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Understanding the molecular mechanisms associated with disease is a central goal of modern medical
research. As such, many thousands of experiments have been published that detail individual molecular
events that contribute to a disease. Here we use a semi-automated text mining approach to accurately
and exhaustively curate the primary literature for chronic pain states. In so doing, we create a compre-
hensive network of 1,002 contextualized protein–protein interactions (PPIs) specifically associated with
pain. The PPIs form a highly interconnected and coherent structure, and the resulting network provides
an alternative to those derived from connecting genes associated with pain using interactions that have
not been shown to occur in a painful state. We exploit the contextual data associated with our interac-
tions to analyse subnetworks specific to inflammatory and neuropathic pain, and to various anatomical
regions. Here, we identify potential targets for further study and several drug-repurposing opportunities.
Finally, the network provides a framework for the interpretation of new data within the field of pain.

� 2014 The Authors. Published by Elsevier B.V. on behalf of International Association for the Study of
Pain. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/3.0/).
1. Introduction

Acute pain has evolved as a key physiological alert system for
avoiding noxious stimuli and protecting damaged regions of the
body by discouraging physical contact and movement [50]. This
form of pain is crucial; in its absence, for example, in individuals
with congenital insensitivity to pain, we are more prone to damag-
ing or nonprotective behaviors that can hinder our quality of life
[44,46]. Conversely, persistent or chronic pain can be similarly
debilitating, with those affected typically suffering psychological
disturbance and significant activity restrictions [16]. The incidence
of chronic pain is widespread across the global population, with
estimates in the adult general population of 12.7% to 29.9% in
developed and 14.5% to 33.9% in developing nations [11].
Pharmacological therapeutics such as opioids, and nonsteroidal
anti-inflammatory drugs (NSAIDs) such as cyclooxygenase-2
(COX-2) inhibitors, are often prescribed as the standard treatment
regimens for patients with chronic pain [3,27]. However, although
these and a huge range of other treatment options are available,
their efficacy often proves at best modest, and their use is limited
by unwanted side effects [13,49]. There is therefore an urgent need
to better understand the molecular systems that mediate chronic
pain and to use this knowledge to develop improved therapeutics.

Pain researchers have published hundreds of thousands of arti-
cles, many of which detail knowledge of the molecular interactions
involved in pain. However, digesting and using this knowledge is
impractical without the use of text mining. In our previous work
[24], we used state-of-the-art computational methods to retrieve
molecular interactions associated with pain from the primary liter-
ature: the whole of Medline and open-access articles in PubMed
Central (PMC). These data are catalogued at wiki-pain.org, which
contains 93,271 molecular interactions derived from 765,692
pain-related articles. Each interaction is annotated with detailed
contextual information such as anatomy, associated point
mutations, and disease relevance. However, as fully automated
text-mining results can be error prone [43], we implemented a
novel strategy to curate mentions of protein–protein interactions
(PPIs) grouped from multiple publications to create the first
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pain-specific dataset of interactions. Through ongoing curation,
this dataset now contains more than 1000 unique contextualized
PPIs [24].

Here we explore the relevance and accuracy of our pain related
PPIs using network and functional enrichment analyses and gene
bias assessment methods. To emphasize the quality and
effectiveness of this approach of sourcing interaction data, we
provide comparisons with pain-related interaction networks
derived from gene expression data, a manually curated list of pain
genes, and the known targets of pain drugs. Our results demon-
strate that a semi-automated text-mined interaction network
allows us to interpret the sum knowledge of the biomedical
domain of pain in an integrated manner, providing a more com-
plete portrait than is possible from other common means of infer-
ring disease networks. The network has immediate utility to
researchers in the field as a framework for the interpretation of
new findings and high-throughput ‘omic’ datasets. Importantly,
this approach has broad applicability to other diseases or
syndromes to which a combination of text mining and network
biology might be applied.

2. Methods

2.1. Data availability

The data generated in this study are available in Supplementary
Tables 1 to 24.

2.2. Curation procedure for PPIs

In a previous study detailing our text-mining methodology, we
curated more than 1500 unique PPIs involving mouse, rat, and/or
human proteins, ranked by their overall relevance to pain [24].
Raw interactions were extracted from text automatically and dis-
played on wiki-pain.org to be verified by an expert. For a PPI to
be considered accurate, the proteins, including underlying species
and associated Entrez Gene IDs, and interactions had to have been
extracted accurately in at least 1 instance when all mentions of
that interaction were grouped together. We continued curating
interactions in this study following these guidelines. We focused
on those interactions that had a text mining confidence score
above a threshold (28%) that was empirically determined to be a
good indicator of true-positive interactions [24]. We grouped
orthologous proteins from rats, mice, and humans (using NCBI
Homologene IDs) and simplified the interactions to positive
regulation, negative regulation, regulation, or binding to remove
superfluous data.

PPIs for the neuropathic and inflammatory pain tasks were
curated in the same way as with general pain-associated interac-
tions, with the addition of 1 more condition: each interaction
had to have a specific association with the relevant pain disorder,
for example, ‘‘activiation of c-Jun in DRGs induces VIP and NPY
upregulation and contributes to the pathogenesis of neuropathic
pain’’ [48]. Those interactions that were selected for curation had
neuropathic or inflammatory pain relevance of greater than 90%
[24] and, again, a text mining confidence threshold of 28%. The
involvement was noted as being either part of the mechanism of
that disorder or having an inhibitory effect on it. We note that
interactions were curated from literature published over decades,
and so any changes in the formal definition of these indications
used may not have been accounted for.

2.3. Network analysis

Networks were analyzed using iGraph for R [9] and visualised
using Cytoscape 3.0 [45].
Enrichment analysis of proteins was performed using Fisher’s
exact test to determine proteins that had a statistically significant
number of interactions in the subgraph under study compared to
the relevant main graph. This follows similar implementations of
Fisher’s exact test as described in Poirel et al. [40] and Wuchty
[51]. Enrichment was determined by calculating the number of
interactions that each protein features in the subgraph (a) and
those that it does not (c), as well as that it features in a comparison,
main graph (b) and those that it does not (d). The probability that a
protein is enriched is then determined using the hypergeometric
distribution, such that

p ¼
aþb

a � cþd
c

aþbþcþd
aþc

iRefIndex (version 06062013) was used as a source of generic PPIs
to construct a comparison main graph representative of the human
interactome. iRefIndex is a large generic molecular interaction data-
base containing interactions that have been sourced from numerous
manually curated databases [42]. Using only human proteins from
this database, the network contains 14,818 nodes and 167,413
edges, with an average degree of 22.6.

2.4. Gene functional enrichment

To determine enriched GO terms, we used the DAVID functional
annotation tool to assign genes with their affiliate terms and to
order them by enrichment [21].

2.5. Pain category assignment

To determine which drugs are used to treat pain-associated
indications, we manually assigned pain categories to all pharmaco-
logically treatable indications. Indications were assigned to 1 of the
4 categories: (1) ‘‘Pain specific’’ are indications that are specifically
associated with pain (eg, neuropathic pain and headaches); (2)
‘‘typically painful’’ are indications that are typically painful, where
pain is consistently presented as a symptom of the disorder (eg,
endometriosis and arthritis); (3) ‘‘Can be painful’’ are indications
that can be painful but can also manifest in a pain-free state (eg,
certain cancers and diabetes); and (4) ‘‘typically nonpainful’’ are
indications that are typically not associated with pain (eg, alopecia
and wrinkling skin), including mental illnesses (eg, schizophrenia
and depression). Protein targets of drugs were sourced from an
in-house database and were then assigned a pain category using
the most pain-related indication.

2.6. Anatomical categorization

To build pain networks specific to the brain, spinal chord,
peripheral nervous system (PNS), and immune system, all interac-
tions that had at least 1 mapping to an anatomical term derived
from wiki-pain.org data were used. Anatomical terms were then
mapped into 1 or more of the 4 anatomical regions or other (see
Supplementary file 24 for mappings). Each network was then built
for the 4 anatomical regions according to interactions that had an
associated anatomical term.

2.7. Microarray analysis

We performed tibial nerve transection (TNT) surgery [18] on
adult female rats (n = 8) alongside sham controls (n = 8). Rats were
confirmed for tactile allodynia in response to mechanical pressure
and both dorsal root ganglia (DRG) and spinal cord were harvested
at 7 days after surgery. Gene expression analysis was performed
using the Affymetrix Rat 230 2.0 chip. After quality control (QC),
data were robust multi-array average (RMA) normalized, and
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limma was used to identify differentially expressed genes versus
sham, which were considered significant if their false discovery
rate (FDR) corrected P value was <.05 and their fold change was
>1.5. These experiments were approved and monitored by the local
ethics committee. The data from this experiment are available in
the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under
the accession number E-MTAB-2260.

3. Results

3.1. Literature-derived pain PPI network

Using a semi-automated text-mining procedure [24], we identi-
fied 1002 unique PPIs associated with pain, involving 611 different
TNF
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IL1B
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Extract pain-related
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Fig. 1. The pain interaction network. (a) Workflow for creating a pain-specific protein–pr
derived from the curated data. Proteins enriched against iRefIndex (P < .05) are highlighte
proteins. Colored arrows refer to interaction type: Blue corresponds to positive regulatio
edges are bi-directional).
proteins (Fig. 1a and Supplementary Table 1; see Methods). In
total, there are 124 interactions classed as negative regulation,
403 as positive regulation, 180 as regulation (either positive or
negative) and 295 as binding. When connected as a network, the
PPIs form a highly interconnected and coherent structure, with
the largest component containing 481 (79%) of the 611 proteins
(Fig. 1b). The network has an average degree of 2.8, a clustering
coefficient of 0.07, and a power law fits the node degree distribu-
tion with 0.993 correlation indicating that it is scale free, consis-
tent with other molecular interaction networks [1]. The proteins
in the network show a statistically significant enrichment for pain
associated Gene Ontology (GO) biological processes (eg, response
to wounding and inflammatory response), cellular components
(eg, neuron projection and postsynaptic membrane), and
IL6

NGF

TRPV1
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molecular functions (eg, ion channel activity and neurotrophin
binding) (Supplementary Table 2).

Given that our interaction data are derived from the primary lit-
erature, there is potential for ascertainment bias in our network
[39]. For example, we will have data only for proteins that have
been studied in a pain context, and the most central nodes to our
network could be biased by the fact that they have been studied
for the longest time. As expected [39], there is a positive linear
trend between the degree of a protein and the number of publica-
tions describing its interactions (Fig. 2a, Supplementary Fig. 1 and
2, and Supplementary Table 3), but there is no significant increase
in the average number of documents per interaction observed as
degree increases (rho = 0.08, Fig. 2b). However, there is an inverse
correlation between the date of a node’s first publication in our
dataset and its degree (rho = �0.4; Fig. 2c and Supplementary
Table 4).

The first interactions in our network were published as early as
1975, with 25% of interactions published before the year 2000.
Those published before 2000 include the 17 highest degree
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Fig. 2. Bias in the pain interaction network. (a) Correlation between the number of publi
The average number of publications per interaction for a pain protein remains fla
Supplementary Figs. 1 and 2, and Supplementary Table 3). (c) There is an inverse relations
degree (rho = �0.4) (see Supplementary Table 4).
proteins; supporting the assertion that degree correlates with
length of study and knowledge of a protein’s perceived importance.
We therefore need to be aware of the fact that, within literature-
derived networks, the longer and more thoroughly a protein has
been studied, the more interactions it is likely reported to have.

3.2. Comparative analyses between alternative pain protein datasets

To investigate the scope and relevance of our text-mined net-
work to pain, we compared it to networks derived from 2 other
commonly used sources of disease-associated gene datasets, using
generic interaction data from iRefIndex to determine known inter-
actions between the proteins in these datasets (see Methods). It
would be preferable to provide comparisons with datasets the
interactions of which are derived entirely from pain-specific exper-
iments, but there are no such datasets currently available. First, we
generated gene expression data from DRG and spinal cord in the
rat TNT model of neuropathic pain (see Methods) to derive a set
of pain-associated differentially expressed genes. Second, we used
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Fig. 3. Drug targets in the pain interaction network. (a) Drug targets are color coded by the contribution of pain to their primary indication (see Methods), as indicated in the
key. The 10 most enriched nodes are enlarged and moved into the center for clarity. (b) Drug target profiles of each pain network. Proteins from each dataset are ranked by
their enrichment P value and binned into quartiles. Numbers of associated drugs that target proteins in each quartile are then indicated. There is a significant relationship
between the enrichment of a node in the text-mined network and the likelihood of it being a drug target for a pain specific indication (v2 test for trends in proportions,
P = .002). However, neither the Pain Genes DB network nor the gene expression data show the same significant trend (P = .05 and P = 0.9, respectively).
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a list of pain-associated proteins from the Pain Genes DB [29] that
have been manually curated from the literature. We reasoned that
the gene expression data would not be prone to the same biases as
literature-associated data (ie, data derived from small-scale
experiments), whereas the Pain Genes DB list is curated from the
literature but is not dependent on text mining.

From the gene expression experiment, we find 237 genes to be
differentially regulated across both DRG and spinal cord tissue;
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Fig. 4. Protein regulation in the pain interaction network. (a) The top 10 most enriched genes in the pain network are shown with their regulation profiles broken down by
incoming (is regulated, ‘‘I’’) and outgoing (regulates others, ‘‘R’’) interactions. Black denotes positive regulation, gray denotes negative regulation, and white denotes other
types of interaction. Undirected binding interactions are excluded. (b) The distribution of net regulation for all proteins in the pain network shows a normal distribution with
long tails. This indicates that only a few proteins act as master regulators. (c) These master regulators were determined using the exact binomial test (see Supplementary
Table 16). The proteins that are significantly more regulated than they are regulators and vice versa are shown; nerve growth factor (NGF) is the most significant net
regulator.
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also, there are 399 genes in the Pain Genes DB dataset
(Supplementary tables 5 and 6). These are considerably fewer than
the 611 proteins in the text-mining derived dataset. Using the gen-
eric interactions from iRefIndex to connect proteins in these data-
sets, it was possible to make only 67 connections between 63
proteins in the gene expression data (Supplementary Fig. 3a and
Supplementary Table 7). Therefore, we expanded this dataset to
include first-order neighbors with high-betweeness, stipulating
that they have interactions with at least 2 of the input genes and
so act as bridges to connect the network. As a consequence, 192
(81%) of the differentially expressed genes are included in the
network. The resulting networks from Pain Genes DB and gene
expression contain, respectively, 272 and 901 nodes, 510 and
12,318 edges, average degrees of 3.75 and 27.34, clustering
coefficients of 0.115 and 0.264, and power law correlations of
0.959 and 0.645 (Supplementary Figs. 3b and 4; Supplementary
Tables 8 and 9). These networks include relatively few of the pro-
teins from our text-mined network, 125 (20%) and 137 (22%),
respectively. We note in particular the high average degree of
27.34 in the gene expression network, whereas the Pain Genes
DB and text-mined networks both have similar ratios of 3.75 and
2.8, respectively.
These data indicate that our text-mined network has properties
similar to those of a network derived from manual curation. The
network derived from gene expression data has a far higher aver-
age degree and so presumably contains many more nonspecific/
nonrelevant interactions despite the constraints that we placed
on introducing new nodes. Indeed, both the gene expression data
(without first-order neighbors) and the Pain Genes DB curated data
show similar pain-relevant–enriched GO terms to the text-mined
proteins (Supplementary Tables 10 and 11). However, when ana-
lyzing only those bridge proteins that were added to the gene
expression network, there is much lower enrichment of pain-
related GO terms in comparison to the original gene expression
gene list (Supplementary Table 12), which would suggest that
there is considerable noise introduced into this network.

We next cross-referenced nodes in all 3 networks (text-mining
derived, gene expression, and Pain Genes DB) with known thera-
peutic targets of Food and Drug Administration (FDA)–approved
drugs (see Methods), taking this as an additional measure of rele-
vance to pain. In the text-mined network, we find 181 targets for
existing therapeutics, with 88 targets for anesthetics and pain-
specific indications (eg, migraines, neuropathic pain, abdominal
pain) and 51 targets for typically painful indications (eg, arthritis,



D.G. Jamieson et al. / PAIN
�

155 (2014) 2243–2252 2249
endometriosis) (Fig. 3a and Supplementary Table 13). Examples of
pain-specific targets in the text-mined network include OPRM1,
the target of analgesics such as morphine [8], and key pro-
inflammatory cytokines such as tumor necrosis factor (TNF), which
is targeted by numerous drugs for rheumatoid arthritis [35]. The
Pain Genes DB and gene expression networks have fewer therapeu-
tic targets than the text-mined network, with 100 and 132,
respectively (Supplementary Tables 14 and 15). We also note that
the gene expression network contains a much lower proportion of
pain-specific targets (36%) in comparison to the Pain Genes DB
(66%) and the text-mined network (49%) (Fig. 3b).

There is a significant relationship between the enrichment (see
Methods) of a node in the text-mined network and the likelihood
of it being a drug target for a painful indication (v2 test for trends
in proportions, P = .002; Fig. 3b), which is not the case for either the
Pain Genes DB (P = .05) or gene expression networks (P = .9). We
see strong enrichment for targets of drugs currently in develop-
ment for pain indications, for example, nerve growth factor
(NGF; Tanezumab) [5] and genes that have been earmarked as
potential therapeutic options, for example, brain derived neurotro-
phic factor (BDNF) [7,47]. Moreover, the highly enriched IL6 and
SST are currently targets for other indications (diabetes and pros-
tate tumors), and thus their associated drugs may represent prom-
ising repurposing opportunities to treat more typically painful and
pain-specific indications.

3.3. Insights into the pathology of pain

We next explored the molecular biology of pain apparent from
our network. There are a number of proteins in the pain network
with a high degree, indicating the importance of these nodes to
the structure of the network [25]. As this pain network is a sub-
graph of the much larger human interactome, we confirmed this
connectivity by controlling for proteins that are highly connected
in general and thus more likely to appear highly connected in
KC
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our network. To do this, we developed a method to identify pro-
teins with a significant enrichment of their known interactions
within our pain network. We again used iRefIndex as a source of
generic interactions to facilitate this [42] (see Methods).

Of the most enriched proteins in the network (Figs. 1b and 4a;
Supplementary Table 13), many are key to the pathology of pain,
for example OPRM1 [19], TRPV1 [15,41], and NGF [17,20]. We find
that enriched nodes have multiple regulatory roles, both up and
down regulating numerous proteins (Fig. 4a, b, and Supplementary
Table 16). There are 8 enriched proteins that are more significantly
regulated by others, for example, OPRM1, TRPV1, and FOS, and 4
proteins that more significantly regulate others: NGF, GHRH, PNOC,
and LEP (Fig. 4c). This is consistent with the known roles of NGF
and nociceptin (PNOC) as mediators of pain signaling [34,38].
Interestingly, growth hormone (GH), but not growth hormone–
releasing hormone (GHRH), has been associated with the chroni-
cally painful condition fibromyalgia [30]. Furthermore, recent evi-
dence has suggested a role for leptin (LEP) in the modulation of
pain [31,32]. Our data suggest that both GHRH and leptin might
play a more prominent regulatory role in pain than has hitherto
been appreciated.

To demonstrate the utility of our contextualized interaction
dataset, we chose to investigate inflammatory and neuropathic
pain, 2 fundamental aetiologies that manifest chronic pain states
[2,4]. In the construction of these subnetworks, we have also
curated the overall effect of the interaction on the outcome of
the pain type, that is, an inhibitory or positive effect. There are
144 interactions associated with neuropathic pain in our dataset,
with 122 found to be contributory to its pathology, 17 inhibitory,
and 5 denoted as both (Fig. 5; Supplementary Table 17). In compar-
ison, 181 interactions are related to inflammatory pain, including
154 contributory interactions, 22 inhibitory interactions, and 5
that have been documented as both (Fig. 6; Supplementary
Table 18). In all, 61% of the proteins from inflammatory pain form
a coherent core graph, and there are 2 distinct subgraphs in the
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neuropathic pain network that together account for 73% of the
proteins.

The neuropathic and inflammatory pain networks contain 127
and 157 proteins, respectively, with 80 featuring in both datasets.
This large overlap in proteins demonstrates that both forms of pain
have underlying core pathology even if the initiation of pain is dis-
tinct. This is highlighted by the biological processes that the 80
proteins are highly enriched for, for example, response to wound-
ing (P = 2.88 � 10�14) and sensory perception of pain
(P = 6.41 � 10�16) (Supplementary Table 19). However, the pro-
teins unique to the inflammatory and neuropathic pain datasets
also reveal the more subtle differences between these disorders.
For example, proteins unique to inflammatory pain show a much
higher enrichment of inflammatory associated biological processes
in comparison to proteins unique to neuropathic pain, such as
inflammatory response (P = 5.16 � 10�12 vs P = 3.54 � 10�4) and
defense response (P = 1.30 � 10�10 vs P = 6.03 � 10�5) (Supple-
mentary Table 19). The most enriched biological processes unique
to the neuropathic pain dataset include regulation of membrane
potential (P = 4.41 � 10�5) and regulation of action potential
(P = 4.66 � 10�5). Moreover, there are 12 proteins in the intersec-
tion between the neuropathic pain dataset and the rat TNT gene
expression dataset in comparison to just 3 from the intersection
of the inflammatory pain dataset and the gene expression data.
An odds ratio test confirms that proteins in the neuropathic pain
network are more likely to feature in the gene expression dataset
compared to proteins from the inflammatory pain network (odds
ratio = 5.36, z = 2.55, P = .01). Given that the gene expression data-
set was derived from a neuropathic pain model, this would suggest
that our neuropathic pain curated data are indeed more relevant to
neuropathic than to inflammatory pain.

To identify the key molecules within the 2 pain types, we
repeated our method to reveal enriched proteins against the
human interactome and, in addition, against the main pain net-
work. This revealed 116 and 135 proteins for which the majority
of their interactions were present in the neuropathic and inflam-
matory pain subnetworks, respectively, compared to the generic
human interactome (Supplementary Tables 20 and 21). There were
12 and 15 proteins enriched in each subnetwork compared to our
main pain network. Of these, only NGF, SCN10A (NaV1.8), BDNF,
and EPHB1 (ephrin receptor) feature in both the neuropathic and
inflammatory pain datasets. The neurotrophic NGF and BDNF
[47] as well as ephrin [6] play a key role in neuronal growth and
axonal guidance and have been linked to multiple pain aetiologies.
There are 9 genes that encode a-subunits of voltage-gated sodium
channels, many of which have been linked to multiple types of pain
[33]. It is therefore surprising that only NaV1.8 is identified here.
This raises an interesting perspective on our data, which does not
seek to identify general gene–disease functional associations but
rather to uncover which proteins are highly interacting within a
diseased state compared to a normal state. Based on this measure,
although other ion channels are important to pain, NaV1.8 appears
to be the only sodium channel with an interactome that spans mul-
tiple pain etiologies.

There are 8 enriched proteins that are specific to the neuro-
pathic pain network and 11 to the inflammatory pain network.
Of the proteins specific for neuropathic pain, GRIN2B and NOS1
are already targeted for pain-specific indications. MAPK14 and
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IL6 are targets for other indications and so might represent drug
re-purposing opportunities for neuropathic pain-specific disorders.
In addition, DLG2, CX3CR1, P2RX4, and VGF appear to be promising
leads for the specific investigation of neuropathic pain [10,12,36].
Similarly, IL10, PTGER2, and IL4 are existing targets for inflamma-
tory pain-associated disorders (eg, rheumatoid arthritis), whereas
TRPV1 is targeted by analgesics (eg, propofol [14] and capsaicin
[26]). LEP, Nkx1-1, PDZD2, NTRK1, IL8, MAPK1, and CSNK2A2
would also appear to be specifically important to inflammatory
pain. NTRK1 (TrkA) is the receptor for NGF, which we previously
saw to be enriched in both types of pain. That NGF’s receptor is
enriched only in the inflammatory pain dataset (although it is pres-
ent in the neuropathic pain network) emphasizes the need to apply
caution when interpreting such data as complete. The curated data,
albeit extensive, is not complete, and indeed the body of published
work itself does not detail the full pain interactome.

Finally, to illustrate further the possibilities associated with our
data, we repeated the same style of analysis but this time create
networks for different anatomical regions. From the 1,002 PPIs,
we used the anatomy context in wiki-pain.org to determine 607
interactions that could be mapped to 1 or more of the following
pain-relevant anatomical associations: brain, spinal cord, periphe-
ral nervous system (PNS), immune system, and other (Supplemen-
tary Table 22). We determined 245, 204, 162, and 92 interactions
associated with the brain, spinal cord, PNS and immune system,
with 211, 190, 152 and 106 proteins in each, respectively (Supple-
mentary Figs. 5–8). We used our enrichment analysis to identify
proteins more highly connected in each of the anatomical regions
compared to the general pain network (Supplementary Table 23).
We find NGF and BDNF to be key to the network in multiple ana-
tomical locations, being enriched in the brain, spinal cord and
PNS networks. PENK, OPRL1, and GHRH were specifically enriched
in the brain, FOS in the spinal cord, and CALCA, TRPV1, RUNX1,
RUNX3, NTRK2, TNFRSF1A, and GDNF were enriched only in the
PNS networks. There are also 20 proteins enriched in immune-
related anatomical regions, for example, CCL5 and IL8. These data
allow us to explore the anatomical interplay that contributes to
the development of pain, in particular the interplay between the
peripheral and central nervous systems. In addition, this also aids
drug development by informing the necessary central or peripheral
distribution of a drug candidate.

4. Discussion

We have shown that our large semi-automated text-mining–
derived network is relevant to pain and forms a more complete rep-
resentation of the molecular mechanisms underlying the disease
than is possible using other common starting points. We identify
several drug repurposing opportunities and use our enrichment
method to identify novel mediators of pain. In particular, we show
that NaV1.8 is a key ion channel for both neuropathic and inflam-
matory pain. Furthermore, as we are able to extract specific context
with each interaction, we can create and explore networks specific
to individual pain indications or anatomical regions. Recent studies
have undertaken meta-analyses of gene expression data from pain
models [28] or have described resources that enable the network
visualization of known pain genes by incorporating PPIs from non-
diseased contexts [37]. Our method, using disease-specific interac-
tions identified from the pain-relevant literature, offers a
considerable advance in specificity and relevance.

Text mining has long been heralded as the practical solution to
efficiently retrieving data denoted in the ever-expanding body of
published biomedical literature [43], but poor precision and recall
have restricted its wider use in delivering reliable data [52].
Instead, the majority of data derived from free text that is
subsequently used in biological analyses is identified and extracted
by manual curation, a process that is costly, time consuming, and
often unable to offer more exhaustive coverage [23]. As a method
of extracting and characterizing key proteins and interactions that
are denoted in the literature, our study offers a strong case for a
semi-automated approach that uses text mining to rapidly gener-
ate the data and manual curation of the results to achieve high pre-
cision. Although the protein interaction data that we have
retrieved and curated in this study is not complete, the datasets
have proved sufficiently broad, accurate, and relevant to make
compelling biological findings.

The results in this study represent the most extensive summary
of all of the published research conducted on pain-associated pro-
teins. The power of such an approach comes from integrating the
data at the network level, which allows novel hypotheses to be
drawn in the context of the global picture. Furthermore, the net-
work can be used as a framework to provide context to the inter-
pretation of datasets generated by researchers within the field.
This is increasingly recognized as a successful approach to the
study of disease biology [22]. It is foreseeable, therefore, that a sim-
ilar approach to data retrieval and analysis could be applied to a
huge range of biomedical disorders under various different con-
texts, to provide networks and targets for further study.
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