Jump to content

Bissulfosuccinimidyl suberate: Difference between revisions

Page 1
Page 2
Content deleted Content added
CheMoBot (talk | contribs)
Updating {{chembox}} (no changed fields - added verified revid - updated 'UNII_Ref', 'ChemSpiderID_Ref', 'StdInChI_Ref', 'StdInChIKey_Ref', 'ChEMBL_Ref', 'KEGG_Ref') per Chem/Drugbox validation (
 
(22 intermediate revisions by 17 users not shown)
Line 1: Line 1:
{{Chembox
{{Chembox
| Verifiedfields = changed
| verifiedrevid = 404990720
| Watchedfields = changed
| verifiedrevid = 424663153
| ImageFile = Bissulfosuccinimidyl suberate.png
| ImageFile = Bissulfosuccinimidyl suberate.png
| ImageSize = 200px
| ImageSize = 200px
| IUPACName = 1-[8-(2,5-Dioxo-3-sulfopyrrolidin-1-yl)oxy-8-oxooctanoyl]oxy-2,5-dioxopyrrolidine-3-sulfonic acid
| IUPACName = 1-[8-(2,5-Dioxo-3-sulfopyrrolidin-1-yl)oxy-8-oxooctanoyl]oxy-2,5-dioxopyrrolidine-3-sulfonic acid
| OtherNames = Disulfosuccinimidyl suberate; Bis(sulfosuccinimidyl)suberate; BS3
| OtherNames = Disulfosuccinimidyl suberate; Bis(sulfosuccinimidyl)suberate; BS3
| Section1 = {{Chembox Identifiers
|Section1={{Chembox Identifiers
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo = 82436-77-9
| CASNo = 82436-77-9
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = E647932J7Z
| PubChem = 123854
| PubChem = 123854
| SMILES = C1C(C(=O)N(C1=O)OC(=O)CCCCCCC(=O)ON2C(=O)CC(C2=O)S(=O)(=O)O)S(=O)(=O)O
| SMILES = C1C(C(=O)N(C1=O)OC(=O)CCCCCCC(=O)ON2C(=O)CC(C2=O)S(=O)(=O)O)S(=O)(=O)O
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 110394
| InChI = 1/C16H20N2O14S2/c19-11-7-9(33(25,26)27)15(23)17(11)31-13(21)5-3-1-2-4-6-14(22)32-18-12(20)8-10(16(18)24)34(28,29)30/h9-10H,1-8H2,(H,25,26,27)(H,28,29,30)
| InChIKey = VYLDEYYOISNGST-UHFFFAOYAE
| StdInChI_Ref = {{stdinchicite|changed|chemspider}}
| StdInChI = 1S/C16H20N2O14S2/c19-11-7-9(33(25,26)27)15(23)17(11)31-13(21)5-3-1-2-4-6-14(22)32-18-12(20)8-10(16(18)24)34(28,29)30/h9-10H,1-8H2,(H,25,26,27)(H,28,29,30)
| StdInChIKey_Ref = {{stdinchicite|changed|chemspider}}
| StdInChIKey = VYLDEYYOISNGST-UHFFFAOYSA-N
}}
}}
| Section2 = {{Chembox Properties
|Section2={{Chembox Properties
| C=16|H=20|N=2|O=14|S=2
| C=16 | H=20 | N=2 | O=14 | S=2
| Appearance =
| Appearance =
| Density =
| Density =
Line 17: Line 30:
| BoilingPt =
| BoilingPt =
| Solubility = }}
| Solubility = }}
| Section3 = {{Chembox Hazards
|Section3={{Chembox Hazards
| MainHazards =
| MainHazards =
| FlashPt =
| FlashPt =
| Autoignition = }}
| AutoignitionPt =
}}
}}
}}


'''Bissulfosuccinimidyl suberate''' (BS3) is a [[crosslinker]] used in biological research. It is a water-soluble version of [[disuccinimidyl suberate]].
'''Bissulfosuccinimidyl suberate''' (BS3) is a [[crosslinker]] used in biological research. It is a water-soluble version of [[disuccinimidyl suberate]].<ref>{{Cite journal |last1=Shi |first1=Jing-Ming |last2=Pei |first2=Jie |last3=Liu |first3=En-Qi |last4=Zhang |first4=Lin |date=2017 |title=Bis(sulfosuccinimidyl) suberate (BS3) crosslinking analysis of the behavior of amyloid-β peptide in solution and in phospholipid membranes |journal=PLOS ONE |volume=12 |issue=3 |pages=e0173871 |doi=10.1371/journal.pone.0173871 |issn=1932-6203 |pmc=5360245 |pmid=28323849|bibcode=2017PLoSO..1273871S |doi-access=free }}</ref>


== Crosslinkers ==
== Crosslinkers ==
Crosslinkers are [[chemical reagent]]s that play a crucial role in the preparation of [[conjugation (chemistry)|conjugates]] used in biological research particularly immuno-technologies and protein studies. Crosslinkers are designed to covalently interact with molecules of interest, resulting in conjugation. A [[spacer arm]], generally consisting of several atoms, separates the two molecules, and the nature and length of this spacer is important to consider when designing an assay involving the selected crosslinker. BisSulfosuccinimidyl suberate is an example of a homobifunctional crosslinker.
Crosslinkers are [[chemical reagent]]s that play a crucial role in the preparation of [[conjugation (biochemistry)|conjugates]] used in biological research particularly immuno-technologies and protein studies. Crosslinkers are designed to covalently interact with molecules of interest, resulting in conjugation.<ref>{{Cite journal |last1=Arora |first1=Bharti |last2=Tandon |first2=Rashmi |last3=Attri |first3=Pankaj |last4=Bhatia |first4=Rohit |date=2017 |title=Chemical Crosslinking: Role in Protein and Peptide Science |url=https://pubmed.ncbi.nlm.nih.gov/27455969/ |journal=Current Protein & Peptide Science |volume=18 |issue=9 |pages=946–955 |doi=10.2174/1389203717666160724202806 |issn=1875-5550 |pmid=27455969}}</ref> A [[spacer arm]], generally consisting of several atoms, separates the two molecules, and the nature and length of this spacer is important to consider when designing an assay involving the selected crosslinker. Bissulfosuccinimidyl suberate is an example of a homobifunctional crosslinker.<ref name=":0">{{Citation |last=Shao |first=Jiahui |title=Spacer Arm Length |date=2016 |url=https://doi.org/10.1007/978-3-662-44324-8_1244 |encyclopedia=Encyclopedia of Membranes |pages=1805–1806 |editor-last=Drioli |editor-first=Enrico |place=Berlin, Heidelberg |publisher=Springer |language=en |doi=10.1007/978-3-662-44324-8_1244 |isbn=978-3-662-44324-8 |access-date=2022-12-31 |editor2-last=Giorno |editor2-first=Lidietta}}</ref>


== Characteristics ==
== Characteristics ==
Water soluble: BS3 is hydrophilic due to its terminal sulfonyl substituents and as a result dissociates in water, eliminating the need to use organic solvents which interfere with protein structure and function. Because organic solvents need not be used when BS3 is used as the crosslinker, it is ideal for investigations into protein structure and function in physiologic conditions.
Water-soluble: BS3 is hydrophilic due to its terminal sulfonyl substituents and as a result dissociates in water, eliminating the need to use organic solvents which interfere with protein structure and function.<ref>{{Cite journal |last1=Verma |first1=Vishal |last2=Rico-Martinez |first2=Roberto |last3=Kotra |first3=Neel |last4=King |first4=Laura |last5=Liu |first5=Jiumeng |last6=Snell |first6=Terry W. |last7=Weber |first7=Rodney J. |date=2012-10-16 |title=Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols |url=https://pubmed.ncbi.nlm.nih.gov/22974103/ |journal=Environmental Science & Technology |volume=46 |issue=20 |pages=11384–11392 |doi=10.1021/es302484r |issn=1520-5851 |pmid=22974103|bibcode=2012EnST...4611384V }}</ref> Because organic solvents need not be used when BS3 is used as the crosslinker, it is ideal for investigations into protein structure and function in physiologic conditions.<ref>{{Cite journal |last1=Ukai |first1=H. |last2=Inui |first2=S. |last3=Takada |first3=S. |last4=Dendo |first4=J. |last5=Ogawa |first5=J. |last6=Isobe |first6=K. |last7=Ashida |first7=T. |last8=Tamura |first8=M. |last9=Tabuki |first9=K. |last10=Ikeda |first10=M. |date=1997 |title=Types of organic solvents used in small- to medium-scale industries in Japan; a nationwide field survey |url=https://pubmed.ncbi.nlm.nih.gov/9439984/ |journal=International Archives of Occupational and Environmental Health |volume=70 |issue=6 |pages=385–392 |doi=10.1007/s004200050233 |issn=0340-0131 |pmid=9439984|bibcode=1997IAOEH..70..385U |s2cid=46697306 }}</ref><ref name=":0" />


Non-cleavable: The BS3 crosslinker has an 8-atom spacer is non-cleavable and the molecule is not cell membrane permeable. BS3 binds irreversibly to its conjugate molecules, meaning that once BS3 creates covalent linkages to its target molecules, those associations are not easily broken.
Non-cleavable: The BS3 crosslinker has an 8-atom spacer is non-cleavable and the molecule is not cell membrane permeable. BS3 binds irreversibly to its conjugate molecules, meaning that once BS3 creates covalent linkages to its target molecules, those associations are not easily broken.<ref>{{Cite journal |last1=Dorywalska |first1=Magdalena |last2=Strop |first2=Pavel |last3=Melton-Witt |first3=Jody A. |last4=Hasa-Moreno |first4=Adela |last5=Farias |first5=Santiago E. |last6=Galindo Casas |first6=Meritxell |last7=Delaria |first7=Kathy |last8=Lui |first8=Victor |last9=Poulsen |first9=Kris |last10=Sutton |first10=Janette |last11=Bolton |first11=Gary |last12=Zhou |first12=Dahui |last13=Moine |first13=Ludivine |last14=Dushin |first14=Russell |last15=Tran |first15=Thomas-Toan |date=2015 |title=Site-Dependent Degradation of a Non-Cleavable Auristatin-Based Linker-Payload in Rodent Plasma and Its Effect on ADC Efficacy |journal=PLOS ONE |volume=10 |issue=7 |pages=e0132282 |doi=10.1371/journal.pone.0132282 |issn=1932-6203 |pmc=4498778 |pmid=26161543|bibcode=2015PLoSO..1032282D |doi-access=free }}</ref>


Membrane impermeable: Since BS3 is a charged molecule, it cannot freely pass through cellular membranes which makes it an ideal crosslinker for cell surface proteins.
Membrane impermeable: Since BS3 is a charged molecule, it cannot freely pass through cellular membranes which makes it an ideal crosslinker for cell surface proteins.<ref>{{Cite journal |last=Cooper |first=Geoffrey M. |date=2000 |title=Cell Membranes |url=https://www.ncbi.nlm.nih.gov/books/NBK9928/ |journal=The Cell: A Molecular Approach. 2nd Edition |language=en |volume=2 |issue=1 |via=[[National Library of Medicine]]}}</ref>


Homobifunctional: BS3 is a homobifunctional crosslinker in that it has two identical reactive groups, i.e. the ''N''-hydroxysulfosuccinimide esters, and only one step is necessary to establish crosslinking between conjugate molecules.
Homobifunctional: BS3 is a homobifunctional crosslinker in that it has two identical reactive groups, i.e. the ''N''-hydroxysulfosuccinimide ([[sulfo-NHS]]) esters, and only one step is necessary to establish crosslinking between conjugate molecules.<ref>{{Cite journal |last1=Webb |first1=Ian K. |last2=Mentinova |first2=Marija |last3=McGee |first3=William M. |last4=McLuckey |first4=Scott A. |year=2013 |title=Gas-phase intramolecular protein crosslinking via ion/ion reactions: ubiquitin and a homobifunctional sulfo-NHS ester |journal=Journal of the American Society for Mass Spectrometry |volume=24 |issue=5 |pages=733–743 |doi=10.1007/s13361-013-0590-4 |issn=1879-1123 |pmc=3644013 |pmid=23463545|bibcode=2013JASMS..24..733W }}</ref>


Amine reactive: BS3 is amine-reactive in that its ''N''-hydroxysulfosuccinimide (NHS) esters at each end react specifically with primary amines to form stable amide bonds in an SN<sub>2</sub>-type reaction in which the ''N''-hydroxysulfosuccinimide acts as the leaving group. BS3 is particularly useful in protein-related applications in that it can react with the primary amines on the side chain of lysine residues and the N-terminus of polypeptide chains. This crosslinker can also be used to stabilize protein-protein interactions for further analysis by immunoprecipitation.
Amine reactive: BS3 is amine-reactive in that its ''N''-hydroxysulfosuccinimide (NHS) esters at each end react specifically with primary amines to form stable amide bonds in a nucleophilic acyl substitution-type reaction in which the ''N''-hydroxysulfosuccinimide acts as the leaving group.<ref>{{Cite journal |last1=Miller |first1=B. T. |last2=Collins |first2=T. J. |last3=Rogers |first3=M. E. |last4=Kurosky |first4=A. |date=1997 |title=Peptide biotinylation with amine-reactive esters: differential side chain reactivity |url=https://pubmed.ncbi.nlm.nih.gov/9437720/ |journal=Peptides |volume=18 |issue=10 |pages=1585–1595 |doi=10.1016/s0196-9781(97)00225-8 |issn=0196-9781 |pmid=9437720|s2cid=34633991 }}</ref> BS3 is particularly useful in protein-related applications in that it can react with the primary amines on the side chain of lysine residues and the N-terminus of polypeptide chains.<ref>{{Cite journal |last1=Abello |first1=Nicolas |last2=Kerstjens |first2=Huib A. M. |last3=Postma |first3=Dirkje S. |last4=Bischoff |first4=Rainer |date=November 15, 2007 |title=Selective acylation of primary amines in peptides and proteins |url=https://pubmed.ncbi.nlm.nih.gov/18001078/ |journal=Journal of Proteome Research |volume=6 |issue=12 |pages=4770–4776 |doi=10.1021/pr070154e |issn=1535-3893 |pmid=18001078}}</ref> This crosslinker can also be used to stabilize protein-protein interactions for further analysis by immunoprecipitation<ref>{{Cite book |last1=Tang |first1=Xiaoting |last2=Bruce |first2=James E. |chapter=Chemical Cross-Linking for Protein–Protein Interaction Studies |date=2009 |title=Mass Spectrometry of Proteins and Peptides |url=https://pubmed.ncbi.nlm.nih.gov/19241040/ |series=Methods in Molecular Biology |volume=492 |pages=283–293 |doi=10.1007/978-1-59745-493-3_17 |issn=1064-3745 |pmid=19241040|isbn=978-1-934115-48-0 }}</ref> or crosslinking mass spectroemtry.<ref>{{Cite journal |last1=Chen |first1=Zhuo Angel |last2=Rappsilber |first2=Juri |date=2023-06-01 |title=Protein structure dynamics by crosslinking mass spectrometry |url=https://www.sciencedirect.com/science/article/pii/S0959440X23000738 |journal=Current Opinion in Structural Biology |volume=80 |pages=102599 |doi=10.1016/j.sbi.2023.102599 |pmid=37104977 |s2cid=258351030 |issn=0959-440X}}</ref>


== Deuterated BS3 ==
== Deuterated BS3 ==
The deuterated crosslinker bis(sulfosuccinimidyl) 2,2,7,7-suberate-d4 is the "heavy" BS3 crosslinking agent that contains 4 deuterium atoms. When used in [[mass spectrometry]] studies, BS3-d4 provides a 4 dalton shift compared to crosslinked proteins with the non-deuterated analog (BS3-d<sub>0</sub>). Thus, "heavy" and "light" crosslinker analogs can be used for isotopically labeling protein and peptides in mass spectrometry research applications.
The deuterated crosslinker bis(sulfosuccinimidyl) 2,2,7,7-suberate-d4 is the "heavy" BS3 crosslinking agent that contains 4 deuterium atoms. When used in [[mass spectrometry]] studies, BS3-d4 provides a 4 dalton shift compared to crosslinked proteins with the non-deuterated analog (BS3-d<sub>0</sub>).<ref>{{Citation |last1=Barth |first1=Marie |title=Quantitative Cross-Linking of Proteins and Protein ComplexesProteinscomplexes |date=2021 |work=Quantitative Methods in Proteomics |pages=385–400 |editor-last=Marcus |editor-first=Katrin |place=New York, NY |publisher=Springer US |language=en |doi=10.1007/978-1-0716-1024-4_26 |isbn=978-1-0716-1024-4 |last2=Schmidt |first2=Carla |volume=2228 |pmid=33950504 |s2cid=233743850 |editor2-last=Eisenacher |editor2-first=Martin |editor3-last=Sitek |editor3-first=Barbara|doi-access=free }}</ref> Thus, "heavy" and "light" crosslinker analogs can be used for isotopically labeling protein and peptides in mass spectrometry research applications.<ref>{{Cite journal |last1=Fernández-Quintero |first1=Monica L. |last2=Kroell |first2=Katharina B. |last3=Grunewald |first3=Lukas J. |last4=Fischer |first4=Anna-Lena M. |last5=Riccabona |first5=Jakob R. |last6=Liedl |first6=Klaus R. |date=2022 |title=CDR loop interactions can determine heavy and light chain pairing preferences in bispecific antibodies |journal=mAbs |volume=14 |issue=1 |pages=2024118 |doi=10.1080/19420862.2021.2024118 |issn=1942-0870 |pmc=8803122 |pmid=35090383}}</ref>


== Applications ==
== Applications ==
* cell-surface receptor-ligand studies;
* Cell-surface receptor-ligand studies{{Citation needed|date=December 2022}}
* crosslinking biomolecules on cells;
* Crosslinking biomolecules on cells{{Citation needed|date=December 2022}}
* Fixation of protein complexes prior to protein interaction analysis<ref>{{Cite journal |last1=Lenz |first1=Swantje |last2=Sinn |first2=Ludwig R. |last3=O’Reilly |first3=Francis J. |last4=Fischer |first4=Lutz |last5=Wegner |first5=Fritz |last6=Rappsilber |first6=Juri |date=2021-06-11 |title=Reliable identification of protein-protein interactions by crosslinking mass spectrometry |journal=Nature Communications |language=en |volume=12 |issue=1 |pages=3564 |doi=10.1038/s41467-021-23666-z |issn=2041-1723 |pmc=8196013 |pmid=34117231|bibcode=2021NatCo..12.3564L }}</ref>
* fixation of protein complexes prior to protein interaction analysis


== Disuccinimidyl suberate ==
== Disuccinimidyl suberate ==
{{Main|disuccinimidyl suberate}}
{{Main|disuccinimidyl suberate}}
Disuccinimidyl suberate (DSS) is the non-water soluble analog of BS3. DSS and BS3 express the same crosslinking ability toward primary amines. The major structural difference between these two molecules is that DSS does not contain the [[sulfonate]] substituents at either end of the molecule, and it is this difference that is responsible for the uncharged, non-polar nature of the DSS molecule. Due to the hydrophobic nature of this crosslinker it must be dissolved in an organic solvent such as [[dimethylsulfoxide]] before being added to an aqueous sample. Because of the ability of DSS to cross cell membranes, it is best suited for applications where intracelluclar crosslinking is needed.
Disuccinimidyl suberate (DSS) is the non-water-soluble analog of BS3. DSS and BS3 express the same crosslinking ability toward primary amines.<ref>{{Cite journal |last1=DeCaprio |first1=James |last2=Kohl |first2=Thomas O. |date=2019-02-01 |title=Cross-Linking Antibodies to Beads with Disuccinimidyl Suberate (DSS) |url=https://pubmed.ncbi.nlm.nih.gov/30710026/ |journal=Cold Spring Harbor Protocols |volume=2019 |issue=2 |pages=pdb.prot098632 |doi=10.1101/pdb.prot098632 |issn=1559-6095 |pmid=30710026|s2cid=73441959 }}</ref> The major structural difference between these two molecules is that DSS does not contain the [[sulfonate]] substituents at either end of the molecule, and it is this difference that is responsible for the uncharged, non-polar nature of the DSS molecule.<ref>{{Cite web |title=Alkenes |url=https://www.angelo.edu/faculty/kboudrea/molecule_gallery/02_alkenes/00_alkenes.htm |url-status=live |archive-url=https://web.archive.org/web/20221231205613/https://www.angelo.edu/faculty/kboudrea/molecule_gallery/02_alkenes/00_alkenes.htm |archive-date=2022-12-31 |access-date=2022-12-31 |website=[[Angelo State University]]}}</ref> Due to the hydrophobic nature of this crosslinker it must be dissolved in an organic solvent such as [[dimethylsulfoxide]] before being added to an aqueous sample. Because of the ability of DSS to cross cell membranes, it is best suited for applications where intracellular crosslinking is needed.<ref>{{Citation |last1=Owais |first1=A. |title=3.9 Hydrophobicity and Surface Finish |date=2017-01-01 |url=https://www.sciencedirect.com/science/article/pii/B9780128035818091724 |work=Comprehensive Materials Finishing |pages=137–148 |editor-last=Hashmi |editor-first=MSJ |place=Oxford |publisher=Elsevier |language=en |isbn=978-0-12-803249-7 |access-date=2022-12-31 |last2=Khaled |first2=M. |last3=Yilbas |first3=B. S.}}</ref>
:[[Image:Disuccinimidyl suberate.png|thumb|left|Chemical structure of disuccinimidyl suberate]]{{clear-left}}
:[[Image:Disuccinimidyl suberate.png|thumb|left|Chemical structure of disuccinimidyl suberate]]{{clear left}}


== References==
== References==
{{Unreferenced|date=September 2009}}
{{reflist}}
{{reflist}}