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Abstract
Background: In order to replicate, HIV, like all viruses, needs to invade a host cell and hijack it for its own use, a process 
that involves multiple protein interactions between virus and host. The HIV-1, Human Protein Interaction Database 
available at NCBI's website captures this information from the primary literature, containing over 2,500 unique 
interactions. We investigate the general properties and biological context of these interactions and, thus, explore the 
molecular specificity of the HIV-host perturbation. In particular, we investigate (i) whether HIV preferentially interacts 
with highly connected and 'central' proteins, (ii) known phenotypic properties of host proteins inferred from 
essentiality and disease-association data, and (iii) biological context (molecular function, processes and location) of the 
host proteins to identify attributes most strongly associated with specific HIV interactions.

Results: After correcting for ascertainment bias in the literature, we demonstrate a significantly greater propensity for 
HIV to interact with highly connected and central host proteins. Unexpectedly, we find there are no associations 
between HIV interaction and inferred essentiality. Similarly, we find a tendency for HIV not to interact with proteins 
encoded by genes associated with disease. Crucially, we find that functional categories over-represented in HIV-host 
interactions are innately enriched for highly connected and central proteins in the host system.

Conclusions: Our results imply that HIV's propensity to interact with highly connected and central proteins is a 
consequence of interactions with particular cellular functions, rather than being a direct effect of network topological 
properties. The lack of a propensity for interactions with phenotypically essential proteins suggests a selective pressure 
to minimise virulence in retroviral evolution. Thus, the specificity of HIV-host interactions is complex, and only 
superficially explained by network properties.

Background
Human immunodeficiency virus type 1 (HIV-1) and its
associated illnesses have major health and socio-eco-
nomic impacts, particularly in developing countries [1].
Concomitant with the progression of the HIV pandemic
there has, thus, been a major international research
effort, leading to a detailed understanding of HIV biology.
One of the most important aspects of this knowledge is
the set of known contacts between viral proteins and the
host system[2-4], fundamental to HIV's life cycle. HIV,
like all viruses, subjugates and exploits host cells in order
to propagate. To achieve this, the HIV virion must first
bind to a host cell, primarily CD4+ T cells, macrophages
and dendritic cells, and then 'hijack' their cellular

machinery [5]. Untreated HIV infection leads to a
decrease in CD4+ T cell count, eventually resulting in the
loss of cell-mediated immunity, an immunocompromised
state and the onset of AIDS (Acquired Immunodeficiency
Syndrome) [6]. However, infection with the HIV-like sim-
ian immunodeficiency virus (SIV) in its "natural" hosts,
does not generally result in the development of AIDS,
even when viral loads are high [7]. Despite SIV exhibiting
high viral loads, and there being a decreased CD4+ T cell
count in natural hosts, these infections are effectively
non-pathogenic. The differences between natural and
human hosts must, thus, be due to the molecular speci-
ficity of viral perturbation of the host system: that is the
gain (or loss) of protein-protein interactions during adap-
tation to different host species or because these host sys-
tems differ themselves.

More general work on the use of the host system by
pathogens [8] has found patterns in the types of interac-
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tions and infection strategies employed by multiple
pathogens. Specifically, pathogens appear to preferen-
tially interact with "key" human proteins that already par-
ticipate in multiple interactions and/or have central
importance in intra-cellular communication. Highly con-
nected proteins, or "hubs", have classically characterised
vulnerable points in a network due to their role in a large
number of interactions and due to their association with
essentiality [9-11]. Similarly, "bottlenecks", that is pro-
teins with a high betweenness centrality, a measure of the
total number of shortest paths going through the protein
[12,13], also associate with protein essentiality [14-16]. It
has been inferred that this non-uniform contact with the
host system represents evolutionary pressure to optimise
exploitation of the host cell [8].

In order to test the hypothesis that the specificity of
HIV interactions is in some way explained by network
properties, we examine their biological context by inte-
grating known phenotypic properties. Our analysis is
based on the HIV-1, Human Protein Interaction Database
(HHPID), which currently comprises over 2,500 unique
interactions, curated from over 3,200 papers with over
half of the interactions validated by being linked to multi-
ple publications [2,4]. While this data set no doubt con-
tains false positive interactions and potential bias, it
nevertheless constitutes an excellent catalogue of HIV-
human interactions as represented by published research
[3].

In terms of phenotypic properties, whilst it is difficult
to assess human gene essentiality directly, we can use
mouse genome knockout data as a proxy for the impor-
tance of a gene in terms of a known phenotypic conse-
quence in disrupting its product's function [17]. Similarly,
gene-disease associations from The Online Mendelian
Inheritance in Man (OMIM)[18] provide another cohort
of genes for which deleterious mutations are associated
with phenotypic consequence. Integrating these pheno-
typic data into our network would be expected to corrob-
orate any relationships with topological properties, since
proteins with a high connectivity and high betweenness
centrality have been demonstrated as having a tendency
to be essential [9-11,14-16].

Correcting for ascertainment bias, however, we find
that there is no significant relationship between HIV
interaction and protein essentiality, and there is a poten-
tial under-representation of disease-association amongst
HIV interacting human proteins. Moreover we find that
HIV's propensity to interact with highly connected and
central proteins is most probably a consequence of inter-
actions with specific cellular functions. Thus, the biologi-
cal context of HIV-interacting proteins, rather than their
individual properties, has been the key determinant in
the infection of hosts by retroviruses.

Results
HIV tends to interact with key host proteins such as 
bottlenecks and hubs
The HIV-interacting human proteins are known to inter-
act with approximately 6,000 other human proteins when
integrated with the composite human protein interaction
data set from NCBI, dramatically highlighting the highly
connected nature of the HIV-host interactions and their
neighbours [4] (Figure 1). Proteins with a high degree
(connectivity) are involved in a large number of interac-
tions and have been previously shown to be associated
with essentiality [9-11]. We used the Gene Set Enrich-
ment Analysis (GSEA) algorithm [19] to determine if the
degree distribution of HIV-interacting proteins, taken
from HHPID [4], is greater than for random sets of genes
taken from the human proteome. We calculate the
enrichment scores (ES, from GSEA) for the degree of
HIV-interacting proteins, in addition to 10,000 random
samples (each of the same size, see methods) taken from
the protein-coding gene population (rand(pop)). The
ES(degree) for HIV-interacting proteins was 0.83, signifi-
cantly higher than the average amongst the rand(pop) sam-
ple, 0.69 (p-value of 8.90 × 10-48) (Figure 2A, grey
distribution). Note, a higher ES denotes a stronger ten-
dency towards higher degrees. This result confirms a pre-
viously reported propensity for HIV to interact with
highly connected proteins [8].

However, there will potentially be substantial bias in
these results due to the nature of literature curation [20].
In investigations such as this, we are reliant on accurate
data to annotate our interactions. It is feasible that these
genes, and their annotations, are influenced by ascertain-
ment bias in the literature. Specifically, highly studied
genes and proteins, particularly those associated with
medically important molecules, can bias results. To com-
pensate for this, we devised a novel method to evaluate
ascertainment bias based on a particular gene's publica-
tion count in PubMed. If a gene has a high publication
count, it is inferred that it is highly studied, and there is
therefore a greater chance of observing an interaction.
Randomly sampling from a population without correct-
ing for publication counts does not offer fair comparison
between the control and (biased) query samples (Figure
3). That is, HIV-interacting proteins are more likely to be
highly studied and hence have had greater secondary
analysis leading to greater annotation. The control set
should be equally studied to offer a fair comparison.
Accordingly, we calculated the ES for the degree of HIV-
interacting proteins amongst 10,000 randomised samples
taken to match the publication count distribution of the
HIV sample (rand(lit)). Figure 2A (purple distribution)
shows these distributions. The ES(degree) of the HIV-inter-
acting proteins is 0.83 and the average amongst the
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rand(pop) sample is 0.69 (p-value of 8.90 × 10-48) whilst
that of rand(lit) is 0.80 (p-value 6.63 × 10-15). Thus, even
after correcting for ascertainment bias, we can confirm
that HIV tends to interact with proteins that have a high
degree.

Numerous studies have suggested that betweenness
centrality also has some significance for the properties of
proteins [14-16]. Does HIV preferentially interact with
proteins that have a high betweenness? We calculated the
ES of the betweenness centrality (in the same way as for
degree), amongst the sample data sets. The ES(betweenness)
of HIV-interacting proteins is 0.90 and the average ES
amongst the rand(pop) sample is 0.84 (p-value of 1.98 × 10-

21), whilst that of rand(lit) is 0.88 (p-value of 4.36 × 10-8).
Again, despite a significant difference between rand(pop)

and rand(lit), HIV-interacting proteins can be shown to
have a higher betweenness centrality than expected (Fig-
ure 2B).

To highlight the consequence of the betweenness cen-
trality/degree overlap, a partial human-human protein
interaction network visualisation was created using HIV-
host interactions from HHPID (pink edges) and then
incorporating any additional human-human interactions
the human partner has (blue edges) from NCBI (see
methods). This was annotated with nodes that are hubs
(high degree), bottlenecks (high betweenness centrality)
or both hubs and bottlenecks (Figure 1). Furthermore,
HIV-interacting over-representation was demonstrated
in the full network (n = 21,504) amongst hubs but not
bottlenecks (n = 92) and conversely bottlenecks but not

Figure 1 Subset of the HIV-host interaction network. Red circles and grey squares correspond to HIV-1 (n = 19) and human proteins, respectively 
(n = 3,118). Human proteins that are hubs (degree ≥23) or bottlenecks (betweenness ≥2.43 × 10-04) are shown as green triangles (n = 69) and yellow 
triangles (n = 45), respectively. Human proteins that are hubs and bottlenecks are shown as blue triangles (n = 261). Pink edges correspond to inter-
actions between HIV-1 and human proteins (n = 2588) whilst blue edges correspond to human-human interactions (n = 3800), where one of the pro-
teins interacts with HIV-1. HIV-1 proteins are labelled.
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Figure 2 A) Degree enrichment amongst HIV and randomised data sets. Distributions of enrichment scores (ES), from gene set enrichment anal-
ysis (GSEA), for the degree of 10,000 random samples taken from the population of protein-coding genes, rand(pop) (grey) and 10,000 randomised sam-
ples taken to match the publication count distribution of the HIV proteins rand(lit) (purple). The average ES amongst the rand(pop) sample is 0.69 (p-value 

of 8.90 × 10-48) whilst that of rand(lit) is 0.80 (p-value of 6.63 × 10-15). B) Betweenness enrichment amongst HIV and randomised data sets. Distri-
butions of ES for the betweenness centrality of rand(pop) (grey) and rand(lit) (orange). The ES(betweenness) of the HIV-interacting proteins (red arrow) is 0.90 

and the average amongst the rand(pop) sample is 0.84 (p-value of 1.98 × 10-21) whilst that of rand(lit) is 0.88 (p-value of 4.36 × 10-8).
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hubs (n = 85) and was found to be 51.09% (p-value of 1.34
× 10-28) and 32.94% (p-value of 6.72 × 10-12) respectively.

These results raise some questions: why has HIV
evolved to preferentially interact with key host proteins?
Is HIV preferentially interacting with functionally "essen-
tial" proteins, as has been suggested for pathogens gener-
ally [8]?

HIV-interacting genes have no relationship with 
essentiality
To test this premise for the human interaction network,
we explored the relationship between protein essentiality,
degree and betweenness centrality, using mouse genome
knockout data as a suitable proxy for essentiality [17]. We
assume that a human gene can be considered essential if a
knockout of its mouse ortholog confers lethality [21]. We
find that there is a positive correlation between protein
connectivity and essentiality (Figure 4A, p-value of 2.52 ×
10-6, r2 = 0.92) in the human protein interaction network.
Similarly, a positive correlation exists between protein
betweenness centrality and essentiality (Figure 4B, p-
value of 5.86 × 10-5, r2 = 0.90). These relationships are
unaffected by a 28% (n = 603) overlap with disease-asso-
ciated genes as their exclusion from the data did not alter
the displayed trend (Figure 4A, p-value of 9.87 × 10-6, r2 =
0.89 and 3B, p-value of 6.14 × 10-5, r2 = 0.88). This sug-

gests that the greater the protein degree or betweenness
centrality, the greater the likelihood of essentiality, as pre-
viously characterised [9-11,14-16].

We have confirmed that proteins with a high degree are
more likely to be HIV-interacting and more likely to be
essential (Figure 2 and 4). We might therefore expect to
see an over-representation of essentiality amongst HIV-
interacting proteins. Integrating homolog mouse genome
knockout data [17] with the HIV interactions reveals that
HIV interacts with 376 (26.28%) essential proteins (Figure
5A). Furthermore, the mean number of essential proteins
seen in rand(pop) is only 143 (9.99%) (Figure 5B). There is
therefore an apparent overrepresentation of essentiality
amongst the HIV-interacting genes (p-value of 3.86 × 10-

95). Investigating the PubMed statistics for essential and
non-essential genes reveals that essential genes have on
average a far greater publication count (mean 64 to 14,
respectively; Figure 4C). Thus, inferences about the rela-
tionships between essentiality and degree are potentially
distorted. Correcting for ascertainment bias using the
method previously described, the mean number of essen-
tial genes in rand(lit) is 399 (27.88%), similar to the num-
ber amongst HIV-1 interacting proteins. Whilst being
under-represented, the result is not significant (p-value of
0.0574). This illustrates how failure to compensate for

Figure 3 Rejection sampling versus random sampling. Average publication distributions for 10,000 random samples taken from the population 
of protein-coding genes, rand(pop) (grey) and 10,000 randomised samples taken to match the publication count distribution of the HIV sample, rand(lit) 

(blue). The rand(lit) samples match the HIV publication distribution with a p-value of 0.43 (chi-squared).
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Figure 4 Essentiality and topological properties of the human network. (A) Relationship between protein degree and essentiality. Protein degree 
and the percentage of essential genes (blue) demonstrate a positive linear relationship (p-value of 2.52 × 10-6, r2 = 0.92). Excluding overlapping dis-
ease-associated genes from the essential set (purple) does not alter the relationship (p-value of 9.87 × 10-6 r2 = 0.89). (B) Relationship between protein 
betweenness centrality and essentiality. As for panel A, but for betweenness centrality. The percentage of essential genes (blue) demonstrate a posi-
tive linear relationship with betweenness (p-value of 5.86 × 10-5, r2 = 0.90). Similarly excluding overlapping disease-associated genes from the essential 
set (orange) does not alter the relationship, (p-value of 6.14 × 10-5, r2 = 0.88). (C) Relationship between publication count and essentiality. Essential 
genes (green) have an average greater publication count than non-essential genes (grey): 64 to 14 publications, respectively.
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Figure 5 Essentiality and HIV-interacting proteins. (A) Visualisation of essential proteins amongst HIV-interacting proteins. Green squares corre-
spond to human proteins identified as essential from mouse knockout data. Black squares and red circles correspond to human and HIV proteins, re-
spectively. Pink edges correspond to interactions between HIV-1 and human proteins, as shown in Figure 4. HIV proteins are labelled accordingly. (B) 
Number of essential proteins amongst HIV and randomised data sets. Without correcting for bias, rand(pop)contained an average 143 (9.99%) essential 

proteins, compared to 376 (26.28%) essential proteins in the HIV set (p-value of 3.86 × 10-95). When the bias is corrected for, rand(lit)contains an average 
399 (27.88%) essential genes, whilst being under-represented, the result is not significant (p-value of 0.0574) and is hence similar to the HIV-1 inter-
acting sample.
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ascertainment bias may affect the overall result. Unex-
pectedly, our results therefore do not support any signifi-
cant relationship between HIV-1 interaction and
essentiality: HIV appears to be no more or less likely to
interact with essential genes than other genes, despite
their high connectivity and high betweenness centrality.

HIV-interacting genes tend not to be disease-associated
Disease associated genes have previously been shown to
display a limited propensity towards encoding hub pro-
teins [22]. To test this, we explored the relationship
between disease-association and connectivity (Figure
6A), in addition to betweenness centrality (Figure 6B).
We find that, whilst there is a slight positive correlation
between degree and disease-association (Figure 6A, p-
value of 0.02, r2 = 0.47), this disappears when the 33% (n =
603) overlap with essentiality is removed (Figure 6A, p-
value of 0.29, r2 = 0.13). Disease-association and between-
ness centrality (Figure 6B, p-value of 0.01, r2 = 0.33) are
also less correlated when the overlap is removed (Figure
6B, p-value of 0.45, r2 = 0.04).

Without correcting for bias, it appears that gene disease
association obtained from OMIM [18] is significantly
over-represented amongst HIV-interacting proteins
when compared to non-HIV-interacting proteins (Figure
7). Of the HIV-1 interacting human genes, 244 (17.05%)
are associated with disease, whilst 120 (8.39%) of the ran-
domised samples (rand(pop)) on average are disease-asso-
ciated (p-value of 8.58 × 10-32). Investigating the

publication count in PubMed for disease-associated and
non-disease-associated genes reveals that disease-associ-
ated genes generally have larger numbers of publications
(mean 67 versus 16; Figure 6C), again indicating potential
bias. Correcting for this, the literature-count matched
random set (rand(lit)) has a mean of 336 (23.48%) disease-
associated genes (p-value of 3.48 × 10-12). Contrary to the
initial result, this suggests that there may in fact be fewer
interactions with disease-associated genes than expected
(Figure 7B).

HIV-interacting proteins are over-represented for 
fundamental biological processes
To place our findings in a stronger biological context, we
next investigated the relationship between HIV-host
interactions and protein function. A functional under-
standing of the host-pathogen interaction network can be
gained by integrating annotations from GO [4,23]. To
investigate HIV's use of the host system in more detail,
we identified biological processes over-represented for
HIV interactions (see also Pinney et al. [3]). These cate-
gories represent diverse functions exploited by multiple
interactions, involving multiple HIV genes, demonstrat-
ing that HIV proteins co-ordinate to target specific parts
of the human cellular system.

To investigate HIV's propensity to interact with key
proteins, we determined the degree and betweenness
centrality for proteins involved in the over-represented
biological process GO terms, including immune and

Figure 6 Disease association and topological properties of the human network. (A) Relationship between protein degree and disease-associa-
tion. Protein degree and the percentage of disease-associated genes (blue) demonstrate a slight positive linear relationship (p-value of 0.02). Exclud-
ing overlapping essential genes from the disease-associated set (purple) removes the relationship (p-value of 0.29). (B) Relationship between protein 
betweenness centrality and disease-association. As for panel A, but for betweenness centrality. The percentage of disease-associated genes (blue) 
demonstrate a positive linear relationship with betweenness, (p-value of 0.01). Similarly excluding overlapping essential genes from the disease-asso-
ciated set (orange) removes the relationships, (p-value of 0.45). (C) Relationship between publication count and disease-association. Disease-associ-
ated genes (green) have an average greater publication count than non-disease-associated genes (grey), 67 to 16 publications, respectively.
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apoptotic processes (Figure 8). We find proteins with
these terms are generally more highly connected and cen-
tral. The mean degree and betweenness centrality
amongst the human protein interaction network was
found to be 2.63 and 2.33 × 10-5, respectively, whilst those
of the functionally over-represented proteins are 7.27 and
7.40 × 10-5, respectively. This finding that human proteins
within the functional classes that HIV interacts with most
often are themselves more likely to be hubs and bottle-
necks accounts for the observed tendency of HIV-inter-
acting proteins to be highly connected and central and is
independent of the genes' essentiality or disease associa-
tion.

HIV's use of the host system
The HHPID data include the specific type of interaction
between HIV and host proteins, for instance up- or
down-regulation[3,4]. Combining this information with
GO permits an analysis of how the various HIV genes
perturb multiple host processes. We classified the 68
interaction types from HHPID into three polar catego-
ries: positive (denoted by +) for 'activated by', 'activates',
'enhanced by', 'enhances', 'stabilizes', 'stimulated by',
'stimulates', 'upregulated by' and 'upregulates'; negative
(denoted by -) for 'cleavage induced by', 'cleaved by',
'cleaves', 'competes with', 'degraded by', 'degrades', 'dis-
rupts', 'downregulated by', 'downregulates', 'inactivates',

'induces cleavage of ', 'inhibited by' and 'inhibits'; with the
remaining 25 interaction types as neutral (denoted by /
)[2,4]. For most of the over-represented biological pro-
cesses GO terms, we find the majority of interactions are
mainly 'positive' in nature. The only exception, not sur-
prisingly, is the immune response for which the majority
of interactions are more 'negative' in nature (Figure 9).
This demonstrates that HIV perturbs multiple cellular
processes in multiple ways, that is, HIV appears to be
both up- and down-regulating a wide range of proteins
and functions.

Discussion
Our results confirm that HIV preferentially interacts with
hubs and bottlenecks - key host proteins that are appar-
ently important to the cell (Figures 2 and 4). As proteins
with a high connectivity and high betweenness centrality
have previously been shown to demonstrate a tendency
towards being essential [9-11,14-16] (and see Figures 4A
and 4B), we investigated whether selection for interac-
tions with essential proteins could account for these net-
work topological observations. This was done by
integrating phenotypic data - assessed with protein
essentiality inferred from mouse knockout data - into our
analysis. After correcting for ascertainment bias, how-
ever, we found no significant relationship between HIV-1

Figure 7 Disease association and HIV-interacting proteins. (A) Visualisation of disease-associated genes amongst HIV-interacting proteins. Blue 
squares correspond to human proteins identified in OMIM as being disease-associated. Black squares and red circles correspond to human and HIV 
proteins, respectively. Pink edges correspond to interactions between HIV-1 and human proteins, as shown in Figure 4. HIV proteins are labelled ac-
cordingly. (B) Number of disease associated genes amongst HIV and randomised data sets. Without correcting for bias, rand(pop)contained an average 

120 (8.39%) disease-associated genes, compared to 244 (17.05%) disease-associated genes in the HIV set (p-value of 8.58 × 10-32). When the bias is 
corrected for, rand(lit)contains an average 336 (23.48%) disease-associated genes, which is different to the HIV-1 interacting sample (p-value of 3.48 × 

10-12).
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interaction and protein essentiality (Figure 5B). That is,
HIV-1 proteins appear to be no more or less likely to
interact with essential proteins than expected by random
chance. This lack of over-representation of interactions
with essential proteins (despite a significant tendency to
interact with key host proteins) could be the result of
ancestral selection pressure on retroviruses to minimise
interactions with phenotypically essential proteins. Spe-
cifically, this would be consistent with selection acting on
HIV's retroviral ancestors (due to longstanding co-evolu-
tion of retroviruses with host species) to minimise the
pathogenic outcome of infection and maximise transmis-
sion potential, presumably in a trade-off between viru-
lence and transmissibility [24,25].

Using an alternate measure of phenotype associated
with perturbation: disease association, we investigated
these observations further. Disease genes have previously
been shown to display no propensity towards encoding
either lowly or highly connected proteins [22] and we find
that this is also true of the human protein interaction net-
work when the overlap with essential genes is removed

(Figure 6A and 6B). Accordingly, we would expect to
observe no relationship between disease-association and
HIV interaction amongst human proteins. Initially we
find an over-representation of disease-association
amongst HIV-interacting human proteins (Figure 7B).
However, after compensating for ascertainment bias in
the literature, we find the opposite: there appears to be an
under-representation of disease-association amongst
HIV-interacting proteins (Figure 7B). As there is no
apparent relationship between connectivity and disease-
association (Figure 6A), the under-representation of dis-
ease-association amongst HIV-interacting proteins is not
related to network topology. Rather, we hypothesise that
this under-representation of disease-association could
again represent a selection pressure on retroviral proteins
to avoid interacting with proteins associated with adverse
phenotypes.

Given these results, how can we explain HIV's tendency
to interact with high-degree and high-betweenness host
proteins? Dyer and co-workers [8] have suggested that
viral and bacterial proteins tend to interact with key pro-

Figure 8 Protein degree (A) and betweenness centrality (B) for proteins involved in key cellular processes. The degree and betweenness cen-
trality for proteins involved in the key over-represented biological processes GO terms from [4]. Grey dashed lines correspond to the average degree 
(2.63) and betweenness centrality (2.33 × 10-5) amongst the human-human protein interaction network. The functionally over-represented proteins 
have a mean degree and betweenness of 7.27 and 7.40 × 10-5, respectively. P-values (from Wilcoxon rank-sum test) < 0.05 are indicated by an asterisk 
(*) above the data-points, suggesting the degree/betweenness distribution for each GO term is significantly different than that for all GO terms.

A B 

0

2

4

6

8

10

12

14

D
eg

re
e

*

*

*

*

*

*

*

*

*

 0

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

1.20E-04

1.40E-04

1.60E-04

1.80E-04

Be
tw

ee
nn

es
s 

Ce
nt

ra
lit

y *

*

*

*

*

*

*

*



Dickerson et al. BMC Systems Biology 2010, 4:80
http://www.biomedcentral.com/1752-0509/4/80

Page 10 of 13
teins, as they may control critical human cellular pro-
cesses, through their high connectivity and betweenness
centrality. We find that the two concepts are interrelated:
certain human proteins are central because they repre-
sent essential cellular functions, e.g., immune response.
HIV interacts with these proteins to achieve its biology,
and their high connectivity is simply secondary to this.
Indeed, proteins involved in the over-represented biolog-
ical process GO terms tend to be highly connected and
central (Figure 8). Thus, HIV's propensity to interact with
highly connected and central proteins is mainly a conse-
quence of its interactions with particular cellular func-
tions, rather than being related to global network
properties in any straightforward way.

The specificity of the HIV-1 host interaction from
HHPID, in the context of these underlying host protein
functions, permits a detailed analysis of HIV's perturba-
tion of the host system. Indeed, focussing on biological
functions (from GO), our analysis demonstrates the
directionality and complexity of both pro-pathogen (the
majority promoting HIV's replication cycle) and pro-host
(the host response to infection) interactions with specific
cellular functions [3]. Collectively this highlights the sub-
tle but complex manipulation of the host cell.

Throughout our analyses, we have corrected for the
potential effect of ascertainment bias [20]. However, as it
is very difficult to provide an accurate estimate for the

degree of bias in the HHPID data, we have deliberately
chosen a very conservative methodology for bias correc-
tion. Therefore, whilst we can be confident that degree
and betweenness are both higher than expected after cor-
rection, it is possible that we are over-correcting in the
case of the essentiality and disease-association data. Our
results should therefore be interpreted as indicating no
evidence for over-representation of these properties
amongst HIV-interacting proteins; further research into
bias correction methods for genome-scale data will be
needed in order to provide more definitive conclusions.

Conclusion
In order to fully understand HIV's hijack of the host sys-
tem it will be necessary to study in detail the functional
modules that are being exploited. This is exemplified by
the complexity of HIV-host interactions, with the same
functions being targeted multiple times (Figure 9). It will
also be important to study the directionality of interac-
tions, i.e., those that are pro-pathogen interactions as
opposed to pro-host interactions[3], or even bystander
interactions, incidental interactions of little consequence
to either virus or host. Our finding that that there are pat-
terns in terms of the types of interactions HIV makes can
be explained by the cellular functions that HIV requires
in order to replicate. The apparent tendency for HIV to
'avoid' phenotypically important molecules, underlines -

Figure 9 Directionality of HIV-host interactions by functional category. The frequency of interaction types classified as positive (green), negative 
(red) or neutral (blue) according to functional categories over-represented for HIV interactions; see Results for further details.
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despite HIV's recent acquisition by humans - the long-
standing relationship that retroviruses have with their
hosts. As more data become available, it will be informa-
tive to study this co-evolution of pathogens with their
(often changing) host species. Understanding the precise
molecular specificity of both the adaptation and persis-
tence of pathogens with their hosts will yield novel
insights into virulence and, potentially, new intervention
strategies.

Methods
Main Data sets
Human protein interactions were derived from multiple
sources: BioGRID http://www.thebiogrid.org, BIND
http://www.bind.ca and HPRD http://www.hprd.org and
filtered from the NCBI "interactions" file ftp://
ftp.ncbi.nlm.nih.gov/gene/GeneRIF. Interaction data
contained in these data sets are derived from multiple
sources. HIV-host interactions and properties were
derived from The HIV-1, Human Protein Interaction
Database (available at http://www.ncbi.nlm.nih.gov/Ref-
Seq/HIVInteractions). The data set currently comprises
1,435 human genes encoding 1,448 proteins that interact
with 19 HIV-1 proteins making 2,589 unique interac-
tions, curated from over 3,200 papers published between
1984 and 2007[2,4]. This paper also made extensive used
of the "gene_info" and "gene2refseq" files provided by the
Entrez Gene database ftp://ftp.ncbi.nlm.nih.gov/gene fil-
tered to human genes (n = 36,455) and limited to those
known to be protein-coding (n = 21,504). All data sets
were current as of July 2009.

Protein Essentiality
To predict the essentiality of a human gene, we used the
phenotype information of the corresponding mouse
ortholog. A human gene was defined as essential if a
knockout of its mouse ortholog confers lethality. We
obtained the human-mouse orthology and mouse pheno-
type data from Mouse Genome Informatics http://
www.informatics.jax.org/[17]. We considered the annota-
tions of postnatal, prenatal and perinatal lethality as
lethal phenotypes, and the rest of the phenotypes as non-
lethal ones. Overall, 27,697 annotations were filtered to
leave 2,145 genes with an inferred essentiality.

Disease Association
The Online Mendelian Inheritance in Man (OMIM)
Morbid Map http://www.ncbi.nlm.nih.gov/sites/
entrez?db=omim contains the most complete curated
disorder-gene associations [18]. The data was filtered for
the "(3)" tag http://www.ncbi.nlm.nih.gov/Omim/omim-
faq.html#gene_map_symbols, for which there is strong
evidence that at least one mutation in the particular gene
is causative to the disorder, to identify 3,328 unique dis-

eases across 3,049 genes. We used the gene_info file (to
convert OMIM gene symbols to NCBI GeneIDs to facili-
tate integration. This data was used as a proxy for mild
phenotypic effect.

Gene Ontology
GO terms [23] were collected for each human gene from
the NCBI "gene2go" file ftp://ftp.ncbi.nlm.nih.gov/gene/
DATA. Term ancestors were then determined for each
term from "gene_ontology_edit.obo" http://www.geneon-
tology.org to ensure complete coverage. Select GO terms
were taken from[3,23], retested for over-representation
amongst HIV-interacting human proteins using Fisher's
Exact Test in R[26] and separated into the three ontolo-
gies: biological process, cellular component and molecu-
lar function.

Network Visualisations
Networks were visualised as graph-based layouts using
Cytoscape [27].

Degree, Hubs, Betweenness and Bottlenecks
The degree of a vertex in a network is the number of con-
nections it has, in the case of a PPI network, this repre-
sents the number of other proteins the vertex interacts
with. The degree of a single vertex is therefore equal to
the number of adjacent edges.

A protein with a high degree is considered a hub and
these have frequently been identified as the most vulnera-
ble points in biological networks [9-11,14-16]. Yu et al.
[16] classify a protein as a hub if it falls within the top 20%
of proteins when sorted according to their degree. A cut-
off of 20% in our data categorises a hub as any protein
with a degree ≥3, we therefore chose a stricter cut-off of
2% so a hub is only classified as such with a degree ≥23.

Betweenness is a centrality measure of a vertex within a
graph that summarises its relative importance both
locally and globally [14-16]. Vertices that occur on many
shortest paths between other vertices have higher
betweenness than those that do not and are considered
bottlenecks. Bottlenecks are generally a more accurate
indicator of essentiality than degree or hub propen-
sity[16], despite the two being correlated. For a graph G =
(V, E), the betweenness centrality CB (v) for vertex v is:

, where σst is the number of geode-

sic (shortest) paths from S to t, and σst (v) is the number of
geodesic paths from S to t, that pass through a vertex v.
We use Brandes' algorithm[12] to calculate the between-
ness centrality of all vertices in G, normalised by dividing
through the number of pairs of vertices not including v:
(V-1)(V-2). As for hubs, we define a bottleneck as the top
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2% of ranked proteins, so a bottleneck is classified as such
with a normalised betweenness centrality ≥2.43 × 10-4.

The Wilcoxon rank-sum test, implemented in R [26],
was used to compare the distributions of degree/
betweenness across the entire genome against individual
over-represented biological processes GO terms (see
above). This enables us to determine whether the distri-
butions for each GO term are significantly different to
that found in the genome.

Ascertainment bias
For every protein coding gene contained in Entrez Gene
(n = 21,504), we obtained the number of unique publica-
tions using "Entrez Programming Utilities" http://
eutils.ncbi.nlm.nih.gov/entrez/query/static/
eutils_help.html. In total, 409,964 publications were
recorded; with an average 19 articles per gene (2,217
genes were not matched to a publication).

Rejection sampling was used to generate sets of random
genes that matched the publication frequency distribu-
tion of the HIV-interacting human set f(x) (n = 1,431),
from the overall protein-coding gene population with
publication frequency distribution g(x) (n = 21,504).

The John von Neumann Monte Carlo algorithm [28]
was used, such that instead of sampling directly from the
distribution f(x), we use an envelope distribution Mg(x),
where M is the maximal f(x) < Mg(x), and selected such
that f(x) < Mg(x) for all observed publication counts x:

A) A gene (with publication count x) is selected at 
random from the overall population with publication 
frequency distribution g(x). A random number U 
from U(0,1) is also selected.

B) If , x is accepted as a realisation of f(x) 

and the gene is kept, otherwise sample step (A) is 
repeated.

The procedure is repeated until a set of genes of the
required size is obtained. The samples match the distri-
bution with a p-value of 0.43 (chi-squared, Figure 3).
Using this procedure we constructed 10,000 sets of 1,431
randomised genes, rand(lit), matching the publication fre-
quency distribution of the HIV-interacting human genes.
For comparison, 10,000 fully randomised samples,
rand(pop), were also generated by standard random sam-
pling from the set of all genes. When comparing observed
properties to these random samples, a z-score calculation
was used to standardise the raw score s of each property

tested,  and this was converted to a P-value using
R [26]. This enables us to determine whether any results
in the HIV-interacting set are due to ascertainment bias.

Gene set enrichment analysis
Following the example of Dyer et al. [8], we adapted the
gene set enrichment analysis (GSEA) method of Subra-

manian et al. [19] to test for significant differences
between HIV-interacting and random sets of genes (both
rand(lit) and rand(pop)). For a graph G = (V, E) let L be the
list V ranked by either degree or by betweenness central-
ity. Let S be a subset of vertices within L, for example, the
vertices that are HIV-interacting, rand(lit) or (rand(pop). Let
li be the value (of degree or centrality) at index i of L, such
that 1 ≤ i ≤ |L|. If i is a member of S, the protein whose
rank is i, thus, belongs to S. First, calculate ,
the sum of all the values of S. Next, for each index i of L,

we compute two values, , the

weighted fraction of proteins in S with an index ≤ i and
, the fraction of proteins not in S

with an index ≤ i. The enrichment score is therefore the
largest positive value of es(S, L) = Phit (S, i) - Pmiss(S, i). A
large positive value of es(S, L) indicates that the proteins
in S have high degree or high betweenness centrality. To
compute p-values for the observed es(S, L), Dyer and co-
workers [8] selected |S| random proteins from L
1,000,000 times and estimated the p-value based on this
distribution. However, we predict S to be biased, so simi-
larly biased random samples |S| must be taken from L.
We therefore used rejection sampling to generate 10,000
samples of |SHIV| with the distribution of SHIV in prefer-
ence to the naïve random selection. A p-value was calcu-
lated from the z-score using R[26].
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