Jump to content

Manganese(III) oxide: Difference between revisions

Page 1
Page 2
Content deleted Content added
m Journal cites:, added 1 DOI, using AWB (7751)
ce
 
(69 intermediate revisions by 55 users not shown)
Line 1: Line 1:
{{chembox
{{Chembox
| Verifiedfields = changed
| verifiedrevid = 413856748
| Watchedfields = changed
| ImageFile = Tl2O3structure.jpg
| verifiedrevid = 440701251
| ImageSize =
| ImageFile = Tl2O3structure.jpg
| IUPACName =
| ImageSize =
| OtherNames = dimanganese trioxide, manganese sesquioxide, manganic oxide
| IUPACName =
| Section1 = {{Chembox Identifiers
| OtherNames = dimanganese trioxide, manganese sesquioxide, manganic oxide, manganous oxide
| CASNo_Ref = {{cascite}}
| Section1 = {{Chembox Identifiers
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo = 1317-34-6
| CASNo = 1317-34-6
| UNII_Ref = {{fdacite|correct|FDA}}
| PubChem = 14827
| UNII = XQ8YIG4A7C
| PubChem = 14824
| RTECS = OP915000
| RTECS = OP915000
| SMILES = }}
| SMILES = O=[Mn]O[Mn]=O
| ChemSpiderID_Ref = {{chemspidercite|changed|chemspider}}
| Section2 = {{Chembox Properties
| ChemSpiderID = 14139
| InChI = 1/2Mn.3O/rMn2O3/c3-1-5-2-4
| InChIKey = GEYXPJBPASPPLI-YNHMASKPAU
| StdInChI_Ref = {{stdinchicite|changed|chemspider}}
| StdInChI = 1S/2Mn.3O
| StdInChIKey_Ref = {{stdinchicite|changed|chemspider}}
| StdInChIKey = GEYXPJBPASPPLI-UHFFFAOYSA-N

}}
| Section2 = {{Chembox Properties
| Formula = Mn<sub>2</sub>O<sub>3</sub>
| Formula = Mn<sub>2</sub>O<sub>3</sub>
| MolarMass = 157.8743 g/mol
| MolarMass = 157.8743 g/mol
| Appearance = brown or black crystalline
| Appearance = brown or black crystalline
| Density = 4.50 g/cm<sup>3</sup>
| Density = 4.50 g/cm<sup>3</sup>
| MeltingPtC = 888
| MeltingPt = 940 °C (decomp)
| MeltingPt_notes = (alpha form) <br> 940&nbsp;°C, decomposes (beta form)
| BoilingPt =
| BoilingPt =
| Solubility = 0.00504 g/100 mL (alpha form) <br> 0.01065 g/100 mL (beta form)
| Solubility = insoluble
| SolubleOther = insoluble in [[alcohol]], [[acetone]] <br> soluble in [[acid]]
| SolubleOther = insoluble in [[ethanol]], [[acetone]] <br> soluble in [[acid]], [[ammonium chloride]]
| MagSus = +14,100·10<sup>−6</sup> cm<sup>3</sup>/mol
}}
}}
| Section3 = {{Chembox Structure
| Section3 = {{Chembox Structure
| Structure_ref = <ref>{{cite journal | last1=Chandiran | first1=Kalaiselvi | last2=Murugesan | first2=Ramesh Aravind | last3=Balaji | first3=Revathi | last4=Andrews | first4=Nirmala Grace | last5=Pitchaimuthu | first5=Sudhagar | last6=Nagamuthu Raja | first6=Krishna Chandar | title=Long single crystalline α-Mn2O3 nanorods: facile synthesis and photocatalytic application | journal=Materials Research Express | publisher=IOP Publishing | volume=7 | issue=7 | date=2020-07-03 | issn=2053-1591 | doi=10.1088/2053-1591/ab9fbd | page=074001| s2cid=225561660 | doi-access=free }}</ref>
| CrystalStruct = [[Cubic crystal system|Cubic]], [[Pearson symbol|cI80]]<ref>{{cite journal| journal = Physica C| year = 1993|volume = 215|page = 205| title = Further evidence for Tl3+ in Tl-based superconductors from improved bond strength parameters involving new structural data of cubic Tl2O3| author = Otto H.H., Baltrasch R., Brandt H.J.| doi=10.1016/0921-4534(93)90382-Z}}</ref>
| CrystalStruct = [[Bixbyite]], [[Pearson symbol|cI80]]
| SpaceGroup = Ia-3, No. 206
| SpaceGroup = Ia{{overline|3}} (No. 206)
}}
| LattConst_a = 942 pm
| Section7 = {{Chembox Hazards
}}
| Section4 = {{Chembox Thermochemistry
| DeltaHf = −971&nbsp;kJ·mol<sup>−1</sup><ref name=b1>{{cite book| author = Zumdahl, Steven S.|title =Chemical Principles 6th Ed.| publisher = Houghton Mifflin Company| year = 2009| isbn = 978-0-618-94690-7|page=A22}}</ref>
| Entropy = 110&nbsp;J·mol<sup>−1</sup>·K<sup>−1</sup><ref name=b1/>
}}
| Section7 = {{Chembox Hazards
| MainHazards =
| MainHazards =
| NFPA-H = 1
| NFPA-H = 1
Line 31: Line 53:
| NFPA-R = 0
| NFPA-R = 0
| FlashPt =
| FlashPt =
| Autoignition = }}
| AutoignitionPt =
}}
| Section4 = {{Chembox Related
| Section8 = {{Chembox Related
| OtherAnions = [[manganese trifluoride]], [[manganese(III) acetate]]
| OtherAnions = [[manganese trifluoride]], [[manganese(III) acetate]]
| OtherCations = [[chromium(III) oxide]], [[iron(III) oxide]]
| OtherCations = [[chromium(III) oxide]], [[iron(III) oxide]]
| OtherCpds = [[manganese(II) oxide]], [[manganese dioxide]] }}
| OtherCompounds = [[manganese(II) oxide]], [[manganese dioxide]] }}
}}
}}
'''Manganese(III) oxide''' is a chemical compound with the formula Mn<sub>2</sub>O<sub>3</sub>. It occurs in nature as the mineral [[bixbyite]] (recently changed to bixbyite-(Mn)<ref>{{cite web | url=https://www.mindat.org/min-691.html | title=Bixbyite-(Mn) }}</ref><ref name=IMA>IMA 21-H: Redefinition of bixbyite and definition of bixbyite-(Fe) and bixbyite-(Mn). CNMNC Newsletter, 64, 2021; Mineralogical Magazine, 85, 2021).</ref>) and is used in the production of ferrites and [[thermistor]]s.
'''Manganese(III) oxide''' is the chemical compound of formula Mn<sub>2</sub>O<sub>3</sub>.

==Preparation and chemistry==
==Preparation and chemistry==
Heating MnO<sub>2</sub> in air at below 800°C α-Mn<sub>2</sub>O<sub>3</sub> is produced (higher temperatures produce Mn<sub>3</sub>O<sub>4</sub>).<ref name = "Greenwood">{{Greenwood&Earnshaw}}</ref> γ-Mn<sub>2</sub>O<sub>3</sub> can be produced by oxidation followed by dehydration of manganese(II) hydroxide.<ref name = "Greenwood"/> Many preparations of nano-crystalline Mn<sub>2</sub>O<sub>3</sub> have been reported, for example syntheses involving oxidation of Mn<sup>II</sup> salts or reduction of MnO<sub>2</sub>.<ref>{{cite journal|title=Preparation of α-Mn<sub>2</sub>O<sub>3</sub> and MnO from thermal decomposition of MnCO<sub>3</sub> and control of morphology|author=Shuijin Lei, Kaibin Tang, Zhen Fang, Qiangchun Liu, Huagui Zheng|journal=Materials Letters|volume=60|year=2006|page=53|doi=10.1016/j.matlet.2005.07.0}}</ref><ref>{{cite journal|title=A facile preparation of single-crystalline α-Mn<sub>2</sub>O<sub>3</sub> nanorods by ammonia-hydrothermal treatment of MnO<sub>2</sub>|author=Zhong-Yong Yuan, Tie-Zhen Ren, Gaohui Du, Bao-Lian Su|journal=Chemical Physics Letters|volume=389|year=2004|page=83|doi=10.1016/j.cplett.2004.03.064}}</ref><ref>{{cite journal|title=A room temperature process for making Mn<sub>2</sub>O<sub>3</sub> nano-particles and γ-MnOOH nano-rods|author=Navin Chandra, Sanjeev Bhasin, Meenakshi Sharma and Deepti Pal|journal=Materials Letters|volume=61|year=2007|page=3728|doi=10.1016/j.matlet.2006.12.024}}</ref>
Heating [[MnO2|MnO<sub>2</sub>]] in air at below 800&nbsp;°C produces α-Mn<sub>2</sub>O<sub>3</sub> (higher temperatures produce Mn<sub>3</sub>O<sub>4</sub>).<ref name = "Greenwood">{{Greenwood&Earnshaw|page=1049}}</ref> γ-Mn<sub>2</sub>O<sub>3</sub> can be produced by oxidation followed by dehydration of [[manganese(II) hydroxide]].<ref name = "Greenwood"/> Many preparations of nano-crystalline Mn<sub>2</sub>O<sub>3</sub> have been reported, for example syntheses involving oxidation of Mn<sup>II</sup> salts or reduction of MnO<sub>2</sub>.<ref>{{cite journal|title=Preparation of α-Mn<sub>2</sub>O<sub>3</sub> and MnO from thermal decomposition of MnCO<sub>3</sub> and control of morphology|author1=Shuijin Lei |author2=Kaibin Tang |author3=Zhen Fang |author4=Qiangchun Liu |author5=Huagui Zheng |journal=Materials Letters|volume=60|year=2006|page=53|doi=10.1016/j.matlet.2005.07.070}}</ref><ref>{{cite journal|title=A facile preparation of single-crystalline α-Mn<sub>2</sub>O<sub>3</sub> nanorods by ammonia-hydrothermal treatment of MnO<sub>2</sub>|author1=Zhong-Yong Yuan |author2=Tie-Zhen Ren |author3=Gaohui Du |author4=Bao-Lian Su |journal=Chemical Physics Letters|volume=389|year=2004|issue=1–3 |page=83|doi=10.1016/j.cplett.2004.03.064}}</ref><ref>{{cite journal|title=A room temperature process for making Mn<sub>2</sub>O<sub>3</sub> nano-particles and γ-MnOOH nano-rods|author1=Navin Chandra |author2=Sanjeev Bhasin |author3=Meenakshi Sharma |author4=Deepti Pal |journal=Materials Letters|volume=61|year=2007|page=3728|doi=10.1016/j.matlet.2006.12.024|issue=17}}</ref>


Manganese (III) oxide is formed by the redox reaction in an alkaline cell:
Manganese(III) oxide is formed by the redox reaction in an alkaline cell:


: 2 MnO<sub>2</sub> + Zn → Mn<sub>2</sub>O<sub>3</sub> + ZnO
: 2 MnO<sub>2</sub> + Zn → Mn<sub>2</sub>O<sub>3</sub> + ZnO{{citation needed|date=August 2015}}


Manganese (III) oxide Mn<sub>2</sub>O<sub>3</sub> must not be confused with MnOOH manganese (III) oxohydroxide. Contrary to Mn<sub>2</sub>O<sub>3</sub>, MnOOH is a compound that decomposes at about 300°C to form MnO<sub>2</sub>.<ref>{{cite journal|title=Hydrogen Bonding and Jahn-Teller Distortion in Groutite,α-MnOOH, and Manganite,γ-MnOOH, and Their Relations to the Manganese Dioxides Ramsdellite and Pyrolusite|author=Thomas Kohler, Thomas Armbruster, Eugen Libowitzky|journal=Journal of Solid State Chemistry|volume=133|year=1997|pages=486–500|doi=10.1006/jssc.1997.7516}}</ref>
Manganese(III) oxide Mn<sub>2</sub>O<sub>3</sub> must not be confused with MnOOH manganese(III) oxyhydroxide. Contrary to Mn<sub>2</sub>O<sub>3</sub>, MnOOH is a compound that decomposes at about 300&nbsp;°C to form MnO<sub>2</sub>.<ref>{{cite journal|title=Hydrogen Bonding and Jahn-Teller Distortion in Groutite,α-MnOOH, and Manganite,γ-MnOOH, and Their Relations to the Manganese Dioxides [[Ramsdellite]] and Pyrolusite|author1=Thomas Kohler |author2=Thomas Armbruster |author3=Eugen Libowitzky |journal=Journal of Solid State Chemistry|volume=133|year=1997|pages=486–500|doi=10.1006/jssc.1997.7516|issue=2}}</ref>


==Structure==
==Structure==
Mn<sub>2</sub>O<sub>3</sub> is unlike many other transition metal oxides in that it does not adopt the [[corundum]] ([[aluminium oxide|Al<sub>2</sub>O<sub>3</sub>]]) structure.<ref name = "Greenwood" /> Two forms are generally recognized, α-Mn<sub>2</sub>O<sub>3</sub> and γ-Mn<sub>2</sub>O<sub>3</sub>,<ref name = "Wells">Wells A.F. (1984) ''Structural Inorganic Chemistry'' 5th edition Oxford Science Publications ISBN 0-19-855370-6</ref> although a high pressure form with the CaIrO<sub>3</sub> structure has been reported too.<ref>High Pressure Phase transition in Mn<sub>2</sub>O<sub>3</sub> to the CaIrO<sub>3</sub>-type Phase Santillan, J.; Shim, S. American Geophysical Union, Fall Meeting 2005, abstract #MR23B-0050</ref>
Mn<sub>2</sub>O<sub>3</sub> is unlike many other transition metal oxides in that it does not adopt the [[corundum]] ([[aluminium oxide|Al<sub>2</sub>O<sub>3</sub>]]) structure.<ref name = "Greenwood" /> Two forms are generally recognized, α-Mn<sub>2</sub>O<sub>3</sub> and γ-Mn<sub>2</sub>O<sub>3</sub>,<ref name = "Wells">Wells A.F. (1984) ''Structural Inorganic Chemistry'' 5th edition Oxford Science Publications {{ISBN|0-19-855370-6}}</ref> although a high pressure form with the CaIrO<sub>3</sub> structure has been reported too.<ref>High Pressure Phase transition in Mn<sub>2</sub>O<sub>3</sub> to the CaIrO<sub>3</sub>-type Phase Santillan, J.; Shim, S. American Geophysical Union, Fall Meeting 2005, abstract #MR23B-0050</ref>


α-Mn<sub>2</sub>O<sub>3</sub> has the cubic [[bixbyite]] structure, which is an example of a C-type rare earth sesquioxide ([[Pearson symbol]] cI80, space group Ia3, #206). The [[bixbyite]] structure has been found to be stabilised by the presence of
α-Mn<sub>2</sub>O<sub>3</sub> has the cubic [[bixbyite]] structure, which is an example of a C-type rare earth sesquioxide ([[Pearson symbol]] cI80, space group Ia{{overline|3}}, #206). The bixbyite structure has been found to be stabilised by the presence of
small amounts of Fe<sup>3+</sup>, pure Mn<sub>2</sub>O<sub>3</sub> has an orthorhombic structure ([[Pearson symbol]] oP24,space group Pbca, #61).<ref>{{cite journal|title=Structure of α-Mn<sub>2</sub>O<sub>3</sub>, (Mn<sub>0.983</sub>Fe<sub>0.017</sub>)<sub>2</sub>O<sub>3</sub> and (Mn<sub>0.37</sub>Fe<sub>0.63</sub>)<sub>2</sub>O<sub>3</sub> and relation to magnetic ordering|author=Geller S.|journal=Acta Cryst|year=1971|volume=B27|page=821|doi=10.1107/S0567740871002966}}</ref>
small amounts of Fe<sup>3+</sup>, pure Mn<sub>2</sub>O<sub>3</sub> has an orthorhombic structure ([[Pearson symbol]] oP24, space group Pbca, #61).<ref>{{cite journal|title=Structure of α-Mn<sub>2</sub>O<sub>3</sub>, (Mn<sub>0.983</sub>Fe<sub>0.017</sub>)<sub>2</sub>O<sub>3</sub> and (Mn<sub>0.37</sub>Fe<sub>0.63</sub>)<sub>2</sub>O<sub>3</sub> and relation to magnetic ordering|author=Geller S.|journal=Acta Crystallogr B|year=1971|volume=27|page=821|doi=10.1107/S0567740871002966|issue=4}}</ref> α-Mn<sub>2</sub>O<sub>3</sub> undergoes [[Antiferromagnetism|antiferromagnetic]] transition at 80 K. <ref>{{cite journal|title = Magnetic and Crystallographic Transitions in Sc+, Cr+, and Ga+ Substituted Mn2O3|author = Geller S.|journal = Physical Review B|year=1970|volume=1| issue=9 |page=3763|doi=10.1103/physrevb.1.3763}}</ref>


γ-Mn<sub>2</sub>O<sub>3</sub> has a structure related to the spinel structure of [[manganese(II,III) oxide|Mn<sub>3</sub>O<sub>4</sub>]] where the oxide ions are cubic close packed. This is similar to the relationship between [[iron(III) oxide|γ-Fe<sub>2</sub>O<sub>3</sub>]] and [[iron(II,III) oxide|Fe<sub>3</sub>O<sub>4</sub>]].<ref name = "Wells"/> γ-Mn<sub>2</sub>O<sub>3</sub> is ferrimagnetic with a Neel temperature of 39 K.<ref>{{cite journal|title=Ferrimagnetism in γ-Manganese Sesquioxide (γ−Mn<sub>2</sub>O<sub>3</sub>) Nanoparticles|author=Kim S. H, Choi B. J ,Lee G.H., Oh S. J., Kim B., Choi H. C., Park J, Chang Y.|journal=Journal of the Korean Physical Society|volume=46|issue=4|year=2005|page=941}}</ref>
γ-Mn<sub>2</sub>O<sub>3</sub> has a structure related to the spinel structure of [[manganese(II,III) oxide|Mn<sub>3</sub>O<sub>4</sub>]] where the oxide ions are cubic close packed. This is similar to the relationship between [[iron(III) oxide|γ-Fe<sub>2</sub>O<sub>3</sub>]] and [[iron(II,III) oxide|Fe<sub>3</sub>O<sub>4</sub>]].<ref name = "Wells"/> γ-Mn<sub>2</sub>O<sub>3</sub> is [[Ferrimagnetism|ferrimagnetic]] with a [[Néel temperature]] of 39 K.<ref>{{cite journal|title=Ferrimagnetism in γ-Manganese Sesquioxide (γ−Mn<sub>2</sub>O<sub>3</sub>) Nanoparticles|author1=Kim S. H |author2=Choi B. J |author3=Lee G.H. |author4=Oh S. J. |author5=Kim B. |author6=Choi H. C. |author7=Park J |author8=Chang Y. |journal=Journal of the Korean Physical Society|volume=46|issue=4|year=2005|page=941}}</ref>

ε-Mn<sub>2</sub>O<sub>3</sub> takes on a rhombohedral [[ilmenite]] structure (the first binary compound known to do so), wherein the manganese cations divided equally into oxidation states 2+ and 4+. ε-Mn<sub>2</sub>O<sub>3</sub> is antiferromagnetic with a Néel temperature of 210 K.<ref>{{Cite journal |last1=Ovsyannikov |first1=Sergey V. |last2=Tsirlin |first2=Alexander A. |last3=Korobeynikov |first3=Igor V. |last4=Morozova |first4=Natalia V. |last5=Aslandukova |first5=Alena A. |last6=Steinle-Neumann |first6=Gerd |last7=Chariton |first7=Stella |last8=Khandarkhaeva |first8=Saiana |last9=Glazyrin |first9=Konstantin |last10=Wilhelm |first10=Fabrice |last11=Rogalev |first11=Andrei |last12=Dubrovinsky |first12=Leonid |date=2021-09-06 |title=Synthesis of Ilmenite-type ε-Mn 2 O 3 and Its Properties |url=https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01666 |journal=Inorganic Chemistry |language=en |volume=60 |issue=17 |pages=13348–13358 |doi=10.1021/acs.inorgchem.1c01666 |pmid=34415155 |s2cid=237242460 |issn=0020-1669}}</ref>


==References==
==References==
Line 59: Line 85:


{{Manganese compounds}}
{{Manganese compounds}}
{{oxides}}
[[Category:Manganese compounds]]
[[Category:Oxides]]
[[Category:Manganese(III) minerals]]
[[Category:Manganese minerals]]
[[Category:Sesquioxides]]
[[Category:Sesquioxides]]
[[Category:Transition metal oxides]]

[[de:Mangan(III)-oxid]]
[[pl:Tlenek manganu(III)]]
[[simple:Manganese(III) oxide]]