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ABSTRACT

Motivation: As a natural consequence of being a computer-based

discipline, bioinformatics has a strong focus on database and software

development, but the volume and variety of resources are growing at

unprecedented rates. An audit of database and software usage pat-

terns could help provide an overview of developments in bioinfor-

matics and community common practice, and comparing the links

between resources through time could demonstrate both the persist-

ence of existing software and the emergence of new tools.

Results: We study the connections between bioinformatics resources

and construct networks of database and software usage patterns,

based on resource co-occurrence, that correspond to snapshots of

common practice in the bioinformatics community. We apply our ap-

proach to pairings of phylogenetics software reported in the literature

and argue that these could provide a stepping stone into the identifi-

cation of scientific best practice.

Availability and implementation: The extracted resource data, the

scripts used for network generation and the resulting networks are

available at http://bionerds.sourceforge.net/networks/

Contact: robert.stevens@manchester.ac.uk

1 INTRODUCTION

Scientific research is defined by its use of available methods. We

continually refine existing methods and develop new ones, and

this cycle of innovation, implementation and confirmation is at

the heart of scientific progress. The merits of a piece of research,

i.e. its contribution and impact, are a direct consequence of the

methods used (Eales et al., 2008). In this article, we focus on the

discipline of bioinformatics and the use of computers in the ana-

lysis of biological data. Knowledge of the relationships between

the most widely used resources within bioinformatics (‘common

practice’) permits a representation of the contribution of soft-

ware and databases to biological research, potentially enabling

researchers to identify and select the most appropriate

approaches for their data analysis.

Resource selection is a particular problem within bioinfor-

matics, where the ‘resourceome’ (Cannata et al., 2005) has

been growing at an unprecedented rate since nucleic acid sequen-

cing became widespread in the 1980s, leading to the emergence of

key tools such as BLAST, which is still widely used (Altschul

et al., 1990). Managing this overwhelming resource portfolio re-

quires identifying which ones are commonly used, how they are

used and for what they are used. While there are repositories of

bioinformatics resources (e.g. The Bioinformatics Links

Directory; Brazas et al., 2011) and services (e.g. BioCatalogue;

Bhagat et al., 2010), the biomedical literature is still the most

suitable place to look for patterns of database and software

usage to provide an overview of developments in the commu-

nity, and thus help identify common practice (Stevens et al.,

2003).
In this article, we use several well-established techniques in text

mining to extract, filter, combine and analyse frequently reoccur-

ring resource name pairs in articles’ methods sections. We use

these pairs to build resource networks, thus providing a snapshot

of database and software common usage patterns within the

bioinformatics literature. A few previous studies exist in this

area, but they focus on a specific subdomain or task, e.g. phylo-

genetics (Eales et al., 2008) or natural language processing

(Kovačević et al., 2012), and not resource usage across bioinfor-

matics. We build our work on a previously developed named

entity recognizer for databases and software within bioinfor-

matics (Duck et al., 2013), which we use to automatically extract

resource names mentioned across a large corpus of full-text

documents.

2 MATERIALS AND METHODS

Our approach has five main steps: (i) full-text corpus generation,

(ii) extraction of resource name mentions, (iii) identification of method

sections, (iv) frequent resource pair mining and (v) network generation.

(i) Corpus generation. We filtered the open-access subset of PubMed

Central (PMC; downloaded February 2013) (Roberts, 2001) to only full-

text articles that had ‘Bioinformatics’ as a MeSH term associated with

their journal, resulting in 22 376 articles from 67 journals; this corpus

contained no articles published before 2000. We note that just three jour-

nals (BMC Bioinformatics, BMC Genomics and PLoS Computational

Biology) contribute over 50% of the total documents to this corpus.

(ii) Resource extraction and categorization. We first ran bioNerDS

(Duck et al., 2013) on the corpus to extract database and software

names at the mention level. Note that bioNerDS reported F-scores of

63–91% at the mention level. There were 702 937 total mentions and

167697 mentions at the document level (ignoring multiple mentions of

the same resource within a single document) of 31 053 unique names;

93% of the documents contained at least one resource mention. We

then filtered the resource mention data by only considering resource

names mentioned in at least two different documents, leaving 520590

resource mentions (6302 unique), and thus removing 24.6% of the total

mentions. This not only removed resources just mentioned in a single

document—which would not be indicative of common practice—but it

also helped filter out several false-positive mentions, as resources appear-

ing in few documents showed a higher false-positive rate. We also

excluded the generic resources Bioconductor and R, as they can be used

in a wide array of differing situations, but we kept specific Bioconductor

package mentions (e.g. affy), which do indicate specific tasks. We have

additionally filtered some common false-positive terms (e.g. PSSM, EST,

etc.). This left 443 193 resource mentions (6262 unique).*To whom correspondence should be addressed.
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Each unique resource name is categorized as either a database

(including datasets, ontologies, etc.) or software (including web services,

packages, etc.) at the corpus level (for a full definition, see Duck et al.,

2012). Categorization is done automatically and is based on several pieces

of information. Firstly, the bioNerDS dictionary entries have already

been categorized as either databases or software wherever possible, and

secondly, we score names by counting the indicative keywords found

around all the name mentions within text during extraction, finally

taking the majority decision (e.g. more database indicative terms than

software ones). In the cases when there is insufficient evidence to assign

a specific category, we assigned the ‘unknown’ class to that name.

Overall, we identified 201 113 mentions of software, and 233920 men-

tions of databases in the corpus, and thus removing 8160 ‘unknown’

mentions (leaving 3872 unique software names and 2143 unique database

names).

(iii) Methods section filtering. To identify only resource mentions that

were used as part of the method presented in an article, we focus on

identification of method sections. Previous work in this area has focused

on sentence-level classification (‘zoning’), often using a machine learning

approach (Kovačević et al., 2012). We instead make use of regular ex-

pressions to identify an entire section, rather than individual sentences,

assuming that relevant sentences are placed within the correct section (in

particular for method sections). We use section headings to classify the

text into one of two possible sections: method or non-method.

To engineer regular expressions for section identification, we first ex-

tracted section heading titles from a random sample of 100 full-text PMC

articles (using the associated XML tags for section headings). These were

grouped and associated manually to form the heading texts with which to

search. Additional variants were generated using simple transformations

(e.g. case, plural, numbered sections, etc.). Once a method heading is

detected at the start of a sentence or paragraph, the associated section

classification continues until an alternative (non-method) section heading

is detected. To further evaluate the approach, we selected another set of

100 full-text PMC articles and manually verified the recognized method

sections. The proposed approach showed a precision of 97.2% with a

recall of 79.2%. All resource mentions that were outside the recognized

method sections where then discarded, leaving 65451 software mentions

(3289 unique), and 69 466 database mentions (1711 unique).

(iv) Frequent resource pair mining. We next extract common pairs of

resources co-occurring within the same method section, hypothesizing

that—with enough data—they may reveal the main individual experimen-

tal steps in bioinformatics. In particular, for each resource, we pair it with

the resource that immediately follows it in text (based on mention offsets,

ignoring non-resource mentions), aiming also to infer the directionality

within each pair. We assume that given sufficient source material, the

more common ordering in-text will be the ‘correct’ (applicable) one.

We consider two cases: co-occurrence of software mentions, and co-

occurrence of database and software mentions (any combination thereof).

Our dataset generated 22880 total resource pairs (13 965 unique) for our

software-only set, and 54 562 pairs (29 066 unique) for our databases and

software names set. In the interest of exploring common practice, we

removed pairs that were only extracted from a single document. This

removed 12101 pairs from our software set and 25 111 pairs from our

databases and software set.

(v) Statistical filtering and network generation. With the two possible

orders of a given pair, and the occurrence count of each, we use a bino-

mial test to assign a confidence to each pair order, thus providing the

probability of a particular order occurring a given number of times by

chance. From this, we filter the ordered resource pairs down to only those

that are above a certain confidence threshold using cut-offs at 95 and

99%. Using a confidence threshold of 95% provides 2518 software pairs

(145 unique) and 7001 software and database pairs (297 unique), whereas

using a threshold of 99% results in 1450 software pairs (55 unique)

and 3383 database and software pairs (95 unique). Using these final

resource pairs, we generate a network using Cytoscape (Smoot et al.,

2011), where nodes are the resources appearing in those pairs, and a

directed edge between two nodes reflects the extracted ordering of the

given resource pair.

3 RESULTS AND DISCUSSION

We present the resulting networks with software-only and soft-

ware and/or database pairs built using the 95 and 99% confidence

levels, respectively, which have been extracted from 22 376 full-

text articles.
To evaluate the accuracy of the automatic categorization of

resources as databases and software, we manually classified three

separate lists of 50 resource names:

� The first group had 50 names randomly selected from the set

of all unique names.

� The second set was selected in proportion to resource men-

tion level counts, enabling repeats of frequent names.

� The last group of 50 names were selected from the final set

of all names, which occur within the networks presented in

this article.

Table 1 has the resulting accuracies for each of these groups.

Note that the accuracy increases as we test a more specific

subset of resource name classifications, showing that the filtering

steps we used during network generation removed the majority

of the incorrectly categorized instances.

3.1 Most common resource pairs

Table 2 shows the most common software pairs extracted with a

minimum of a 99% confidence level. The pairs focus primarily

on sequence search and alignment (generally in that order)—a

task central to various bioinformatics analyses. In addition, there

are a couple of sequence assembly pairs (containing Phred,

Phrap, Consed), which are all part of the same package.
To assess the quality of extracted pairs, we separately evalu-

ated all the extracted resource pairs remaining at both the 95 and

99% confidence boundaries. This was done by taking a given

ordered pair, linking it back to the full-text articles whence it was

extracted, and manually assessing whether the pair order agreed

Table 1. Resource classifier evaluation scores

Total Correct (%) Incorrect Unknown

Group 1 50 28 (56) 5 17

Group 2 50 33 (66) 3 14

Group 3 50 43 (86) 3 4

Note: The accuracy of the classifier increases as we test more specific subsets of

resource names (more filtered groups). An instance is marked as unknown if the class

was inconclusively categorized during manual evaluation, often because of insuffi-

cient evidence—this does not necessarily imply that the automatically assigned class

is incorrect (e.g. it is correct in cases where the resource mention is not a false-

positive hit).
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with the usage of the resources in the associated articles. Each

ordered pair received one of the following classifications:

� Correct: Extracted order agreed with the order of resource

use in text.

� Partial: Extracted order either mostly agrees, or agrees but

there is an important resource step missing. This can also be

the case where there is an indirect link between the

resources.

� Incorrect: The order extracted contrasts with the order of

usage in the text, or where there is no clear (even indirect)

link between the resources.

� Same: The two resources are generally used to do equivalent

tasks (e.g. ClustalW and MUSCLE are both sequence align-

ment tools).

Our automated pair extraction approach appears to provide a

good indicator of resource pairing (Table 3). A higher confidence

level resulted in a higher proportion of ‘correct’ name pairs, and

a lower proportion of pairs categorized as ‘same’. We note that

there is an increase in the proportion of ‘incorrect’ pairs for our

software-only set despite a higher confidence boundary (perhaps

because of the small sample size), but the absolute number of

errors decreased by 50%.

3.2 Resource networks

Figure 1 provides a usage network generated by analysing soft-

ware name mentions within the methods section with a 95%

confidence threshold (the edges are weighted according to their

confidence). There is a large central cluster of sequence alignment

tools within this network, which could correlate to the broad

applicability of these resources. This centre is split into homo-

logue detection—search (BLAST, PSI-BLAST)—and then fol-

lowed by (pair-wise) alignment (ClustalW, ClustalX,

MUSCLE). Leading into this central series of connected compo-

nents are several more domain-specific resources—a series of

sequence assembly tools (e.g. Phred, Phrap, Consed), a gene

locator (GLIMMER) and mass-spectroscopy software

(MASCOT). There are two major routes out of the sequence

alignment cluster, with links to the fields of proteomics

(Modeller, PROCHECK, etc.) and phylogenetics (PhyML,

PHYLIP, PAML, etc.). There is also a third route towards

manual alignment editors (Tree View and BioEdit). This pro-

vides an overview of common stages within a bioinformatics

pipeline: sequence assembly, homologue search, pair-wise align-

ment, protein modelling and protein visualization/evaluation.

Importantly, this core route consists of edges with confidence

above 99%. There is also a link between (Mozilla) Firefox and

(Apple) Safari, which remains pervasive throughout many of the

networks we present here. This link seems to originate from fre-

quent comments on supported browsers (e.g. ‘Our web applica-

tion can be accessed through all major web browsers, including

Firefox, Safari . . .’).

Figure 2 was generated by using both database and software

names to form pairs. This addition of databases helps highlight

where some of the data entry/annotation points are within the

usage graph, assuming that databases are generally used for an-

notation, search and retrieval or deposition. This trend can be

seen within the network. For example, UniProt (Swiss-Prot and

TrEMBL) and the Gene Expression Omnibus (GEO) all directly

link into BLAST; GenBank links into several multiple sequence

alignment tools, while the Protein Data Bank (PDB) links into

various protein prediction and evaluation programs. In addition,

the Gene Ontology (GO) is a data ‘sink’, as it covers a wide

variety of annotation tasks, and there is a linked group of path-

way databases (e.g. KEGG, BioCyc, Reactome).
Interestingly, the extracted order of mentions of databases ap-

pears to be less reliable than that of software. A likely reason is

that—in a written article—an author is more likely to use a tool

on a database, rather than specifically getting data from a data-

base before using these with a tool. Additionally, some database

pairs were incorrect because of the structure of a paper—in par-

ticular, a paper may describe the in silico methods used, before

listing all data resource locations at the end of the methods sec-

tion (rather than at their point of use). Figure 2 helps highlight

this as all the edges annotated as incorrect (in red) involve data-

bases, and there are few correct (green) direct database to data-

base links.
If we perform an additional statistical analysis of our results,

using the method of directionality previously published by

Table 2. Most common 99% ordered software pairs

Software-directed pair Total count Contribution

BLAST ! ClustalW 205 14.1

BLAST ! PSI-BLAST 103 7.1

Phred ! Phrap 89 6.1

ClustalW ! MEGA 77 5.3

Cluster ! Tree View 75 5.2

Phrap ! Consed 51 3.5

ClustalW ! PHYLIP 41 2.8

BLAST ! ClustalX 43 3.0

BLAST ! MUSCLE 40 2.8

BLASTN ! ClustalW 39 2.7

Note: The contribution is calculated as the total count (after applying all our data

filters), divided by the 1450 total pairs extracted.

Table 3. Manual evaluation scores for the resource name pairs we

extracted at various confidence levels

Software-only Software/databases

95% 99% 95% 99%

Total pairs 141 53 288 90

Correct (%) 66.7 77.4 45.1 54.4

Partial (%) 13.5 7.5 14.9 12.2

Incorrect (%) 5.7 7.5 12.5 10.0

Same (%) 14.2 7.5 27.4 23.3

Note: We ignore pairs resulting from a bioNerDS false-positive match during

manual evaluation—this excluded four and two pairs from the 95 and 99% soft-

ware-only evaluation, and nine and five pairs from the 95 and 99% databases and

software pairs evaluation.
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Hidalgo et al. (2009), we can draw similar conclusions from our

networks. We see that annotation and statistical resources such

as GO, SPSS, Cytoscape and WebLogo are significant network

sinks, whereas common databases like TrEMBL, GEO and PDB

are significant network sources. In general, databases are net-

work sources, and software is a data sink. This conforms to

the common assumption that bioinformatics access data within

databases to perform various in silico analyses with software

resources.
We further evaluated how the resource usage has changed over

time. To do this, we split our dataset into three separate sets:

2004–2006, 2007–2009 and 2010–2012 (inclusive). These were

chosen as a trade-off between the number of ranges (at least

three) and ensuring there was enough data contained within

each range to generate a meaningful network (note that there

is insufficient data between 2000 and 2003, and incomplete data

for 2013). We then ran our automatic resource pair extractor as

before using a confidence threshold cut-off of 95%.
From 2004 to 2006 (Fig. 3a), there is a clear usage bias to-

wards sequence alignment software (BLAST, ClustalW,

ClustalX). Separately there is a triple of sequence assembly-

based software (Phred, Phrap, PolyPhred), and a pair of clus-

tering software and visualization tools (Cluster, Tree View).

There is also a hint of phylogenetics with alignment links to

PAML and PHYLIP.
The 2007–2009 period features an expansion of resource pairs,

in particular, those using sequence alignment software (e.g. the

addition of MUSCLE and PSI-BLAST; Fig. 3b). In addition,

these now directly link back to the assembly programs, although

the ordering is not well established. Protein modelling also now

features with a pair from Modeller (which predicts protein struc-

tures) to PROCHECK (which evaluates potential protein struc-

tures), as well as a link between TMHMM and HMMTOP

(which are both protein structure predictors). There appears to

be a general theme of visualization with mentions of BioEdit and

Tree View, which are now tied to the main network. The phylo-

genetics field has also grown slightly, with PhyML and MrBayes,

although PAML is no longer directly linked to the main

network.

Finally, from 2010 to 2012 (Fig. 3c), the size of the network

expands once again (in part because of the fact that there is the

most literature published during this time frame). Phylogenetics

has more links than before to sequence alignment (PhyML,

PAML, PHYLIP) and has expanded with MAFFT and

RAxML in a disjoint pairing. The protein-based chains have

been expanded with protein visualization software (VMD),

Fig. 1. Usage network for software name resource pairs, mentioned within the methods section only. The thickest edges surpass the 99.9% confidence

level, medium 99% and the thinnest edges have a minimum confidence of 95%. Edges are colour coded according to their evaluated accuracy. Green

edges are correct, orange are partial, red are incorrect; blue edges link resources that are categorized as same. For presentation purposes, we only include

pairs (edges) that had at least 10 mentions

i604

G.Duck et al.

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/30/17/i601/201260
by University of Glasgow user
on 27 November 2017

In fact, i
3
 to 
 to 
,
 to 
,
(
)
assembly 
visualisation 
 to 
utilising 
,
(
)
visualisation 
(
)
due to
,
protein 
visualisation 


now both directly linking into sequence alignment. In addition,

the more recent Novoalign, Bowtie, BWA and SAMtools make a

preliminary link to the next-generation sequencing data now

being produced and analysed. The Phred, Phrap, Consed order-

ing now looks more correct and directly links into BLAST for

initial sequence analysis. Finally, we see the reappearance of the

mass-spectroscopy link contained within our main network ear-

lier (MASCOT; Fig. 1).

3.3 Phylogenetics comparison

To demonstrate how the usage patterns extracted can be used to

suggest common practice within a subdomain, we explored the

phylogenetics literature. Eales et al. (2008) have semi-automatic-

ally explored that literature previously and assigned methodo-

logical terms to one of four possible steps, which represent a

common methodological process in phylogenetics: (i) sequence

alignment, (ii) tree inference, (iii) statistical testing and data re-

sampling and (iv) tree visualization and annotation. We checked

whether our automatically extracted network of phylogenetics

‘methods’ reflects these four steps. For this, we restricted our

dataset to only those PMC articles that matched the same regular

expression used by Eales et al. (2008). We did not restrict the

articles on publication year, but rather on journal MeSH term

(all other filters remained).
Figure 4 shows the resulting network using a 95% confidence

cut-off, indicating the four methodological steps common for

phylogenetics. Because of some ambiguous resources that can

do multiple tasks, several tools sit on the boundary between

Steps ii and iii (and one between Steps i and ii). Otherwise,

there is a clear split between the different stages, with only two

‘back’ arrows between PhyML and RAxML, and between

GARLI and PAUP* (all involving ambiguous boundary re-

sources). These results indicate that our approach is not only a

viable way to extract common in silico usage patterns from the

bioinformatics literature but that it could be also used to ‘infer’

common practice.

4 CONCLUSION

We have demonstrated that it is feasible to automatically

extract resource usage patterns from a large corpus of

Fig. 2. Usage network for all resource pairs (databases – red, software – yellow), mentioned within the methods section. All edges have a minimum

confidence of 99%. The edges are colour coded: green – correct, orange – partial, red – incorrect and blue – same. Note that there is a same link between

Ensembl and the UCSC Genome Browser, as they are both genome databases—this is despite the fact that the Genome Browser is labelled as software,

which is an automated classification error. For presentation purposes, we only include pairs (edges) that had at least 10 mentions
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(a) 2004 to 2006 (b) 2007 to 2009

(c) 2010 to 2012

Fig. 3. Usage networks for software names within the given time frames (inclusive). All resource name pairs pass the 95% confidence level. (a) 2004 to

2006, (b) 2007 to 2009 and (c) 2010 to 2012
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bioinformatics articles. The networks formed from these patterns

show a general overview of core bioinformatics tasks and steps.

Although our technique used for network extraction focuses on

only the most used resources, it successfully captures what may

be termed ‘bioinformatics 101’—that is, the core bioinformatics

tasks of selection and alignment of sequences, along with a

common pattern of biological analysis: that DNA sequences

lead to proteins, which then form more complex 3D structures.

Our results are an important first step in validating the long-held

assumption that this forms the basis of all bioinformatics re-

search and usage. Our networks also highlight some of the

ways that bioinformatics has changed over time, with the

recent emergence of the fields of next-generation sequencing

and proteomics. Sequence alignment has maintained an import-

ant central role within the field and is often used as a link be-

tween other analyses and/or domains.
The results help provide an overview of the resource patterns

used within bioinformatics, which can be considered an approxi-

mation of domain method. Comparing our usage patterns for

phylogenetics with the model previously published by Eales et al.

(2008) shows that our method extraction enables exploration of

common practice within particular fields. For example, if a re-

searcher has some particular data, tool or task in mind, our

results could be used to generate suggestions on what has and

can been done with the data, or what programs could be used for

further research. Specifically, given any name pair, we can link

back to where in the literature this pair was mentioned, offering

the opportunity to discover what types of research could be per-

formed with those resources.
Future work could involve refining the pattern extraction pro-

cess, perhaps to enable sentence-level pairing using more sophis-

ticated association techniques (e.g. dependency parsing or

syntactic structure). Though our method can provide a

generalized overview of the resources used (and their order of

use), such a refinement could enable more fine-grained workflow

extraction—an important step towards method validation and

reproduction, as well as having implications for the spreading

of knowledge and the monitoring of trends within methods.

This could have implications in establishing or suggesting scien-

tific ‘best practice’, using a variety of criteria, for example time

(the more recent tools/databases, the better), author (focusing on

‘domain experts’), journal (preference for higher impact or spe-

cialist journals) or popularity (common practice). As such, if we

restrict our network links to just those that adhere to a given

‘best’ criteria, this will limit the suggestions we would provide to

just those within a network of best practice.
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