
Port Contention for Fun and Profit
Alejandro Cabrera Aldaya∗, Billy Bob Brumley†, Sohaib ul Hassan†, Cesar Pereida García†, Nicola Tuveri†

∗Universidad Tecnológica de la Habana (CUJAE), Habana, Cuba
†Tampere University, Tampere, Finland

Abstract—Simultaneous Multithreading (SMT) architectures
are attractive targets for side-channel enabled attackers, with
their inherently broader attack surface that exposes more per
physical core microarchitecture components than cross-core at-
tacks. In this work, we explore SMT execution engine sharing
as a side-channel leakage source. We target ports to stacks of
execution units to create a high-resolution timing side-channel
due to port contention, inherently stealthy since it does not
depend on the memory subsystem like other cache or TLB
based attacks. Implementing our channel on Intel Skylake and
Kaby Lake architectures featuring Hyper-Threading, we mount
an end-to-end attack that recovers a P-384 private key from
an OpenSSL-powered TLS server using a small number of
repeated TLS handshake attempts. Furthermore, we show that
traces targeting shared libraries, static builds, and SGX enclaves
are essentially identical, hence our channel has wide target
application.

I. INTRODUCTION

Microarchitecture side-channel attacks increasingly gain
traction due to the real threat they pose to general-purpose
computer infrastructure. New techniques emerge every year [1,
2], and they tend to involve lower level hardware, they get
more complex but simpler to implement, and more difficult
to mitigate, thus making microarchitecture attacks a more
viable attack option. Many of the current microarchitecture
side-channel techniques rely on the persistent state property
of shared hardware resources, e.g., caches, TLBs, and BTBs,
but non-persistent shared resources can also lead to side-
channels [3], allowing leakage of confidential information
from a trusted to a malicious process.

The microprocessor architecture is complex and the effect
of a component in the rest of the system can be difficult (if not
impossible) to track accurately: especially when components
are shared by multiple processes during execution. Previous
research [4, 5] confirms that as long as (persistent and non-
persistent) shared hardware resources exist, attackers will be
able to leak confidential information from a system.

In this work, we present a side-channel attack vector exploit-
ing an inherent component of modern processors using Intel
Hyper-Threading technology. Our new side-channel technique
PORTSMASH is capable of exploiting timing information de-
rived from port contention to the execution units, thus targeting
a non-persistent shared hardware resource. Our technique can
choose among several configurations to target different ports
in order to adapt to different scenarios, thus offering a very
fine spatial granularity. Additionally, PORTSMASH is highly
portable and its prerequisites for execution are minimal, i.e.,
does not require knowledge of memory cache-lines, eviction

sets, machine learning techniques, nor reverse engineering
techniques.

To demonstrate PORTSMASH in action, we present a com-
plete end-to-end attack in a real-world setting attacking the
NIST P-384 curve during signature generation in a TLS server
compiled against OpenSSL 1.1.0h for crypto functionality.
Our Spy program measures the port contention delay while
executing in parallel to ECDSA P-384 signature generation,
creating a timing signal trace containing a noisy sequence of
add and double operations during scalar multiplication. We
then process the signal using various techniques to clean the
signal and reduce errors in the information extracted from each
trace. We then pass this partial key information to a recovery
phase, creating lattice problem instances which ultimately
yield the TLS server’s ECDSA private key.

We extend our analysis to SGX, showing it is possible to
retrieve secret keys from SGX enclaves by an unprivileged
attacker. We compare our PORTSMASH technique to other
side-channel techniques in terms of spatial resolution and
detectability. Finally, we comment on the impact of current
mitigations proposed for other side-channels on PORTSMASH,
and our recommendations to protect against it.

In summary, we offer a full treatment of our new technique:
from microarchitecture and side-channel background (Sec-
tion II); to the nature of port contention leakage when placed
in an existing covert channel framework (Section III); to its
construction as a versatile timing side-channel (Section IV);
to its application in real-world settings, recovering a private
key (Section V); to discussing (lack of) detectability and
mitigations (Section VI). We conclude in Section VII.

II. BACKGROUND

A. Microarchitecture

This section describes some of Intel’s microarchitectural
components and how they behave with Intel SMT implemen-
tation (i.e., Hyper-Threading technology). Intel launched its
SMT implementation with the Pentium 4 MMX processor [6].
Hyper-Threading technology (HT) aims at providing paral-
lelism without duplicating all microarchitectural components
in a physical processor. Instead, a processor supporting Hyper-
Threading has at least two logical cores per physical core
where some components are shared between the logical ones.

Figure 1 shows a high-level description of the layout of an
Intel i7 processor [7]. This figure shows four physical cores,
each with two logical cores. In this setting, the OS sees a
processor with eight cores.
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Fig. 2. Skylake/Kaby Lake microarchitecture.

Figure 1 sketches some microarchitectural components with
a sharing perspective. L1 and L2 caches are shared between a
pair of logical cores in the same physical core. The next level
depicts how an Execution Engine (EE) is also shared between
two logical cores. This component is very important for this
paper as the presented microarchitectural side-channel relies
on this logical-core-shared feature. On the other hand, the last
level cache (LLC) is shared between all cores.

Generally speaking, the EE is responsible for executing
instructions therefore it is closely related to the pipeline
concept [7, 8]. A simplified pipeline model consists of three
phases: (1) fetch, (2) decode, and (3) execute. While these
phases have complex internal working details, Figure 2 pro-
vides a high-level abstraction focusing mainly on the EE part,
and its description below also follows the same approach. For
more information about its inner working details we defer
to [6–8].

Each logical core has its own registers file, and the pipeline
fetches instructions from memory according to the program
counter on each of them. For the sake of processing perfor-
mance fairness, this fetching is interleaved between the logical
cores. After the fetch stage, a decoding phase decomposes each
instruction into simpler micro-operations (uops). Each micro-
operation does a single task, therefore this splitting helps out-
of-order execution by interleaving their executions for the sake
of performance. After this point, all processing is done on uops
instead of instructions. The decoding phase then issues these
uops to the execution scheduler.

At the scheduler there is a queue of uops that belongs to
both logical cores. One task of the scheduler is issuing these
uops to the Execution Ports while maximizing performance.
An Execution Port is a channel to the execution units, the
latter being where uops are actually executed. Figure 2 shows
execution units as gray-colored boxes with labels indicating
their functionality. For example, ports 0, 1, 5, and 6 can be
used to execute simple arithmetic instructions, because each
of them is a channel to an ALU execution unit. While ports 2,
3, 4, and 7 are dedicated to memory-based uops (e.g., loads
and stores).

As an illustrative example of how the whole process
happens in this simplified model, let us consider the adc
mem, reg instruction (AT&T syntax), which adds (with
carry) the value at memory location mem into the content in
register reg. According to Fog’s instruction table for Skylake
microarchitecture [9], this instruction splits into two uops:
one arithmetic uop (that actually performs the addition) and
another for loading a value from memory. The former can
be issued to ports 0 or 6, while the latter to port 2 and
3 [9]. However, if we change the operand order in the original
instruction (i.e., now the addition result is stored back in the
memory location mem), the new instruction splits into three
uops: two are essentially the same as before and another is
issued for storing the result back to memory (i.e., an operation
handled by port 4).

This execution sequence behaves exactly the same in the
presence of Hyper-Threading. At the scheduler, there are uops
waiting for dispatch to some port for execution. These uops
could actually belong to instructions fetched from any logical
core, therefore, these cores share the EE in a very granular
approach (at uops level).

B. SMT: Timing Attacks

Timing attacks on microprocessors featuring SMT technol-
ogy have a long and storied history with respect to side-
channel analysis. Since the revival of SMT in 1995 [10],
it was noted that contention was imminent, particularly in
the memory subsystem. Arguably, timing attacks became a
more serious security threat once Intel introduced its Hyper-
Threading technology on the Pentium 4 microarchitecture.
Researchers knew that resource sharing leads to resource
contention, and it took a remarkably short time to notice
that contention introduces timing variations during execution,
which can be used as a covert channel, and as a side-channel.

In his pioneering work, Percival [11] described a novel
cache-timing attack against RSA’s Sliding Window Expo-
nentiation (SWE) implemented in OpenSSL 0.9.7c. The at-
tack exploits the microprocessor’s Hyper-Threading feature
and after observing that threads “share more than merely
the execution units”, the author creates a spy process that
exfiltrates information from the L1 data cache. The L1 data
cache attack correctly identifies accesses to the precomputed
multipliers used during the SWE algorithm, leading to RSA
private key recovery. As a countermeasure, to ensure uniform
access to the cache lines, irrespective of the multiplier used,



the OpenSSL team included a “constant-time” Fixed Window
Exponentiation (FWE) algorithm paired with a scatter-gather
method to mask table access [12].

Cache-based channels are not the only shared resource to
receive security attention. Wang and Lee [3] and Acıiçmez
and Seifert [13] analyzed integer multiplication unit contention
in old Intel Pentium 4 processors with SMT support [6]. In
said microarchitecture, the integer multiplication unit is shared
between the two logical cores. Therefore contention could
exist between two concurrent processes running in the same
physical core if they issue integer multiplication instructions.
Wang and Lee [3] explore its application as a covert channel,
while Acıiçmez and Seifert [13] expand the side-channel
attack approach.

Acıiçmez and Seifert [13] stated this side-channel attack is
very specific to the targeted Intel Pentium 4 architecture due
to the fact that said architecture only has one integer multiplier
unit. They illustrated an attack against the SWE algorithm in
OpenSSL 0.9.8e. For this purpose they developed a proof-of-
concept, modifying OpenSSL source code to enhance the dis-
tinguishability between square and multiplication operations
in the captured trace. In addition to integer multiplication unit
sharing, their attack relies on the fact that square and mul-
tiplication operations have different latencies, an unnecessary
assumption in our work.

In a 2016 blog post1, Anders Fogh introduced Covert Shot-
gun, an automated framework to find SMT covert channels.
The strategy is to enumerate all possible pairs of instructions
in an ISA. For each pair, duplicate each instruction a small
number of times, then run each block in parallel on the same
physical core but separate logical cores, measuring the clock-
cycle performance. Any pairwise timing discrepancies in the
resulting table indicate the potential for a covert channel,
where the source of the leakage originates from any number
of shared SMT microarchitecture components. Fogh explic-
itly mentions caching of decoded uops, the reorder buffer,
port congestion, and execution unit congestion as potential
sources, even reproducing the rdseed covert channel [14]
that remarkably works across physical cores.

Covert channels from Covert Shotgun can be viewed as a
higher abstraction of the integer multiplication unit contention
covert channel by Wang and Lee [3], and our side-channel
a higher abstraction of the corresponding side-channel by
Acıiçmez and Seifert [13]. Now limiting the discussion to port
contention, our attack focuses on the port sharing feature. This
allows a darker-box analysis of the targeted binary because
there is no need to know the exact instructions executed by
the victim process, only that the attacker must determine the
distinguishable port through trial and error. This feature is
very helpful, for example, in a scenario where the targeted
code is encrypted and only decrypted/executed inside an SGX
enclave [15].

Analogous to [11], Acıiçmez et al. [16] performed a cache-
timing attack against OpenSSL DSA, but this time targeting

1https://cyber.wtf/2016/09/27/covert-shotgun/

the L1 instruction cache. The authors demonstrate an L1
instruction cache attack in a real-world setting and using
analysis techniques such as vector quantization and hidden
Markov models, combined with a lattice attack, they achieve
DSA full key recovery on OpenSSL version 0.9.8l. They
perform their attack on an Intel Atom processor featuring
Hyper-Threading. Moreover, due to the relevance and threat
of cache-timing attacks, the authors list and evaluate several
possible countermeasures to close the cache side-channels.

More recently, Yarom et al. [5] presented CacheBleed,
a new cache-timing attack affecting some older processors
featuring Hyper-Threading such as Sandy Bridge. The authors
exploit the fact that cache banks can only serve one request
at a time, thus issuing several requests to the same cache
bank, i.e., accessing the same offset within a cache line,
results in bank contention, leading to timing variations and
leaking information about low address bits. To demonstrate
the attack, the authors target the RSA exponentiation in
OpenSSL 1.0.2f. During exponentiation, RSA uses the scatter-
gather method adopted due to Percival’s work [11]. More
precisely, to compute the exponentiation, the scatter-gather
method accesses the cache bank or offset within a cache line
according to the multiplier used, which depends on a digit
of the private key. Thus, by detecting the used bank through
cache bank contention timings, an attacker can determine the
multiplier used and consequently digits of the private key. The
attack requires very fine granularity, thus the victim and the
spy execute in different threads in the same core, and after
observing 16,000 decryptions, the authors fully recover 4096-
bit RSA private keys.

In 2018, Gras et al. [4] presented TLBleed, a new class
of side-channel attacks relying on the Translation Lookaside
Buffers (TLB) and requiring Hyper-Threading to leak infor-
mation. In their work, the authors reverse engineer the TLB
architecture and demonstrate the TLB is a (partially) shared
resource in SMT Intel architectures. More specifically, the L1
data TLB and L2 mixed TLB are shared between multiple
logical cores and a malicious process can exploit this to
leak information from another process running in the same
physical core. As a proof-of-concept, the authors attack a non
constant-time version of 256-bit EdDSA [17] and a 1024-
bit RSA hardened against FLUSH+RELOAD as implemented
in libgcrypt. The EdDSA attack combined with a machine-
learning technique achieves a full key recovery success rate
of 97%, while the RSA attack recovers 92% of the private
key but the authors do not perform full key recovery. Both
attacks are possible after capturing a single trace.

III. INSTANTIATING COVERT SHOTGUN

Being an automated framework, Covert Shotgun is a power-
ful tool to detect potential leakage in SMT architectures. But
due to its black-box, brute-force approach, it leaves identifying
the root cause of leakage as an open problem: “Another
interesting project would be identifying [subsystems] which
are being congested by specific instructions”. In this section,
we fill this research gap with respect to port contention.

https://cyber.wtf/2016/09/27/covert-shotgun/


Our intention is not to utilize this particular covert channel
in isolation, but rather understand how the channel can be
better optimized for its later conversion to a side-channel in
Section IV.

A. Concept

Assume cores C0 and C1 are two logical cores of the same
physical core. To make efficient and fair use of the shared EE,
a simple strategy for port allocation is as follows. Denote i the
clock cycle number, j = i mod 2, and P the set of ports.

1) Cj is allotted Pj ⊆ P such that |P \ Pj | is minimal.
2) C1−j is allotted P1−j = P \ Pj .
There are two extremes in this strategy. For instance, if C0

and C1 are executing fully pipelined code with no hazards,
yet make use of disjoint ports, then both C0 and C1 can issue
in every clock cycle since there is no port contention. On the
other hand, if C0 and C1 are utilizing the same ports, then
C0 and C1 alternate, issuing every other clock cycle, realizing
only half the throughput performance-wise.

Consider Alice and Bob, two user space programs, exe-
cuting concurrently on C0 and C1, respectively. The above
strategy implies the performance of Alice depends on port
contention with Bob, and vice versa. This leads to a covert
timing channel as follows. Take two latency-1 instructions:
NOP0 that can only execute on port 0, and NOP1 similarly
on port 1. Alice sends a single bit of information to Bob as
follows.

1) If Alice wishes to send a zero, she starts executing NOP0
continuously; otherwise, a one and NOP1 instead.

2) Concurrently, Bob executes a fixed number of NOP0
instructions, and measures the execution time t0.

3) Bob then executes the same fixed number of NOP1
instructions, and measures the execution time t1.

4) If t1 > t0, Bob receives a one bit; otherwise, t0 > t1
and a zero bit.

The covert channel works because if both Alice and Bob
are issuing NOP0 instructions, they are competing for port 0
and the throughput will be cut in half (similarly for NOP1
and port 1). On the other hand, with no port contention both
NOP0 and NOP1 execute in the same clock cycle, achieving
full throughput and lower latency.

B. Implementation

In this section, we give empirical evidence that Intel Hyper-
Threading uses the previous hypothetical port allocation strat-
egy for SMT architectures (or one indistinguishable from it
for our purposes). Along the way, we optimize the channel
with respect to pipeline usage, taking into account instruction
latencies and duplicated execution units.

In these experiments, we used an Intel Core i7-7700HQ
Kaby Lake featuring Hyper-Threading with four cores and
eight threads. Using the perf tool to monitor uops dispatched
to each of the seven ports and the clock cycle count for a
fixed number of instructions, we determined the port footprint
and performance characteristics of several instructions, listed
in Table I. We chose this mix of instructions to demonstrate

TABLE I
SELECTIVE INSTRUCTIONS. ALL OPERANDS ARE REGISTERS, WITH NO

MEMORY OPS. THROUGHPUT IS RECIPROCAL.

Instruction Ports Latency Throughput
add 0 1 5 6 1 0.25
crc32 1 3 1
popcnt 1 3 1
vpermd 5 3 1
vpbroadcastd 5 3 1

TABLE II
RESULTS OVER A THOUSAND TRIALS. AVERAGE CYCLES ARE IN
THOUSANDS, RELATIVE STANDARD DEVIATION IN PERCENTAGE.

Diff. Phys. Core Same Phys. Core
Alice Bob Cycles Rel. SD Cycles Rel. SD
Port 1 Port 1 203331 0.32% 408322 0.05%

Port 1 Port 5 203322 0.25% 203820 0.07%

Port 5 Port 1 203334 0.31% 203487 0.07%

Port 5 Port 5 203328 0.26% 404941 0.05%

the extremes: from add that can be issued to any of the
four integer ALUs behind ports 0, 1, 5, or 6, to crc32
and vpermd that restrict to only ports 1 and 5, respectively.
Furthermore, to minimize the effect of the memory subsystem
on timings (e.g., cache hits and misses), in this work we do not
consider any explicit store or load instructions, or any memory
operands to instructions (i.e., all operands are registers).

Given the results in Table I, we construct the covert channel
as follows: crc32 (port 1) will serve as the NOP0 instruction,
and vpermd (port 5) as NOP1. Note that this configuration is
one of the n2 brute-force pairs of Covert Shotgun. However,
as we are targeting port contention we take into account
instruction latency, throughput, and port usage to maximize
its impact. Being crc32 and vpermd latency-3 instructions,
we construct a block of three such instructions with disjoint
operands to fill the pipeline, avoid hazards, and realize a
throughput of one instruction per clock cycle. We repeated
each block 64 times to obtain a low ratio of control flow logic
to overall instructions retired. The Alice program sends a zero
bit by executing the repeated crc32 blocks in an infinite loop.
Concurrently on the receiver side, using perf, we measured
the number of clock cycles required for the Bob program
to execute 220 of the repeated crc32 blocks, then again
measured with the same number of repeated vpermd blocks.
We then repeated the experiment with Alice sending a one
bit analogously with the vpermd instruction. We carried out
the experiments with both Alice and Bob pinned to separate
logical cores of the same physical core, then also different
physical cores. As a rough estimate, for full throughput we
expect 3 · 64 · 220 ≈ 201 million cycles (three instructions,
with 64 repetitions, looping 220 times); even with a latency of
three, our construction ensures a throughput of one. Of course
there is some overhead for control flow logic.

Table II contains the results, averaged over a thousand trials.
First on separate physical cores, we see that the cycle count is



essentially the same and approaches our full throughput esti-
mate, regardless of which port Alice and/or Bob are targeting.
This confirms the channel does not exist across physical cores.
In contrast, the results on the same physical core validates
the channel. When Alice and Bob target separate ports, i.e.,
the port 1/5 and 5/1 cases, the throughput is maximum and
matches the results on different physical cores. However, when
targeting the same port, i.e., the port 1/1 and 5/5 cases, the
throughput halves and the cycle count doubles due to the port
contention. This behavior precisely matches the hypothesis in
Section III-A.

IV. FROM COVERT TO SIDE-CHANNEL

One takeaway from the previous section is that, given two
user space programs running on two separate logical cores
of the same physical core, the clock cycle performance of
each program depends on each other’s port utilization. Covert
Shotgun leaves extension to side-channels as an open problem:
“it would be interesting to investigate to what extent these
covert channels extend to spying”. In this section, we fill this
research gap by developing PORTSMASH, a new timing side-
channel vector via port contention.

At a high level, in PORTSMASH the goal of the Spy is
to saturate one or more ports with a combination of full
instruction pipelining and/or generous instruction level par-
allelism. By measuring the time required to execute a series
of said instructions, the Spy learns about the Victim’s rate and
utilization of these targeted ports. A higher latency observed
by the Spy implies port contention with the Victim, i.e., the
Victim issued instructions executed through said ports. A lower
latency implies the Victim did not issue such instructions,
and/or stalled due to a hazard or waiting due to, e.g., a cache
miss. If the Victim’s ability to keep the pipeline full and utilize
instruction level parallelism depends on a secret, the Spy’s
timing information potentially leaks that secret.

As a simple example conceptually related to our later
application in Section V, consider binary scalar multiplication
for elliptic curves. Each projective elliptic curve point double
and conditional add is made up of a number of finite field
additions, subtractions, shifts, multiplications, and squarings.
These finite field operations utilize the pipeline and ports in
very different ways and have asymptotically different running
times. For example, shifts are extremely parallelizable, while
additions via add-with-carry are strictly serial. Furthermore,
the number and order of these finite field operations is not
the same for point double and add. The Spy can potentially
learn this secret sequence of doubles and conditional adds
by measuring its own performance through selective ports,
leading to (secret) scalar disclosure.

Figure 3 lists our proposed PORTSMASH Spy process. The
first rdtsc wrapped by lfence establishes the start time.
Then, depending on the architecture and target port(s), the Spy
executes one of several strategies to saturate the port(s). Once
those complete, the second rdtsc establishes the end time.
These two counters are concatenated and stored out to a buffer
at rdi. The Spy then repeats this entire process. Here we

mov $COUNT, %rcx #elif defined(P0156)
.rept 64

1: add %r8, %r8
lfence add %r9, %r9
rdtsc add %r10, %r10
lfence add %r11, %r11
mov %rax, %rsi .endr

#else
#ifdef P1 #error No ports defined
.rept 48 #endif
crc32 %r8, %r8
crc32 %r9, %r9 lfence
crc32 %r10, %r10 rdtsc
.endr shl $32, %rax
#elif defined(P5) or %rsi, %rax
.rept 48 mov %rax, (%rdi)
vpermd %ymm0, %ymm1, %ymm0 add $8, %rdi
vpermd %ymm2, %ymm3, %ymm2 dec %rcx
vpermd %ymm4, %ymm5, %ymm4 jnz 1b
.endr

Fig. 3. The PORTSMASH technique with multiple build-time port configura-
tions P1, P5, and P0156.

choose to store the counter values and not only the latency, as
the former helps identify interrupts (e.g., context switches) and
the latter can always be derived offline from the former, but
the converse is not true. It is also worth mentioning the Spy
must ensure some reasonable number of instructions retired
between successive rdtsc calls to be able to reliably detect
port contention; we expand later.

In general, strategies are architecture dependent and on
each architecture there are several strategies, depending on
what port(s) the Spy wishes to measure. We now provide
and describe three such example strategies (among several
others that naturally follow) for Intel Skylake and Kaby Lake:
one that leverages instruction level parallelism and targets
multiple ports with a latency-1 instruction, and two that
leverage pipelining and target a single port with higher latency
instructions.

Multiple ports: In Figure 3, the P0156 block targets ports
0, 1, 5, and 6. These four add instructions do not create
hazards, hence all four can execute in parallel to the four
integer ALUs behind these ports, and as a latency-1 instruction
in total they should consume a single clock cycle. To provide
a window to detect port contention, the Spy replicates these
instructions 64 times. With no port contention, this should
execute in 64 clock cycles, and 128 clock cycles with full
port contention.

Single port: In Figure 3, the P1 and P5 blocks target port
1 and 5, respectively, in a similar fashion. Since these are
latency-3 instructions, we pipeline three sequential instructions
with distinct arguments to avoid hazards and fill the pipeline,
achieving full throughput of one instruction per cycle. Here
the window size is 48, so the block executes with a minimum
3 · 48 + 2 = 146 clock cycles with no port contention, and
with full port contention the maximum is roughly twice that.

A. Comparison

Our PORTSMASH technique relies on secret-dependent ex-
ecution port footprint, a closely related concept to secret-



dependent instruction execution cache footprint. Although
similar in spirit to L1 icache attacks or LLC cache attacks,
since both rely on a secret-dependent footprint in a microarchi-
tecture component, we demonstrate that PORTSMASH offers
finer granularity and is stealthier compared to other techniques.
To differentiate PORTSMASH from previous techniques, we
compare them with respect to spatial resolution, detectability,
cross-core, and cross-VM applicability. We admit that de-
tectability is extremely subjective, especially across different
microarchitecture components; our rating is with respect to a
malicious program while the target victim is idle, i.e., waiting
to capture.

Initially, Osvik et al. [18] proposed the PRIME+PROBE
technique against the L1 dcache, relying on SMT technology
to provide asynchronous execution. Newer enhancements to
this technique allowed cross-core (and cross-VM) successful
attacks [22–24]. The spatial resolution of this attack is limited
to cache-set granularity, that is usually a minimum of 512
bytes. Typically, the PRIME+PROBE technique occupies all
cache sets, moderately detectable if cache activity monitoring
takes place.

Later, Yarom and Falkner [19] proposed the FLUSH+RE-
LOAD technique, a high resolution side-channel providing
cache-line granularity with an improved eviction strategy.
Closely related, Gruss et al. [20] proposed FLUSH+FLUSH, a
stealthier version of FLUSH+RELOAD. Both techniques rely
on shared memory between Victim and Spy processes, in
addition to the clflush instruction to evict cache lines
from the LLC. While this is a typical setting in cross-core
scenarios due to the use of shared libraries, the impact in cross-
VM environments is limited due to the common practice of
disabling page de-duplication [25, Sec. 3.2].

More recently, Gras et al. [4] proposed TLBLEED as another
microarchitecture attack technique. Even if this is not a “pure”
cache technique, it exploits TLBs, a form of cache for memory
address translations [7]. Interestingly, this subtle distinction is
sufficient for making it stealthier to cache countermeasures [4].
On the downside, the spatial resolution of this attack is limited
to a memory page (4 KB). Since no cross-core improvements
have been proposed for either TLBLEED or PORTSMASH,
it could be seen as a drawback of these attacks. However,
attackers can launch multiple Spy processes to occupy all cores
and ensure co-location on the same physical core; see [26,
Sec. 3.1] for a related discussion.

Recent microarchitecture attacks have been proposed
achieving intra cache-line granularity. Yarom et al. [5] demon-
strated that intra-cache granularity is possible—at least in older
Intel microprocessors—with their CacheBleed attack. This
attack proposes two techniques to achieve this granularity:
cache bank conflicts and write-after-read false dependencies.
Cache bank conflicts have a limited impact, considering the
authors discovered that current Intel microprocessors no longer
have cache banks; thus this technique does not apply to newer

2Cache-set size depends on the microprocessor specifications and can be
calculated as (cache line size × cache associativity).

30f0 <x64_foo>: 4150 <x64_bar>:
30f0 test %rdi,%rdi 4150 test %rdi,%rdi
30f3 je 4100 <x64_foo+0x1010> 4153 je 5100 <x64_bar+0xfb0>
30f9 jmpq 4120 <x64_foo+0x1030> 4159 jmpq 5140 <x64_bar+0xff0>
.... ....
4100 popcnt %r8,%r8 5100 popcnt %r8,%r8
4105 popcnt %r9,%r9 5105 popcnt %r9,%r9
410a popcnt %r10,%r10 510a popcnt %r10,%r10
410f popcnt %r8,%r8 510f popcnt %r8,%r8
4114 popcnt %r9,%r9 5114 popcnt %r9,%r9
4119 popcnt %r10,%r10 5119 popcnt %r10,%r10
411e jmp 4100 <x64_foo+0x1010> 511e popcnt %r8,%r8
4120 vpbroadcastd %xmm0,%ymm0 5123 popcnt %r9,%r9
4125 vpbroadcastd %xmm1,%ymm1 5128 popcnt %r10,%r10
412a vpbroadcastd %xmm2,%ymm2 512d popcnt %r8,%r8
412f vpbroadcastd %xmm0,%ymm0 5132 popcnt %r9,%r9
4134 vpbroadcastd %xmm1,%ymm1 5137 popcnt %r10,%r10
4139 vpbroadcastd %xmm2,%ymm2 513c jmp 5100 <x64_bar+0xfb0>
413e jmp 4120 <x64_foo+0x1030> 513e xchg %ax,%ax
4140 retq 5140 vpbroadcastd %xmm0,%ymm0

5145 vpbroadcastd %xmm1,%ymm1
514a vpbroadcastd %xmm2,%ymm2
514f vpbroadcastd %xmm0,%ymm0
5154 vpbroadcastd %xmm1,%ymm1
5159 vpbroadcastd %xmm2,%ymm2
515e vpbroadcastd %xmm0,%ymm0
5163 vpbroadcastd %xmm1,%ymm1
5168 vpbroadcastd %xmm2,%ymm2
516d vpbroadcastd %xmm0,%ymm0
5172 vpbroadcastd %xmm1,%ymm1
5177 vpbroadcastd %xmm2,%ymm2
517c jmp 5140 <x64_bar+0xff0>
517e retq

Fig. 4. Two Victims with similar port footprint, i.e., port 1 and port 5, but
different cache footprint. Left: Instructions span a single cache-line. Right:
Instructions span multiple cache-lines.

microprocessors. To that end, Moghimi et al. [21] improved
the previous work and proposed a read-after-write false depen-
dency side-channel. The authors highlight the potential 5 cycle
penalty introduced when a memory write is closely followed
by a read, a more critical condition compared to a read closely
followed by a memory write. This technique gives a 4-byte
granularity on the cache-lines, thus allowing them to exploit
the 5 cycle delay to perform a key recovery attack against a
constant-time AES implementation on Intel IPP library.

To understand our detectability criteria in Table III, consider
the following example. During a typical round of attack,
a FLUSH+RELOAD process constantly reloads a previously
flushed memory address, observing a large number of cache-
misses, thus highly detectable. In contrast, a FLUSH+FLUSH
process does not perform explicit loads, instead it relies on
the time of clflush execution to determine the existence
of data in the cache, thus lowly detectable. Sitting in the
middle, a PRIME+PROBE process reloads data from cache at a
slower rate compared to FLUSH+RELOAD, but still observing
a significant amount of cache-misses, hence fairly detectable.
On the other hand, TLBLEED, MemJam and CacheBleed
attacks do not follow the same combination of cache eviction
and memory load operations, instead they rely on timing
variations observed when executing typical instructions during
a computation, i.e., no clflush, thus their detectability is
low.

Table III compares the previously mentioned techniques
in their original version. As can be appreciated, our PORT
SMASH technique enjoys the highest spatial resolution among
them, since it goes beyond the cache-line and instead, it
considers individual uops dispatched to the execution units.
As an example, consider the two functions x64_foo and
x64_bar in Figure 4. These two functions get passed an
argument of either zero or one (e.g., a secret bit): in the former



TABLE III
COMPARISON OF MICROARCHITECTURE ATTACK TECHNIQUES (ORIGINAL VERSIONS)

Attack Spatial Resolution Size Detectability Cross-Core Cross-VM
TLBLEED [4] Memory Page (Very low) 4 KB Low No Yes/SMT
PRIME+PROBE [18] Cache-set (Low) 512 bytes2 Medium Yes Yes/SharedMem
FLUSH+RELOAD [19] Cache-line (Med) 64 bytes High Yes Yes/SharedMem
FLUSH+FLUSH [20] Cache-line (Med) 64 bytes Low Yes Yes/SharedMem
CacheBleed [5] Intra cache-line (High) 8 bytes Medium No Yes/SMT
MemJam [21] Intra cache-line (High) 4 bytes Medium No Yes/SMT
PORTSMASH Execution port (Very High) uops Low No Yes/SMT

case, they start executing pipelined popcnt instructions in
a loop, and vpbroadcastd instructions in the latter. The
x64_foo function has all its functionality for both branches
within a single cache line (64B), starting at address 0x4100.
In contrast, the x64_bar function has distinct cache lines
for each branch: the zero case starts at address 0x5100
and the one case at 0x5140, and the control flow for each
corresponding loop restricts to its single cache line.

The x64_bar function is a potential target for L1 icache
attacks, FLUSH+RELOAD attacks, FLUSH+FLUSH attacks, etc.
since there are two different targets that span two different
cache lines. In contrast, the x64_foo control flow resides
in a single cache line: L1 icache attacks, FLUSH+RELOAD
attacks, FLUSH+FLUSH attacks, etc. only have cache line
granularity, and are not designed to distinguish varying code
traversal within a single line. Remarkably, both x64_foo and
x64_bar are potential targets for our new method. In this
light, at a very high level what CacheBleed accomplished for
dcache attacks—the ability to target at less than data cache line
granularity—our method accomplishes for the code side, and
furthermore potentially with a single trace instead of averaging
traces.

To validate our findings, we ran the following set of PORT
SMASH experiments. First, we configured the Victim process
to execute the x64_foo function passing 0 as an argument,
causing the Victim to issue popcnt commands, using port 1.
In parallel, we configured the Spy process with the P1 strategy
in the sibling logical core to issue and time crc32 commands,
thus creating contention and the Spy successfully tracks the
Victim state by observing high latency. Then, we repeated
the experiment but this time we passed 1 as an argument to
the Victim process, executing vpbroadcastd instructions,
using port 5. Since the Spy process is still using the P1
strategy, i.e., timing crc32 instructions, port contention does
not occur, hence the Spy successfully tracks the Victim state by
observing low latency. Figure 5 (Top) shows the resulting trace
for both cases, i.e., contention vs no-contention from a Spy
process perspective configured with the P1 strategy. We then
reconfigured the Spy to use the P5 strategy, and repeated the
experiments, shown in Figure 5 (Bottom). This raw empirical
data—that is clearly linearly separable—confirms not only the
validity of our new side-channel in general, but furthermore the
symmetry in the plots confirms that our technique even allows
to leak code traversal information with granularity finer than
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Fig. 5. Top: Timings for the PORTSMASH Spy when configured with P1, in
parallel to the Victim executing x64_foo with rdi as both zero and one in
two consecutive runs. Bottom: Analogous but with the Spy configured with
P5.

cache-line, since in this case it is dependent on port utilization
by the executed instructions within the cache-line.

V. APPLICATIONS

In the previous section, we developed a generic PORT
SMASH Spy process to procure timing signals that detect
port contention. In this section, we present the first attack
using our technique in a real-world setting. We start with
some background on ECC, and explain why P-384 is a
highly relevant standardized elliptic curve, and examine its
scalar multiplication code path within OpenSSL 1.1.0h and
earlier, based on an implementation featuring secret-dependent
execution flow, thus satisfying the PORTSMASH technique
requirement. We then design and implement an end-to-end P-
384 private key recovery attack that consists of three phases:

1) In the procurement phase, we target an stunnel TLS
server authenticating with a P-384 certificate, using
our tooling that queries the TLS server over multiple
handshakes with the Spy measuring port contention in
parallel as the server produces ECDSA signatures.

2) In the signal processing phase, we filter these traces and
output partial ECDSA nonce information for each digital
signature.

3) In the key recovery phase, we utilize this partial nonce
information in a lattice attack to fully recover the
server’s P-384 private key.

We close this section with a discussion on applications to
statically linked binaries and SGX enclaves. The rationale
behind our choice to demonstrate an end-to-end attack for
the non-SGX case is based on our perceived real-world im-
plications. The number of web-servers powered by OpenSSL



outside SGX enclaves largely outweighs the number within
SGX enclaves, by at least several orders of magnitude.

A. ECC and P-384

Koblitz [27] and Miller [28] introduced elliptic curves to
cryptography during the mid 1980’s. By 1995, the National
Security Agency (NSA) became a strong supporter of Elliptic
Curve Cryptography (ECC) [29] and pushed for the adoption
of ECDSA, the ECC variant of the (then) recently approved
Digital Signature Algorithm (DSA) [30].

In 2005, NSA’s support of ECC was clear, mandating its
use “for protecting both classified and unclassified National
Security information[..], the NSA plans to use the elliptic
curves over finite fields with large prime moduli (256, 384,
and 521 bits) published by NIST” [31]. Shortly after, the NSA
announced Suite B, a document recommending cryptography
algorithms approved for protecting classified information up
to Secret and Top Secret level, including P-256 at 128 bits of
security, and P-384 at 192 bits.

During 2012, the Committee for National Security Systems
(CNSS) issued CNSSP-15 [32], a document defining the set
of public key cryptographic standards recommended to protect
classified information until public standards for post-quantum
cryptography (PQC) materialize, further pushing the support
for both curves, P-256 and P-384. Suddenly in August 2015,
and after a long history of ECC support, the NSA released a
statement [33] urging the development of PQC and discour-
aging the late adoption of ECC, and instead focusing on the
upcoming upgrade to quantum-resistant algorithms. Parallel
to this statement, the Suite B recommendation was updated,
mysteriously removing P-256 from the list of approved curves
without giving any reason, and leaving P-384 as the only
ECC option to protect information up to Top Secret level.
In January 2016, the NSA issued a FAQ [34] derived from
the statement released five months prior. They informed about
the replacement of Suite B with an updated version of CNSS-
15, and also finally commented on the removal of P-256 from
the previous Suite B. We cherry-pick three statements from
the document: (1) “equipment for NSS that is being built and
deployed now using ECC should be held to a higher standard
than is offered by P-256”; (2) “Elimination of the lower level
of Suite B also resolves an interoperability problem raised by
having two levels”; and (3) “CNSSP-15 does not permit use
of P-521”.

To summarize, P-384 is the only compliant ECC option for
Secret and Top Secret levels. Unfortunately, its implementa-
tions have not received the same scrutiny as P-256 and P-521;
we expand later in this section.

ECDSA: For the purpose of this paper, we restrict to short
Weierstrass curves over prime fields. With prime p > 3, all of
the x, y ∈ GF (p) solutions to the equation

E : y2 = x3 + ax+ b

along with the point-at-infinity (identity) form a group. The
domain parameters of interest are the NIST standard curves
that set p a Mersenne-like prime and a = −3 ∈ GF (p).

The user’s private-public keypair is (dA, QA) where dA
is chosen uniformly from [1 . . n) and QA = [dA]G holds.
Generator G ∈ E is of prime order n. A digital signature on
message m compute as follows.

1) Select a secret nonce k uniformly from [1 . . n).
2) Compute r = (k[G])x mod n.
3) Compute s = k−1(h(m) + dAr) mod n.
4) Return the digital signature tuple (m, r, s).

The hash function h can be any “approved” function, e.g.,
SHA-1, SHA-256, and SHA-512. Verification is not relevant
to this work, hence we omit the description.

ECDSA and P-384 in OpenSSL: In OpenSSL, each elliptic
curve has an associated method structure containing function
pointers to common ECC operations. For ECDSA, scalar
multiplication is the most performance and security-critical
ECC operation defined in this method structure, and the
actual algorithm to perform scalar multiplication depends on
several factors, e.g., curve instantiated, scalar representation,
OpenSSL version, and both library and application build-time
options. We further elaborate on how these factors influence
the final scalar multiplication execution path in Appendix B,
while for the rest of this work we will focus on the code
paths executed in OpenSSL 1.1.0h and below and specifically,
as described in this paragraph, on the default implementation
for elliptic curves over prime fields. Due to the long history of
timing attacks against ECDSA and the possibility of improving
the performance of some curves, over the years OpenSSL
mainlined several implementations for scalar multiplication,
especially for popular NIST curves over prime fields.

Based on work by Käsper [35]—and as a response
to the data cache-timing attack by Brumley and Hakala
[36]—OpenSSL introduced EC_GFp_nistp256_method,
a constant-time scalar multiplication method for the NIST
P-256 curve (and analogous methods for P-224 and P-
521). This method uses secure table lookups (through mask-
ing) and fixed-window combing during scalar multiplica-
tion. This is a portable C implementation, but requires
support for 128-bit integer types. Later, Gueron and Kras-
nov [37] introduced a faster constant-time method with
their EC_GFp_nistz256_method. This method uses Intel
AVX2 SIMD assembly to increase the performance of finite
field operations, thus providing a considerable speedup when
compared to EC_GFp_nistp256_method that is portable
C. The NIST curve P-256 quickly became (arguably) the
most widely used, fast, and timing-attack resistant of all NIST
curves in OpenSSL.

Unfortunately, P-384 was neglected, and it missed all of
the previous curve-specific improvements that provided timing
attack security for P-224, P-256, and P-521. Instead, P-384—
like any other short Weierstrass curve over a prime field,
including e.g. secp256k1 (adopted for Bitcoin operations)
and Brainpool curves (RFC 5639[38])—follows the default
OpenSSL implementation for scalar multiplication on prime
curves. It is a non constant-time interleaving algorithm that
uses Non-Adjacent Form (wNAF) for scalar representation

https://tools.ietf.org/html/rfc5639


[39, Sec. 3.2]. Although this implementation has been repeat-
edly targeted for side-channel vulnerabilities [36, 40–42], it
has never been exploited in the context of P-384 in OpenSSL.

During ECDSA signature generation, OpenSSL calls
ecdsa_sign_setup @ crypto/ec/ecdsa_ossl.c to
perform steps 1 and 2 of the ECDSA algorithm described
above. For the latter, the underlying ec_wNAF_mul func-
tion gets called to perform the scalar multiplication, where
r = [k]G is the relevant computation for this work. That
function first transforms the scalar k to its wNAF representa-
tion and then, based on this representation, the actual scalar
multiplication algorithm executes a series of double and add
operations. To perform double and add operations, OpenSSL
calls ec_GFp_simple_dbl and ec_GFp_simple_add
respectively. There, these methods have several function calls
to simpler and lower level Montgomery arithmetic, e.g., shift,
add, subtract, multiply, and square operations. A single ECC
double (or add) operation performs several calls to these
arithmetic functions. Among the strategies mentioned in Sec-
tion IV, we found that for our target the P5 strategy results
in the cleanest trace overall.

In summary, by using the PORTSMASH technique during
OpenSSL P-384 ECDSA signature generation, we can measure
the timing variations due to port contention. More specifically,
we capture the port contention delay during double and add
operations, resulting in an accurate raw signal trace containing
the sequence of operations during scalar multiplication, and
leaking enough LSDs of multiple nonces k to later succeed in
our key recovery phase.

B. Procurement Phase: TLS

Stunnel3 provides TLS/SSL tunneling services to servers
(and clients) that do not speak TLS natively; during the
procurement phase we used stunnel 5.49 as the TLS server. We
compiled it from source and linked it against OpenSSL 1.1.0h
for crypto functionality. Our setup consists of an Intel Core i7-
6700 Skylake 3.40GHz featuring Hyper-Threading, with four
cores and eight threads, running Ubuntu 18.04 LTS “Bionic
Beaver”. In addition, we disabled TurboBoost to minimize any
interference due to CPU frequency scaling. Nonetheless, we
hypothesize enabling it would merely introduce some clock
skew without substantially affecting the side-channel leakage
itself. Scalar multiplication is a demanding task, so Turbo-
Boost should already activate during execution and quickly
reach the maximum stable frequency. This would have little
impact on our results since we are more interested in the
trailing portion of the trace. This decision is consistent with
existing results in the literature, e.g. [16, 36, 41, 43].

We configured the stunnel server with a P-384 ECDSA
certificate and ECDHE-ECDSA-AES128-SHA256 as the
TLS 1.2 cipher suite. We wrote a custom TLS client to
connect to our TLS server. Typically, during a TLS hand-
shake, the client and the server exchange several protocol
messages, including ClientHello, ServerHello, and

3https://www.stunnel.org
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Fig. 6. Multiple TLS trace stages. Top: Raw TLS handshake trace showing
scalar multiplications during ECDH and ECDSA. Bottom: Zoom at the end
of the previous ECDSA trace, peaks (filtered) represent add operations. For
example, this trace ends with an add operation, indicating the nonce is odd.

ServerKeyExchange parameters. These messages are con-
catenated, hashed, and digitally signed by the server. Then, the
client verifies the signature before finally establishing a session
with the server.

Our custom TLS client, acting as an attacker, serves two
purposes: (1) it controls the start of the attack by initiating
a TLS handshake with the stunnel service, alerting the Spy
process to start capturing OpenSSL scalar multiplication op-
erations performed by the server during the handshake; and
(2) it collects protocol messages and digital signatures during
the TLS handshake. Figure 6 (Top) shows a trace captured
by the Spy process, containing the two scalar multiplication
operations during TLS handshake, i.e. ECDH and ECDSA
respectively.

The client drops the handshake as soon as the server
presents the digital signature; since we are only interested in
capturing up to the digital signature generation, this allows us
to capture a trace in roughly 4 ms (∼12.5 million clock cycles).
Additionally, our client concatenates the protocol messages,
hashes the resulting concatenation, and stores the message
digest. Similarly, it stores the respective DER-encoded P-384
ECDSA signatures for each TLS handshake. This process is
repeated as needed to build a set of traces, digest messages,
and digital signatures that our lattice attack uses later in the
key recovery phase.

Once the data tuples are captured, we proceed to the signal
processing phase, where the traces are trimmed and filtered
to reduce the noise and output useful information. Figure 6
(Bottom) shows a zoom at the end of the (Top) trace, where
the filters reveal peaks representing add operations, separated
by several double operations.

At a high level—returning to the discussion in Section IV—
the reason our signal modulates is as follows. The wNAF
algorithm executes a (secret) sequence of double and add
operations. In turn, these operations are sequences of finite

https://www.stunnel.org


field additions, subtractions, multiplications, and squarings.
Yet the number and order of these finite field operations are
not identical for double and add. This is eventually reflected
in their transient port utilization footprint.

C. Signal Processing Phase

After verifying the existence of SCA leakage in the captured
TLS traces, we aim to extract the last double and add sequence
to provide partial nonce information to the key recovery
phase. Although visual inspection of the raw trace reveals the
position of double and add operations, this is not enough to
automatically and reliably extract the sequence due to noise
and other signal artifacts.

Since our target is ECDSA point multiplication, we cropped
it from the rest of the TLS handshake by applying a root-
mean-square envelope over the entire trace. This resulted in
a template used to extract the second point multiplication
corresponding to the ECDSA signature generation. To further
improve our results, we correlated the traces to the patterns
found at the beginning and end of the point multiplication.
This was possible as the beginning shows a clear pattern
(trigger) due to OpenSSL precomputation, and the end of the
trace has a sudden decrease in amplitude.

We then used a low pass filter on the raw point multi-
plication trace to remove any high frequency noise. Having
previously located the end of point multiplication, we focused
on isolating the add operations to get the last add peak,
while estimating the doubles using their length. To accomplish
this, we applied a source separation filtering method known
as Singular Spectrum Analysis (SSA) [44]. SSA was first
suggested in SCA literature for power analysis to increase
signal to noise ratio in DPA attacks [45], and later used as
a source separation tool for extracting add operations in an
EM SCA attack on ECDSA [46]. We discuss the theoretical
aspects of SSA in Appendix A.

For our purpose, we decided to threshold the SSA window
size as suggested in [45]. Since the total length of the trace
was around 15000 samples, this gave us a window size of
30. However, based on experimentation, a window of size
20 yielded optimal results using the second and the third
component.

The traces occasionally encountered OS preemptions, cor-
rupting them due to the Spy or Victim being interrupted. We
detect Spy interrupts as high amplitude peaks or low amplitude
gaps, depending on whether they happened while during or
between latency measurement windows. Similarly, the Victim
interrupts exhibit a low amplitude gap in our traces, since there
was no Victim activity in parallel. In any case, we discarded
all such traces (around 2.5%) when detecting any interrupt
during the last double and add sequence.

Finally, by applying continuous wavelet transform [47] in
the time-frequency domain we were able to detect the high
energy add peaks, therefore isolating them. Moreover, a root-
mean-square of the resulting peaks smoothed out any irreg-
ularities. Figure 6 illustrates the results of signal processing
steps on a TLS trace from top to bottom. Even after applying
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Fig. 7. Length distributions for various patterns at the end of scalar
multiplication.

these steps, some traces where the adds were indistinguishable
due to noise still occur, decreasing the accuracy of our results
by about 2%.

The output of this phase, for each trace, is the distance from
the last add operation to the end of the point multiplication:
estimating the number of trailing doubles by counting the
number of samples. Figure 7 depicts the CDF of the resulting
sequences using our distance metric, having clear separation
for each trailing double and add sequence.

D. Key Recovery Phase: Lattices

The output of the signal processing phase eventually pro-
vides us with partial nonce information, as the trailing se-
quence tells us the bit position of the lowest set bit. We
then use this information to build a lattice attack to solve
a Hidden Number Problem, retrieving the long-term private
key used to sign the TLS handshakes. We build on previous
work for our lattice attack, deferring to [48] for a more
detailed mathematical description of the methodology. We
use the BKZ reduction algorithm (β = 20) to efficiently
look for solutions to the Shortest Vector Problem (SVP),
closely following the construction by Benger et al. [41], yet
with different parameters, and also a brute-force heuristic. In
what follows, we: (1) describe exploring the lattice parameter
space using traces modeled without errors; then (2) combine
this study with profiling of the experimental data and the
constraints of the computational resources at our disposal to
launch a real-world end-to-end attack.

Exploration of the lattice parameter space: The main
parameter to tune in implementing the lattice attack is the
size (d) of the set of signatures used to build the lattice
basis. Theoretically, given an infinite amount of time, if the
selected subset of signatures does not contain any error and
if the lattice embeds more bits of knowledge than the bit-
length of the secret key, it should eventually succeed. In this
scenario, optimizing for the smallest d that delivers enough
bits of knowledge to recover the private key would be the
preferred metric, as it requires less overall data from the
procurement phase (lowering the risk of detection) and also
improves success chances of the heuristic process (dealing
with potential errors in the signal processing phase).

In a more realistic scenario we want to model the lattice
parameters to succeed in a “reasonable” amount of time.



This definition is not rigorous and largely depends on the
capabilities of a dedicated attacker: in this academic contest,
constrained by the grid computing resources available to us,
we define a lattice instance as successful if it correctly retrieves
the secret key in under 4 hours when running on a single
2.50 GHz Xeon E5-2680 core (as done in Table 3 of [48]).
We believe this definition is very conservative with respect to
the potential computational resources of a nation-state level
adversary or the availability and costs of dynamically scalable
computing cloud services for individuals and organizations.

We modeled our preliminary experiments using random
nonces, biased to have a trailing sequence of zero bits: this
is equivalent to assuming error-free traces from the signal
processing phase. We ran two sets of experiments, one with
a bias mask of 0x3, i.e., with at least two trailing zero bits
(using the notation from [41], z ≥ 2 and l ≥ 3), and the other
with a bias mask of 0x1, i.e., with at least one trailing zero
bit (z ≥ 1 and l ≥ 2).

To determine the optimal d for each bias case, we ran 10000
instances of the lattice algorithm against the two sets of mod-
eled perfect traces and measured the corresponding amount
of known nonce bits (Figure 10), the number of iterations for
successful instances (Figure 11), the overall execution time for
successful instances (Figure 12), and the success probability
(Figure 9). The results indicate d = 450 is optimal for the
0x1 biased ideal traces, with success probability exceeding
90% coupled with a small number of iterations as well as
overall execution time. Analogously, d = 170 is optimal for
the 0x3 bias case.

Experimental parameters with real traces: Real traces come
with errors, which lattices have no recourse to compensate
for. The traditional solution is oversampling, using a larger
set of t traces (with some amount e of traces with errors),
and running in parallel a number (i) of lattice instances, each
picking a different subset of size d from the larger set. Picking
the subsets uniformly random, the probability for any subset
to be error-free is:

Pr(No error in a random subset of size d) =

(
t−e
d

)(
t
d

)
For typical values of {t, e, d}, the above probability is small
and not immediately practical. But given the current capa-
bilities for parallelizing workloads on computing clusters,
repeatedly picking different subsets compensates:

Pr( ≥ 1 error-free subset over i inst.) = 1−

(
1−

(
t−e
d

)(
t
d

) )i

(1)

Profiling the signal processing phase results, we determined
to utilize thresholding to select traces belonging to the “AD”,
“ADD”, “ADDD” and “ADDDD” distributions of Figure 7.
In our setup, other traces are either useless for our lattice
model or have too low accuracy. To ensure accuracy, we
determined very narrow boundaries around the distributions
to limit overlaps at the cost of very strict filtering. Out of
the original 10000 captures, the filtering process selects a set

of 1959 traces with a 0x1 bias mask (i.e. nonces are even)
including e = 34 (1.74%) errors. Combining this with d = 450
from our empirical lattice data, (1) leads us to i ≥ 36000
instances required to achieve a probability ≥ 99% of picking
at least one subset without errors. This number of instances
is beyond the parallel computational resources available to us,
hence we move to the remaining case.

Filtering out also the 1060 traces categorized as “AD”
delivers a total of 899 traces with a 0x3 bias mask (i.e.
k = 0 mod 4), including e = 14 (1.56%) errors. Combining
this with d = 170 for the higher nonce bias and substituting
in (1) leads us to i ≥ 200 instances to achieve a probability
≥ 99.99% of picking at least one subset without errors.

When using the actual attack data we noticed that while
our filtering process increases accuracy, it has the side-effect
of straying from the statistics determined in ideal conditions.
We speculate this is due to filtering out longer trailing zero bits
(low accuracy) decreasing the average amount of known nonce
bits per signature, resulting in wider lattice dimensions with
lower than expected useful information. This negatively affects
the overall success rate and the amount of required iterations
for a successful instance. We experimentally determined that
when selecting only nonces with a bias mask between 0x3
and 0xF, d = 290 compensates with a success rate (for an
error-free subset) of 90.72%. Using these values in (1) leads
us to i = 2000 instances to achieve a 99.97% probability of
picking at least one subset without errors—well within the
computing resources available to us.

Finally, running the entire process on the real data obtained
from the signal processing phase on the original 10000 cap-
tures, using parameters t = 899, e = 14, and d = 290 over
i = 2000 instances running in parallel on the described cluster
resulted in 11 instances that successfully retrieved the secret
key, the fastest of which terminated in 259 seconds after only
two BKZ reduction iterations.

E. SGX

Intel Software Guard Extensions (SGX)4 is a microarchi-
tecture extension present in modern Intel processors. SGX
aims at protecting software modules by providing integrity
and confidentiality to their code and memory contents. In
SGX terminology, an SGX enclave is a software module that
enjoys said protections. SGX was designed to defend processes
against tampering and inspection from OS-privileged adver-
saries, providing strong isolation between enclave memory
regions and the outer world. Despite these strong protections,
side-channel attacks are still considered a major threat for
enclaves, as SGX by itself does not protect against them [49].
In this regard, as the SGX threat model considers an OS-level
adversary, it is even possible to mount more powerful side-
channel attacks against enclaves where the measurement noise
can be reduced considerably [50–52].

From a practical perspective, it is interesting to know
which unprivileged side-channel techniques are a threat to

4https://software.intel.com/en-us/sgx

https://software.intel.com/en-us/sgx


SGX enclaves. Regarding cache attacks, FLUSH+RELOAD and
FLUSH+FLUSH do not apply in the unprivileged scenario since
they require shared memory with the SGX enclave, which does
not share its memory [15, 49]. However, researchers use other
attack techniques against SGX, such as L1-based PRIME+
PROBE attacks [52], and false dependency attacks [21]. It
is worth mentioning that these methods assume an attacker
with privileged access. However, we strongly believe these
attacks would succeed without this assumption at the cost of
capturing traces with a higher signal-to-noise ratio. Finally,
TLBLEED [4] could be a potential successful attack technique
against SGX, yet the authors leave it for future work.

The rest of this section analyzes PORTSMASH impact on
SGX enclave security. Our first (strong) hypothesis is a PORT
SMASH attack can target SGX enclaves transparently. The
rationale relies on the difference between PORTSMASH root
cause and the computing layer SGX protects. PORTSMASH
aims at identifying the sequence of execution ports employed
by a Victim process, while SGX provides protection at the
memory subsystem level. This means that they operate at
different computing layers—instruction execution and memory
subsystem, respectively—providing soundness to our initial
hypothesis. Nevertheless, for the sake of completeness we
empirically evaluate our hypothesis, filling a research gap
left by Covert Shotgun as an open problem: “That would
be especially interesting say in SGX scenarios”. While de-
veloping an end-to-end attack like in previous sections on
SGX enclaves might appear interesting, we instead focus
on collecting sufficient experimental evidence to demonstrate
that SGX enclaves do leak through the port contention side-
channel—the most important contribution of this section.

For our experiments, we developed two Victim processes.
One Victim is a standard process statically linked against
OpenSSL 1.1.0h, and the other is an Intel SGX SSL enclave.
Both Victim processes follow the same scalar multiplication
code path analyzed in Section V, therefore we have two
processes executing exactly the same code path with and
without SGX protections.

Following the rationale that a PORTSMASH attack is oblivi-
ous to SGX enclaves, we applied the P5 strategy employed in
Section V. We captured two traces on an Intel Core i7-7700HQ
Kaby Lake, one for each setting: SGX and non-SGX. Figure 8
shows both the raw and filtered traces for each of them. Note
the similarities between both raw traces, and after applying
a noise reduction filter, the similarities become more evident
since the position of adds are clearly revealed in both traces
as amplitude peaks.

This demonstrates the leakage from SGX is essentially
identical to the leakage outside SGX, validating our hypothesis
that a PORTSMASH attack can be applied to SGX enclaves
as well as to non-SGX processes. Therefore SGX enclaves
do leak through port contention. The similarities in Figure 8
support the claim that developing an end-to-end attack against
Intel SGX SSL should be straightforward, employing the tools
explained in Section V. Moreover, it also shows two important
characteristics: (1) the amount of noise does not significantly
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Fig. 8. From top to bottom: raw trace of our SGX Victim; said trace after
filtering; raw trace of our user space Victim; said trace after filtering. Both
victims received the same input, i.e., a scalar that induces 16 point adds at
the end of the trace, clearly identifiable by the peaks in the filtered traces.

vary between both scenarios; and (2) PORTSMASH oblivious-
ness regarding SGX as both traces were captured employing
the same port contention strategy.

Furthermore, regardless of SGX the observant reader can
also appreciate the similarities between traces in Figure 8
and Figure 6, demonstrating a PORTSMASH attack is also
independent of the binary linking strategy (static vs dynamic).

VI. MITIGATIONS

A. Existing Work

Due to the copious amount of microarchitecture side-
channel attacks in recent years, several countermeasures and
mitigations appear in the literature; see [53] for a complete
survey on countermeasures. From all the microarchitecture
side-channel attacks proposed, cache-timing attacks and their
respective techniques have arguably the most impact of all.
This translates to the development of specific memory-based
mitigations such as cache partitioning [11, 54], cache flush-
ing [55, 56], and (partially) disabling caching [16]. Never-
theless, generally these solutions do not provide protections
against non memory-based side-channels. To that end, another
mitigation technique angle follows malware analysis methods.
One way to categorize these countermeasures is by binary and
runtime analysis.

Binary analysis looks for code signatures that allows clas-
sifying a binary as malicious or not. Irazoqui et al. [57]
proposed MASCAT, a binary analysis framework for detecting
microarchitecture malware. This framework analyzes a target
binary by searching for a set of signature instructions often
used during microarchitecture attacks, e.g., high-resolution
timers, fence instructions, and cache-flushing instructions.
Nevertheless, [15] showed that is possible to hide malicious
code from static analysis of binaries.

Runtime analysis inspects potentially malicious processes
while they execute, looking for dubious activities. Several



approaches propose microarchitecture attack mitigations [58–
60]. Most of them focus mainly on monitoring hardware per-
formance counters (HPC) to detect irregular execution patterns
that may suggest an ongoing side-channel attack. Kulah et al.
[58] and Zhang et al. [59] focus on unusual cache-activity
rates, while Raj and Dharanipragada [60] aim at detecting an
attack by measuring memory bandwidth differences.

Wichelmann et al. [61] recently proposed a combination
of these categories. Their framework MicroWalk applies Dy-
namic Binary Instrumentation and Mutual Information Anal-
ysis to not only detect leakage in binaries, but also to locate
the source of the leakage in the binary. The framework
combines the memory footprint and the program control-
flow to determine the side-channel leakage. They apply their
technique successfully to closed source cryptographic libraries
such as Intel IPP and Microsoft CNG.

From this brief survey, most of the work to mitigate
microarchitecture side-channels is in the area of cache-based
channels. Hence, many of these frameworks and techniques
are not directly applicable to detect and mitigate our PORT
SMASH technique. Since our technique does not target the
cache, but instead focuses on the execution units, we argue it
is extremely challenging to detect it. For example, when using
an HPC-based countermeasure, it must distinguish normal
port utilization between highly optimized code and PORT
SMASH. At the end of the day, microprocessor manufacturers
and code developers expect full core resource utilization. We
agree that it is conceptually possible to adapt some of the
previous countermeasures to detect our technique, but it is
an open question how difficult, effective, and practical these
countermeasures would be.

B. Recommendations

Our PORTSMASH technique relies on SMT and exploits
transient microarchitecture execution port usage differences,
therefore two immediate countermeasures arise: (1) remove
SMT from the attack surface; and (2) promote execution port-
independent code.

So far, the best and most recommended strategy against
attacks relying on SMT—e.g., CacheBleed, MemJam, and
TLBleed—is to simply disable this feature. Even OpenBSD
developers 5 recently followed this approach, since it is the
simplest solution that exists but it comes at the cost of
performance loss on thread-intensive applications. In order to
minimize this loss, Wang and Lee [3] proposed a selective
approach by modifying the OS to support logical core isolation
requests from user space, such that security-critical code can
trigger it on demand. This selective SMT-disabling reduces
performance loss but is costly to implement since it requires
changes in the OS and the underlying libraries, hindering
portability and large-scale adoption.

The second option, port-independent code, can be achieved
through secret-independent execution flow secure coding prac-
tices, similar to constant-time execution. Constant-time imple-

5https://marc.info/?l=openbsd-cvs&m=152943660103446

mentations that execute the same set of instructions indepen-
dently from the secret—i.e., all code and data addresses are
assumed public—fulfill the port-independent code requirement
we propose to mitigate this technique. See Appendix B for a
discussion on experimentally validating the effectiveness of
this recommendation with respect to OpenSSL.

VII. CONCLUSION

We presented a new SCA technique exploiting timing
information against a non-persistent shared HW resource,
derived from port contention in shared CPU execution units
on SMT architectures. Our PORTSMASH technique features in-
teresting properties including high adaptability though various
configurations, very fine spatial granularity, high portability,
and minimal prerequisites. We demonstrated it is a practical
attack vector with a real-world end-to-end attack against a
TLS server, successfully recovering an ECDSA P-384 secret
key; we further demonstrated it is a viable side-channel to
endanger the security of SGX enclaves and discussed potential
mitigations.

Following responsible disclosure procedures, we reported
our findings to the manufacturer and OS vendors, which
resulted in the assignment of CVE-2018-5407 to track the
vulnerability. Subsequent to public disclosure, we released our
proof-of-concept software to the open source community [62]
in support of open science.

We leave as future work exploring the impact of memory
ports for a PORTSMASH-like attack, answering the question:
are they more of a leakage or noise source? It is also
interesting to evaluate the capabilities of PORTSMASH on
other architectures featuring SMT, especially on AMD Ryzen
systems: our initial experiments suggest it is a viable security
threat.

Finally, we conclude with a remark on how this work,
together with the increasingly fast-paced publications of sci-
entific results in the same field, confirms once again SCA as
a practical and powerful tool to find, exploit—and eventually
mitigate—significant and often underestimated threats to the
security of our data and communications.
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APPENDIX A
SINGULAR SPECTRUM ANALYSIS

To improve the detection of add operations in the scalar
multiplications, we applied the filtering technique Singular
Spectrum Analysis (SSA) [44].

The SSA filter performs an eigen-spectra decomposition
of the original signal using a trajectory matrix into different
components which are then analyzed and selected accordingly
for reconstructing a filtered signal. The first step embedding
converts the single dimension signal {mk}Nk=1 of length N
into a multidimensional trajectory matrix M which contains
I column vectors each of size w where I = N − w + 1. The
window size 1 < w ≤ N/2 dictates the quality and perfor-
mance of the reconstruction phase. The second step singular
value decomposition (SVD) decomposes the trajectory matrix
M into non-zero eigenvalues λk of MM> sorted in decreasing
ranks of their magnitudes along with their corresponding
eigenvectors uk. With vk = M>uk

√
λk and Yk = ukvk the

projection matrices, SVD can be shown as:

M =

d∑
k=1

√
λkY

>
k

To obtain the reconstructed components {yi}Ni=1, next perform
a diagonal averaging also known as Hankelization by comput-
ing the average over the skewed diagonal of the projection

matrices Yk [63]. The original signal can thus be reproduced
by summing all the reconstructed components:

{mi}Ni=1 =

d∑
k=1

{yki }Ni=1

For source separation, only the useful components can be
chosen, leaving out the noisy ones from all the d possible
choices.

APPENDIX B
ECC IN OPENSSL

As stated in Section V-A, OpenSSL features several im-
plementations for ECC operations: each elliptic curve has an
associated method structure containing function pointers to
common ECC operations, and for this work we specifically
focus on the scalar multiplication operation.

The actual method structure associated with a particular
ECC cryptosystem depends on a variety of factors, including
the OpenSSL version, the particular curve instantiated, build-
time options, and capabilities of the targeted architecture. The
intent of this section is to discuss PORTSMASH applications to
OpenSSL ECC outside of P-384 and across different OpenSSL
versions and build-time options.

A. OpenSSL versions

The OpenSSL project currently actively supports three re-
leases of the library:

1.0.2 is the old long-term support (LTS) release, supported
until the end of 2019;

1.1.0 is the previous non-LTS release, currently in its final
year of support, thus updated only with security fixes;

1.1.1 the latest LTS release.
Letter releases (e.g., 1.0.2a) are periodically issued and ex-
clusively contain bug and security fixes and no new features;
minor releases (i.e., where only the last number is changed)
contain new features, but in a way that does not break binary
compatibility, so that existing applications do not need to be
recompiled; finally, major releases (e.g., from 1.0.2 to 1.1.0)
can contain major changes precluding both binary and API
compatibility, thus requiring applications to be recompiled
against the new version of the library, and, potentially, sig-
nificant changes in the application source code to adapt to
API changes.

It should be noted that the OpenSSL library is often installed
as an OS system library or bundled with binary application
packages, and as a result in most cases users depend on third
party vendors, such as OS distribution maintainers, for the
version of the library used by their applications and for its
build-time options.

This is particularly relevant in terms of support for bugs
and security fixes, as often the release strategies of third party
vendors are not compatible with that of the OpenSSL project
(see [64] for a discussion), resulting in major delays between
upstream releases and versions installed in the majority of
systems. For example, currently the latest Ubuntu Linux
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LTS release (18.04)—used in many online servers—features
OpenSSL version 1.1.0g that is more than one year older
than the latest upstream letter release (1.1.0j) for that release
branch.

B. Scalar multiplication implementations

Excluding curve25519 and curve448, which are de-
fined separately, scalar multiplications for prime curves in
the OpenSSL library are handled by one of the following
implementations:
• EC_GFp_nistp256_method, based on [35], offering

a timing-resistant portable C implementation for 64-bit
architectures supporting 128-bit integer types, optimized
for the NIST P-256 curve (with variants for NIST P-
224/P-521). Support for these three methods is condi-
tional to the aforementioned architecture and compiler
support and must be explicitly enabled at compilation
time;

• EC_GFp_nistz256_method, based on [37], offers
a faster timing-resistant method for NIST P-256, using
Intel AVX2 SIMD assembly instructions to increase the
performance of finite field operations. This method is
automatically enabled at compilation time if the target
architecture supports the Intel AVX2 SIMD instructions,
unless assembly optimized implementations are explicitly
disabled at build time;

• non constant-time multiplication, based on [39, Sec. 3.2]
using a modified windowed Non-Adjacent Form (wNAF)
for scalar representation. It was the default generic im-
plementation in OpenSSL 1.1.0h and earlier (and up to
the later 1.0.2p version in the 1.0.2 branch). This is the
code path used in the end-to-end attack presented in this
work;

• (only in 1.1.1+, 1.1.0i+, 1.0.2q+) timing-resistant generic
implementation based on a Montgomery ladder, featuring
a fixed sequence of operations without scalar-dependent
branches; it was introduced during the development
of version 1.1.1 (and backported to the older release
branches starting with releases version 1.1.1i and 1.0.2q)
as a result of work by Tuveri et al. [42], further discussed
in Appendix B-C.

Of the 39 standard defined prime curves supported by
OpenSSL 1.0.2 and 1.1.0 releases, only the aforementioned
NIST P-224, P-256 and P-521 have specialized timing-
resistant implementations. Every other prime curve will use
the generic default implementation, which will be one of the
last two implementations in the above list, depending on the
OpenSSL library version. Among these curves, it is worth
mentioning:
• “Brainpool” (RFC 5639[38]) curves;
• most prime curves standardized by SECG [65], including

the secp256k1 curve (adopted for Bitcoin operations);
• any generic prime curve defined over custom parame-

ters, e.g., when using the gost6 engine to implement

6https://github.com/gost-engine/engine

RFC 7091[66] or when using explicit arbitrary parameters
in TLS versions 1.2 and earlier—a feature that has been
recently deprecated (RFC 8422[67]) but is still supported
for compatibility with legacy products.

Moreover, the specialized implementations for the three NIST
curves are not enabled if any of the mentioned requirements
is not met, so depending on architecture and compilation
options, even these curves could fall back to the default
generic implementation targeted in the end-to-end attack we
demonstrated. This is particularly relevant, considering that
often users rely on third party vendors for a binary distribution
of the library, and said vendors could prioritize portability
over performance and disable architecture-dependent features
at build time.

C. Relevant mitigations in OpenSSL

The default wNAF scalar multiplication implementation has
been the target of several side-channel attacks [36, 40–43].
Independently from this current work, this implementation was
finally replaced during the development cycle of OpenSSL
1.1.1 with a timing-resistant one, as a consequence of [42].
The set of changes described there fulfills the port-independent
code requirement we propose to mitigate the PORTSMASH
technique.

This changeset was backported to the 1.1.0 branch and
released starting with version 1.1.0i. But at the time, back-
porting to the LTS 1.0.2 branch was deemed unnecessary, due
to additional complexity in the backport process (caused by
major design differences), and a lower coverage for automated
detection of regressions and new defects. It was only as a result
of this work and the disclosure of CVE-2018-5407 that the
additional effort and risks were considered acceptable7, thus
we backported8 the changes to the 1.0.2 branch. For the old
LTS branch, our mitigation has been released since version
1.0.2q.

7https://www.openssl.org/news/secadv/20181112.txt
8https://github.com/openssl/openssl/pull/7593
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Fig. 9. Probability (percentage) of success of the lattice algorithm against
the two sets of modeled perfect traces. The dashed lines track the number of
instances running with different signature counts.
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Fig. 10. Cumulative known nonce bits for the lattice algorithm against the
two sets of modeled perfect traces, varying the count of signatures used to
model the lattice.
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Fig. 11. Number of BKZ iterations for successful instances of the lattice
algorithm against the two sets of modeled perfect traces, varying the count
of signatures used to model the lattice.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 100  150  200  250  300  350  400  450  500  550  600

T
im

e 
(s

ec
o

n
d

s)

Signature count

0x1
0x3

Fig. 12. Execution time of successful instances of the lattice algorithm against
the two sets of modeled perfect traces, varying the count of signatures used
to model the lattice.
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