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INTRODUCTION

In many respects, financial advice is an enabler of risk-taking. Individuals who have little
knowledge of or experience with the financial markets may not feel confident in their ability to
design well-structured investment portfolios.! Hence, in giving individuals the confidence to take
risk, financial advisors help individuals overcome their fears and act rationally. Robo-advisors,
automated investment platforms that provide investment advice without the intervention of a
human advisor, have emerged as an alternative to traditional sources of advice. While this paper
does not study whether humans trust computers to provide sound investment advice, it conducts
an examination of the robo-advisor model. As such, the paper may enable individuals to employ
computer models to obtain sound investment advice.

This paper examines the robo-advisor model from the ground up. The first chapter
discusses the benefits and limitations of mean-variance analysis, the primary asset allocation
framework employed by robo-advisors, concluding that mean-variance analysis is a compelling
framework for asset allocation that allows investors to construct efficiently diversified portfolios.
While the model suffers from several limitations, such as the assumption of normally distributed
returns and the sensitively of optimized portfolios to estimation error, such limitations can be
overcome through relatively straightforward techniques.

In the second chapter, the paper describes how robo-advisors work, emphasizing areas of
commonality between robo-advisors and discussing the rationale for passive indexing, which is
the investment strategy that most robo-advisors have adopted. It then describes robo-advisors’
general investment methodology, showing that robo-advisors perform asset allocation with
mean-variance analysis; implement portfolios in a low-cost, tax-efficient manner; and monitor
and rebalance portfolios with the aid of automation.

The third chapter, which conducts an in-depth examination of three leading robo-
advisors, discusses how robo-advisors differ from one another and concludes that the quality of
investment advice is not consistent throughout the robo-advisory industry. Schwab Intelligent
Portfolios, whose advice is compromised by material conflicts of interest, is an inferior robo-
advisor compared to Wealthfront and Betterment. While both Wealthfront and Betterment
possess well-grounded approaches to portfolio selection, they differ in some important respects.
Wealthfront has created a general long-term investing platform, while Betterment has focused on
goals-based investing. Wealthfront gauges an investor’s subjective risk tolerance, while
Betterment appears not to.

The fourth chapter assesses to what extent robo-advice could serve as an alternative to
traditional sources of investment advice and as such has the greatest policy implications. The
chapter makes the case that robo-advisors provide low-cost, transparent, well-grounded, and
systematic investment advice, arguing that human advisors may fail on any of these counts.
Critics of robo-advisors cite their provision of canned, non-personalized investment advice. At
their current stage of development, robo-advisors do not consider an investor’s entire financial
profile. Yet empirical evidence suggests that human advisors also may not provide tailored

! Nicola Gennaioli, Andrei Shleifer, and Robert Vishny. Money Doctors. The Journal of Finance. February 2015.
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advice; their biases may not only affect the data gathering process that is so essential to portfolio
construction, but also the eventual recommendations that they make.

Critics of robo-advisors stress that these automated platforms cannot prevent investors
from timing the markets and that the damage from such poor market timing behavior swamps all
the benefits robo-advisors may provide. This paper argues that such claims are overblown and
that the benefit of having a human advisor to “hold one’s hand” during times of market stress
may be overstated. The paper presents qualitative and quantitative evidence supporting the view
that robo-advisors can coach investors into better investing behaviors. It also presents evidence
on the actual behavior of robo-advisor clients. To date, such evidence has lent support to the
view that robo-advisors suppress clients’ inclination to time the markets.

This paper focuses on what robo-advice is, not what it will be. In principle, robo-advice
could become infinitely customizable, as the design of ever more complex algorithms could
allow robo-advisors to tailor portfolios to individuals with even the most unusual of financial
circumstances. Data on clients’ income and career trajectory, saving and spending behavior, and
assets and liabilities — coupled with artificial intelligence, machine learning, and other data
science technologies — could be harnessed to make better investment recommendations. Robo-
advisors will also become more adept at managing clients’ behavior. Data on clients’ trading,
withdrawal, and rebalancing activity in robo-advisor and external accounts could improve risk
measurement processes. Insights from behavioral economics and related fields could help robo-
advisors re-design platforms to promote better investment behaviors. Robo-advice could one day
become the norm for passive investing. Future indexers might look back on today’s market for
financial advice, wondering why we ever trusted humans to provide sound and un-biased
investment advice.

Yet we are not in the future. Robo-advice is still in its early days and it is the current state
of robo-advice that policymakers and researchers seek to understand. Robo-advisors have
become topical due to the Department of Labor’s proposed fiduciary rule, which critics argue
would price small retirement savers out of the market for traditional investment advice, leaving
them to invest on their own or through a robo-advisor.? To date, the regulatory debate has largely
ignored the benefits of robo-advisors stemming from their sound investment philosophy and
methodology. Robo-advisors espouse a strategy of passive indexing, which abundant empirical
evidence has shown to be the best strategy for individual investors who do not have access to
institutional quality active managers. Wealthfront and Betterment have selected a reasonable and
diverse set of asset classes and use mean-variance optimization to construct efficient portfolios.
These robo-advisors pay attention to tax efficiency, developing separate efficient frontiers for
taxable and tax-deferred accounts. They provide unbiased, systematic advice, taking into account
the investor’s time horizon in all cases and other investor attributes in some cases.

Robo-advisors may be sufficiently developed to provide advice to some, but not all,
retirement investors. Betterment, in particular, has made a promising first attempt at a retirement
investing product (see Chapter 3), dynamically adjusting individuals’ asset allocation in response

2 Robert Litan and Hal Singer. Good Intentions Gone Wrong: The Yet-To-Be-Recognized Costs of the Department
of Labor’s Proposed Fiduciary Rule. Economists Incorporated. July 2015.
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to their spending needs. However, the robo-advisor does not appear to measure investors’
subjective risk tolerance. Robo-advisor Wealthfront may provide adequate advice for some
retirement savers, as investors’ time horizon and risk tolerance, arguably the two most important
factors for advisors to consider when making recommendations, are taken into account.
Regardless of product quality, whether less tech-savvy investors will trust robo-advisors,
however, remains an open question.

Taken as a whole, the findings of this paper suggest that investors who switch to robo-
advisors may be better off than they were before. Robo-advisors are superior to many sources of
traditional advice and will only become more sophisticated over time.
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CHAPTER 1: BENEFITS AND LIMITATIONS OF MEAN-VARIANCE OPTIMIZATION

The mean-variance approach to portfolio selection, developed by Nobel laureates Harry
Markowitz and James Tobin, is the most widely accepted model for asset allocation. Investors
ranging from university endowments to Internet-based investment advisors (“robo-advisors™)
employ mean-variance optimization to structure efficient portfolios. This chapter discusses the
benefits and limitations of the mean-variance framework, often drawing examples from the Yale
Investments Office.?

Benefits of Mean-Variance Optimization

Economists often say there is no such thing as a “free lunch.” Yet portfolio
diversification, which one can achieve through mean-variance analysis, is perhaps the one
exception to this adage, as diversification allows investors to reduce portfolio risk without
sacrificing expected return or to increase expected return without accepting more risk.

Mean-variance optimization, introduced by Nobel laureate Harry Markowitz in his 1952
paper “Portfolio Selection,” was the first mathematical formalization of the idea of
diversification of investments. The framework considers a set of risky assets and calculates
portfolios for which the expected return is maximized for a given level of portfolio risk, where
risk is measured as variance; an alternative formulation of the optimization minimizes portfolio
risk for a given level of expected return.* These optimized portfolios compose the “efficient
frontier,” a band of portfolios that dominate all other feasible portfolios in terms of their risk-
return tradeoff (Figure 1).

In a 1958 article entitled “Liquidity Preference as Behavior Toward Risk,” Nobel laureate
James Tobin expanded upon Markowitz’s mean-variance framework, showing that the
introduction of a riskless asset implies that there is an optimal risky portfolio on the efficient
frontier whose selection is independent of the investor’s risk aversion. The capital market line,
which passes through the riskless return and the optimal risky (“tangency”) portfolio, delineates
the new set of efficient portfolios. Tobin’s work led to the famous “separation theorem,” the idea
that portfolio selection is divided into two stages: first, an optimal sub-portfolio of risky assets is
selected solely on the basis of the joint distribution of the returns of the risky and riskless assets;
second, the investor divides wealth between the risky sub-portfolio and the riskless asset,
choosing a portfolio from the capital market line on the basis of risk aversion or other factors.®

The primary benefit of employing mean-variance optimization is portfolio diversification,
which is most easily explained through William Sharpe’s simplified model of portfolio theory,
the so-called “one-factor model.”® While the Sharpe model is usually applied to individual
securities, the same logic extends to asset classes. Under the Sharpe model, the return on all
securities is correlated to the market return through a constant called beta, but each security’s

3 The Yale Investments Office manages Yale's endowment and certain related assets.

4 The section on portfolio selection and investor objectives discusses how risk and volatility are not equivalent.

> Mark Rubinstein. A History of the Theory of Investments: My Annotated Bibliography. John Wiley & Sons. 2006.
& Harry M. Markowitz, Mark T. Hebner, Mary E. Brunson. Does Portfolio Theory Work During Financial Crises?
www.ifaarchive.com
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return is also subject to an idiosyncratic term that is independent of the market return and the
idiosyncratic terms of all other securities. A portfolio’s beta, the weighted average of the betas of
the securities in the portfolio, measures the portfolio’s correlation to the market. Similarly, the
portfolio’s idiosyncratic term is the weighted average of the idiosyncratic terms for each of the
securities.

However, since the idiosyncratic term of each security is assumed to be independent of
that of all other securities, the variance of the idiosyncratic term of the portfolio is not the
weighted sum of the constituent securities’ idiosyncratic variances.’ It is, in fact, less than the
weighted sum, since the idiosyncratic terms tend to diversify — some are positive while others are
negative, cancelling each other out.® With a sufficiently large number of securities, idiosyncratic
risk can be completely eliminated. However, risk from correlation to the market — the systematic
risk — cannot be diversified away.

In contrast to the Sharpe model, mean-variance optimization takes into account the
overall risk of securities (or asset classes), without separating out their systematic and
idiosyncratic (unsystematic) components.® Also, while in the Sharpe model securities correlate
with one another through their relationship with the market return, in the Markowitz framework
securities relate to one another more generally through a specified pattern of correlation — a
correlation matrix. Despite their differences, both models of portfolio theory capture the basic
insight that imperfect co-movement of returns — either through independent idiosyncratic risk
components in the case of the Sharpe model or less than perfect correlation in the Markowitz
framework — reduces portfolio risk. More specifically, as long as the correlation between asset
classes is less than one, the variance of portfolio returns will be less than the weighted average of
the variances of its constituent assets.

Limitations of Mean-Variance Optimization

Investors intending to employ the mean-variance asset allocation framework should
possess a thorough understanding of its limitations. This section highlights many of the
limitations of mean-variance optimization and presents solutions when applicable.

Normality Assumptions

Mean-variance optimization assumes that asset class returns are normally distributed, but
real-world returns possess significant nonnormal characteristics. Perhaps the greatest limitation
of the normality assumption is that it inadequately accounts for the possibility of extreme market
moves.!? Yale economist William Nordhaus shows that for the 140-year period from 1871 to

7 1bid.

8 Diversification is related to the Central Limit Theorem. If the idiosyncratic terms in the one-factor model are
identical and independent random variables, the Central Limit Theorem implies that the variance of the average of
the idiosyncratic terms goes to zero when the number of asset classes is sufficiently large. Thus, if the mean of the
idiosyncratic terms is zero, the inclusion of more asset classes effectively diversifies away idiosyncratic risk.

® Harry Markowitz. Crisis Mode: Portfolio Theory Under Pressure. The Financial Professionals’ Post. June 8, 2010.
10 David F. Swensen. Pioneering Portfolio Management. Free Press. 2009. 105; Ashvin B. Chhabra. The
Aspirational Investor. HarperCollins. 2015. 90.
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2010, the actual maximum and minimum monthly returns on the U.S. stock market were much
larger than would be found with a normal distribution.'! A study by Morningstar provides further
evidence of “fat-tailed” asset class distributions, finding that between January 1926 and May
2011 there were 10 months when monthly returns were more than three standard deviations
below the mean; the normal distribution implies that there should have only been 1.3 months
with such returns.'? The 2007-2008 global financial meltdown, during which U.S. stocks
dropped 57 percent from peak to trough, and the 1987 stock market crash, during which U.S.
stock prices fell by 23 percent on Black Monday, are two examples of tail events.

Another problem associated with the assumption of normally distributed returns is that
variance is a symmetrical risk measure, one that does not distinguish between upside and
downside moves.® Investment returns with positive skew will appear riskier than they really are,
leading to under-allocation of the asset class; similarly, returns with negative skew will appear
less risky than they really are, leading to over-allocation of the asset class. These concerns are
not merely academic musings. Some investors actively seek out returns with favorable
asymmetry characteristics; for instance, the Yale Investments Office seeks to hire investment
managers whose return distributions exhibit positive skew. Markowitz himself in his 1959 book
on portfolio theory acknowledged that using the semi-variance, rather than the variance, as a
measure of risk tends to produce better portfolios, as the former does not consider extremely high
returns undesirable.* However, Markowitz qualifies his critique of using variance as a risk
measure, arguing that the variance and semi-variance produce the same efficient portfolios if
return distributions are in fact symmetric or possess the same degree of asymmetry. Moreover, a
portfolio with low variance must also have low semi-variance, though such a portfolio may
sacrifice too much expected return in eliminating both upside and downside volatility.

Evidence suggests that failing to incorporate information about fat tails and skewness
may lead to suboptimal portfolio decisions. Using a version of Conditional Value at Risk
(CVaR) as their risk measure, Xiong and ldzorek (2011) show that incorporating skewness and
kurtosis (fat tails) into portfolio optimization can have a significant impact on optimal
allocations.*® The authors compared portfolio allocations from mean-variance optimization and
the CVaR optimization by holding the expected return constant across both optimizations. Xiong
and ldzorek show that the combination of skewness and kurtosis with mixed tails (meaning asset
classes do not have uniformly fat tails) leads to the largest effect on optimal allocations; zero
skewness and uniform tails, zero skewness and mixed tails, and non-zero skewness and
uniformly fat tails lead to smaller effects.

1 william Nordhaus. Elementary Statistics of Tail Events. Review of Environmental and Economic Policy. April 8,
2011.

12 Morningstar. Asset Allocation Optimization Methodology. December 12, 2011.

13 Ashvin B. Chhabra. The Aspirational Investor. HarperCollins. 2015. 88.

14 Harry Markowitz. Portfolio Selection. Cowles Foundation for Research in Economics at Yale University. 1959.
194. The semi-variance is the average of the squared deviations of values that are less than the mean.

15 James X. Xiong and Thomas M. Idzorek. The Impact of Skewness and Fat Tails on the Asset Allocation Decision.
Financial Analysts Journal. March/April 2011.

Value at Risk (VaR) is a statistical measure of the amount of money a portfolio, strategy, or firm might expect to
lose over a specified time horizon with a given probability. Conditional Value at Risk (CVaR) is an extension of
VaR that gives the total amount of loss given a loss event. For more on VaR and CVaR, please consult
http://www.cfapubs.org/doi/pdf/10.2469/irpn.v2012.n1.6
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By conducting “stress tests” of efficient portfolios, investors can overcome the inability
of mean-variance optimization to account for extreme market events. The Yale Investments
Office has been a leader in this arena, stress testing its portfolio across a range of human-
generated return scenarios that would be unlikely to occur under a normal distribution.® These
scenarios are based on qualitative and quantitative analysis of particular stress scenarios and
consideration of fundamental asset class attributes.

For example, the Yale Investments Office has modeled a “market shock” scenario
comparable to the 2008 financial crisis.!” Under this scenario, U.S. equities fall by 35 percent,
and Treasuries appreciate due to their safe-haven status. Since foreign equities, particularly in
emerging markets, are typically more volatile than domestic equities during bear markets, they
are projected to fall by more than domestic equities. The private equity portfolio, which is
invested in smaller companies than its public market counterparts, might be expected to fall by
more than domestic equities; however, the ability of Yale’s investment managers to implement
aggressive cost-cuts, reposition businesses, and work with lenders to avoid portfolio company
defaults exerts a countervailing force, mitigating the potential impact to private equity. Volatile
commodity prices and higher risk premia due to investor deleveraging might leave natural
resources particularly exposed during such a market shock, leading to a considerable drawdown
in the price of natural resources equities. The Yale Investments Office also considers potential
recovery paths from the initial shocks, extending the time horizon of the stress tests. Stress
scenarios range from “market shocks” to “inflation induced collapses” to “deflationary
recessions.” In each case, the impact of the shocks to each asset class is assessed with a high
level of conservatism.

Unfortunately, no straightforward solution exists for correcting optimal allocations based
on asymmetrical return distributions. Inasmuch as using mean-variance optimization is both an
art and a science, investors may find it reasonable to make adjustments to optimal allocations to
account for skewness of returns.

Static Inputs

Mean-variance optimization takes static inputs, but real-world correlations between asset
class returns are time-varying.*® In particular, during periods of acute market stress, cross-asset
correlations increase markedly, temporarily diverging from long-run correlation levels. As
Figure 2 shows, the correlations of foreign developed equity markets, foreign emerging equity
markets, commodities, and the price of oil to the S&P 500 increased during the 2007-2008
financial crisis.'® Commodities in particular experienced a sharp increase in their correlation
with U.S. equities, as a negative demand shock and investor deleveraging pushed commodity

16 This discussion about stress tests relies on a conversation the author had with Alex Hetherington, a Director of the
Yale Investments Office.

17 1bid.

18 David F. Swensen. Pioneering Portfolio Management. Free Press. 2009. 105.

19 Jeremy Siegel. Stocks for the Long Run. McGraw Hill. 2014. 49.
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prices lower.?° Before the crisis, numerous studies had touted commodities as the silver bullet for
asset allocation due to their low correlation to other asset classes.?!

That correlations among asset class returns approach one during financial crises is often
cited as a major limitation of modern portfolio theory. But as Harry Markowitz has argued, this
is exactly what portfolio theory predicts.?? As was discussed in the previous section, portfolio
theory allows one to diversify away unsystematic risk, but systematic risk, due to beta, does not
diversify away. Under the Sharpe model, a financial crisis is by definition a period of time during
which the systematic risk swamps the unsystematic risk.?® Users of mean-variance optimization
should heed the lessons of the Sharpe model. Since mean-variance optimization does not
separate risk into its systematic and unsystematic parts, care must be taken to limit beta exposure
to reasonable levels.

Fortunately for investors, long-term correlations between asset class returns are
significantly lower than short-term correlations.?* By extending their time horizon, investors
employing mean-variance optimization enjoy the benefits of diversification and stand a better
chance of making accurate capital market assumptions.

Estimation Error

Estimation error invariably leads to inefficient portfolios. This can be explained by
considering estimation error in the expected returns and three sets of portfolios: the true efficient
frontier, the estimated frontier, and the actual frontier.? The true efficient frontier is the
efficient frontier computed using the true (but unknown) parameters, while the estimated frontier
is the frontier computed using estimated (and hence incorrect) parameters. The actual frontier is
the frontier computed using the true expected returns but the weights of the portfolios from the
estimated frontier. It should be quite clear from these definitions that the actual frontier, which is
the frontier that determines actual investment outcomes, always lies below the true efficient
frontier.

The forward-looking nature of capital market assumptions practically guarantees that the
inputs for mean-variance analysis will be tainted by some degree of estimation error.
Unfortunately, solutions to the mean-variance optimization process are highly unstable, as even
small errors in input parameters can result in large changes in portfolio contents.?

Unconstrained mean-variance optimization may also lead to unintuitive, nonsensical
portfolios. As Richard Michaud has written in his critique of mean-variance optimization:

20 |bid. 49-50; J.P. Morgan. Rise of Cross Asset Correlations. Global Equity Derivatives & Delta One Strategy. May
2011.

21 J.P. Morgan. Rise of Cross Asset Correlations. Global Equity Derivatives & Delta One Strategy. May 2011.

22 Harry M. Markowitz, Mark T. Hebner, Mary E. Brunson. Does Portfolio Theory Work During Financial Crises?
www.ifaarchive.com

2 |bid.

24 Jeremy Siegel. Stocks for the Long Run. McGraw Hill. 2014. 50.

% Mark Broadie. Computing Efficient Frontiers Using Estimated Parameters. Annals of Operations Research. 1993.
% Taming Your Optimizer: A Guide Through the Pitfalls of Mean-Variance Optimization. Ibbotson Associates;
Vijay Chopra. Improving Optimization. The Journal of Investing. Fall 1993.
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The unintuitive character of many “optimized” portfolios can be traced to the fact that
MYV optimizers are, in a fundamental sense, ‘estimation-error maximizers.” Risk and
return estimates are inevitably subject to estimation error. MV optimization significantly
overweights (underweights) those securities that have large (small) estimated returns,
negative (positive) correlations and small (large) variances. These securities are, of
course, the ones most likely to have large estimation errors.?’

Moreover, as Professor of Business at Columbia University Mark Broadie has shown through
simulations, the error maximization property of mean-variance analysis becomes more
pronounced as the number of asset classes increases.?® With more asset classes in the analysis,
the likelihood that some asset class has either a large positive error in the estimation of its
expected return or a large negative error in the estimation of its standard deviation of return
increases. Hence, as the number of asset classes increases, the estimated frontier tends to
increasingly overstate actual portfolio performance. Figure 3 provides an example of the
unintuitive portfolio weights that can result from unconstrained mean-variance optimization.

Assumptions about expected returns exert the largest effect in determining portfolio
contents, while variances and covariances exert secondary and tertiary effects, respectively.
Calculating the average portfolio turnover resulting from switching from a base portfolio to one
based on error-tainted inputs, Vijay Chopra shows that for an investor with a moderate risk
tolerance, the average turnover due to estimation errors in means is two to four times the average
turnover from estimation errors in variances and about five to thirteen times the average turnover
from errors in covariances.?® A separate study by Chopra and his collaborator William Ziemba
corroborates these results. By examining the cash equivalent loss from optimizing portfolios
based on estimated, rather than true, input parameters, Chopra and Ziemba show that for an
investor with a moderate risk tolerance, errors in means are eleven times as damaging as errors in
variances.® Errors in variances are twice as damaging as errors in covariances. Moreover, they
find that the relative importance of errors in means, variances, and covariances depends upon the
risk tolerance of the investor. Since an investor with higher risk tolerance focuses on raising the
expected return of the portfolio while deemphasizing the variance, errors in expected return exert
a larger effect on investment results. Conversely, the investor with a low risk tolerance focuses
on reducing portfolio risk and hence is less affected by errors in means than the investor with
higher risk tolerance.

Investors may employ several tools to counteract the problems associated with estimation
error. Setting reasonable constraints on asset class weights serves as a first defense against
unintuitive, highly concentrated portfolios. Constraints on minimum allocations ensure that asset

27 Richard Michaud. The Markowitz Optimization Enigma: Is ‘Optimized’ Optimal? Financial Analysts Journal.
January-February 1989.

28 Mark Broadie. Computing Efficient Frontiers Using Estimated Parameters. Annals of Operations Research. 1993.
2 Vijay Chopra. Improving Optimization. The Journal of Investing. Fall 1993.

%0 Vijay Chopra and William Ziemba. The Effect of Errors in Means, Variances, and Covariances on Optimal
Portfolio Choice. Journal of Portfolio Management. Winter 1993. The cash equivalence of a portfolio is the amount
of cash that provides the same utility as the risky portfolio. Cash equivalent loss is the difference in cash equivalence
for optimal portfolios based on true and error-tainted inputs.
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classes with low expected returns but desirable diversification qualities are not ignored in the
optimization process. David Swensen, Chief Investment Officer of Yale University, advocates
committing at least five percent to each asset class, as smaller commitments make little
difference to overall portfolio performance.3! On the other hand, constraints on maximum
allocations protect portfolios from overconcentration. Swensen suggests a maximum allocation
constraint of 25 or 30 percent.

Applying constraints on asset class weights should not be taken to an extreme, however.
As Swensen has written, “placing too many constraints on the optimization process causes the
model to do nothing other than to reflect the investor’s original biases, resulting in the GIGO
(garbage-in/garbage-out) phenomenon well known to computer scientists.”32

Investors perform sensitivity analysis to reduce the effects of estimation error. The goal
of sensitivity analysis is to identify a set of asset allocation weights that is close to efficient under
several different sets of plausible capital market assumptions.3® Sensitivity analysis might
involve first choosing a portfolio from the efficient frontier and then altering the mean-variance
optimization inputs to create a new efficient frontier.>* The original portfolio, whose risk and
return profile has changed due to the updated optimization inputs, could then be compared to
portfolios on the new efficient frontier in terms of risk, return, and portfolio composition.

Rather than treating the portfolio optimization as a deterministic problem, investors could
choose to incorporate uncertainty of input assumptions into the optimization process itself. Such
techniques — commonly referred to as “robust optimization” — could help investors identify
portfolios that perform well under a number of different scenarios.®

Investors and economists have proposed the Black-Litterman model as a solution to the
problems of unintuitive, highly concentrated portfolios, input-sensitivity, and estimation error
maximization.*® The Black-Litterman model, developed by economists Fischer Black and Robert
Litterman at Goldman Sachs, provides investors with a systematic approach for combining their
own views about asset class returns with the market equilibrium implied returns. Using portfolio
weights from the market portfolio, which is assumed to lie on the efficient frontier, the Black-
Litterman model uses “reverse optimization” to compute the Capital Asset Pricing Model
equilibrium returns for each asset class in the market portfolio.®” The investor then expresses
views on asset class expected returns; these are allowed to be partial or complete and can be
expressed in both absolute and relative terms.

31 David F. Swensen. Pioneering Portfolio Management. Free Press. 2009. 101; David F. Swensen. Unconventional
Success. Free Press. 2005. 83.

32 David F. Swensen. Pioneering Portfolio Management. Free Press. 2009. 107.

33 Frank Fabozzi. Robust Portfolio Optimization and Management. John Wiley & Sons. 2007. 213

34 Taming Your Optimizer: A Guide Through the Pitfalls of Mean-Variance Optimization. Ibbotson Associates.

% Frank Fabozzi. Robust Portfolio Optimization and Management. John Wiley & Sons. 2007. 214; Dmitris
Bertsimas, David B. Brown, and Constantine Caramanis. Theory and Applications of Robust Optimization.
https://faculty.fugua.duke.edu/~dbbrown/bio/papers/bertsimas_brown_caramanis_11.pdf

3% Thomas M. Idzorek. A Step-By-Step Guide to the Black-Litterman Model. Ibbotson Associates. April 26, 2005;
Frank Fabozzi. Robust Portfolio Optimization and Management. John Wiley & Sons. 2007. 233-239; Jay Walters.
The Black-Litterman Model in Detail. June 20, 2014.

37 Jay Walters. The Black-Litterman Model in Detail. June 20, 2014.
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The Black-Litterman model “blends” the market equilibrium implied returns with the
investor’s views, producing a new vector of expected returns. Note that in the absence of
investor views, the blended returns are those implied by the market equilibrium, meaning that the
investor should hold the market portfolio. The degree to which the blended return estimates
deviate from the market equilibrium depends on the magnitude of the expressed views and the
investor’s confidence in both the equilibrium estimates and the investor views on expected
returns.

The primary benefit of using the Black-Litterman model is that the vector of asset class
returns that the model produces leads to reasonable portfolio weights without additional
constraints on the portfolio optimization process.® In fact, the optimal portfolio resulting from
the Black-Litterman process is the market equilibrium portfolio plus a weighted sum of the
investor’s “view portfolios,” implying that views only affect portfolio weights when they have
returns that differ from those implied by a combination of the equilibrium portfolio and all other
views. 3

Despite its theoretical benefits, the Black-Litterman model suffers from several
limitations. First, it may be difficult to define the market portfolio.*® The public markets may not
fully represent the universe of risky assets. For instance, since the vast majority of real estate is
privately held, the market capitalization of publicly traded real estate (through REITS) is only a
small fraction of the total real estate asset value. An investor using the market capitalization of
publicly traded securities to determine the market portfolio may thus start with a baseline
allocation to real estate that is too low. Moreover, due to data constraints, it may be difficult, if
not impossible, to estimate accurately the market capitalization of illiquid assets, as coming to
such estimates requires that investors both identify all private assets and assign a value to them. !
For instance, if an institution invests in natural resources, should state-owned oil and gas assets
be included in the calculation of the asset class weights of the market portfolio? Even for
publicly traded securities, the answers are not always easy — should investors only consider the
free-float market capitalization?

In sum, investors using mean-variance optimization may reduce the effects of estimation
error by applying reasonable constraints, conducting sensitivity analysis, performing robust
optimization, or using the Black-Litterman model. Some of these solutions are not mutually
exclusive.

38 This is the case for unconstrained portfolio optimization. In the case of constraints, such as constraints on beta
exposure or leverage, the results are less intuitive. However, as Rob Litterman has written, “the same trade-off of
risk and return — which leads to intuitive results that match the manager’s intended views in the unconstrained case —
remains operative when there are constraints or other considerations.”

Bob Litterman. Beyond Equilibrium, the Black-Litterman Approach. Modern Investment Management: An
Equilibrium Approach. John Wiley & Sons, Inc. 2003. 81. 87.

39 Ibid. 85.

0 This discussion of the limitations of the Black-Litterman model relies heavily on a conversation the author had
with Alex Hetherington, a Director of the Yale Investments Office.

4L Ibid; Jay Walters. The Black-Litterman Model in Detail. June 20, 2014.
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Time Horizon

Markowitz mean-variance optimization is a single-period model of investment.
Disconnects between investor time horizon and the length of the mean-variance investment
period may lead to suboptimal investment outcomes.

As David Swensen has written, investors may possess multiple objectives that span
different time horizons.*? In such cases, a single-period model of investment might serve one
objective at the expense of others, or simply serve none of them. Swensen highlights the
dilemma facing university endowments: with the conflicting objectives of providing stable
intermediate-term cash flows to the university’s operating budget and preserving long-term
endowment purchasing power, single-period mean-variance analysis sheds little light on how to
achieve both objectives.*?

Making matters worse is the fact that the standard implementation of mean-variance
optimization considers a one-year time horizon.* As Jeremy Siegel, Professor of Finance at the
Wharton School, has shown in his book Stocks for the Long Run, the relative risk of different
asset classes depends on the holding period.* This is due to the fact that stock and bond returns
do not follow a random walk, a process whereby future returns are completely independent of
past returns.*® Rather, Siegel shows that stock returns exhibit mean-reverting behavior, while
bond returns exhibit mean-averting behavior.*” The mean-reverting behavior of stock returns
means that periods of stock underperformance relative to the long-term trend are more likely to
be followed by periods of outperformance, and vice versa. The mean-averting behavior of bond
returns, on the other hand, means that once bond returns have deviated from their long-run
average, there is an increased chance that they will deviate further.*® The mathematical
consequence of this behavior is that the relative risk of stocks compared to asset classes such as
bonds declines as the holding period increases.*

Clearly, then, the efficient frontier is a function of the holding period.*° Siegel
demonstrates this fact rather dramatically. As shown in Figure 4, the minimum variance portfolio
for a one-year time horizon is 13 percent in stocks, while the minimum variance portfolios for
20-year and 30-year time horizons are 58 percent and 68 percent in stocks, respectively.®!
However, Laura Spierdijk and Jacob Bikker of the Dutch Central Bank find that mean reversion

42 David F. Swensen. Pioneering Portfolio Management. Free Press. 2009. 106.

3 1bid.

4 1bid.

45 Jeremy Siegel. Stocks for the Long Run. McGraw Hill. 2014. 102.

46 |bid. 97-98.

47 Ibid. 98-99. The autocorrelation structure of asset class returns not only influences asset class expected returns but
also the variances of and covariances between asset class returns.

“8 |bid. 99.

49 Ibid. Under the random walk hypothesis, the standard deviation of each asset class’s average real annual returns
(defined as the arithmetic mean of real annual returns) will fall by the square root of the holding period because of
the Central Limit Theorem. However, with mean reversion, the standard deviation of these returns falls faster than
predicted by the random walk hypothesis.

%0 Ibid. 101.

51 Ibid. 102.
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of stock returns has a more muted effect on portfolio weights.>? For instance, the first column of
Table 1 shows that the difference in stock allocations for the minimum variance portfolio with
and without mean reversion is less than 2.5 percentage points over a 20-year investment horizon.
Moreover, in stark contrast to the minimum variance portfolios on Siegel’s efficient frontiers, the
difference in stock allocations due to mean reversion between the one-year and 20-year
minimum variance portfolios in Spierdijk and Bikker (2012) is less than two percentage points.

The differences between the two studies can be attributed to the fact that Siegel’s
estimates are based on 210 years of historical data, while Spierdijk and Bikker’s are based on
approximately 30 years of data. It should be noted, however, that Spierdijk and Bikker’s results
also hinge on an assumption regarding the variance ratio, which is a key parameter in their mean
reversion model. Spierdijk and Bikker use the mean reversion model introduced by Poterba and
Summers (1987), which defines a mean-reverting log price process as the sum of a permanent
and transitory component. The variance ratio is the return variance of the permanent component
of the log price process divided by the return variance of the transitory component. Due to
difficulties in estimating the variance ratio, Spierdijk and Bikker based their choice of the
parameter on the existing literature. They show that a lower variance ratio would lead to a larger
effect due to mean reversion, though these effects are still much smaller than those in Jeremy
Siegel’s study.

In “Short-Horizon Inputs and Long-Horizon Portfolio Choice,” William Goetzmann and
Franklin Edwards propose a solution to the mismatch between one-year mean-variance inputs
and investor time horizon: simulating long-term returns.>® Specifically, they estimate the
parameters of a vector autoregression (VAR) model, which explicitly incorporates the
autocorrelation (correlation of past and future returns, in contrast with the random walk
assumption) structures of short-term asset class returns. They then use the estimated model to
simulate long-term returns. Simulating long-term returns thousands of times results in a joint
distribution of long-term asset class returns that can be used as inputs in the mean-variance
framework.

Goetzmann and Edwards show that the short-horizon and simulated long-horizon returns
lead to different efficient frontiers. In their study, the minimum variance portfolio exhibits the
largest difference in portfolio composition; the long-horizon inputs lead to a minimum variance
portfolio composed of 50 percent bonds and 50 percent bills, while the short-horizon inputs led
to a minimum variance portfolio of 10 percent bonds and 90 percent bills. The simulated inputs
not only increase the minimum achievable risk, but also reduce the curvature of the frontier due
to slightly higher correlation across asset classes. While Goetzmann and Edwards find that return
autocorrelations have relatively little impact on the high-risk, high-return portion of the efficient
frontier, other research has shown that stocks are more attractive to long-term investors when the
time structure of returns is taken into account.>*

52 Laura Spierdijk and Jacob A. Bikker. Mean Reversion in Stock Prices: Implications for Long-Term Investors.
Dutch Central Bank. April 5, 2012.

3 William N. Goetzmann and Franklin R. Edwards. Short-Horizon Inputs and Long-Horizon Portfolio Choice. The
Journal of Portfolio Management. Summer 1994.

5 1bid. 78-80.
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Explicitly considering longer time horizons is an example of how investors could
incorporate return autocorrelations into their estimate of mean-variance parameters. As
Goetzmann and Edwards write, “Investors wishing to use this technique should consider further
simulations that perturb the underlying parameters: mean, standard deviations, correlations, and
VAR coefficients.” They further write that their approach is “predicated on the assumption that
investors can accurately identify both their investment horizon and the timing of future cash
needs.” While using long-horizon capital market assumptions would bring the greatest benefit to
investors whose time horizon is known with a high degree of certainty, investors with less well-
defined holding periods could still benefit from a reduction of the mismatch between their
investment horizon and the most commonly used one-year mean-variance inputs.

While the degree to which autocorrelation affects the relative risk of asset class returns is
unclear, autocorrelation nonetheless affects portfolio allocations and highlights the important
issue of time horizon. Investors must take care that mean-variance analysis corresponds to the
appropriate time horizon. Forward-looking simulations of portfolios from a one-year mean-
variance model could effectively extend the time horizon of the mean-variance analysis,
allowing investors to assess portfolios over the relevant holding period.* Such simulations allow
investors to translate portfolio risk and return characteristics into metrics quantifying the ability
of portfolios to meet investor objectives over various time horizons.® This last point is
elaborated upon in the section on portfolio selection and investor objectives.

Other Investment Attributes

Mean-variance optimization fails to consider important investment attributes such as
liquidity and marketability. The standard implementation of mean-variance optimization, which
is based on a one-year time horizon, implicitly assumes rebalancing of portfolio allocations.®’
However, the lack of marketability of illiquid assets such as real estate and private equity limits
the ability of investors to rebalance portfolios in a low cost, efficient manner.®® Even reasonable
rebalancing methods — such as offsetting private asset shortfalls with investments in cash, bonds,
and absolute return investments, and offsetting private asset surpluses through reductions in risky
public investments — invariably lead to portfolios whose risk-return profiles differ from that of
the target portfolio.>®

Uncertainties in both asset values and the rate and timing of cash flows for alternative
investment vehicles limit the ability of investment managers to achieve the target allocation
determined from the mean-variance portfolio selection process. Institutions invest in illiquid
assets predominantly through commingled limited partnerships.®® As Dean Takahashi, Senior
Director of the Yale Investments Office, and Seth Alexander, a former Associate Director of the
Yale Investments Office and current Chief Investment Officer at MIT, wrote in a 2001 paper

%5 David F. Swensen. Pioneering Portfolio Management. Free Press. 2009. 128.

%6 |bid.

57 Ibid. 106.

%8 |bid.

%9 Ibid. 135-6.

60 Dean Takahashi and Seth Alexander. Illiquid Alternative Asset Fund Modeling. The Journal of Portfolio
Management. Winter 2002.
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entitled “Illiquid Alternative Asset Fund Modeling,” “The uncertain schedule of drawdowns,
unknowable changes in the valuation of the partnership’s investments, and unpredictable
distributions of cash or securities to the limited partners combine to make it difficult to predict
accurately the future value of partnership interests.”®* These challenges, coupled with the
uncertainties associated with projecting overall endowment growth, hamper the ability of
investment managers to achieve the target allocation determined through the mean-variance
portfolio selection process. In the above-cited paper, Takahashi and Alexander present a
financial model that enables institutional investors to project future asset values and cash flows
for funds in illiquid alternative asset classes.®? The model, which allows investors to assess the
impact of changes to fund commitment levels and assumptions regarding contributions,
distributions, and underlying net returns, significantly improves the ability of investors to bring
asset allocations to target levels.%

Empirical evidence supports the view that rebalancing improves the risk-return tradeoff
of actual investment results. For example, using a three-asset framework, Chopra shows that the
optimal portfolio with constraints on portfolio drift dominates the optimal portfolio without such
constraints, as the former has a higher mean return and lower risk.®* Specifically, the constrained
portfolio is not allowed to deviate far from a 60-40-0 stock-bond-cash allocation, while the
unconstrained portfolio has no such constraints. Mean returns, variances, and covariances are
calculated on a sixty-month rolling basis, and the optimal mean-variance allocation is held for
the month following the sixty-month estimation period. The unconstrained and constrained
portfolios are tested out-of-sample for a 72-month interval from January 1985 through December
1990. Chopra finds that the constrained portfolio realizes a higher mean return with lower risk. A
separate study by Vanguard largely corroborates these findings.® The study, which is based on
data from 1960 to 2013, compares two portfolios: a 60-40 stock-bond portfolio that is rebalanced
annually and a 60-40 stock-bond portfolio that is not rebalanced. While the former provides a
marginally lower return (9.12 percent versus 9.36 percent), it does so with significantly lower
risk (11.41 percent vs. 14.15 percent).

Mean-variance optimization fails to consider other costs associated with illiquidity, such
as investors’ restricted ability to respond to unforeseen cash flow requirements.® In fact, naive
implementations of mean-variance optimization may lead to portfolios with unreasonable
illiquidity levels, as mean-variance optimizers favor asset classes such as private equity — from
which investors reap an illiquidity premium — with high expected returns.®’ Investors may

%1 1bid.

82 1bid.

83 1bid.

8 Vijay Chopra. Improving Optimization. The Journal of Investing. Fall 1993; This result might seem to not make
much sense, since the unconstrained efficient frontier always lies above the constrained efficient frontier. However,
the point Chopra is making is not about the risk-return tradeoff of portfolios on the efficient frontier, but rather the
actual investment results obtained from portfolios whose weights are constrained to lie within a band of the target
allocation.

% Francis M. Kinniry Jr. et al. Putting a value on your value: Quantifying Vanguard Advisor’s Alpha. Vanguard
Research. March 2014.

% Sameer Jain. Investment Considerations in lliquid Asset Classes. Alternative Investment Analyst Review.

57 The author spoke with Alex Hetherington, a Director of the Yale Investments Office; 2010 Yale Endowment
Report.
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employ additional modeling to establish reasonable illiquid assets targets. For example, the Yale
Investments Office has performed extensive modeling of different market scenarios to stress test
its liquidity profile.®® Once an illiquid assets target has been established, investors can continue
to employ mean-variance optimization by setting an additional constraint on the total allocation
to illiquid asset classes.

Lastly, it should be noted that target allocations obtained through the mean-variance
portfolio selection process may not be achievable in the short-term, particularly for funds that
pursue active strategies. It may take years to change the composition of institutional portfolios,
as the pace of portfolio turnover is limited by the sourcing of high-quality investment
managers.®® Capacity constraints in funds with existing managers may also limit investors’
ability to increase the allocation to certain asset classes.’”® On the other hand, investors who are
over-allocated to a particular asset class may find it difficult to reduce the allocation due to lock-
up periods, contractual fund commitments, and other factors. These are not issues for investors
pursuing passive strategies.

Portfolio Selection and Investment Objectives

Perhaps the most obvious limitation of mean-variance optimization is that it delineates a
set of efficient portfolios, but provides little guidance in choosing an optimal portfolio. Clearly,
the investor must provide additional information to make mean-variance analysis a useful
exercise.

Economists typically attempt to overcome this issue by introducing the idea of investor
preferences, which they express in terms of a utility function. Utility in the context of mean-
variance optimization is traditionally a function of the portfolio’s expected return and variance,
investor risk tolerance, and a scaling factor.’* The expected return enters positively into the
function, while the variance enters negatively into the function. Variance discounts utility at a
higher rate for lower levels of risk tolerance, and vice versa. The scaling factor is a constant
coefficient on the variance term. By finding the point of tangency between the efficient frontier
and an indifference curve, economists identify the optimal portfolio.

Unfortunately for economists, people are not mean-variance utility maximizers; that is,
investor satisfaction cannot be expressed solely in terms of the portfolio’s mean and variance. ’?
Other issues arise in the way expected return relates to variance in the utility model. Common
sense dictates that investors with varying levels of risk tolerance should choose different optimal
portfolios from a set of reasonable options. However, consider a scenario in which all
indifference curves across the entire range of acceptable levels of risk tolerance choose the same
portfolio (Figure 5). Adjusting the specification of the utility function (by changing the scaling
factor) so that indifference curves with the acceptable levels of risk tolerance fall along the entire

8 2013 Yale Endowment Report.

% The author spoke with Alex Hetherington, a Director of the Yale Investments Office, and David Katzman, a
Senior Associate of the Yale Investments Office.

0 The author spoke with Daniel Otto, a Senior Financial Analyst of the Yale Investments Office.

L Utility = (expected return) — (scaling factor)*(variance)/(risk tolerance)

2 David F. Swensen. Pioneering Portfolio Management. Free Press. 2009. 122.
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span of the efficient frontier might seem to be a reasonable solution (Figure 6). Economists
might refer to such a procedure as a scaling adjustment.”

However, “scaling” the utility function changes the fundamental relationship between
risk and return, as a larger (smaller) scaling factor causes the utility function to discount portfolio
variance at a higher (lower) rate. In fact, for a given level of risk tolerance, the utility function
could pick out any one of the efficient portfolios if the scaling parameter were varied
sufficiently. Moreover, it seems completely arbitrary that indifference curves for the acceptable
levels of risk tolerance should lie tangent to points along the entire span of the efficient frontier.
Why should they not lie along the upper half of the frontier only, or the lower half? What is the
point of calculating an investor’s risk tolerance if the way in which risk tolerance enters into the
utility calculation is subject to such arbitrariness?

Granted, a case could be made that there exists a “true” specification of the utility
function, a specification that most closely matches actual investor behavior. Yet portfolio
selection based solely on utility maximization is still divorced from an assessment of tangible
investment outcomes. In fact, risk and volatility are not equivalent. Variance, which is the
measure of “risk” used in mean-variance analysis, is really a measure of volatility. As Ashvin
Chhabra has written, “What matters is not the volatility of a security, but its price at the time you
need to sell it to meet an obligation; risk is not simply ‘what happens’ in the abstract but rather
the impact of what happens — the ‘event risk’ — on your ability to generate cash flow when you
need it.” ™

Rather than relying on the mathematically appealing, but unintuitive approach of
employing a mean-variance utility function to select an optimal portfolio from the efficient
frontier, investors should articulate quantifiable investment goals and then evaluate efficient
portfolios in terms of their ability to meet them. For example, the Yale Investments Office has
articulated the two investment objectives of providing stable intermediate-term cash flows to the
university’s operating budget and preserving long-term endowment purchasing power. To
evaluate the ability of portfolios to meet its two objectives, the Yale Investments Office has
defined two metrics. The first measures the average two-year spending decline in the worst 10
percent of years.”™ The second measure, purchasing power impairment risk, is defined as failure
to preserve one-half of purchasing power over fifty years.®

Unfortunately, little intuition about portfolios’ ability to meet Yale’s investment
objectives can be gleaned from simply observing the risk and return characteristics of efficient
portfolios. Will a lower-returning, lower risk portfolio necessarily lead to more stable
spending?’’ Does the risk of purchasing power impairment increase or decrease with portfolio

73 See page 166 of Investments by Bodie, Kane, and Marcus for a discussion of mean-variance utility.

4 Ashvin B. Chhabra. The Aspirational Investor. HarperCollins. 2015. 89.

S This point relies on a conversation the author had with Alex Hetherington, a Director of the Yale Investments
Office.

6 David F. Swensen. Pioneering Portfolio Management. Free Press. 2009. 122,

" The Yale endowment’s target spending rate currently stands at 5.25 percent. According to the current smoothing
rule, endowment spending in a given year sums to 80 percent of the previous year’s spending and 20 percent of the
targeted long-term spending rate applied to the fiscal year-end market value two years prior, adjusted for inflation
(2013 Yale Endowment Report).
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expected return and variance? Monte Carlo simulations of efficient portfolios provide some
guidance, as thousands of simulation paths allow the Yale Investments Office to assign values to
its spending decline and purchasing power impairment measures for each portfolio.”® Some
portfolios may be eliminated from consideration if they are dominated by others on the basis of
both metrics.”® In the end, however, Yale will need to exercise judgment to deal with the clear
tradeoff between the two goals for the portfolios in contention.®

In the case of personal investment, investors must specify quantifiable investment
objectives. For instance, the investor’s goals could be to maximize expected wealth-building
above a certain threshold percentile return (e.g. the 50" percentile return would be the median
outcome, while the 75" percentile return would be a more desirable outcome), given that the
expected loss from return outcomes below the threshold is no less than a certain value.
Specifying a wealth-building goal in this way protects against downside loss, while preserving
the potential for wealth creation. An individual investing for retirement could design an
investment program that minimizes the expected shortfall of wealth during retirement, where the
shortfall is defined as the amount by which wealth falls short of what is needed.%!

By clearly articulating quantifiable investment objectives, conducting the necessary tests
to evaluate portfolios on the efficient frontier, and exercising sound judgment in the final
portfolio selection process, investors employing mean-variance optimization stand a strong
chance of achieving their investment goals.

Conclusion

Mean-variance optimization is a compelling framework for portfolio selection under
uncertainty. It is no wonder that many investors, ranging from university endowments to
Internet-based robo-advisors, have turned to mean-variance analysis as their primary asset
allocation model.

As with any model, simplifying assumptions both increase the model’s utility and detract
from it. In the case of mean-variance optimization, the assumption that expected returns,
variances, and covariances fully describe the behavior of asset class returns greatly simplifies the
investment process, making mean-variance optimization an accessible tool for portfolio decision-
making. Yet as was shown in this chapter, such assumptions also limit the ability of mean-
variance analysis to model real-world asset class characteristics.

Fortunately, most of the limitations of mean-variance optimization can be overcome
through relatively straightforward methods. Investors who cannot address these limitations,
however, should think twice before employing mean-variance optimization.

8 David F. Swensen. Pioneering Portfolio Management. Free Press. 2009. 123.

7 Ibid.

8 Ibid.

81 Ben Inker and Martin Tarlie. Investing for Retirement: The Defined Contribution Challenge. GMO Whitepaper.
April 2014,
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CHAPTER 2: HOW ROBO-ADVISORS WORK

The investment methodology of all individual and institutional investors can be
summarized as comprising three distinct steps: asset allocation, implementation, and monitoring
and rebalancing. Robo-advisors, which generally adhere to a passive indexing strategy, are no
exception to this methodology. This chapter begins by discussing the rationale for passive
indexing. It then shows how robo-advisors execute each step of the investment methodology
outlined above. While differences in investment process exist between robo-advisors, the general
framework outlined in this chapter aims to give readers a foundational understanding of how
robo-advisors work.

The Case for Passive Indexing

In his 1951 Princeton economics thesis, visionary John Bogle put forward an argument
that would challenge the basic tenets of the mutual fund industry: “Mutual funds can make no
claim to superiority over the market averages.”® In the many decades since the writing of
Bogle’s thesis, economists and investors have lent support to Bogle’s proposition that mutual
fund managers in aggregate possess no stock selection skill, and that investors would be better
served by investing in passive index funds. These arguments, much like Bogle’s, have
emphasized the importance of giving mutual fund shareholders a “fair shake,” that is, a chance to
succeed financially in an industry where the profit motives of mutual fund companies all too
easily trump their fiduciary responsibility.®

David Swensen, Burton Malkiel, and Charles Ellis are among the economists and
investors who have championed the passive indexing approach to individual investment. In
Unconventional Success, Swensen highlights the failure of the profit-seeking mutual fund
industry to produce satisfactory results for individual investors through active management. He
shows that most actively managed mutual funds fail to meet their goal of beating the market,
citing an academic study placing the pre-tax and after-tax failure rates at 78 to 95 percent and 86
to 96 percent, respectively.® Such numbers understate the true underperformance of actively
managed mutual funds due to survivorship bias, the omission of data on disappearing funds.®®
Moreover, the average margin of defeat for managers underperforming the index exceeded the
average margin of victory for the few managers who outperformed the market, casting such
numbers in an even dimmer light.®® High fees and excessive portfolio turnover (which leads to
greater commission costs, higher market impact costs, and the realization of greater taxable gains
for taxable accounts) are among the obvious sources of mutual fund failure producing the
performance deficit.®’ Yet, several hidden sources of mutual fund failure — including pay-to-play
activity, stale-price market timing, and soft-dollar trading — further diminish the returns
generated by mutual fund investors. In contrast to actively managed funds, index funds exhibit

82 John C. Bogle. John Bogle on Investing. Mc-Graw Hill. 2001.

83 |pid.

84 David F. Swensen. Unconventional Success. Free Press. 2005. 203.
85 |hid.

8 |bid. 213-217.

87 1bid. 204, 214.

8 |pid. 205, 219.
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much lower fees (expense ratios) and lower portfolio turnover, the latter of which leads to better
tax efficiency.®® Unfortunately, winning the game of active management is a challenge, as
identifying and monitoring high-quality managers is a difficult task.®® Swensen encourages
individuals to invest in passive instruments managed by not-for-profit money management
firms.%

In A Random Walk Down Wall Street, Burton Malkiel argues that markets price stocks so
efficiently that most professional investors cannot outperform the index.%? Specifically, he argues
that while stock market returns do not conform perfectly to the random walk hypothesis, which
posits that future returns are completely independent of past returns, past prices do not contain
enough information to reliably inform predictions of future prices; hence, investing based on
technical analysis of past returns is unlikely to generate better returns than a simple buy-and-hold
strategy, which has the added benefit of postponing or avoiding capital gains taxes.®® Using data
on the historically poor performance of actively managed mutual funds relative to the market
index, Malkiel also argues that very few investors are able to consistently beat the market
through fundamental analysis.®* Mutual fund performance is even worse than the data suggest, as
the data do not include the performance of some failed firms.% Malkiel then dismisses several
“market-beating” strategies based on the predictability of stock markets, arguing that critics of
the efficient market hypothesis have overstated the extent to which the stock market is usefully
predictable.® Such strategies may also result in investors accepting above-average risks.®’
Malkiel concludes that individuals would be best served by adopting a market-matching strategy
of investing in index funds.®®

In Winning the Loser’s Game, Charles Ellis makes a compelling case in favor of passive
indexing. He writes that in recent decades active management has evolved into a loser’s game, a
game in which “winning” is determined by making fewer mistakes than one’s opponent, rather
than beating one’s opponent outright.®® In a kind of prisoner’s dilemma, institutional investors, in
seeking to generate market-beating returns, have collectively made the markets so efficient that it
is difficult for any one of them to stay ahead of the market. % In markets increasingly dominated
by institutions, individual investors stand little chance of outperforming the benchmark index,
especially once the costs of active management are taken into account.*! Ellis urges individuals
to adopt a program of passive indexing, the winner’s game that every investor can enjoy. %

8 Ibid. 257-263.

% Ibid. 312.

%L Ibid. Chapter 11.

92 Burton G. Malkiel. A Random Walk Down Wall Street. W. W. Norton & Company. 2012. 19.
% Ibid. 144, 161-162.

% Ibid. Chapters 7 and 11.

% Ibid. Chapter 11.

% Ibid.
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9 Charles D. Ellis. Winning the Loser’s Game. McGraw Hill. 2013. 5.
100 1bid. 5-10.
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Asset Allocation

Robo-advisors generally perform asset allocation with mean-variance analysis or a
variant of mean-variance analysis, the benefits and limitations of which were discussed in the
first chapter.%® While the determination of asset classes and their portfolio weights constitute
parts of the same asset allocation process, the following discussion of asset allocation is divided
into several parts for clarity. Readers should note that robo-advisors’ asset allocation process
may be more fluid than the structure of this section suggests.

Determination of Asset Classes

Clients of robo-advisors may withdraw assets at any time, limiting robo-advisors’
investable universe to liquid assets. Thus, asset classes such as private equity and private real
estate are excluded from consideration from the outset, as funds in such asset classes typically
employ lock-ups or other restrictions on redemptions. Robo-advisors’ focus on passive investing
also excludes actively managed but liquid strategies such as actively managed domestic or
foreign equity mutual funds.

Since robo-advisors generally help individuals invest across different goal types, they
may develop different sets of asset classes for taxable and tax-deferred accounts.'® Asset classes
may be chosen on the basis of the specific roles they are expected to play in a portfolio.'®® For
example, U.S. stocks may be included in a portfolio due to their capital growth, long-run
inflation protection, and tax efficiency attributes. Inflation-protected bonds may be chosen due to
their income, low historical volatility, diversification, and inflation hedging attributes. Municipal
bonds may be included in a portfolio due to their income, low historical volatility,
diversification, and tax efficiency attributes.

Estimation of Mean-Variance Inputs

Having determined the ideal set of asset classes for portfolio construction, robo-advisors
then estimate the capital market assumptions for each asset class. Since robo-advisors use
different methods to estimate expected returns, which as shown in the first chapter exert the
largest effect in determining portfolio contents, their methods are compared in the next chapter
(“How Robo-Advisors Differ From One Another”). Unfortunately, some robo-advisors do not
disclose information on how they estimate variances and correlations, but it is most likely that
they primarily rely on historical data to form these estimates.'% In some cases, however,

103 Betterment, one of the robo-advisors studied in this paper, does not use a mean-variance optimizer in the strictest
sense. This subject is discussed in the next chapter.

104 For example, the asset classes Wealthfront and Betterment have chosen for taxable and tax-deferred accounts can
be viewed here: Wealthfront Investment Methodology Whitepaper, Betterment Website. Portfolio.

195 For example, see Wealthfront’s Investment Methodology Whitepaper and Schwab Intelligent Portfolios’ Guide to
Asset Classes Whitepaper.

106 Schwab Intelligent Portfolios does not provide information on how it estimates its variance-covariance matrix;
Wealthfront Investment Methodology Whitepaper. Wealthfront generates standard deviation estimates by
considering each asset class’s long-term and short-term historical standard deviation and the expected volatility of
each asset class as implied by pricing in options markets. “Long-term historical estimates benefit from a larger
sample size, short-term estimates capture market evolution, and the option markets imply forward-looking
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forward-looking measures of volatility as implied by options markets may influence capital
market estimates. 1’

Mean-Variance Analysis

With a full set of capital market assumptions for each asset class, robo-advisors then use
mean-variance optimization or a variant of mean-variance optimization to generate the efficient
frontier. In the optimization process, constraints are imposed on asset class weights to ensure
proper diversification.'% Although finance theory shows that investors may find “super-
efficient” portfolios by choosing a portfolio on the capital market line (combinations of the risk-
free asset with a portfolio on the efficient frontier), it appears that some robo-advisors do not use
the capital market line to identify such portfolios.

As mentioned in the previous chapter, mean-variance optimization delineates a set of
efficient portfolios, but provides little guidance in choosing the optimal