q2). In fact, strict inclusion is also preserved:

▶ Lemma 4.6. Let Q1 and Q2 be congruences with Q1 ⊆ Q2. Then (i) U(Q1) ⊆ U(Q2) and
(ii) for each q ∈ Q2 \ Q1, there is a p ∈ U(Q2) \ U(Q1) with ∥p∥ ≤ ∥q∥.

Proof. Statement (i) is immediate. For statement (ii) let (s, t) ∈ Q2 \ Q1 be minimal. Since
(0, 0) ∈ Q1 we must have (s, t) ̸= (0, 0) and there exists (x, y) ∈ Q1 with (x, y) < (s, t).
We choose such a vector (x, y) in which (u, v) := (s, t) − (x, y) is minimal. Clearly,
(x, y, u, v) ∈ U(Q2). We claim that (x, y, u, v) /∈ U(Q1). Towards a contradiction, suppose
that there exists (x1, y1, u1, v1) ≤ (x, y, u, v) with (x1, y1) ∈ Q1, (u1, v1) ̸= (0, 0), and
(x1 + u1, y1 + v1) ∈ Q1. Since Q1 is a congruence we have

x + u1 = (x− x1) + x1 + u1 ∼Q1 (x− x1) + y1 + v1

∼Q1 (x− x1) + x1 + v1 = x + v1 ∼Q1 y + v1.

If (u1, v1) = (u, v) then this contradicts (x + u, y + v) = (s, t) /∈ Q1. If (u1, v1) < (u, v)
then (s, t) = (x + u1, y + v1) + (u− u1, v − v1) contradicts the minimality of (u, v). ◀

If (Qi)i≤ℓ is a (g, n)-controlled chain of congruences in Nd then by Lemma 4.6, (U(Qi))i≤ℓ

is a (g, n)-controlled chain of upwards closed subsets of N4d and thus has length at most
1 + gω4d(4dn). Hence, the same bound applies to (Qi)i≤ℓ.

M. Ganardi, R. Majumdar, A. Pavlogiannis, L. Schütze, and G. Zetzsche 124:11

▶ Lemma 4.7. Any (g, n)-controlled chain of congruences in Nd has length ≤ 1 + gω4d(4dn).

Putting together Theorem 4.4 and Lemma 4.7 we can conclude that Algorithm 1 terminates
after Hω4d+3(e(n)) iterations for some elementary function e(n).

▶ Proposition 4.8. Reachability in bidirected pushdown VAS is in ACKERMANN, and in
F4d+3 if the dimension d is fixed.

The detailed complexity analysis can be found in the full version [20]. The result above
also holds for bidirected pushdown VASS (Theorem 1.1) by simulating the state in two
additional counters. Hence the complexity for dimension d increases from F4d+3 to F4d+11.

5 One-dimensional pushdown VASS

In this section we prove that reachability is in polynomial space for bidirected 1-PVASS
(Theorem 1.2). For the rest of this section consider a 1-PVASS P = (Q, Γ, T) of |Q| = n

states. To simplify our bounds, we assume |Γ| = 2. This can be achieved with a simple
encoding: To simulate stack letters a1, . . . , ak, we can encode each ai by the string abiabk−ia.

Preliminaries. We extend the usual component-wise ordering ≤ to tuples (Z ∪ {−∞, ω})k.
Given two functions f, g : X → (Z ∪ {−∞, ω})k, we write f ≤ g to denote that f(x) ≤ g(x)
for each x ∈ X. We define the one-step Z relation ↪→ for P similarly to the one-step relation
−→ but with a Z-counter, i.e., we do not require the counter to remain non-negative. A path
from p to q consists of the initial state p and a sequence of transitions of P, such that it
induces a run (p1, x1, w1) ↪→ (p2, x2, w2) ↪→ . . . ↪→ (pj , xj , wj), with the requirement that
p1 = p, x1 = 0 and w1 = wj = ε. Given such a path P , we let

MaxSH (P) = maxi |wi| be the maximum stack height along P ,
w(P) = xj be the value of the counter at the end of P , and
m(P) = mini xi be the minimum value of the counter along P . Note that m(P) ≤ 0, as
the counter is 0 at the beginning of P .

We also write P for the reverse of P . We denote by {p ⇝ q} the set of paths from p to
q, and let {p ⇝ q}k = {P ∈ {p ⇝ q} : MaxSH (P) ≤ k} be the set of such paths with
stack height at most k. Given two paths P1 and P2, we write P1 ≤ P2 to denote that
(m(P1), w(P1)) ≤ (m(P2), w(P2)).

We say that a state q is reachable from a state p if (p, 0, ε) ∗−→ (q, 0, ε). We say that q is
Z-reachable from p if there is a path P ∈ {p⇝ q} with w(P) = 0 (hence state reachability
implies Z-reachability). Given additionally a natural number i ∈ N, we say that p covers
(q, i) if (p, 0, ε) ∗−→ (q, i + j, ε) for some j ≥ 0. Thus reachability implies coverability for i = 0.
The following is a simpler proof of a reduction observed in [31]: For bidirected 1-PVASS,
reachability reduces to coverability and Z-reachability.

▶ Lemma 5.1. For any two states p, q of P, we have that p reaches q iff (i) p covers (q, 0),
(ii) q covers (p, 0), and (iii) p Z-reaches q.

Proof. Clearly if p reaches q then conditions (i)-(iii) hold, so we only need to argue about the
reverse direction. If p does not cover (q, 1), since p covers (q, 0), we have that p reaches q, and
we are done. Similarly, if q does not cover (p, 1), we have that q reaches p and thus we are done.
Finally, assume that p covers (q, 1) and q covers (p, 1), and let Pp and Pq be the corresponding
paths witnessing coverability. Let P be a path witnessing that p Z-reaches q. We construct
the path Hℓ witnessing the reachability of q from p as Hℓ = (Pp ◦Pq)ℓ ◦P ◦ (Pp ◦Pq)ℓ, where
ℓ is chosen such that w((Pp ◦ Pq)ℓ) ≥ −m(P). ◀

ICALP 2022

124:12 Reachability in Bidirected Pushdown VASS

In light of Lemma 5.1, for Theorem 1.2, it suffices to show that for bidirected 1-PVASS, both
Z-reachability and coverability can be decided in PSPACE. The former is known already:
Reachability in Z-PVASS belongs to NP [24]; in the bidirected case, it is even decidable in
P [21]. Thus, the rest of this section is devoted to deciding coverability in PSPACE.

▶ Lemma 5.2. Coverability in 1-dimensional bidirected pushdown VASS is in PSPACE.

Summary functions. We define a summary function γk : Q×Q→ (Z≤0 ∪ {−∞})× (Z ∪
{−∞, ω}), parametric on k ∈ N, as γk(p, q) = (a, b), where a and b are defined as follows.

a = max({m(P) : P ∈ {p⇝ q}k}) b = sup({w(P) : P ∈ {p⇝ q}k and m(P) = a})

with the convention that max(∅) = sup(∅) = −∞. We occasionally write γk(p, q) = (a, _)
to denote that γk(p, q) = (a, b) for some b. We further define a summary function δk : V →
(Z≤0 ∪ {−∞}), parametric on k ∈ N, as follows.

δk(p) = max({m(P) : P ∈ {p⇝ p}k and w(P) > 0})

Recall that we use n = |Q| for the number of states in P. It is well-known that in any
pushdown system of n states (and only two stack letters), a shortest path between two
states has length 2O(n2) (e.g. this follows by inspecting a proof of the pumping lemma for
context-free languages [28, Lemma 6.1]; a precise bound was obtained in [45]). Since both
the weight and the minima of any path are lower-bounded by minus the length of the path,
if {p⇝ q}k ̸= ∅, then a shortest path in {p⇝ q}k witnesses γk(p, q) = (a, b) where a and b

are at most exponentially negative. This is established in the following lemma.

▶ Lemma 5.3. Consider any two states p, q and natural number k, and let γk(p, q) = (a, b).
If a > −∞ then a, b ≥ −β, for β = 2O(n2).

The bidirectedness of P also leads to the following lemma.

▶ Lemma 5.4. Consider any two states p, q and natural number k, and let γk(p, q) = (a, b).
There exists a constant α independent of P and k, such that, if b > 2αn2 , then b = ω.

The intuition behind the summary functions γk and δk is as follows. Lemma 5.3 and
Lemma 5.4 hint on an algorithm to decide coverability by saturating γk iteratively for
increasing k. The lemmas state that the finite values of γk are exponentially bounded, and
thus the process is guaranteed to reach a fixpoint within exponentially many iterations. An
obstacle to this approach is that γk may fail to capture paths that are useful in subsequent
iterations. In particular, γk(p, q) misses paths that can reach q with a larger counter at the
cost of a lower minima on the way. The following lemma shows that δk captures the effects
of all paths missed by γk, and allows the two summaries to be mutually saturated.

▶ Lemma 5.5. For any states p, q, let γk(p, q) = (a, b), and assume there exists a path
P ∈ {p⇝ q}k with w(P) > b. Then δk(p) ≥ m(P).

Moreover, the values of δk are also exponentially bounded, and thus the mutual saturation
can be carried out in polynomial space.

▶ Lemma 5.6. For any state p, if δk(p) > −∞ then δk(p) ≥ −β, for β = 2O(n2).

In the remainder of this section we describe the saturation procedure for γk and δk.

M. Ganardi, R. Majumdar, A. Pavlogiannis, L. Schütze, and G. Zetzsche 124:13

Finite graphs. We consider weighted finite graphs G = (VG, EG, wG) where wG : EG → Z.
Moreover, we assume that every connected component of G is strongly connected. By a
small abuse we extend some of the above notation on P to such graphs. Given two nodes u,
v in G, we write {u⇝ v}G for the set of paths from u to v in G. We similarly extend the
summary functions to γG and δG, defined by the corresponding paths P ∈ {u⇝ v}G.

▶ Lemma 5.7. Given a graph G as above, the summary functions γG and δG can be computed
in polynomial time.

Computing γk and δk. We now describe a dynamic-programming algorithm for computing
γk and δk, for increasing values of k. We let Γ⊥ = Γ∪ {⊥}, where ⊥ is a special symbol, and
assume without loss of generality that every transition in P that manipulates the counter
does not affect the stack. Afterwards we will argue that the algorithm terminates within
exponentially many iterations.
1. We start with k = 0. We construct a graph G0 that consists of nodes ⟨p,⊥⟩ where p

is a state of P. Moreover, G0 contains the corresponding transitions of P that do not
manipulate the stack. In particular, for every transition (p, i, ε, q) ∈ T we have an edge
⟨p,⊥⟩ i−→ ⟨q,⊥⟩ in G0. We use Lemma 5.7 to compute γG0 and δG0 , and report that, for
all states p and q, we have γ0(p, q) = γG0(⟨p,⊥⟩, ⟨q,⊥⟩) and δ0(p) = δG0(⟨p,⊥⟩).

2. We repeat the following until γGk and δGk have converged. We construct a graph Gk as
follows. For every state p and every σ ∈ Γ⊥, we have a node ⟨p, σ⟩ in Gk. We then do
the following.
a. Let δGk−1(⟨p,⊥⟩) = c. We insert a node ⟨p′, σ⟩, and if −∞ < c, we insert two edges

manipulating the counter ⟨p, σ⟩ c−→ ⟨p′, σ⟩ and ⟨p′, σ⟩ −c+1−−−→ ⟨p, σ⟩.
b. For every state q, let γGk−1(⟨p,⊥⟩, ⟨q,⊥⟩) = (a, b). If −∞ < a, we insert a node ⟨p, q, σ⟩

and two edges manipulating the counter ⟨p, σ⟩ a−→ ⟨p, q, σ⟩ and ⟨p, q, σ⟩ −a+b′

−−−−→ ⟨q, σ⟩,
where b′ = b if b < ω and b′ = 0 otherwise.

3. Finally, for each stack letter σ ∈ Γ, we connect nodes of the form ⟨p,⊥⟩ and ⟨q, σ⟩ using
the transitions of P that manipulate the stack. That is, for every transition (p, 0, σ, q) ∈ T ,
we insert an edge ⟨p,⊥⟩ −→ ⟨q, σ⟩, and for every transition (p, 0, σ, q) ∈ T , we insert an
edge ⟨p, σ⟩ −→ ⟨q,⊥⟩.

4. We use Lemma 5.7 to compute γGk and δGk , and report that, for all states p and q, we
have γk(p, q) = γGk (⟨p,⊥⟩, ⟨q,⊥⟩) and δk(p) = δGk (⟨p,⊥⟩).

We first argue that the graphs Gk consist of strongly connected components, and thus
Lemma 5.7 is applicable.

▶ Lemma 5.8. For all k ∈ N, every connected component of Gk is strongly connected.

Given some σ ∈ Γ⊥ and k ≥ 1, we denote by Gk ⇂ σ the subgraph of Gk induced by
the nodes whose last element is σ. It follows directly from the construction of Gk that, for
every pair of states p, q of P and σ ∈ Γ⊥, for every path P that goes from ⟨p, σ⟩ to ⟨q, σ⟩
and is contained in Gk ⇂ σ, there is a path H ∈ {p ⇝ q}k−1 with P ≤ H. In turn, this
implies that the summary functions γGk and δGk are always dominated by paths in P of
stack height at most k, i.e., for all states p and q, we have γGk (⟨p,⊥⟩, ⟨q,⊥⟩) ≤ γk(p, q) and
δGk (⟨p,⊥⟩) ≤ δk(p) for all k ∈ N. The following lemma states that γGk and δGk compute γk

and δk exactly, by arguing that γGk and δGk also dominate all paths of P with stack height
at most k. In turn, this establishes the correctness of the algorithm.

▶ Lemma 5.9. For all k ∈ N and states p, q ∈ Q, we have γk(p, q) = γGk (⟨p,⊥⟩, ⟨q,⊥⟩) and
δk(p) = δGk (⟨q,⊥⟩).

ICALP 2022

124:14 Reachability in Bidirected Pushdown VASS

Thus, to decide whether p covers (q, 0), we saturate γk and δk and check whether
γk(p, q) = (0, _). The termination and complexity of the algorithm follows from the
boundedness of the finite values of γk and δk (Lemma 5.3, Lemma 5.4 and Lemma 5.6),
which concludes Lemma 5.2.

▶ Lemma 5.10. The above algorithm terminates and uses polynomial space.

Finally, note that if we have a polynomial bound on the stack height, then the saturation
procedure runs in polynomial time, which also leads to reachability in polynomial time (a
closer analysis yields an O(n3) bound per iteration). In particular, the PSPACE-hardness
proof for 1-dimensional directed PVASS from [15] cannot be directly transferred to bidirected
PVASS: The 1-PVASS constructed in [15] has a polynomially bounded stack height. See
the full version [20] for details on how exactly the reduction fails. Without a bound on the
stack height, the saturation might indeed take exponential time: There are 1-dimensional
bidirected PVASS on which shortest coverability witnesses require an exponential stack
height (see the full version [20] for an example).

6 Tower lower bound

In this section, we show that reachability in bidirected PVASS is TOWER-hard with respect
to elementary reductions, and k-EXPSPACE-hard in dimension 2k + 6. Recall that TOWER
is the class of all problems computable by deterministic Turing machines in time (or space)
bounded by a tower of exponentials of elementary height.

Lower bound for directed PVASS. We first recall the TOWER-hardness proof by Lazić
and Totzke [33] for reachability in directed PVASS. They reduce the expn(1)-bounded
halting problem for counter programs of size n, which is TOWER-complete with respect
to elementary reductions (which allow us to replace the parameter n with an arbitrary
elementary function e(n)) [19]. A counter program is a finite sequence of commands which
manipulate non-negative counters, initially set to zero. The commands include increments
x := x + 1, decrements x := x− 1, conditionals if x = 0 then goto L1 else goto L2 (where
L1 and L2 are line numbers), and halt. If a counter of value 0 is decremented, the program
aborts. The expn(1)-bounded halting problem asks whether given a counter program of size
n, starting from the first command and all counters set to zero, a command halt can be
reached using a run during which all counters are bounded by expn(1) and are all zero at
the end.

As in most lower bounds for vector addition systems and their extensions, for each counter
x we store a complement counter x̄, maintaining the invariant x + x̄ = B for some (large)
bound B. This can be achieved by complementing every in/decrement of x by a de/increment
of x̄, and vice versa. Then, a zero test if x = 0 then goto L1 else goto L2 can be replaced
by guessing whether x = 0 and x ̸= 0: In the former case we add and subtract B to x and
continue with L1. In the latter case we add and subtract B to x̄ and continue with L2.

The challenge is to implement the addition (and subtraction) with a large number B, here
B = expn(1), using a polynomially large system. Suppose we have counters c1, . . . , cn with
complement counters c̄1, . . . , c̄n satisfying ck + c̄k = expk(1) for all k. Lazić and Totzke [33]
show how to construct for all k = 1, . . . , n a poly(k)-sized PVASS that adds expk(1) to ck. It
operates by pushing exactly expk−1(1) many zeros to the stack, repeatedly incrementing the
expk−1(1)-bit binary counter on the stack, while simultaneously decrementing ck, and finally
popping exactly expk−1(1) many ones from the stack. Observe that the operations on the

M. Ganardi, R. Majumdar, A. Pavlogiannis, L. Schütze, and G. Zetzsche 124:15

stack can be implemented with the help of ck−1 that can be in/decremented by expk−1(1)
by induction hypothesis. Before simulating the counter program, each complement counter
c̄k has to be set to expk(1), which can be done in a similar fashion.

Simulation by bidirected systems. In the following we will make the above construction
outlined by Lazić and Totzke [33] explicit and show that the simulation is correct even after
making the PVASS bidirected. To this end we need the following argument already found in
Post’s undecidability proof of the word problem for Thue systems [46, Lemma II]. Consider a
deterministic transition system where the final state does not have any outgoing transitions.
To such a system we now add reverse edges to make it bidirected. Clearly, any original
run is present in the bidirected system. Conversely, consider a run to the final state in the
bidirected system, which may use the new reverse edges. It cannot end on a reverse edge,
since there is no outgoing forward edge from the final state. So as long as the run contains
reverse edges, at least one of these edges must be followed by one in the forward direction.
Let us call them p

ā−→ q and q
b−→ r. As the original system was deterministic q has exactly

one outgoing edge, and hence (q b−→ r) = (q a−→ p). Since the effects of ā and b cancel out, we
can omit both of them from the run. Iterating this argument eventually yields a run with no
reverse edges. It follows that adding reverse edges to a fully deterministic system does not
change its reachability set (this was originally shown by Mayr and Meyer [43] for their proof
of EXPSPACE-hardness of reachability for bidirected VAS).

The construction of Lazić and Totzke is not fully deterministic. However, it only uses
very restricted nondeterminism that will not impact our simulation of the counter machine.

Gadget construction. Since we also want to show a k-EXPSPACE lower bound for dimension
2k + 6, we use a slightly more refined analysis: We will assume that two numbers k and
n are given as input and construct a system that simulates counters bounded by expk(n)
instead of expk(1) as in Lazić and Totzke.

In the following a gadget G consists of a PVASS and two distinguished terminal states s

and t. We consider vectors x ∈ N2k where the first k components are viewed the values of k

counters c1, . . . , ck and the last k components are the values of k complementary counters
c̄1, . . . , c̄k. Without further mention, any update on a counter c is always understood with
complementary update on c̄ so that the sums ci + c̄i remain constant.

Given two numbers k, n (in unary), we will inductively construct a gadget Gk with stack
alphabet Γk. This gadget will allow us to add expk(n) to a counter. The gadget’s size will
grow exponentially in k (and polynomially in n), and later, we improve the construction to
grow only polynomially in k. The gadget G1 simply increments c1 by 2n. Assuming Gk−1 is
already constructed, we construct the gadget Gk. The gadget Ḡk−1 is obtained from Gk−1
by reversing all transitions, and interchanging its terminal states. Its behavior is inverse to
that of Gk−1, as it subtracts expk−1(n) from ck−1. Let Zk−1 = Gk−1 ◦ Ḡk−1 be the gadget
obtained by composing Gk−1 with Ḡk−1, which is a zero test of ck−1. We can naturally
view Gk−1, Ḡk−1 and Zk−1 as gadgets with 2k counters, where ck and c̄k are untouched.
The gadget Gk is displayed in Figure 1 where 0 and 1 are fresh stack symbols and Inck is a
subprocedure which increments the binary counter on the stack.

To prove correctness of the gadget Gk we need a bit of notation. For brevity we
write [x1, . . . , xk] for (x1, . . . , xk, exp1(n)− x1, . . . , expk(n)− xk). Our gadgets will always
assume that the “lower” counters cj are set to zero and that the invariant is satisfied. A
counter vector of the form [0, . . . , 0, xi, . . . , xk] is called i-initialized. Moreover, we call a run
(s, u, w) ∗−→ (t, v, w′) in a gadget i-initialized if either u or v is i-initialized.

ICALP 2022

124:16 Reachability in Bidirected Pushdown VASS

Inck:
p0 p1 p2 p3 p4

Zk−1

ck−1+= 1
1̄

0̄1

ck−1−= 1
0

Zk−1 ck+= 1

q0 q1 q2 q3 q4 q5

Gk−1

ck−1−= 1
0

Zk−1

Inck

Zk−1

ck−1+= 1
1̄

ck+= 1 Ḡk−1

Figure 1 Gadgets Inck and Gk.

▶ Proposition 6.1. The k-initialized runs in Gk from q0 to q5 are precisely the runs

(q0, [0, . . . , 0], w) ∗−→Gk
(q5, [0, . . . , 0, expk(n)], w) for w ∈ Γ∗

k−1.

Next we will analyse the bidirected version of Gk. In order to distinguish the original
transitions from the reverse transitions we define for a PVASS G the relations↔G =→G ∪ ←G

and ∗↔G, denoting the reflexive transitive closure of ↔G. Similarly to the argument by
Post [46, Lemma II], we can prove the following:

▶ Proposition 6.2. Let u, v ∈ N2k where u or v is k-initialized.
If (q0, u, w) ∗↔Gk

(q5, v, w′) then (q0, u, w) ∗−→Gk
(q5, v, w′).

If q ∈ {q0, q5} and (q, u, w) ∗↔Gk
(q, v, w′) then u = v and w = w′.

We need to reduce the size of Gk so that it can be constructed in time polynomial in k.
Since Gk uses ten copies of the subgadget Gk−1 (each zero test Zk−1 uses two copies of
Gk−1), we cannot simply insert Gk−1 by copying it, as this would induce exponential growth
of the number of states of our system. Instead, we instantiate each gadget Gk−1 once. Then,
whenever a gadget would be used between two states p, q, we push a fresh stack symbol tp,q

and move to Gk−1. When exiting Gk−1 we pop tp,q and return to q. Since this symbol is
unique for every pair of states, it uniquely determines where we can leave the gadget to, even
if there are multiple incoming and outgoing transitions at the gadget Gk−1. Finally, one can
verify that Proposition 6.2 still holds for this adapted version of Gk.

Simulating the counter program. We are ready to finish the lower bound proof. We are
given a counter program of size n with three counters x1, x2, x3 and want to reduce the
expk+1(n)-bounded halting problem to the reachability problem for bidirected PVASS using
2k + 6 counters. To this end, we construct the gadget Gk+1 three times: Each of these three
instances has, instead of ck+1 (and its complement), a counter xi (and its complement) for
some i ∈ {1, 2, 3}. However, the three instances of Gk+1 share the counters c1, . . . , ck (and
their complements). Thus, in total, we have 2 · k + 2 · 3 = 2k + 6 counters. If k is fixed, this
yields our k-EXPSPACE lower bound ([19]). If k is part of the input, the problem becomes
TOWER-complete. We start by initializing the complement counters c̄1, . . . , c̄k in sequence,
using variants of the gadgets Gi that (i) operate on the balance counter c̄i instead of ci, (ii)
do not decrement ci when incrementing c̄i, and (iii) operate on the lower i− 1 counters as
normal. Similarly we initialize x̄1, x̄2, x̄3 to expk+1(n). Finally, in order to have an all-zero
configuration in the final state, we de-initialize these counters before entering the final state.

Increments and decrements in the counter program are directly translated into counter
updates in the PVASS. A conditional if xi = 0 then goto L1 else goto L2 is replaced by a
nondeterministic guess of whether xi = 0 or xi ̸= 0, verifying this (in)equality, and jumping

M. Ganardi, R. Majumdar, A. Pavlogiannis, L. Schütze, and G. Zetzsche 124:17

to L1 or L2. Here we use variants of the zero tests Zk+1 = Gk+1 ◦ Ḡk+1 which on their
highest level operate on x and x̄ (instead of ck+1 and c̄k+1). The question of reachability of
halt is then a reachability instance on the bidirected version of the PVASS.

If the counter program halts then we can find a corresponding computation in the PVASS.
Conversely, consider a successful run of the bidirected PVASS which uses a minimal number
of reverse transitions. By Proposition 6.2 we can assume that no gadget Gk+1 and Ḡk+1
(and their variants) is entered and exited through the same terminal state. Furthermore,
any subrun passing through such a gadget can be assumed to use only forward transitions.
Hence the only reverse transitions remaining are from increments or decrements. Observe
that the last occurrence of such a reverse transition τ̄ must be followed by its corresponding
forward transition τ . Hence we can cancel τ with τ̄ , contradiction.

7 Conclusion

We have shown that the reachability problem in bidirected pushdown VASS is decidable, with
an Ackermann upper bound and a TOWER lower bound. Moreover, in the one-dimensional
case, the problem is in PSPACE, whereas P-hardness was shown in [21]. Thus, the exact
complexity, both in the general and the one-dimensional case, remains open.

Another direction for future research is to study bidirected versions of other infinite-state
models. For example, pushdown VASS are the simplest level in a hierarchy of infinite-state
models for which decidability of the reachability problem is open [53]. Perhaps the techniques
from this paper can be applied to show decidability of all levels in the bidirected setting.

References
1 Mohamed Faouzi Atig and Pierre Ganty. Approximating Petri net reachability along

context-free traces. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2011, December 12-14, 2011, Mumbai, India,
volume 13 of LIPIcs, pages 152–163. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.
doi:10.4230/LIPIcs.FSTTCS.2011.152.

2 Thomas Becker, Volker Weispfenning, and Heinz Kredel. Gröbner bases - a computational
approach to commutative algebra, volume 141 of Graduate texts in mathematics. Springer,
1993.

3 Rémi Bonnet. Theory of well-structured transition systems and extended vector-addition
systems. PhD thesis, ENS Cachan, France, 2013. Thèse de doctorat.

4 Rémi Bonnet, Alain Finkel, Jérôme Leroux, and Marc Zeitoun. Model checking vector addition
systems with one zero-test. Log. Methods Comput. Sci., 8(2), 2012. doi:10.2168/LMCS-8(2:
11)2012.

5 Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis of pushdown
automata: Application to model-checking. In CONCUR ’97: Concurrency Theory, 8th
International Conference, Warsaw, Poland, July 1-4, 1997, Proceedings, volume 1243 of Lecture
Notes in Computer Science, pages 135–150. Springer, 1997. doi:10.1007/3-540-63141-0_10.

6 Zakaria Bouziane and Alain Finkel. Cyclic Petri net reachability sets are semi-linear effectively
constructible. In Second International Workshop on Verification of Infinite State Systems,
Infinity 1997, Bologna, Italy, July 11-12, 1997, volume 9 of Electronic Notes in Theoretical
Computer Science, pages 15–24. Elsevier, 1997. doi:10.1016/S1571-0661(05)80423-2.

7 Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings
nach einem nulldimensionalen Polynomideal. PhD thesis, Universität Innsbruck, 1965.

8 Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. Optimal Dyck Reach-
ability for Data-Dependence and Alias Analysis. Proc. ACM Program. Lang., 2(POPL),
December 2018. doi:10.1145/3158118.

ICALP 2022

https://doi.org/10.4230/LIPIcs.FSTTCS.2011.152
https://doi.org/10.2168/LMCS-8(2:11)2012
https://doi.org/10.2168/LMCS-8(2:11)2012
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1016/S1571-0661(05)80423-2
https://doi.org/10.1145/3158118

124:18 Reachability in Bidirected Pushdown VASS

9 Swarat Chaudhuri. Subcubic algorithms for recursive state machines. In Proceedings of
the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, January 7-12, 2008, pages 159–169. ACM, 2008.
doi:10.1145/1328438.1328460.

10 David C Cooper. Theorem proving in arithmetic without multiplication. Machine intelligence,
7(91-99):300, 1972.

11 Wojciech Czerwiński, Slawomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip Mazowiecki.
The reachability problem for Petri nets is not elementary. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June
23-26, 2019, pages 24–33. ACM, 2019. doi:10.1145/3313276.3316369.

12 Wojciech Czerwiński and Łukasz Orlikowski. Reachability in vector addition systems is
Ackermann-complete. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1229–1240. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00120.

13 Thomas W Dubé. The structure of polynomial ideals and Gröbner bases. SIAM Journal on
Computing, 19(4):750–773, 1990. doi:10.1137/0219053.

14 Samuel Eilenberg and M. P. Schützenberger. Rational sets in commutative monoids. Journal
of Algebra, 13(2):173–191, 1969. doi:10.1016/0021-8693(69)90070-2.

15 Matthias Englert, Piotr Hofman, Slawomir Lasota, Ranko Lazić, Jérôme Leroux, and Juliusz
Straszynski. A lower bound for the coverability problem in acyclic pushdown VAS. Inf. Process.
Lett., 167:106079, 2021. doi:10.1016/j.ipl.2020.106079.

16 Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Ackermannian
and Primitive-Recursive Bounds with Dickson’s Lemma. In Proceedings of the 26th Annual
IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24, 2011, Toronto,
Ontario, Canada, pages 269–278. IEEE Computer Society, 2011. doi:10.1109/LICS.2011.39.

17 Alain Finkel, Jérôme Leroux, and Grégoire Sutre. Reachability for two-counter machines
with one test and one reset. In 38th IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2018, December 11-13, 2018,
Ahmedabad, India, volume 122 of LIPIcs, pages 31:1–31:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.FSTTCS.2018.31.

18 Alain Finkel and Grégoire Sutre. Decidability of reachability problems for classes of two
counters automata. In STACS 2000, 17th Annual Symposium on Theoretical Aspects of
Computer Science, Lille, France, February 2000, Proceedings, volume 1770 of Lecture Notes in
Computer Science, pages 346–357. Springer, 2000. doi:10.1007/3-540-46541-3_29.

19 Patrick C. Fischer, Albert R. Meyer, and Arnold L. Rosenberg. Counter machines and counter
languages. Mathematical systems theory, 1968. doi:10.1007/BF01694011.

20 Moses Ganardi, Rupak Majumdar, Andreas Pavlogiannis, Lia Schütze, and Georg Zetzsche.
Reachability in bidirected pushdown VASS. Full version of this paper. arXiv:2204.11799.

21 Moses Ganardi, Rupak Majumdar, and Georg Zetzsche. The complexity of bidirected reach-
ability in valence systems. To appear in Proc. of the Thirty-Seventh Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS 2022). arXiv:2110.03654.

22 Jan Grabowski. An algorithm to identify slices, with applications to vector replacement
systems. In International Conference on Fundamentals of Computation Theory (FCT 1981),
pages 425–432. Springer, 1981. doi:10.1007/3-540-10854-8_46.

23 Christoph Haase. A survival guide to Presburger arithmetic. ACM SIGLOG News, 5(3):67–82,
2018. doi:10.1145/3242953.3242964.

24 Matthew Hague and Anthony Widjaja Lin. Model checking recursive programs with numeric
data types. In Computer Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer
Science, pages 743–759. Springer, 2011. doi:10.1007/978-3-642-22110-1_60.

https://doi.org/10.1145/1328438.1328460
https://doi.org/10.1145/3313276.3316369
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1137/0219053
https://doi.org/10.1016/0021-8693(69)90070-2
https://doi.org/10.1016/j.ipl.2020.106079
https://doi.org/10.1109/LICS.2011.39
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.31
https://doi.org/10.1007/3-540-46541-3_29
https://doi.org/10.1007/BF01694011
http://arxiv.org/abs/2204.11799
http://arxiv.org/abs/2110.03654
https://doi.org/10.1007/3-540-10854-8_46
https://doi.org/10.1145/3242953.3242964
https://doi.org/10.1007/978-3-642-22110-1_60

M. Ganardi, R. Majumdar, A. Pavlogiannis, L. Schütze, and G. Zetzsche 124:19

25 Tero Harju, Oscar H. Ibarra, Juhani Karhumäki, and Arto Salomaa. Some decision problems
concerning semilinearity and commutation. J. Comput. Syst. Sci., 65(2):278–294, 2002.
doi:10.1006/jcss.2002.1836.

26 Nevin Heintze and David A. McAllester. On the cubic bottleneck in subtyping and flow
analysis. In Proceedings, 12th Annual IEEE Symposium on Logic in Computer Science (LICS),
Warsaw, Poland, June 29 - July 2, 1997, pages 342–351. IEEE Computer Society, 1997.
doi:10.1109/LICS.1997.614960.

27 Yoram Hirshfeld. Congruences in commutative semigroups. LFCS, Department of Computer
Science, University of Edinburgh Edinburgh, 1994.

28 John E Hopcroft and Jeffrey D Ullman. Introduction to Automata Theory, Languages and
Computation. Adison-Wesley, Reading, Mass, 1979.

29 Dung T. Huynh. A superexponential lower bound for Gröbner bases and Church-Rosser com-
mutative Thue systems. Inf. Control., 68(1-3):196–206, 1986. doi:10.1016/S0019-9958(86)
80035-3.

30 Jarkko Kari. Reversible cellular automata: From fundamental classical results to recent
developments. New Gener. Comput., 36(3):145–172, 2018. doi:10.1007/s00354-018-0034-6.

31 Adam Husted Kjelstrøm and Andreas Pavlogiannis. The decidability and complexity of
interleaved bidirected Dyck reachability. Proc. ACM Program. Lang., 6(POPL):1–26, 2022.
doi:10.1145/3498673.

32 Ulla Koppenhagen and Ernst W. Mayr. The complexity of the coverability, the containment,
and the equivalence problems for commutative semigroups. In Fundamentals of Computation
Theory, 11th International Symposium, FCT ’97, Kraków, Poland, September 1-3, 1997,
Proceedings, volume 1279 of Lecture Notes in Computer Science, pages 257–268. Springer,
1997. doi:10.1007/BFb0036189.

33 Ranko Lazić and Patrick Totzke. What Makes Petri Nets Harder to Verify: Stack or Data?,
pages 144–161. Springer International Publishing, 2017. doi:10.1007/978-3-319-51046-0_8.

34 Jérôme Leroux. Vector addition system reachability problem: a short self-contained proof. In
Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pages 307–316. ACM, 2011.
doi:10.1145/1926385.1926421.

35 Jérôme Leroux. Vector addition system reversible reachability problem. Log. Methods Comput.
Sci., 9(1), 2013. doi:10.2168/LMCS-9(1:5)2013.

36 Jérôme Leroux. Distance between mutually reachable Petri net configurations. In 39th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2019, December 11-13, 2019, Bombay, India, volume 150 of LIPIcs, pages 47:1–47:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.FSTTCS.2019.
47.

37 Jérôme Leroux. The reachability problem for Petri nets is not primitive recursive. In 62nd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pages 1241–1252. IEEE, 2021. doi:10.1109/FOCS52979.2021.00121.

38 Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-
recursive in fixed dimension. In 34th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019.
doi:10.1109/LICS.2019.8785796.

39 Jérôme Leroux, Grégoire Sutre, and Patrick Totzke. On the coverability problem for pushdown
vector addition systems in one dimension. In Automata, Languages, and Programming -
42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings,
Part II, volume 9135 of Lecture Notes in Computer Science, pages 324–336. Springer, 2015.
doi:10.1007/978-3-662-47666-6_26.

40 Yuanbo Li, Qirun Zhang, and Thomas W. Reps. Fast graph simplification for interleaved
Dyck-reachability. In Proceedings of the 41st ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20,
2020, pages 780–793. ACM, 2020. doi:10.1145/3385412.3386021.

ICALP 2022

https://doi.org/10.1006/jcss.2002.1836
https://doi.org/10.1109/LICS.1997.614960
https://doi.org/10.1016/S0019-9958(86)80035-3
https://doi.org/10.1016/S0019-9958(86)80035-3
https://doi.org/10.1007/s00354-018-0034-6
https://doi.org/10.1145/3498673
https://doi.org/10.1007/BFb0036189
https://doi.org/10.1007/978-3-319-51046-0_8
https://doi.org/10.1145/1926385.1926421
https://doi.org/10.2168/LMCS-9(1:5)2013
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.47
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.47
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1007/978-3-662-47666-6_26
https://doi.org/10.1145/3385412.3386021

124:20 Reachability in Bidirected Pushdown VASS

41 Yuanbo Li, Qirun Zhang, and Thomas W. Reps. On the complexity of bidirected interleaved
Dyck-reachability. Proc. ACM Program. Lang., 5(POPL):1–28, 2021. doi:10.1145/3434340.

42 Markus Lohrey and Benjamin Steinberg. An automata theoretic approach to the general-
ized word problem in graphs of groups. Proceedings of the American Mathematical Society,
138(2):445–453, 2010. doi:10.1090/S0002-9939-09-10126-0.

43 Ernst W. Mayr and Albert R. Meyer. The complexity of the word problems for commutative
semigroups and polynomial ideals. Advances in mathematics, 46(3):305–329, 1982. doi:
10.1016/0001-8708(82)90048-2.

44 Derek C. Oppen. A 222pn

upper bound on the complexity of Presburger arithmetic. J. Comput.
Syst. Sci., 16(3):323–332, 1978. doi:10.1016/0022-0000(78)90021-1.

45 Laurent Pierre. Rational indexes of generators of the cone of context-free languages. Theoretical
Computer Science, 95(2):279–305, 1992. doi:10.1016/0304-3975(92)90269-L.

46 Emil L. Post. Recursive unsolvability of a problem of Thue. J. Symb. Log., 12(1):1–11, 1947.
doi:10.2307/2267170.

47 Klaus Reinhardt. Reachability in Petri nets with inhibitor arcs. Electron. Notes Theor.
Comput. Sci., 223:239–264, 2008. doi:10.1016/j.entcs.2008.12.042.

48 Sylvain Schmitz. Complexity hierarchies beyond elementary. ACM Trans. Comput. Theory,
8(1):3:1–3:36, 2016. doi:10.1145/2858784.

49 Sylvain Schmitz. Algorithmic Complexity of Well-Quasi-Orders. (Complexité algorithmique
des beaux pré-ordres). Habilitation thesis, École normale supérieure Paris-Saclay, 2017. URL:
https://tel.archives-ouvertes.fr/tel-01663266.

50 Sylvain Schmitz and Georg Zetzsche. Coverability is undecidable in one-dimensional pushdown
vector addition systems with resets. In Reachability Problems - 13th International Conference,
RP 2019, Brussels, Belgium, September 11-13, 2019, Proceedings, volume 11674 of Lecture
Notes in Computer Science, pages 193–201. Springer, 2019. doi:10.1007/978-3-030-30806-3_
15.

51 Guoqing Xu, Atanas Rountev, and Manu Sridharan. Scaling CFL-reachability-based points-to
analysis using context-sensitive must-not-alias analysis. In ECOOP 2009 - Object-Oriented
Programming, 23rd European Conference, Genoa, Italy, July 6-10, 2009. Proceedings, volume
5653 of Lecture Notes in Computer Science, pages 98–122. Springer, 2009. doi:10.1007/
978-3-642-03013-0_6.

52 Dacong Yan, Guoqing Xu, and Atanas Rountev. Demand-driven context-sensitive alias
analysis for Java. In Proceedings of the 20th International Symposium on Software Testing
and Analysis, ISSTA 2011, Toronto, ON, Canada, July 17-21, 2011, pages 155–165. ACM,
2011. doi:10.1145/2001420.2001440.

53 Georg Zetzsche. The emptiness problem for valence automata over graph monoids. Information
and Computation, 277, 2021. doi:10.1016/j.ic.2020.104583.

54 Qirun Zhang, Michael R. Lyu, Hao Yuan, and Zhendong Su. Fast algorithms for Dyck-CFL-
reachability with applications to alias analysis. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages
435–446. ACM, 2013. doi:10.1145/2491956.2462159.

55 Qirun Zhang and Zhendong Su. Context-sensitive data-dependence analysis via linear con-
junctive language reachability. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, pages
344–358. ACM, 2017. doi:10.1145/3009837.3009848.

https://doi.org/10.1145/3434340
https://doi.org/10.1090/S0002-9939-09-10126-0
https://doi.org/10.1016/0001-8708(82)90048-2
https://doi.org/10.1016/0001-8708(82)90048-2
https://doi.org/10.1016/0022-0000(78)90021-1
https://doi.org/10.1016/0304-3975(92)90269-L
https://doi.org/10.2307/2267170
https://doi.org/10.1016/j.entcs.2008.12.042
https://doi.org/10.1145/2858784
https://tel.archives-ouvertes.fr/tel-01663266
https://doi.org/10.1007/978-3-030-30806-3_15
https://doi.org/10.1007/978-3-030-30806-3_15
https://doi.org/10.1007/978-3-642-03013-0_6
https://doi.org/10.1007/978-3-642-03013-0_6
https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1016/j.ic.2020.104583
https://doi.org/10.1145/2491956.2462159
https://doi.org/10.1145/3009837.3009848

	1 Introduction
	2 Preliminaries
	3 Decidability
	4 Ackermann upper bound
	4.1 The saturation algorithm
	4.2 Semilinear representations for congruences
	4.3 Ascending chains of congruences

	5 One-dimensional pushdown VASS
	6 Tower lower bound
	7 Conclusion

