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Manual curation has long been used for extracting key information found within the primary literature for input into

biological databases. The human immunodeficiency virus type 1 (HIV-1), human protein interaction database (HHPID), for

example, contains 2589 manually extracted interactions, linked to 14 312 mentions in 3090 articles. The advancement of

text-mining (TM) techniques has offered a possibility to rapidly retrieve such data from large volumes of text to a high

degree of accuracy. Here, we present a recreation of the HHPID using the current state of the art in TM. To retrieve

interactions, we performed gene/protein named entity recognition (NER) and applied two molecular event extraction tools

on all abstracts and titles cited in the HHPID. Our best NER scores for precision, recall and F-score were 87.5%, 90.0% and

88.6%, respectively, while event extraction achieved 76.4%, 84.2% and 80.1%, respectively. We demonstrate that over

50% of the HHPID interactions can be recreated from abstracts and titles. Furthermore, from 49 available open-access

full-text articles, we extracted a total of 237 unique HIV-1–human interactions, as opposed to 187 interactions recorded in

the HHPID from the same articles. On average, we extracted 23 times more mentions of interactions and events from a

full-text article than from an abstract and title, with a 6-fold increase in the number of unique interactions. We fur-

ther demonstrated that more frequently occurring interactions extracted by TM are more likely to be true positives.

Overall, the results demonstrate that TM was able to recover a large proportion of interactions, many of which were

found within the HHPID, making TM a useful assistant in the manual curation process. Finally, we also retrieved other types

of interactions in the context of HIV-1 that are not currently present in the HHPID, thus, expanding the scope of this

data set. All data is available at http://gnode1.mib.man.ac.uk/HIV1-text-mining.
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Introduction

The human immunodeficiency virus type 1 (HIV-1), human

protein interaction database (HHPID) is a manually curated

database containing 2589 distinct HIV-1 to human protein

interactions, linked to 14 312 mentions in 3090 Medline

articles (1, 2). Each of these documented interactions is

potentially of value to researchers studying HIV-1, where

improved treatment strategies are in urgent demand for

a disease that reported 33.3 million confirmed positive

cases in 2009, leading to 1.8 million acquired immune defi-

ciency syndrome-related deaths a year (3). As well as pro-

viding an instant resource to researchers seeking distinctive

literature on specific HIV-1–human protein interactions, the

HHPID has been used to construct detailed networks of the

overall host–pathogen interactome (4) and has been vital in

RNAi studies with HIV data (5–7).

The curation of the HHPID took over 7 years to complete

and, ideally, it requires on-going updating. While an update

based on manual curation is imminent, spanning from 2007
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to 2011, future updates would benefit from some form of

assisted curation effort. In the original design process of the

HHPID, approximately 100 000 relevant HIV-1 documents

were identified through PubMed queries, before further

review and filtering reduced this number to 3200 (2). As of

December 2011, a simple PubMed search for ‘HIV’ produces

more than 233 000 results (including more than 64 000 new

abstracts since 2007), highlighting the availability of a large

body of potentially relevant literature for automated cur-

ation. Therefore, future updates to the HHPID will benefit

from the ability to systematically process a much larger body

of HIV-focused literature.

Text-mining (TM) techniques have emerged as a poten-

tial support solution to the knowledge extraction problem,

helping to keep pace with the existing and ongoing

expansion of primary literature. TM systems are designed

to convert text data into manageable information and

knowledge (8). Within TM, there exists a range of tech-

niques used to identify, extract, analyse and visualize data

stored within text (9). A large degree of focus within the

field has been placed on accurately and exhaustively

extracting molecular interactions (MIs) from biomedical

text, supported by collaborative events such as the

BioCreative and BioNLP shared tasks (10, 11). These have

led to the overall advancement of biomedical TM, making

large-scale data extraction an immediate possibility (12,

13). However, the quality of TM data has historically

been scrutinized in comparison to manual curation,

where aspects such as gene name ambiguity (14) and con-

flicting event relationships (15), have impeded its overall

accuracy.

Existing forms of assisted curation using TM approaches

have benefitted the manual curation process by reducing

the scale and complexity of information that curators have

to process. For example, Wiegers et al. (16) have demon-

strated potential in ranking documents according to chem-

ical, gene/protein and disease identifiers in text to augment

the efficiency of manual curation of the Comparative

Toxicogenomics Database. Another example comes from

Kemper et al. (17) who have integrated TM components

with a pathway visualizer and annotation tools to aid cur-

ators in generating metabolic and signalling pathways

more effectively.

In this article, we explore the reconstruction of the

HHPID using a suite of tailored state-of-the-art TM tools.

The results and analyses demonstrate that TM is able to

recover a large proportion of interactions found within

the HHPID with reasonable recall and precision, in addition

to expanding the scope of the database by identifying

interactions between other types of entities. These tech-

niques have demonstrated that future curation of the

HHPID and indeed other MI databases can be assisted by

TM helping speed up the curation process.

Methods

Figure 1 summarizes our approach for recreating and eval-

uating the HHPID using text mining tools. The method has

four main steps: (i) text retrieval (using only citations from

the HHPID), (ii) named-entity recognition (NER, finding

mentions of molecules in text), (iii) molecular event extrac-

tion (finding any interactions that exist between entities)

and (iv) various evaluations and comparisons of the results.

Data

We limited our investigation to only those articles used in

the HHPID to directly compare manual curation to TM. Of

Figure 1. Summary of the methodology. Our methodology is divided into four stages: (1) retrieval of all abstracts and titles, as
well as 49 open-access full texts from the 3090 citations in the HHPID, (2) proteins were extracted using an HIV-1/human tailored
version of BANNER, (3) events were extracted using two event extraction tools (TEES and EventMine) and (4) a comparison of the
results retrieved by TM was made with the manually curated HHPID.
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the 14 312 citations in the HHPID, we found 3090 of

these to have unique PubMed identifiers (PMIDs). Only

49 articles (1.6%) were available through PubMed Central

(PMC) as full-text open access (OA) articles. While it would

be preferable to use full text for the entire set of 3090 cit-

ations, the limited availability of OA articles restricted our

main analysis to using abstracts and titles. To illustrate the

value of using full-text articles, we also performed a separ-

ate experiment using the 49 OA articles.

Named entity recognition and normalization

To extract proteins from the text, we used BANNER, which

has been ranked as one of the top performing NER systems

by the BioCreative shared task III (18, 19). Since BANNER has

been developed for use on NER across generic biomedical

text, we decided to make adjustments to focus the tool on

HIV-1 specific text so that we could enhance its overall per-

formance (20). To identify any specific BANNER perform-

ance weaknesses on the HIV-related literature, we first

evaluated the performance on a corpus of 50 randomly

selected abstracts and titles from the HHPID (referred to

as ‘Train-HIV’). We evaluated these abstracts using the

same evaluation approach as used in NER evaluation in

the BioCreative III shared task using precision, recall and

F-score (10, 21).

The initial evaluation of BANNER revealed commonly

occurring types of false positives such as protein regions

(e.g. ‘V3’) or event mentions (e.g. ‘superoxide release’),

and false negatives such as hyphenated entities (e.g. ‘tat-in-

duced’) or entities contained within brackets (e.g. ‘(SOD1)’).

While false positives were difficult to distinguish computa-

tionally, we were able to reduce the number of false nega-

tives by providing an additional training data set with

HIV-1–human interaction-specific classes of false negatives

annotated in text. Furthermore, we designed and

implemented post-processing modules to work in unison

with BANNER and reduce false negatives by applying dic-

tionaries of HIV-1 and top occurring human-related gene

names to match untagged proteins from the text. We then

evaluated our modified version of BANNER on a new

corpus of 50 randomly selected abstracts and titles from

the HHPID (referred to as ‘Test-HIV’).

In addition to recognition of gene names in text, we

normalized our NER results to either HIV-1 or human

genes using the Entrez Gene gene names, gene symbols

and gene aliases (22). While normalization has traditionally

been made difficult by intra- and inter-species gene name

ambiguity (23), HIV-1’s small gene set (nine genes) and the

knowledge that each document was HIV-1 relevant, helped

us to more confidently and accurately associate genes with

HIV-1. Gene names that could not be normalized to an

HIV-1 dictionary were, wherever possible, mapped to a

human dictionary. If they were not matched to either an

HIV-1 dictionary or a human dictionary, they were classified

as ‘other’.

Event extraction

We focus our investigation on specific types of events that

represent interactions between proteins as defined by

BioNLP’09 (11, 24). These interactions cover three types of

protein metabolism (specifically, gene expression, transcrip-

tion and protein catabolism), phosphorylation, localization,

binding and regulatory events (regulation, positive regula-

tion and negative regulation). Events are identified in text

by using two event extraction tools, the Turku event extrac-

tion system (TEES) (25) and EventMine (15). The tools have

been designed to conform to the BioNLP task. Events

of gene expression, transcription, protein catabolism,

phosphorylation and localization types are all required to

act on a single gene or protein, called a theme. Binding

events can have one or two gene/protein themes.

Regulatory events differ in that their theme may be

either a gene/protein or another event. While not required,

a regulatory event can also have a gene/protein or another

event as its cause. This allows for the possibility of ‘event

chains’ involving multiple gene/proteins in multiple events.

For example, the sentence ‘‘Tat increased the expression of

NF kappa B’’ mentions an event chain that includes ‘expres-

sion of NF kappa B’ and positive regulation of that event

by ‘Tat’ (Figure 2).

We applied the two event extraction systems to 3090

titles and abstracts and 49 full-text articles associated with

HHPID, after these had been tagged by the HIV-1/human

tailored version of BANNER. We considered molecular

events identified by either of the systems (union) or by

both systems (intersection).

Event evaluation

Molecular interactions represented in the HHPID are char-

acterized by 70 keywords that potentially indicate the type

of interaction, many of which are potentially redundant

(e.g. ‘binds’ and ‘complexes with’). To enable us to compare

the event extraction results with interactions from the

HHPID, we mapped 51 out of the 70 HHPID interaction key-

words to the nine event types (see Supplementary File S1).

The remaining 19 interaction keywords (such as ‘glycosy-

lates’) were designated as ‘other’ in the results.

To assess the performance of the event extraction sys-

tems, we used our Test-HIV corpus of 50 abstracts and

titles. Rather than evaluating single events as is common-

place in the BioNLP shared tasks (11), we evaluated ‘event

chains’ since these represent a more complete depiction of

the full interaction and have been represented as such in

the HHPID. Event chains were evaluated under two differ-

ent sets of rules: (i) Stringent event evaluation required

that any recorded event chain should be represented in

its entirety, i.e. without any falsely reported information

.............................................................................................................................................................................................................................................................................................
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in order to be classified as a true positive. (ii) Approximate

event evaluation differs in that each reported event chain

should be represented without any falsely reported infor-

mation, although it may still be classified as a true positive

if some information is missing. This allows for event chains

with missing themes or causes to still be classified as true

positives provided the rest of the captured data is correct.

Figure 2 provides some examples of event evaluation

methods.

Comparison of TM results to HHPID interactions

In order to ensure that any comparisons made between the

TM results and the HHPID were fair, we firstly limited

our analysis to only citations from the HHPID and inter-

actions between HIV-1 and human molecules. When com-

paring interactions from the HHPID against TM, we used

the Entrez gene IDs as specified in the database and

cross-referenced TM entities with Entrez Gene HIV-1 and

human gene names, gene symbols and gene synonyms.

It was not possible to automatically evaluate all TM-

extracted interactions against the HHPID due to incompati-

bility of the data format representations (e.g. unspecified

triggers, textual positions and full text/abstract origin of

interactions within the HHPID). Instead, a random sample

of 50 abstracts and titles from the data set was chosen and

interactions reported within the HHPID as originating from

the set were compared against those extracted through

TM. We only considered interactions from the HHPID that

were present within the abstracts and titles and not the full

text. In addition, interactions that could not be extracted by

TM, since they did not conform to the nine event types, but

were present in the HHPID (e.g. ‘acetlyation’ interactions),

were ignored.

A separate analysis was performed on the 49 PMC

full-text OA articles that were cited in the HHPID. Following

a similar procedure as above, we compared interactions

retrieved from full text by TM against those retrieved

from the same subset in the HHPID and those retrieved

from only abstracts and titles by TM.

Figure 2. Methods of event evaluation. The three events have been extracted from the sentence ‘‘Tat increased the expression of
NF kappa B’’. In approximate evaluation, both events 1 and 2 would be counted as true positives, whereas only Event 1 would be
considered a true positive in stringent event evaluation, as ‘Tat positive regulation (increased)’ is missing. Event 3 would be a
false positive in both categories of evaluation, whereby ‘increased’ does not signify negative regulation.
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Results

We report two types of results: the generic accuracy of TM

tools and accuracy specifically applied to the HHPID.

Accuracy of TM tools

The performance of the original version of BANNER (18) on

our Test-HIV corpus showed precision, recall and F-score

of 83.9%, 87.9% and 85.8%, respectively. When we used

altered training data and combined BANNER with a

post-processing module, our precision, recall and F-score

were all improved to 87.5%, 90.0% and 88.6%, respect-

ively, showing a marginal increase on the default

BANNER configuration.

Table 1 shows the precision, recall and F-score for the

event extraction tools. EventMine performed better than

TEES in both stringent and approximate matching, with

the highest precision, recall and F-score in approximate

matching: 79.9%, 73.7% and 76.7%, respectively. When

the results of both tools are merged in a union of events,

recall and F-score are both notably higher in the stringent

and approximate evaluations compared to individual tools

and the precision is greater in the stringent evaluation. Our

analysis showed that this was due to full event chains now

being completely represented. However, the precision of

the union is slightly lower (�3.5%) in the approximate

matching. The highest precision is achieved in the intersec-

tion of the two tools (87.4%), although recall (46.2%) and

F-score (60.4%) are considerably lower. We therefore

decided to use the union of the two tools for further

investigation.

Comparison of HIV-1–human interactions extracted
by TM and the HHPID

Table 2 shows the total numbers of HIV-1–human molecular

interactions for the HHPID and TM. We note that the TM

results here are restricted to interactions between HIV-1

and human molecules only. The HHPID showed greater

total numbers of interactions for all of the event types in

comparison to TM. This is not surprising considering that

the HHPID was derived from full text, whereas TM in this

analysis was applied to abstracts and titles only. Table 3

Table 3. Top 10 most frequent participants in events as pre-
sented in the HHPID and as extracted by TM

Participant Total

interactions

HHPID

Env gp160 4863

Tat 4247

CD4 1188

Vif 1005

Nef 980

Gag 867

Vpr 790

Gag-Pol 541

CXCR4 303

CCR5 285

Total interactions 13 617

TM

Cd4 1290

Tat 1226

Gp120 1161

Nef 531

Env 353

Vpr 230

Cxcr4 230

Cccr5 228

Rev 157

Vpu 65

Total interactions 2931

Table 2. The number of HIV-1–human interaction mentions
extracted from 3090 citations: a comparison between the
HHPID database and the TM results

Interaction type Total HHIPD

interactions (abstracts,

titles and full text)

Total TM

interactions

(abstracts and titles)

Binding 5534 1967

Protein catabolism 205 40

Positive regulation 3517 329

Phosphorylation 223 33

Localization 695 37

Transcription N/A 31

Regulation 990 127

Gene expression N/A 243

Negative regulation 1935 124

Other 518 N/A

Total 13 617 2931

Table 1. Event extraction performance on the Test-HIV data
set of 50 abstracts and titles

Stringent Approximate

Precision Recall F-score Precision Recall F-score

TEES 0.373 0.524 0.436 0.726 0.682 0.703

EventMine 0.460 0.622 0.529 0.799 0.737 0.767

Union 0.537 0.786 0.638 0.764 0.842 0.801

Intersection 0.663 0.392 0.493 0.874 0.462 0.604
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further shows a comparison between the proteins involved

in events (‘participants’) with the highest frequency in

HIV-1–human interactions in the HHPID and TM. Here we

observed eight out of ten of the same proteins shared be-

tween the two data sets.

To estimate how much of the HHPID we have replicated

through TM, we compared interactions taken from abs-

tracts and titles in the HHPID against HIV-1–human TM

interactions over a set of 50 randomly selected citations

from the HHPID. We were able to match 22 TM interactions

to interactions within the HHPID, while 20 interactions that

were present in the abstracts and titles were either missed

or not fully extracted by TM. Thus, we estimate TM has

recreated over 50% of interactions derived from the 3090

abstracts and titles within the HHPID without considering

any potential data from full text. The value of using full

text in TM is explored later in our analysis.

When we only considered frequently occurring unique

HIV-1–human interactions, our results for TM were particu-

larly encouraging. Table 4 shows the frequency of the top

ten most commonly occurring HIV-1–human interactions

extracted by TM. With our analysis restricted to unique

interactions, TM achieves a similar number of total inter-

actions (2069) in comparison to the HHPID (2589). All of the

top 10 interactions retrieved automatically from text were

true positives; however, only 7/10 were present within the

HHPID. For example, ‘negative regulation of binding of

gp120 to CD4’ is not present within the HHPID due to

there being no regulation of binding interactions recorded

within it. The ‘binding of gp120 to sCD4’ is not distin-

guished within the HHPID as an interaction, as CD4 is only

recorded as ‘T-cell surface glycoprotein CD4 isoform 1 pre-

cursor’ and neglects the ‘soluble recombinant’ prefix of the

CD4 nomenclature from the interaction. Instead, this infor-

mation is presented within a reference sentence for the

interaction in the HHPID and is unable to be filtered in a

standard database query.

While these two instances of missing interactions from

the HHPID can be accounted for by constraints in the way

data in the HHPID is curated, there is no obvious reason as

to why the ‘binding of Vpu to CD4’ is not present. We were

able to confirm this interaction as a true positive from a

number of references (26–29), all of which are present in

the HHPID article set. We believe that—although binding

of Vpu to CD4 has been documented as a direct interaction

in a number of publications—the end result of this event

is a down-regulation of CD4 and is documented in the

HHPID as ‘Vpu degrades CD4’ and ‘Vpu downregulates

CD4’—an interaction also qualified in the TM data set by

‘Vpu positive regulation of protein catabolism of CD4’. This

discrepancy highlights issues for both the HHPID and TM.

Here, it is evident that in the HHPID it is not completely

clear from the interaction (when ignoring the reference

sentence) that Vpu had bound to CD4 to cause its degrad-

ation. However, in TM, although both parts of the overall

interaction (the binding and degradation) are represented

in separate event chains, they cannot with the existing

methodology be automatically linked together when span-

ning over one sentence. A combined TM and manual cur-

ation approach could help solve both of these problems, by

using TM as a support to manual curation to provide add-

itional descriptions for a candidate interaction.

Given the high number of binding events, we further

analysed the most frequent interaction participants

involved in this type of interaction. In Table 5, we compare

the binding participants between the HHPID and TM for

the HIV-1 Tat gene, as this gene was amongst the most

frequent participants in both data sets. We observed similar
Table 4. Top 10 most frequent HIV-1–human interactions
retrieved through TM

TM interaction Frequency True

positive

Present

in HHPID

Binding of Gp120 to CD4 207 Yes Yes

Binding of Gp120 to CXCR4 32 Yes Yes

Binding of Tat to Cyclin T1 30 Yes Yes

Binding of Gp120 to CCR5 29 Yes Yes

Negative regulation of

binding of Gp120 to CD4

24 Yes No

Binding of Vpu to CD4 19 Yes No

Binding of Gp120 to sCD4 18 Yes No

Binding of Nef to CD4 18 Yes Yes

Vpu positive regulation

of protein catabolism of CD4

15 Yes Yes

Binding of Env to CD4 10 Yes Yes

Total unique mentions 2069 N/A 2589

Table 5. Top 10 most frequent binding participants with the
HIV-1 Tat gene

Tat binding HHPID Tat binding TM

P-Tefb 57 Tar 51

Cyclin T1 52 Cyclin T1 30

TBP 22 Tar RNA 26

CDK7 18 p-tefb 18

CCNH 17 Tbp 15

ITGAV 16 Sp1 13

ITGB3 16 Pkr 11

CREBBP 15 Pp1 11

GTF2H3 14 Cyct1 9

ERCC2 14 Puralpha 9

Total interactants 323 Total interactants 388
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numbers of total unique mentions of participants between

the two data sets (388 for TM and 323 for the HHPID).

‘Cyclin T1’, ‘p-tefb’, ‘tbp’ and ‘Cyct1’ (a Cyclin T1 alias)

were present in the top ten participants of both data

sets. We observed ‘Sp1’ (11 mentions), ‘Pkr ’ (4 mentions)

and ‘Puralpha’ (3 mentions) outside of the HHPID top ten,

but within the top 10 in the TM results.

Other types of interactions retrieved by TM

As well as retrieving HIV-1–human molecular interactions,

TM retrieved events and participants that were involved in

other types of interactions or event chains. For example, in

Table 5, the top occurring binding participant for Tat

in the TM data set, Tar, was not present in the HHPID

as this is an RNA molecule and the HHPID only contains

protein–protein interactions.

Overall, TM retrieved 5674 events involving only a single

HIV-1 protein, 7364 single human events, 437 HIV-1–HIV-1

interactions, 1265 human–human protein interactions and

243 interactions involving two or more participants

(Table 6). Furthermore, we designated 8415 interactions

as other, i.e. not involving an HIV-1 or human protein.

We note that it is likely that this number is much lower,

given that our normalization methods were not sufficient

in categorizing all of the participants into their appropriate

species.

Some of the most frequently occurring interactions that

were not present in the HHPID, due to the restrictions in

its scope are shown in Table 7. We noted that the major-

ity of TM interactions that were false positives for HIV-1–

HIV-1 and human–human MIs were each involving self-

interactions, and as such can be filtered out easily.

However, while these particular self-interactions repre-

sented false positives, we should take into account in

future work that self-interactions may sometimes represent

true positives as well (30).

Table 7 also shows that the HIV-1 trans-activation

response element (TAR) is involved in Tat binding. It is inter-

esting that this interaction was not present in the HHPID.

Although a fundamental molecule involved in HIV-1’s biol-

ogy (31), this TAR interaction is not included within the

HHPID as it is an RNA molecule and the HHPID is limited

to proteins only. This is also the case for the HIV-1 long-

terminal repeat (LTR). To demonstrate the significance of

TAR and LTR’s involvement within HIV-1 interactions,

Table 8 shows their most frequently occurring interactions

retrieved through TM and whether they are supported by

the literature. Out of the 15 interactions involving LTR and

TAR, only two were false positives.

Full-text TM analysis

Table 9 shows most frequent interactions extracted from

the 49 articles cited within the HHPID which were open

Table 6. Top 10 most frequently occurring participants within event chains in the TM results

Interactant Number of interactions with Total

interactions
One participant Two interactants More than two interactants

Cd4 1924 1290 62 3276

Tat 1244 1226 52 2522

Gp120 1468 1161 60 2689

Nef 914 531 18 1463

Env 621 353 13 987

Vpr 301 230 6 537

Cxcr4 357 230 15 602

Cccr5 337 228 10 575

Rev 278 157 3 438

Vpu 184 65 5 254

HIV-1 protein 5674 N/A N/A 5674

Human protein 7364 N/A N/A 7364

HIV-1–Human N/A 2931 N/A 2931

HIV-1–HIV-1 N/A 437 N/A 437

Human–Human N/A 1265 N/A 1265

Other 5560 2855 N/A 8415

Total event chains 18 598 7488 243 26 329

The table presents the number of interactions with one, two or more interactants.
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access and available for text mining. We compared HIV-

1–human interactions extracted from full text, abstracts

and titles and those denoted within the HHPID for this

set of articles. For the top 10 interactions retrieved through

TM applied on full text, we could only account for four in

the HHPID, despite all 10 being true positives, indicating

that potentially 60% of top-ranked full-text TM inter-

actions might be missing from the HHPID. In total, there

were 237 unique HIV-1–human interactions extracted

from the 49 articles. This is 27% more than what is in the

HHPID from the same subset, suggesting a potential gap in

the interaction references in the HHPID. Although TM will

have almost certainly reported some false positives (and

false negatives for that matter) within these, the absence

of 6 out of 10 true positive interactions found by full-text

TM suggests that manual curation is not as exhaustive as

we may have come to expect.

A comparison of HIV-1–human interactions extracted

from full-text to those extracted using only abstracts and

titles revealed over a 6-fold increase in the number of

unique interactions. Only three of the top 10 interactions

from full-text TM were found in the abstracts and titles TM

subset. Overall, TM on full text recorded an average of 231

interaction or single event mentions per article in contrast

to just 10 in abstracts and titles, an increase of 23 times.

These results provide a compelling justification for the use

of full text as opposed to only abstracts and titles in TM.

Discussion

Our custom BANNER system was able to achieve precision,

recall and F-score of 88%, 90% and 89%, respectively using

a modified, specially tailored training data set and a

post-processing module utilizing a dictionary with HIV-1

and top occurring human genes. Although only marginally

better than the original system, these scores demonstrated

TM to be capable of extracting genes and gene products

from HIV text to a useful level. An error analysis shows that

commonly occurring false positives were acronyms such

as cell line names (e.g. HeLa) or strain names (e.g. HIV-1

subtype B).

For event evaluation, we chose to use a union of two

event extraction tools, which—under our most strict

method of evaluation—showed precision, recall and

F-score of 54%, 79% and 64%, respectively. Our approxi-

mate form of event evaluation for our best system showed

Table 7. Top most frequent interactions retrieved by TM but
not found in the HHPID

Interaction Interaction

category

Frequency True

positive

Binding of Tat to Tar HIV-1–HIV-1 51 Yes

Binding of tat to tat HIV-1–HIV-1 21 No

Binding of gp120 to gp41 HIV-1–HIV-1 9 Yes

Binding of gp120 to gp120 HIV-1–HIV-1 8 No

Binding of Nef to Nef HIV-1–HIV-1 7 No

Binding of CD4 to CD4 Human–Human 22 No

Binding of CD4 to CXCR4 Human–Human 21 Yes

Binding of CD4 to CCR5 Human–Human 16 Yes

Binding of CCR5 to CCR5 Human–Human 5 No

Binding of CCR5 to CXCR4 Human–Human 5 No

Gp120 positive regulation

of binding of CD4 to CD95

More than 2

interactants

2 Yes

HIV-1 Tat positive regula-

tion of HIV-1 Tat positive

regulation of protein

catabolism of iKappab

More than 2

interactants

1 No

P73 negative regulation of

binding of Tat to Cyclin T1

More than 2

interactants

1 Yes

Negative regulation of NF

Kappa B/rel causes

negative regulation of tat

positive regulation of

HIV-1 LTR

More than 2

interactants

1 Yes

Binding of CD4 to Okt4

antibody causes negative

regulation of CD4 mobility

More than 2

interactants

1 Yes

Table 8.. HIV-1 TAR and LTR most frequent interactions
extracted by TM

Interaction Frequency True

positive

Binding of Tat to TAR 51 Yes

Tat positive regulation of LTR 11 Yes

Binding of Cyclin T1 to TAR 7 No

Binding of RNA polymerase II to TAR 6 Yes

Negative regulation of binding of tat to

TAR

6 Yes

Binding of CDK9 to TAR 3 No

Binding of TRP—185 to TAR 3 Yes

Binding of Tat to Cyclin T1 positive

regulation of binding of Tat to TAR

3 Yes

Tat positive regulation of transcription

of LTR

3 Yes

Binding of Tat to Vpr positive regulation

of LTR

2 Yes

Tat positive regulation of tat positive

regulation of LTR

2 Yes

Tat regulation of transcription LTR 2 Yes

Binding of LTR to SP1 2 Yes

Vpr positive regulation of LTR 2 Yes

Ptb positive regulation of binding of

RNA polymerase II to TAR

2 Yes

.............................................................................................................................................................................................................................................................................................

Page 8 of 12

Original article Database, Vol. 2012, Article ID bas023, doi:10.1093/database/bas023
.............................................................................................................................................................................................................................................................................................

Downloaded from https://academic.oup.com/database/article-abstract/doi/10.1093/database/bas023/435375
by University of Glasgow user
on 27 November 2017



precision, recall and F score of 76%, 84% and 80%, respect-

ively. These results indicate that a large proportion of false

positives from our stringent evaluation were caused not

through falsely reported information, but through incom-

plete event chains, such as missing interaction causes or

binding partners. Here, there is potential to improve on

the performance of event extraction through completing

the event chains that have missing information. However,

generally the greatest challenge for event extraction tools

comes from apprehending the various writing styles

employed by different authors. False positive events were

most persistently caused by complex grammatical sentences

or just poor grammar, making it difficult for automated

tools to ascertain their intended meaning. Figure 3 provides

some examples of typical false positives.

TM versus manual curation

We have successfully managed to recreate a large propor-

tion of the interactions denoted within the HHPID using the

current state of the art in TM. We have shown that TM

tools are at least capable of precisely replicating

over 50% of the interactions denoted within the HHPID

from an evaluation sample of 50 abstracts and titles.

Considering the manual curation of the HHPID took 7

years to perform, our tools have proven to be markedly

more efficient by replicating a large percentage of this

data automatically in a matter of hours.

Across the full list of citations within the HHPID, we have

retrieved 2069 total unique HIV-1–human interaction men-

tions in comparison to 2589 unique HHPID interactions.

Although some of these TM interactions probably repre-

sent false positives, this result is still extremely encouraging

considering that curators of the HHPID had access to inter-

actions from full text as well as abstracts and titles. From

these HIV-1–human interactions, we found 7 of the top 10

binding interactants between Tat retrieved by TM to be

present in the HHPID. Thus, we feel that those interactions

recovered using TM represent a strong demonstration

of how manual curation could be supported by sophisti-

cated TM.

A top participant detected by TM for Tat binding that

was not present in the HHPID was the HIV-1 TAR element.

We found that the HHPID does not have any mentions of

the HIV-1 TAR or any other RNA interactions involving HIV.

It was not an objective of the HHPID to document these

kinds of interactions, although, they are a potentially valu-

able resource to researchers studying HIV-1. To determine

the role of TAR and another HIV-1 RNA molecule, the LTR,

we highlighted interactions involving only these molecules

(Table 8). Across the 15 interactions that we examined, only

two were false positives and thus, we feel TM have the

potential to identify valuable information from

HIV-specific text on HIV-1 interactions that are not currently

present in the HHPID. Given the other types of interactions

that could be extracted (interactions between HIV-1 mol-

ecules, interactions between human molecules, interactions

between two or more participants, etc.), TM tools could

facilitate a semi-automated approach to the expansion of

the scope of the HHPID database.

From five interactions involving more than two partici-

pants that we examined (Table 7), we were able to find

four true positives. The true positives for interactions invol-

ving more than two participants are especially beneficial

as that they provide a more complete illustration of

Table 9. Top 10 most frequent interactions retrieved from 49 OA full-text articles with TM

Interaction Full text TM

frequency

Abstracts and

titles TM frequency

HHPID

frequency

True

Positive

Binding of Vif to APOBEC3G 27 0 No TP

Binding of DC-SIGN to gp120 22 0 Yes TP

Binding of Nef to ABCA1 20 1 No TP

Binding of gp120 to CD4 17 0 Yes TP

Nef Positive regulation of Rac 16 2 No TP

Binding of Tat to CDK2 15 1 No TP

Binding of DOCK2 to Nef 14 0 Yes TP

Binding of Nef to ELMO1 14 0 Yes TP

Vif Positive regulation of protein catabolism of APOBEC3G 13 0 No TP

Binding of gp120 to CXCR4 11 0 0 TP

Total unique HIV-1–human interactions 237 39 187 N/A

Total HIV-1–human interaction mentions 4342 40 N/A N/A

Other mentions (single events, HIV-1–HIV-1 interactions, etc.) 6995 441 N/A N/A

Total mentions 11 337 481 N/A N/A
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interactions in contrast to the HHPID. Figure 4 shows an

example.

To consider the potential of full-text TM, we investigated

the available OA articles cited in the HHPID. Interactions

extracted from this subset highlighted that 6 of the top

10 interactions retrieved by full-text TM were missing,

with 27% fewer unique interactions compared to the

HHPID. These particular full-text articles referred to large

numbers of gene and gene product mentions, contributing

to some 11 337 interaction mentions as deduced by TM.

While inaccuracies of TM cannot be ignored, these results

do perhaps draw attention to limitations of manual cur-

ation, especially when dealing with more interaction-

saturated literature, e.g. in high-throughput studies which

are likely to contain more interaction mentions. However, it

should be noted that curators from the HHPID may have

chosen to only document the most important interactions

denoted within these papers, accounting for the lower

numbers of interactions.

In our subset of OA full-text articles, a comparison of TM

using only abstracts and titles of the same articles exposed

a significantly lower frequency of interaction mentions. On

average, there were only 10 interaction mentions in ab-

stracts and titles in contrast to 231 in full text. When only

unique HIV-1–human interaction mentions were con-

sidered, full text still showed a 6-fold increase in data,

with seven of the top 10 full-text TM interactions not pre-

sent in the abstracts and titles TM data set. Although it has

already been demonstrated that full text contains more

information (33), only a small number of more than

233 000 HIV-related articles are accessible through PMC

OA, thus, limiting the full potential of full-text TM to pro-

vide a large-scale systematic approach to information ex-

traction from the entire literature.

One major weakness in our approach was the lack of

an advanced normalization system able to fully categorize

all of our retrieved participants into either HIV-1 or

human species types. The dictionary-based methods we

used can potentially be improved by using more sophisti-

cated normalization systems such as GNAT (34, 35) or

GeneTUKit (34, 36). Better normalization of participants

will enable us to more precisely identify the interactions

that TM has retrieved. However, we will be careful to

ensure that useful context in descriptive prefixes and suf-

fixes of molecules, e.g. ‘mutant’, are not lost while normal-

izing, as this information can potentially be useful to

researchers in understanding what was originally

documented.

Figure 3. Examples of falsely reported event chains. Events are extracted from the sentence ‘‘In parallel to the modulation of cell
growth, gp 120 at low concentrations resulted in an increase in the expression of c-Myc, Max, and 14–3-3epsilon proteins and
phosphorylation of ATP-dependent tyrosine kinases (Akt) at Ser (473)’’. Taken from Ref. (20). Event 1 shows an example of an
incomplete event chain, where gp120 is missing as the cause for positive regulation. In Event 2, there is falsely reported infor-
mation in that 14-3-3epsilon is expressed and not phosphorylated.

Figure 4. TM interaction involving two or more participants. This event was extracted from the sentence ‘‘HIV-1 Tat can sub-
stantially enhance the capacity of NIK to induce IkappaB degradation’’ (32). Here, we can see that the full interaction is
identified by TM, across multiple participants and events. The HHPID documents this same interaction as ‘Tat enhances
mitogen-activated protein kinase kinase kinase 14’, which is clearly a misrepresentation of the actual full interaction.
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Conclusion

In this article, we explored the potential of a TM-driven

approach to curation of the HHPID. The results and analyses

demonstrate that TM is able to recover a large proportion

of interactions found within the HHPID with a reasonable

recall/precision ratio, in addition to potentially expanding

the scope of the database by identifying interactions

between other types of entities. In principle, TM methods

are more likely to retrieve true positives that are more

frequently recorded in the literature. With such a large

body of citations available for HIV, we believe that in

the future we will be able to apply confidence to interac-

tions based on how frequently they were recorded, and

thus provide better support to the curation process.

Our analysis of full-text TM has revealed a convincing

support for its usefulness, compared to solitary abstracts

and titles. With such a dramatic difference in the frequen-

cies of interaction mentions, we believe that in our future

work we will be able to retrieve huge numbers of inter-

actions if we have access to all full-text articles. A potential

problem in full-text analysis in comparison to using only

abstracts and titles will be to identify the ‘value’ and ‘nov-

elty’ of an interaction, where aspects such as defining inter-

actions as ‘referenced’ or ‘recorded’ will present new TM

challenges. However, we believe neglecting such huge

amounts of potentially valuable data would vastly hinder

any future efforts to curate a more complete HIV-1–human

protein interaction database.

Overall, although it is unlikely that TM will ever be able

to replicate the accuracy that manual curation can achieve

in MI extraction, its main strength is in the speed at which it

can generate data that can be used to, amongst other as-

pects, support the curation process. Our results have shown

that TM can retrieve reasonably accurate results for MI

extraction and therefore a TM-assisted manual curation ap-

proach could be most beneficial, in particular for the more

frequent interactions that can be checked first via refer-

ences to the text. In the future, we intend to apply the

current techniques with any improvements to the full list

of HIV-1 citations in Medline and PMC, and make our

results available to researchers online. The corpora gener-

ated are available on request.

Supplementary data

Supplementary data are available at Database online.
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