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De novo assembly of nucleotide sequences in a compressed feature space
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Abstract—Sequencing technologies allow for an in-depth anal-
ysis of biological species but the size of the generated datasets
introduce a number of analytical challenges. Recently, we
demonstrated the application of numerical sequence represen-
tations and data transformations for the alignment of short
reads to a reference genome. Here, we expand out approach
for de novo assembly of short reads. Our results demonstrate
that highly compressed data can encapsulate the signal suffi-
ciently to accurately assemble reads to big contigs or complete
genomes.
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1. Introduction

Contemporaty sequencing technologies can generate
very high numbers of reads capturing the nucleotide order
within genetic material [1]. This allows rapid sequencing of
samples, but the resulting datasets consist of many reads that
are significantly shorter than the genome of interest. These
short reads are assembled to bigger continuous sections
(contigs) that characterise regions of the given DNA/RNA
genome. Different approaches have been proposed for han-
dling short read data, plus numerous implementations have
been developed allowing fast data analysis [2].

If the composition of the data is known a priori, refer-
ence based aligner mappers can be ideal candidates for data
analysis. Reference base mappers are used to align reads to
larger contigs or entire genomes by matching data to the
regions of the known reference sequence. This approach is
fast and relatively computationally inexpensive to perform
[3]. However, the results are biased towards the reference
sequence, and the approach can only be used if a refer-
ence sequence is known. The tools Bowtie2 [4] and BWA
[5], utilise suffix array and Burrows-Wheeler Transform
approaches for fast data analysis.

For cases where reference sequences are not available,
or the species composition of the metagenome is not known,
de novo assembly is more suitable. De novo assemblers join
reads or parts of reads to extract bigger contigs from the data
themselves [6]. These techniques are more computationally
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expensive than reference based mapping, and the results can
vary considerably due to data variation, the amount of se-
quence repetition, coverage and genetic diversity. However,
de novo assembly results are not biased by the reference
genome and can be used for identifying unknown organisms
in the data [7]. De novo assembler tools include SPAdes [8]
and Newbler [9] which utilise k-mer de Bruijn graphs or
overlap layout consensus (OLC) graph approaches.

Modern de novo assemblers generally leverage either de
Bruijn graphs or read overlap graphs as part of the approach
known as OLC graphs [10]. The de Bruijn graph approaches
identify all the unique k-mers (shorter than the actual reads)
within the dataset. Each unique k-mer is considered as an
edge and is used to construct a graph by connecting pairs
of edges with overlap of (k-1)-mers. Subsequently, graph
algorithms are applied to the contigs that exist within the
dataset [11].

In the OLC de novo approach whole reads are considered
as nodes and overlaps within the reads are considered as
edges. If two reads share a similarity of at least a specific
overlap size then they are connected by an edge. After
comparing every possible overlaps with the reads, a graph
is generated and graph algorithms are used to identify the
consensus contig sequence [12].

De Bruijn and OLC de novo approaches can be time
consuming and require large amounts of computational re-
sources for data analysis. Furthermore, in cases of data with
high variation, actual similarities can be overlooked due to
the the presence of mismatches

Furthermore, another challenging aspect we need to
overcome during short reads analysis is the enormous size
of the dataset. If a datasets size exceeds the capacity of
a computers random access memory (RAM), data must be
exhaustively swapped between RAM and disk storage that
is orders of magnitude slower to access, forming a major
analysis bottleneck [12].

De novo assembly in particular requires far greater mem-
ory than is needed to store the read information itself. Also,
the pairwise data comparison stage is cumbersome, thus
suffix array indexing structures such as the BWT and FM-
index are widely used to reduce the data processing stage.
However, these methods perform the data analysis on the
original texture representations of the nucleotide sequences,



and are inadequate for datasets with high rates of variation
or repetition. Such indexing structures cannot process mis-
matches within reads, necessitating the use of more costly
alignment-based algorithms for sensitive searches. To handle
high numbers of mismatches and reduce the running time
of de novo assemblies, aggressive heuristics are employed,
which in turn can compromise assembly quality.

Contemporary sequencing technologies are generating
longer reads 105 of thousands bases long. The increased
length of the data will amplify existing problems with the
searching techniques and it introduce new challenges for
data analysis related to the curse of dimensionality. High
dimensional data appear sparse in space, thus data organ-
isation into meaningful groups becomes more challenging
[13].

Comparable analytical challenges involving enormous
datasets of high dimensional sequential data are encoun-
tered in other data-intensive fields such as signal, image
processing, and time series analysis, where a number of
effective dimensionality reduction methods have been pro-
posed, including the use of the discrete Fourier transform
(DFT) [14], the discrete wavelet transform (DWT) [15],
[16], and piecewise aggregate approximation (PAA) [17],
[18]. These techniques are used to transform data to an
alternative feature space that allows easier identification of
major feature characteristics that are not easily observed
in the original data. The minor features of the data, like
noise, are removed and the data analysis is performed on the
reduce data approximations allowing faster more efficient
data analysis that overcomes the curse of dimensionality.

We recently proposed the used of signal processing data
transformation methods for aligning reads to a reference
genome. The results of our proposed data transformation
approach, despite data compression, was comparable to the
performance of state of the art reference mappers [19].

Here we aim to evaluate the performance of data trans-
formation and compression techniques for the de novo anal-
ysis of short reads. The majority of current data analytic
techniques process the reads in their original space, and
have to either resolve in different heuristics or use of
computationally expensive matching algorithms to identify
similarities between reads that contain high variation levels.
To the contrary, data transformations can be used to capture
the main features that exist within the data and suppress any
variation/noise thus, allowing a better assemble of reads with
similar characteristics.

2. MATERIALS AND METHODS

2.1. Symbolic to numerical sequence representa-
tions

Numerous methods have been proposed for mapping
nucleotide sequences to numerical spaces. Some methods
like the electron ion interaction potential (EIIP) [20] (Figure
1A), atomic method [21] (Figure 1B) aim to mimic the
biochemical or biophysical properties of DNA molecules.

However, these approaches can introduce some inter nu-
cleotide bias that does not exist biologically. In contrary,
methods like the Voss indicators [22] (Figure 1D) and the
tetrahedron nucleotide mapping [23] approach provide a
uniform distribution of distance between all nucleotides.
Figure 1 depicts some presentation methods proposed for
mapping nucleotide sequence at numerical space.

For our experiment we primarily focus on the Voss rep-
resentation [22] (Figure 1D). This is a fixed numerical map-
ping approach, which converts a n-dimensional nucleotide
sequences to a 4xn matrix. Each of the 4 rows in the
matrix represents a nucleotide and each column represents
the nucleotide in the particular position at the sequence.
Equation 1 is used to generate the Voss indicator matrix
where a binary value of 1 is assigned to the cell jit"
(where j symbolize the row value and ¢ the column value)
in indicating the existence of the j*" nucleotide in the i**
position of the sequence and a value O for the absence of
the nucleotide.
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2.2. Data Transformation

Suitable data transformations for our analysis should
be able to transform data to an alternative space with-
out loss of useful information, have low computational
overheads, facilitate rapid comparison of data, and provide
lower bounding [24]. The DFT and the DWT transfor-
mation methods satisfy these requirements and are widely
used for analyzing discrete signals [25], we thus use them
here. These, transformation techniques are also used for
identifying the major features characteristics in a dataset,
and subsequently can be used to generate accurate data
approximations containing only the major data features. In
general the approximate data transformations have a lower
dimensionality than the original data thus can be used to
fit bigger datasets in memory for analysis. These methods
can be used to transform/approximate nucleotide sequence
numerical representations to different levels of resolution,
permitting reduced dimensionality sequence analysis.

The DFT decomposes a numerically represented nu-
cleotide sequence with N positions (dimensions) into a series
of N frequency components ordered by their frequency.
However, since the DFT method has high time complexity,
O(N?), the fast Fourier transform (FFT) algorithm [26]
with lower time complexity, O(Nlog(N)), is typically used
instead. A prerequisite of the FFT algorithm is a signal



with length equal to an integer exponent of two, 2". Where
sequences have a length other than 2", they are padded
with zeros up to the next integer exponent of two prior
to application of the FFT. Furthermore, the DFT decom-
position of a real signal with sampling rate N (length) is
conjugate symmetric [27]. Meaning that the second half of
the frequencies decomposition mirrors the first half of the
decomposition, thus we can safely discard the second half
of the frequencies without any loss of information [28].
Furthermore, in time series data mining, a subset of the
resulting Fourier frequencies are used to approximate the
original sequence in a lower dimensional space [14], and the
tradeoff between analytical speed and accuracy can be varied
according to the number of frequencies considered [29]. Fig
1 depicts different examples of the DFT transformations of
a short nucleotide sequence.

The DWT is a set of averaging and differencing func-
tions that may be used recursively to represent sequential
data at different resolutions [15], [30]. Unlike the DFT,
the DWT provides time-frequency localisation, so better
accommodates changes in signal frequency over time (non-
stationary signals), compared with the DFT and related
methods [31]. As with the FFT, a drawback of the DWT is
its requirement of input with length of an integer exponent
of two, (2™). Where sequences have a length other than 2,
artificial zero padding is again therefore added to increase
the size of the signal up to the next integer exponent of two
prior to application of the DWT. The corresponding DWT
transformations are then truncated in order to remove the
bias associated with artificial padding [32]. For example, in
order to generate the DWT transformation of a time series
with 500 data points to a resolution of three, i.e. 23, artificial
padding must be added to increase its length to 512 (29)
the next integer exponent of two. In this case, the final,
eighth wavelet series should be truncated so as to avoid
introducing bias. Figure 1 depicts different examples of the
DWT transformations of a short nucleotide sequence.

2.3. Similarity search approaches for sequential
data

Pairwise similarity/dissimilarity methods such as the Eu-
clidian distance, the LB_keoght lower bound dynamic time
warping envelope [33], longest common subsequence (LCS)
[34] and alignment approaches such as the Needleman-
Waunsch, Smith-Waterman and the dynamic time warping
algorithms can be used to evaluate the resemblance between
different data sequences. However, performing pairwise
comparisons between all the data is very time consuming for
big datasets (O(n?) time complexity). Indexing structures
like the KD-tree [35], R*-tree [36], VP-tree [37] and MVP-
tree [38] are preferred approaches for fast data analysis
because they allow effective and efficient data comparison.
Efficient data structures require a O(nlog(n)) time complex-
ity to build and the search function requires a O(log(n))
times.
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Figure 1. Examples of different numerical representations for DNA se-
quences and their DFT and DWT approximations. A 16-nucleotide se-
quence (x-axis) is represented as numerical sequences (black lines) using
the EIPP (1A), the atomic number (1B), the real number (1C) and the Voss
indices (1D) representation approaches. The DFT approximations of each
representation method are depicted in blue and the DWT approximations
of each representation method are depicted in red.

TABLE 1. METRIC PROPERTIES

i) d(z,y) >0 Non Negativity
ii) d(z,y) =0 z=y Identity

iii) d(z,y) = d(y, z) Symmetry

iv) | d(z,z) <d(z,y)+d(y,z) | Triangle inequality

Here we use a VP-tree structure, for data partitioning
and data comparison in order to identify potential overlaps
between our reads. A VP-tree is a metric tree, which par-
tition data in metric space and can subsequently be used
to for k nearest neighbour (k-NN) search or range search.
Due to the fact that in a VP-tree structure data are partition
based on their geometric properties, its crucial to use a
similarity/dissimilarity method used that satisfies all the
metric properties included in table 1. Here we are using
the Euclidean distance because it is simple and fast method



that satisfies all the metric properties can be applied on the
DFT, DWT and PAA data transformations/approximations

A VP-tree contains internal branches nodes and leaf
nodes. The internal nodes contain the data point used as
a vantage point vp and a threshold value mu, where as
each leaf nodes only contain a data point vp. To initiate
the construction of VP-tree, a data point is selected (either
randomly or by applying some heuristic to find and use
the furthest point in the dataset [39]) as a vantage point
vp, and recorded the first internal branch. The pairwise
distance between the rest of the data points and the selected
vantage point is calculated. Following, the distance values
are arranged in an ascending order and the median value
is identified and recorded as a threshold value mu for the
specific node. Subsequently, data points that have a smaller
distance to the vantage point vp than the threshold mu value
are directed to the left branch and the rest of the data points
are directed towards the right branch. The partition step is
performed recursively to each new branch until one data
point is left. At that stage, the node is considered a leaf node
and only contains the individual data points information.

The resulting tree can then be used either for k nearest
search to identify the k most similar data points to a given
query. The k-NN search is performed using the algorithm
described in algorithm 1.

Algorithm 1 k-NN search algorithm for VP-tree

Input: Query sequence g; the desired number of k nearest
neighbours; distance s indicating the distance between g
and the i*" nearest neighbour (i < k); the set W of the
k nearest neighbours obtained so far; and node n of the
tree (usual the root node ).

Output: Update values of W and s.

Initialisation :
dist:= d(g, n.vp)
if dist < s then
Update W and s.
end if
if n = branch_node then
if dist < n.mu then
Search (q, k, s, W, n.left)
end if
if dist > n.mu then
Search (q, k, s, W, n.right)
end if
end if

2.4. Graph Building and Traversal

For a de novo assemble of reads its required to identify
similarities within reads and building a graph accordingly.
Then the graph is traversed in order to obtain biggest contigs
that characterize the data. For the de Bruijn graph approach
reads are reduced to k-mers. Each k-mer is considered as
a node and any k-1 overlap between different nodes is
considered as an edge. The overlap information are used to
build the de Bruijn graph. Eulerian paths within the graph

Algorithm 2 Breadth first search traversal

Input: Empty set S to hold all visited nodes; empty set Q
to hold all the nodes in queue and a root node r
Output: Update list S with all visited nodes.
Initialisation :
Add r to S.
Add r to Q.
while Q is not empty do
node # is the top node in Q.
for each node m that is adjacent to n do
if m is not in S then
add m to S.
add m to Q.
end if
end for
remove noden from Q.
end while

are considered as contigs. However, the use of k-mers can
results into loss of read coherence, meaning that k-mers from
different reads may be co-assembled. Also, the de Bruijn
approach cannot identify overlaps if high variation exists
within the data.

OLC assemblers use big overlaps within reads to con-
struct a graph. Each read is represented as a node, and sub-
sequently merge overlapping reads into consensus contigs
[40]. OLC is relatively time and memory intensive, scaling
poorly to millions of reads and beyond but can be easily
implemented to tolerate long and noisy sequences. We aim
to implement an OLC approach for de novo assembly of
reads. To reduce the time and space complexity we are
using the VP-tree structure for fast identification of reads
overlaps and graph building. The use the tree can alleviate
the execution time of graph building.

The generated graph can be traversed using a breath first
search (BFS) algorithm [41]. The BFS can be performed
using the pseudo-code in algorithm 2.

3. Results

To assess the performance of our sequence transfor-
mation approach we implemented a de novo reads assem-
bler as described in algorithm 3. The main key stages of
our approach are as follows: i) transforming nucleotide
sequences into numerical sequences, ii) creating approxi-
mate transformations of sequences and building the VP-
tree, iii) performing accelerated comparison of the sequence
approximations created in the previous step in order to
identify candidate alignments, iv) build the graph based on
the information form step iii and traverse it using a BFS
algorithm, and v) build the overlap graphs and extract the
consensus sequences.

3.1. Read simulations

The prototype de novo assembler implementation of
our proposed approached was assessed on assembling short



Algorithm 3 De novo assembly using data transformations

Input: A set nucleotide sequences S; a representation
method R; a transformation method 7; minimum overlap
value o0; and a k of nearest neighbours.

Output: Return a set of contigs C obtained from the over-
lapped assembled reads assembled.

Initialisation :
1) Create a representation for the each read in set S using
representation method R.
2) Use a sliding window approach and obtain each o size
subsequence from the reads’ representations.
3) Transform reads subsequence representations obtained
from step 2 to a lower dimensional space using 7T trans-
formation method.
for each sequence s in S do
4) Use algorithm 1 to identify k nearest neighbours for
query s.
5) Evaluate k nearest neighbours using full resolution
data and discard any false positives.
6) Use sequence s and is neighbours as nodes in a graph
and connect them with edges.
end for
7) Use algorithm 2 to traverse graph generated by step 6
8) Generate set of contigs C from the graph traversal and
the sequences overlaps.

reads simulations to bigger full contigs. For the experiment
we used 16 simulated datasets of HIV-1 HXB2 populations
(GenBank accession: K03455.1, 9719bp). Reads were sim-
ulated with a single read length of 400 nucleotides and
respective coverage depths of approximately 80 reads. Reads
were simulated i) in the absence of variation or sequencing
error, i) with nucleotide insertion/deletion rates of 15%,
iii) with nucleotide substitution rates of 15%, and iv) with
matching insertion/deletion and substitution rates of 15%
2%, 4%, 6%, 8%, and 10% overall variation) so as to
simulate diverse populations.

3.2. De Novo assembly

To demonstrate the applicability of our approach to the
de novo assembly of short reads, we implemented prototype
OLC de novo aligner based on algorithm 3. Reads are
first represented as numerical sequences using the Voss
method. Every subsequence with size o (choosen overlap
size) of each numerically represented read is identified
and transformed to lower dimensional space using one of
different given transformation methods. The transformations
are then used to generate a VP-tree structure. Then the
initial o sized subsequence transformation of each read is
used a query in the VP-tree in order to obtained the best
overlap matches. During the VP-tree search we ensure that
no read matches its self. The obtained k closes matches are
evaluated in using the original data in order to remove any
false positive data. The remaining neighbours are used to
construct the weighted graph. Subsequently, the breadth-first
search (BFS) algorithm is used to traverse the graph and

obtain the overlapping sequences. Finally the overlapping
sequences are assembled to larger contigs.

We applied our de novo assembly algorithm to assemble
simulated short read data from viral populations (HIV-1)
with the DWT and DFT transformations accordingly. For
each of the approach we tested different overlap lengths
(between 100 and 300 bases long), and different transfor-
mation levels. For the DFT method, data approximations
were constructed using the 8 first Fourier frequencies and
for the DWT data were approximate using 8 wavelets.

The lowest common ancestor of each contiq was ob-
tained from the de novo assemblies were evaluated using
tictax [42] (https://github.com/bede/tictax). Tictax is a Web
service application that uses One Codex database to classify
reads and identify their lowest common ancestors. The re-
sults from the lowest common ancestry of each contig were
used to calculate the overall accuracy rate of each individual
de novo assembly with a equation 2. T'N indicates the
true negative results; 7'P indicates the true positive results,
and C indicates the number of contigs return from each
assembly. If an assembly is classified as HIV from tictax
then is considered as a TP results either wise a false
negative results.

_ 210:1 TP+ Z?:l TN
a C

A (@)

Our implementation managed to generate large accu-
rate contigs of the HIV-1 genome and in many cases all
the contigs generated by a distinct assembly was correctly
classified as HIV-1. As it can be seen in Figure 2, the
results indicate that even at high level of variation (10%
of combine insertion deletion and substitution variation) the
use of our proposed data transformations de novo approach
can generate contigs with an accuracy level of 0.97.
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Figure 2. Accuracy of our prototype OLC assembler variants with different
overlap lengths in aligning HIV-1 HXB2 simulated reads with varying
levels of sequence variation. The accuracy level of the assemblies is eval-
uated by assessing the lowest common ancestors of the generated contigs.
A show results for reads with 0-5% insertion/deletion variation, while B
correspond to reads with 0-5% substitution variation. C show obtained
accuracies for reads with combined, equally contributing insertion/deletion
and substitution rates of 0-10%..

4. Conclusion

During the preliminary stage of genomic/metagenomic
analysis short reads are assembled to larger contigs. Current
state of the art technologies employ either OLC graphs
or k-mer de Bruijn graphs. OLC graphs have high time
and space complexity thus de Bruijn graphs are favoured.
However, k-mer de Bruijn graphs efficiency can decline
data contain high variation. Here we propose the use of
data transformations/ approximations and signal processing
techniques for the assembly of short reads. Our results
indicate the use of short reads transformations and signal
processing indexing techniques allow for accurate de novo
assembly. Signal processing data transformation techniques

can allowed fast and computationally inexpensive analysis
of large dataset of nucleotide sequences.
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