Jump to content

Template:List of oxidation states of the elements and Template:List of oxidation states of the elements/sandbox: Difference between pages

(Difference between pages)
Page 1
Page 2
Content deleted Content added
mNo edit summary
 
Tag: Replaced
 
Line 1: Line 1:
<noinclude>{{documentation|content=__TOC__|link box=off}}</noinclude>
<noinclude>This table lists only the occurrences in compounds and complexes, not pure elements in their [[standard state]] or [[allotrope]]s.</noinclude>
{{Legend|{{element color|noble gas}}|Noble gas}}
{{Legend|{{element color|noble gas}}|Noble gas}}
{{Legend|white|text='''+1'''|Bold values are '''main oxidation states'''}}
{{Legend|white|text='''+1'''|Bold values are '''main oxidation states'''}}
Line 52: Line 52:
{{sandbox other|!}}
{{sandbox other|!}}
<!--- Period 1 --->
<!--- Period 1 --->
{{List of oxidation states of the elements/row|symbol=H|os= -1b, 0, +1b|ref=<!--
{{List of oxidation states of the elements/row|symbol=H|os= -1b, +1b|ref= |note= |datacheck=yes }}
--><ref>H(0) is found in [[dihydrogen complexes]].</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row|symbol=He|os= |ref= |note= |datacheck=yes }}
{{List of oxidation states of the elements/row|symbol=He|os= 0b|ref=<!--
--><ref>Disodium helide, (Na<sup>+</sup>)<sub>2</sub>He(e<sup>-</sup>)<sub>2</sub>, has been synthesized at high pressure, see {{cite journal |last1=Dong |first1=Xiao |last2=Oganov |first2=Artem R. |last3=Goncharov |first3=Alexander F. |last4=Stavrou |first4=Elissaios |last5=Lobanov |first5=Sergey |last6=Saleh |first6=Gabriele |last7=Qian |first7=Guang-Rui |last8=Zhu |first8=Qiang |last9=Gatti |first9=Carlo |last10=Deringer |first10=Volker L. |last11=Dronskowski |first11=Richard |last12=Zhou |first12=Xiang-Feng |last13=Prakapenka |first13=Vitali B. |last14=Konôpková |first14=Zuzana |last15=Popov |first15=Ivan A. |last16=Boldyrev |first16=Alexander I. |last17=Wang |first17=Hui-Tian |title=A stable compound of helium and sodium at high pressure |journal=[[Nature Chemistry]] |volume=9 |issue=5|pages=440–445 |date=6 February 2017 |doi=10.1038/nchem.2716 |pmid=28430195 |bibcode=2017NatCh...9..440D |arxiv=1309.3827 |s2cid=20459726}}</ref> |note= |datacheck=yes }}
<!--- Period 2 --->
<!--- Period 2 --->
{{List of oxidation states of the elements/row|symbol=Li|os= 0, +1b
{{List of oxidation states of the elements/row|symbol=Li|os= 0, +1b
|ref=<!--
|ref=<!--
--><ref name="G&E Lithides"/><!--
--><ref name="G&E Lithides"/><!--
--><ref>Li(0) atoms have been observed in various small lithium-chloride [[Atom cluster|clusters]]; see {{cite journal |first1=Milan |last1=Milovanović |first2=Suzana |last2=Veličković |first3=Filip |last3=Veljkovićb |first4=Stanka |last4=Jerosimić |title=Structure and stability of small lithium-chloride Li<sub>n</sub>Cl<sub>m</sub><sup>(0,1+)</sup> (n ≥ m, n = 1–6, m = 1–3) clusters |journal=Physical Chemistry Chemical Physics |issue=45 |date=October 30, 2017 |volume=19 |pages=30481–30497 |doi=10.1039/C7CP04181K |pmid=29114648 |url=https://pubs.rsc.org/en/content/articlelanding/2017/cp/c7cp04181k}}</ref> |note= |datacheck=yes }}
--><ref>Li(0) atoms have been observed in various small lithium-chloride [[Atom cluster|clusters]]; see {{cite journal |first1=Milan |last1=Milovanović |first2=Suzana |last2=Veličković |first3=Filip |last3=Veljkovićb |first4=Stanka |last4=Jerosimić |title=Structure and stability of small lithium-chloride Li<sub>n</sub>Cl<sub>m</sub><sup>(0,1+)</sup> (n ≥ m, n = 1–6, m = 1–3) clusters |journal=Physical Chemistry Chemical Physics |issue=45 |date=October 30, 2017 |doi=10.1039/C7CP04181K |url=https://pubs.rsc.org/en/content/articlelanding/2017/cp/c7cp04181k}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row|symbol=Be|os= 0, +1, +2b
{{List of oxidation states of the elements/row|symbol=Be|os= 0, +1, +2b
|ref=<!--
|ref=<!--
Line 69: Line 67:
--><ref>B(−5) has been observed in Al<sub>3</sub>BC, see {{cite news|url=https://d-nb.info/995006210/34|first1=Melanie|last1=Schroeder|title=Eigenschaften von borreichen Boriden und Scandium-Aluminium-Oxid-Carbiden|page=139|language=de}}</ref><!--
--><ref>B(−5) has been observed in Al<sub>3</sub>BC, see {{cite news|url=https://d-nb.info/995006210/34|first1=Melanie|last1=Schroeder|title=Eigenschaften von borreichen Boriden und Scandium-Aluminium-Oxid-Carbiden|page=139|language=de}}</ref><!--
--><ref>B(−1) has been observed in [[magnesium diboride]] (MgB<sub>2</sub>), see {{cite book|url=https://books.google.com/books?id=2RgbAgAAQBAJ&pg=PA315|title=Chemical Structure and Reactivity: An Integrated Approach|first1=James|last1=Keeler|first2=Peter|last2=Wothers|publisher=Oxford University Press|year=2014|isbn=9780199604135}}</ref><!--
--><ref>B(−1) has been observed in [[magnesium diboride]] (MgB<sub>2</sub>), see {{cite book|url=https://books.google.com/books?id=2RgbAgAAQBAJ&pg=PA315|title=Chemical Structure and Reactivity: An Integrated Approach|first1=James|last1=Keeler|first2=Peter|last2=Wothers|publisher=Oxford University Press|year=2014|isbn=9780199604135}}</ref><!--
--><ref>B(0) has been observed in [[diboryne]]s, see {{cite journal |doi=10.1126/science.1221138 |title=Ambient-Temperature Isolation of a Compound with a Boron-Boron Triple Bond |year=2012 |last1=Braunschweig |first1=H. |last2=Dewhurst |first2=R. D. |last3=Hammond |first3=K. |last4=Mies |first4=J. |last5=Radacki |first5=K. |last6=Vargas |first6=A. |journal=Science |volume=336 |issue=6087 |pages=1420–1422 |pmid=22700924 |bibcode=2012Sci...336.1420B |s2cid=206540959}}</ref> |note= |datacheck=yes }}
--><ref>B(0) has been observed in [[diboryne]]s, see {{cite journal|doi=10.1126/science.1221138|title=Ambient-Temperature Isolation of a Compound with a Boron-Boron Triple Bond|year=2012|last1=Braunschweig|first1=H.|last2=Dewhurst|first2=R. D. |last3=Hammond|first3=K.|last4=Mies|first4=J.|last5=Radacki|first5=K.|last6=Vargas|first6=A.|journal=Science|volume=336|issue=6087|pages=1420–2|pmid=22700924|bibcode=2012Sci...336.1420B|s2cid=206540959}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=C |os= −4b, −3b, −2b, −1b, 0b, +1b, +2b, +3b, +4b
{{List of oxidation states of the elements/row |symbol=C |os= −4b, −3b, −2b, −1b, 0b, +1b, +2b, +3b, +4b
|ref= |note= |datacheck=yes }}
|ref= |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=N |os= −3b, −2, −1, 0, +1, +2, +3b, +4, +5b
{{List of oxidation states of the elements/row |symbol=N |os= −3b, −2, −1, 0, +1, +2, +3b, +4, +5b
|ref=<!--
|ref=<!--
--><ref>[[Tetrazoles]] contain a pair of double-bonded nitrogen atoms with oxidation state 0 in the ring. A Synthesis of the parent 1H-tetrazole, CH<sub>2</sub>N<sub>4</sub> (two atoms N(0)) is given in {{cite journal |last1=Henry |first1=Ronald A. |last2=Finnegan |first2=William G. |title=An Improved Procedure for the Deamination of 5-Aminotetrazole |journal=J. Am. Chem. Soc. |date=1954 |volume=76 |issue=1 |pages=290–291 |doi=10.1021/ja01630a086}}</ref> |note= |datacheck=yes }}
--><ref>[[Tetrazoles]] contain a pair of double-bonded nitrogen atoms with oxidation state 0 in the ring. A Synthesis of the parent 1H-tetrazole, CH<sub>2</sub>N<sub>4</sub> (two atoms N(0)) is given in Ronald A. Henry and William G. Finnegan, "An Improved Procedure for the Deamination of 5-Aminotetrazole", _J. Am. Chem. Soc._ (1954), 76, 1, 290–291,
https://doi.org/10.1021/ja01630a086.</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=O |os= −2b, −1, 0, +1, +2|ref= |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=O |os= −2b, −1, 0, +1, +2|ref= |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=F |os= −1b,0|ref=<!--
{{List of oxidation states of the elements/row |symbol=F |os= −1b,0|ref=<!--
--><ref>[[Gold heptafluoride]] is calculated to be the pentafluoride with a molecular F<sub>2</sub> ligand. {{cite journal |first1=Daniel |last1=Himmel |first2=Sebastian |last2=Riedel |title=After 20 Years, Theoretical Evidence That 'AuF<sub>7</sub>' Is Actually AuF<sub>5</sub>•F<sub>2</sub> |journal=Inorganic Chemistry |volume=46 |issue=13 |pages=5338–5342 |date=2007 | doi=10.1021/ic700431s|pmid=17511450 }}</ref><!--
--><ref>[[Gold heptafluoride]] is calculated to be the pentafluoride with a molecular F<sub>2</sub> ligand. {{cite journal|first1=Daniel |last1=Himmel |first2=Sebastian |last2=Riedel |title=After 20 Years, Theoretical Evidence That 'AuF<sub>7</sub>' Is Actually AuF<sub>5</sub>•F<sub>2</sub> | journal=Inorganic Chemistry |volume=46 |issue=13 |pages=5338–5342 |date=2007 | doi=10.1021/ic700431s|pmid=17511450 }}</ref><!--
--><ref>A cluster of elusive SF<sub>6</sub><sup>+</sup> with [[Helium compounds#Known ions|helium atoms]] is known to have fluorine(0) atom as a ligand; see {{Cite journal |last1=Albertini |first1=Simon |last2=Bergmeister |first2=Stefan |last3=Laimer |first3=Felix |last4=Martini |first4=Paul |last5=Gruber |first5=Elisabeth |last6=Zappa |first6=Fabio |last7=Ončák |first7=Milan |last8=Scheier |first8=Paul |last9=Echt |first9=Olof |date=2021-04-22 |title=SF 6 + : Stabilizing Transient Ions in Helium Nanodroplets |journal=The Journal of Physical Chemistry Letters |volume=12 |issue=17 |pages=4112–4117 |doi=10.1021/acs.jpclett.1c01024 |pmc=8154854 |pmid=33886323 |issn=1948-7185 |doi-access=free}}</ref>|note= |datacheck=yes }}
--><ref>A cluster of elusive SF<sub>6</sub><sup>+</sup> with [[Helium compounds#Known ions|helium atoms]] is known to have fluorine(0)atom as a ligand; see {{Cite journal|last1=Albertini|first1=Simon|last2=Bergmeister|first2=Stefan|last3=Laimer|first3=Felix|last4=Martini|first4=Paul|last5=Gruber|first5=Elisabeth|last6=Zappa|first6=Fabio|last7=Ončák|first7=Milan|last8=Scheier|first8=Paul|last9=Echt|first9=Olof|date=2021-04-22|title=SF 6 + : Stabilizing Transient Ions in Helium Nanodroplets|url=https://pubs.acs.org/doi/10.1021/acs.jpclett.1c01024|journal=The Journal of Physical Chemistry Letters|volume=12|issue=17|language=en|pages=4112–4117|doi=10.1021/acs.jpclett.1c01024 |pmc=8154854|pmid=33886323|issn=1948-7185|doi-access=free}}</ref>|note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Ne |os=0b |ref=<!--
{{List of oxidation states of the elements/row |symbol=Ne |os=|ref= |note= |datacheck=yes }}
--><ref>Ne(0) has been observed in Cr(CO)<sub>5</sub>Ne. {{cite journal|last1=Perutz|first1=Robin N.|last2=Turner|first2=James J. |title=Photochemistry of the Group 6 hexacarbonyls in low-temperature matrices. III. Interaction of the pentacarbonyls with noble gases and other matrices|journal=Journal of the American Chemical Society|date=August 1975|volume=97|issue=17|pages=4791–4800 |doi=10.1021/ja00850a001}}</ref> |note= |datacheck=yes }}
<!--- Period 3 --->
<!--- Period 3 --->
{{List of oxidation states of the elements/row |symbol=Na |os= −1, 0, +1b
{{List of oxidation states of the elements/row |symbol=Na |os= −1, 0, +1b
Line 93: Line 91:
--><ref>Al(II) has been observed in [[aluminium(II) oxide]] (AlO); see {{cite journal |first1=D.C. |last1=Tyte |title=Red (B2Π–A2σ) Band System of Aluminium Monoxide |doi=10.1038/202383a0 |journal=Nature |volume=202 |issue=4930 |year=1964 |pages=383–384 |bibcode=1964Natur.202..383T |s2cid=4163250 |postscript=none}}, and in [[dialanes]] (R<sub>2</sub>Al—AlR<sub>2</sub>); see {{cite journal|last1=Uhl|first1=Werner |title=Organoelement Compounds Possessing Al—Al, Ga—Ga, In—In, and Tl—Tl Single Bonds| journal=Advances in Organometallic Chemistry |volume=51 |year=2004 |pages=53–108 |doi=10.1016/S0065-3055(03)51002-4 }}</ref><!--
--><ref>Al(II) has been observed in [[aluminium(II) oxide]] (AlO); see {{cite journal |first1=D.C. |last1=Tyte |title=Red (B2Π–A2σ) Band System of Aluminium Monoxide |doi=10.1038/202383a0 |journal=Nature |volume=202 |issue=4930 |year=1964 |pages=383–384 |bibcode=1964Natur.202..383T |s2cid=4163250 |postscript=none}}, and in [[dialanes]] (R<sub>2</sub>Al—AlR<sub>2</sub>); see {{cite journal|last1=Uhl|first1=Werner |title=Organoelement Compounds Possessing Al—Al, Ga—Ga, In—In, and Tl—Tl Single Bonds| journal=Advances in Organometallic Chemistry |volume=51 |year=2004 |pages=53–108 |doi=10.1016/S0065-3055(03)51002-4 }}</ref><!--
--><ref name="Zintl">Negative oxidation states of p-block metals (Al, Ga, In, Sn, Tl, Pb, Bi, Po) and metalloids (Si, Ge, As, Sb, Te, At) may occur in [[Zintl phase]]s, see: {{cite book|title=Moderne Anorganische Chemie|date=2007|editor1-first=Erwin|editor1-last=Riedel|page=259|language=de |postscript=none}}, and {{cite web|url=http://ruby.chemie.uni-freiburg.de/Vorlesung/intermetallische_6_2.html|title=Vorlesung Intermetallische Phasen §&nbsp;6.2 Binäre Zintl-Phasen|language=de}}</ref><!--
--><ref name="Zintl">Negative oxidation states of p-block metals (Al, Ga, In, Sn, Tl, Pb, Bi, Po) and metalloids (Si, Ge, As, Sb, Te, At) may occur in [[Zintl phase]]s, see: {{cite book|title=Moderne Anorganische Chemie|date=2007|editor1-first=Erwin|editor1-last=Riedel|page=259|language=de |postscript=none}}, and {{cite web|url=http://ruby.chemie.uni-freiburg.de/Vorlesung/intermetallische_6_2.html|title=Vorlesung Intermetallische Phasen §&nbsp;6.2 Binäre Zintl-Phasen|language=de}}</ref><!--
--><ref>Unstable carbonyl of Al(0) has been detected in reaction of [[Trimethylaluminum|Al<sub>2</sub>(CH<sub>3</sub>)<sub>6</sub>]] with carbon monoxide; see {{cite journal |first1=Ramiro |last1=Sanchez |first2=Caleb |last2=Arrington |first3=C. A. |last3=Arrington Jr. |title=Reaction of trimethylaluminum with carbon monoxide in low-temperature matrixes |journal=American Chemical Society |volume=111 |issue=25 |date=December 1, 1989 |page=9110-9111 |doi=10.1021/ja00207a023 |osti=6973516 |url=https://www.osti.gov/biblio/6973516-reaction-trimethylaluminum-carbon-monoxide-low-temperature-matrices}}</ref><!--
--><ref>Unstable carbonyl of Al(0) has been detected in reaction of [[Trimethylaluminum|Al<sub>2</sub>(CH<sub>3</sub>)<sub>6</sub>]] with carbon monoxide; see {{cite journal |first1=Ramiro |last1=Sanchez |first2=Caleb |last2=Arrington |first3=C. A. |last3=Arrington Jr. |title=Reaction of trimethylaluminum with carbon monoxide in low-temperature matrixes |journal=American Chemical Society |volume=111 |issue=25 |date=December 1, 1989 |page=9110-9111 |doi=10.1021/ja00207a023 |url=https://www.osti.gov/biblio/6973516-reaction-trimethylaluminum-carbon-monoxide-low-temperature-matrices}}</ref><!--
--><ref>Al(−2) has been observed in Sr<sub>14</sub>[Al<sub>4</sub>]<sub>2</sub>[Ge]<sub>3</sub>, see {{cite journal|last1=Wemdorff|first1=Marco|last2=Röhr|first2=Caroline|title=Sr<sub>14</sub>[Al<sub>4</sub>]<sub>2</sub>[Ge]<sub>3</sub>: Eine Zintl-Phase mit isolierten [Ge]<sup>4–</sup>- und [Al<sub>4</sub>]<sup>8–</sup>-Anionen / Sr<sub>14</sub>[Al<sub>4</sub>]<sub>2</sub>[Ge]<sub>3</sub>: A Zintl Phase with Isolated [Ge]<sup>4–</sup>- and [Al<sub>4</sub>]<sup>8–</sup> Anions|journal=Zeitschrift für Naturforschung B|language=de|volume=62|issue=10|year=2007|page=1227|doi=10.1515/znb-2007-1001|s2cid=94972243}}</ref> |note= |datacheck=yes }}
--><ref>Al(−2) has been observed in Sr<sub>14</sub>[Al<sub>4</sub>]<sub>2</sub>[Ge]<sub>3</sub>, see {{cite journal|last1=Wemdorff|first1=Marco|last2=Röhr|first2=Caroline|title=Sr<sub>14</sub>[Al<sub>4</sub>]<sub>2</sub>[Ge]<sub>3</sub>: Eine Zintl-Phase mit isolierten [Ge]<sup>4–</sup>- und [Al<sub>4</sub>]<sup>8–</sup>-Anionen / Sr<sub>14</sub>[Al<sub>4</sub>]<sub>2</sub>[Ge]<sub>3</sub>: A Zintl Phase with Isolated [Ge]<sup>4–</sup>- and [Al<sub>4</sub>]<sup>8–</sup> Anions|journal=Zeitschrift für Naturforschung B|language=de|volume=62|issue=10|year=2007|page=1227|doi=10.1515/znb-2007-1001|s2cid=94972243}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Si |os= −4, −3, −2, −1, 0, +1, +2, +3, +4b
{{List of oxidation states of the elements/row |symbol=Si |os= −4b, −3, −2, −1, 0, +1, +2, +3, +4b
|ref=<!--
|ref=<!--
--><ref name=ZeroValentTin>{{cite web |title=New Type of Zero-Valent Tin Compound |url= https://www.chemistryviews.org/details/news/9745121/New_Type_of_Zero-Valent_Tin_Compound.html |publisher=[[Chemistry Europe]] |date=27 August 2016}}</ref> |note= |datacheck=yes }}
--><ref name=ZeroValentTin>{{cite web |title=New Type of Zero-Valent Tin Compound |url= https://www.chemistryviews.org/details/news/9745121/New_Type_of_Zero-Valent_Tin_Compound.html |publisher=[[Chemistry Europe]] |date=27 August 2016}}</ref> |note= |datacheck=yes }}
Line 103: Line 101:
{{List of oxidation states of the elements/row |symbol=S |os= −2b, −1, 0, +1, +2b, +3, +4b, +5, +6b
{{List of oxidation states of the elements/row |symbol=S |os= −2b, −1, 0, +1, +2b, +3, +4b, +5, +6b
|ref= |note= |datacheck=yes }}
|ref= |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Cl |os= −1b, 0, +1b, +2, +3b, +4, +5b, +6, +7b
{{List of oxidation states of the elements/row |symbol=Cl |os= −1b, +1b, +2, +3b, +4, +5b, +6, +7b
|ref=<!--
|ref=<!--
--><ref>Chlorine(0) is present as dichlorine in {SnCl<sub>6</sub><sup>2-</sup>-Cl<sub>2</sub>}<sub>x</sub> and {PbCl<sub>6</sub><sup>2-</sup>-Cl<sub>2</sub>}<sub>x</sub> polymeric anion complexes see {{Cite journal|last1=Usoltsev|first1=Andrey N.|last2=Korobeynikov|first2=Nikita A.|last3=Kolesov|first3=Boris A.|last4=Novikov|first4=Alexander S.|last5=Samsonenko|first5=Denis G.|last6=Fedin|first6=Vladimir P.|last7=Sokolov|first7=Maxim N.|last8=Adonin|first8=Sergey A.|title=Rule, Not Exclusion: Formation of Dichlorine-Containing Supramolecular Complexes with Chlorometalates(IV)|journal=Inorg. Chem.|volume=60|issue=6|pages=4171–4177|date=February 24, 2021|doi=10.1021/acs.inorgchem.1c00436|pmid=33626273 |s2cid=232047538 }}</ref><!--
--><ref>The equilibrium Cl<sub>2</sub>O<sub>6</sub>⇌2ClO<sub>3</sub> is mentioned by Greenwood and Earnshaw, but it has been refuted, see {{cite journal|first=Maria|last=Lopez|author2=Juan E. Sicre|title=Physicochemical properties of chlorine oxides. 1. Composition, ultraviolet spectrum, and kinetics of the thermolysis of gaseous dichlorine hexoxide|journal=J. Phys. Chem. |year=1990|volume=94|issue=9|pages=3860–3863|doi=10.1021/j100372a094}}, and Cl<sub>2</sub>O<sub>6</sub> is actually chlorine(V,VII) oxide. However, ClO<sub>3</sub> has been observed, see {{cite journal|first1=Hinrich|last1=Grothe|first2=Helge|last2=Willner|title=Chlorine Trioxide: Spectroscopic Properties, Molecular Structure, and Photochemical Behavior|journal=Angew. Chem. Int. Ed.|year=1994|volume=33|issue=14|pages=1482–1484|doi=10.1002/anie.199414821}}</ref> |note= |datacheck=yes }}
--><ref>The equilibrium Cl<sub>2</sub>O<sub>6</sub>⇌2ClO<sub>3</sub> is mentioned by Greenwood and Earnshaw, but it has been refuted, see {{cite journal|first=Maria|last=Lopez|author2=Juan E. Sicre|title=Physicochemical properties of chlorine oxides. 1. Composition, ultraviolet spectrum, and kinetics of the thermolysis of gaseous dichlorine hexoxide|journal=J. Phys. Chem. |year=1990|volume=94|issue=9|pages=3860–3863|doi=10.1021/j100372a094}}, and Cl<sub>2</sub>O<sub>6</sub> is actually chlorine(V,VII) oxide. However, ClO<sub>3</sub> has been observed, see {{cite journal|first1=Hinrich|last1=Grothe|first2=Helge|last2=Willner|title=Chlorine Trioxide: Spectroscopic Properties, Molecular Structure, and Photochemical Behavior|journal=Angew. Chem. Int. Ed.|year=1994|volume=33|issue=14|pages=1482–1484|doi=10.1002/anie.199414821}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Ar |os=0b|ref=<!--
{{List of oxidation states of the elements/row |symbol=Ar |os=0b|ref=<!--
Line 124: Line 121:
{{List of oxidation states of the elements/row |symbol=Ti |os= −2, −1, 0, +1, +2b, +3b, +4b
{{List of oxidation states of the elements/row |symbol=Ti |os= −2, −1, 0, +1, +2b, +3b, +4b
|ref=<!--
|ref=<!--
--><ref>Ti(I) has been observed in [Ti(η<sup>6</sup>-1,3,5-C<sub>6</sub>H<sub>3</sub><sup>''i''</sup>Pr<sub>3</sub>)2][BAr<sub>4</sub>] (Ar = C<sub>6</sub>H<sub>5</sub>, ''p''-C<sub>6</sub>H<sub>4</sub>F, 3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>); see {{cite journal |title=Synthesis of [Ti(η<sup>6</sup>-1,3,5-C<sub>6</sub>H<sub>3</sub>''i''Pr<sub>3</sub>)<sub>2</sub>][BAr<sub>4</sub>] (Ar = C<sub>6</sub>H<sub>5</sub>, p-C<sub>6</sub>H<sub>4</sub>F, 3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>), the First Titanium(I) Derivatives |first1=Fausto |last1=Calderazzo |first2=Isabella |last2=Ferri |first3=Guido |last3=Pampaloni |first4=Ulli |last4=Englert |first5=Malcolm L. H. |last5=Green |journal=Organometallics |year=1997 |volume=16 |issue=14 |pages=3100–3101 |doi=10.1021/om970155o}}</ref><!--
--><ref>Ti(I) has been observed in [Ti(η<sup>6</sup>-1,3,5-C<sub>6</sub>H<sub>3</sub><sup>''i''</sup>Pr<sub>3</sub>)2][BAr<sub>4</sub>] (Ar = C<sub>6</sub>H<sub>5</sub>, ''p''-C<sub>6</sub>H<sub>4</sub>F, 3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>); see {{cite journal|title=Synthesis of [Ti(η<sup>6</sup>-1,3,5-C<sub>6</sub>H<sub>3</sub>''i''Pr<sub>3</sub>)<sub>2</sub>][BAr<sub>4</sub>] (Ar = C<sub>6</sub>H<sub>5</sub>, p-C<sub>6</sub>H<sub>4</sub>F, 3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>), the First Titanium(I) Derivatives |first1=Fausto|last1=Calderazzo |first2=Isabella|last2=Ferri |first3=Guido|last3=Pampaloni |first4=Ulli|last4=Englert |first5=Malcolm L. H.|last5=Green |journal=Organometallics|year=1997|volume=16|issue=14|pages=3100–3101|doi=10.1021/om970155o}}</ref><!--
--><ref name="Carbonyls">Ti(−2), V(−3), Cr(−4), Co(−3), Zr(−2), Nb(−3), Mo(−4), Ru(−2), Rh(−3), Hf(−2), Ta(−3), and W(−4) occur in anionic binary [[metal carbonyls]]; see {{cite thesis |type=Doctor of Science |author=Christian Bach |date=January 1999 |title=Carbonylkomplexe der Platinmetalle |trans-title=Carbonyl complexes of the platinum metals |url=http://d-nb.info/956310893/34 |page=4 |language=de}}; {{cite book |last=Werner |first=Helmut |year=2008 |title=Landmarks in Organo-Transition Metal Chemistry: A Personal View |publisher=Springer Science & Business Media |isbn=978-0-387-09848-7 |url=https://books.google.com/books?id=dP4LTfaPzAMC&pg=PA97 |pages=97–100<!-- Ti(−4) and Zr, Hf(−6) on p. 100 seem to be wrong: Ti, Zr, Hf are less electronegative than Sn, so cited compounds have Ti(0) and Zr, Hf(+2) -->}}; {{cite book |last1=Haiduc |first1=Ionel |last2=Zuckerman |first2=Jerry J. |year=2011 |title=Basic Organometallic Chemistry: Containing Comprehensive Bibliography |publisher=Walter de Gruyter |isbn=978-0-89925-006-9 |url=https://books.google.com/books?id=n5r-NFT46TkC |page=239}}</ref><!--
--><ref name="Carbonyls">Ti(−2), V(−3), Cr(−4), Co(−3), Zr(−2), Nb(−3), Mo(−4), Ru(−2), Rh(−3), Hf(−2), Ta(−3), and W(−4) occur in anionic binary [[metal carbonyls]]; see [http://d-nb.info/956310893/34], p. 4 (in German); [https://books.google.com/books?id=dP4LTfaPzAMC&pg=PA97&dq=%22%5BCr%28CO%294%5D4-%22&hl=en&sa=X&ei=ncroVMihLYO8ygO22YLYAQ&ved=0CBsQ6AEwAA#v=onepage&q&f=false], pp. 97–100<!-- Ti(−4) and Zr, Hf(−6) on p. 100 seem to be wrong: Ti, Zr, Hf are less electronegative than Sn, so cited compounds have Ti(0) and Zr, Hf(+2) -->; [https://books.google.com/books?id=n5r-NFT46TkC&printsec=frontcover&hl=ru#v=onepage&q&f=false], p. 239</ref><!--
--><ref>Ti(−1) has been reported in [Ti([[2,2'-Bipyridine|bipy]])<sub>3</sub>]<sup>−</sup>, but was later shown to be Ti(+3); see {{cite journal |doi=10.1021/ic302799s|pmid=23387926 |title=Electronic structures of homoleptic [tris(2,2'-bipyridine)M]n complexes of the early transition metals (M = Sc, Y, Ti, Zr, Hf, V, Nb, Ta; n = 1+, 0, 1-, 2-, 3-): an experimental and density functional theoretical study |year=2013 |last1=Bowman|first1=A. C. |last2=England |first2=J. |last3=Sprouls |first3=S. |last4=Weihemüller |first4=T. |last5=Wieghardt |first5=K. |journal=Inorganic Chemistry |volume=52 |issue=4 |pages=2242–2256}} However, Ti(−1) occurs in [Ti(η-C<sub>6</sub>H<sub>6</sub>]<sup>−</sup> and [Ti(η-C<sub>6</sub>H<sub>5</sub>CH<sub>3</sub>)]<sup>−</sup>, see {{cite journal |doi=10.1039/C39840000729|title=Synthesis of anionic sandwich compounds: [Ti(η-C<sub>6</sub>H<sub>5</sub>R)<sub>2</sub>]<sup>–</sup> and the crystal structure of [K(18-crown-6)(µ-H)Mo(η-C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>] |year=1984 |last1=Bandy |first1=J. A. |last2=Berry |first2=A. |last3=Green|first3=M. L. H. |last4=Perutz |first4=R. N. |last5=Prout |first5=K. |last6=Verpeautz |first6=J.-N. |journal=Inorganic Chemistry |volume=52|issue=4|pages=729–731}}</ref><!--
--><ref>Ti(−1) has been reported in [Ti([[2,2'-Bipyridine|bipy]])<sub>3</sub>]<sup>−</sup>, but was later shown to be Ti(+3); see {{cite journal|doi=10.1021/ic302799s|pmid=23387926|title=Electronic structures of homoleptic [tris(2,2'-bipyridine)M]n complexes of the early transition metals (M = Sc, Y, Ti, Zr, Hf, V, Nb, Ta; n = 1+, 0, 1-, 2-, 3-): an experimental and density functional theoretical study|year=2013|last1=Bowman|first1=A. C.|last2=England|first2=J.|last3=Sprouls|first3=S.|last4=Weihemüller|first4=T.|last5=Wieghardt|first5=K.|journal=Inorganic Chemistry|volume=52|issue=4|pages=2242–56}} However, Ti(−1) occurs in [Ti(η-C<sub>6</sub>H<sub>6</sub>]<sup>−</sup> and [Ti(η-C<sub>6</sub>H<sub>5</sub>CH<sub>3</sub>)]<sup>−</sup>, see {{cite journal|doi=10.1039/C39840000729|title=Synthesis of anionic sandwich compounds: [Ti(η-C<sub>6</sub>H<sub>5</sub>R)<sub>2</sub>]<sup>–</sup> and the crystal structure of [K(18-crown-6)(µ-H)Mo(η-C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>]|year=1984|last1=Bandy|first1=J. A.|last2=Berry|first2=A.|last3=Green|first3=M. L. H.|last4=Perutz|first4=R. N.|last5=Prout|first5=K.|last6=Verpeautz|first6=J.-N.|journal=Inorganic Chemistry|volume=52|issue=4|pages=729–731}}</ref><!--
--><ref>{{cite journal |last1= Jilek |first1= Robert E. |last2= Tripepi |first2= Giovanna |last3= Urnezius |first3= Eugenijus |last4= Brennessel |first4= William W. |last5= Young |first5= Victor G. Jr. |last6= Ellis |first6= John E. |title= Zerovalent titanium–sulfur complexes. Novel dithiocarbamato derivatives of Ti(CO)<sub>6</sub>: [Ti(CO)<sub>4</sub>(S<sub>2</sub>CNR<sub>2</sub>)]<sup>−</sup> |journal= Chem. Commun. |issue= 25 |year= 2007 |pages= 2639–2641 |doi= 10.1039/B700808B |pmid= 17579764}}</ref> |note= |datacheck=yes }}
--><ref>{{cite journal |last1= Jilek |first1= Robert E. |last2= Tripepi |first2= Giovanna |last3= Urnezius |first3= Eugenijus |last4= Brennessel |first4= William W. |last5= Young |first5= Victor G. Jr. |last6= Ellis |first6= John E. |title= Zerovalent titanium–sulfur complexes. Novel dithiocarbamato derivatives of Ti(CO)<sub>6</sub>: [Ti(CO)<sub>4</sub>(S<sub>2</sub>CNR<sub>2</sub>)]<sup>−</sup> |journal= Chem. Commun. |issue= 25 |year= 2007 |pages= 2639–2641 |doi= 10.1039/B700808B |pmid= 17579764}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=V |os= −3, −1, 0, +1, +2b, +3b, +4b, +5b
{{List of oxidation states of the elements/row |symbol=V |os= −3, −1, 0, +1, +2b, +3b, +4b, +5b
Line 134: Line 131:
|ref=<!--
|ref=<!--
--><ref name="Carbonyls"/> |note= |datacheck=yes }}
--><ref name="Carbonyls"/> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Mn |os= −3, −1, 0, +1, +2b, +3b, +4b, +5, +6b, +7b
{{List of oxidation states of the elements/row |symbol=Mn |os= −3, −2, −1, 0, +1, +2b, +3b, +4b, +5, +6b, +7b|ref= |note= |datacheck=yes }}
|ref=<!--
--><ref>Mn(–3) and Mn(–1) occurs in Mn(NO)<sub>3</sub>(CO) and HMn(CO)<sub>5</sub> respectively; see {{Greenwood&Earnshaw|page=1046}}</ref><!--
--><ref>Mn(–2) has been described erroneously by Greenwood as [MnPc]<sup>2–</sup>; for a correct explanation, see {{cite journal |author1=Gcineka Mbambisa |author2=Prudence Tau |author3=Edith Antunes |author4=Tebello Nyokong |title=Synthesis and electrochemical properties of purple manganese(III) and red titanium(IV) phthalocyanine complexes octa-substituted at non-peripheral positions with pentylthio groups |journal=Polyhedron |date=2007 |volume=26 |issue=18 |pages=5355-5364 |doi=10.1016/j.poly.2007.08.007 |language=en}}</ref>|note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Fe |os= −4, −2, −1, 0, +1, +2b, +3b, +4, +5, +6, +7
{{List of oxidation states of the elements/row |symbol=Fe |os= −4, −2, −1, 0, +1, +2b, +3b, +4, +5, +6, +7
|ref=<!--
|ref=<!--
--><ref>Fe(VII) has been observed in [FeO<sub>4</sub>]<sup>−</sup>; see {{cite journal|last1=Lu|first1=Jun-Bo|last2=Jian|first2=Jiwen|last3=Huang|first3=Wei|last4=Lin|first4=Hailu|last5=Zhou|first5=Mingfei|title=Experimental and theoretical identification of the Fe(VII) oxidation state in FeO<sub>4</sub><sup>−</sup>|journal=Physical Chemistry Chemical Physics|volume=18|issue=45|year=2016|pages=31125–31131|doi=10.1039/C6CP06753K|pmid=27812577|bibcode=2016PCCP...1831125L}}</ref><!--
--><ref>Fe(VII) has been observed in [FeO<sub>4</sub>]<sup>−</sup>; see {{cite journal|last1=Lu|first1=Jun-Bo|last2=Jian|first2=Jiwen|last3=Huang|first3=Wei|last4=Lin|first4=Hailu|last5=Zhou|first5=Mingfei|title=Experimental and theoretical identification of the Fe(VII) oxidation state in FeO<sub>4</sub><sup>−</sup>|journal=Physical Chemistry Chemical Physics|volume=18|issue=45|year=2016|pages=31125–31131|doi=10.1039/C6CP06753K|pmid=27812577|bibcode=2016PCCP...1831125L}}</ref><!--
--><ref>Fe(VIII) has been reported; see {{cite journal|doi=10.1021/bk-2008-0985.ch007|title=Higher Oxidation States of Iron in Solid State: Synthesis and Their Mössbauer Characterization – Ferrates – ACS Symposium Series (ACS Publications)|year=2008|author1=Yurii D. Perfiliev|author2=Virender K. Sharma|volume=48|issue=4|pages=157–158|journal=Platinum Metals Review}} However, its existence has been disputed.</ref><!--
--><ref>Fe(VIII) has been reported; see {{cite journal|doi=10.1595/147106704X10801|title=Higher Oxidation States of Iron in Solid State: Synthesis and Their Mössbauer Characterization – Ferrates – ACS Symposium Series (ACS Publications)|year=2008|author1=Yurii D. Perfiliev|author2=Virender K. Sharma|volume=48|issue=4|pages=157–158|journal=Platinum Metals Review}} However, its existence has been disputed.</ref><!--
--><ref name="MetalAnions">Fe(−4), Ru(−4), and Os(−4) have been observed in metal-rich compounds containing octahedral complexes [MIn<sub>6−''x''</sub>Sn<sub>''x''</sub>]; Pt(−3) (as a dimeric anion [Pt–Pt]<sup>6−</sup>), Cu(−2), Zn(−2), Ag(−2), Cd(−2), Au(−2), and Hg(−2) have been observed (as dimeric and monomeric anions; dimeric ions were initially reported to be [T–T]<sup>2−</sup> for Zn, Cd, Hg, but later shown to be [T–T]<sup>4−</sup> for all these elements) in La<sub>2</sub>Pt<sub>2</sub>In, La<sub>2</sub>Cu<sub>2</sub>In, Ca<sub>5</sub>Au<sub>3</sub>, Ca<sub>5</sub>Ag<sub>3</sub>, Ca<sub>5</sub>Hg<sub>3</sub>, Sr<sub>5</sub>Cd<sub>3</sub>, Ca<sub>5</sub>Zn<sub>3</sub>(structure (AE<sup>2+</sup>)<sub>5</sub>(T–T)<sup>4−</sup>T<sup>2−</sup>⋅4e<sup>−</sup>), Yb<sub>3</sub>Ag<sub>2</sub>, Ca<sub>5</sub>Au<sub>4</sub>, and Ca<sub>3</sub>Hg<sub>2</sub>; Au(–3) has been observed in ScAuSn and in other 18-electron half-Heusler compounds. See {{cite journal|title=Late transition metal anions acting as p-metal elements|year=2008|author1=Changhoon Lee|author2=Myung-Hwan Whangbo|volume=10|issue=4|pages=444–449|journal=Solid State Sciences|doi=10.1016/j.solidstatesciences.2007.12.001|bibcode=2008SSSci..10..444K}} and {{cite journal|doi=10.1002/zaac.200900421|title=Analysis of Electronic Structures and Chemical Bonding of Metal-rich Compounds. 2. Presence of Dimer (T–T)<sup>4–</sup> and Isolated T<sup>2–</sup> Anions in the Polar Intermetallic Cr<sub>5</sub>B<sub>3</sub>-Type Compounds AE<sub>5</sub>T<sub>3</sub> (AE = Ca, Sr; T = Au, Ag, Hg, Cd, Zn)|year=2010|author1=Changhoon Lee|author2=Myung-Hwan Whangbo|author3=Jürgen Köhler|volume=636|issue=1|pages=36–40|journal=Zeitschrift für Anorganische und Allgemeine Chemie}}</ref> |note= |datacheck=yes }}
--><ref name="MetalAnions">Fe(−4), Ru(−4), and Os(−4) have been observed in metal-rich compounds containing octahedral complexes [MIn<sub>6−''x''</sub>Sn<sub>''x''</sub>]; Pt(−3) (as a dimeric anion [Pt–Pt]<sup>6−</sup>), Cu(−2), Zn(−2), Ag(−2), Cd(−2), Au(−2), and Hg(−2) have been observed (as dimeric and monomeric anions; dimeric ions were initially reported to be [T–T]<sup>2−</sup> for Zn, Cd, Hg, but later shown to be [T–T]<sup>4−</sup> for all these elements) in La<sub>2</sub>Pt<sub>2</sub>In, La<sub>2</sub>Cu<sub>2</sub>In, Ca<sub>5</sub>Au<sub>3</sub>, Ca<sub>5</sub>Ag<sub>3</sub>, Ca<sub>5</sub>Hg<sub>3</sub>, Sr<sub>5</sub>Cd<sub>3</sub>, Ca<sub>5</sub>Zn<sub>3</sub>(structure (AE<sup>2+</sup>)<sub>5</sub>(T–T)<sup>4−</sup>T<sup>2−</sup>⋅4e<sup>−</sup>), Yb<sub>3</sub>Ag<sub>2</sub>, Ca<sub>5</sub>Au<sub>4</sub>, and Ca<sub>3</sub>Hg<sub>2</sub>; Au(–3) has been observed in ScAuSn and in other 18-electron half-Heusler compounds. See {{cite journal|title=Late transition metal anions acting as p-metal elements|year=2008|author1=Changhoon Lee|author2=Myung-Hwan Whangbo|volume=10|issue=4|pages=444–449|journal=Solid State Sciences|doi=10.1016/j.solidstatesciences.2007.12.001|bibcode=2008SSSci..10..444K}} and {{cite journal|doi=10.1002/zaac.200900421|title=Analysis of Electronic Structures and Chemical Bonding of Metal-rich Compounds. 2. Presence of Dimer (T–T)<sup>4–</sup> and Isolated T<sup>2–</sup> Anions in the Polar Intermetallic Cr<sub>5</sub>B<sub>3</sub>-Type Compounds AE<sub>5</sub>T<sub>3</sub> (AE = Ca, Sr; T = Au, Ag, Hg, Cd, Zn)|year=2010|author1=Changhoon Lee|author2=Myung-Hwan Whangbo|author3=Jürgen Köhler|volume=636|issue=1|pages=36–40|journal=Zeitschrift für Anorganische und Allgemeine Chemie}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Co |os= −3, −1, 0, +1, +2b, +3b, +4, +5
{{List of oxidation states of the elements/row |symbol=Co |os= −3, −1, 0, +1, +2b, +3b, +4, +5
Line 159: Line 153:
--><ref>Zn(0) has been observed; see {{cite journal|doi=10.1021/ja402351x|title=A Singlet Biradicaloid Zinc Compound and Its Nonradical Counterpart|year=2013|last1=Singh|first1=Amit Pratap|last2=Samuel|first2=Prinson P.|last3=Roesky|first3=Herbert W.|last4=Schwarzer|first4=Martin C.|last5=Frenking|first5=Gernot|last6=Sidhu|first6=Navdeep S.|last7=Dittrich|first7=Birger|journal=J. Am. Chem. Soc.|volume=135|issue=19|pages=7324–9|pmid=23600486}} and {{cite journal|doi=10.1021/ar5003494|title=Cyclic (Alkyl)(Amino)Carbenes (CAACs): Stable Carbenes on the Rise|year=2015|last1=Soleilhavoup|first1=Michèle|last2=Bertrand|first2=Guy|journal=Acc. Chem. Res.|volume=48|issue=2|pages=256–266|pmid=25515548}}</ref><!--
--><ref>Zn(0) has been observed; see {{cite journal|doi=10.1021/ja402351x|title=A Singlet Biradicaloid Zinc Compound and Its Nonradical Counterpart|year=2013|last1=Singh|first1=Amit Pratap|last2=Samuel|first2=Prinson P.|last3=Roesky|first3=Herbert W.|last4=Schwarzer|first4=Martin C.|last5=Frenking|first5=Gernot|last6=Sidhu|first6=Navdeep S.|last7=Dittrich|first7=Birger|journal=J. Am. Chem. Soc.|volume=135|issue=19|pages=7324–9|pmid=23600486}} and {{cite journal|doi=10.1021/ar5003494|title=Cyclic (Alkyl)(Amino)Carbenes (CAACs): Stable Carbenes on the Rise|year=2015|last1=Soleilhavoup|first1=Michèle|last2=Bertrand|first2=Guy|journal=Acc. Chem. Res.|volume=48|issue=2|pages=256–266|pmid=25515548}}</ref><!--
--><ref>Zn(I) has been observed in [[decamethyldizincocene]] (Zn<sub>2</sub>(η<sup>5</sup>–C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>); see {{cite journal |author1=Resa, I. |author2=Carmona, E. |author3=Gutierrez-Puebla, E. |author4=Monge, A. |title= Decamethyldizincocene, a Stable Compound of Zn(I) with a Zn-Zn Bond |journal= [[Science (journal)|Science]] |doi= 10.1126/science.1101356 |pmid= 15326350 |year= 2004 |volume= 305 |issue= 5687 |pages= 1136–8|bibcode=2004Sci...305.1136R|s2cid=38990338 }}</ref><!--
--><ref>Zn(I) has been observed in [[decamethyldizincocene]] (Zn<sub>2</sub>(η<sup>5</sup>–C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>); see {{cite journal |author1=Resa, I. |author2=Carmona, E. |author3=Gutierrez-Puebla, E. |author4=Monge, A. |title= Decamethyldizincocene, a Stable Compound of Zn(I) with a Zn-Zn Bond |journal= [[Science (journal)|Science]] |doi= 10.1126/science.1101356 |pmid= 15326350 |year= 2004 |volume= 305 |issue= 5687 |pages= 1136–8|bibcode=2004Sci...305.1136R|s2cid=38990338 }}</ref><!--
--><ref>Zn(III) has been predicted to be stable in compounds with highly stabilized borane-based trianions, but no Zn(III) candidates are known experimentally; see {{cite journal |author1=Hong Fang |author2=Huta Banjade |author3=Deepika |author4=Puru Jena |title=Realization of the Zn3+ oxidation state |journal=Nanoscale |date=2021 |volume=13 |issue=33 |pages=14041–14048 |doi=10.1039/D1NR02816B |pmid=34477685 |s2cid=237400349}}</ref> |note= |datacheck=yes }}
--><ref>Zn(III) has been predicted to be stable in compounds with highly stabilized borane-based trianions, but no Zn(III) candidates are known experimentally; see {{cite journal |author1=Hong Fang |author2=Huta Banjade |author3=Deepika |author4=Puru Jena |title=Realization of the Zn3+ oxidation state |journal=Nanoscale |date=2021 |volume=13 |issue=33 |pages=14041–14048 |doi=10.1039/D1NR02816B |pmid=34477685 |s2cid=237400349 |language=English}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Ga |os= −5, −4, −3, −2, −1, 0, +1, +2, +3b
{{List of oxidation states of the elements/row |symbol=Ga |os= −5, −4, −3, −2, −1, 0, +1, +2, +3b
|ref=<!--
|ref=<!--
Line 167: Line 161:
--><ref>Ga(0) has been observed in [[Gallium monoiodide]] among other gallium's oxidation states</ref>
--><ref>Ga(0) has been observed in [[Gallium monoiodide]] among other gallium's oxidation states</ref>
|note= |datacheck=yes }}
|note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Ge |os= −4, −3, −2, −1, 0, +1, +2b, +3, +4b
{{List of oxidation states of the elements/row |symbol=Ge |os= −4b, −3, −2, −1, 0, +1, +2b, +3, +4b
|ref=<!--
|ref=<!--
--><ref>Ge(−1), Ge(−2), and Ge(−3) have been observed in [[germanide]]s; see {{cite book|publisher=Walter de Gruyter|year=1995|edition=101| pages=953–959|isbn=978-3-11-012641-9|title=Lehrbuch der Anorganischen Chemie|first=Arnold F.|last=Holleman |author2=Wiberg, Egon |author3=Wiberg, Nils|language=de|chapter=Germanium}}</ref><!--
--><ref>Ge(−1), Ge(−2), and Ge(−3) have been observed in [[germanide]]s; see {{cite book|publisher=Walter de Gruyter|year=1995|edition=101| pages=953–959|isbn=978-3-11-012641-9|title=Lehrbuch der Anorganischen Chemie|first=Arnold F.|last=Holleman |author2=Wiberg, Egon |author3=Wiberg, Nils|language=de|chapter=Germanium}}</ref><!--
Line 184: Line 178:
--><ref>Se(III) has been observed in Se<sub>2</sub>NBr<sub>3</sub>; see {{cite journal|title=Se<sub>2</sub>NBr<sub>3</sub>, Se<sub>2</sub>NCl<sub>5</sub>, Se<sub>2</sub>NCl<sup>−</sup><sub>6</sub>: New Nitride Halides of Selenium(III) and Selenium(IV)| volume= 2|issue= 11|pages=1393–1396|year=1996|doi=10.1002/chem.19960021108|last1=Lau|first1=Carsten|last2=Neumüller|first2=Bernhard|last3=Vyboishchikov|first3=Sergei F.|last4=Frenking|first4=Gernot|last5=Dehnicke|first5=Kurt|last6=Hiller|first6=Wolfgang|last7=Herker|first7=Martin|journal=Chemistry: A European Journal}}</ref><!--
--><ref>Se(III) has been observed in Se<sub>2</sub>NBr<sub>3</sub>; see {{cite journal|title=Se<sub>2</sub>NBr<sub>3</sub>, Se<sub>2</sub>NCl<sub>5</sub>, Se<sub>2</sub>NCl<sup>−</sup><sub>6</sub>: New Nitride Halides of Selenium(III) and Selenium(IV)| volume= 2|issue= 11|pages=1393–1396|year=1996|doi=10.1002/chem.19960021108|last1=Lau|first1=Carsten|last2=Neumüller|first2=Bernhard|last3=Vyboishchikov|first3=Sergei F.|last4=Frenking|first4=Gernot|last5=Dehnicke|first5=Kurt|last6=Hiller|first6=Wolfgang|last7=Herker|first7=Martin|journal=Chemistry: A European Journal}}</ref><!--
--><ref>Se(V) has been observed in {{chem2|SeO3-}} and {{chem2|HSeO4(2-)}}; see {{cite journal|doi=10.1021/j100412a112|title=Selenium(V). A pulse radiolysis study|year=1986|last1=Kläning|first1=Ulrik K.|last2=Sehested|first2=K.|journal=Inorganic Chemistry|volume=90|issue=21|pages=5460–4|url=http://orbit.dtu.dk/en/publications/seleniumv-a-pulse-radiolysis-study(01d1260d-45a3-4a09-8316-e6f6b4993561).html}}</ref> |note= |datacheck=yes }}
--><ref>Se(V) has been observed in {{chem2|SeO3-}} and {{chem2|HSeO4(2-)}}; see {{cite journal|doi=10.1021/j100412a112|title=Selenium(V). A pulse radiolysis study|year=1986|last1=Kläning|first1=Ulrik K.|last2=Sehested|first2=K.|journal=Inorganic Chemistry|volume=90|issue=21|pages=5460–4|url=http://orbit.dtu.dk/en/publications/seleniumv-a-pulse-radiolysis-study(01d1260d-45a3-4a09-8316-e6f6b4993561).html}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Br |os= −1b, 0, +1b, +2, +3b, +4, +5b, +7|ref=<!--
{{List of oxidation states of the elements/row |symbol=Br |os= −1b, +1b, +2, +3b, +4, +5b, +7|ref=<!--
--><ref>Bromine(0) is present as an adduct in a copper-bromine complex, see {{cite journal |last1=Okrut |first1=Alexander |last2=Feldmann |first2=Claus |title={[P(o-tolyl)3]Br}2[Cu2Br6](Br2)—An Ionic Compound Containing Molecular Bromine |journal=Inorganic Chemistry |volume=47 |issue=8 |pages=3084–3087 |date=5 March 2008 |doi=10.1021/ic7021038 |pmid=18318489 }}</ref><!--
--><ref>Br(II) is known to occur in bromine monoxide [[Radical (chemistry)|radical]]; see [https://pubs.acs.org/doi/10.1021/j100382a032]</ref> |note= |datacheck=yes }}
--><ref>Br(II) is known to occur in bromine monoxide [[Radical (chemistry)|radical]]; see [https://pubs.acs.org/doi/10.1021/j100382a032]</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Kr |os= 0b, +1, +2|ref= |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Kr |os= 0b, +1, +2|ref= |note= |datacheck=yes }}
Line 194: Line 187:
{{List of oxidation states of the elements/row |symbol=Sr |os= +1, +2b
{{List of oxidation states of the elements/row |symbol=Sr |os= +1, +2b
|ref=<!--
|ref=<!--
--><ref>Sr(I) has been observed in [[strontium monofluoride]] (SrF); see {{cite journal |title=High-Resolution Infrared Emission Spectrum of Strontium Monofluoride |journal=Journal of Molecular Spectroscopy |volume=175 |issue=1 |pages=158–171 |year=1996 |first1=P. |last1=Colarusso |bibcode=1996JMoSp.175..158C |doi=10.1006/jmsp.1996.0019 |last2=Guo |first2=B. |last3=Zhang |first3=K.-Q. |last4=Bernath |first4=P.F. |url=http://bernath.uwaterloo.ca/media/149.pdf |archive-url=https://web.archive.org/web/20120308063843/http://bernath.uwaterloo.ca/media/149.pdf |archive-date=2012-03-08 |url-status=dead}}</ref><ref name="Ca0"/>
--><ref>Sr(I) has been observed in [[strontium monofluoride]] (SrF); see {{cite journal|url=http://bernath.uwaterloo.ca/media/149.pdf |title=High-Resolution Infrared Emission Spectrum of Strontium Monofluoride |journal=Journal of Molecular Spectroscopy |volume=175 |issue=1 |pages=158–171 |year=1996 |author=P. Colarusso |bibcode=1996JMoSp.175..158C |doi=10.1006/jmsp.1996.0019 |last2=Guo |first2=B. |last3=Zhang |first3=K.-Q. |last4=Bernath |first4=P.F. |display-authors=etal |url-status=dead |archive-url=https://web.archive.org/web/20120308063843/http://bernath.uwaterloo.ca/media/149.pdf |archive-date=2012-03-08 }}</ref><ref name="Ca0"/>
|note= |datacheck=yes }}
|note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Y |os= 0, +1, +2, +3b
{{List of oxidation states of the elements/row |symbol=Y |os= 0, +1, +2, +3b
|ref=<!--
|ref=<!--
--><ref name="Cloke1993"/><!--
--><ref name="Cloke1993"/><!--
--><ref>Y(I) has been observed in [[yttrium(I) bromide]] (YBr); see {{cite journal |author1=Kaley A. Walker |author2=Michael C. L. Gerry |title=The pure rotational spectrum of yttrium monobromide |journal=The Journal of Chemical Physics |date=1998 |volume=109 |issue=13 |pages=5439–5445 |doi=10.1063/1.477162 |language=en}}</ref><!--
--><ref>Y(I) has been observed in [[yttrium(I) bromide]] (YBr); see {{cite web|url=http://www.openmopac.net/data_normal/yttrium(i)%20bromide_jmol.html |title=Yttrium: yttrium(I) bromide compound data |access-date=2007-12-10 |publisher=OpenMOPAC.net |url-status=dead |archive-url=https://web.archive.org/web/20110723233118/http://www.openmopac.net/data_normal/yttrium%28i%29%20bromide_jmol.html |archive-date=2011-07-23 }}</ref><!--
--><ref>Y(II) has been observed in <!-- [[yttrium(II) hydride]] (YH<sub>2</sub>); see {{cite web|url=http://www.webelements.com/webelements/compounds/text/Y/H2Y1-13598351.html|title=Yttrium: yttrium(II) hydride compound data|access-date=2007-12-10|publisher=WebElements.com}} Isn't YH<sub>2</sub> electride-like?-->[(18-crown-6)K][(C<sub>5</sub>H<sub>4</sub>SiMe<sub>3</sub>)<sub>3</sub>Y]; see {{cite journal|last1=MacDonald|first1=M. R.|last2=Ziller|first2=J. W.|last3=Evans|first3=W. J.|year=2011|title=Synthesis of a Crystalline Molecular Complex of Y<sup>2+</sup>, [(18-crown-6)K][(C<sub>5</sub>H<sub>4</sub>SiMe<sub>3</sub>)<sub>3</sub>Y]|journal=J. Am. Chem. Soc.|volume=133|issue=40|pages=15914–17|doi=10.1021/ja207151y|pmid=21919538}}</ref> |note= |datacheck=yes }}
--><ref>Y(II) has been observed in <!-- [[yttrium(II) hydride]] (YH<sub>2</sub>); see {{cite web|url=http://www.webelements.com/webelements/compounds/text/Y/H2Y1-13598351.html|title=Yttrium: yttrium(II) hydride compound data|access-date=2007-12-10|publisher=WebElements.com}} Isn't YH<sub>2</sub> electride-like?-->[(18-crown-6)K][(C<sub>5</sub>H<sub>4</sub>SiMe<sub>3</sub>)<sub>3</sub>Y]; see {{cite journal|last1=MacDonald|first1=M. R.|last2=Ziller|first2=J. W.|last3=Evans|first3=W. J.|year=2011|title=Synthesis of a Crystalline Molecular Complex of Y<sup>2+</sup>, [(18-crown-6)K][(C<sub>5</sub>H<sub>4</sub>SiMe<sub>3</sub>)<sub>3</sub>Y]|journal=J. Am. Chem. Soc.|volume=133|issue=40|pages=15914–17|doi=10.1021/ja207151y|pmid=21919538}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Zr |os= −2, 0, +1, +2, +3, +4b
{{List of oxidation states of the elements/row |symbol=Zr |os= −2, 0, +1, +2, +3, +4b
Line 213: Line 206:
|ref=<!--
|ref=<!--
--><ref name="Carbonyls"/> |note= |datacheck=yes }}
--><ref name="Carbonyls"/> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Tc |os= −1, 0, +1, +2, +3, +4b, +5, +6, +7b
{{List of oxidation states of the elements/row |symbol=Tc |os= −3, −1, 0, +1, +2, +3, +4b, +5, +6, +7b|ref= |note= |datacheck=yes }}
|ref=<!--
--><ref>Tc(–1) occurs in HTc(CO)<sub>5</sub>; see {{cite journal |author1=John E. Ellis |title=Metal Carbonyl Anions:  from [Fe(CO)<sub>4</sub>]<sub>2</sub><sup>-</sup> to [Hf(CO)<sub>6</sub>]<sub>2</sub><sup>-</sup> and Beyond† |journal=Organometallics |date=2003 |volume=22 |issue=17 |pages=3322–3338 |doi=10.1021/om030105l |language=en}} Tc(–3) is erroneously reported by Greenwood.</ref>|note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Ru |os= −4, −2, 0, +1, +2, +3b, +4b, +5, +6, +7, +8
{{List of oxidation states of the elements/row |symbol=Ru |os= −4, −2, 0, +1, +2, +3b, +4b, +5, +6, +7, +8
|ref=<!--
|ref=<!--
Line 223: Line 214:
|ref=<!--
|ref=<!--
--><ref name="Carbonyls"/><!--
--><ref name="Carbonyls"/><!--
--><ref>{{cite journal |journal= Chemical Physics Letters |volume= 108 |issue= 6 |year= 1984 |pages= 627–630 |title= Electron paramagnetic resonance spectroscopic studies on the zero-valent rhodium complex [Rh(P(OPr<sup>''i''</sup>)<sub>3</sub>)<sub>4</sub>] at X-and Q-band frequencies |first1= G.N. |last1= George |first2= S.I. |last2= Klein |first3= J.F. |last3= Nixon |doi= 10.1016/0009-2614(84)85069-1|bibcode= 1984CPL...108..627G }}</ref><ref>Rh(VII) is known in the RhO<sub>3</sub><sup>+</sup> cation, see {{cite journal |title=The Highest Oxidation State of Rhodium: Rhodium(VII) in [RhO3]+ |journal=Angew. Chem. Int. Ed. |date=2022 |doi=10.1002/anie.202207688 |last1=Da Silva Santos |first1=Mayara |last2=Stüker |first2=Tony |last3=Flach |first3=Max |last4=Ablyasova |first4=Olesya S. |last5=Timm |first5=Martin |last6=von Issendorff |first6=Bernd |last7=Hirsch |first7=Konstantin |last8=Zamudio‐Bayer |first8=Vicente |last9=Riedel |first9=Sebastian |last10=Lau |first10=J. Tobias |volume=61 |issue=38 |pmid=35818987 |s2cid=250455408 }}</ref> |note= |datacheck=yes }}
--><ref>{{cite journal |journal= Chemical Physics Letters |volume= 108 |issue= 6 |year= 1984 |pages= 627–630 |title= Electron paramagnetic resonance spectroscopic studies on the zero-valent rhodium complex [Rh(P(OPr<sup>''i''</sup>)<sub>3</sub>)<sub>4</sub>] at X-and Q-band frequencies |first1= G.N. |last1= George |first2= S.I. |last2= Klein |first3= J.F. |last3= Nixon |doi= 10.1016/0009-2614(84)85069-1|bibcode= 1984CPL...108..627G }}</ref><ref>Rh(VII) is known in the RhO<sub>3</sub><sup>+</sup> cation, see {{cite journal |title=The Highest Oxidation State of Rhodium: Rhodium(VII) in [RhO3]+ |journal=Angew. Chem. Int. Ed. |date=2022 |doi=10.1002/anie.202207688}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Pd |os= 0b, +1, +2b, +3, +4b, +5
{{List of oxidation states of the elements/row |symbol=Pd |os= 0b, +1, +2b, +3, +4b, +5
|ref=<!--
|ref=<!--
--><ref>Pd(I) has been observed; see {{cite journal|last1= Crabtree|first1= R. H.|title= CHEMISTRY: A New Oxidation State for Pd?|journal= [[Science (journal)|Science]]|volume= 295|pages= 288–289|year= 2002|doi= 10.1126/science.1067921|pmid= 11786632|issue= 5553|s2cid= 94579227}}</ref><!--
--><ref>Pd(I) has been observed; see {{cite journal|last1= Crabtree|first1= R. H.|title= CHEMISTRY: A New Oxidation State for Pd?|journal= [[Science (journal)|Science]]|volume= 295|pages= 288–289|year= 2002|doi= 10.1126/science.1067921|pmid= 11786632|issue= 5553|s2cid= 94579227}}</ref><!--
--><ref>Pd(III) has been observed; see {{cite book|last1=Powers |first1=D. C. |last2=Ritter |first2=T. |title=Higher Oxidation State Organopalladium and Platinum Chemistry |chapter=Palladium(III) in Synthesis and Catalysis |volume=35 |pages=129–156 |date=2011 |doi=10.1007/978-3-642-17429-2_6 |pmid=21461129 |chapter-url=http://www.chem.harvard.edu/groups/ritter/pdf/2011-129t.pdf |series=Topics in Organometallic Chemistry |isbn=978-3-642-17428-5 |url-status=dead |archive-url=https://web.archive.org/web/20130612065217/http://www.chem.harvard.edu/groups/ritter/pdf/2011-129t.pdf |archive-date=June 12, 2013 |pmc=3066514|bibcode=2011hoso.book..129P }}</ref><ref>Palladium(V) has been identified in complexes with organosilicon compounds containing pentacoordinate palladium; see {{cite journal |first1=Shigeru |last1=Shimada |first2=Yong-Hua |last2=Li |first3=Yoong-Kee |last3=Choe |first4=Masato |last4=Tanaka |first5=Ming |last5=Bao |first6=Tadafumi |last6=Uchimaru |title=Multinuclear palladium compounds containing palladium centers ligated by five silicon atoms |doi=10.1073/pnas.0700450104 |journal=Proceedings of the National Academy of Sciences |volume=104 |year=2007 |issue=19 |pages=7758–7763 |pmid=17470819 |pmc=1876520 |doi-access=free }}</ref><ref>Palladium(VI) has been claimed to exist in {{cite journal |journal=Chem. Eng. News |date=2002 |volume=80 |issue=2 |page=8 |doi=10.1021/cen-v080n002.p008 |title=New Palladium Oxidation State? |last1=Dagani |first1=RON }}, but this has been refuted showing it is a Palladium(II).</ref>|note= |datacheck=yes }}
--><ref>Pd(III) has been observed; see {{cite book|last1=Powers |first1=D. C. |last2=Ritter |first2=T. |title=Palladium(III) in Synthesis and Catalysis |journal=Top. Organomet. Chem. |volume=35 |pages=129–156 |date=2011 |doi=10.1007/978-3-642-17429-2_6 |pmid=21461129 |url=http://www.chem.harvard.edu/groups/ritter/pdf/2011-129t.pdf |series=Topics in Organometallic Chemistry |isbn=978-3-642-17428-5 |url-status=dead |archive-url=https://web.archive.org/web/20130612065217/http://www.chem.harvard.edu/groups/ritter/pdf/2011-129t.pdf |archive-date=June 12, 2013 |pmc=3066514|bibcode=2011hoso.book..129P }}</ref><ref>Palladium(V) has been identified in complexes with organosilicon compounds containing pentacoordinate palladium; see {{cite journal |first1=Shigeru |last1=Shimada |first2=Yong-Hua |last2=Li |first3=Yoong-Kee |last3=Choe |first4=Masato |last4=Tanaka |first5=Ming |last5=Bao |first6=Tadafumi |last6=Uchimaru |title=Multinuclear palladium compounds containing palladium centers ligated by five silicon atoms |doi=10.1073/pnas.0700450104 |journal=Proceedings of the National Academy of Sciences |volume=104 |year=2007 |issue=19 |pages=7758–7763}}</ref><ref>Palladium(VI) has been claimed to exist in {{cite journal |title=NEW PALLADIUM OXIDATION STATE? |journal=Chem. Eng. News |date=2002 |volume=80 |issue=2 |page=8 |doi=10.1021/cen-v080n002.p008}}, but this has been refuted showing it is a Palladium(II).</ref>|note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Ag |os= −2, −1, 0, +1b, +2, +3
{{List of oxidation states of the elements/row |symbol=Ag |os= −2, −1, 0, +1b, +2, +3
|ref=<!--
|ref=<!--
--><ref name="MetalAnions"/><!--
--><ref name="MetalAnions"/><!--
--><ref>The Ag<sup>−</sup> ion has been observed in metal ammonia solutions: see {{cite journal|doi=10.1021/ic000333x|title=Metal Ammonia Solutions: Solutions Containing Argentide Ions|year=2001|last1=Tran|first1=N. E.|last2=Lagowski|first2=J. J.|journal=Inorganic Chemistry|volume=40|issue=5|pages=1067–68}}</ref><!--
--><ref>The Ag<sup>−</sup> ion has been observed in metal ammonia solutions: see {{cite journal|doi=10.1021/ic000333x|title=Metal Ammonia Solutions: Solutions Containing Argentide Ions|year=2001|last1=Tran|first1=N. E.|last2=Lagowski|first2=J. J.|journal=Inorganic Chemistry|volume=40|issue=5|pages=1067–68}}</ref><!--
--><ref>Ag(0) has been observed in carbonyl complexes in low-temperature matrices: see {{cite journal|doi=10.1021/ja00427a018|title=Synthesis using metal vapors. Silver carbonyls. Matrix infrared, ultraviolet-visible, and electron spin resonance spectra, structures, and bonding of silver tricarbonyl, silver dicarbonyl, silver monocarbonyl, and disilver hexacarbonyl|year=1976|last1=McIntosh|first1=D.|last2=Ozin|first2=G. A.|journal=J. Am. Chem. Soc.|volume=98|issue=11|pages=3167–75}} Also, Ag(0) has been observed in [Ag<sub>4</sub>py<sub>2</sub><sub></sub>]<sub>n</sub>, see {{cite journal|doi=10.1002/anie.200803465|title=A Stair-Shaped Molecular Silver(0) Chain|year=2008|author1=Hoi Ri Moon|author2=Cheol Ho Choi|author3=Myunghyun Paik Suh|journal=Angewandte Chemie International Edition|volume=47|issue=44|pages=8390–93|pmid=18830949 }} </ref> |note= |datacheck=yes }}
--><ref>Ag(0) has been observed in carbonyl complexes in low-temperature matrices: see {{cite journal|doi=10.1021/ja00427a018|title=Synthesis using metal vapors. Silver carbonyls. Matrix infrared, ultraviolet-visible, and electron spin resonance spectra, structures, and bonding of silver tricarbonyl, silver dicarbonyl, silver monocarbonyl, and disilver hexacarbonyl|year=1976|last1=McIntosh|first1=D.|last2=Ozin|first2=G. A.|journal=J. Am. Chem. Soc.|volume=98|issue=11|pages=3167-75}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Cd |os= −2, +1, +2b
{{List of oxidation states of the elements/row |symbol=Cd |os= −2, +1, +2b
|ref=<!--
|ref=<!--
Line 243: Line 234:
--><ref>In(−2) has been observed in Na<sub>2</sub>In, see [https://books.google.com/books?id=v-04Kn758yIC&pg=PA69&lpg=PA69&dq=zintl+anions+Na2In&source=bl&ots=aXLYIpkfYq&sig=Mqh8WdnvGOt2J2OPVLNqn79YVyk&hl=ru&sa=X&ei=XNDkVNeSJeXOyQOb8oBA&ved=0CBsQ6AEwADgK#v=onepage&q&f=false], p. 69.</ref><!--
--><ref>In(−2) has been observed in Na<sub>2</sub>In, see [https://books.google.com/books?id=v-04Kn758yIC&pg=PA69&lpg=PA69&dq=zintl+anions+Na2In&source=bl&ots=aXLYIpkfYq&sig=Mqh8WdnvGOt2J2OPVLNqn79YVyk&hl=ru&sa=X&ei=XNDkVNeSJeXOyQOb8oBA&ved=0CBsQ6AEwADgK#v=onepage&q&f=false], p. 69.</ref><!--
--><ref>Unstable In(0) carbonyls and clusters have been detected, see [https://www.researchgate.net/profile/Anthony-Downs-2/publication/6589844_Development_of_the_Chemistry_of_Indium_in_Formal_Oxidation_States_Lower_than_3/links/5a82db2a0f7e9bda869fb52c/Development-of-the-Chemistry-of-Indium-in-Formal-Oxidation-States-Lower-than-3.pdf?origin=publication_detail], p. 6.</ref> |note= |datacheck=yes }}
--><ref>Unstable In(0) carbonyls and clusters have been detected, see [https://www.researchgate.net/profile/Anthony-Downs-2/publication/6589844_Development_of_the_Chemistry_of_Indium_in_Formal_Oxidation_States_Lower_than_3/links/5a82db2a0f7e9bda869fb52c/Development-of-the-Chemistry-of-Indium-in-Formal-Oxidation-States-Lower-than-3.pdf?origin=publication_detail], p. 6.</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Sn |os= −4, −3, −2, −1, 0, +1, +2b, +3, +4b
{{List of oxidation states of the elements/row |symbol=Sn |os= −4b, −3, −2, −1, 0, +1, +2b, +3, +4b
|ref=<!--
|ref=<!--
--><ref name="Zintl"/><!--
--><ref name="Zintl"/><!--
--><ref>Sn(−3) has been observed in [Sn<sub>2</sub>]<sup>6−</sup>, e.g. in (Ba<sub>2</sub>)<sup>4+</sup>(Mg<sub>4</sub>)<sup>8+</sup>Sn<sup>4−</sup>(Sn<sub>2</sub>)<sup>6−</sup>Sn<sup>2−</sup> (with square (Sn<sup>2−</sup>)<sub>n</sub> sheets), see {{cite journal |last1=Papoian |first1=Garegin A. |last2=Hoffmann |first2=Roald |year=2000 |title=Hypervalent Bonding in One, Two, and Three Dimensions: Extending the Zintl–Klemm Concept to Nonclassical Electron-Rich Networks |journal=Angew. Chem. Int. Ed. |volume=2000 |issue= 39|pages=2408–2448 |url=https://www.researchgate.net/publication/12379848 |access-date=2015-02-23 |doi=10.1002/1521-3773(20000717)39:14<2408::aid-anie2408>3.0.co;2-u|pmid=10941096 }}</ref><!--
--><ref>Sn(−3) has been observed in [Sn<sub>2</sub>]<sup>6−</sup>, e.g. in (Ba<sub>2</sub>)<sup>4+</sup>(Mg<sub>4</sub>)<sup>8+</sup>Sn<sup>4−</sup>(Sn<sub>2</sub>)<sup>6−</sup>Sn<sup>2−</sup> (with square (Sn<sup>2−</sup>)<sub>n</sub> sheets), see {{cite journal |last1=Papoian |first1=Garegin A. |last2=Hoffmann |first2=Roald |year=2000 |title=Hypervalent Bonding in One, Two, and Three Dimensions: Extending the Zintl–Klemm Concept to Nonclassical Electron-Rich Networks |journal=Angew. Chem. Int. Ed. |volume=2000 |issue= 39|pages=2408–2448 |url=https://www.researchgate.net/publication/12379848 |access-date=2015-02-23 |doi=10.1002/1521-3773(20000717)39:14<2408::aid-anie2408>3.0.co;2-u}}</ref><!--
--><ref>Sn(I) and Sn(III) have been observed in [[organotin compounds]]</ref><!--
--><ref>Sn(I) and Sn(III) have been observed in [[organotin compounds]]</ref><!--
--><ref name=ZeroValentTin/> |note= |datacheck=yes }}
--><ref name=ZeroValentTin/> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Sb |os= −3, −2, −1, 0, +1, +2, +3b, +4, +5b
{{List of oxidation states of the elements/row |symbol=Sb |os= −3b, −2, −1, 0, +1, +2, +3b, +4, +5b
|ref=<!--
|ref=<!--
--><ref name="Zintl"/><!--
--><ref name="Zintl"/><!--
--><ref>Sb(−2) has been observed in [Sb<sub>2</sub>]<sup>4−</sup>, e.g. in RbBa<sub>4</sub>[Sb<sub>2</sub>][Sb][O], see {{cite journal |last1=Boss |first1=Michael |last2=Petri |first2=Denis |last3=Pickhard |first3=Frank |last4=Zönnchen |first4=Peter |last5=Röhr |first5=Caroline |year=2005 |title=Neue Barium-Antimonid-Oxide mit den Zintl-Ionen [Sb]<sup>3−</sup>, [Sb<sub>2</sub>]<sup>4−</sup> und <sup>1</sup><sub>∞</sub>[Sb<sub>n</sub>]<sup>n−</sup> / New Barium Antimonide Oxides containing Zintl Ions [Sb]<sup>3−</sup>, [Sb<sub>2</sub>]<sup>4−</sup> and <sup>1</sup><sub>∞</sub>[Sb<sub>n</sub>]<sup>n−</sup> |journal=Zeitschrift für Anorganische und Allgemeine Chemie |volume=631 |issue= 6–7|pages=1181–1190 |language=de |doi= 10.1002/zaac.200400546}}</ref><!--
--><ref>Sb(−2) has been observed in [Sb<sub>2</sub>]<sup>4−</sup>, e.g. in RbBa<sub>4</sub>[Sb<sub>2</sub>][Sb][O], see {{cite journal |last1=Boss |first1=Michael |last2=Petri |first2=Denis |last3=Pickhard |first3=Frank |last4=Zönnchen |first4=Peter |last5=Röhr |first5=Caroline |year=2005 |title=Neue Barium-Antimonid-Oxide mit den Zintl-Ionen [Sb]<sup>3−</sup>, [Sb<sub>2</sub>]<sup>4−</sup> und <sup>1</sup><sub>∞</sub>[Sb<sub>n</sub>]<sup>n−</sup> / New Barium Antimonide Oxides containing Zintl Ions [Sb]<sup>3−</sup>, [Sb<sub>2</sub>]<sup>4−</sup> and <sup>1</sup><sub>∞</sub>[Sb<sub>n</sub>]<sup>n−</sup> |journal=Zeitschrift für Anorganische und Allgemeine Chemie |volume=631 |issue= 6–7|pages=1181–1190 |language=de |doi= 10.1002/zaac.200400546}}</ref><!--
--><ref>Sb(0) has been observed, see {{cite news|url=https://pdfs.semanticscholar.org/8817/39f9dfc007d7f77dd7baa63fe12e6079f8ef.pdf|author=Anastas Sidiropoulos|title=Studies of N-heterocyclic Carbene (NHC) Complexes of the Main Group Elements|date=2019 |page=39|doi=10.4225/03/5B0F4BDF98F60|s2cid=132399530}}
--><ref>Sb(0) has been observed, see {{cite news|url=https://pdfs.semanticscholar.org/8817/39f9dfc007d7f77dd7baa63fe12e6079f8ef.pdf|author=Anastas Sidiropoulos|title=Studies of N-heterocyclic Carbene (NHC) Complexes of the Main Group Elements|page=39|doi=10.4225/03/5B0F4BDF98F60|s2cid=132399530}}
</ref><!--
</ref><!--
--><ref>Sb(I) and Sb(II) have been observed in [[organoantimony compounds]]; for Sb(I), see {{cite journal |last1=Šimon |first1=Petr |last2=de Proft |first2=Frank |last3=Jambor |first3=Roman |last4=Růžička |first4=Aleš |last5=Dostál |first5=Libor |year=2010 |title=Monomeric Organoantimony(I) and Organobismuth(I) Compounds Stabilized by an NCN Chelating Ligand: Syntheses and Structures |journal=Angewandte Chemie International Edition |volume=49 |issue=32 |pages=5468–5471 |doi= 10.1002/anie.201002209|pmid=20602393}}</ref><!--
--><ref>Sb(I) and Sb(II) have been observed in [[organoantimony compounds]]; for Sb(I), see {{cite journal |last1=Šimon |first1=Petr |last2=de Proft |first2=Frank |last3=Jambor |first3=Roman |last4=Růžička |first4=Aleš |last5=Dostál |first5=Libor |year=2010 |title=Monomeric Organoantimony(I) and Organobismuth(I) Compounds Stabilized by an NCN Chelating Ligand: Syntheses and Structures |journal=Angewandte Chemie International Edition |volume=49 |issue=32 |pages=5468–5471 |doi= 10.1002/anie.201002209|pmid=20602393}}</ref><!--
Line 264: Line 255:
--><ref>Te(III) has been observed in [Te(N(Si[[methyl|Me]]<sub>3</sub>)<sub>2</sub>)<sub>2</sub>]<sup>+</sup>, see {{cite journal |last1=Heinze |first1=Thorsten |last2=Roesky |first2=Herbert W. |last3=Pauer |first3=Frank |last4=Stalke |first4=Dietmar |last5=Sheldrick |first5=George M. |year=1991 |title=Synthesis and Structure of the First Tellurium(III) Radical Cation |journal=Angewandte Chemie International Edition |volume=30 |issue=12 |pages=1678 |doi= 10.1002/anie.199116771 |url=https://www.researchgate.net/publication/237225046 |access-date=2015-02-23}}</ref><!--
--><ref>Te(III) has been observed in [Te(N(Si[[methyl|Me]]<sub>3</sub>)<sub>2</sub>)<sub>2</sub>]<sup>+</sup>, see {{cite journal |last1=Heinze |first1=Thorsten |last2=Roesky |first2=Herbert W. |last3=Pauer |first3=Frank |last4=Stalke |first4=Dietmar |last5=Sheldrick |first5=George M. |year=1991 |title=Synthesis and Structure of the First Tellurium(III) Radical Cation |journal=Angewandte Chemie International Edition |volume=30 |issue=12 |pages=1678 |doi= 10.1002/anie.199116771 |url=https://www.researchgate.net/publication/237225046 |access-date=2015-02-23}}</ref><!--
--><ref>Te(V) is mentioned by Greenwood and Earnshaw, but they do not give any example of a Te(V) compound. What was long thought to be [[ditellurium decafluoride]] (Te<sub>2</sub>F<sub>10</sub>) is actually bis(pentafluorotelluryl) oxide, F<sub>5</sub>TeOTeF<sub>5</sub>: see {{cite journal |author= Watkins, P. M. |title= Ditellurium decafluoride - A Continuing Myth |journal= Journal of Chemical Education |year= 1974 |volume= 51 |issue= 9 |pages= 520–521 |doi= 10.1021/ed051p520|bibcode= 1974JChEd..51..520W }} However, Te(V) has been observed in {{chem2|HTeO-}}, {{chem2|TeO-}}, {{chem2|HTeO2-}}, and {{chem2|TeO3-}}; see {{cite journal|doi=10.1021/jp010577i|title=Tellurium(V). A Pulse Radiolysis Study|year=2001|last1=Kläning|first1=Ulrik K.|last2=Sehested|first2=K.|journal=The Journal of Physical Chemistry A|volume=105|issue=27|pages=6637–45|bibcode=2001JPCA..105.6637K|url=http://orbit.dtu.dk/en/publications/tellurium-5-a-pulse-radiolysis-study(58c2417f-34c0-436d-8a46-211f3d752423).html}}</ref> |note= |datacheck=yes }}
--><ref>Te(V) is mentioned by Greenwood and Earnshaw, but they do not give any example of a Te(V) compound. What was long thought to be [[ditellurium decafluoride]] (Te<sub>2</sub>F<sub>10</sub>) is actually bis(pentafluorotelluryl) oxide, F<sub>5</sub>TeOTeF<sub>5</sub>: see {{cite journal |author= Watkins, P. M. |title= Ditellurium decafluoride - A Continuing Myth |journal= Journal of Chemical Education |year= 1974 |volume= 51 |issue= 9 |pages= 520–521 |doi= 10.1021/ed051p520|bibcode= 1974JChEd..51..520W }} However, Te(V) has been observed in {{chem2|HTeO-}}, {{chem2|TeO-}}, {{chem2|HTeO2-}}, and {{chem2|TeO3-}}; see {{cite journal|doi=10.1021/jp010577i|title=Tellurium(V). A Pulse Radiolysis Study|year=2001|last1=Kläning|first1=Ulrik K.|last2=Sehested|first2=K.|journal=The Journal of Physical Chemistry A|volume=105|issue=27|pages=6637–45|bibcode=2001JPCA..105.6637K|url=http://orbit.dtu.dk/en/publications/tellurium-5-a-pulse-radiolysis-study(58c2417f-34c0-436d-8a46-211f3d752423).html}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=I |os= −1b, 0, +1b, +2, +3b, +4, +5b, +6, +7b
{{List of oxidation states of the elements/row |symbol=I |os= −1b, +1b, +2, +3b, +4, +5b, +6, +7b
|ref=<!--
|ref=<!--
--><ref>I(II) is known to exist in monoxide (IO); see {{cite journal|last1=Nikitin|first1=I V|title=Halogen monoxides|journal=Russian Chemical Reviews|date=31 August 2008|volume=77|issue=8|pages=739–749|doi=10.1070/RC2008v077n08ABEH003788|bibcode=2008RuCRv..77..739N}}</ref><!--
--><ref>Iodine(0) appears as I<sub>2</sub> in polymeric {Sb<sub>2</sub>I<sub>9</sub><sup>3-</sup>-I<sub>2</sub>}<sub>x</sub> and {Bi<sub>2</sub>I<sub>9</sub><sup>3-</sup>-I<sub>2</sub>}<sub>x</sub> polymeric complex anions: see {{Cite journal|last1=Korobeynikov|first1=Nikita A|last2=Usoltsev|first2=Andrey N|last3=Abramov|first3=Pavel A|last4=Sokolov|first4=Maxim N|last5=Adonin|first5=Sergey A|title=One-Dimensional Iodoantimonate(III) and Iodobismuthate(III) Supramolecular Hybrids with Diiodine: Structural Features, Stability and Optical Properties|journal=Molecules|volume=27|issue=23|page=8487|date=2 Dec 2022|doi=10.3390/molecules27238487|pmid=36500578|pmc=9735928 |doi-access=free }}</ref><!--
--><ref>I(II) is known to exist in monoxide (IO); see {{cite journal|last1=Nikitin|first1=I V|title=Halogen monoxides|journal=Russian Chemical Reviews|date=31 August 2008|volume=77|issue=8|pages=739–749|doi=10.1070/RC2008v077n08ABEH003788|bibcode=2008RuCRv..77..739N|s2cid=250898175 }}</ref><!--
--><ref>I(IV) has been observed in [[Iodine oxide|iodine dioxide]] (IO<sub>2</sub>); see {{cite book|publisher= Dover Publications, Inc.|year= 1988|edition= 3rd|page= 259|isbn= 978-0-486-65622-9|title= General Chemistry|first= Linus|last= Pauling|chapter= Oxygen Compounds of Nonmetallic Elements}}</ref><!--
--><ref>I(IV) has been observed in [[Iodine oxide|iodine dioxide]] (IO<sub>2</sub>); see {{cite book|publisher= Dover Publications, Inc.|year= 1988|edition= 3rd|page= 259|isbn= 978-0-486-65622-9|title= General Chemistry|first= Linus|last= Pauling|chapter= Oxygen Compounds of Nonmetallic Elements}}</ref><!--
--><ref>I(VI) has been observed in IO<sub>3</sub>, IO<sub>4</sub><sup>2−</sup>, H<sub>5</sub>IO<sub>6</sub><sup>−</sup>, H<sub>2</sub>IO<sub>5</sub><sup>2−</sup>, H<sub>4</sub>IO<sub>6</sub><sup>2−</sup>, and HIO<sub>5</sub><sup>3−</sup>; see {{cite journal|doi=10.1039/F19817701707|title=Laser flash photolysis and pulse radiolysis of iodate and periodate in aqueous solution. Properties of iodine(VI)|year=1981|last1=Kläning|first1=Ulrik K.|last2=Sehested|first2=Knud|last3=Wolff|first3=Thomas|journal=J. Chem. Soc., Faraday Trans. 1|volume=77|issue=7|pages=1707–18}}</ref> |note= |datacheck=yes }}
--><ref>I(VI) has been observed in IO<sub>3</sub>, IO<sub>4</sub><sup>2−</sup>, H<sub>5</sub>IO<sub>6</sub><sup>−</sup>, H<sub>2</sub>IO<sub>5</sub><sup>2−</sup>, H<sub>4</sub>IO<sub>6</sub><sup>2−</sup>, and HIO<sub>5</sub><sup>3−</sup>; see {{cite journal|doi=10.1039/F19817701707|title=Laser flash photolysis and pulse radiolysis of iodate and periodate in aqueous solution. Properties of iodine(VI)|year=1981|last1=Kläning|first1=Ulrik K.|last2=Sehested|first2=Knud|last3=Wolff|first3=Thomas|journal=J. Chem. Soc., Faraday Trans. 1|volume=77|issue=7|pages=1707–18}}</ref> |note= |datacheck=yes }}
Line 281: Line 271:
{{List of oxidation states of the elements/row |symbol=Ba |os= +1, +2b
{{List of oxidation states of the elements/row |symbol=Ba |os= +1, +2b
|ref=<!--
|ref=<!--
--><ref>Ba(I) has been observed in [[barium monofluoride]] (BaF); see {{cite journal |title=High-Resolution Fourier Transform Infrared Emission Spectrum of Barium Monofluoride |journal=Journal of Molecular Spectroscopy |volume=170 |page=59 |year=1995 |first1=P. |last1=Colarusso |bibcode=1996JMoSp.175..158C |doi=10.1006/jmsp.1996.0019 |last2=Guo |first2=B. |last3=Zhang |first3=K.-Q. |last4=Bernath |first4=P.F. |issue=1 |url=http://bernath.uwaterloo.ca/media/126.pdf |archive-url=https://web.archive.org/web/20050310180822/http://bernath.uwaterloo.ca/media/126.pdf |archive-date=2005-03-10 |url-status=dead}}</ref><ref name="Ca0"/>
--><ref>Ba(I) has been observed in [[barium monofluoride]] (BaF); see {{cite journal|url=http://bernath.uwaterloo.ca/media/126.pdf |title=High-Resolution Fourier Transform Infrared Emission Spectrum of Barium Monofluoride |journal=Journal of Molecular Spectroscopy |volume=170 |page=59 |year=1995 |author=P. Colarusso |bibcode=1996JMoSp.175..158C |doi=10.1006/jmsp.1996.0019 |last2=Guo |first2=B. |last3=Zhang |first3=K.-Q. |last4=Bernath |first4=P.F. |issue=1 |display-authors=etal |url-status=dead |archive-url=https://web.archive.org/web/20050310180822/http://bernath.uwaterloo.ca/media/126.pdf |archive-date=2005-03-10 }}</ref><ref name="Ca0"/>
|note= |datacheck=yes }}
|note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=La |os= 0, +1, +2, +3b
{{List of oxidation states of the elements/row |symbol=La |os= 0, +1, +2, +3b
|ref=<!--
|ref=<!--
--><ref name="Cloke1993">Yttrium and all lanthanides except Ce and Pm have been observed in the oxidation state 0 in bis(1,3,5-tri-t-butylbenzene) complexes, see {{cite journal |journal=Chem. Soc. Rev. |date=1993 |volume=22 |pages=17–24 |first=F. Geoffrey N. |last=Cloke |title=Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides |doi=10.1039/CS9932200017}} and {{cite journal|last1=Arnold|first1=Polly L.|last2=Petrukhina|first2=Marina A.|last3=Bochenkov|first3=Vladimir E.|last4=Shabatina|first4=Tatyana I.|last5=Zagorskii|first5=Vyacheslav V.|last6=Cloke|first9=F. Geoffrey N.|date=2003-12-15|title=Arene complexation of Sm, Eu, Tm and Yb atoms: a variable temperature spectroscopic investigation|journal=Journal of Organometallic Chemistry|volume=688|issue=1–2|pages=49–55|doi=10.1016/j.jorganchem.2003.08.028}}</ref><!--
--><ref name="Cloke1993">Yttrium and all lanthanides except Ce and Pm have been observed in the oxidation state 0 in bis(1,3,5-tri-t-butylbenzene) complexes, see {{cite journal |journal=Chem. Soc. Rev. |date=1993 |volume=22 |pages=17–24 |first=F. Geoffrey N. |last=Cloke |title=Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides |doi=10.1039/CS9932200017}} and {{cite journal|last1=Arnold|first1=Polly L.|last2=Petrukhina|first2=Marina A.|last3=Bochenkov|first3=Vladimir E.|last4=Shabatina|first4=Tatyana I.|last5=Zagorskii|first5=Vyacheslav V.|last6=Cloke|first9=F. Geoffrey N.|date=2003-12-15|title=Arene complexation of Sm, Eu, Tm and Yb atoms: a variable temperature spectroscopic investigation|journal=Journal of Organometallic Chemistry|volume=688|issue=1–2|pages=49–55|doi=10.1016/j.jorganchem.2003.08.028}}</ref><!--
--><ref name=LnI>La(I), Pr(I), Tb(I), Tm(I), and Yb(I) have been observed in MB<sub>8</sub><sup>−</sup> clusters; see {{cite journal|title=Monovalent lanthanide(I) in borozene complexes |journal=Nature Communications |volume=12 |page=6467 |year=2021 |last1=Li |first1=Wan-Lu |doi=10.1038/s41467-021-26785-9 |last2=Chen |first2=Teng-Teng |last3=Chen |first3=Wei-Jia |last4=Li |first4=Jun |last5=Wang |first5=Lai-Sheng|issue=1 |pmid=34753931 |pmc=8578558 }}</ref>|note= |datacheck=yes}}
--><ref name=LnI>La(I), Pr(I), Tb(I), Tm(I), and Yb(I) have been observed in MB<sub>8</sub><sup>−</sup> clusters; see {{cite journal|url=https://www.nature.com/articles/s41467-021-26785-9 |title=Monovalent lanthanide(I) in borozene complexes |journal=Nature Communications |volume=12 |page=6467 |year=2021 |last1=Li |first1=Wan-Lu |doi=10.1038/s41467-021-26785-9 |last2=Chen |first2=Teng-Teng |last3=Chen |first3=Wei-Jia |last4=Li |first4=Jun |last5=Wang |first5=Lai-Sheng}}</ref>|note= |datacheck=yes}}
{{List of oxidation states of the elements/row |symbol=Ce |os= +2, +3b, +4b|ref= |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Ce |os= +2, +3b, +4b|ref= |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Pr |os= 0, +1, +2, +3b, +4, +5
{{List of oxidation states of the elements/row |symbol=Pr |os= 0, +1, +2, +3b, +4, +5
Line 293: Line 283:
--><ref>Pr(I) has been observed in [PrB<sub>4</sub>]<sup>−</sup>; see {{cite journal|last1=Chen|first1=Xin|last2=Chen|first2=Teng-Teng|last3=Li|first3=Wang-Lu|last4=Lu|first4=Jun-Bo|last5=Zhao|first5=Li-Juan|last6=Jian|first6=Tian|last7=Hu|first7=Han-Shi|last8=Wang|first8=Lai-Sheng|last9=Li|first9=Jun|date=2018-12-13|title=Lanthanides with Unusually Low Oxidation States in the PrB<sub>3</sub><sup>–</sup> and PrB<sub>4</sub><sup>–</sup> Boride Clusters|journal=Inorganic Chemistry|volume=58|issue=1|pages=411–418|doi=10.1021/acs.inorgchem.8b02572|pmid=30543295|s2cid=56148031}}</ref><!--
--><ref>Pr(I) has been observed in [PrB<sub>4</sub>]<sup>−</sup>; see {{cite journal|last1=Chen|first1=Xin|last2=Chen|first2=Teng-Teng|last3=Li|first3=Wang-Lu|last4=Lu|first4=Jun-Bo|last5=Zhao|first5=Li-Juan|last6=Jian|first6=Tian|last7=Hu|first7=Han-Shi|last8=Wang|first8=Lai-Sheng|last9=Li|first9=Jun|date=2018-12-13|title=Lanthanides with Unusually Low Oxidation States in the PrB<sub>3</sub><sup>–</sup> and PrB<sub>4</sub><sup>–</sup> Boride Clusters|journal=Inorganic Chemistry|volume=58|issue=1|pages=411–418|doi=10.1021/acs.inorgchem.8b02572|pmid=30543295|s2cid=56148031}}</ref><!--
--><ref>Pr(V) has been observed in [PrO<sub>2</sub>]<sup>+</sup>; see {{cite journal|last1=Zhang|first1=Qingnan|last2=Hu|first2=Shu-Xian|last3=Qu|first3=Hui|last4=Su|first4=Jing|last5=Wang|first5=Guanjun|last6=Lu|first6=Jun-Bo|last7=Chen|first7=Mohua|last8=Zhou|first8=Mingfei|last9=Li|first9=Jun|date=2016-06-06|title=Pentavalent Lanthanide Compounds: Formation and Characterization of Praseodymium(V) Oxides|journal=Angewandte Chemie International Edition|volume=55|issue=24|pages=6896–6900|doi=10.1002/anie.201602196|issn=1521-3773|pmid=27100273}}</ref><!--
--><ref>Pr(V) has been observed in [PrO<sub>2</sub>]<sup>+</sup>; see {{cite journal|last1=Zhang|first1=Qingnan|last2=Hu|first2=Shu-Xian|last3=Qu|first3=Hui|last4=Su|first4=Jing|last5=Wang|first5=Guanjun|last6=Lu|first6=Jun-Bo|last7=Chen|first7=Mohua|last8=Zhou|first8=Mingfei|last9=Li|first9=Jun|date=2016-06-06|title=Pentavalent Lanthanide Compounds: Formation and Characterization of Praseodymium(V) Oxides|journal=Angewandte Chemie International Edition|volume=55|issue=24|pages=6896–6900|doi=10.1002/anie.201602196|issn=1521-3773|pmid=27100273}}</ref><!--
--><ref>{{cite journal|last1=Hu|first1=Shu-Xian |last2=Jian |first2=Jiwen |last3=Su |first3=Jing |last4=Wu |first4=Xuan |last5=Li |first5=Jun |last6=Zhou |first6=Mingfei |date=2017 |title=Pentavalent lanthanide nitride-oxides: NPrO and NPrO− complexes with N≡Pr triple bonds |journal=Chemical Science |volume=8 |issue=5 |pages=4035–4043 |doi=10.1039/C7SC00710H |pmid=28580119 |pmc=5434915 |issn=2041-6520}}</ref> |note= |datacheck=yes }}
--><ref>{{cite journal|last1=Hu|first1=Shu-Xian|last2=Jian|first2=Jiwen|last3=Su|first3=Jing|last4=Wu|first4=Xuan|last5=Li|first5=Jun|last6=Zhou|first6=Mingfei|date=2017|title=Pentavalent lanthanide nitride-oxides: NPrO and NPrO− complexes with N≡Pr triple bonds|journal=Chemical Science|language=en|volume=8|issue=5|pages=4035–4043|doi=10.1039/C7SC00710H|pmid=28580119|pmc=5434915|issn=2041-6520}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Nd |os= 0, +2, +3b, +4
{{List of oxidation states of the elements/row |symbol=Nd |os= 0, +2, +3b, +4
|ref=<!--
|ref=<!--
--><ref name="Cloke1993"/><!--
--><ref name="Cloke1993"/><!--
--><ref>Nd(IV) has been observed in unstable solid state compounds; see {{Holleman&Wiberg|page=1704}}</ref> |note= |datacheck=yes }}
--><ref>Nd(IV) has been observed in unstable solid state compounds; see {{Holleman&Wiberg|p=1704}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Pm |os= +2, +3b
{{List of oxidation states of the elements/row |symbol=Pm |os= +2, +3b
|ref=<!--
|ref=<!--
--><ref name="Lanthanides">All the [[lanthanide]]s (La–Lu) in the +2 oxidation state have been observed (except La, Gd, Lu) in dilute, solid solutions of dihalides of these elements in alkaline earth dihalides (see {{Holleman&Wiberg|page=1704}}) and (except Pm) in organometallic molecular complexes, see [http://cen.acs.org/articles/91/i24/Lanthanides-Topple-Assumptions.html Lanthanides Topple Assumptions] and {{cite journal|doi=10.1002/anie.201311325|title=All the Lanthanides Do It and Even Uranium Does Oxidation State +2|year=2014|last1=Meyer|first1=G.|journal=Angewandte Chemie International Edition|volume=53|issue=14|pages=3550–51|pmid=24616202}}. Additionally, all the [[lanthanide]]s (La–Lu) form dihydrides (LnH<sub>2</sub>), dicarbides (LnC<sub>2</sub>), monosulfides (LnS), monoselenides (LnSe), and monotellurides (LnTe), but for most elements these compounds have Ln<sup>3+</sup> ions with electrons delocalized into conduction bands, e. g. Ln<sup>3+</sup>(H<sup>−</sup>)<sub>2</sub>(e<sup>−</sup>).</ref> |note= |datacheck=yes }}
--><ref name="Lanthanides">All the [[lanthanide]]s (La–Lu) in the +2 oxidation state have been observed (except La, Gd, Lu) in dilute, solid solutions of dihalides of these elements in alkaline earth dihalides (see {{Holleman&Wiberg|p=1704}}) and (except Pm) in organometallic molecular complexes, see [http://cen.acs.org/articles/91/i24/Lanthanides-Topple-Assumptions.html Lanthanides Topple Assumptions] and {{cite journal|doi=10.1002/anie.201311325|title=All the Lanthanides Do It and Even Uranium Does Oxidation State +2|year=2014|last1=Meyer|first1=G.|journal=Angewandte Chemie International Edition|volume=53|issue=14|pages=3550–51|pmid=24616202}}. Additionally, all the [[lanthanide]]s (La–Lu) form dihydrides (LnH<sub>2</sub>), dicarbides (LnC<sub>2</sub>), monosulfides (LnS), monoselenides (LnSe), and monotellurides (LnTe), but for most elements these compounds have Ln<sup>3+</sup> ions with electrons delocalized into conduction bands, e. g. Ln<sup>3+</sup>(H<sup>−</sup>)<sub>2</sub>(e<sup>−</sup>).</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Sm |os= 0, +1, +2, +3b
{{List of oxidation states of the elements/row |symbol=Sm |os= 0, +1, +2, +3b
|ref=<!--
|ref=<!--
--><ref>SmB6- cluster anion has been reported and contains Sm in rare oxidation state of +1; see {{cite journal| title=SmB<sub>6</sub><sup>–</sup> Cluster Anion: Covalency Involving f Orbitals
--><ref>SmB6- cluster anion has been reported and contains Sm in rare oxidation state of +1; see {{cite journal| title=SmB<sub>6</sub><sup>–</sup> Cluster Anion: Covalency Involving f Orbitals
|first1=J. Robinson |last1=Paul |first2=Zhang |last2=Xinxing |first3=McQueen |last3=Tyrel |first4=H. Bowen |last4=Kit |first5=N. Alexandrova |last5=Anastassia |journal=J. Phys. Chem. A 2017, 121, 8, 1849–1854 |year = 2017|volume = 121|issue = 8|pages = 1849–1854|doi=10.1021/acs.jpca.7b00247 |pmid=28182423 |url=https://pubs.acs.org/doi/abs/10.1021/acs.jpca.7b00247#}}.</ref> |note= |datacheck=yes }}
|first1=J. Robinson |last1=Paul |first2=Zhang |last2=Xinxing |first3=McQueen |last3=Tyrel |first4=H. Bowen |last4=Kit |first5=N. Alexandrova |last5=Anastassia |journal=J. Phys. Chem. A 2017, 121, 8, 1849–1854 |year = 2017|volume = 121|issue = 8|pages = 1849–1854|url=https://pubs.acs.org/doi/abs/10.1021/acs.jpca.7b00247#}}.</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Eu |os= 0, +2b, +3b|ref=<!--
{{List of oxidation states of the elements/row |symbol=Eu |os= 0, +2b, +3b|ref=<!--
--><ref name="Cloke1993"/> |note= |datacheck=yes }}
--><ref name="Cloke1993"/> |note= |datacheck=yes }}
Line 316: Line 306:
{{List of oxidation states of the elements/row |symbol=Dy |os= 0, +2, +3b, +4
{{List of oxidation states of the elements/row |symbol=Dy |os= 0, +2, +3b, +4
|ref=<!----><ref name="Cloke1993"/><!--
|ref=<!----><ref name="Cloke1993"/><!--
--><ref>Dy(IV) has been observed in unstable solid state compounds; see {{Holleman&Wiberg|page=1704}}</ref> |note= |datacheck=yes }}
--><ref>Dy(IV) has been observed in unstable solid state compounds; see {{Holleman&Wiberg|p=1704}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Ho |os= 0, +2, +3b
{{List of oxidation states of the elements/row |symbol=Ho |os= 0, +2, +3b
|ref=<!--
|ref=<!--
Line 347: Line 337:
|ref=<!--
|ref=<!--
--><ref name="Carbonyls"/> |note= |datacheck=yes }}
--><ref name="Carbonyls"/> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Re |os= −3, −1, 0, +1, +2, +3b, +4b, +5, +6, +7b
{{List of oxidation states of the elements/row |symbol=Re |os= −3, −1, 0, +1, +2, +3, +4b, +5, +6, +7b
|ref= |note= |datacheck=yes }}
|ref=<!--
{{List of oxidation states of the elements/row |symbol=Os |os= −4, −2, −1, 0, +1, +2, +3, +4b, +5, +6, +7, +8
--><ref>Re(–3) and Re(–1) occurs in Na<sub>3</sub>[Re(CO)<sub>4</sub>] and HRe(CO)<sub>5</sub> respectively; see {{Greenwood&Earnshaw|page=1046}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Os |os= −4, −2, −1, 0, +1, +2b, +3b, +4b, +5, +6, +7, +8b
|ref=<!--
|ref=<!--
--><ref name="MetalAnions"/><!--
--><ref name="MetalAnions"/><!--
--><ref>Os(−1) has been observed in {{chem2|Na[Os(CO)13]}}; see {{cite journal|doi=10.1016/0022-328X(93)83250-Y|title=Preparation of [Os<sub>3</sub>(CO)<sub>11</sub>]<sup>2−</sup> and its reactions with Os<sub>3</sub>(CO)<sub>12</sub>; structures of [Et<sub>4</sub>N] [HOs<sub>3</sub>(CO)<sub>11</sub>] and H<sub>2</sub>OsS<sub>4</sub>(CO)|year=1993|last1= Krause|first1=J.|journal=Journal of Organometallic Chemistry|volume=454|pages=263–271|last2=Siriwardane|first2=Upali|last3=Salupo|first3=Terese A.|last4=Wermer|first4=Joseph R.|last5=Knoeppel|first5=David W.|last6=Shore|first6=Sheldon G.|issue=1–2}} and {{cite journal|doi=10.1021/ic00141a019|title=Mononuclear hydrido alkyl carbonyl complexes of osmium and their polynuclear derivatives|year=1982|first=Willie J.|last=Carter|author2=Kelland, John W. |author3=Okrasinski, Stanley J. |author4=Warner, Keith E. |author5= Norton, Jack R. | journal=Inorganic Chemistry|volume=21|issue=11|pages=3955–3960}}</ref> |note= |datacheck=yes }}
--><ref>Os(−1) has been observed in {{chem2|Na[Os(CO)13]}}; see {{cite journal|doi=10.1016/0022-328X(93)83250-Y|title=Preparation of [Os<sub>3</sub>(CO)<sub>11</sub>]<sup>2−</sup> and its reactions with Os<sub>3</sub>(CO)<sub>12</sub>; structures of [Et<sub>4</sub>N] [HOs<sub>3</sub>(CO)<sub>11</sub>] and H<sub>2</sub>OsS<sub>4</sub>(CO)|year=1993|last1= Krause|first1=J.|journal=Journal of Organometallic Chemistry|volume=454|pages=263–271|last2=Siriwardane|first2=Upali|last3=Salupo|first3=Terese A.|last4=Wermer|first4=Joseph R.|last5=Knoeppel|first5=David W.|last6=Shore|first6=Sheldon G.|issue=1–2}} and {{cite journal|doi=10.1021/ic00141a019|title=Mononuclear hydrido alkyl carbonyl complexes of osmium and their polynuclear derivatives|year=1982|first=Willie J.|last=Carter|author2=Kelland, John W. |author3=Okrasinski, Stanley J. |author4=Warner, Keith E. |author5= Norton, Jack R. | journal=Inorganic Chemistry|volume=21|issue=11|pages=3955–3960}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Ir |os= −3, -2, −1, 0, +1b, +2, +3b, +4b, +5, +6, +7, +8, +9
{{List of oxidation states of the elements/row |symbol=Ir |os= −3, −1, 0, +1, +2, +3b, +4b, +5, +6, +7, +8, +9
|ref=<!--
|ref=<!--
--><ref>Ir(−3) has been observed in Ir(CO)<sub>3</sub><sup>3−</sup>; see {{Greenwood&Earnshaw|page=1117}}</ref><!----><ref>Ir(–2) has been observed in IrVO<sub>2</sub><sup>–</sup>; see {{cite journal |author1=Le-Shi Chen |author2=Yun-Zhu Liu |author3=Jiao-Jiao Chen |author4=Si-Dun Wang |author5=Tong-Mei Ma |author6=Xiao-Na Li |author7=Sheng-Gui He |title=Water–Gas Shift Catalyzed by Iridium–Vanadium Oxide Clusters IrVO<sub>2</sub><sup>–</sup> with Iridium in a Rare Oxidation State of −II |journal=The Journal of Physical Chemistry A |date=2022 |volume=126 |issue=32 |pages=5294–5301 |doi=10.1021/acs.jpca.2c03974 |language=en}}</ref><!----><ref>Ir(VII) has been observed in [(η<sup>2</sup>-O<sub>2</sub>)IrO<sub>2</sub>]<sup>+</sup>; see [http://2014.cenmag.org/iridium-dressed-to-the-nines/ C&EN: Iridium dressed to the nines].</ref><!----><ref>Ir(VIII) has been observed in [[iridium tetroxide]] (IrO<sub>4</sub>); see {{cite journal|doi=10.1002/anie.200902733|pmid=19593837|title=Formation and Characterization of the Iridium Tetroxide Molecule with Iridium in the Oxidation State +VIII|year=2009|last1=Gong|first1=Yu|last2=Zhou|first2=Mingfei|last3=Kaupp|first3=Martin|last4=Riedel|first4=Sebastian|journal=Angewandte Chemie International Edition|volume=48|issue=42|pages=7879–7883}}</ref><!--
--><ref>Ir(−3) has been observed in Ir(CO)<sub>3</sub><sup>3−</sup>; see {{Greenwood&Earnshaw|page=1117}}</ref><!----><ref>Ir(VII) has been observed in [(η<sup>2</sup>-O<sub>2</sub>)IrO<sub>2</sub>]<sup>+</sup>; see [http://2014.cenmag.org/iridium-dressed-to-the-nines/ C&EN: Iridium dressed to the nines].</ref><!----><ref>Ir(VIII) has been observed in [[iridium tetroxide]] (IrO<sub>4</sub>); see {{cite journal|doi=10.1002/anie.200902733|pmid=19593837|title=Formation and Characterization of the Iridium Tetroxide Molecule with Iridium in the Oxidation State +VIII|year=2009|last1=Gong|first1=Yu|last2=Zhou|first2=Mingfei|last3=Kaupp|first3=Martin|last4=Riedel|first4=Sebastian|journal=Angewandte Chemie International Edition|volume=48|issue=42|pages=7879–7883}}</ref><!--
--><ref>Ir(IX) has been observed in {{chem2|IrO4+}}; see {{cite journal |last1=Wang |first1=Guanjun |last2=Zhou |first2=Mingfei |last3=Goettel |first3=James T. |last4=Schrobilgen |first4=Gary G. |last5=Su |first5=Jing |last6=Li |first6=Jun |last7=Schlöder |first7=Tobias |last8=Riedel |first8=Sebastian |date=21 August 2014 |title=Identification of an iridium-containing compound with a formal oxidation state of IX |journal=Nature |volume=514 |issue=7523 |pages=475–477 |doi=10.1038/nature13795 |pmid=25341786|bibcode=2014Natur.514..475W|s2cid=4463905 }}</ref> |note= |datacheck=yes }}
--><ref>Ir(IX) has been observed in {{chem2|IrO4+}}; see {{cite journal |last1=Wang |first1=Guanjun |last2=Zhou |first2=Mingfei |last3=Goettel |first3=James T. |last4=Schrobilgen |first4=Gary G. |last5=Su |first5=Jing |last6=Li |first6=Jun |last7=Schlöder |first7=Tobias |last8=Riedel |first8=Sebastian |date=21 August 2014 |title=Identification of an iridium-containing compound with a formal oxidation state of IX |journal=Nature |volume=514 |issue=7523 |pages=475–477 |doi=10.1038/nature13795 |pmid=25341786|bibcode=2014Natur.514..475W|s2cid=4463905 }}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Pt |os= −3, −2, −1, 0, +1, +2b, +3, +4b, +5, +6
{{List of oxidation states of the elements/row |symbol=Pt |os= −3, −2, −1, 0, +1, +2b, +3, +4b, +5, +6
|ref=<!----><ref name="MetalAnions"/><!--
|ref=<!----><ref name="MetalAnions"/><!--
--><ref>Pt(−1) and Pt(−2) have been observed in the [[barium]] platinides BaPt and Ba<sub>2</sub>Pt, respectively: see {{cite journal |doi= 10.1039/b514631c |pmid= 16479284 |title= An experimental proof for negative oxidation states of platinum: ESCA-measurements on barium platinides|first1=Andrey |last1= Karpov |first2=Mitsuharu |last2=Konuma|first3=Martin |last3=Jansen|journal= Chemical Communications|year= 2006 |issue= 8|pages= 838–840}}</ref><!--
--><ref>Pt(−1) and Pt(−2) have been observed in the [[barium]] platinides BaPt and Ba<sub>2</sub>Pt, respectively: see {{cite journal |doi= 10.1039/b514631c |pmid= 16479284 |title= An experimental proof for negative oxidation states of platinum: ESCA-measurements on barium platinides|first1=Andrey |last1= Karpov |first2=Mitsuharu |last2=Konuma|first3=Martin |last3=Jansen|journal= Chemical Communications|year= 2006 |issue= 8|pages= 838–840}}</ref><!--
--><ref>Pt(I) and Pt(III) have been observed in bimetallic and polymetallic species; see {{cite book|first1= George B.|last1= Kauffman|author-link= George B. Kauffman |year= 1967|volume= 9 |pages= 182–185|doi= 10.1002/9780470132401.ch51|last2= Thurner|first2= Joseph J.|last3= Zatko|first3= David A.|title= Inorganic Syntheses|chapter= Ammonium Hexachloroplatinate(IV)|isbn= 978-0-470-13240-1}}</ref> |note= |datacheck=yes }}
--><ref>Pt(I) and Pt(III) have been observed in bimetallic and polymetallic species; see {{cite book|title= Ammonium Hexachloroplatinate(IV)|first1= George B.|last1= Kauffman|author-link= George B. Kauffman |year= 1967|volume= 9 |pages= 182–185|doi= 10.1002/9780470132401.ch51|last2= Thurner|first2= Joseph J.|last3= Zatko|first3= David A.|series= Inorganic Syntheses|isbn= 978-0-470-13240-1}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Au |os= −3, −2, −1, 0, +1b, +2, +3b, +5|
{{List of oxidation states of the elements/row |symbol=Au |os= −3, −2, −1, 0, +1b, +2, +3b, +5|
|ref=<!----><ref name="MetalAnions"/><!--
|ref=<!----><ref name="MetalAnions"/><!--
Line 367: Line 356:
{{List of oxidation states of the elements/row |symbol=Hg |os= −2, +1b, +2b
{{List of oxidation states of the elements/row |symbol=Hg |os= −2, +1b, +2b
|ref=<!----><ref name="MetalAnions"/><!--
|ref=<!----><ref name="MetalAnions"/><!--
--><ref>Hg(IV) has been reported in [[mercury(IV) fluoride]] (HgF<sub>4</sub>); see {{cite journal |author1=Xuefang Wang |author2=Lester Andrews |author3=Sebastian Riedel |author4= Martin Kaupp |title=Mercury Is a Transition Metal: The First Experimental Evidence for HgF<sub>4</sub> |journal=Angew. Chem. Int. Ed. |year=2007 |volume=46 |issue=44 |pages=8371–8375 |doi=10.1002/anie.200703710 |pmid=17899620}} However, it could not be confirmed by later experiments; see {{cite web |last=Young |first=Nigel |date=2016-07-12 |title=Is mercury a transition metal? |publisher=University of Hull |url=http://www2.hull.ac.uk/science/chemistry/research/inorganicmaterials/mercurytransitionmaterial.aspx |archive-url=https://web.archive.org/web/20161012232329/http://www2.hull.ac.uk/science/chemistry/research/inorganicmaterials/mercurytransitionmaterial.aspx |archive-date=2016-10-12 |url-status=dead}}</ref> |note= |datacheck=yes }}
--><ref>Hg(IV) has been reported in [[mercury(IV) fluoride]] (HgF<sub>4</sub>); see {{cite journal |author1=Xuefang Wang |author2=Lester Andrews |author3=Sebastian Riedel |author4= Martin Kaupp |title=Mercury Is a Transition Metal: The First Experimental Evidence for HgF<sub>4</sub> |journal=Angew. Chem. Int. Ed. |year=2007 |volume=46 |issue=44 |pages=8371–8375 |doi=10.1002/anie.200703710 |pmid=17899620}} However, it could not be confirmed by later experiments; see [http://www2.hull.ac.uk/science/chemistry/research/inorganicmaterials/mercurytransitionmaterial.aspx Is mercury a transition metal?] {{webarchive|url=https://web.archive.org/web/20161012232329/http://www2.hull.ac.uk/science/chemistry/research/inorganicmaterials/mercurytransitionmaterial.aspx |date=2016-10-12}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Tl |os= −5, −2, −1, +1b, +2, +3b
{{List of oxidation states of the elements/row |symbol=Tl |os= −5, −2, −1, +1b, +2, +3b
|ref=<!--
|ref=<!--
Line 377: Line 366:
--><ref>Pb(−2) has been observed in BaPb, see {{cite book |title= Intermetallic Chemistry |first1= Riccardo |last1= Ferro |editor= Nicholas C. Norman |publisher= Elsevier |year= 2008 |isbn= 978-0-08-044099-6 |page= 505}} and {{cite journal|doi=10.1021/ic000333x|title=Heavy-Metal Aromatic Rings: Cyclopentadienyl Anion Analogues Sn<sub>5</sub><sup>6−</sup> and Pb<sub>5</sub><sup>6−</sup> in the Zintl Phases Na<sub>8</sub>BaPb<sub>6</sub>, Na<sub>8</sub>BaSn<sub>6</sub>, and Na<sub>8</sub>EuSn<sub>6</sub>|year=2004|last1=Todorov|first1=Iliya|last2=Sevov|first2=Slavi C.|journal=Inorganic Chemistry|volume=43|issue=20|pages=6490–94}}</ref><!--
--><ref>Pb(−2) has been observed in BaPb, see {{cite book |title= Intermetallic Chemistry |first1= Riccardo |last1= Ferro |editor= Nicholas C. Norman |publisher= Elsevier |year= 2008 |isbn= 978-0-08-044099-6 |page= 505}} and {{cite journal|doi=10.1021/ic000333x|title=Heavy-Metal Aromatic Rings: Cyclopentadienyl Anion Analogues Sn<sub>5</sub><sup>6−</sup> and Pb<sub>5</sub><sup>6−</sup> in the Zintl Phases Na<sub>8</sub>BaPb<sub>6</sub>, Na<sub>8</sub>BaSn<sub>6</sub>, and Na<sub>8</sub>EuSn<sub>6</sub>|year=2004|last1=Todorov|first1=Iliya|last2=Sevov|first2=Slavi C.|journal=Inorganic Chemistry|volume=43|issue=20|pages=6490–94}}</ref><!--
--><ref>Pb(0) carbonyls have been observered in reaction between lead atoms and [[carbon monoxide]]; see {{cite journal|url=https://aip.scitation.org/doi/10.1063/1.1834915 | title= Observation of the lead carbonyls Pb<sub>n</sub>CO (n=1–4): Reactions of lead atoms and small clusters with carbon monoxide in solid argon
--><ref>Pb(0) carbonyls have been observered in reaction between lead atoms and [[carbon monoxide]]; see {{cite journal|url=https://aip.scitation.org/doi/10.1063/1.1834915 | title= Observation of the lead carbonyls Pb<sub>n</sub>CO (n=1–4): Reactions of lead atoms and small clusters with carbon monoxide in solid argon
|first1=Jiang |last1=Ling |first2=Xu |last2=Qiang |journal=The Journal of Chemical Physics. 122 (3): 034505 |year = 2005|volume = 122|issue = 3|page = 34505|doi=10.1063/1.1834915 |pmid = 15740207|bibcode = 2005JChPh.122c4505J|issn=0021-9606}} Also, Pb(0) has been observed in [Si<sup>II</sup>(Xant)Si<sup>II</sup>]PbFe(CO)<sub>4</sub>; see {{cite journal|doi=10.1002/anie.202209442|title=The Heaviest Bottleable Metallylone: Synthesis of a Monatomic, Zero-Valent Lead Complex ("Plumbylone")|year=2022|author1=Jian Xu |author2=Sudip Pan |author3=Shenglai Yao |author4=Gernot Frenking |author5=Matthias Driess|journal=Angewandte Chemie International Edition|volume=61|issue=38|pages=e202209442 |pmid=35848899 |pmc=9545849 }}</ref><!--
|first1=Jiang |last1=Ling |first2=Xu |last2=Qiang |archive-date=2005-01-15 |journal=The Journal of Chemical Physics. 122 (3): 034505 |year = 2005|volume = 122|issue = 3|page = 34505|doi=10.1063/1.1834915 |pmid = 15740207|bibcode = 2005JChPh.122c4505J|issn=0021-9606}}</ref><!--
--><ref>Pb(+1) and Pb(+3) have been observed in [[organolead compounds]], e.g. hexamethyldiplumbane Pb<sub>2</sub>(CH<sub>3</sub>)<sub>6</sub>; for Pb(I), see {{cite journal |author=Siew-Peng Chia |author2=Hong-Wei Xi |author3=Yongxin Li |author4=Kok Hwa Lim |author5=Cheuk-Wai So |title=A Base-Stabilized Lead(I) Dimer and an Aromatic Plumbylidenide Anion |journal=Angew. Chem. Int. Ed. |year=2013 |volume=52 |issue=24 |pages=6298–6301 |doi=10.1002/anie.201301954|pmid=23629949}}</ref> |note= |datacheck=yes }}
--><ref>Pb(+1) and Pb(+3) have been observed in [[organolead compounds]], e.g. hexamethyldiplumbane Pb<sub>2</sub>(CH<sub>3</sub>)<sub>6</sub>; for Pb(I), see {{cite journal |author=Siew-Peng Chia |author2=Hong-Wei Xi |author3=Yongxin Li |author4=Kok Hwa Lim |author5=Cheuk-Wai So |title=A Base-Stabilized Lead(I) Dimer and an Aromatic Plumbylidenide Anion |journal=Angew. Chem. Int. Ed. |year=2013 |volume=52 |issue=24 |pages=6298–6301 |doi=10.1002/anie.201301954|pmid=23629949}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Bi |os= −3, −2, −1, 0, +1, +2, +3b, +4, +5
{{List of oxidation states of the elements/row |symbol=Bi |os= −3, −2, −1, 0, +1, +2, +3b, +4, +5
|ref=<!----><ref>Bi(−2) and Bi(−1) occur in Zintl phases, e.g. (Ca<sup>2+</sup>)<sub>22</sub>[Bi<sub>4</sub>]<sup>4−</sup>([Bi<sub>2</sub>]<sup>4−</sup>)<sub>4</sub>[Bi<sup>3−</sup>]<sub>8</sub>; see {{cite news |title= Germanides, Germanide-Tungstate Double Salts and Substitution Effects in Zintl Phases |first1= Siméon |last1= Ponou |publisher= Technische Universität München. Lehrstuhl für Anorganische Chemie mit Schwerpunkt Neue Materialien |year= 2006 |url= http://d-nb.info/985527676/34?origin=publication_detailSim |page= 68}}</ref><!--
|ref=<!----><ref>Bi(−2) and Bi(−1) occur in Zintl phases, e.g. (Ca<sup>2+</sup>)<sub>22</sub>[Bi<sub>4</sub>]<sup>4−</sup>([Bi<sub>2</sub>]<sup>4−</sup>)<sub>4</sub>[Bi<sup>3−</sup>]<sub>8</sub>; see {{cite news |title= Germanides, Germanide-Tungstate Double Salts and Substitution Effects in Zintl Phases |first1= Siméon |last1= Ponou |publisher= Technische Universität München. Lehrstuhl für Anorganische Chemie mit Schwerpunkt Neue Materialien |year= 2006 |url= http://d-nb.info/985527676/34?origin=publication_detailSim |page= 68}}</ref><!--
--><ref>Bi(0) state is known to exist in a [[Heterocyclic compound|N-heterocyclic carbene]] complex of dibismuthene; see {{cite journal |first1=Rajesh |last1=Deka |first2=Andreas |last2=Orthaber |title=Carbene chemistry of arsenic, antimony, and bismuth: origin, evolution and future prospects |journal=Royal Society of Chemistry |issue=22 |date=May 6, 2022 |volume=51 |pages=8540–8556 |doi=10.1039/d2dt00755j |pmid=35578901 |s2cid=248675805 |url=https://europepmc.org/article/med/35578901}}</ref><!--
--><ref>Bi(0) state is known to exist in a [[Heterocyclic compound|N-heterocyclic carbene]] complex of dibismuthene; see {{cite journal |first1=Rajesh |last1=Deka |first2=Andreas |last2=Orthaber |title=Carbene chemistry of arsenic, antimony, and bismuth: origin, evolution and future prospects |journal=Royal Society of Chemistry |issue=51 |page=8540 |date=May 6, 2022 |doi=10.1039/d2dt00755j |url=https://europepmc.org/article/med/35578901}}</ref><!--
--><ref>Bi(I) has been observed in [[bismuth monobromide]] (BiBr) and [[bismuth monoiodide]] (BiI); see {{cite book |title= Chemistry of arsenic, antimony, and bismuth |first1= S. M. |last1= Godfrey |first2= C. A. |last2= McAuliffe |first3= A. G. |last3= Mackie |first4= R. G. |last4= Pritchard |editor= Nicholas C. Norman |publisher= Springer |year= 1998 |isbn= 978-0-7514-0389-3 |pages= 67–84}}</ref><!--
--><ref>Bi(I) has been observed in [[bismuth monobromide]] (BiBr) and [[bismuth monoiodide]] (BiI); see {{cite book |title= Chemistry of arsenic, antimony, and bismuth |first1= S. M. |last1= Godfrey |first2= C. A. |last2= McAuliffe |first3= A. G. |last3= Mackie |first4= R. G. |last4= Pritchard |editor= Nicholas C. Norman |publisher= Springer |year= 1998 |isbn= 978-0-7514-0389-3 |pages= 67–84}}</ref><!--
--><ref>Bi(+2) has been observed in [[dibismuthine]]s (R<sub>2</sub>Bi—BiR<sub>2</sub>), see {{cite journal |first=Arthur J. III |last=Ashe |title=Thermochromic Distibines and Dibismuthines |journal=Advances in Organometallic Chemistry |year=1990 |volume=30 |pages=77–97 |doi=10.1016/S0065-3055(08)60499-2 |isbn=9780120311309}}</ref><!--
--><ref>Bi(+2) has been observed in [[dibismuthine]]s (R<sub>2</sub>Bi—BiR<sub>2</sub>), see {{cite book |author=Arthur J. Ashe III |title=Thermochromic Distibines and Dibismuthines |journal=Advances in Organometallic Chemistry |year=1990 |volume=30 |pages=77–97 |doi=10.1016/S0065-3055(08)60499-2|isbn=9780120311309}}</ref><!--
--><ref>Bi(IV) has been observed; see {{cite journal |author=A. I. Aleksandrov, I. E. Makarov |title=Formation of Bi(II) and Bi(IV) in aqueous hydrochloric solutions of Bi(III) |journal=Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science |year=1987 |volume=36 |issue=2 |pages=217–220 |doi=10.1007/BF00959349|s2cid=94865394 }}</ref> |note= |datacheck=yes }}
--><ref>Bi(IV) has been observed; see {{cite journal |author=A. I. Aleksandrov, I. E. Makarov |title=Formation of Bi(II) and Bi(IV) in aqueous hydrochloric solutions of Bi(III) |journal=Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science |year=1987 |volume=36 |issue=2 |pages=217–220 |doi=10.1007/BF00959349|s2cid=94865394 }}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Po |os= −2b, +2b, +4b, +5, +6
{{List of oxidation states of the elements/row |symbol=Po |os= −2b, +2b, +4b, +5, +6
Line 397: Line 386:
{{List of oxidation states of the elements/row |symbol=Fr |os= +1b|ref= |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Fr |os= +1b|ref= |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Ra |os= +2b|ref= |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Ra |os= +2b|ref= |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Ac |os= +2, +3b|ref=<ref>Ac(II) is known in Actinium(II) hydride (AcH<sub>2</sub>); see {{cite journal |doi=10.1016/0022-1902(61)80369-2 |last1=Farr |date=1961 |first1=J. |pages=42–47 |volume=18 |journal=Journal of Inorganic and Nuclear Chemistry |title=The crystal structure of actinium metal and actinium hydride |last2=Giorgi |first2=A. L. |last3=Bowman |first3=M. G. |last4=Money |first4=R. K.|osti=4397640 }}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Ac |os= +3b|ref= |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Th |os= -1, +1, +2, +3, +4b
{{List of oxidation states of the elements/row |symbol=Th |os= -1, +1, +2, +3, +4b
|ref=<!--
|ref=<!--
--><ref>Th(-I) and U(-I) have been detected in the gas phase as octacarbonyl anions; see {{cite journal| title=Octacarbonyl Ion Complexes of Actinides [An(CO)<sub>8</sub>]<sup>+/−</sup> (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding
--><ref>Th(-I) and U(-I) have been detected in the gas phase as octacarbonyl anions; see {{cite journal| title=Octacarbonyl Ion Complexes of Actinides [An(CO)<sub>8</sub>]<sup>+/−</sup> (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding
|first1=Chi |last1=Chaoxian |first2=Pan |last2=Sudip |first3=Jin |last3=Jiaye |first4=Meng |last4=Luyan |first5=Luo |last5=Mingbiao |first6=Zhao |last6=Lili |first7=Zhou |last7=Mingfei |first8=Frenking |last8=Gernot |journal=Chemistry (Weinheim an der Bergstrasse, Germany). 25 (50): 11772–11784 |year = 2019|volume = 25|issue = 50|pages = 11772–11784|doi=10.1002/chem.201902625 |issn=0947-6539 |pmc=6772027
|first1=Chi |last1=Chaoxian |first2=Pan |last2=Sudip |first3=Jin |last3=Jiaye |first4=Meng |last4=Luyan |first5=Luo |last5=Mingbiao |first6=Zhao |last6=Lili |first7=Zhou |last7=Mingfei |first8=Frenking |last8=Gernot |journal=Chemistry (Weinheim an der Bergstrasse, Germany). 25 (50): 11772–11784 |year = 2019|volume = 25|issue = 50|pages = 11772–11784|doi=10.1002/chem.201902625 |issn=0947-6539 |pmc=6772027
|pmid=31276242}}</ref><!----><ref>Th(I) is known in thorium(I) bromide (ThBr); see {{cite book|last1=Wickleder |first1=Mathias S. |first2=Blandine |last2=Fourest |first3=Peter K. |last3=Dorhout |contribution=Thorium |title=The Chemistry of the Actinide and Transactinide Elements |editor1-first=Lester R. |editor1-last=Morss |editor2-first=Norman M. |editor2-last=Edelstein |editor3-first=Jean |editor3-last=Fuger |edition=3rd |year=2006 |volume=3 |publisher=Springer |location=Dordrecht, the Netherlands |pages=52–160 |url= http://radchem.nevada.edu/classes/rdch710/files/thorium.pdf |doi=10.1007/1-4020-3598-5_3 |url-status=dead |archive-url=https://web.archive.org/web/20160307160941/http://radchem.nevada.edu/classes/rdch710/files/Thorium.pdf |archive-date=2016-03-07 |isbn=978-1-4020-3555-5}}</ref><!--
|pmid=31276242}}</ref><!----><ref>Th(I) is known in thorium(I) bromide (ThBr); see {{cite book|last1=Wickleder |first1=Mathias S. |first2=Blandine |last2=Fourest |first3=Peter K. |last3=Dorhout |ref=Wickleder et al. |contribution=Thorium |title=The Chemistry of the Actinide and Transactinide Elements |editor1-first=Lester R. |editor1-last=Morss |editor2-first=Norman M. |editor2-last=Edelstein |editor3-first=Jean |editor3-last=Fuger |edition=3rd |year=2006 |volume=3 |publisher=Springer |location=Dordrecht, the Netherlands |pages=52–160 |url=http://radchem.nevada.edu/classes/rdch710/files/thorium.pdf |doi=10.1007/1-4020-3598-5_3 |url-status=dead |archive-url=https://web.archive.org/web/20160307160941/http://radchem.nevada.edu/classes/rdch710/files/Thorium.pdf |archive-date=2016-03-07 |isbn=978-1-4020-3555-5}}</ref><!--
--><ref>Th(II) and Th(III) are observed in [Th<sup>II</sup>{''η''<sup>5</sup>-C<sub>5</sub>H<sub>3</sub>(SiMe<sub>3</sub>)<sub>2</sub>}<sub>3</sub>]<sup>−</sup> and [Th<sup>III</sup>{''η''<sup>5</sup>-C<sub>5</sub>H<sub>3</sub>(SiMe<sub>3</sub>)<sub>2</sub>}<sub>3</sub>], see {{cite journal |first1=Ryan R. |last1=Langeslay |first2=Megan E. |last2=Fieser |first3=Joseph W. |last3=Ziller |first4=Philip |last4=Furche |first5=William J. |last5=Evans |title=Synthesis, structure, and reactivity of crystalline molecular complexes of the {[C<sub>5</sub>H<sub>3</sub>(SiMe<sub>3</sub>)<sub>2</sub>]<sub>3</sub>Th}<sup>1−</sup> anion containing thorium in the formal +2 oxidation state |journal=Chem. Sci. |year=2015 |volume=6 |issue=1 |pages=517–521 |doi=10.1039/C4SC03033H|pmid=29560172 |pmc=5811171}}</ref> |note= |datacheck=yes }}
--><ref>Th(II) and Th(III) are observed in [Th<sup>II</sup>{''η''<sup>5</sup>-C<sub>5</sub>H<sub>3</sub>(SiMe<sub>3</sub>)<sub>2</sub>}<sub>3</sub>]<sup>−</sup> and [Th<sup>III</sup>{''η''<sup>5</sup>-C<sub>5</sub>H<sub>3</sub>(SiMe<sub>3</sub>)<sub>2</sub>}<sub>3</sub>], see {{cite journal |first1=Ryan R. |last1=Langeslay |first2=Megan E. |last2=Fieser |first3=Joseph W. |last3=Ziller |first4=Philip |last4=Furche |first5=William J. |last5=Evans |title=Synthesis, structure, and reactivity of crystalline molecular complexes of the {[C<sub>5</sub>H<sub>3</sub>(SiMe<sub>3</sub>)<sub>2</sub>]<sub>3</sub>Th}<sup>1−</sup> anion containing thorium in the formal +2 oxidation state |journal=Chem. Sci. |year=2015 |volume=6 |issue=1 |pages=517–521 |doi=10.1039/C4SC03033H|pmid=29560172 |pmc=5811171}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Pa |os= +2, +3, +4, +5b|ref=<!--
{{List of oxidation states of the elements/row |symbol=Pa |os= +2, +3, +4, +5b|ref=<!--
Line 410: Line 399:
--><ref>Th(-I) and U(-I) have been detected in the gas phase as octacarbonyl anions; see {{cite journal| title=Octacarbonyl Ion Complexes of Actinides [An(CO)<sub>8</sub>]<sup>+/−</sup> (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding
--><ref>Th(-I) and U(-I) have been detected in the gas phase as octacarbonyl anions; see {{cite journal| title=Octacarbonyl Ion Complexes of Actinides [An(CO)<sub>8</sub>]<sup>+/−</sup> (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding
|first1=Chi |last1=Chaoxian |first2=Pan |last2=Sudip |first3=Jin |last3=Jiaye |first4=Meng |last4=Luyan |first5=Luo |last5=Mingbiao |first6=Zhao |last6=Lili |first7=Zhou |last7=Mingfei |first8=Frenking |last8=Gernot |journal=Chemistry (Weinheim an der Bergstrasse, Germany). 25 (50): 11772–11784 |year = 2019|volume = 25|issue = 50|pages = 11772–11784|doi=10.1002/chem.201902625 |issn=0947-6539 |pmc=6772027
|first1=Chi |last1=Chaoxian |first2=Pan |last2=Sudip |first3=Jin |last3=Jiaye |first4=Meng |last4=Luyan |first5=Luo |last5=Mingbiao |first6=Zhao |last6=Lili |first7=Zhou |last7=Mingfei |first8=Frenking |last8=Gernot |journal=Chemistry (Weinheim an der Bergstrasse, Germany). 25 (50): 11772–11784 |year = 2019|volume = 25|issue = 50|pages = 11772–11784|doi=10.1002/chem.201902625 |issn=0947-6539 |pmc=6772027
|pmid=31276242}}</ref><!----><ref>U(I) has been observed in [[uranium monofluoride]] (UF) and [[uranium monochloride]] (UCl), see {{cite book |last=Sykes |first=A. G. |title=Advances in Inorganic Chemistry |volume=34 |chapter=Compounds of Thorium and Uranium |chapter-url=https://books.google.com/books?id=MZRm6E9LmgMC |access-date=22 March 2015 |year=1990 |publisher=Academic Press |isbn=978-0-12-023634-3 |pages=87–88}} Also, U(I) has been observed in [U(η<sup>5</sup>-C<sub>5</sub><sup>i</sup>Pr<sub>5</sub>)<sub>2</sub>]<sup>−</sup>, see {{cite journal |last1=Barluzzi |first1=Luciano|last2=Giblin|first2=Sean R.|last3=Mansikkamäki|first3=Akseli|last4=Layfield|first4=Richard A. |title=Identification of Oxidation State +1 in a Molecular Uranium Complex|journal=J. Am. Chem. Soc.|volume=144|issue=40 |url=https://pubs.acs.org/doi/10.1021/jacs.2c06519 |access-date=13 July 2023 |year=2022|pages=18229–18233|doi=10.1021/jacs.2c06519 |pmid=36169550 |s2cid=252567088 }}</ref><!--
|pmid=31276242}}</ref><!----><ref>U(I) has been observed in [[uranium monofluoride]] (UF) and [[uranium monochloride]] (UCl), see {{cite book |last=Sykes |first=A. G. |title=Advances in Inorganic Chemistry |volume=34 |chapter=Compounds of Thorium and Uranium |chapter-url=https://books.google.com/books?id=MZRm6E9LmgMC |access-date=22 March 2015 |year=1990 |publisher=Academic Press |isbn=978-0-12-023634-3 |pages=87–88}}</ref><!--
--><ref>U(II) has been observed in [K(2.2.2-Cryptand)][(C<sub>5</sub>H<sub>4</sub>SiMe<sub>3</sub>)<sub>3</sub>U], see {{cite journal|doi=10.1021/ja406791t|pmid=23984753|title=Identification of the +2 Oxidation State for Uranium in a Crystalline Molecular Complex, [K(2.2.2-Cryptand)][(C<sub>5</sub>H<sub>4</sub>SiMe<sub>3</sub>)<sub>3</sub>U]|year=2013|first1=Matthew R.|last1= MacDonald|first2=Megan E.|last2=Fieser|first3=Jefferson E.|last3=Bates|first4=Joseph W.|last4=Ziller|first5=Filipp|last5=Furche|first6=William J.|last6=Evans|journal=J. Am. Chem. Soc.|volume=135|issue=36|pages=13310–13313}}</ref> |note= |datacheck=yes }}
--><ref>U(II) has been observed in [K(2.2.2-Cryptand)][(C<sub>5</sub>H<sub>4</sub>SiMe<sub>3</sub>)<sub>3</sub>U], see {{cite journal|doi=10.1021/ja406791t|pmid=23984753|title=Identification of the +2 Oxidation State for Uranium in a Crystalline Molecular Complex, [K(2.2.2-Cryptand)][(C<sub>5</sub>H<sub>4</sub>SiMe<sub>3</sub>)<sub>3</sub>U]|year=2013|first1=Matthew R.|last1= MacDonald|first2=Megan E.|last2=Fieser|first3=Jefferson E.|last3=Bates|first4=Joseph W.|last4=Ziller|first5=Filipp|last5=Furche|first6=William J.|last6=Evans|journal=J. Am. Chem. Soc.|volume=135|issue=36|pages=13310–13313}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Np |os= +2, +3, +4, +5b, +6, +7
{{List of oxidation states of the elements/row |symbol=Np |os= +2, +3, +4, +5b, +6, +7
Line 431: Line 420:
--><ref name="Dau2017"/><!--
--><ref name="Dau2017"/><!--
--><ref name="Kovács2018"/><!--
--><ref name="Kovács2018"/><!--
--><ref name="Peterson">{{cite book|last1=Peterson|first1=J. R.|last2=Hobart|first2=D. E.|chapter-url=https://books.google.com/books?id=U-YOlLVuV1YC&pg=PA29|chapter=The Chemistry of Berkelium|editor-last=Emeléus|editor-first=Harry Julius|title=Advances in inorganic chemistry and radiochemistry|volume=28|publisher=Academic Press|date=1984|isbn=978-0-12-023628-2|pages=[https://archive.org/details/advancesininorga0000unse_p1d0/page/29 29–64]|doi=10.1016/S0898-8838(08)60204-4|url=https://archive.org/details/advancesininorga0000unse_p1d0/page/29}}</ref><!--
--><ref name="Peterson">{{cite book|last1=Peterson|first1=J. R.|last2=Hobart|first2=D. E.|chapter-url=https://books.google.com/books?id=U-YOlLVuV1YC&pg=PA29|chapter=The Chemistry of Berkelium|editor-last=Emeléus|editor-first=Harry Julius|title=Advances in inorganic chemistry and radiochemistry|volume=28|publisher=Academic Press|date=1984|isbn=978-0-12-023628-2|pages=[https://archive.org/details/advancesininorga0000unse_p1d0/page/29 29–64]|doi=10.1016/S0898-8838(08)60204-4|url=https://archive.org/details/advancesininorga0000unse_p1d0/page/29}}</ref>{{sfn|Peterson|1984|p=55}}<!--
--><ref>{{cite journal|last1=Sullivan|first1=Jim C.|last2=Schmidt|first2=K. H.|last3=Morss|first3=L. R.|last4=Pippin|first4=C. G.|last5=Williams|first5=C.|title=Pulse radiolysis studies of berkelium(III): preparation and identification of berkelium(II) in aqueous perchlorate media|journal=Inorganic Chemistry|volume=27|pages=597|date=1988|doi=10.1021/ic00277a005|issue=4}}</ref> |note= |datacheck=yes }}
-->{{sfn|Peterson|Hobart|1984|p=55}}<!--
--><ref>{{cite journal |last1=Sullivan |first1=Jim C. |last2=Schmidt|first2=K. H. |last3=Morss |first3=L. R. |last4=Pippin |first4=C. G. |last5=Williams |first5=C. |title=Pulse radiolysis studies of berkelium(III): preparation and identification of berkelium(II) in aqueous perchlorate media |journal=Inorganic Chemistry |volume=27 |pages=597 |date=1988 |doi=10.1021/ic00277a005 |issue=4}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Cf |os= +2, +3b, +4, +5
{{List of oxidation states of the elements/row |symbol=Cf |os= +2, +3b, +4, +5
|ref=<!--
|ref=<!--
Line 440: Line 428:
{{List of oxidation states of the elements/row |symbol=Es |os= +2, +3b, +4
{{List of oxidation states of the elements/row |symbol=Es |os= +2, +3b, +4
|ref=<!--
|ref=<!--
--><ref>Es(IV) is known in [[einsteinium(IV) fluoride]] (EsF<sub>4</sub>); see {{cite journal |last1=Kleinschmidt |first1=P. |title=Thermochemistry of the actinides |journal=Journal of Alloys and Compounds |volume=213–214 |pages=169–172 |year=1994 |doi=10.1016/0925-8388(94)90898-2 |url=https://digital.library.unt.edu/ark:/67531/metadc1401691/}}</ref> |note= |datacheck=yes }}
--><ref>Es(IV) is known in [[einsteinium(IV) fluoride]] (EsF<sub>4</sub>); see {{cite journal|last1=Kleinschmidt|first1=P|title=Thermochemistry of the actinides|journal=Journal of Alloys and Compounds|volume=213–214|pages=169–172|year=1994|doi=10.1016/0925-8388(94)90898-2|url=https://digital.library.unt.edu/ark:/67531/metadc1401691/}}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Fm |os= +2, +3b|ref= |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Fm |os= +2, +3b|ref= |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Md |os= +2, +3b|ref= |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Md |os= +2, +3b|ref= |note= |datacheck=yes }}
Line 451: Line 439:
{{List of oxidation states of the elements/row |symbol=Sg |os= 0, +6b
{{List of oxidation states of the elements/row |symbol=Sg |os= 0, +6b
|ref=<!--
|ref=<!--
--><ref>Sg(VI) has been observed in seaborgium oxide hydroxide (SgO<sub>2</sub>(OH)<sub>2</sub>); see {{cite journal |url=http://www-w2k.gsi.de/kernchemie/images/pdf_Artikel/Radiochim_Acta_89_737_2001.pdf |title=Physico-chemical characterization of seaborgium as oxide hydroxide |journal=Radiochim. Acta |volume=89 |pages=737–741 |year=2001 |last1=Huebener |first1=S. |last2=Taut |first2=S. |last3=Vahle |first3=A. |last4=Dressler |first4=R. |last5=Eichler |first5=B. |last6=Gäggeler |first6=H. W. |last7=Jost |first7=D. T. |last8=Piguet |first8=D. |last9=Türler |first9=A. |last10=Brüchle |first10=W. |last11=Jäger |first11=E. |last12=Schädel |first12=M. |last13=Schimpf |first13=E. |last14=Kirbach |first14=U. |last15=Trautmann |first15=N. |last16=Yakushev |first16=A. B. |issue=11–12 |doi=10.1524/ract.2001.89.11-12.737 |s2cid=98583998 |display-authors=4 |url-status=dead |archive-url=https://web.archive.org/web/20141025201143/http://www-w2k.gsi.de/kernchemie/images/pdf_Artikel/Radiochim_Acta_89_737_2001.pdf |archive-date=2014-10-25}}</ref><!--
--><ref>Sg(VI) has been observed in seaborgium oxide hydroxide (SgO<sub>2</sub>(OH)<sub>2</sub>); see {{cite journal|url=http://www-w2k.gsi.de/kernchemie/images/pdf_Artikel/Radiochim_Acta_89_737_2001.pdf |title=Physico-chemical characterization of seaborgium as oxide hydroxide |journal=Radiochim. Acta |volume=89 |pages=737–741 |year=2001 |doi=10.1524/ract.2001.89.11-12.737 |last1=Huebener |first1=S. |last2=Taut |first2=S. |last3=Vahle |first3=A. |last4=Dressler |first4=R. |last5=Eichler |first5=B. |last6=Gäggeler |first6=H. W. |last7=Jost |first7=D.T. |last8=Piguet |first8=D. |last9=Türler |first9=A. |last10=Brüchle |first10=W. |issue=11–12_2001 |s2cid=98583998 |display-authors=8 |url-status=dead |archive-url=https://web.archive.org/web/20141025201143/http://www-w2k.gsi.de/kernchemie/images/pdf_Artikel/Radiochim_Acta_89_737_2001.pdf |archive-date=2014-10-25}}</ref><!--
--><ref>Sg(0) has been observed in seaborgium hexacarbonyl (Sg(CO)<sub>6</sub>); see {{Cite journal |title=Synthesis and detection of a seaborgium carbonyl complex |journal=Science |volume=345 |issue=6203 |pages=1491–3 |year=2014 |last1=Even |first1=J.| last2=Yakushev| first2=A.| last3=Dullmann| first3=C. E.| last4=Haba| first4=H.| last5=Asai| first5=M.| last6=Sato| first6=T. K.| last7=Brand| first7=H.| last8=Di Nitto| first8=A.| last9=Eichler| first9=R.| last10=Fan| first10=F. L.| last11=Hartmann| first11=W.| last12=Huang| first12=M.| last13=Jager| first13=E.| last14=Kaji| first14=D.| last15=Kanaya| first15=J.| last16=Kaneya| first16=Y.| last17=Khuyagbaatar| first17=J.| last18=Kindler| first18=B.| last19=Kratz| first19=J. V.| last20=Krier| first20=J.| last21=Kudou| first21=Y.| last22=Kurz| first22=N.| last23=Lommel| first23=B.| last24=Miyashita| first24=S.| last25=Morimoto| first25=K.| last26=Morita| first26=K.| last27=Murakami| first27=M.| last28=Nagame| first28=Y.| last29=Nitsche| first29=H.| last30=Ooe| first30=K.| last31=Qin| first31=Z.| last32=Schädel| first32=M.| last33=Steiner| first33=J.| last34=Sumita| first34=T.| last35=Takeyama| first35=M.| last36=Tanaka| first36=K.| last37=Toyoshima| first37=A.| last38=Tsukada| first38=K.| last39=Türler| first39=A.| last40=Usoltsev| first40=I.| last41=Wakabayashi| first41=Y. |last42=Wang| first42=Y.| last43=Wiehl| first43=N.| last44=Yamaki| first44=S.| display-authors=4| doi=10.1126/science.1255720| pmid=25237098| bibcode=2014Sci...345.1491E| s2cid=206558746}}</ref> |note= |datacheck=yes }}
--><ref>Sg(0) has been observed in seaborgium hexacarbonyl (Sg(CO)<sub>6</sub>); see {{Cite journal |doi=10.1126/science.1255720 |pmid=25237098 |title=Synthesis and detection of a seaborgium carbonyl complex |journal=Science |volume=345 |issue=6203 |pages=1491–3 |year=2014 |last1=Even |first1=J. | last2=Yakushev | first2=A.| last3=Dullmann | first3=C. E.| last4=Haba | first4=H.| last5=Asai | first5=M.| last6=Sato | first6=T. K.| last7=Brand | first7=H.| last8=Di Nitto | first8=A.| last9=Eichler | first9=R.| last10=Fan | first10=F. L.| last11=Hartmann | first11=W.| last12=Huang | first12=M.| last13=Jager | first13=E.| last14=Kaji | first14=D.| last15=Kanaya | first15=J.| last16=Kaneya | first16=Y.| last17=Khuyagbaatar | first17=J.| last18=Kindler | first18=B.| last19=Kratz | first19=J. V.| last20=Krier | first20=J.| last21=Kudou | first21=Y.| last22=Kurz | first22=N.| last23=Lommel | first23=B.| last24=Miyashita | first24=S.| last25=Morimoto | first25=K.| last26=Morita | first26=K.| last27=Murakami | first27=M.| last28=Nagame | first28=Y.| last29=Nitsche | first29=H.| last30=Ooe | first30=K.| display-authors=29| bibcode=2014Sci...345.1491E|s2cid=206558746 }}</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Bh |os= +7b
{{List of oxidation states of the elements/row |symbol=Bh |os= +7b
|ref=<!--
|ref=<!--
--><ref>Bh(VII) has been observed in bohrium oxychloride (BhO<sub>3</sub>Cl); see {{cite journal |title=Gas chemical investigation of bohrium (Bh, element 107) |url=http://www.gsi.de/informationen/wti/library/scientificreport2000/Chemistry/9/r_eichler_jb2000.pdf |archive-url=https://web.archive.org/web/20080228023225/http://www.gsi.de/informationen/wti/library/scientificreport2000/Chemistry/9/r_eichler_jb2000.pdf |archive-date=2008-02-28 |vauthors=Eichler R, Düllmann C, Gäggeler HW, Eichler B, Jost DT, Piquet D, Tobler L, Türler A, Zimmermann P, Häfeli T, Lavanchy VM, Gregorich KE, Hoffman DC, Kirbach D, Laue CA, Nitsche H, Patin J, Shaughnessy DA, Strellis D, Wilk P, Dressler R, Hübener S, Taut S, Vahle A, Brüchle W, Schädel M, Tsyganov Y, Yakushev AB |display-authors=4 |journal=GSI Annual Report 2000 |access-date=2008-02-29}}</ref> |note= |datacheck=yes }}
--><ref>Bh(VII) has been observed in bohrium oxychloride (BhO<sub>3</sub>Cl); see [http://www.gsi.de/informationen/wti/library/scientificreport2000/Chemistry/9/r_eichler_jb2000.pdf "Gas chemical investigation of bohrium (Bh, element 107)"] {{webarchive|url=https://web.archive.org/web/20080228023225/http://www.gsi.de/informationen/wti/library/scientificreport2000/Chemistry/9/r_eichler_jb2000.pdf |date=2008-02-28}}, Eichler et al., ''GSI Annual Report 2000''. Retrieved on 2008-02-29</ref> |note= |datacheck=yes }}
{{List of oxidation states of the elements/row |symbol=Hs |os= +8b
{{List of oxidation states of the elements/row |symbol=Hs |os= +8b
|ref=<!--
|ref=<!--